1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35
f2fs_filemap_fault(struct vm_fault * vmf)36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 vm_fault_t ret;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (unlikely(f2fs_cp_error(sbi))) {
67 err = -EIO;
68 goto err;
69 }
70
71 if (!f2fs_is_checkpoint_ready(sbi)) {
72 err = -ENOSPC;
73 goto err;
74 }
75
76 #ifdef CONFIG_F2FS_FS_COMPRESSION
77 if (f2fs_compressed_file(inode)) {
78 int ret = f2fs_is_compressed_cluster(inode, page->index);
79
80 if (ret < 0) {
81 err = ret;
82 goto err;
83 } else if (ret) {
84 if (ret < F2FS_I(inode)->i_cluster_size) {
85 err = -EAGAIN;
86 goto err;
87 }
88 need_alloc = false;
89 }
90 }
91 #endif
92 /* should do out of any locked page */
93 if (need_alloc)
94 f2fs_balance_fs(sbi, true);
95
96 sb_start_pagefault(inode->i_sb);
97
98 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
99
100 file_update_time(vmf->vma->vm_file);
101 down_read(&F2FS_I(inode)->i_mmap_sem);
102 lock_page(page);
103 if (unlikely(page->mapping != inode->i_mapping ||
104 page_offset(page) > i_size_read(inode) ||
105 !PageUptodate(page))) {
106 unlock_page(page);
107 err = -EFAULT;
108 goto out_sem;
109 }
110
111 if (need_alloc) {
112 /* block allocation */
113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
114 set_new_dnode(&dn, inode, NULL, NULL, 0);
115 err = f2fs_get_block(&dn, page->index);
116 f2fs_put_dnode(&dn);
117 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152 if (!PageUptodate(page))
153 SetPageUptodate(page);
154
155 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
156 f2fs_update_time(sbi, REQ_TIME);
157
158 trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 up_read(&F2FS_I(inode)->i_mmap_sem);
161
162 sb_end_pagefault(inode->i_sb);
163 err:
164 return block_page_mkwrite_return(err);
165 }
166
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 .fault = f2fs_filemap_fault,
169 .map_pages = filemap_map_pages,
170 .page_mkwrite = f2fs_vm_page_mkwrite,
171 };
172
get_parent_ino(struct inode * inode,nid_t * pino)173 static int get_parent_ino(struct inode *inode, nid_t *pino)
174 {
175 struct dentry *dentry;
176
177 /*
178 * Make sure to get the non-deleted alias. The alias associated with
179 * the open file descriptor being fsync()'ed may be deleted already.
180 */
181 dentry = d_find_alias(inode);
182 if (!dentry)
183 return 0;
184
185 *pino = parent_ino(dentry);
186 dput(dentry);
187 return 1;
188 }
189
need_do_checkpoint(struct inode * inode)190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
191 {
192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
193 enum cp_reason_type cp_reason = CP_NO_NEEDED;
194
195 if (!S_ISREG(inode->i_mode))
196 cp_reason = CP_NON_REGULAR;
197 else if (f2fs_compressed_file(inode))
198 cp_reason = CP_COMPRESSED;
199 else if (inode->i_nlink != 1)
200 cp_reason = CP_HARDLINK;
201 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
202 cp_reason = CP_SB_NEED_CP;
203 else if (file_wrong_pino(inode))
204 cp_reason = CP_WRONG_PINO;
205 else if (!f2fs_space_for_roll_forward(sbi))
206 cp_reason = CP_NO_SPC_ROLL;
207 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
208 cp_reason = CP_NODE_NEED_CP;
209 else if (test_opt(sbi, FASTBOOT))
210 cp_reason = CP_FASTBOOT_MODE;
211 else if (F2FS_OPTION(sbi).active_logs == 2)
212 cp_reason = CP_SPEC_LOG_NUM;
213 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
214 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
215 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
216 TRANS_DIR_INO))
217 cp_reason = CP_RECOVER_DIR;
218
219 return cp_reason;
220 }
221
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
223 {
224 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
225 bool ret = false;
226 /* But we need to avoid that there are some inode updates */
227 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
228 ret = true;
229 f2fs_put_page(i, 0);
230 return ret;
231 }
232
try_to_fix_pino(struct inode * inode)233 static void try_to_fix_pino(struct inode *inode)
234 {
235 struct f2fs_inode_info *fi = F2FS_I(inode);
236 nid_t pino;
237
238 down_write(&fi->i_sem);
239 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
240 get_parent_ino(inode, &pino)) {
241 f2fs_i_pino_write(inode, pino);
242 file_got_pino(inode);
243 }
244 up_write(&fi->i_sem);
245 }
246
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
248 int datasync, bool atomic)
249 {
250 struct inode *inode = file->f_mapping->host;
251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
252 nid_t ino = inode->i_ino;
253 int ret = 0;
254 enum cp_reason_type cp_reason = 0;
255 struct writeback_control wbc = {
256 .sync_mode = WB_SYNC_ALL,
257 .nr_to_write = LONG_MAX,
258 .for_reclaim = 0,
259 };
260 unsigned int seq_id = 0;
261
262 if (unlikely(f2fs_readonly(inode->i_sb)))
263 return 0;
264
265 trace_f2fs_sync_file_enter(inode);
266
267 if (S_ISDIR(inode->i_mode))
268 goto go_write;
269
270 /* if fdatasync is triggered, let's do in-place-update */
271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272 set_inode_flag(inode, FI_NEED_IPU);
273 ret = file_write_and_wait_range(file, start, end);
274 clear_inode_flag(inode, FI_NEED_IPU);
275
276 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278 return ret;
279 }
280
281 /* if the inode is dirty, let's recover all the time */
282 if (!f2fs_skip_inode_update(inode, datasync)) {
283 f2fs_write_inode(inode, NULL);
284 goto go_write;
285 }
286
287 /*
288 * if there is no written data, don't waste time to write recovery info.
289 */
290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292
293 /* it may call write_inode just prior to fsync */
294 if (need_inode_page_update(sbi, ino))
295 goto go_write;
296
297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299 goto flush_out;
300 goto out;
301 }
302 go_write:
303 /*
304 * Both of fdatasync() and fsync() are able to be recovered from
305 * sudden-power-off.
306 */
307 down_read(&F2FS_I(inode)->i_sem);
308 cp_reason = need_do_checkpoint(inode);
309 up_read(&F2FS_I(inode)->i_sem);
310
311 if (cp_reason) {
312 /* all the dirty node pages should be flushed for POR */
313 ret = f2fs_sync_fs(inode->i_sb, 1);
314
315 /*
316 * We've secured consistency through sync_fs. Following pino
317 * will be used only for fsynced inodes after checkpoint.
318 */
319 try_to_fix_pino(inode);
320 clear_inode_flag(inode, FI_APPEND_WRITE);
321 clear_inode_flag(inode, FI_UPDATE_WRITE);
322 goto out;
323 }
324 sync_nodes:
325 atomic_inc(&sbi->wb_sync_req[NODE]);
326 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
327 atomic_dec(&sbi->wb_sync_req[NODE]);
328 if (ret)
329 goto out;
330
331 /* if cp_error was enabled, we should avoid infinite loop */
332 if (unlikely(f2fs_cp_error(sbi))) {
333 ret = -EIO;
334 goto out;
335 }
336
337 if (f2fs_need_inode_block_update(sbi, ino)) {
338 f2fs_mark_inode_dirty_sync(inode, true);
339 f2fs_write_inode(inode, NULL);
340 goto sync_nodes;
341 }
342
343 /*
344 * If it's atomic_write, it's just fine to keep write ordering. So
345 * here we don't need to wait for node write completion, since we use
346 * node chain which serializes node blocks. If one of node writes are
347 * reordered, we can see simply broken chain, resulting in stopping
348 * roll-forward recovery. It means we'll recover all or none node blocks
349 * given fsync mark.
350 */
351 if (!atomic) {
352 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
353 if (ret)
354 goto out;
355 }
356
357 /* once recovery info is written, don't need to tack this */
358 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
359 clear_inode_flag(inode, FI_APPEND_WRITE);
360 flush_out:
361 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
362 ret = f2fs_issue_flush(sbi, inode->i_ino);
363 if (!ret) {
364 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
365 clear_inode_flag(inode, FI_UPDATE_WRITE);
366 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
367 }
368 f2fs_update_time(sbi, REQ_TIME);
369 out:
370 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
371 f2fs_trace_ios(NULL, 1);
372 return ret;
373 }
374
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)375 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
376 {
377 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
378 return -EIO;
379 return f2fs_do_sync_file(file, start, end, datasync, false);
380 }
381
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)382 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
383 pgoff_t index, int whence)
384 {
385 switch (whence) {
386 case SEEK_DATA:
387 if (__is_valid_data_blkaddr(blkaddr))
388 return true;
389 if (blkaddr == NEW_ADDR &&
390 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
391 return true;
392 break;
393 case SEEK_HOLE:
394 if (blkaddr == NULL_ADDR)
395 return true;
396 break;
397 }
398 return false;
399 }
400
f2fs_seek_block(struct file * file,loff_t offset,int whence)401 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
402 {
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
405 struct dnode_of_data dn;
406 pgoff_t pgofs, end_offset;
407 loff_t data_ofs = offset;
408 loff_t isize;
409 int err = 0;
410
411 inode_lock(inode);
412
413 isize = i_size_read(inode);
414 if (offset >= isize)
415 goto fail;
416
417 /* handle inline data case */
418 if (f2fs_has_inline_data(inode)) {
419 if (whence == SEEK_HOLE) {
420 data_ofs = isize;
421 goto found;
422 } else if (whence == SEEK_DATA) {
423 data_ofs = offset;
424 goto found;
425 }
426 }
427
428 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
429
430 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
431 set_new_dnode(&dn, inode, NULL, NULL, 0);
432 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
433 if (err && err != -ENOENT) {
434 goto fail;
435 } else if (err == -ENOENT) {
436 /* direct node does not exists */
437 if (whence == SEEK_DATA) {
438 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
439 continue;
440 } else {
441 goto found;
442 }
443 }
444
445 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
446
447 /* find data/hole in dnode block */
448 for (; dn.ofs_in_node < end_offset;
449 dn.ofs_in_node++, pgofs++,
450 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
451 block_t blkaddr;
452
453 blkaddr = f2fs_data_blkaddr(&dn);
454
455 if (__is_valid_data_blkaddr(blkaddr) &&
456 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
457 blkaddr, DATA_GENERIC_ENHANCE)) {
458 f2fs_put_dnode(&dn);
459 goto fail;
460 }
461
462 if (__found_offset(file->f_mapping, blkaddr,
463 pgofs, whence)) {
464 f2fs_put_dnode(&dn);
465 goto found;
466 }
467 }
468 f2fs_put_dnode(&dn);
469 }
470
471 if (whence == SEEK_DATA)
472 goto fail;
473 found:
474 if (whence == SEEK_HOLE && data_ofs > isize)
475 data_ofs = isize;
476 inode_unlock(inode);
477 return vfs_setpos(file, data_ofs, maxbytes);
478 fail:
479 inode_unlock(inode);
480 return -ENXIO;
481 }
482
f2fs_llseek(struct file * file,loff_t offset,int whence)483 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
484 {
485 struct inode *inode = file->f_mapping->host;
486 loff_t maxbytes = inode->i_sb->s_maxbytes;
487
488 switch (whence) {
489 case SEEK_SET:
490 case SEEK_CUR:
491 case SEEK_END:
492 return generic_file_llseek_size(file, offset, whence,
493 maxbytes, i_size_read(inode));
494 case SEEK_DATA:
495 case SEEK_HOLE:
496 if (offset < 0)
497 return -ENXIO;
498 return f2fs_seek_block(file, offset, whence);
499 }
500
501 return -EINVAL;
502 }
503
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)504 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
505 {
506 struct inode *inode = file_inode(file);
507 int err;
508
509 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
510 return -EIO;
511
512 if (!f2fs_is_compress_backend_ready(inode))
513 return -EOPNOTSUPP;
514
515 /* we don't need to use inline_data strictly */
516 err = f2fs_convert_inline_inode(inode);
517 if (err)
518 return err;
519
520 file_accessed(file);
521 vma->vm_ops = &f2fs_file_vm_ops;
522 set_inode_flag(inode, FI_MMAP_FILE);
523 return 0;
524 }
525
f2fs_file_open(struct inode * inode,struct file * filp)526 static int f2fs_file_open(struct inode *inode, struct file *filp)
527 {
528 int err = fscrypt_file_open(inode, filp);
529
530 if (err)
531 return err;
532
533 if (!f2fs_is_compress_backend_ready(inode))
534 return -EOPNOTSUPP;
535
536 err = fsverity_file_open(inode, filp);
537 if (err)
538 return err;
539
540 filp->f_mode |= FMODE_NOWAIT;
541
542 return dquot_file_open(inode, filp);
543 }
544
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)545 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
546 {
547 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
548 struct f2fs_node *raw_node;
549 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
550 __le32 *addr;
551 int base = 0;
552 bool compressed_cluster = false;
553 int cluster_index = 0, valid_blocks = 0;
554 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
555 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
556
557 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
558 base = get_extra_isize(dn->inode);
559
560 raw_node = F2FS_NODE(dn->node_page);
561 addr = blkaddr_in_node(raw_node) + base + ofs;
562
563 /* Assumption: truncateion starts with cluster */
564 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
565 block_t blkaddr = le32_to_cpu(*addr);
566
567 if (f2fs_compressed_file(dn->inode) &&
568 !(cluster_index & (cluster_size - 1))) {
569 if (compressed_cluster)
570 f2fs_i_compr_blocks_update(dn->inode,
571 valid_blocks, false);
572 compressed_cluster = (blkaddr == COMPRESS_ADDR);
573 valid_blocks = 0;
574 }
575
576 if (blkaddr == NULL_ADDR)
577 continue;
578
579 dn->data_blkaddr = NULL_ADDR;
580 f2fs_set_data_blkaddr(dn);
581
582 if (__is_valid_data_blkaddr(blkaddr)) {
583 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
584 DATA_GENERIC_ENHANCE))
585 continue;
586 if (compressed_cluster)
587 valid_blocks++;
588 }
589
590 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
591 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
592
593 f2fs_invalidate_blocks(sbi, blkaddr);
594
595 if (!released || blkaddr != COMPRESS_ADDR)
596 nr_free++;
597 }
598
599 if (compressed_cluster)
600 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
601
602 if (nr_free) {
603 pgoff_t fofs;
604 /*
605 * once we invalidate valid blkaddr in range [ofs, ofs + count],
606 * we will invalidate all blkaddr in the whole range.
607 */
608 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
609 dn->inode) + ofs;
610 f2fs_update_extent_cache_range(dn, fofs, 0, len);
611 dec_valid_block_count(sbi, dn->inode, nr_free);
612 }
613 dn->ofs_in_node = ofs;
614
615 f2fs_update_time(sbi, REQ_TIME);
616 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
617 dn->ofs_in_node, nr_free);
618 }
619
f2fs_truncate_data_blocks(struct dnode_of_data * dn)620 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
621 {
622 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
623 }
624
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)625 static int truncate_partial_data_page(struct inode *inode, u64 from,
626 bool cache_only)
627 {
628 loff_t offset = from & (PAGE_SIZE - 1);
629 pgoff_t index = from >> PAGE_SHIFT;
630 struct address_space *mapping = inode->i_mapping;
631 struct page *page;
632
633 if (!offset && !cache_only)
634 return 0;
635
636 if (cache_only) {
637 page = find_lock_page(mapping, index);
638 if (page && PageUptodate(page))
639 goto truncate_out;
640 f2fs_put_page(page, 1);
641 return 0;
642 }
643
644 page = f2fs_get_lock_data_page(inode, index, true);
645 if (IS_ERR(page))
646 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
647 truncate_out:
648 f2fs_wait_on_page_writeback(page, DATA, true, true);
649 zero_user(page, offset, PAGE_SIZE - offset);
650
651 /* An encrypted inode should have a key and truncate the last page. */
652 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
653 if (!cache_only)
654 set_page_dirty(page);
655 f2fs_put_page(page, 1);
656 return 0;
657 }
658
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)659 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
660 {
661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
662 struct dnode_of_data dn;
663 pgoff_t free_from;
664 int count = 0, err = 0;
665 struct page *ipage;
666 bool truncate_page = false;
667
668 trace_f2fs_truncate_blocks_enter(inode, from);
669
670 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
671
672 if (free_from >= sbi->max_file_blocks)
673 goto free_partial;
674
675 if (lock)
676 f2fs_lock_op(sbi);
677
678 ipage = f2fs_get_node_page(sbi, inode->i_ino);
679 if (IS_ERR(ipage)) {
680 err = PTR_ERR(ipage);
681 goto out;
682 }
683
684 if (f2fs_has_inline_data(inode)) {
685 f2fs_truncate_inline_inode(inode, ipage, from);
686 f2fs_put_page(ipage, 1);
687 truncate_page = true;
688 goto out;
689 }
690
691 set_new_dnode(&dn, inode, ipage, NULL, 0);
692 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
693 if (err) {
694 if (err == -ENOENT)
695 goto free_next;
696 goto out;
697 }
698
699 count = ADDRS_PER_PAGE(dn.node_page, inode);
700
701 count -= dn.ofs_in_node;
702 f2fs_bug_on(sbi, count < 0);
703
704 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
705 f2fs_truncate_data_blocks_range(&dn, count);
706 free_from += count;
707 }
708
709 f2fs_put_dnode(&dn);
710 free_next:
711 err = f2fs_truncate_inode_blocks(inode, free_from);
712 out:
713 if (lock)
714 f2fs_unlock_op(sbi);
715 free_partial:
716 /* lastly zero out the first data page */
717 if (!err)
718 err = truncate_partial_data_page(inode, from, truncate_page);
719
720 trace_f2fs_truncate_blocks_exit(inode, err);
721 return err;
722 }
723
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)724 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
725 {
726 u64 free_from = from;
727 int err;
728
729 #ifdef CONFIG_F2FS_FS_COMPRESSION
730 /*
731 * for compressed file, only support cluster size
732 * aligned truncation.
733 */
734 if (f2fs_compressed_file(inode))
735 free_from = round_up(from,
736 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
737 #endif
738
739 err = f2fs_do_truncate_blocks(inode, free_from, lock);
740 if (err)
741 return err;
742
743 #ifdef CONFIG_F2FS_FS_COMPRESSION
744 if (from != free_from) {
745 err = f2fs_truncate_partial_cluster(inode, from, lock);
746 if (err)
747 return err;
748 }
749 #endif
750
751 return 0;
752 }
753
f2fs_truncate(struct inode * inode)754 int f2fs_truncate(struct inode *inode)
755 {
756 int err;
757
758 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
759 return -EIO;
760
761 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
762 S_ISLNK(inode->i_mode)))
763 return 0;
764
765 trace_f2fs_truncate(inode);
766
767 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
768 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
769 return -EIO;
770 }
771
772 err = dquot_initialize(inode);
773 if (err)
774 return err;
775
776 /* we should check inline_data size */
777 if (!f2fs_may_inline_data(inode)) {
778 err = f2fs_convert_inline_inode(inode);
779 if (err)
780 return err;
781 }
782
783 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
784 if (err)
785 return err;
786
787 inode->i_mtime = inode->i_ctime = current_time(inode);
788 f2fs_mark_inode_dirty_sync(inode, false);
789 return 0;
790 }
791
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)792 int f2fs_getattr(const struct path *path, struct kstat *stat,
793 u32 request_mask, unsigned int query_flags)
794 {
795 struct inode *inode = d_inode(path->dentry);
796 struct f2fs_inode_info *fi = F2FS_I(inode);
797 struct f2fs_inode *ri;
798 unsigned int flags;
799
800 if (f2fs_has_extra_attr(inode) &&
801 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
802 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
803 stat->result_mask |= STATX_BTIME;
804 stat->btime.tv_sec = fi->i_crtime.tv_sec;
805 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
806 }
807
808 flags = fi->i_flags;
809 if (flags & F2FS_COMPR_FL)
810 stat->attributes |= STATX_ATTR_COMPRESSED;
811 if (flags & F2FS_APPEND_FL)
812 stat->attributes |= STATX_ATTR_APPEND;
813 if (IS_ENCRYPTED(inode))
814 stat->attributes |= STATX_ATTR_ENCRYPTED;
815 if (flags & F2FS_IMMUTABLE_FL)
816 stat->attributes |= STATX_ATTR_IMMUTABLE;
817 if (flags & F2FS_NODUMP_FL)
818 stat->attributes |= STATX_ATTR_NODUMP;
819 if (IS_VERITY(inode))
820 stat->attributes |= STATX_ATTR_VERITY;
821
822 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
823 STATX_ATTR_APPEND |
824 STATX_ATTR_ENCRYPTED |
825 STATX_ATTR_IMMUTABLE |
826 STATX_ATTR_NODUMP |
827 STATX_ATTR_VERITY);
828
829 generic_fillattr(inode, stat);
830
831 /* we need to show initial sectors used for inline_data/dentries */
832 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
833 f2fs_has_inline_dentry(inode))
834 stat->blocks += (stat->size + 511) >> 9;
835
836 return 0;
837 }
838
839 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)840 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
841 {
842 unsigned int ia_valid = attr->ia_valid;
843
844 if (ia_valid & ATTR_UID)
845 inode->i_uid = attr->ia_uid;
846 if (ia_valid & ATTR_GID)
847 inode->i_gid = attr->ia_gid;
848 if (ia_valid & ATTR_ATIME)
849 inode->i_atime = attr->ia_atime;
850 if (ia_valid & ATTR_MTIME)
851 inode->i_mtime = attr->ia_mtime;
852 if (ia_valid & ATTR_CTIME)
853 inode->i_ctime = attr->ia_ctime;
854 if (ia_valid & ATTR_MODE) {
855 umode_t mode = attr->ia_mode;
856
857 if (!in_group_p(inode->i_gid) &&
858 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
859 mode &= ~S_ISGID;
860 set_acl_inode(inode, mode);
861 }
862 }
863 #else
864 #define __setattr_copy setattr_copy
865 #endif
866
f2fs_setattr(struct dentry * dentry,struct iattr * attr)867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
868 {
869 struct inode *inode = d_inode(dentry);
870 int err;
871
872 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
873 return -EIO;
874
875 if (unlikely(IS_IMMUTABLE(inode)))
876 return -EPERM;
877
878 if (unlikely(IS_APPEND(inode) &&
879 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
880 ATTR_GID | ATTR_TIMES_SET))))
881 return -EPERM;
882
883 if ((attr->ia_valid & ATTR_SIZE) &&
884 !f2fs_is_compress_backend_ready(inode))
885 return -EOPNOTSUPP;
886
887 err = setattr_prepare(dentry, attr);
888 if (err)
889 return err;
890
891 err = fscrypt_prepare_setattr(dentry, attr);
892 if (err)
893 return err;
894
895 err = fsverity_prepare_setattr(dentry, attr);
896 if (err)
897 return err;
898
899 if (is_quota_modification(inode, attr)) {
900 err = dquot_initialize(inode);
901 if (err)
902 return err;
903 }
904 if ((attr->ia_valid & ATTR_UID &&
905 !uid_eq(attr->ia_uid, inode->i_uid)) ||
906 (attr->ia_valid & ATTR_GID &&
907 !gid_eq(attr->ia_gid, inode->i_gid))) {
908 f2fs_lock_op(F2FS_I_SB(inode));
909 err = dquot_transfer(inode, attr);
910 if (err) {
911 set_sbi_flag(F2FS_I_SB(inode),
912 SBI_QUOTA_NEED_REPAIR);
913 f2fs_unlock_op(F2FS_I_SB(inode));
914 return err;
915 }
916 /*
917 * update uid/gid under lock_op(), so that dquot and inode can
918 * be updated atomically.
919 */
920 if (attr->ia_valid & ATTR_UID)
921 inode->i_uid = attr->ia_uid;
922 if (attr->ia_valid & ATTR_GID)
923 inode->i_gid = attr->ia_gid;
924 f2fs_mark_inode_dirty_sync(inode, true);
925 f2fs_unlock_op(F2FS_I_SB(inode));
926 }
927
928 if (attr->ia_valid & ATTR_SIZE) {
929 loff_t old_size = i_size_read(inode);
930
931 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
932 /*
933 * should convert inline inode before i_size_write to
934 * keep smaller than inline_data size with inline flag.
935 */
936 err = f2fs_convert_inline_inode(inode);
937 if (err)
938 return err;
939 }
940
941 /*
942 * wait for inflight dio, blocks should be removed after
943 * IO completion.
944 */
945 if (attr->ia_size < old_size)
946 inode_dio_wait(inode);
947
948 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
949 down_write(&F2FS_I(inode)->i_mmap_sem);
950
951 truncate_setsize(inode, attr->ia_size);
952
953 if (attr->ia_size <= old_size)
954 err = f2fs_truncate(inode);
955 /*
956 * do not trim all blocks after i_size if target size is
957 * larger than i_size.
958 */
959 up_write(&F2FS_I(inode)->i_mmap_sem);
960 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961 if (err)
962 return err;
963
964 spin_lock(&F2FS_I(inode)->i_size_lock);
965 inode->i_mtime = inode->i_ctime = current_time(inode);
966 F2FS_I(inode)->last_disk_size = i_size_read(inode);
967 spin_unlock(&F2FS_I(inode)->i_size_lock);
968 }
969
970 __setattr_copy(inode, attr);
971
972 if (attr->ia_valid & ATTR_MODE) {
973 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
974 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
975 inode->i_mode = F2FS_I(inode)->i_acl_mode;
976 clear_inode_flag(inode, FI_ACL_MODE);
977 }
978 }
979
980 /* file size may changed here */
981 f2fs_mark_inode_dirty_sync(inode, true);
982
983 /* inode change will produce dirty node pages flushed by checkpoint */
984 f2fs_balance_fs(F2FS_I_SB(inode), true);
985
986 return err;
987 }
988
989 const struct inode_operations f2fs_file_inode_operations = {
990 .getattr = f2fs_getattr,
991 .setattr = f2fs_setattr,
992 .get_acl = f2fs_get_acl,
993 .set_acl = f2fs_set_acl,
994 .listxattr = f2fs_listxattr,
995 .fiemap = f2fs_fiemap,
996 };
997
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)998 static int fill_zero(struct inode *inode, pgoff_t index,
999 loff_t start, loff_t len)
1000 {
1001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002 struct page *page;
1003
1004 if (!len)
1005 return 0;
1006
1007 f2fs_balance_fs(sbi, true);
1008
1009 f2fs_lock_op(sbi);
1010 page = f2fs_get_new_data_page(inode, NULL, index, false);
1011 f2fs_unlock_op(sbi);
1012
1013 if (IS_ERR(page))
1014 return PTR_ERR(page);
1015
1016 f2fs_wait_on_page_writeback(page, DATA, true, true);
1017 zero_user(page, start, len);
1018 set_page_dirty(page);
1019 f2fs_put_page(page, 1);
1020 return 0;
1021 }
1022
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1023 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1024 {
1025 int err;
1026
1027 while (pg_start < pg_end) {
1028 struct dnode_of_data dn;
1029 pgoff_t end_offset, count;
1030
1031 set_new_dnode(&dn, inode, NULL, NULL, 0);
1032 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1033 if (err) {
1034 if (err == -ENOENT) {
1035 pg_start = f2fs_get_next_page_offset(&dn,
1036 pg_start);
1037 continue;
1038 }
1039 return err;
1040 }
1041
1042 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1043 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1044
1045 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1046
1047 f2fs_truncate_data_blocks_range(&dn, count);
1048 f2fs_put_dnode(&dn);
1049
1050 pg_start += count;
1051 }
1052 return 0;
1053 }
1054
punch_hole(struct inode * inode,loff_t offset,loff_t len)1055 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1056 {
1057 pgoff_t pg_start, pg_end;
1058 loff_t off_start, off_end;
1059 int ret;
1060
1061 ret = f2fs_convert_inline_inode(inode);
1062 if (ret)
1063 return ret;
1064
1065 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1066 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1067
1068 off_start = offset & (PAGE_SIZE - 1);
1069 off_end = (offset + len) & (PAGE_SIZE - 1);
1070
1071 if (pg_start == pg_end) {
1072 ret = fill_zero(inode, pg_start, off_start,
1073 off_end - off_start);
1074 if (ret)
1075 return ret;
1076 } else {
1077 if (off_start) {
1078 ret = fill_zero(inode, pg_start++, off_start,
1079 PAGE_SIZE - off_start);
1080 if (ret)
1081 return ret;
1082 }
1083 if (off_end) {
1084 ret = fill_zero(inode, pg_end, 0, off_end);
1085 if (ret)
1086 return ret;
1087 }
1088
1089 if (pg_start < pg_end) {
1090 loff_t blk_start, blk_end;
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092
1093 f2fs_balance_fs(sbi, true);
1094
1095 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1096 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1097
1098 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1099 down_write(&F2FS_I(inode)->i_mmap_sem);
1100
1101 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1102
1103 f2fs_lock_op(sbi);
1104 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1105 f2fs_unlock_op(sbi);
1106
1107 up_write(&F2FS_I(inode)->i_mmap_sem);
1108 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1109 }
1110 }
1111
1112 return ret;
1113 }
1114
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1115 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1116 int *do_replace, pgoff_t off, pgoff_t len)
1117 {
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 struct dnode_of_data dn;
1120 int ret, done, i;
1121
1122 next_dnode:
1123 set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1125 if (ret && ret != -ENOENT) {
1126 return ret;
1127 } else if (ret == -ENOENT) {
1128 if (dn.max_level == 0)
1129 return -ENOENT;
1130 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1131 dn.ofs_in_node, len);
1132 blkaddr += done;
1133 do_replace += done;
1134 goto next;
1135 }
1136
1137 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1138 dn.ofs_in_node, len);
1139 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1140 *blkaddr = f2fs_data_blkaddr(&dn);
1141
1142 if (__is_valid_data_blkaddr(*blkaddr) &&
1143 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1144 DATA_GENERIC_ENHANCE)) {
1145 f2fs_put_dnode(&dn);
1146 return -EFSCORRUPTED;
1147 }
1148
1149 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1150
1151 if (f2fs_lfs_mode(sbi)) {
1152 f2fs_put_dnode(&dn);
1153 return -EOPNOTSUPP;
1154 }
1155
1156 /* do not invalidate this block address */
1157 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1158 *do_replace = 1;
1159 }
1160 }
1161 f2fs_put_dnode(&dn);
1162 next:
1163 len -= done;
1164 off += done;
1165 if (len)
1166 goto next_dnode;
1167 return 0;
1168 }
1169
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1170 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1171 int *do_replace, pgoff_t off, int len)
1172 {
1173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 struct dnode_of_data dn;
1175 int ret, i;
1176
1177 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1178 if (*do_replace == 0)
1179 continue;
1180
1181 set_new_dnode(&dn, inode, NULL, NULL, 0);
1182 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1183 if (ret) {
1184 dec_valid_block_count(sbi, inode, 1);
1185 f2fs_invalidate_blocks(sbi, *blkaddr);
1186 } else {
1187 f2fs_update_data_blkaddr(&dn, *blkaddr);
1188 }
1189 f2fs_put_dnode(&dn);
1190 }
1191 return 0;
1192 }
1193
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1194 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1195 block_t *blkaddr, int *do_replace,
1196 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1197 {
1198 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1199 pgoff_t i = 0;
1200 int ret;
1201
1202 while (i < len) {
1203 if (blkaddr[i] == NULL_ADDR && !full) {
1204 i++;
1205 continue;
1206 }
1207
1208 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1209 struct dnode_of_data dn;
1210 struct node_info ni;
1211 size_t new_size;
1212 pgoff_t ilen;
1213
1214 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1215 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1216 if (ret)
1217 return ret;
1218
1219 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1220 if (ret) {
1221 f2fs_put_dnode(&dn);
1222 return ret;
1223 }
1224
1225 ilen = min((pgoff_t)
1226 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1227 dn.ofs_in_node, len - i);
1228 do {
1229 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1230 f2fs_truncate_data_blocks_range(&dn, 1);
1231
1232 if (do_replace[i]) {
1233 f2fs_i_blocks_write(src_inode,
1234 1, false, false);
1235 f2fs_i_blocks_write(dst_inode,
1236 1, true, false);
1237 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1238 blkaddr[i], ni.version, true, false);
1239
1240 do_replace[i] = 0;
1241 }
1242 dn.ofs_in_node++;
1243 i++;
1244 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1245 if (dst_inode->i_size < new_size)
1246 f2fs_i_size_write(dst_inode, new_size);
1247 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1248
1249 f2fs_put_dnode(&dn);
1250 } else {
1251 struct page *psrc, *pdst;
1252
1253 psrc = f2fs_get_lock_data_page(src_inode,
1254 src + i, true);
1255 if (IS_ERR(psrc))
1256 return PTR_ERR(psrc);
1257 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1258 true);
1259 if (IS_ERR(pdst)) {
1260 f2fs_put_page(psrc, 1);
1261 return PTR_ERR(pdst);
1262 }
1263 f2fs_copy_page(psrc, pdst);
1264 set_page_dirty(pdst);
1265 f2fs_put_page(pdst, 1);
1266 f2fs_put_page(psrc, 1);
1267
1268 ret = f2fs_truncate_hole(src_inode,
1269 src + i, src + i + 1);
1270 if (ret)
1271 return ret;
1272 i++;
1273 }
1274 }
1275 return 0;
1276 }
1277
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1278 static int __exchange_data_block(struct inode *src_inode,
1279 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1280 pgoff_t len, bool full)
1281 {
1282 block_t *src_blkaddr;
1283 int *do_replace;
1284 pgoff_t olen;
1285 int ret;
1286
1287 while (len) {
1288 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1289
1290 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1291 array_size(olen, sizeof(block_t)),
1292 GFP_NOFS);
1293 if (!src_blkaddr)
1294 return -ENOMEM;
1295
1296 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1297 array_size(olen, sizeof(int)),
1298 GFP_NOFS);
1299 if (!do_replace) {
1300 kvfree(src_blkaddr);
1301 return -ENOMEM;
1302 }
1303
1304 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1305 do_replace, src, olen);
1306 if (ret)
1307 goto roll_back;
1308
1309 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1310 do_replace, src, dst, olen, full);
1311 if (ret)
1312 goto roll_back;
1313
1314 src += olen;
1315 dst += olen;
1316 len -= olen;
1317
1318 kvfree(src_blkaddr);
1319 kvfree(do_replace);
1320 }
1321 return 0;
1322
1323 roll_back:
1324 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1325 kvfree(src_blkaddr);
1326 kvfree(do_replace);
1327 return ret;
1328 }
1329
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1330 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1331 {
1332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1333 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1334 pgoff_t start = offset >> PAGE_SHIFT;
1335 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1336 int ret;
1337
1338 f2fs_balance_fs(sbi, true);
1339
1340 /* avoid gc operation during block exchange */
1341 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1342 down_write(&F2FS_I(inode)->i_mmap_sem);
1343
1344 f2fs_lock_op(sbi);
1345 f2fs_drop_extent_tree(inode);
1346 truncate_pagecache(inode, offset);
1347 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1348 f2fs_unlock_op(sbi);
1349
1350 up_write(&F2FS_I(inode)->i_mmap_sem);
1351 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1352 return ret;
1353 }
1354
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1355 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1356 {
1357 loff_t new_size;
1358 int ret;
1359
1360 if (offset + len >= i_size_read(inode))
1361 return -EINVAL;
1362
1363 /* collapse range should be aligned to block size of f2fs. */
1364 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1365 return -EINVAL;
1366
1367 ret = f2fs_convert_inline_inode(inode);
1368 if (ret)
1369 return ret;
1370
1371 /* write out all dirty pages from offset */
1372 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1373 if (ret)
1374 return ret;
1375
1376 ret = f2fs_do_collapse(inode, offset, len);
1377 if (ret)
1378 return ret;
1379
1380 /* write out all moved pages, if possible */
1381 down_write(&F2FS_I(inode)->i_mmap_sem);
1382 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1383 truncate_pagecache(inode, offset);
1384
1385 new_size = i_size_read(inode) - len;
1386 ret = f2fs_truncate_blocks(inode, new_size, true);
1387 up_write(&F2FS_I(inode)->i_mmap_sem);
1388 if (!ret)
1389 f2fs_i_size_write(inode, new_size);
1390 return ret;
1391 }
1392
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1393 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1394 pgoff_t end)
1395 {
1396 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 pgoff_t index = start;
1398 unsigned int ofs_in_node = dn->ofs_in_node;
1399 blkcnt_t count = 0;
1400 int ret;
1401
1402 for (; index < end; index++, dn->ofs_in_node++) {
1403 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1404 count++;
1405 }
1406
1407 dn->ofs_in_node = ofs_in_node;
1408 ret = f2fs_reserve_new_blocks(dn, count);
1409 if (ret)
1410 return ret;
1411
1412 dn->ofs_in_node = ofs_in_node;
1413 for (index = start; index < end; index++, dn->ofs_in_node++) {
1414 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1415 /*
1416 * f2fs_reserve_new_blocks will not guarantee entire block
1417 * allocation.
1418 */
1419 if (dn->data_blkaddr == NULL_ADDR) {
1420 ret = -ENOSPC;
1421 break;
1422 }
1423
1424 if (dn->data_blkaddr == NEW_ADDR)
1425 continue;
1426
1427 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1428 DATA_GENERIC_ENHANCE)) {
1429 ret = -EFSCORRUPTED;
1430 break;
1431 }
1432
1433 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1434 dn->data_blkaddr = NEW_ADDR;
1435 f2fs_set_data_blkaddr(dn);
1436 }
1437
1438 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1439
1440 return ret;
1441 }
1442
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1443 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1444 int mode)
1445 {
1446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1447 struct address_space *mapping = inode->i_mapping;
1448 pgoff_t index, pg_start, pg_end;
1449 loff_t new_size = i_size_read(inode);
1450 loff_t off_start, off_end;
1451 int ret = 0;
1452
1453 ret = inode_newsize_ok(inode, (len + offset));
1454 if (ret)
1455 return ret;
1456
1457 ret = f2fs_convert_inline_inode(inode);
1458 if (ret)
1459 return ret;
1460
1461 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1462 if (ret)
1463 return ret;
1464
1465 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1466 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1467
1468 off_start = offset & (PAGE_SIZE - 1);
1469 off_end = (offset + len) & (PAGE_SIZE - 1);
1470
1471 if (pg_start == pg_end) {
1472 ret = fill_zero(inode, pg_start, off_start,
1473 off_end - off_start);
1474 if (ret)
1475 return ret;
1476
1477 new_size = max_t(loff_t, new_size, offset + len);
1478 } else {
1479 if (off_start) {
1480 ret = fill_zero(inode, pg_start++, off_start,
1481 PAGE_SIZE - off_start);
1482 if (ret)
1483 return ret;
1484
1485 new_size = max_t(loff_t, new_size,
1486 (loff_t)pg_start << PAGE_SHIFT);
1487 }
1488
1489 for (index = pg_start; index < pg_end;) {
1490 struct dnode_of_data dn;
1491 unsigned int end_offset;
1492 pgoff_t end;
1493
1494 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1495 down_write(&F2FS_I(inode)->i_mmap_sem);
1496
1497 truncate_pagecache_range(inode,
1498 (loff_t)index << PAGE_SHIFT,
1499 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1500
1501 f2fs_lock_op(sbi);
1502
1503 set_new_dnode(&dn, inode, NULL, NULL, 0);
1504 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1505 if (ret) {
1506 f2fs_unlock_op(sbi);
1507 up_write(&F2FS_I(inode)->i_mmap_sem);
1508 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1509 goto out;
1510 }
1511
1512 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1513 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1514
1515 ret = f2fs_do_zero_range(&dn, index, end);
1516 f2fs_put_dnode(&dn);
1517
1518 f2fs_unlock_op(sbi);
1519 up_write(&F2FS_I(inode)->i_mmap_sem);
1520 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1521
1522 f2fs_balance_fs(sbi, dn.node_changed);
1523
1524 if (ret)
1525 goto out;
1526
1527 index = end;
1528 new_size = max_t(loff_t, new_size,
1529 (loff_t)index << PAGE_SHIFT);
1530 }
1531
1532 if (off_end) {
1533 ret = fill_zero(inode, pg_end, 0, off_end);
1534 if (ret)
1535 goto out;
1536
1537 new_size = max_t(loff_t, new_size, offset + len);
1538 }
1539 }
1540
1541 out:
1542 if (new_size > i_size_read(inode)) {
1543 if (mode & FALLOC_FL_KEEP_SIZE)
1544 file_set_keep_isize(inode);
1545 else
1546 f2fs_i_size_write(inode, new_size);
1547 }
1548 return ret;
1549 }
1550
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1551 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1552 {
1553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1554 pgoff_t nr, pg_start, pg_end, delta, idx;
1555 loff_t new_size;
1556 int ret = 0;
1557
1558 new_size = i_size_read(inode) + len;
1559 ret = inode_newsize_ok(inode, new_size);
1560 if (ret)
1561 return ret;
1562
1563 if (offset >= i_size_read(inode))
1564 return -EINVAL;
1565
1566 /* insert range should be aligned to block size of f2fs. */
1567 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1568 return -EINVAL;
1569
1570 ret = f2fs_convert_inline_inode(inode);
1571 if (ret)
1572 return ret;
1573
1574 f2fs_balance_fs(sbi, true);
1575
1576 down_write(&F2FS_I(inode)->i_mmap_sem);
1577 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1578 up_write(&F2FS_I(inode)->i_mmap_sem);
1579 if (ret)
1580 return ret;
1581
1582 /* write out all dirty pages from offset */
1583 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1584 if (ret)
1585 return ret;
1586
1587 pg_start = offset >> PAGE_SHIFT;
1588 pg_end = (offset + len) >> PAGE_SHIFT;
1589 delta = pg_end - pg_start;
1590 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1591
1592 /* avoid gc operation during block exchange */
1593 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1594 down_write(&F2FS_I(inode)->i_mmap_sem);
1595 truncate_pagecache(inode, offset);
1596
1597 while (!ret && idx > pg_start) {
1598 nr = idx - pg_start;
1599 if (nr > delta)
1600 nr = delta;
1601 idx -= nr;
1602
1603 f2fs_lock_op(sbi);
1604 f2fs_drop_extent_tree(inode);
1605
1606 ret = __exchange_data_block(inode, inode, idx,
1607 idx + delta, nr, false);
1608 f2fs_unlock_op(sbi);
1609 }
1610 up_write(&F2FS_I(inode)->i_mmap_sem);
1611 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1612
1613 /* write out all moved pages, if possible */
1614 down_write(&F2FS_I(inode)->i_mmap_sem);
1615 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1616 truncate_pagecache(inode, offset);
1617 up_write(&F2FS_I(inode)->i_mmap_sem);
1618
1619 if (!ret)
1620 f2fs_i_size_write(inode, new_size);
1621 return ret;
1622 }
1623
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1624 static int expand_inode_data(struct inode *inode, loff_t offset,
1625 loff_t len, int mode)
1626 {
1627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1628 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1629 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1630 .m_may_create = true };
1631 pgoff_t pg_start, pg_end;
1632 loff_t new_size = i_size_read(inode);
1633 loff_t off_end;
1634 block_t expanded = 0;
1635 int err;
1636
1637 err = inode_newsize_ok(inode, (len + offset));
1638 if (err)
1639 return err;
1640
1641 err = f2fs_convert_inline_inode(inode);
1642 if (err)
1643 return err;
1644
1645 f2fs_balance_fs(sbi, true);
1646
1647 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1648 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1649 off_end = (offset + len) & (PAGE_SIZE - 1);
1650
1651 map.m_lblk = pg_start;
1652 map.m_len = pg_end - pg_start;
1653 if (off_end)
1654 map.m_len++;
1655
1656 if (!map.m_len)
1657 return 0;
1658
1659 if (f2fs_is_pinned_file(inode)) {
1660 block_t sec_blks = BLKS_PER_SEC(sbi);
1661 block_t sec_len = roundup(map.m_len, sec_blks);
1662
1663 map.m_len = sec_blks;
1664 next_alloc:
1665 if (has_not_enough_free_secs(sbi, 0,
1666 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1667 down_write(&sbi->gc_lock);
1668 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1669 if (err && err != -ENODATA && err != -EAGAIN)
1670 goto out_err;
1671 }
1672
1673 down_write(&sbi->pin_sem);
1674
1675 f2fs_lock_op(sbi);
1676 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED);
1677 f2fs_unlock_op(sbi);
1678
1679 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1680 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1681
1682 up_write(&sbi->pin_sem);
1683
1684 expanded += map.m_len;
1685 sec_len -= map.m_len;
1686 map.m_lblk += map.m_len;
1687 if (!err && sec_len)
1688 goto next_alloc;
1689
1690 map.m_len = expanded;
1691 } else {
1692 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1693 expanded = map.m_len;
1694 }
1695 out_err:
1696 if (err) {
1697 pgoff_t last_off;
1698
1699 if (!expanded)
1700 return err;
1701
1702 last_off = pg_start + expanded - 1;
1703
1704 /* update new size to the failed position */
1705 new_size = (last_off == pg_end) ? offset + len :
1706 (loff_t)(last_off + 1) << PAGE_SHIFT;
1707 } else {
1708 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1709 }
1710
1711 if (new_size > i_size_read(inode)) {
1712 if (mode & FALLOC_FL_KEEP_SIZE)
1713 file_set_keep_isize(inode);
1714 else
1715 f2fs_i_size_write(inode, new_size);
1716 }
1717
1718 return err;
1719 }
1720
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1721 static long f2fs_fallocate(struct file *file, int mode,
1722 loff_t offset, loff_t len)
1723 {
1724 struct inode *inode = file_inode(file);
1725 long ret = 0;
1726
1727 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1728 return -EIO;
1729 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1730 return -ENOSPC;
1731 if (!f2fs_is_compress_backend_ready(inode))
1732 return -EOPNOTSUPP;
1733
1734 /* f2fs only support ->fallocate for regular file */
1735 if (!S_ISREG(inode->i_mode))
1736 return -EINVAL;
1737
1738 if (IS_ENCRYPTED(inode) &&
1739 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1740 return -EOPNOTSUPP;
1741
1742 if (f2fs_compressed_file(inode) &&
1743 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1744 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1745 return -EOPNOTSUPP;
1746
1747 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1748 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1749 FALLOC_FL_INSERT_RANGE))
1750 return -EOPNOTSUPP;
1751
1752 inode_lock(inode);
1753
1754 ret = file_modified(file);
1755 if (ret)
1756 goto out;
1757
1758 /*
1759 * wait for inflight dio, blocks should be removed after IO
1760 * completion.
1761 */
1762 inode_dio_wait(inode);
1763
1764 if (mode & FALLOC_FL_PUNCH_HOLE) {
1765 if (offset >= inode->i_size)
1766 goto out;
1767
1768 ret = punch_hole(inode, offset, len);
1769 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1770 ret = f2fs_collapse_range(inode, offset, len);
1771 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1772 ret = f2fs_zero_range(inode, offset, len, mode);
1773 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1774 ret = f2fs_insert_range(inode, offset, len);
1775 } else {
1776 ret = expand_inode_data(inode, offset, len, mode);
1777 }
1778
1779 if (!ret) {
1780 inode->i_mtime = inode->i_ctime = current_time(inode);
1781 f2fs_mark_inode_dirty_sync(inode, false);
1782 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1783 }
1784
1785 out:
1786 inode_unlock(inode);
1787
1788 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1789 return ret;
1790 }
1791
f2fs_release_file(struct inode * inode,struct file * filp)1792 static int f2fs_release_file(struct inode *inode, struct file *filp)
1793 {
1794 /*
1795 * f2fs_relase_file is called at every close calls. So we should
1796 * not drop any inmemory pages by close called by other process.
1797 */
1798 if (!(filp->f_mode & FMODE_WRITE) ||
1799 atomic_read(&inode->i_writecount) != 1)
1800 return 0;
1801
1802 /* some remained atomic pages should discarded */
1803 if (f2fs_is_atomic_file(inode))
1804 f2fs_drop_inmem_pages(inode);
1805 if (f2fs_is_volatile_file(inode)) {
1806 set_inode_flag(inode, FI_DROP_CACHE);
1807 filemap_fdatawrite(inode->i_mapping);
1808 clear_inode_flag(inode, FI_DROP_CACHE);
1809 clear_inode_flag(inode, FI_VOLATILE_FILE);
1810 stat_dec_volatile_write(inode);
1811 }
1812 return 0;
1813 }
1814
f2fs_file_flush(struct file * file,fl_owner_t id)1815 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1816 {
1817 struct inode *inode = file_inode(file);
1818
1819 /*
1820 * If the process doing a transaction is crashed, we should do
1821 * roll-back. Otherwise, other reader/write can see corrupted database
1822 * until all the writers close its file. Since this should be done
1823 * before dropping file lock, it needs to do in ->flush.
1824 */
1825 if (f2fs_is_atomic_file(inode) &&
1826 F2FS_I(inode)->inmem_task == current)
1827 f2fs_drop_inmem_pages(inode);
1828 return 0;
1829 }
1830
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1831 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1832 {
1833 struct f2fs_inode_info *fi = F2FS_I(inode);
1834 u32 masked_flags = fi->i_flags & mask;
1835
1836 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1837
1838 /* Is it quota file? Do not allow user to mess with it */
1839 if (IS_NOQUOTA(inode))
1840 return -EPERM;
1841
1842 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1843 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1844 return -EOPNOTSUPP;
1845 if (!f2fs_empty_dir(inode))
1846 return -ENOTEMPTY;
1847 }
1848
1849 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1850 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1851 return -EOPNOTSUPP;
1852 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1853 return -EINVAL;
1854 }
1855
1856 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1857 if (masked_flags & F2FS_COMPR_FL) {
1858 if (!f2fs_disable_compressed_file(inode))
1859 return -EINVAL;
1860 } else {
1861 if (!f2fs_may_compress(inode))
1862 return -EINVAL;
1863 if (S_ISREG(inode->i_mode) && inode->i_size)
1864 return -EINVAL;
1865
1866 set_compress_context(inode);
1867 }
1868 }
1869
1870 fi->i_flags = iflags | (fi->i_flags & ~mask);
1871 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1872 (fi->i_flags & F2FS_NOCOMP_FL));
1873
1874 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1875 set_inode_flag(inode, FI_PROJ_INHERIT);
1876 else
1877 clear_inode_flag(inode, FI_PROJ_INHERIT);
1878
1879 inode->i_ctime = current_time(inode);
1880 f2fs_set_inode_flags(inode);
1881 f2fs_mark_inode_dirty_sync(inode, true);
1882 return 0;
1883 }
1884
1885 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1886
1887 /*
1888 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1889 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1890 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1891 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1892 */
1893
1894 static const struct {
1895 u32 iflag;
1896 u32 fsflag;
1897 } f2fs_fsflags_map[] = {
1898 { F2FS_COMPR_FL, FS_COMPR_FL },
1899 { F2FS_SYNC_FL, FS_SYNC_FL },
1900 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1901 { F2FS_APPEND_FL, FS_APPEND_FL },
1902 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1903 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1904 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1905 { F2FS_INDEX_FL, FS_INDEX_FL },
1906 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1907 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1908 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1909 };
1910
1911 #define F2FS_GETTABLE_FS_FL ( \
1912 FS_COMPR_FL | \
1913 FS_SYNC_FL | \
1914 FS_IMMUTABLE_FL | \
1915 FS_APPEND_FL | \
1916 FS_NODUMP_FL | \
1917 FS_NOATIME_FL | \
1918 FS_NOCOMP_FL | \
1919 FS_INDEX_FL | \
1920 FS_DIRSYNC_FL | \
1921 FS_PROJINHERIT_FL | \
1922 FS_ENCRYPT_FL | \
1923 FS_INLINE_DATA_FL | \
1924 FS_NOCOW_FL | \
1925 FS_VERITY_FL | \
1926 FS_CASEFOLD_FL)
1927
1928 #define F2FS_SETTABLE_FS_FL ( \
1929 FS_COMPR_FL | \
1930 FS_SYNC_FL | \
1931 FS_IMMUTABLE_FL | \
1932 FS_APPEND_FL | \
1933 FS_NODUMP_FL | \
1934 FS_NOATIME_FL | \
1935 FS_NOCOMP_FL | \
1936 FS_DIRSYNC_FL | \
1937 FS_PROJINHERIT_FL | \
1938 FS_CASEFOLD_FL)
1939
1940 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1941 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1942 {
1943 u32 fsflags = 0;
1944 int i;
1945
1946 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1947 if (iflags & f2fs_fsflags_map[i].iflag)
1948 fsflags |= f2fs_fsflags_map[i].fsflag;
1949
1950 return fsflags;
1951 }
1952
1953 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1954 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1955 {
1956 u32 iflags = 0;
1957 int i;
1958
1959 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1960 if (fsflags & f2fs_fsflags_map[i].fsflag)
1961 iflags |= f2fs_fsflags_map[i].iflag;
1962
1963 return iflags;
1964 }
1965
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1966 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1967 {
1968 struct inode *inode = file_inode(filp);
1969 struct f2fs_inode_info *fi = F2FS_I(inode);
1970 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1971
1972 if (IS_ENCRYPTED(inode))
1973 fsflags |= FS_ENCRYPT_FL;
1974 if (IS_VERITY(inode))
1975 fsflags |= FS_VERITY_FL;
1976 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1977 fsflags |= FS_INLINE_DATA_FL;
1978 if (is_inode_flag_set(inode, FI_PIN_FILE))
1979 fsflags |= FS_NOCOW_FL;
1980
1981 fsflags &= F2FS_GETTABLE_FS_FL;
1982
1983 return put_user(fsflags, (int __user *)arg);
1984 }
1985
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1986 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1987 {
1988 struct inode *inode = file_inode(filp);
1989 struct f2fs_inode_info *fi = F2FS_I(inode);
1990 u32 fsflags, old_fsflags;
1991 u32 iflags;
1992 int ret;
1993
1994 if (!inode_owner_or_capable(inode))
1995 return -EACCES;
1996
1997 if (get_user(fsflags, (int __user *)arg))
1998 return -EFAULT;
1999
2000 if (fsflags & ~F2FS_GETTABLE_FS_FL)
2001 return -EOPNOTSUPP;
2002 fsflags &= F2FS_SETTABLE_FS_FL;
2003
2004 iflags = f2fs_fsflags_to_iflags(fsflags);
2005 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
2006 return -EOPNOTSUPP;
2007
2008 ret = mnt_want_write_file(filp);
2009 if (ret)
2010 return ret;
2011
2012 inode_lock(inode);
2013
2014 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2015 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2016 if (ret)
2017 goto out;
2018
2019 ret = f2fs_setflags_common(inode, iflags,
2020 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2021 out:
2022 inode_unlock(inode);
2023 mnt_drop_write_file(filp);
2024 return ret;
2025 }
2026
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2027 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2028 {
2029 struct inode *inode = file_inode(filp);
2030
2031 return put_user(inode->i_generation, (int __user *)arg);
2032 }
2033
f2fs_ioc_start_atomic_write(struct file * filp)2034 static int f2fs_ioc_start_atomic_write(struct file *filp)
2035 {
2036 struct inode *inode = file_inode(filp);
2037 struct f2fs_inode_info *fi = F2FS_I(inode);
2038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2039 int ret;
2040
2041 if (!(filp->f_mode & FMODE_WRITE))
2042 return -EBADF;
2043
2044 if (!inode_owner_or_capable(inode))
2045 return -EACCES;
2046
2047 if (!S_ISREG(inode->i_mode))
2048 return -EINVAL;
2049
2050 if (filp->f_flags & O_DIRECT)
2051 return -EINVAL;
2052
2053 ret = mnt_want_write_file(filp);
2054 if (ret)
2055 return ret;
2056
2057 inode_lock(inode);
2058
2059 if (!f2fs_disable_compressed_file(inode)) {
2060 ret = -EINVAL;
2061 goto out;
2062 }
2063
2064 if (f2fs_is_atomic_file(inode)) {
2065 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2066 ret = -EINVAL;
2067 goto out;
2068 }
2069
2070 ret = f2fs_convert_inline_inode(inode);
2071 if (ret)
2072 goto out;
2073
2074 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2075
2076 /*
2077 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2078 * f2fs_is_atomic_file.
2079 */
2080 if (get_dirty_pages(inode))
2081 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2082 inode->i_ino, get_dirty_pages(inode));
2083 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2084 if (ret) {
2085 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2086 goto out;
2087 }
2088
2089 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2090 if (list_empty(&fi->inmem_ilist))
2091 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2092 sbi->atomic_files++;
2093 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2094
2095 /* add inode in inmem_list first and set atomic_file */
2096 set_inode_flag(inode, FI_ATOMIC_FILE);
2097 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2098 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2099
2100 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2101 F2FS_I(inode)->inmem_task = current;
2102 stat_update_max_atomic_write(inode);
2103 out:
2104 inode_unlock(inode);
2105 mnt_drop_write_file(filp);
2106 return ret;
2107 }
2108
f2fs_ioc_commit_atomic_write(struct file * filp)2109 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2110 {
2111 struct inode *inode = file_inode(filp);
2112 int ret;
2113
2114 if (!(filp->f_mode & FMODE_WRITE))
2115 return -EBADF;
2116
2117 if (!inode_owner_or_capable(inode))
2118 return -EACCES;
2119
2120 ret = mnt_want_write_file(filp);
2121 if (ret)
2122 return ret;
2123
2124 f2fs_balance_fs(F2FS_I_SB(inode), true);
2125
2126 inode_lock(inode);
2127
2128 if (f2fs_is_volatile_file(inode)) {
2129 ret = -EINVAL;
2130 goto err_out;
2131 }
2132
2133 if (f2fs_is_atomic_file(inode)) {
2134 ret = f2fs_commit_inmem_pages(inode);
2135 if (ret)
2136 goto err_out;
2137
2138 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2139 if (!ret)
2140 f2fs_drop_inmem_pages(inode);
2141 } else {
2142 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2143 }
2144 err_out:
2145 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2146 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2147 ret = -EINVAL;
2148 }
2149 inode_unlock(inode);
2150 mnt_drop_write_file(filp);
2151 return ret;
2152 }
2153
f2fs_ioc_start_volatile_write(struct file * filp)2154 static int f2fs_ioc_start_volatile_write(struct file *filp)
2155 {
2156 struct inode *inode = file_inode(filp);
2157 int ret;
2158
2159 if (!(filp->f_mode & FMODE_WRITE))
2160 return -EBADF;
2161
2162 if (!inode_owner_or_capable(inode))
2163 return -EACCES;
2164
2165 if (!S_ISREG(inode->i_mode))
2166 return -EINVAL;
2167
2168 ret = mnt_want_write_file(filp);
2169 if (ret)
2170 return ret;
2171
2172 inode_lock(inode);
2173
2174 if (f2fs_is_volatile_file(inode))
2175 goto out;
2176
2177 ret = f2fs_convert_inline_inode(inode);
2178 if (ret)
2179 goto out;
2180
2181 stat_inc_volatile_write(inode);
2182 stat_update_max_volatile_write(inode);
2183
2184 set_inode_flag(inode, FI_VOLATILE_FILE);
2185 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2186 out:
2187 inode_unlock(inode);
2188 mnt_drop_write_file(filp);
2189 return ret;
2190 }
2191
f2fs_ioc_release_volatile_write(struct file * filp)2192 static int f2fs_ioc_release_volatile_write(struct file *filp)
2193 {
2194 struct inode *inode = file_inode(filp);
2195 int ret;
2196
2197 if (!(filp->f_mode & FMODE_WRITE))
2198 return -EBADF;
2199
2200 if (!inode_owner_or_capable(inode))
2201 return -EACCES;
2202
2203 ret = mnt_want_write_file(filp);
2204 if (ret)
2205 return ret;
2206
2207 inode_lock(inode);
2208
2209 if (!f2fs_is_volatile_file(inode))
2210 goto out;
2211
2212 if (!f2fs_is_first_block_written(inode)) {
2213 ret = truncate_partial_data_page(inode, 0, true);
2214 goto out;
2215 }
2216
2217 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2218 out:
2219 inode_unlock(inode);
2220 mnt_drop_write_file(filp);
2221 return ret;
2222 }
2223
f2fs_ioc_abort_volatile_write(struct file * filp)2224 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2225 {
2226 struct inode *inode = file_inode(filp);
2227 int ret;
2228
2229 if (!(filp->f_mode & FMODE_WRITE))
2230 return -EBADF;
2231
2232 if (!inode_owner_or_capable(inode))
2233 return -EACCES;
2234
2235 ret = mnt_want_write_file(filp);
2236 if (ret)
2237 return ret;
2238
2239 inode_lock(inode);
2240
2241 if (f2fs_is_atomic_file(inode))
2242 f2fs_drop_inmem_pages(inode);
2243 if (f2fs_is_volatile_file(inode)) {
2244 clear_inode_flag(inode, FI_VOLATILE_FILE);
2245 stat_dec_volatile_write(inode);
2246 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2247 }
2248
2249 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2250
2251 inode_unlock(inode);
2252
2253 mnt_drop_write_file(filp);
2254 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2255 return ret;
2256 }
2257
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2258 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2259 {
2260 struct inode *inode = file_inode(filp);
2261 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2262 struct super_block *sb = sbi->sb;
2263 __u32 in;
2264 int ret = 0;
2265
2266 if (!capable(CAP_SYS_ADMIN))
2267 return -EPERM;
2268
2269 if (get_user(in, (__u32 __user *)arg))
2270 return -EFAULT;
2271
2272 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2273 ret = mnt_want_write_file(filp);
2274 if (ret) {
2275 if (ret == -EROFS) {
2276 ret = 0;
2277 f2fs_stop_checkpoint(sbi, false);
2278 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2279 trace_f2fs_shutdown(sbi, in, ret);
2280 }
2281 return ret;
2282 }
2283 }
2284
2285 switch (in) {
2286 case F2FS_GOING_DOWN_FULLSYNC:
2287 sb = freeze_bdev(sb->s_bdev);
2288 if (IS_ERR(sb)) {
2289 ret = PTR_ERR(sb);
2290 goto out;
2291 }
2292 if (sb) {
2293 f2fs_stop_checkpoint(sbi, false);
2294 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2295 thaw_bdev(sb->s_bdev, sb);
2296 }
2297 break;
2298 case F2FS_GOING_DOWN_METASYNC:
2299 /* do checkpoint only */
2300 ret = f2fs_sync_fs(sb, 1);
2301 if (ret)
2302 goto out;
2303 f2fs_stop_checkpoint(sbi, false);
2304 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2305 break;
2306 case F2FS_GOING_DOWN_NOSYNC:
2307 f2fs_stop_checkpoint(sbi, false);
2308 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2309 break;
2310 case F2FS_GOING_DOWN_METAFLUSH:
2311 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2312 f2fs_stop_checkpoint(sbi, false);
2313 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2314 break;
2315 case F2FS_GOING_DOWN_NEED_FSCK:
2316 set_sbi_flag(sbi, SBI_NEED_FSCK);
2317 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2318 set_sbi_flag(sbi, SBI_IS_DIRTY);
2319 /* do checkpoint only */
2320 ret = f2fs_sync_fs(sb, 1);
2321 goto out;
2322 default:
2323 ret = -EINVAL;
2324 goto out;
2325 }
2326
2327 /*
2328 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2329 * paths.
2330 */
2331 down_write(&sbi->sb->s_umount);
2332
2333 f2fs_stop_gc_thread(sbi);
2334 f2fs_stop_discard_thread(sbi);
2335
2336 f2fs_drop_discard_cmd(sbi);
2337 clear_opt(sbi, DISCARD);
2338
2339 up_write(&sbi->sb->s_umount);
2340
2341 f2fs_update_time(sbi, REQ_TIME);
2342 out:
2343 if (in != F2FS_GOING_DOWN_FULLSYNC)
2344 mnt_drop_write_file(filp);
2345
2346 trace_f2fs_shutdown(sbi, in, ret);
2347
2348 return ret;
2349 }
2350
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2351 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2352 {
2353 struct inode *inode = file_inode(filp);
2354 struct super_block *sb = inode->i_sb;
2355 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2356 struct fstrim_range range;
2357 int ret;
2358
2359 if (!capable(CAP_SYS_ADMIN))
2360 return -EPERM;
2361
2362 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2363 return -EOPNOTSUPP;
2364
2365 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2366 sizeof(range)))
2367 return -EFAULT;
2368
2369 ret = mnt_want_write_file(filp);
2370 if (ret)
2371 return ret;
2372
2373 range.minlen = max((unsigned int)range.minlen,
2374 q->limits.discard_granularity);
2375 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2376 mnt_drop_write_file(filp);
2377 if (ret < 0)
2378 return ret;
2379
2380 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2381 sizeof(range)))
2382 return -EFAULT;
2383 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2384 return 0;
2385 }
2386
uuid_is_nonzero(__u8 u[16])2387 static bool uuid_is_nonzero(__u8 u[16])
2388 {
2389 int i;
2390
2391 for (i = 0; i < 16; i++)
2392 if (u[i])
2393 return true;
2394 return false;
2395 }
2396
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2397 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2398 {
2399 struct inode *inode = file_inode(filp);
2400
2401 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2402 return -EOPNOTSUPP;
2403
2404 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2405
2406 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2407 }
2408
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2409 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2410 {
2411 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 return -EOPNOTSUPP;
2413 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2414 }
2415
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2416 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2417 {
2418 struct inode *inode = file_inode(filp);
2419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2420 int err;
2421
2422 if (!f2fs_sb_has_encrypt(sbi))
2423 return -EOPNOTSUPP;
2424
2425 err = mnt_want_write_file(filp);
2426 if (err)
2427 return err;
2428
2429 down_write(&sbi->sb_lock);
2430
2431 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2432 goto got_it;
2433
2434 /* update superblock with uuid */
2435 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2436
2437 err = f2fs_commit_super(sbi, false);
2438 if (err) {
2439 /* undo new data */
2440 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2441 goto out_err;
2442 }
2443 got_it:
2444 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2445 16))
2446 err = -EFAULT;
2447 out_err:
2448 up_write(&sbi->sb_lock);
2449 mnt_drop_write_file(filp);
2450 return err;
2451 }
2452
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2453 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2454 unsigned long arg)
2455 {
2456 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2457 return -EOPNOTSUPP;
2458
2459 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2460 }
2461
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2462 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2463 {
2464 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2465 return -EOPNOTSUPP;
2466
2467 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2468 }
2469
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2470 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2471 {
2472 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2473 return -EOPNOTSUPP;
2474
2475 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2476 }
2477
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2478 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2479 unsigned long arg)
2480 {
2481 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2482 return -EOPNOTSUPP;
2483
2484 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2485 }
2486
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2487 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2488 unsigned long arg)
2489 {
2490 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2491 return -EOPNOTSUPP;
2492
2493 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2494 }
2495
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2496 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2497 {
2498 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2499 return -EOPNOTSUPP;
2500
2501 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2502 }
2503
f2fs_ioc_gc(struct file * filp,unsigned long arg)2504 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2505 {
2506 struct inode *inode = file_inode(filp);
2507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2508 __u32 sync;
2509 int ret;
2510
2511 if (!capable(CAP_SYS_ADMIN))
2512 return -EPERM;
2513
2514 if (get_user(sync, (__u32 __user *)arg))
2515 return -EFAULT;
2516
2517 if (f2fs_readonly(sbi->sb))
2518 return -EROFS;
2519
2520 ret = mnt_want_write_file(filp);
2521 if (ret)
2522 return ret;
2523
2524 if (!sync) {
2525 if (!down_write_trylock(&sbi->gc_lock)) {
2526 ret = -EBUSY;
2527 goto out;
2528 }
2529 } else {
2530 down_write(&sbi->gc_lock);
2531 }
2532
2533 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2534 out:
2535 mnt_drop_write_file(filp);
2536 return ret;
2537 }
2538
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2539 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2540 {
2541 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2542 u64 end;
2543 int ret;
2544
2545 if (!capable(CAP_SYS_ADMIN))
2546 return -EPERM;
2547 if (f2fs_readonly(sbi->sb))
2548 return -EROFS;
2549
2550 end = range->start + range->len;
2551 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2552 end >= MAX_BLKADDR(sbi))
2553 return -EINVAL;
2554
2555 ret = mnt_want_write_file(filp);
2556 if (ret)
2557 return ret;
2558
2559 do_more:
2560 if (!range->sync) {
2561 if (!down_write_trylock(&sbi->gc_lock)) {
2562 ret = -EBUSY;
2563 goto out;
2564 }
2565 } else {
2566 down_write(&sbi->gc_lock);
2567 }
2568
2569 ret = f2fs_gc(sbi, range->sync, true, false,
2570 GET_SEGNO(sbi, range->start));
2571 if (ret) {
2572 if (ret == -EBUSY)
2573 ret = -EAGAIN;
2574 goto out;
2575 }
2576 range->start += BLKS_PER_SEC(sbi);
2577 if (range->start <= end)
2578 goto do_more;
2579 out:
2580 mnt_drop_write_file(filp);
2581 return ret;
2582 }
2583
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2584 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2585 {
2586 struct f2fs_gc_range range;
2587
2588 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2589 sizeof(range)))
2590 return -EFAULT;
2591 return __f2fs_ioc_gc_range(filp, &range);
2592 }
2593
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2594 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2595 {
2596 struct inode *inode = file_inode(filp);
2597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2598 int ret;
2599
2600 if (!capable(CAP_SYS_ADMIN))
2601 return -EPERM;
2602
2603 if (f2fs_readonly(sbi->sb))
2604 return -EROFS;
2605
2606 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2607 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2608 return -EINVAL;
2609 }
2610
2611 ret = mnt_want_write_file(filp);
2612 if (ret)
2613 return ret;
2614
2615 ret = f2fs_sync_fs(sbi->sb, 1);
2616
2617 mnt_drop_write_file(filp);
2618 return ret;
2619 }
2620
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2621 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2622 struct file *filp,
2623 struct f2fs_defragment *range)
2624 {
2625 struct inode *inode = file_inode(filp);
2626 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2627 .m_seg_type = NO_CHECK_TYPE ,
2628 .m_may_create = false };
2629 struct extent_info ei = {0, 0, 0};
2630 pgoff_t pg_start, pg_end, next_pgofs;
2631 unsigned int blk_per_seg = sbi->blocks_per_seg;
2632 unsigned int total = 0, sec_num;
2633 block_t blk_end = 0;
2634 bool fragmented = false;
2635 int err;
2636
2637 /* if in-place-update policy is enabled, don't waste time here */
2638 if (f2fs_should_update_inplace(inode, NULL))
2639 return -EINVAL;
2640
2641 pg_start = range->start >> PAGE_SHIFT;
2642 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2643
2644 f2fs_balance_fs(sbi, true);
2645
2646 inode_lock(inode);
2647
2648 if (f2fs_is_atomic_file(inode)) {
2649 err = -EINVAL;
2650 goto out;
2651 }
2652
2653 /* writeback all dirty pages in the range */
2654 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2655 range->start + range->len - 1);
2656 if (err)
2657 goto out;
2658
2659 /*
2660 * lookup mapping info in extent cache, skip defragmenting if physical
2661 * block addresses are continuous.
2662 */
2663 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2664 if (ei.fofs + ei.len >= pg_end)
2665 goto out;
2666 }
2667
2668 map.m_lblk = pg_start;
2669 map.m_next_pgofs = &next_pgofs;
2670
2671 /*
2672 * lookup mapping info in dnode page cache, skip defragmenting if all
2673 * physical block addresses are continuous even if there are hole(s)
2674 * in logical blocks.
2675 */
2676 while (map.m_lblk < pg_end) {
2677 map.m_len = pg_end - map.m_lblk;
2678 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2679 if (err)
2680 goto out;
2681
2682 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2683 map.m_lblk = next_pgofs;
2684 continue;
2685 }
2686
2687 if (blk_end && blk_end != map.m_pblk)
2688 fragmented = true;
2689
2690 /* record total count of block that we're going to move */
2691 total += map.m_len;
2692
2693 blk_end = map.m_pblk + map.m_len;
2694
2695 map.m_lblk += map.m_len;
2696 }
2697
2698 if (!fragmented) {
2699 total = 0;
2700 goto out;
2701 }
2702
2703 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2704
2705 /*
2706 * make sure there are enough free section for LFS allocation, this can
2707 * avoid defragment running in SSR mode when free section are allocated
2708 * intensively
2709 */
2710 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2711 err = -EAGAIN;
2712 goto out;
2713 }
2714
2715 map.m_lblk = pg_start;
2716 map.m_len = pg_end - pg_start;
2717 total = 0;
2718
2719 while (map.m_lblk < pg_end) {
2720 pgoff_t idx;
2721 int cnt = 0;
2722
2723 do_map:
2724 map.m_len = pg_end - map.m_lblk;
2725 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2726 if (err)
2727 goto clear_out;
2728
2729 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2730 map.m_lblk = next_pgofs;
2731 goto check;
2732 }
2733
2734 set_inode_flag(inode, FI_DO_DEFRAG);
2735
2736 idx = map.m_lblk;
2737 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2738 struct page *page;
2739
2740 page = f2fs_get_lock_data_page(inode, idx, true);
2741 if (IS_ERR(page)) {
2742 err = PTR_ERR(page);
2743 goto clear_out;
2744 }
2745
2746 set_page_dirty(page);
2747 f2fs_put_page(page, 1);
2748
2749 idx++;
2750 cnt++;
2751 total++;
2752 }
2753
2754 map.m_lblk = idx;
2755 check:
2756 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2757 goto do_map;
2758
2759 clear_inode_flag(inode, FI_DO_DEFRAG);
2760
2761 err = filemap_fdatawrite(inode->i_mapping);
2762 if (err)
2763 goto out;
2764 }
2765 clear_out:
2766 clear_inode_flag(inode, FI_DO_DEFRAG);
2767 out:
2768 inode_unlock(inode);
2769 if (!err)
2770 range->len = (u64)total << PAGE_SHIFT;
2771 return err;
2772 }
2773
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2774 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2775 {
2776 struct inode *inode = file_inode(filp);
2777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2778 struct f2fs_defragment range;
2779 int err;
2780
2781 if (!capable(CAP_SYS_ADMIN))
2782 return -EPERM;
2783
2784 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2785 return -EINVAL;
2786
2787 if (f2fs_readonly(sbi->sb))
2788 return -EROFS;
2789
2790 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2791 sizeof(range)))
2792 return -EFAULT;
2793
2794 /* verify alignment of offset & size */
2795 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2796 return -EINVAL;
2797
2798 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2799 sbi->max_file_blocks))
2800 return -EINVAL;
2801
2802 err = mnt_want_write_file(filp);
2803 if (err)
2804 return err;
2805
2806 err = f2fs_defragment_range(sbi, filp, &range);
2807 mnt_drop_write_file(filp);
2808
2809 f2fs_update_time(sbi, REQ_TIME);
2810 if (err < 0)
2811 return err;
2812
2813 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2814 sizeof(range)))
2815 return -EFAULT;
2816
2817 return 0;
2818 }
2819
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2820 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2821 struct file *file_out, loff_t pos_out, size_t len)
2822 {
2823 struct inode *src = file_inode(file_in);
2824 struct inode *dst = file_inode(file_out);
2825 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2826 size_t olen = len, dst_max_i_size = 0;
2827 size_t dst_osize;
2828 int ret;
2829
2830 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2831 src->i_sb != dst->i_sb)
2832 return -EXDEV;
2833
2834 if (unlikely(f2fs_readonly(src->i_sb)))
2835 return -EROFS;
2836
2837 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2838 return -EINVAL;
2839
2840 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2841 return -EOPNOTSUPP;
2842
2843 if (pos_out < 0 || pos_in < 0)
2844 return -EINVAL;
2845
2846 if (src == dst) {
2847 if (pos_in == pos_out)
2848 return 0;
2849 if (pos_out > pos_in && pos_out < pos_in + len)
2850 return -EINVAL;
2851 }
2852
2853 inode_lock(src);
2854 if (src != dst) {
2855 ret = -EBUSY;
2856 if (!inode_trylock(dst))
2857 goto out;
2858 }
2859
2860 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2861 ret = -EOPNOTSUPP;
2862 goto out_unlock;
2863 }
2864
2865 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2866 ret = -EINVAL;
2867 goto out_unlock;
2868 }
2869
2870 ret = -EINVAL;
2871 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2872 goto out_unlock;
2873 if (len == 0)
2874 olen = len = src->i_size - pos_in;
2875 if (pos_in + len == src->i_size)
2876 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2877 if (len == 0) {
2878 ret = 0;
2879 goto out_unlock;
2880 }
2881
2882 dst_osize = dst->i_size;
2883 if (pos_out + olen > dst->i_size)
2884 dst_max_i_size = pos_out + olen;
2885
2886 /* verify the end result is block aligned */
2887 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2888 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2889 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2890 goto out_unlock;
2891
2892 ret = f2fs_convert_inline_inode(src);
2893 if (ret)
2894 goto out_unlock;
2895
2896 ret = f2fs_convert_inline_inode(dst);
2897 if (ret)
2898 goto out_unlock;
2899
2900 /* write out all dirty pages from offset */
2901 ret = filemap_write_and_wait_range(src->i_mapping,
2902 pos_in, pos_in + len);
2903 if (ret)
2904 goto out_unlock;
2905
2906 ret = filemap_write_and_wait_range(dst->i_mapping,
2907 pos_out, pos_out + len);
2908 if (ret)
2909 goto out_unlock;
2910
2911 f2fs_balance_fs(sbi, true);
2912
2913 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2914 if (src != dst) {
2915 ret = -EBUSY;
2916 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2917 goto out_src;
2918 }
2919
2920 f2fs_lock_op(sbi);
2921 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2922 pos_out >> F2FS_BLKSIZE_BITS,
2923 len >> F2FS_BLKSIZE_BITS, false);
2924
2925 if (!ret) {
2926 if (dst_max_i_size)
2927 f2fs_i_size_write(dst, dst_max_i_size);
2928 else if (dst_osize != dst->i_size)
2929 f2fs_i_size_write(dst, dst_osize);
2930 }
2931 f2fs_unlock_op(sbi);
2932
2933 if (src != dst)
2934 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2935 out_src:
2936 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2937 out_unlock:
2938 if (src != dst)
2939 inode_unlock(dst);
2940 out:
2941 inode_unlock(src);
2942 return ret;
2943 }
2944
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2945 static int __f2fs_ioc_move_range(struct file *filp,
2946 struct f2fs_move_range *range)
2947 {
2948 struct fd dst;
2949 int err;
2950
2951 if (!(filp->f_mode & FMODE_READ) ||
2952 !(filp->f_mode & FMODE_WRITE))
2953 return -EBADF;
2954
2955 dst = fdget(range->dst_fd);
2956 if (!dst.file)
2957 return -EBADF;
2958
2959 if (!(dst.file->f_mode & FMODE_WRITE)) {
2960 err = -EBADF;
2961 goto err_out;
2962 }
2963
2964 err = mnt_want_write_file(filp);
2965 if (err)
2966 goto err_out;
2967
2968 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2969 range->pos_out, range->len);
2970
2971 mnt_drop_write_file(filp);
2972 err_out:
2973 fdput(dst);
2974 return err;
2975 }
2976
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2977 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2978 {
2979 struct f2fs_move_range range;
2980
2981 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2982 sizeof(range)))
2983 return -EFAULT;
2984 return __f2fs_ioc_move_range(filp, &range);
2985 }
2986
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2987 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2988 {
2989 struct inode *inode = file_inode(filp);
2990 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2991 struct sit_info *sm = SIT_I(sbi);
2992 unsigned int start_segno = 0, end_segno = 0;
2993 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2994 struct f2fs_flush_device range;
2995 int ret;
2996
2997 if (!capable(CAP_SYS_ADMIN))
2998 return -EPERM;
2999
3000 if (f2fs_readonly(sbi->sb))
3001 return -EROFS;
3002
3003 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3004 return -EINVAL;
3005
3006 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3007 sizeof(range)))
3008 return -EFAULT;
3009
3010 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3011 __is_large_section(sbi)) {
3012 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
3013 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
3014 return -EINVAL;
3015 }
3016
3017 ret = mnt_want_write_file(filp);
3018 if (ret)
3019 return ret;
3020
3021 if (range.dev_num != 0)
3022 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3023 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3024
3025 start_segno = sm->last_victim[FLUSH_DEVICE];
3026 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3027 start_segno = dev_start_segno;
3028 end_segno = min(start_segno + range.segments, dev_end_segno);
3029
3030 while (start_segno < end_segno) {
3031 if (!down_write_trylock(&sbi->gc_lock)) {
3032 ret = -EBUSY;
3033 goto out;
3034 }
3035 sm->last_victim[GC_CB] = end_segno + 1;
3036 sm->last_victim[GC_GREEDY] = end_segno + 1;
3037 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3038 ret = f2fs_gc(sbi, true, true, true, start_segno);
3039 if (ret == -EAGAIN)
3040 ret = 0;
3041 else if (ret < 0)
3042 break;
3043 start_segno++;
3044 }
3045 out:
3046 mnt_drop_write_file(filp);
3047 return ret;
3048 }
3049
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3050 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3051 {
3052 struct inode *inode = file_inode(filp);
3053 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3054
3055 /* Must validate to set it with SQLite behavior in Android. */
3056 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3057
3058 return put_user(sb_feature, (u32 __user *)arg);
3059 }
3060
3061 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3062 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3063 {
3064 struct dquot *transfer_to[MAXQUOTAS] = {};
3065 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3066 struct super_block *sb = sbi->sb;
3067 int err;
3068
3069 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3070 if (IS_ERR(transfer_to[PRJQUOTA]))
3071 return PTR_ERR(transfer_to[PRJQUOTA]);
3072
3073 err = __dquot_transfer(inode, transfer_to);
3074 if (err)
3075 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3076 dqput(transfer_to[PRJQUOTA]);
3077 return err;
3078 }
3079
f2fs_ioc_setproject(struct file * filp,__u32 projid)3080 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3081 {
3082 struct inode *inode = file_inode(filp);
3083 struct f2fs_inode_info *fi = F2FS_I(inode);
3084 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3085 struct page *ipage;
3086 kprojid_t kprojid;
3087 int err;
3088
3089 if (!f2fs_sb_has_project_quota(sbi)) {
3090 if (projid != F2FS_DEF_PROJID)
3091 return -EOPNOTSUPP;
3092 else
3093 return 0;
3094 }
3095
3096 if (!f2fs_has_extra_attr(inode))
3097 return -EOPNOTSUPP;
3098
3099 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3100
3101 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3102 return 0;
3103
3104 err = -EPERM;
3105 /* Is it quota file? Do not allow user to mess with it */
3106 if (IS_NOQUOTA(inode))
3107 return err;
3108
3109 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3110 if (IS_ERR(ipage))
3111 return PTR_ERR(ipage);
3112
3113 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3114 i_projid)) {
3115 err = -EOVERFLOW;
3116 f2fs_put_page(ipage, 1);
3117 return err;
3118 }
3119 f2fs_put_page(ipage, 1);
3120
3121 err = dquot_initialize(inode);
3122 if (err)
3123 return err;
3124
3125 f2fs_lock_op(sbi);
3126 err = f2fs_transfer_project_quota(inode, kprojid);
3127 if (err)
3128 goto out_unlock;
3129
3130 F2FS_I(inode)->i_projid = kprojid;
3131 inode->i_ctime = current_time(inode);
3132 f2fs_mark_inode_dirty_sync(inode, true);
3133 out_unlock:
3134 f2fs_unlock_op(sbi);
3135 return err;
3136 }
3137 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3138 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3139 {
3140 return 0;
3141 }
3142
f2fs_ioc_setproject(struct file * filp,__u32 projid)3143 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3144 {
3145 if (projid != F2FS_DEF_PROJID)
3146 return -EOPNOTSUPP;
3147 return 0;
3148 }
3149 #endif
3150
3151 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3152
3153 /*
3154 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3155 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3156 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3157 */
3158
3159 static const struct {
3160 u32 iflag;
3161 u32 xflag;
3162 } f2fs_xflags_map[] = {
3163 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3164 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3165 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3166 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3167 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3168 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3169 };
3170
3171 #define F2FS_SUPPORTED_XFLAGS ( \
3172 FS_XFLAG_SYNC | \
3173 FS_XFLAG_IMMUTABLE | \
3174 FS_XFLAG_APPEND | \
3175 FS_XFLAG_NODUMP | \
3176 FS_XFLAG_NOATIME | \
3177 FS_XFLAG_PROJINHERIT)
3178
3179 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3180 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3181 {
3182 u32 xflags = 0;
3183 int i;
3184
3185 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3186 if (iflags & f2fs_xflags_map[i].iflag)
3187 xflags |= f2fs_xflags_map[i].xflag;
3188
3189 return xflags;
3190 }
3191
3192 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3193 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3194 {
3195 u32 iflags = 0;
3196 int i;
3197
3198 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3199 if (xflags & f2fs_xflags_map[i].xflag)
3200 iflags |= f2fs_xflags_map[i].iflag;
3201
3202 return iflags;
3203 }
3204
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3205 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3206 {
3207 struct f2fs_inode_info *fi = F2FS_I(inode);
3208
3209 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3210
3211 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3212 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3213 }
3214
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3215 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3216 {
3217 struct inode *inode = file_inode(filp);
3218 struct fsxattr fa;
3219
3220 f2fs_fill_fsxattr(inode, &fa);
3221
3222 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3223 return -EFAULT;
3224 return 0;
3225 }
3226
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3227 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3228 {
3229 struct inode *inode = file_inode(filp);
3230 struct fsxattr fa, old_fa;
3231 u32 iflags;
3232 int err;
3233
3234 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3235 return -EFAULT;
3236
3237 /* Make sure caller has proper permission */
3238 if (!inode_owner_or_capable(inode))
3239 return -EACCES;
3240
3241 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3242 return -EOPNOTSUPP;
3243
3244 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3245 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3246 return -EOPNOTSUPP;
3247
3248 err = mnt_want_write_file(filp);
3249 if (err)
3250 return err;
3251
3252 inode_lock(inode);
3253
3254 f2fs_fill_fsxattr(inode, &old_fa);
3255 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3256 if (err)
3257 goto out;
3258
3259 err = f2fs_setflags_common(inode, iflags,
3260 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3261 if (err)
3262 goto out;
3263
3264 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3265 out:
3266 inode_unlock(inode);
3267 mnt_drop_write_file(filp);
3268 return err;
3269 }
3270
f2fs_pin_file_control(struct inode * inode,bool inc)3271 int f2fs_pin_file_control(struct inode *inode, bool inc)
3272 {
3273 struct f2fs_inode_info *fi = F2FS_I(inode);
3274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3275
3276 /* Use i_gc_failures for normal file as a risk signal. */
3277 if (inc)
3278 f2fs_i_gc_failures_write(inode,
3279 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3280
3281 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3282 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3283 __func__, inode->i_ino,
3284 fi->i_gc_failures[GC_FAILURE_PIN]);
3285 clear_inode_flag(inode, FI_PIN_FILE);
3286 return -EAGAIN;
3287 }
3288 return 0;
3289 }
3290
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3291 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3292 {
3293 struct inode *inode = file_inode(filp);
3294 __u32 pin;
3295 int ret = 0;
3296
3297 if (get_user(pin, (__u32 __user *)arg))
3298 return -EFAULT;
3299
3300 if (!S_ISREG(inode->i_mode))
3301 return -EINVAL;
3302
3303 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3304 return -EROFS;
3305
3306 ret = mnt_want_write_file(filp);
3307 if (ret)
3308 return ret;
3309
3310 inode_lock(inode);
3311
3312 if (f2fs_should_update_outplace(inode, NULL)) {
3313 ret = -EINVAL;
3314 goto out;
3315 }
3316
3317 if (f2fs_is_atomic_file(inode)) {
3318 ret = -EINVAL;
3319 goto out;
3320 }
3321
3322 if (!pin) {
3323 clear_inode_flag(inode, FI_PIN_FILE);
3324 f2fs_i_gc_failures_write(inode, 0);
3325 goto done;
3326 }
3327
3328 if (f2fs_pin_file_control(inode, false)) {
3329 ret = -EAGAIN;
3330 goto out;
3331 }
3332
3333 ret = f2fs_convert_inline_inode(inode);
3334 if (ret)
3335 goto out;
3336
3337 if (!f2fs_disable_compressed_file(inode)) {
3338 ret = -EOPNOTSUPP;
3339 goto out;
3340 }
3341
3342 set_inode_flag(inode, FI_PIN_FILE);
3343 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3344 done:
3345 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3346 out:
3347 inode_unlock(inode);
3348 mnt_drop_write_file(filp);
3349 return ret;
3350 }
3351
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3352 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3353 {
3354 struct inode *inode = file_inode(filp);
3355 __u32 pin = 0;
3356
3357 if (is_inode_flag_set(inode, FI_PIN_FILE))
3358 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3359 return put_user(pin, (u32 __user *)arg);
3360 }
3361
f2fs_precache_extents(struct inode * inode)3362 int f2fs_precache_extents(struct inode *inode)
3363 {
3364 struct f2fs_inode_info *fi = F2FS_I(inode);
3365 struct f2fs_map_blocks map;
3366 pgoff_t m_next_extent;
3367 loff_t end;
3368 int err;
3369
3370 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3371 return -EOPNOTSUPP;
3372
3373 map.m_lblk = 0;
3374 map.m_pblk = 0;
3375 map.m_next_pgofs = NULL;
3376 map.m_next_extent = &m_next_extent;
3377 map.m_seg_type = NO_CHECK_TYPE;
3378 map.m_may_create = false;
3379 end = F2FS_I_SB(inode)->max_file_blocks;
3380
3381 while (map.m_lblk < end) {
3382 map.m_len = end - map.m_lblk;
3383
3384 down_write(&fi->i_gc_rwsem[WRITE]);
3385 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3386 up_write(&fi->i_gc_rwsem[WRITE]);
3387 if (err)
3388 return err;
3389
3390 map.m_lblk = m_next_extent;
3391 }
3392
3393 return err;
3394 }
3395
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3396 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3397 {
3398 return f2fs_precache_extents(file_inode(filp));
3399 }
3400
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3401 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3402 {
3403 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3404 __u64 block_count;
3405
3406 if (!capable(CAP_SYS_ADMIN))
3407 return -EPERM;
3408
3409 if (f2fs_readonly(sbi->sb))
3410 return -EROFS;
3411
3412 if (copy_from_user(&block_count, (void __user *)arg,
3413 sizeof(block_count)))
3414 return -EFAULT;
3415
3416 return f2fs_resize_fs(filp, block_count);
3417 }
3418
f2fs_has_feature_verity(struct file * filp)3419 static inline int f2fs_has_feature_verity(struct file *filp)
3420 {
3421 struct inode *inode = file_inode(filp);
3422
3423 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3424
3425 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3426 f2fs_warn(F2FS_I_SB(inode),
3427 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3428 inode->i_ino);
3429 return -EOPNOTSUPP;
3430 }
3431 return 0;
3432 }
3433
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3434 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3435 {
3436 int err = f2fs_has_feature_verity(filp);
3437
3438 if (err)
3439 return err;
3440
3441 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3442 }
3443
f2fs_ioc_enable_code_sign(struct file * filp,unsigned long arg)3444 static int f2fs_ioc_enable_code_sign(struct file *filp, unsigned long arg)
3445 {
3446 int err = f2fs_has_feature_verity(filp);
3447
3448 if (err)
3449 return err;
3450
3451 return fsverity_ioctl_enable_code_sign(filp, (const void __user *)arg);
3452 }
3453
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3454 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3455 {
3456 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3457 return -EOPNOTSUPP;
3458
3459 return fsverity_ioctl_measure(filp, (void __user *)arg);
3460 }
3461
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3462 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3463 {
3464 struct inode *inode = file_inode(filp);
3465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3466 char *vbuf;
3467 int count;
3468 int err = 0;
3469
3470 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3471 if (!vbuf)
3472 return -ENOMEM;
3473
3474 down_read(&sbi->sb_lock);
3475 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3476 ARRAY_SIZE(sbi->raw_super->volume_name),
3477 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3478 up_read(&sbi->sb_lock);
3479
3480 if (copy_to_user((char __user *)arg, vbuf,
3481 min(FSLABEL_MAX, count)))
3482 err = -EFAULT;
3483
3484 kfree(vbuf);
3485 return err;
3486 }
3487
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3488 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3489 {
3490 struct inode *inode = file_inode(filp);
3491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492 char *vbuf;
3493 int err = 0;
3494
3495 if (!capable(CAP_SYS_ADMIN))
3496 return -EPERM;
3497
3498 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3499 if (IS_ERR(vbuf))
3500 return PTR_ERR(vbuf);
3501
3502 err = mnt_want_write_file(filp);
3503 if (err)
3504 goto out;
3505
3506 down_write(&sbi->sb_lock);
3507
3508 memset(sbi->raw_super->volume_name, 0,
3509 sizeof(sbi->raw_super->volume_name));
3510 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3511 sbi->raw_super->volume_name,
3512 ARRAY_SIZE(sbi->raw_super->volume_name));
3513
3514 err = f2fs_commit_super(sbi, false);
3515
3516 up_write(&sbi->sb_lock);
3517
3518 mnt_drop_write_file(filp);
3519 out:
3520 kfree(vbuf);
3521 return err;
3522 }
3523
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3524 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3525 {
3526 struct inode *inode = file_inode(filp);
3527 __u64 blocks;
3528
3529 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3530 return -EOPNOTSUPP;
3531
3532 if (!f2fs_compressed_file(inode))
3533 return -EINVAL;
3534
3535 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3536 return put_user(blocks, (u64 __user *)arg);
3537 }
3538
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3539 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3540 {
3541 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3542 unsigned int released_blocks = 0;
3543 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3544 block_t blkaddr;
3545 int i;
3546
3547 for (i = 0; i < count; i++) {
3548 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3549 dn->ofs_in_node + i);
3550
3551 if (!__is_valid_data_blkaddr(blkaddr))
3552 continue;
3553 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3554 DATA_GENERIC_ENHANCE)))
3555 return -EFSCORRUPTED;
3556 }
3557
3558 while (count) {
3559 int compr_blocks = 0;
3560
3561 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3562 blkaddr = f2fs_data_blkaddr(dn);
3563
3564 if (i == 0) {
3565 if (blkaddr == COMPRESS_ADDR)
3566 continue;
3567 dn->ofs_in_node += cluster_size;
3568 goto next;
3569 }
3570
3571 if (__is_valid_data_blkaddr(blkaddr))
3572 compr_blocks++;
3573
3574 if (blkaddr != NEW_ADDR)
3575 continue;
3576
3577 dn->data_blkaddr = NULL_ADDR;
3578 f2fs_set_data_blkaddr(dn);
3579 }
3580
3581 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3582 dec_valid_block_count(sbi, dn->inode,
3583 cluster_size - compr_blocks);
3584
3585 released_blocks += cluster_size - compr_blocks;
3586 next:
3587 count -= cluster_size;
3588 }
3589
3590 return released_blocks;
3591 }
3592
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3593 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3594 {
3595 struct inode *inode = file_inode(filp);
3596 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3597 pgoff_t page_idx = 0, last_idx;
3598 unsigned int released_blocks = 0;
3599 int ret;
3600 int writecount;
3601
3602 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3603 return -EOPNOTSUPP;
3604
3605 if (!f2fs_compressed_file(inode))
3606 return -EINVAL;
3607
3608 if (f2fs_readonly(sbi->sb))
3609 return -EROFS;
3610
3611 ret = mnt_want_write_file(filp);
3612 if (ret)
3613 return ret;
3614
3615 f2fs_balance_fs(F2FS_I_SB(inode), true);
3616
3617 inode_lock(inode);
3618
3619 writecount = atomic_read(&inode->i_writecount);
3620 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3621 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3622 ret = -EBUSY;
3623 goto out;
3624 }
3625
3626 if (IS_IMMUTABLE(inode)) {
3627 ret = -EINVAL;
3628 goto out;
3629 }
3630
3631 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3632 if (ret)
3633 goto out;
3634
3635 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3636 f2fs_set_inode_flags(inode);
3637 inode->i_ctime = current_time(inode);
3638 f2fs_mark_inode_dirty_sync(inode, true);
3639
3640 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3641 goto out;
3642
3643 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3644 down_write(&F2FS_I(inode)->i_mmap_sem);
3645
3646 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3647
3648 while (page_idx < last_idx) {
3649 struct dnode_of_data dn;
3650 pgoff_t end_offset, count;
3651
3652 f2fs_lock_op(sbi);
3653
3654 set_new_dnode(&dn, inode, NULL, NULL, 0);
3655 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3656 if (ret) {
3657 f2fs_unlock_op(sbi);
3658 if (ret == -ENOENT) {
3659 page_idx = f2fs_get_next_page_offset(&dn,
3660 page_idx);
3661 ret = 0;
3662 continue;
3663 }
3664 break;
3665 }
3666
3667 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3668 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3669 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3670
3671 ret = release_compress_blocks(&dn, count);
3672
3673 f2fs_put_dnode(&dn);
3674
3675 f2fs_unlock_op(sbi);
3676
3677 if (ret < 0)
3678 break;
3679
3680 page_idx += count;
3681 released_blocks += ret;
3682 }
3683
3684 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3685 up_write(&F2FS_I(inode)->i_mmap_sem);
3686 out:
3687 inode_unlock(inode);
3688
3689 mnt_drop_write_file(filp);
3690
3691 if (ret >= 0) {
3692 ret = put_user(released_blocks, (u64 __user *)arg);
3693 } else if (released_blocks &&
3694 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3695 set_sbi_flag(sbi, SBI_NEED_FSCK);
3696 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3697 "iblocks=%llu, released=%u, compr_blocks=%u, "
3698 "run fsck to fix.",
3699 __func__, inode->i_ino, inode->i_blocks,
3700 released_blocks,
3701 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3702 }
3703
3704 return ret;
3705 }
3706
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3707 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3708 unsigned int *reserved_blocks)
3709 {
3710 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3711 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3712 block_t blkaddr;
3713 int i;
3714
3715 for (i = 0; i < count; i++) {
3716 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3717 dn->ofs_in_node + i);
3718
3719 if (!__is_valid_data_blkaddr(blkaddr))
3720 continue;
3721 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3722 DATA_GENERIC_ENHANCE)))
3723 return -EFSCORRUPTED;
3724 }
3725
3726 while (count) {
3727 int compr_blocks = 0;
3728 blkcnt_t reserved;
3729 int ret;
3730
3731 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3732 blkaddr = f2fs_data_blkaddr(dn);
3733
3734 if (i == 0) {
3735 if (blkaddr == COMPRESS_ADDR)
3736 continue;
3737 dn->ofs_in_node += cluster_size;
3738 goto next;
3739 }
3740
3741 if (__is_valid_data_blkaddr(blkaddr)) {
3742 compr_blocks++;
3743 continue;
3744 }
3745
3746 dn->data_blkaddr = NEW_ADDR;
3747 f2fs_set_data_blkaddr(dn);
3748 }
3749
3750 reserved = cluster_size - compr_blocks;
3751 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3752 if (ret)
3753 return ret;
3754
3755 if (reserved != cluster_size - compr_blocks)
3756 return -ENOSPC;
3757
3758 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3759
3760 *reserved_blocks += reserved;
3761 next:
3762 count -= cluster_size;
3763 }
3764
3765 return 0;
3766 }
3767
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3768 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3769 {
3770 struct inode *inode = file_inode(filp);
3771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3772 pgoff_t page_idx = 0, last_idx;
3773 unsigned int reserved_blocks = 0;
3774 int ret;
3775
3776 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3777 return -EOPNOTSUPP;
3778
3779 if (!f2fs_compressed_file(inode))
3780 return -EINVAL;
3781
3782 if (f2fs_readonly(sbi->sb))
3783 return -EROFS;
3784
3785 ret = mnt_want_write_file(filp);
3786 if (ret)
3787 return ret;
3788
3789 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3790 goto out;
3791
3792 f2fs_balance_fs(F2FS_I_SB(inode), true);
3793
3794 inode_lock(inode);
3795
3796 if (!IS_IMMUTABLE(inode)) {
3797 ret = -EINVAL;
3798 goto unlock_inode;
3799 }
3800
3801 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3802 down_write(&F2FS_I(inode)->i_mmap_sem);
3803
3804 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3805
3806 while (page_idx < last_idx) {
3807 struct dnode_of_data dn;
3808 pgoff_t end_offset, count;
3809
3810 f2fs_lock_op(sbi);
3811
3812 set_new_dnode(&dn, inode, NULL, NULL, 0);
3813 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3814 if (ret) {
3815 f2fs_unlock_op(sbi);
3816 if (ret == -ENOENT) {
3817 page_idx = f2fs_get_next_page_offset(&dn,
3818 page_idx);
3819 ret = 0;
3820 continue;
3821 }
3822 break;
3823 }
3824
3825 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3826 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3827 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3828
3829 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3830
3831 f2fs_put_dnode(&dn);
3832
3833 f2fs_unlock_op(sbi);
3834
3835 if (ret < 0)
3836 break;
3837
3838 page_idx += count;
3839 }
3840
3841 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3842 up_write(&F2FS_I(inode)->i_mmap_sem);
3843
3844 if (ret >= 0) {
3845 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3846 f2fs_set_inode_flags(inode);
3847 inode->i_ctime = current_time(inode);
3848 f2fs_mark_inode_dirty_sync(inode, true);
3849 }
3850 unlock_inode:
3851 inode_unlock(inode);
3852 out:
3853 mnt_drop_write_file(filp);
3854
3855 if (!ret) {
3856 ret = put_user(reserved_blocks, (u64 __user *)arg);
3857 } else if (reserved_blocks &&
3858 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3859 set_sbi_flag(sbi, SBI_NEED_FSCK);
3860 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3861 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3862 "run fsck to fix.",
3863 __func__, inode->i_ino, inode->i_blocks,
3864 reserved_blocks,
3865 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3866 }
3867
3868 return ret;
3869 }
3870
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3871 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3872 pgoff_t off, block_t block, block_t len, u32 flags)
3873 {
3874 struct request_queue *q = bdev_get_queue(bdev);
3875 sector_t sector = SECTOR_FROM_BLOCK(block);
3876 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3877 int ret = 0;
3878
3879 if (!q)
3880 return -ENXIO;
3881
3882 if (flags & F2FS_TRIM_FILE_DISCARD)
3883 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3884 blk_queue_secure_erase(q) ?
3885 BLKDEV_DISCARD_SECURE : 0);
3886
3887 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3888 if (IS_ENCRYPTED(inode))
3889 ret = fscrypt_zeroout_range(inode, off, block, len);
3890 else
3891 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3892 GFP_NOFS, 0);
3893 }
3894
3895 return ret;
3896 }
3897
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3898 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3899 {
3900 struct inode *inode = file_inode(filp);
3901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3902 struct address_space *mapping = inode->i_mapping;
3903 struct block_device *prev_bdev = NULL;
3904 struct f2fs_sectrim_range range;
3905 pgoff_t index, pg_end, prev_index = 0;
3906 block_t prev_block = 0, len = 0;
3907 loff_t end_addr;
3908 bool to_end = false;
3909 int ret = 0;
3910
3911 if (!(filp->f_mode & FMODE_WRITE))
3912 return -EBADF;
3913
3914 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3915 sizeof(range)))
3916 return -EFAULT;
3917
3918 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3919 !S_ISREG(inode->i_mode))
3920 return -EINVAL;
3921
3922 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3923 !f2fs_hw_support_discard(sbi)) ||
3924 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3925 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3926 return -EOPNOTSUPP;
3927
3928 file_start_write(filp);
3929 inode_lock(inode);
3930
3931 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3932 range.start >= inode->i_size) {
3933 ret = -EINVAL;
3934 goto err;
3935 }
3936
3937 if (range.len == 0)
3938 goto err;
3939
3940 if (inode->i_size - range.start > range.len) {
3941 end_addr = range.start + range.len;
3942 } else {
3943 end_addr = range.len == (u64)-1 ?
3944 sbi->sb->s_maxbytes : inode->i_size;
3945 to_end = true;
3946 }
3947
3948 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3949 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3950 ret = -EINVAL;
3951 goto err;
3952 }
3953
3954 index = F2FS_BYTES_TO_BLK(range.start);
3955 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3956
3957 ret = f2fs_convert_inline_inode(inode);
3958 if (ret)
3959 goto err;
3960
3961 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3962 down_write(&F2FS_I(inode)->i_mmap_sem);
3963
3964 ret = filemap_write_and_wait_range(mapping, range.start,
3965 to_end ? LLONG_MAX : end_addr - 1);
3966 if (ret)
3967 goto out;
3968
3969 truncate_inode_pages_range(mapping, range.start,
3970 to_end ? -1 : end_addr - 1);
3971
3972 while (index < pg_end) {
3973 struct dnode_of_data dn;
3974 pgoff_t end_offset, count;
3975 int i;
3976
3977 set_new_dnode(&dn, inode, NULL, NULL, 0);
3978 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3979 if (ret) {
3980 if (ret == -ENOENT) {
3981 index = f2fs_get_next_page_offset(&dn, index);
3982 continue;
3983 }
3984 goto out;
3985 }
3986
3987 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3988 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3989 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3990 struct block_device *cur_bdev;
3991 block_t blkaddr = f2fs_data_blkaddr(&dn);
3992
3993 if (!__is_valid_data_blkaddr(blkaddr))
3994 continue;
3995
3996 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3997 DATA_GENERIC_ENHANCE)) {
3998 ret = -EFSCORRUPTED;
3999 f2fs_put_dnode(&dn);
4000 goto out;
4001 }
4002
4003 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4004 if (f2fs_is_multi_device(sbi)) {
4005 int di = f2fs_target_device_index(sbi, blkaddr);
4006
4007 blkaddr -= FDEV(di).start_blk;
4008 }
4009
4010 if (len) {
4011 if (prev_bdev == cur_bdev &&
4012 index == prev_index + len &&
4013 blkaddr == prev_block + len) {
4014 len++;
4015 } else {
4016 ret = f2fs_secure_erase(prev_bdev,
4017 inode, prev_index, prev_block,
4018 len, range.flags);
4019 if (ret) {
4020 f2fs_put_dnode(&dn);
4021 goto out;
4022 }
4023
4024 len = 0;
4025 }
4026 }
4027
4028 if (!len) {
4029 prev_bdev = cur_bdev;
4030 prev_index = index;
4031 prev_block = blkaddr;
4032 len = 1;
4033 }
4034 }
4035
4036 f2fs_put_dnode(&dn);
4037
4038 if (fatal_signal_pending(current)) {
4039 ret = -EINTR;
4040 goto out;
4041 }
4042 cond_resched();
4043 }
4044
4045 if (len)
4046 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4047 prev_block, len, range.flags);
4048 out:
4049 up_write(&F2FS_I(inode)->i_mmap_sem);
4050 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4051 err:
4052 inode_unlock(inode);
4053 file_end_write(filp);
4054
4055 return ret;
4056 }
4057
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4058 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4059 {
4060 switch (cmd) {
4061 case FS_IOC_GETFLAGS:
4062 return f2fs_ioc_getflags(filp, arg);
4063 case FS_IOC_SETFLAGS:
4064 return f2fs_ioc_setflags(filp, arg);
4065 case FS_IOC_GETVERSION:
4066 return f2fs_ioc_getversion(filp, arg);
4067 case F2FS_IOC_START_ATOMIC_WRITE:
4068 return f2fs_ioc_start_atomic_write(filp);
4069 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4070 return f2fs_ioc_commit_atomic_write(filp);
4071 case F2FS_IOC_START_VOLATILE_WRITE:
4072 return f2fs_ioc_start_volatile_write(filp);
4073 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4074 return f2fs_ioc_release_volatile_write(filp);
4075 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4076 return f2fs_ioc_abort_volatile_write(filp);
4077 case F2FS_IOC_SHUTDOWN:
4078 return f2fs_ioc_shutdown(filp, arg);
4079 case FITRIM:
4080 return f2fs_ioc_fitrim(filp, arg);
4081 case FS_IOC_SET_ENCRYPTION_POLICY:
4082 return f2fs_ioc_set_encryption_policy(filp, arg);
4083 case FS_IOC_GET_ENCRYPTION_POLICY:
4084 return f2fs_ioc_get_encryption_policy(filp, arg);
4085 case FS_IOC_GET_ENCRYPTION_PWSALT:
4086 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4087 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4088 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4089 case FS_IOC_ADD_ENCRYPTION_KEY:
4090 return f2fs_ioc_add_encryption_key(filp, arg);
4091 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4092 return f2fs_ioc_remove_encryption_key(filp, arg);
4093 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4094 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4095 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4096 return f2fs_ioc_get_encryption_key_status(filp, arg);
4097 case FS_IOC_GET_ENCRYPTION_NONCE:
4098 return f2fs_ioc_get_encryption_nonce(filp, arg);
4099 case F2FS_IOC_GARBAGE_COLLECT:
4100 return f2fs_ioc_gc(filp, arg);
4101 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4102 return f2fs_ioc_gc_range(filp, arg);
4103 case F2FS_IOC_WRITE_CHECKPOINT:
4104 return f2fs_ioc_write_checkpoint(filp, arg);
4105 case F2FS_IOC_DEFRAGMENT:
4106 return f2fs_ioc_defragment(filp, arg);
4107 case F2FS_IOC_MOVE_RANGE:
4108 return f2fs_ioc_move_range(filp, arg);
4109 case F2FS_IOC_FLUSH_DEVICE:
4110 return f2fs_ioc_flush_device(filp, arg);
4111 case F2FS_IOC_GET_FEATURES:
4112 return f2fs_ioc_get_features(filp, arg);
4113 case FS_IOC_FSGETXATTR:
4114 return f2fs_ioc_fsgetxattr(filp, arg);
4115 case FS_IOC_FSSETXATTR:
4116 return f2fs_ioc_fssetxattr(filp, arg);
4117 case F2FS_IOC_GET_PIN_FILE:
4118 return f2fs_ioc_get_pin_file(filp, arg);
4119 case F2FS_IOC_SET_PIN_FILE:
4120 return f2fs_ioc_set_pin_file(filp, arg);
4121 case F2FS_IOC_PRECACHE_EXTENTS:
4122 return f2fs_ioc_precache_extents(filp, arg);
4123 case F2FS_IOC_RESIZE_FS:
4124 return f2fs_ioc_resize_fs(filp, arg);
4125 case FS_IOC_ENABLE_VERITY:
4126 return f2fs_ioc_enable_verity(filp, arg);
4127 case FS_IOC_MEASURE_VERITY:
4128 return f2fs_ioc_measure_verity(filp, arg);
4129 case FS_IOC_ENABLE_CODE_SIGN:
4130 return f2fs_ioc_enable_code_sign(filp, arg);
4131 case FS_IOC_GETFSLABEL:
4132 return f2fs_ioc_getfslabel(filp, arg);
4133 case FS_IOC_SETFSLABEL:
4134 return f2fs_ioc_setfslabel(filp, arg);
4135 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4136 return f2fs_get_compress_blocks(filp, arg);
4137 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4138 return f2fs_release_compress_blocks(filp, arg);
4139 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4140 return f2fs_reserve_compress_blocks(filp, arg);
4141 case F2FS_IOC_SEC_TRIM_FILE:
4142 return f2fs_sec_trim_file(filp, arg);
4143 default:
4144 return -ENOTTY;
4145 }
4146 }
4147
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4148 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4149 {
4150 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4151 return -EIO;
4152 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4153 return -ENOSPC;
4154
4155 return __f2fs_ioctl(filp, cmd, arg);
4156 }
4157
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)4158 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4159 {
4160 struct file *file = iocb->ki_filp;
4161 struct inode *inode = file_inode(file);
4162 int ret;
4163
4164 if (!f2fs_is_compress_backend_ready(inode))
4165 return -EOPNOTSUPP;
4166
4167 ret = generic_file_read_iter(iocb, iter);
4168
4169 if (ret > 0)
4170 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4171
4172 return ret;
4173 }
4174
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4175 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4176 {
4177 struct file *file = iocb->ki_filp;
4178 struct inode *inode = file_inode(file);
4179 ssize_t ret;
4180
4181 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4182 ret = -EIO;
4183 goto out;
4184 }
4185
4186 if (!f2fs_is_compress_backend_ready(inode)) {
4187 ret = -EOPNOTSUPP;
4188 goto out;
4189 }
4190
4191 if (iocb->ki_flags & IOCB_NOWAIT) {
4192 if (!inode_trylock(inode)) {
4193 ret = -EAGAIN;
4194 goto out;
4195 }
4196 } else {
4197 inode_lock(inode);
4198 }
4199
4200 if (unlikely(IS_IMMUTABLE(inode))) {
4201 ret = -EPERM;
4202 goto unlock;
4203 }
4204
4205 ret = generic_write_checks(iocb, from);
4206 if (ret > 0) {
4207 bool preallocated = false;
4208 size_t target_size = 0;
4209 int err;
4210
4211 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4212 set_inode_flag(inode, FI_NO_PREALLOC);
4213
4214 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4215 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4216 iov_iter_count(from)) ||
4217 f2fs_has_inline_data(inode) ||
4218 f2fs_force_buffered_io(inode, iocb, from)) {
4219 clear_inode_flag(inode, FI_NO_PREALLOC);
4220 inode_unlock(inode);
4221 ret = -EAGAIN;
4222 goto out;
4223 }
4224 goto write;
4225 }
4226
4227 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4228 goto write;
4229
4230 if (iocb->ki_flags & IOCB_DIRECT) {
4231 /*
4232 * Convert inline data for Direct I/O before entering
4233 * f2fs_direct_IO().
4234 */
4235 err = f2fs_convert_inline_inode(inode);
4236 if (err)
4237 goto out_err;
4238 /*
4239 * If force_buffere_io() is true, we have to allocate
4240 * blocks all the time, since f2fs_direct_IO will fall
4241 * back to buffered IO.
4242 */
4243 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4244 allow_outplace_dio(inode, iocb, from))
4245 goto write;
4246 }
4247 preallocated = true;
4248 target_size = iocb->ki_pos + iov_iter_count(from);
4249
4250 err = f2fs_preallocate_blocks(iocb, from);
4251 if (err) {
4252 out_err:
4253 clear_inode_flag(inode, FI_NO_PREALLOC);
4254 inode_unlock(inode);
4255 ret = err;
4256 goto out;
4257 }
4258 write:
4259 ret = __generic_file_write_iter(iocb, from);
4260 clear_inode_flag(inode, FI_NO_PREALLOC);
4261
4262 /* if we couldn't write data, we should deallocate blocks. */
4263 if (preallocated && i_size_read(inode) < target_size)
4264 f2fs_truncate(inode);
4265
4266 if (ret > 0)
4267 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4268 }
4269 unlock:
4270 inode_unlock(inode);
4271 out:
4272 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4273 iov_iter_count(from), ret);
4274 if (ret > 0)
4275 ret = generic_write_sync(iocb, ret);
4276 return ret;
4277 }
4278
4279 #ifdef CONFIG_COMPAT
4280 struct compat_f2fs_gc_range {
4281 u32 sync;
4282 compat_u64 start;
4283 compat_u64 len;
4284 };
4285 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4286 struct compat_f2fs_gc_range)
4287
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4288 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4289 {
4290 struct compat_f2fs_gc_range __user *urange;
4291 struct f2fs_gc_range range;
4292 int err;
4293
4294 urange = compat_ptr(arg);
4295 err = get_user(range.sync, &urange->sync);
4296 err |= get_user(range.start, &urange->start);
4297 err |= get_user(range.len, &urange->len);
4298 if (err)
4299 return -EFAULT;
4300
4301 return __f2fs_ioc_gc_range(file, &range);
4302 }
4303
4304 struct compat_f2fs_move_range {
4305 u32 dst_fd;
4306 compat_u64 pos_in;
4307 compat_u64 pos_out;
4308 compat_u64 len;
4309 };
4310 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4311 struct compat_f2fs_move_range)
4312
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4313 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4314 {
4315 struct compat_f2fs_move_range __user *urange;
4316 struct f2fs_move_range range;
4317 int err;
4318
4319 urange = compat_ptr(arg);
4320 err = get_user(range.dst_fd, &urange->dst_fd);
4321 err |= get_user(range.pos_in, &urange->pos_in);
4322 err |= get_user(range.pos_out, &urange->pos_out);
4323 err |= get_user(range.len, &urange->len);
4324 if (err)
4325 return -EFAULT;
4326
4327 return __f2fs_ioc_move_range(file, &range);
4328 }
4329
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4330 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4331 {
4332 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4333 return -EIO;
4334 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4335 return -ENOSPC;
4336
4337 switch (cmd) {
4338 case FS_IOC32_GETFLAGS:
4339 cmd = FS_IOC_GETFLAGS;
4340 break;
4341 case FS_IOC32_SETFLAGS:
4342 cmd = FS_IOC_SETFLAGS;
4343 break;
4344 case FS_IOC32_GETVERSION:
4345 cmd = FS_IOC_GETVERSION;
4346 break;
4347 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4348 return f2fs_compat_ioc_gc_range(file, arg);
4349 case F2FS_IOC32_MOVE_RANGE:
4350 return f2fs_compat_ioc_move_range(file, arg);
4351 case F2FS_IOC_START_ATOMIC_WRITE:
4352 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4353 case F2FS_IOC_START_VOLATILE_WRITE:
4354 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4355 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4356 case F2FS_IOC_SHUTDOWN:
4357 case FITRIM:
4358 case FS_IOC_SET_ENCRYPTION_POLICY:
4359 case FS_IOC_GET_ENCRYPTION_PWSALT:
4360 case FS_IOC_GET_ENCRYPTION_POLICY:
4361 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4362 case FS_IOC_ADD_ENCRYPTION_KEY:
4363 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4364 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4365 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4366 case FS_IOC_GET_ENCRYPTION_NONCE:
4367 case F2FS_IOC_GARBAGE_COLLECT:
4368 case F2FS_IOC_WRITE_CHECKPOINT:
4369 case F2FS_IOC_DEFRAGMENT:
4370 case F2FS_IOC_FLUSH_DEVICE:
4371 case F2FS_IOC_GET_FEATURES:
4372 case FS_IOC_FSGETXATTR:
4373 case FS_IOC_FSSETXATTR:
4374 case F2FS_IOC_GET_PIN_FILE:
4375 case F2FS_IOC_SET_PIN_FILE:
4376 case F2FS_IOC_PRECACHE_EXTENTS:
4377 case F2FS_IOC_RESIZE_FS:
4378 case FS_IOC_ENABLE_VERITY:
4379 case FS_IOC_MEASURE_VERITY:
4380 case FS_IOC_ENABLE_CODE_SIGN:
4381 case FS_IOC_GETFSLABEL:
4382 case FS_IOC_SETFSLABEL:
4383 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4384 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4385 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4386 case F2FS_IOC_SEC_TRIM_FILE:
4387 break;
4388 default:
4389 return -ENOIOCTLCMD;
4390 }
4391 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4392 }
4393 #endif
4394
4395 const struct file_operations f2fs_file_operations = {
4396 .llseek = f2fs_llseek,
4397 .read_iter = f2fs_file_read_iter,
4398 .write_iter = f2fs_file_write_iter,
4399 .open = f2fs_file_open,
4400 .release = f2fs_release_file,
4401 .mmap = f2fs_file_mmap,
4402 .flush = f2fs_file_flush,
4403 .fsync = f2fs_sync_file,
4404 .fallocate = f2fs_fallocate,
4405 .unlocked_ioctl = f2fs_ioctl,
4406 #ifdef CONFIG_COMPAT
4407 .compat_ioctl = f2fs_compat_ioctl,
4408 #endif
4409 .splice_read = generic_file_splice_read,
4410 .splice_write = iter_file_splice_write,
4411 };
4412