• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt[TOTAL_NAT]++;
181 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 	return ne;
183 }
184 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt[TOTAL_NAT]--;
212 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 	__free_nat_entry(e);
214 }
215 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 							struct nat_entry *ne)
218 {
219 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 	struct nat_entry_set *head;
221 
222 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 	if (!head) {
224 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 
226 		INIT_LIST_HEAD(&head->entry_list);
227 		INIT_LIST_HEAD(&head->set_list);
228 		head->set = set;
229 		head->entry_cnt = 0;
230 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 	}
232 	return head;
233 }
234 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 						struct nat_entry *ne)
237 {
238 	struct nat_entry_set *head;
239 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 
241 	if (!new_ne)
242 		head = __grab_nat_entry_set(nm_i, ne);
243 
244 	/*
245 	 * update entry_cnt in below condition:
246 	 * 1. update NEW_ADDR to valid block address;
247 	 * 2. update old block address to new one;
248 	 */
249 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 				!get_nat_flag(ne, IS_DIRTY)))
251 		head->entry_cnt++;
252 
253 	set_nat_flag(ne, IS_PREALLOC, new_ne);
254 
255 	if (get_nat_flag(ne, IS_DIRTY))
256 		goto refresh_list;
257 
258 	nm_i->nat_cnt[DIRTY_NAT]++;
259 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 	set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 	spin_lock(&nm_i->nat_list_lock);
263 	if (new_ne)
264 		list_del_init(&ne->list);
265 	else
266 		list_move_tail(&ne->list, &head->entry_list);
267 	spin_unlock(&nm_i->nat_list_lock);
268 }
269 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 		struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 	spin_lock(&nm_i->nat_list_lock);
274 	list_move_tail(&ne->list, &nm_i->nat_entries);
275 	spin_unlock(&nm_i->nat_list_lock);
276 
277 	set_nat_flag(ne, IS_DIRTY, false);
278 	set->entry_cnt--;
279 	nm_i->nat_cnt[DIRTY_NAT]--;
280 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 							start, nr);
288 }
289 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 	return NODE_MAPPING(sbi) == page->mapping &&
293 			IS_DNODE(page) && is_cold_node(page);
294 }
295 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 	spin_lock_init(&sbi->fsync_node_lock);
299 	INIT_LIST_HEAD(&sbi->fsync_node_list);
300 	sbi->fsync_seg_id = 0;
301 	sbi->fsync_node_num = 0;
302 }
303 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 							struct page *page)
306 {
307 	struct fsync_node_entry *fn;
308 	unsigned long flags;
309 	unsigned int seq_id;
310 
311 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312 
313 	get_page(page);
314 	fn->page = page;
315 	INIT_LIST_HEAD(&fn->list);
316 
317 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 	list_add_tail(&fn->list, &sbi->fsync_node_list);
319 	fn->seq_id = sbi->fsync_seg_id++;
320 	seq_id = fn->seq_id;
321 	sbi->fsync_node_num++;
322 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323 
324 	return seq_id;
325 }
326 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 	struct fsync_node_entry *fn;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 		if (fn->page == page) {
335 			list_del(&fn->list);
336 			sbi->fsync_node_num--;
337 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 			kmem_cache_free(fsync_node_entry_slab, fn);
339 			put_page(page);
340 			return;
341 		}
342 	}
343 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 	f2fs_bug_on(sbi, 1);
345 }
346 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 	sbi->fsync_seg_id = 0;
353 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 	struct f2fs_nm_info *nm_i = NM_I(sbi);
359 	struct nat_entry *e;
360 	bool need = false;
361 
362 	down_read(&nm_i->nat_tree_lock);
363 	e = __lookup_nat_cache(nm_i, nid);
364 	if (e) {
365 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 				!get_nat_flag(e, HAS_FSYNCED_INODE))
367 			need = true;
368 	}
369 	up_read(&nm_i->nat_tree_lock);
370 	return need;
371 }
372 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
376 	struct nat_entry *e;
377 	bool is_cp = true;
378 
379 	down_read(&nm_i->nat_tree_lock);
380 	e = __lookup_nat_cache(nm_i, nid);
381 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 		is_cp = false;
383 	up_read(&nm_i->nat_tree_lock);
384 	return is_cp;
385 }
386 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
390 	struct nat_entry *e;
391 	bool need_update = true;
392 
393 	down_read(&nm_i->nat_tree_lock);
394 	e = __lookup_nat_cache(nm_i, ino);
395 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 			(get_nat_flag(e, IS_CHECKPOINTED) ||
397 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 		need_update = false;
399 	up_read(&nm_i->nat_tree_lock);
400 	return need_update;
401 }
402 
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 						struct f2fs_nat_entry *ne)
406 {
407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
408 	struct nat_entry *new, *e;
409 
410 	new = __alloc_nat_entry(nid, false);
411 	if (!new)
412 		return;
413 
414 	down_write(&nm_i->nat_tree_lock);
415 	e = __lookup_nat_cache(nm_i, nid);
416 	if (!e)
417 		e = __init_nat_entry(nm_i, new, ne, false);
418 	else
419 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 				nat_get_blkaddr(e) !=
421 					le32_to_cpu(ne->block_addr) ||
422 				nat_get_version(e) != ne->version);
423 	up_write(&nm_i->nat_tree_lock);
424 	if (e != new)
425 		__free_nat_entry(new);
426 }
427 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 			block_t new_blkaddr, bool fsync_done)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *e;
433 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434 
435 	down_write(&nm_i->nat_tree_lock);
436 	e = __lookup_nat_cache(nm_i, ni->nid);
437 	if (!e) {
438 		e = __init_nat_entry(nm_i, new, NULL, true);
439 		copy_node_info(&e->ni, ni);
440 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 	} else if (new_blkaddr == NEW_ADDR) {
442 		/*
443 		 * when nid is reallocated,
444 		 * previous nat entry can be remained in nat cache.
445 		 * So, reinitialize it with new information.
446 		 */
447 		copy_node_info(&e->ni, ni);
448 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 	}
450 	/* let's free early to reduce memory consumption */
451 	if (e != new)
452 		__free_nat_entry(new);
453 
454 	/* sanity check */
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 			new_blkaddr == NULL_ADDR);
458 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 			new_blkaddr == NEW_ADDR);
460 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 			new_blkaddr == NEW_ADDR);
462 
463 	/* increment version no as node is removed */
464 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 		unsigned char version = nat_get_version(e);
466 		nat_set_version(e, inc_node_version(version));
467 	}
468 
469 	/* change address */
470 	nat_set_blkaddr(e, new_blkaddr);
471 	if (!__is_valid_data_blkaddr(new_blkaddr))
472 		set_nat_flag(e, IS_CHECKPOINTED, false);
473 	__set_nat_cache_dirty(nm_i, e);
474 
475 	/* update fsync_mark if its inode nat entry is still alive */
476 	if (ni->nid != ni->ino)
477 		e = __lookup_nat_cache(nm_i, ni->ino);
478 	if (e) {
479 		if (fsync_done && ni->nid == ni->ino)
480 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 	}
483 	up_write(&nm_i->nat_tree_lock);
484 }
485 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
489 	int nr = nr_shrink;
490 
491 	if (!down_write_trylock(&nm_i->nat_tree_lock))
492 		return 0;
493 
494 	spin_lock(&nm_i->nat_list_lock);
495 	while (nr_shrink) {
496 		struct nat_entry *ne;
497 
498 		if (list_empty(&nm_i->nat_entries))
499 			break;
500 
501 		ne = list_first_entry(&nm_i->nat_entries,
502 					struct nat_entry, list);
503 		list_del(&ne->list);
504 		spin_unlock(&nm_i->nat_list_lock);
505 
506 		__del_from_nat_cache(nm_i, ne);
507 		nr_shrink--;
508 
509 		spin_lock(&nm_i->nat_list_lock);
510 	}
511 	spin_unlock(&nm_i->nat_list_lock);
512 
513 	up_write(&nm_i->nat_tree_lock);
514 	return nr - nr_shrink;
515 }
516 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	block_t blkaddr;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	blkaddr = le32_to_cpu(ne.block_addr);
574 	if (__is_valid_data_blkaddr(blkaddr) &&
575 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 		return -EFAULT;
577 
578 	/* cache nat entry */
579 	cache_nat_entry(sbi, nid, &ne);
580 	return 0;
581 }
582 
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 	struct blk_plug plug;
590 	int i, end;
591 	nid_t nid;
592 
593 	blk_start_plug(&plug);
594 
595 	/* Then, try readahead for siblings of the desired node */
596 	end = start + n;
597 	end = min(end, NIDS_PER_BLOCK);
598 	for (i = start; i < end; i++) {
599 		nid = get_nid(parent, i, false);
600 		f2fs_ra_node_page(sbi, nid);
601 	}
602 
603 	blk_finish_plug(&plug);
604 }
605 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 	const long direct_index = ADDRS_PER_INODE(dn->inode);
609 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 	int cur_level = dn->cur_level;
613 	int max_level = dn->max_level;
614 	pgoff_t base = 0;
615 
616 	if (!dn->max_level)
617 		return pgofs + 1;
618 
619 	while (max_level-- > cur_level)
620 		skipped_unit *= NIDS_PER_BLOCK;
621 
622 	switch (dn->max_level) {
623 	case 3:
624 		base += 2 * indirect_blks;
625 		fallthrough;
626 	case 2:
627 		base += 2 * direct_blks;
628 		fallthrough;
629 	case 1:
630 		base += direct_index;
631 		break;
632 	default:
633 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 	}
635 
636 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638 
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 				int offset[4], unsigned int noffset[4])
645 {
646 	const long direct_index = ADDRS_PER_INODE(inode);
647 	const long direct_blks = ADDRS_PER_BLOCK(inode);
648 	const long dptrs_per_blk = NIDS_PER_BLOCK;
649 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 	int n = 0;
652 	int level = 0;
653 
654 	noffset[0] = 0;
655 
656 	if (block < direct_index) {
657 		offset[n] = block;
658 		goto got;
659 	}
660 	block -= direct_index;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR1_BLOCK;
663 		noffset[n] = 1;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR2_BLOCK;
671 		noffset[n] = 2;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < indirect_blks) {
678 		offset[n++] = NODE_IND1_BLOCK;
679 		noffset[n] = 3;
680 		offset[n++] = block / direct_blks;
681 		noffset[n] = 4 + offset[n - 1];
682 		offset[n] = block % direct_blks;
683 		level = 2;
684 		goto got;
685 	}
686 	block -= indirect_blks;
687 	if (block < indirect_blks) {
688 		offset[n++] = NODE_IND2_BLOCK;
689 		noffset[n] = 4 + dptrs_per_blk;
690 		offset[n++] = block / direct_blks;
691 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 		offset[n] = block % direct_blks;
693 		level = 2;
694 		goto got;
695 	}
696 	block -= indirect_blks;
697 	if (block < dindirect_blks) {
698 		offset[n++] = NODE_DIND_BLOCK;
699 		noffset[n] = 5 + (dptrs_per_blk * 2);
700 		offset[n++] = block / indirect_blks;
701 		noffset[n] = 6 + (dptrs_per_blk * 2) +
702 			      offset[n - 1] * (dptrs_per_blk + 1);
703 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 		noffset[n] = 7 + (dptrs_per_blk * 2) +
705 			      offset[n - 2] * (dptrs_per_blk + 1) +
706 			      offset[n - 1];
707 		offset[n] = block % direct_blks;
708 		level = 3;
709 		goto got;
710 	} else {
711 		return -E2BIG;
712 	}
713 got:
714 	return level;
715 }
716 
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 	struct page *npage[4];
726 	struct page *parent = NULL;
727 	int offset[4];
728 	unsigned int noffset[4];
729 	nid_t nids[4];
730 	int level, i = 0;
731 	int err = 0;
732 
733 	level = get_node_path(dn->inode, index, offset, noffset);
734 	if (level < 0)
735 		return level;
736 
737 	nids[0] = dn->inode->i_ino;
738 	npage[0] = dn->inode_page;
739 
740 	if (!npage[0]) {
741 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 		if (IS_ERR(npage[0]))
743 			return PTR_ERR(npage[0]);
744 	}
745 
746 	/* if inline_data is set, should not report any block indices */
747 	if (f2fs_has_inline_data(dn->inode) && index) {
748 		err = -ENOENT;
749 		f2fs_put_page(npage[0], 1);
750 		goto release_out;
751 	}
752 
753 	parent = npage[0];
754 	if (level != 0)
755 		nids[1] = get_nid(parent, offset[0], true);
756 	dn->inode_page = npage[0];
757 	dn->inode_page_locked = true;
758 
759 	/* get indirect or direct nodes */
760 	for (i = 1; i <= level; i++) {
761 		bool done = false;
762 
763 		if (!nids[i] && mode == ALLOC_NODE) {
764 			/* alloc new node */
765 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 				err = -ENOSPC;
767 				goto release_pages;
768 			}
769 
770 			dn->nid = nids[i];
771 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 			if (IS_ERR(npage[i])) {
773 				f2fs_alloc_nid_failed(sbi, nids[i]);
774 				err = PTR_ERR(npage[i]);
775 				goto release_pages;
776 			}
777 
778 			set_nid(parent, offset[i - 1], nids[i], i == 1);
779 			f2fs_alloc_nid_done(sbi, nids[i]);
780 			done = true;
781 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 			if (IS_ERR(npage[i])) {
784 				err = PTR_ERR(npage[i]);
785 				goto release_pages;
786 			}
787 			done = true;
788 		}
789 		if (i == 1) {
790 			dn->inode_page_locked = false;
791 			unlock_page(parent);
792 		} else {
793 			f2fs_put_page(parent, 1);
794 		}
795 
796 		if (!done) {
797 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 			if (IS_ERR(npage[i])) {
799 				err = PTR_ERR(npage[i]);
800 				f2fs_put_page(npage[0], 0);
801 				goto release_out;
802 			}
803 		}
804 		if (i < level) {
805 			parent = npage[i];
806 			nids[i + 1] = get_nid(parent, offset[i], false);
807 		}
808 	}
809 	dn->nid = nids[level];
810 	dn->ofs_in_node = offset[level];
811 	dn->node_page = npage[level];
812 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 	return 0;
814 
815 release_pages:
816 	f2fs_put_page(parent, 1);
817 	if (i > 1)
818 		f2fs_put_page(npage[0], 0);
819 release_out:
820 	dn->inode_page = NULL;
821 	dn->node_page = NULL;
822 	if (err == -ENOENT) {
823 		dn->cur_level = i;
824 		dn->max_level = level;
825 		dn->ofs_in_node = offset[level];
826 	}
827 	return err;
828 }
829 
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 	struct node_info ni;
834 	int err;
835 	pgoff_t index;
836 
837 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 	if (err)
839 		return err;
840 
841 	if (ni.blk_addr != NEW_ADDR &&
842 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
843 		f2fs_err(sbi,
844 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
845 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
846 		set_sbi_flag(sbi, SBI_NEED_FSCK);
847 		return -EFSCORRUPTED;
848 	}
849 
850 	/* Deallocate node address */
851 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
852 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
853 	set_node_addr(sbi, &ni, NULL_ADDR, false);
854 
855 	if (dn->nid == dn->inode->i_ino) {
856 		f2fs_remove_orphan_inode(sbi, dn->nid);
857 		dec_valid_inode_count(sbi);
858 		f2fs_inode_synced(dn->inode);
859 	}
860 
861 	clear_node_page_dirty(dn->node_page);
862 	set_sbi_flag(sbi, SBI_IS_DIRTY);
863 
864 	index = dn->node_page->index;
865 	f2fs_put_page(dn->node_page, 1);
866 
867 	invalidate_mapping_pages(NODE_MAPPING(sbi),
868 			index, index);
869 
870 	dn->node_page = NULL;
871 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
872 
873 	return 0;
874 }
875 
truncate_dnode(struct dnode_of_data * dn)876 static int truncate_dnode(struct dnode_of_data *dn)
877 {
878 	struct page *page;
879 	int err;
880 
881 	if (dn->nid == 0)
882 		return 1;
883 
884 	/* get direct node */
885 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
886 	if (PTR_ERR(page) == -ENOENT)
887 		return 1;
888 	else if (IS_ERR(page))
889 		return PTR_ERR(page);
890 
891 	/* Make dnode_of_data for parameter */
892 	dn->node_page = page;
893 	dn->ofs_in_node = 0;
894 	f2fs_truncate_data_blocks(dn);
895 	err = truncate_node(dn);
896 	if (err) {
897 		f2fs_put_page(page, 1);
898 		return err;
899 	}
900 
901 	return 1;
902 }
903 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)904 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
905 						int ofs, int depth)
906 {
907 	struct dnode_of_data rdn = *dn;
908 	struct page *page;
909 	struct f2fs_node *rn;
910 	nid_t child_nid;
911 	unsigned int child_nofs;
912 	int freed = 0;
913 	int i, ret;
914 
915 	if (dn->nid == 0)
916 		return NIDS_PER_BLOCK + 1;
917 
918 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
919 
920 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
921 	if (IS_ERR(page)) {
922 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
923 		return PTR_ERR(page);
924 	}
925 
926 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
927 
928 	rn = F2FS_NODE(page);
929 	if (depth < 3) {
930 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
931 			child_nid = le32_to_cpu(rn->in.nid[i]);
932 			if (child_nid == 0)
933 				continue;
934 			rdn.nid = child_nid;
935 			ret = truncate_dnode(&rdn);
936 			if (ret < 0)
937 				goto out_err;
938 			if (set_nid(page, i, 0, false))
939 				dn->node_changed = true;
940 		}
941 	} else {
942 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
943 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
944 			child_nid = le32_to_cpu(rn->in.nid[i]);
945 			if (child_nid == 0) {
946 				child_nofs += NIDS_PER_BLOCK + 1;
947 				continue;
948 			}
949 			rdn.nid = child_nid;
950 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
951 			if (ret == (NIDS_PER_BLOCK + 1)) {
952 				if (set_nid(page, i, 0, false))
953 					dn->node_changed = true;
954 				child_nofs += ret;
955 			} else if (ret < 0 && ret != -ENOENT) {
956 				goto out_err;
957 			}
958 		}
959 		freed = child_nofs;
960 	}
961 
962 	if (!ofs) {
963 		/* remove current indirect node */
964 		dn->node_page = page;
965 		ret = truncate_node(dn);
966 		if (ret)
967 			goto out_err;
968 		freed++;
969 	} else {
970 		f2fs_put_page(page, 1);
971 	}
972 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
973 	return freed;
974 
975 out_err:
976 	f2fs_put_page(page, 1);
977 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
978 	return ret;
979 }
980 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)981 static int truncate_partial_nodes(struct dnode_of_data *dn,
982 			struct f2fs_inode *ri, int *offset, int depth)
983 {
984 	struct page *pages[2];
985 	nid_t nid[3];
986 	nid_t child_nid;
987 	int err = 0;
988 	int i;
989 	int idx = depth - 2;
990 
991 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
992 	if (!nid[0])
993 		return 0;
994 
995 	/* get indirect nodes in the path */
996 	for (i = 0; i < idx + 1; i++) {
997 		/* reference count'll be increased */
998 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
999 		if (IS_ERR(pages[i])) {
1000 			err = PTR_ERR(pages[i]);
1001 			idx = i - 1;
1002 			goto fail;
1003 		}
1004 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1005 	}
1006 
1007 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1008 
1009 	/* free direct nodes linked to a partial indirect node */
1010 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1011 		child_nid = get_nid(pages[idx], i, false);
1012 		if (!child_nid)
1013 			continue;
1014 		dn->nid = child_nid;
1015 		err = truncate_dnode(dn);
1016 		if (err < 0)
1017 			goto fail;
1018 		if (set_nid(pages[idx], i, 0, false))
1019 			dn->node_changed = true;
1020 	}
1021 
1022 	if (offset[idx + 1] == 0) {
1023 		dn->node_page = pages[idx];
1024 		dn->nid = nid[idx];
1025 		err = truncate_node(dn);
1026 		if (err)
1027 			goto fail;
1028 	} else {
1029 		f2fs_put_page(pages[idx], 1);
1030 	}
1031 	offset[idx]++;
1032 	offset[idx + 1] = 0;
1033 	idx--;
1034 fail:
1035 	for (i = idx; i >= 0; i--)
1036 		f2fs_put_page(pages[i], 1);
1037 
1038 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1039 
1040 	return err;
1041 }
1042 
1043 /*
1044  * All the block addresses of data and nodes should be nullified.
1045  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1046 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1047 {
1048 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1049 	int err = 0, cont = 1;
1050 	int level, offset[4], noffset[4];
1051 	unsigned int nofs = 0;
1052 	struct f2fs_inode *ri;
1053 	struct dnode_of_data dn;
1054 	struct page *page;
1055 
1056 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1057 
1058 	level = get_node_path(inode, from, offset, noffset);
1059 	if (level <= 0) {
1060 		if (!level) {
1061 			level = -EFSCORRUPTED;
1062 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1063 					__func__, inode->i_ino,
1064 					from, ADDRS_PER_INODE(inode));
1065 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1066 		}
1067 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1068 		return level;
1069 	}
1070 
1071 	page = f2fs_get_node_page(sbi, inode->i_ino);
1072 	if (IS_ERR(page)) {
1073 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1074 		return PTR_ERR(page);
1075 	}
1076 
1077 	set_new_dnode(&dn, inode, page, NULL, 0);
1078 	unlock_page(page);
1079 
1080 	ri = F2FS_INODE(page);
1081 	switch (level) {
1082 	case 0:
1083 	case 1:
1084 		nofs = noffset[1];
1085 		break;
1086 	case 2:
1087 		nofs = noffset[1];
1088 		if (!offset[level - 1])
1089 			goto skip_partial;
1090 		err = truncate_partial_nodes(&dn, ri, offset, level);
1091 		if (err < 0 && err != -ENOENT)
1092 			goto fail;
1093 		nofs += 1 + NIDS_PER_BLOCK;
1094 		break;
1095 	case 3:
1096 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1097 		if (!offset[level - 1])
1098 			goto skip_partial;
1099 		err = truncate_partial_nodes(&dn, ri, offset, level);
1100 		if (err < 0 && err != -ENOENT)
1101 			goto fail;
1102 		break;
1103 	default:
1104 		BUG();
1105 	}
1106 
1107 skip_partial:
1108 	while (cont) {
1109 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1110 		switch (offset[0]) {
1111 		case NODE_DIR1_BLOCK:
1112 		case NODE_DIR2_BLOCK:
1113 			err = truncate_dnode(&dn);
1114 			break;
1115 
1116 		case NODE_IND1_BLOCK:
1117 		case NODE_IND2_BLOCK:
1118 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1119 			break;
1120 
1121 		case NODE_DIND_BLOCK:
1122 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1123 			cont = 0;
1124 			break;
1125 
1126 		default:
1127 			BUG();
1128 		}
1129 		if (err < 0 && err != -ENOENT)
1130 			goto fail;
1131 		if (offset[1] == 0 &&
1132 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1133 			lock_page(page);
1134 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1135 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1136 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1137 			set_page_dirty(page);
1138 			unlock_page(page);
1139 		}
1140 		offset[1] = 0;
1141 		offset[0]++;
1142 		nofs += err;
1143 	}
1144 fail:
1145 	f2fs_put_page(page, 0);
1146 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1147 	return err > 0 ? 0 : err;
1148 }
1149 
1150 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1151 int f2fs_truncate_xattr_node(struct inode *inode)
1152 {
1153 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1154 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1155 	struct dnode_of_data dn;
1156 	struct page *npage;
1157 	int err;
1158 
1159 	if (!nid)
1160 		return 0;
1161 
1162 	npage = f2fs_get_node_page(sbi, nid);
1163 	if (IS_ERR(npage))
1164 		return PTR_ERR(npage);
1165 
1166 	set_new_dnode(&dn, inode, NULL, npage, nid);
1167 	err = truncate_node(&dn);
1168 	if (err) {
1169 		f2fs_put_page(npage, 1);
1170 		return err;
1171 	}
1172 
1173 	f2fs_i_xnid_write(inode, 0);
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1180  * f2fs_unlock_op().
1181  */
f2fs_remove_inode_page(struct inode * inode)1182 int f2fs_remove_inode_page(struct inode *inode)
1183 {
1184 	struct dnode_of_data dn;
1185 	int err;
1186 
1187 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1188 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1189 	if (err)
1190 		return err;
1191 
1192 	err = f2fs_truncate_xattr_node(inode);
1193 	if (err) {
1194 		f2fs_put_dnode(&dn);
1195 		return err;
1196 	}
1197 
1198 	/* remove potential inline_data blocks */
1199 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1200 				S_ISLNK(inode->i_mode))
1201 		f2fs_truncate_data_blocks_range(&dn, 1);
1202 
1203 	/* 0 is possible, after f2fs_new_inode() has failed */
1204 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1205 		f2fs_put_dnode(&dn);
1206 		return -EIO;
1207 	}
1208 
1209 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1210 		f2fs_warn(F2FS_I_SB(inode),
1211 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1212 			inode->i_ino, (unsigned long long)inode->i_blocks);
1213 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1214 	}
1215 
1216 	/* will put inode & node pages */
1217 	err = truncate_node(&dn);
1218 	if (err) {
1219 		f2fs_put_dnode(&dn);
1220 		return err;
1221 	}
1222 	return 0;
1223 }
1224 
f2fs_new_inode_page(struct inode * inode)1225 struct page *f2fs_new_inode_page(struct inode *inode)
1226 {
1227 	struct dnode_of_data dn;
1228 
1229 	/* allocate inode page for new inode */
1230 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1231 
1232 	/* caller should f2fs_put_page(page, 1); */
1233 	return f2fs_new_node_page(&dn, 0);
1234 }
1235 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1236 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1237 {
1238 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1239 	struct node_info new_ni;
1240 	struct page *page;
1241 	int err;
1242 
1243 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1244 		return ERR_PTR(-EPERM);
1245 
1246 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1247 	if (!page)
1248 		return ERR_PTR(-ENOMEM);
1249 
1250 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1251 		goto fail;
1252 
1253 #ifdef CONFIG_F2FS_CHECK_FS
1254 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1255 	if (err) {
1256 		dec_valid_node_count(sbi, dn->inode, !ofs);
1257 		goto fail;
1258 	}
1259 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1260 		err = -EFSCORRUPTED;
1261 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1262 		goto fail;
1263 	}
1264 #endif
1265 	new_ni.nid = dn->nid;
1266 	new_ni.ino = dn->inode->i_ino;
1267 	new_ni.blk_addr = NULL_ADDR;
1268 	new_ni.flag = 0;
1269 	new_ni.version = 0;
1270 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1271 
1272 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1273 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1274 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1275 	if (!PageUptodate(page))
1276 		SetPageUptodate(page);
1277 	if (set_page_dirty(page))
1278 		dn->node_changed = true;
1279 
1280 	if (f2fs_has_xattr_block(ofs))
1281 		f2fs_i_xnid_write(dn->inode, dn->nid);
1282 
1283 	if (ofs == 0)
1284 		inc_valid_inode_count(sbi);
1285 	return page;
1286 
1287 fail:
1288 	clear_node_page_dirty(page);
1289 	f2fs_put_page(page, 1);
1290 	return ERR_PTR(err);
1291 }
1292 
1293 /*
1294  * Caller should do after getting the following values.
1295  * 0: f2fs_put_page(page, 0)
1296  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1297  */
read_node_page(struct page * page,int op_flags)1298 static int read_node_page(struct page *page, int op_flags)
1299 {
1300 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1301 	struct node_info ni;
1302 	struct f2fs_io_info fio = {
1303 		.sbi = sbi,
1304 		.type = NODE,
1305 		.op = REQ_OP_READ,
1306 		.op_flags = op_flags,
1307 		.page = page,
1308 		.encrypted_page = NULL,
1309 	};
1310 	int err;
1311 
1312 	if (PageUptodate(page)) {
1313 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1314 			ClearPageUptodate(page);
1315 			return -EFSBADCRC;
1316 		}
1317 		return LOCKED_PAGE;
1318 	}
1319 
1320 	err = f2fs_get_node_info(sbi, page->index, &ni);
1321 	if (err)
1322 		return err;
1323 
1324 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1325 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1326 		ClearPageUptodate(page);
1327 		return -ENOENT;
1328 	}
1329 
1330 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1331 
1332 	err = f2fs_submit_page_bio(&fio);
1333 
1334 	if (!err)
1335 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1336 
1337 	return err;
1338 }
1339 
1340 /*
1341  * Readahead a node page
1342  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1343 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1344 {
1345 	struct page *apage;
1346 	int err;
1347 
1348 	if (!nid)
1349 		return;
1350 	if (f2fs_check_nid_range(sbi, nid))
1351 		return;
1352 
1353 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1354 	if (apage)
1355 		return;
1356 
1357 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1358 	if (!apage)
1359 		return;
1360 
1361 	err = read_node_page(apage, REQ_RAHEAD);
1362 	f2fs_put_page(apage, err ? 1 : 0);
1363 }
1364 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1365 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1366 					struct page *parent, int start)
1367 {
1368 	struct page *page;
1369 	int err;
1370 
1371 	if (!nid)
1372 		return ERR_PTR(-ENOENT);
1373 	if (f2fs_check_nid_range(sbi, nid))
1374 		return ERR_PTR(-EINVAL);
1375 repeat:
1376 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1377 	if (!page)
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	err = read_node_page(page, 0);
1381 	if (err < 0) {
1382 		f2fs_put_page(page, 1);
1383 		return ERR_PTR(err);
1384 	} else if (err == LOCKED_PAGE) {
1385 		err = 0;
1386 		goto page_hit;
1387 	}
1388 
1389 	if (parent)
1390 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1391 
1392 	lock_page(page);
1393 
1394 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1395 		f2fs_put_page(page, 1);
1396 		goto repeat;
1397 	}
1398 
1399 	if (unlikely(!PageUptodate(page))) {
1400 		err = -EIO;
1401 		goto out_err;
1402 	}
1403 
1404 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1405 		err = -EFSBADCRC;
1406 		goto out_err;
1407 	}
1408 page_hit:
1409 	if(unlikely(nid != nid_of_node(page))) {
1410 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1411 			  nid, nid_of_node(page), ino_of_node(page),
1412 			  ofs_of_node(page), cpver_of_node(page),
1413 			  next_blkaddr_of_node(page));
1414 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1415 		err = -EINVAL;
1416 out_err:
1417 		ClearPageUptodate(page);
1418 		f2fs_put_page(page, 1);
1419 		return ERR_PTR(err);
1420 	}
1421 	return page;
1422 }
1423 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1424 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1425 {
1426 	return __get_node_page(sbi, nid, NULL, 0);
1427 }
1428 
f2fs_get_node_page_ra(struct page * parent,int start)1429 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1430 {
1431 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1432 	nid_t nid = get_nid(parent, start, false);
1433 
1434 	return __get_node_page(sbi, nid, parent, start);
1435 }
1436 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1437 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1438 {
1439 	struct inode *inode;
1440 	struct page *page;
1441 	int ret;
1442 
1443 	/* should flush inline_data before evict_inode */
1444 	inode = ilookup(sbi->sb, ino);
1445 	if (!inode)
1446 		return;
1447 
1448 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1449 					FGP_LOCK|FGP_NOWAIT, 0);
1450 	if (!page)
1451 		goto iput_out;
1452 
1453 	if (!PageUptodate(page))
1454 		goto page_out;
1455 
1456 	if (!PageDirty(page))
1457 		goto page_out;
1458 
1459 	if (!clear_page_dirty_for_io(page))
1460 		goto page_out;
1461 
1462 	ret = f2fs_write_inline_data(inode, page);
1463 	inode_dec_dirty_pages(inode);
1464 	f2fs_remove_dirty_inode(inode);
1465 	if (ret)
1466 		set_page_dirty(page);
1467 page_out:
1468 	f2fs_put_page(page, 1);
1469 iput_out:
1470 	iput(inode);
1471 }
1472 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1473 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1474 {
1475 	pgoff_t index;
1476 	struct pagevec pvec;
1477 	struct page *last_page = NULL;
1478 	int nr_pages;
1479 
1480 	pagevec_init(&pvec);
1481 	index = 0;
1482 
1483 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1484 				PAGECACHE_TAG_DIRTY))) {
1485 		int i;
1486 
1487 		for (i = 0; i < nr_pages; i++) {
1488 			struct page *page = pvec.pages[i];
1489 
1490 			if (unlikely(f2fs_cp_error(sbi))) {
1491 				f2fs_put_page(last_page, 0);
1492 				pagevec_release(&pvec);
1493 				return ERR_PTR(-EIO);
1494 			}
1495 
1496 			if (!IS_DNODE(page) || !is_cold_node(page))
1497 				continue;
1498 			if (ino_of_node(page) != ino)
1499 				continue;
1500 
1501 			lock_page(page);
1502 
1503 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1504 continue_unlock:
1505 				unlock_page(page);
1506 				continue;
1507 			}
1508 			if (ino_of_node(page) != ino)
1509 				goto continue_unlock;
1510 
1511 			if (!PageDirty(page)) {
1512 				/* someone wrote it for us */
1513 				goto continue_unlock;
1514 			}
1515 
1516 			if (last_page)
1517 				f2fs_put_page(last_page, 0);
1518 
1519 			get_page(page);
1520 			last_page = page;
1521 			unlock_page(page);
1522 		}
1523 		pagevec_release(&pvec);
1524 		cond_resched();
1525 	}
1526 	return last_page;
1527 }
1528 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1529 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1530 				struct writeback_control *wbc, bool do_balance,
1531 				enum iostat_type io_type, unsigned int *seq_id)
1532 {
1533 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1534 	nid_t nid;
1535 	struct node_info ni;
1536 	struct f2fs_io_info fio = {
1537 		.sbi = sbi,
1538 		.ino = ino_of_node(page),
1539 		.type = NODE,
1540 		.op = REQ_OP_WRITE,
1541 		.op_flags = wbc_to_write_flags(wbc),
1542 		.page = page,
1543 		.encrypted_page = NULL,
1544 		.submitted = false,
1545 		.io_type = io_type,
1546 		.io_wbc = wbc,
1547 	};
1548 	unsigned int seq;
1549 
1550 	trace_f2fs_writepage(page, NODE);
1551 
1552 	if (unlikely(f2fs_cp_error(sbi))) {
1553 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1554 			ClearPageUptodate(page);
1555 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1556 			unlock_page(page);
1557 			return 0;
1558 		}
1559 		goto redirty_out;
1560 	}
1561 
1562 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1563 		goto redirty_out;
1564 
1565 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1566 			wbc->sync_mode == WB_SYNC_NONE &&
1567 			IS_DNODE(page) && is_cold_node(page))
1568 		goto redirty_out;
1569 
1570 	/* get old block addr of this node page */
1571 	nid = nid_of_node(page);
1572 	f2fs_bug_on(sbi, page->index != nid);
1573 
1574 	if (f2fs_get_node_info(sbi, nid, &ni))
1575 		goto redirty_out;
1576 
1577 	if (wbc->for_reclaim) {
1578 		if (!down_read_trylock(&sbi->node_write))
1579 			goto redirty_out;
1580 	} else {
1581 		down_read(&sbi->node_write);
1582 	}
1583 
1584 	/* This page is already truncated */
1585 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1586 		ClearPageUptodate(page);
1587 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1588 		up_read(&sbi->node_write);
1589 		unlock_page(page);
1590 		return 0;
1591 	}
1592 
1593 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1594 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1595 					DATA_GENERIC_ENHANCE)) {
1596 		up_read(&sbi->node_write);
1597 		goto redirty_out;
1598 	}
1599 
1600 	if (atomic && !test_opt(sbi, NOBARRIER))
1601 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1602 
1603 	/* should add to global list before clearing PAGECACHE status */
1604 	if (f2fs_in_warm_node_list(sbi, page)) {
1605 		seq = f2fs_add_fsync_node_entry(sbi, page);
1606 		if (seq_id)
1607 			*seq_id = seq;
1608 	}
1609 
1610 	set_page_writeback(page);
1611 	ClearPageError(page);
1612 
1613 	fio.old_blkaddr = ni.blk_addr;
1614 	f2fs_do_write_node_page(nid, &fio);
1615 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1616 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1617 	up_read(&sbi->node_write);
1618 
1619 	if (wbc->for_reclaim) {
1620 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1621 		submitted = NULL;
1622 	}
1623 
1624 	unlock_page(page);
1625 
1626 	if (unlikely(f2fs_cp_error(sbi))) {
1627 		f2fs_submit_merged_write(sbi, NODE);
1628 		submitted = NULL;
1629 	}
1630 	if (submitted)
1631 		*submitted = fio.submitted;
1632 
1633 	if (do_balance)
1634 		f2fs_balance_fs(sbi, false);
1635 	return 0;
1636 
1637 redirty_out:
1638 	redirty_page_for_writepage(wbc, page);
1639 	return AOP_WRITEPAGE_ACTIVATE;
1640 }
1641 
f2fs_move_node_page(struct page * node_page,int gc_type)1642 int f2fs_move_node_page(struct page *node_page, int gc_type)
1643 {
1644 	int err = 0;
1645 
1646 	if (gc_type == FG_GC) {
1647 		struct writeback_control wbc = {
1648 			.sync_mode = WB_SYNC_ALL,
1649 			.nr_to_write = 1,
1650 			.for_reclaim = 0,
1651 		};
1652 
1653 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1654 
1655 		set_page_dirty(node_page);
1656 
1657 		if (!clear_page_dirty_for_io(node_page)) {
1658 			err = -EAGAIN;
1659 			goto out_page;
1660 		}
1661 
1662 		if (__write_node_page(node_page, false, NULL,
1663 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1664 			err = -EAGAIN;
1665 			unlock_page(node_page);
1666 		}
1667 		goto release_page;
1668 	} else {
1669 		/* set page dirty and write it */
1670 		if (!PageWriteback(node_page))
1671 			set_page_dirty(node_page);
1672 	}
1673 out_page:
1674 	unlock_page(node_page);
1675 release_page:
1676 	f2fs_put_page(node_page, 0);
1677 	return err;
1678 }
1679 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1680 static int f2fs_write_node_page(struct page *page,
1681 				struct writeback_control *wbc)
1682 {
1683 	return __write_node_page(page, false, NULL, wbc, false,
1684 						FS_NODE_IO, NULL);
1685 }
1686 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1687 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1688 			struct writeback_control *wbc, bool atomic,
1689 			unsigned int *seq_id)
1690 {
1691 	pgoff_t index;
1692 	struct pagevec pvec;
1693 	int ret = 0;
1694 	struct page *last_page = NULL;
1695 	bool marked = false;
1696 	nid_t ino = inode->i_ino;
1697 	int nr_pages;
1698 	int nwritten = 0;
1699 
1700 	if (atomic) {
1701 		last_page = last_fsync_dnode(sbi, ino);
1702 		if (IS_ERR_OR_NULL(last_page))
1703 			return PTR_ERR_OR_ZERO(last_page);
1704 	}
1705 retry:
1706 	pagevec_init(&pvec);
1707 	index = 0;
1708 
1709 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1710 				PAGECACHE_TAG_DIRTY))) {
1711 		int i;
1712 
1713 		for (i = 0; i < nr_pages; i++) {
1714 			struct page *page = pvec.pages[i];
1715 			bool submitted = false;
1716 
1717 			if (unlikely(f2fs_cp_error(sbi))) {
1718 				f2fs_put_page(last_page, 0);
1719 				pagevec_release(&pvec);
1720 				ret = -EIO;
1721 				goto out;
1722 			}
1723 
1724 			if (!IS_DNODE(page) || !is_cold_node(page))
1725 				continue;
1726 			if (ino_of_node(page) != ino)
1727 				continue;
1728 
1729 			lock_page(page);
1730 
1731 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1732 continue_unlock:
1733 				unlock_page(page);
1734 				continue;
1735 			}
1736 			if (ino_of_node(page) != ino)
1737 				goto continue_unlock;
1738 
1739 			if (!PageDirty(page) && page != last_page) {
1740 				/* someone wrote it for us */
1741 				goto continue_unlock;
1742 			}
1743 
1744 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1745 
1746 			set_fsync_mark(page, 0);
1747 			set_dentry_mark(page, 0);
1748 
1749 			if (!atomic || page == last_page) {
1750 				set_fsync_mark(page, 1);
1751 				if (IS_INODE(page)) {
1752 					if (is_inode_flag_set(inode,
1753 								FI_DIRTY_INODE))
1754 						f2fs_update_inode(inode, page);
1755 					set_dentry_mark(page,
1756 						f2fs_need_dentry_mark(sbi, ino));
1757 				}
1758 				/* may be written by other thread */
1759 				if (!PageDirty(page))
1760 					set_page_dirty(page);
1761 			}
1762 
1763 			if (!clear_page_dirty_for_io(page))
1764 				goto continue_unlock;
1765 
1766 			ret = __write_node_page(page, atomic &&
1767 						page == last_page,
1768 						&submitted, wbc, true,
1769 						FS_NODE_IO, seq_id);
1770 			if (ret) {
1771 				unlock_page(page);
1772 				f2fs_put_page(last_page, 0);
1773 				break;
1774 			} else if (submitted) {
1775 				nwritten++;
1776 			}
1777 
1778 			if (page == last_page) {
1779 				f2fs_put_page(page, 0);
1780 				marked = true;
1781 				break;
1782 			}
1783 		}
1784 		pagevec_release(&pvec);
1785 		cond_resched();
1786 
1787 		if (ret || marked)
1788 			break;
1789 	}
1790 	if (!ret && atomic && !marked) {
1791 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1792 			   ino, last_page->index);
1793 		lock_page(last_page);
1794 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1795 		set_page_dirty(last_page);
1796 		unlock_page(last_page);
1797 		goto retry;
1798 	}
1799 out:
1800 	if (nwritten)
1801 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1802 	return ret ? -EIO: 0;
1803 }
1804 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1805 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1806 {
1807 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1808 	bool clean;
1809 
1810 	if (inode->i_ino != ino)
1811 		return 0;
1812 
1813 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1814 		return 0;
1815 
1816 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1817 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1818 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1819 
1820 	if (clean)
1821 		return 0;
1822 
1823 	inode = igrab(inode);
1824 	if (!inode)
1825 		return 0;
1826 	return 1;
1827 }
1828 
flush_dirty_inode(struct page * page)1829 static bool flush_dirty_inode(struct page *page)
1830 {
1831 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1832 	struct inode *inode;
1833 	nid_t ino = ino_of_node(page);
1834 
1835 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1836 	if (!inode)
1837 		return false;
1838 
1839 	f2fs_update_inode(inode, page);
1840 	unlock_page(page);
1841 
1842 	iput(inode);
1843 	return true;
1844 }
1845 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1846 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1847 {
1848 	pgoff_t index = 0;
1849 	struct pagevec pvec;
1850 	int nr_pages;
1851 
1852 	pagevec_init(&pvec);
1853 
1854 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1855 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1856 		int i;
1857 
1858 		for (i = 0; i < nr_pages; i++) {
1859 			struct page *page = pvec.pages[i];
1860 
1861 			if (!IS_DNODE(page))
1862 				continue;
1863 
1864 			lock_page(page);
1865 
1866 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1867 continue_unlock:
1868 				unlock_page(page);
1869 				continue;
1870 			}
1871 
1872 			if (!PageDirty(page)) {
1873 				/* someone wrote it for us */
1874 				goto continue_unlock;
1875 			}
1876 
1877 			/* flush inline_data, if it's async context. */
1878 			if (is_inline_node(page)) {
1879 				clear_inline_node(page);
1880 				unlock_page(page);
1881 				flush_inline_data(sbi, ino_of_node(page));
1882 				continue;
1883 			}
1884 			unlock_page(page);
1885 		}
1886 		pagevec_release(&pvec);
1887 		cond_resched();
1888 	}
1889 }
1890 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1891 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1892 				struct writeback_control *wbc,
1893 				bool do_balance, enum iostat_type io_type)
1894 {
1895 	pgoff_t index;
1896 	struct pagevec pvec;
1897 	int step = 0;
1898 	int nwritten = 0;
1899 	int ret = 0;
1900 	int nr_pages, done = 0;
1901 
1902 	pagevec_init(&pvec);
1903 
1904 next_step:
1905 	index = 0;
1906 
1907 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1908 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1909 		int i;
1910 
1911 		for (i = 0; i < nr_pages; i++) {
1912 			struct page *page = pvec.pages[i];
1913 			bool submitted = false;
1914 			bool may_dirty = true;
1915 
1916 			/* give a priority to WB_SYNC threads */
1917 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1918 					wbc->sync_mode == WB_SYNC_NONE) {
1919 				done = 1;
1920 				break;
1921 			}
1922 
1923 			/*
1924 			 * flushing sequence with step:
1925 			 * 0. indirect nodes
1926 			 * 1. dentry dnodes
1927 			 * 2. file dnodes
1928 			 */
1929 			if (step == 0 && IS_DNODE(page))
1930 				continue;
1931 			if (step == 1 && (!IS_DNODE(page) ||
1932 						is_cold_node(page)))
1933 				continue;
1934 			if (step == 2 && (!IS_DNODE(page) ||
1935 						!is_cold_node(page)))
1936 				continue;
1937 lock_node:
1938 			if (wbc->sync_mode == WB_SYNC_ALL)
1939 				lock_page(page);
1940 			else if (!trylock_page(page))
1941 				continue;
1942 
1943 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1944 continue_unlock:
1945 				unlock_page(page);
1946 				continue;
1947 			}
1948 
1949 			if (!PageDirty(page)) {
1950 				/* someone wrote it for us */
1951 				goto continue_unlock;
1952 			}
1953 
1954 			/* flush inline_data/inode, if it's async context. */
1955 			if (!do_balance)
1956 				goto write_node;
1957 
1958 			/* flush inline_data */
1959 			if (is_inline_node(page)) {
1960 				clear_inline_node(page);
1961 				unlock_page(page);
1962 				flush_inline_data(sbi, ino_of_node(page));
1963 				goto lock_node;
1964 			}
1965 
1966 			/* flush dirty inode */
1967 			if (IS_INODE(page) && may_dirty) {
1968 				may_dirty = false;
1969 				if (flush_dirty_inode(page))
1970 					goto lock_node;
1971 			}
1972 write_node:
1973 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1974 
1975 			if (!clear_page_dirty_for_io(page))
1976 				goto continue_unlock;
1977 
1978 			set_fsync_mark(page, 0);
1979 			set_dentry_mark(page, 0);
1980 
1981 			ret = __write_node_page(page, false, &submitted,
1982 						wbc, do_balance, io_type, NULL);
1983 			if (ret)
1984 				unlock_page(page);
1985 			else if (submitted)
1986 				nwritten++;
1987 
1988 			if (--wbc->nr_to_write == 0)
1989 				break;
1990 		}
1991 		pagevec_release(&pvec);
1992 		cond_resched();
1993 
1994 		if (wbc->nr_to_write == 0) {
1995 			step = 2;
1996 			break;
1997 		}
1998 	}
1999 
2000 	if (step < 2) {
2001 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2002 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2003 			goto out;
2004 		step++;
2005 		goto next_step;
2006 	}
2007 out:
2008 	if (nwritten)
2009 		f2fs_submit_merged_write(sbi, NODE);
2010 
2011 	if (unlikely(f2fs_cp_error(sbi)))
2012 		return -EIO;
2013 	return ret;
2014 }
2015 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2016 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2017 						unsigned int seq_id)
2018 {
2019 	struct fsync_node_entry *fn;
2020 	struct page *page;
2021 	struct list_head *head = &sbi->fsync_node_list;
2022 	unsigned long flags;
2023 	unsigned int cur_seq_id = 0;
2024 	int ret2, ret = 0;
2025 
2026 	while (seq_id && cur_seq_id < seq_id) {
2027 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2028 		if (list_empty(head)) {
2029 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2030 			break;
2031 		}
2032 		fn = list_first_entry(head, struct fsync_node_entry, list);
2033 		if (fn->seq_id > seq_id) {
2034 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2035 			break;
2036 		}
2037 		cur_seq_id = fn->seq_id;
2038 		page = fn->page;
2039 		get_page(page);
2040 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2041 
2042 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2043 		if (TestClearPageError(page))
2044 			ret = -EIO;
2045 
2046 		put_page(page);
2047 
2048 		if (ret)
2049 			break;
2050 	}
2051 
2052 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2053 	if (!ret)
2054 		ret = ret2;
2055 
2056 	return ret;
2057 }
2058 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2059 static int f2fs_write_node_pages(struct address_space *mapping,
2060 			    struct writeback_control *wbc)
2061 {
2062 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2063 	struct blk_plug plug;
2064 	long diff;
2065 
2066 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2067 		goto skip_write;
2068 
2069 	/* balancing f2fs's metadata in background */
2070 	f2fs_balance_fs_bg(sbi, true);
2071 
2072 	/* collect a number of dirty node pages and write together */
2073 	if (wbc->sync_mode != WB_SYNC_ALL &&
2074 			get_pages(sbi, F2FS_DIRTY_NODES) <
2075 					nr_pages_to_skip(sbi, NODE))
2076 		goto skip_write;
2077 
2078 	if (wbc->sync_mode == WB_SYNC_ALL)
2079 		atomic_inc(&sbi->wb_sync_req[NODE]);
2080 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2081 		/* to avoid potential deadlock */
2082 		if (current->plug)
2083 			blk_finish_plug(current->plug);
2084 		goto skip_write;
2085 	}
2086 
2087 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2088 
2089 	diff = nr_pages_to_write(sbi, NODE, wbc);
2090 	blk_start_plug(&plug);
2091 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2092 	blk_finish_plug(&plug);
2093 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2094 
2095 	if (wbc->sync_mode == WB_SYNC_ALL)
2096 		atomic_dec(&sbi->wb_sync_req[NODE]);
2097 	return 0;
2098 
2099 skip_write:
2100 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2101 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2102 	return 0;
2103 }
2104 
f2fs_set_node_page_dirty(struct page * page)2105 static int f2fs_set_node_page_dirty(struct page *page)
2106 {
2107 	trace_f2fs_set_page_dirty(page, NODE);
2108 
2109 	if (!PageUptodate(page))
2110 		SetPageUptodate(page);
2111 #ifdef CONFIG_F2FS_CHECK_FS
2112 	if (IS_INODE(page))
2113 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2114 #endif
2115 	if (!PageDirty(page)) {
2116 		__set_page_dirty_nobuffers(page);
2117 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2118 		f2fs_set_page_private(page, 0);
2119 		f2fs_trace_pid(page);
2120 		return 1;
2121 	}
2122 	return 0;
2123 }
2124 
2125 /*
2126  * Structure of the f2fs node operations
2127  */
2128 const struct address_space_operations f2fs_node_aops = {
2129 	.writepage	= f2fs_write_node_page,
2130 	.writepages	= f2fs_write_node_pages,
2131 	.set_page_dirty	= f2fs_set_node_page_dirty,
2132 	.invalidatepage	= f2fs_invalidate_page,
2133 	.releasepage	= f2fs_release_page,
2134 #ifdef CONFIG_MIGRATION
2135 	.migratepage	= f2fs_migrate_page,
2136 #endif
2137 };
2138 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2139 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2140 						nid_t n)
2141 {
2142 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2143 }
2144 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2145 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2146 				struct free_nid *i)
2147 {
2148 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2149 
2150 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2151 	if (err)
2152 		return err;
2153 
2154 	nm_i->nid_cnt[FREE_NID]++;
2155 	list_add_tail(&i->list, &nm_i->free_nid_list);
2156 	return 0;
2157 }
2158 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2159 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2160 			struct free_nid *i, enum nid_state state)
2161 {
2162 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2163 
2164 	f2fs_bug_on(sbi, state != i->state);
2165 	nm_i->nid_cnt[state]--;
2166 	if (state == FREE_NID)
2167 		list_del(&i->list);
2168 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2169 }
2170 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2171 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2172 			enum nid_state org_state, enum nid_state dst_state)
2173 {
2174 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2175 
2176 	f2fs_bug_on(sbi, org_state != i->state);
2177 	i->state = dst_state;
2178 	nm_i->nid_cnt[org_state]--;
2179 	nm_i->nid_cnt[dst_state]++;
2180 
2181 	switch (dst_state) {
2182 	case PREALLOC_NID:
2183 		list_del(&i->list);
2184 		break;
2185 	case FREE_NID:
2186 		list_add_tail(&i->list, &nm_i->free_nid_list);
2187 		break;
2188 	default:
2189 		BUG_ON(1);
2190 	}
2191 }
2192 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2193 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2194 							bool set, bool build)
2195 {
2196 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2197 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2198 	unsigned int nid_ofs = nid - START_NID(nid);
2199 
2200 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2201 		return;
2202 
2203 	if (set) {
2204 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2205 			return;
2206 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2207 		nm_i->free_nid_count[nat_ofs]++;
2208 	} else {
2209 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2210 			return;
2211 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2212 		if (!build)
2213 			nm_i->free_nid_count[nat_ofs]--;
2214 	}
2215 }
2216 
2217 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2218 static bool add_free_nid(struct f2fs_sb_info *sbi,
2219 				nid_t nid, bool build, bool update)
2220 {
2221 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2222 	struct free_nid *i, *e;
2223 	struct nat_entry *ne;
2224 	int err = -EINVAL;
2225 	bool ret = false;
2226 
2227 	/* 0 nid should not be used */
2228 	if (unlikely(nid == 0))
2229 		return false;
2230 
2231 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2232 		return false;
2233 
2234 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2235 	i->nid = nid;
2236 	i->state = FREE_NID;
2237 
2238 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2239 
2240 	spin_lock(&nm_i->nid_list_lock);
2241 
2242 	if (build) {
2243 		/*
2244 		 *   Thread A             Thread B
2245 		 *  - f2fs_create
2246 		 *   - f2fs_new_inode
2247 		 *    - f2fs_alloc_nid
2248 		 *     - __insert_nid_to_list(PREALLOC_NID)
2249 		 *                     - f2fs_balance_fs_bg
2250 		 *                      - f2fs_build_free_nids
2251 		 *                       - __f2fs_build_free_nids
2252 		 *                        - scan_nat_page
2253 		 *                         - add_free_nid
2254 		 *                          - __lookup_nat_cache
2255 		 *  - f2fs_add_link
2256 		 *   - f2fs_init_inode_metadata
2257 		 *    - f2fs_new_inode_page
2258 		 *     - f2fs_new_node_page
2259 		 *      - set_node_addr
2260 		 *  - f2fs_alloc_nid_done
2261 		 *   - __remove_nid_from_list(PREALLOC_NID)
2262 		 *                         - __insert_nid_to_list(FREE_NID)
2263 		 */
2264 		ne = __lookup_nat_cache(nm_i, nid);
2265 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2266 				nat_get_blkaddr(ne) != NULL_ADDR))
2267 			goto err_out;
2268 
2269 		e = __lookup_free_nid_list(nm_i, nid);
2270 		if (e) {
2271 			if (e->state == FREE_NID)
2272 				ret = true;
2273 			goto err_out;
2274 		}
2275 	}
2276 	ret = true;
2277 	err = __insert_free_nid(sbi, i);
2278 err_out:
2279 	if (update) {
2280 		update_free_nid_bitmap(sbi, nid, ret, build);
2281 		if (!build)
2282 			nm_i->available_nids++;
2283 	}
2284 	spin_unlock(&nm_i->nid_list_lock);
2285 	radix_tree_preload_end();
2286 
2287 	if (err)
2288 		kmem_cache_free(free_nid_slab, i);
2289 	return ret;
2290 }
2291 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2292 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2293 {
2294 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2295 	struct free_nid *i;
2296 	bool need_free = false;
2297 
2298 	spin_lock(&nm_i->nid_list_lock);
2299 	i = __lookup_free_nid_list(nm_i, nid);
2300 	if (i && i->state == FREE_NID) {
2301 		__remove_free_nid(sbi, i, FREE_NID);
2302 		need_free = true;
2303 	}
2304 	spin_unlock(&nm_i->nid_list_lock);
2305 
2306 	if (need_free)
2307 		kmem_cache_free(free_nid_slab, i);
2308 }
2309 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2310 static int scan_nat_page(struct f2fs_sb_info *sbi,
2311 			struct page *nat_page, nid_t start_nid)
2312 {
2313 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2314 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2315 	block_t blk_addr;
2316 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2317 	int i;
2318 
2319 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2320 
2321 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2322 
2323 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2324 		if (unlikely(start_nid >= nm_i->max_nid))
2325 			break;
2326 
2327 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2328 
2329 		if (blk_addr == NEW_ADDR)
2330 			return -EINVAL;
2331 
2332 		if (blk_addr == NULL_ADDR) {
2333 			add_free_nid(sbi, start_nid, true, true);
2334 		} else {
2335 			spin_lock(&NM_I(sbi)->nid_list_lock);
2336 			update_free_nid_bitmap(sbi, start_nid, false, true);
2337 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2338 		}
2339 	}
2340 
2341 	return 0;
2342 }
2343 
scan_curseg_cache(struct f2fs_sb_info * sbi)2344 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2345 {
2346 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2347 	struct f2fs_journal *journal = curseg->journal;
2348 	int i;
2349 
2350 	down_read(&curseg->journal_rwsem);
2351 	for (i = 0; i < nats_in_cursum(journal); i++) {
2352 		block_t addr;
2353 		nid_t nid;
2354 
2355 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2356 		nid = le32_to_cpu(nid_in_journal(journal, i));
2357 		if (addr == NULL_ADDR)
2358 			add_free_nid(sbi, nid, true, false);
2359 		else
2360 			remove_free_nid(sbi, nid);
2361 	}
2362 	up_read(&curseg->journal_rwsem);
2363 }
2364 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2365 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2366 {
2367 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 	unsigned int i, idx;
2369 	nid_t nid;
2370 
2371 	down_read(&nm_i->nat_tree_lock);
2372 
2373 	for (i = 0; i < nm_i->nat_blocks; i++) {
2374 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2375 			continue;
2376 		if (!nm_i->free_nid_count[i])
2377 			continue;
2378 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2379 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2380 						NAT_ENTRY_PER_BLOCK, idx);
2381 			if (idx >= NAT_ENTRY_PER_BLOCK)
2382 				break;
2383 
2384 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2385 			add_free_nid(sbi, nid, true, false);
2386 
2387 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2388 				goto out;
2389 		}
2390 	}
2391 out:
2392 	scan_curseg_cache(sbi);
2393 
2394 	up_read(&nm_i->nat_tree_lock);
2395 }
2396 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2397 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2398 						bool sync, bool mount)
2399 {
2400 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2401 	int i = 0, ret;
2402 	nid_t nid = nm_i->next_scan_nid;
2403 
2404 	if (unlikely(nid >= nm_i->max_nid))
2405 		nid = 0;
2406 
2407 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2408 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2409 
2410 	/* Enough entries */
2411 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2412 		return 0;
2413 
2414 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2415 		return 0;
2416 
2417 	if (!mount) {
2418 		/* try to find free nids in free_nid_bitmap */
2419 		scan_free_nid_bits(sbi);
2420 
2421 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2422 			return 0;
2423 	}
2424 
2425 	/* readahead nat pages to be scanned */
2426 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2427 							META_NAT, true);
2428 
2429 	down_read(&nm_i->nat_tree_lock);
2430 
2431 	while (1) {
2432 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2433 						nm_i->nat_block_bitmap)) {
2434 			struct page *page = get_current_nat_page(sbi, nid);
2435 
2436 			if (IS_ERR(page)) {
2437 				ret = PTR_ERR(page);
2438 			} else {
2439 				ret = scan_nat_page(sbi, page, nid);
2440 				f2fs_put_page(page, 1);
2441 			}
2442 
2443 			if (ret) {
2444 				up_read(&nm_i->nat_tree_lock);
2445 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2446 				return ret;
2447 			}
2448 		}
2449 
2450 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2451 		if (unlikely(nid >= nm_i->max_nid))
2452 			nid = 0;
2453 
2454 		if (++i >= FREE_NID_PAGES)
2455 			break;
2456 	}
2457 
2458 	/* go to the next free nat pages to find free nids abundantly */
2459 	nm_i->next_scan_nid = nid;
2460 
2461 	/* find free nids from current sum_pages */
2462 	scan_curseg_cache(sbi);
2463 
2464 	up_read(&nm_i->nat_tree_lock);
2465 
2466 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2467 					nm_i->ra_nid_pages, META_NAT, false);
2468 
2469 	return 0;
2470 }
2471 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2472 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2473 {
2474 	int ret;
2475 
2476 	mutex_lock(&NM_I(sbi)->build_lock);
2477 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2478 	mutex_unlock(&NM_I(sbi)->build_lock);
2479 
2480 	return ret;
2481 }
2482 
2483 /*
2484  * If this function returns success, caller can obtain a new nid
2485  * from second parameter of this function.
2486  * The returned nid could be used ino as well as nid when inode is created.
2487  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2488 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2489 {
2490 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2491 	struct free_nid *i = NULL;
2492 retry:
2493 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2494 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2495 		return false;
2496 	}
2497 
2498 	spin_lock(&nm_i->nid_list_lock);
2499 
2500 	if (unlikely(nm_i->available_nids == 0)) {
2501 		spin_unlock(&nm_i->nid_list_lock);
2502 		return false;
2503 	}
2504 
2505 	/* We should not use stale free nids created by f2fs_build_free_nids */
2506 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2507 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2508 		i = list_first_entry(&nm_i->free_nid_list,
2509 					struct free_nid, list);
2510 		*nid = i->nid;
2511 
2512 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2513 		nm_i->available_nids--;
2514 
2515 		update_free_nid_bitmap(sbi, *nid, false, false);
2516 
2517 		spin_unlock(&nm_i->nid_list_lock);
2518 		return true;
2519 	}
2520 	spin_unlock(&nm_i->nid_list_lock);
2521 
2522 	/* Let's scan nat pages and its caches to get free nids */
2523 	if (!f2fs_build_free_nids(sbi, true, false))
2524 		goto retry;
2525 	return false;
2526 }
2527 
2528 /*
2529  * f2fs_alloc_nid() should be called prior to this function.
2530  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2531 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2532 {
2533 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2534 	struct free_nid *i;
2535 
2536 	spin_lock(&nm_i->nid_list_lock);
2537 	i = __lookup_free_nid_list(nm_i, nid);
2538 	f2fs_bug_on(sbi, !i);
2539 	__remove_free_nid(sbi, i, PREALLOC_NID);
2540 	spin_unlock(&nm_i->nid_list_lock);
2541 
2542 	kmem_cache_free(free_nid_slab, i);
2543 }
2544 
2545 /*
2546  * f2fs_alloc_nid() should be called prior to this function.
2547  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2548 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2549 {
2550 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2551 	struct free_nid *i;
2552 	bool need_free = false;
2553 
2554 	if (!nid)
2555 		return;
2556 
2557 	spin_lock(&nm_i->nid_list_lock);
2558 	i = __lookup_free_nid_list(nm_i, nid);
2559 	f2fs_bug_on(sbi, !i);
2560 
2561 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2562 		__remove_free_nid(sbi, i, PREALLOC_NID);
2563 		need_free = true;
2564 	} else {
2565 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2566 	}
2567 
2568 	nm_i->available_nids++;
2569 
2570 	update_free_nid_bitmap(sbi, nid, true, false);
2571 
2572 	spin_unlock(&nm_i->nid_list_lock);
2573 
2574 	if (need_free)
2575 		kmem_cache_free(free_nid_slab, i);
2576 }
2577 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2578 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2579 {
2580 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2581 	int nr = nr_shrink;
2582 
2583 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2584 		return 0;
2585 
2586 	if (!mutex_trylock(&nm_i->build_lock))
2587 		return 0;
2588 
2589 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2590 		struct free_nid *i, *next;
2591 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2592 
2593 		spin_lock(&nm_i->nid_list_lock);
2594 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2595 			if (!nr_shrink || !batch ||
2596 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2597 				break;
2598 			__remove_free_nid(sbi, i, FREE_NID);
2599 			kmem_cache_free(free_nid_slab, i);
2600 			nr_shrink--;
2601 			batch--;
2602 		}
2603 		spin_unlock(&nm_i->nid_list_lock);
2604 	}
2605 
2606 	mutex_unlock(&nm_i->build_lock);
2607 
2608 	return nr - nr_shrink;
2609 }
2610 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2611 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2612 {
2613 	void *src_addr, *dst_addr;
2614 	size_t inline_size;
2615 	struct page *ipage;
2616 	struct f2fs_inode *ri;
2617 
2618 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2619 	if (IS_ERR(ipage))
2620 		return PTR_ERR(ipage);
2621 
2622 	ri = F2FS_INODE(page);
2623 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2624 		set_inode_flag(inode, FI_INLINE_XATTR);
2625 	} else {
2626 		clear_inode_flag(inode, FI_INLINE_XATTR);
2627 		goto update_inode;
2628 	}
2629 
2630 	dst_addr = inline_xattr_addr(inode, ipage);
2631 	src_addr = inline_xattr_addr(inode, page);
2632 	inline_size = inline_xattr_size(inode);
2633 
2634 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2635 	memcpy(dst_addr, src_addr, inline_size);
2636 update_inode:
2637 	f2fs_update_inode(inode, ipage);
2638 	f2fs_put_page(ipage, 1);
2639 	return 0;
2640 }
2641 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2642 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2643 {
2644 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2645 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2646 	nid_t new_xnid;
2647 	struct dnode_of_data dn;
2648 	struct node_info ni;
2649 	struct page *xpage;
2650 	int err;
2651 
2652 	if (!prev_xnid)
2653 		goto recover_xnid;
2654 
2655 	/* 1: invalidate the previous xattr nid */
2656 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2657 	if (err)
2658 		return err;
2659 
2660 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2661 	dec_valid_node_count(sbi, inode, false);
2662 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2663 
2664 recover_xnid:
2665 	/* 2: update xattr nid in inode */
2666 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2667 		return -ENOSPC;
2668 
2669 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2670 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2671 	if (IS_ERR(xpage)) {
2672 		f2fs_alloc_nid_failed(sbi, new_xnid);
2673 		return PTR_ERR(xpage);
2674 	}
2675 
2676 	f2fs_alloc_nid_done(sbi, new_xnid);
2677 	f2fs_update_inode_page(inode);
2678 
2679 	/* 3: update and set xattr node page dirty */
2680 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2681 
2682 	set_page_dirty(xpage);
2683 	f2fs_put_page(xpage, 1);
2684 
2685 	return 0;
2686 }
2687 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2688 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2689 {
2690 	struct f2fs_inode *src, *dst;
2691 	nid_t ino = ino_of_node(page);
2692 	struct node_info old_ni, new_ni;
2693 	struct page *ipage;
2694 	int err;
2695 
2696 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2697 	if (err)
2698 		return err;
2699 
2700 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2701 		return -EINVAL;
2702 retry:
2703 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2704 	if (!ipage) {
2705 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2706 		goto retry;
2707 	}
2708 
2709 	/* Should not use this inode from free nid list */
2710 	remove_free_nid(sbi, ino);
2711 
2712 	if (!PageUptodate(ipage))
2713 		SetPageUptodate(ipage);
2714 	fill_node_footer(ipage, ino, ino, 0, true);
2715 	set_cold_node(ipage, false);
2716 
2717 	src = F2FS_INODE(page);
2718 	dst = F2FS_INODE(ipage);
2719 
2720 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2721 	dst->i_size = 0;
2722 	dst->i_blocks = cpu_to_le64(1);
2723 	dst->i_links = cpu_to_le32(1);
2724 	dst->i_xattr_nid = 0;
2725 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2726 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2727 		dst->i_extra_isize = src->i_extra_isize;
2728 
2729 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2730 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2731 							i_inline_xattr_size))
2732 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2733 
2734 		if (f2fs_sb_has_project_quota(sbi) &&
2735 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2736 								i_projid))
2737 			dst->i_projid = src->i_projid;
2738 
2739 		if (f2fs_sb_has_inode_crtime(sbi) &&
2740 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2741 							i_crtime_nsec)) {
2742 			dst->i_crtime = src->i_crtime;
2743 			dst->i_crtime_nsec = src->i_crtime_nsec;
2744 		}
2745 	}
2746 
2747 	new_ni = old_ni;
2748 	new_ni.ino = ino;
2749 
2750 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2751 		WARN_ON(1);
2752 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2753 	inc_valid_inode_count(sbi);
2754 	set_page_dirty(ipage);
2755 	f2fs_put_page(ipage, 1);
2756 	return 0;
2757 }
2758 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2759 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2760 			unsigned int segno, struct f2fs_summary_block *sum)
2761 {
2762 	struct f2fs_node *rn;
2763 	struct f2fs_summary *sum_entry;
2764 	block_t addr;
2765 	int i, idx, last_offset, nrpages;
2766 
2767 	/* scan the node segment */
2768 	last_offset = sbi->blocks_per_seg;
2769 	addr = START_BLOCK(sbi, segno);
2770 	sum_entry = &sum->entries[0];
2771 
2772 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2773 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2774 
2775 		/* readahead node pages */
2776 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2777 
2778 		for (idx = addr; idx < addr + nrpages; idx++) {
2779 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2780 
2781 			if (IS_ERR(page))
2782 				return PTR_ERR(page);
2783 
2784 			rn = F2FS_NODE(page);
2785 			sum_entry->nid = rn->footer.nid;
2786 			sum_entry->version = 0;
2787 			sum_entry->ofs_in_node = 0;
2788 			sum_entry++;
2789 			f2fs_put_page(page, 1);
2790 		}
2791 
2792 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2793 							addr + nrpages);
2794 	}
2795 	return 0;
2796 }
2797 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2798 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2799 {
2800 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2801 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2802 	struct f2fs_journal *journal = curseg->journal;
2803 	int i;
2804 
2805 	down_write(&curseg->journal_rwsem);
2806 	for (i = 0; i < nats_in_cursum(journal); i++) {
2807 		struct nat_entry *ne;
2808 		struct f2fs_nat_entry raw_ne;
2809 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2810 
2811 		if (f2fs_check_nid_range(sbi, nid))
2812 			continue;
2813 
2814 		raw_ne = nat_in_journal(journal, i);
2815 
2816 		ne = __lookup_nat_cache(nm_i, nid);
2817 		if (!ne) {
2818 			ne = __alloc_nat_entry(nid, true);
2819 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2820 		}
2821 
2822 		/*
2823 		 * if a free nat in journal has not been used after last
2824 		 * checkpoint, we should remove it from available nids,
2825 		 * since later we will add it again.
2826 		 */
2827 		if (!get_nat_flag(ne, IS_DIRTY) &&
2828 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2829 			spin_lock(&nm_i->nid_list_lock);
2830 			nm_i->available_nids--;
2831 			spin_unlock(&nm_i->nid_list_lock);
2832 		}
2833 
2834 		__set_nat_cache_dirty(nm_i, ne);
2835 	}
2836 	update_nats_in_cursum(journal, -i);
2837 	up_write(&curseg->journal_rwsem);
2838 }
2839 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2840 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2841 						struct list_head *head, int max)
2842 {
2843 	struct nat_entry_set *cur;
2844 
2845 	if (nes->entry_cnt >= max)
2846 		goto add_out;
2847 
2848 	list_for_each_entry(cur, head, set_list) {
2849 		if (cur->entry_cnt >= nes->entry_cnt) {
2850 			list_add(&nes->set_list, cur->set_list.prev);
2851 			return;
2852 		}
2853 	}
2854 add_out:
2855 	list_add_tail(&nes->set_list, head);
2856 }
2857 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2858 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2859 						struct page *page)
2860 {
2861 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2862 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2863 	struct f2fs_nat_block *nat_blk = page_address(page);
2864 	int valid = 0;
2865 	int i = 0;
2866 
2867 	if (!enabled_nat_bits(sbi, NULL))
2868 		return;
2869 
2870 	if (nat_index == 0) {
2871 		valid = 1;
2872 		i = 1;
2873 	}
2874 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2875 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2876 			valid++;
2877 	}
2878 	if (valid == 0) {
2879 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2880 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2881 		return;
2882 	}
2883 
2884 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2885 	if (valid == NAT_ENTRY_PER_BLOCK)
2886 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2887 	else
2888 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2889 }
2890 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2891 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2892 		struct nat_entry_set *set, struct cp_control *cpc)
2893 {
2894 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2895 	struct f2fs_journal *journal = curseg->journal;
2896 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2897 	bool to_journal = true;
2898 	struct f2fs_nat_block *nat_blk;
2899 	struct nat_entry *ne, *cur;
2900 	struct page *page = NULL;
2901 
2902 	/*
2903 	 * there are two steps to flush nat entries:
2904 	 * #1, flush nat entries to journal in current hot data summary block.
2905 	 * #2, flush nat entries to nat page.
2906 	 */
2907 	if (enabled_nat_bits(sbi, cpc) ||
2908 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2909 		to_journal = false;
2910 
2911 	if (to_journal) {
2912 		down_write(&curseg->journal_rwsem);
2913 	} else {
2914 		page = get_next_nat_page(sbi, start_nid);
2915 		if (IS_ERR(page))
2916 			return PTR_ERR(page);
2917 
2918 		nat_blk = page_address(page);
2919 		f2fs_bug_on(sbi, !nat_blk);
2920 	}
2921 
2922 	/* flush dirty nats in nat entry set */
2923 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2924 		struct f2fs_nat_entry *raw_ne;
2925 		nid_t nid = nat_get_nid(ne);
2926 		int offset;
2927 
2928 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2929 
2930 		if (to_journal) {
2931 			offset = f2fs_lookup_journal_in_cursum(journal,
2932 							NAT_JOURNAL, nid, 1);
2933 			f2fs_bug_on(sbi, offset < 0);
2934 			raw_ne = &nat_in_journal(journal, offset);
2935 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2936 		} else {
2937 			raw_ne = &nat_blk->entries[nid - start_nid];
2938 		}
2939 		raw_nat_from_node_info(raw_ne, &ne->ni);
2940 		nat_reset_flag(ne);
2941 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2942 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2943 			add_free_nid(sbi, nid, false, true);
2944 		} else {
2945 			spin_lock(&NM_I(sbi)->nid_list_lock);
2946 			update_free_nid_bitmap(sbi, nid, false, false);
2947 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2948 		}
2949 	}
2950 
2951 	if (to_journal) {
2952 		up_write(&curseg->journal_rwsem);
2953 	} else {
2954 		__update_nat_bits(sbi, start_nid, page);
2955 		f2fs_put_page(page, 1);
2956 	}
2957 
2958 	/* Allow dirty nats by node block allocation in write_begin */
2959 	if (!set->entry_cnt) {
2960 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2961 		kmem_cache_free(nat_entry_set_slab, set);
2962 	}
2963 	return 0;
2964 }
2965 
2966 /*
2967  * This function is called during the checkpointing process.
2968  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2969 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2970 {
2971 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2972 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2973 	struct f2fs_journal *journal = curseg->journal;
2974 	struct nat_entry_set *setvec[SETVEC_SIZE];
2975 	struct nat_entry_set *set, *tmp;
2976 	unsigned int found;
2977 	nid_t set_idx = 0;
2978 	LIST_HEAD(sets);
2979 	int err = 0;
2980 
2981 	/*
2982 	 * during unmount, let's flush nat_bits before checking
2983 	 * nat_cnt[DIRTY_NAT].
2984 	 */
2985 	if (enabled_nat_bits(sbi, cpc)) {
2986 		down_write(&nm_i->nat_tree_lock);
2987 		remove_nats_in_journal(sbi);
2988 		up_write(&nm_i->nat_tree_lock);
2989 	}
2990 
2991 	if (!nm_i->nat_cnt[DIRTY_NAT])
2992 		return 0;
2993 
2994 	down_write(&nm_i->nat_tree_lock);
2995 
2996 	/*
2997 	 * if there are no enough space in journal to store dirty nat
2998 	 * entries, remove all entries from journal and merge them
2999 	 * into nat entry set.
3000 	 */
3001 	if (enabled_nat_bits(sbi, cpc) ||
3002 		!__has_cursum_space(journal,
3003 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3004 		remove_nats_in_journal(sbi);
3005 
3006 	while ((found = __gang_lookup_nat_set(nm_i,
3007 					set_idx, SETVEC_SIZE, setvec))) {
3008 		unsigned idx;
3009 		set_idx = setvec[found - 1]->set + 1;
3010 		for (idx = 0; idx < found; idx++)
3011 			__adjust_nat_entry_set(setvec[idx], &sets,
3012 						MAX_NAT_JENTRIES(journal));
3013 	}
3014 
3015 	/* flush dirty nats in nat entry set */
3016 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3017 		err = __flush_nat_entry_set(sbi, set, cpc);
3018 		if (err)
3019 			break;
3020 	}
3021 
3022 	up_write(&nm_i->nat_tree_lock);
3023 	/* Allow dirty nats by node block allocation in write_begin */
3024 
3025 	return err;
3026 }
3027 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3028 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3029 {
3030 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3031 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3032 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3033 	unsigned int i;
3034 	__u64 cp_ver = cur_cp_version(ckpt);
3035 	block_t nat_bits_addr;
3036 
3037 	if (!enabled_nat_bits(sbi, NULL))
3038 		return 0;
3039 
3040 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3041 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3042 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3043 	if (!nm_i->nat_bits)
3044 		return -ENOMEM;
3045 
3046 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3047 						nm_i->nat_bits_blocks;
3048 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3049 		struct page *page;
3050 
3051 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3052 		if (IS_ERR(page))
3053 			return PTR_ERR(page);
3054 
3055 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3056 					page_address(page), F2FS_BLKSIZE);
3057 		f2fs_put_page(page, 1);
3058 	}
3059 
3060 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3061 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3062 		disable_nat_bits(sbi, true);
3063 		return 0;
3064 	}
3065 
3066 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3067 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3068 
3069 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3070 	return 0;
3071 }
3072 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3073 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3074 {
3075 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3076 	unsigned int i = 0;
3077 	nid_t nid, last_nid;
3078 
3079 	if (!enabled_nat_bits(sbi, NULL))
3080 		return;
3081 
3082 	for (i = 0; i < nm_i->nat_blocks; i++) {
3083 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3084 		if (i >= nm_i->nat_blocks)
3085 			break;
3086 
3087 		__set_bit_le(i, nm_i->nat_block_bitmap);
3088 
3089 		nid = i * NAT_ENTRY_PER_BLOCK;
3090 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3091 
3092 		spin_lock(&NM_I(sbi)->nid_list_lock);
3093 		for (; nid < last_nid; nid++)
3094 			update_free_nid_bitmap(sbi, nid, true, true);
3095 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3096 	}
3097 
3098 	for (i = 0; i < nm_i->nat_blocks; i++) {
3099 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3100 		if (i >= nm_i->nat_blocks)
3101 			break;
3102 
3103 		__set_bit_le(i, nm_i->nat_block_bitmap);
3104 	}
3105 }
3106 
init_node_manager(struct f2fs_sb_info * sbi)3107 static int init_node_manager(struct f2fs_sb_info *sbi)
3108 {
3109 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3110 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3111 	unsigned char *version_bitmap;
3112 	unsigned int nat_segs;
3113 	int err;
3114 
3115 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3116 
3117 	/* segment_count_nat includes pair segment so divide to 2. */
3118 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3119 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3120 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3121 
3122 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3123 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3124 						F2FS_RESERVED_NODE_NUM;
3125 	nm_i->nid_cnt[FREE_NID] = 0;
3126 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3127 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3128 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3129 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3130 
3131 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3132 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3133 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3134 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3135 	INIT_LIST_HEAD(&nm_i->nat_entries);
3136 	spin_lock_init(&nm_i->nat_list_lock);
3137 
3138 	mutex_init(&nm_i->build_lock);
3139 	spin_lock_init(&nm_i->nid_list_lock);
3140 	init_rwsem(&nm_i->nat_tree_lock);
3141 
3142 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3143 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3144 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3145 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3146 					GFP_KERNEL);
3147 	if (!nm_i->nat_bitmap)
3148 		return -ENOMEM;
3149 
3150 	err = __get_nat_bitmaps(sbi);
3151 	if (err)
3152 		return err;
3153 
3154 #ifdef CONFIG_F2FS_CHECK_FS
3155 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3156 					GFP_KERNEL);
3157 	if (!nm_i->nat_bitmap_mir)
3158 		return -ENOMEM;
3159 #endif
3160 
3161 	return 0;
3162 }
3163 
init_free_nid_cache(struct f2fs_sb_info * sbi)3164 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3165 {
3166 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3167 	int i;
3168 
3169 	nm_i->free_nid_bitmap =
3170 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3171 					      nm_i->nat_blocks),
3172 			      GFP_KERNEL);
3173 	if (!nm_i->free_nid_bitmap)
3174 		return -ENOMEM;
3175 
3176 	for (i = 0; i < nm_i->nat_blocks; i++) {
3177 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3178 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3179 		if (!nm_i->free_nid_bitmap[i])
3180 			return -ENOMEM;
3181 	}
3182 
3183 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3184 								GFP_KERNEL);
3185 	if (!nm_i->nat_block_bitmap)
3186 		return -ENOMEM;
3187 
3188 	nm_i->free_nid_count =
3189 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3190 					      nm_i->nat_blocks),
3191 			      GFP_KERNEL);
3192 	if (!nm_i->free_nid_count)
3193 		return -ENOMEM;
3194 	return 0;
3195 }
3196 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3197 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3198 {
3199 	int err;
3200 
3201 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3202 							GFP_KERNEL);
3203 	if (!sbi->nm_info)
3204 		return -ENOMEM;
3205 
3206 	err = init_node_manager(sbi);
3207 	if (err)
3208 		return err;
3209 
3210 	err = init_free_nid_cache(sbi);
3211 	if (err)
3212 		return err;
3213 
3214 	/* load free nid status from nat_bits table */
3215 	load_free_nid_bitmap(sbi);
3216 
3217 	return f2fs_build_free_nids(sbi, true, true);
3218 }
3219 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3220 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3221 {
3222 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3223 	struct free_nid *i, *next_i;
3224 	struct nat_entry *natvec[NATVEC_SIZE];
3225 	struct nat_entry_set *setvec[SETVEC_SIZE];
3226 	nid_t nid = 0;
3227 	unsigned int found;
3228 
3229 	if (!nm_i)
3230 		return;
3231 
3232 	/* destroy free nid list */
3233 	spin_lock(&nm_i->nid_list_lock);
3234 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3235 		__remove_free_nid(sbi, i, FREE_NID);
3236 		spin_unlock(&nm_i->nid_list_lock);
3237 		kmem_cache_free(free_nid_slab, i);
3238 		spin_lock(&nm_i->nid_list_lock);
3239 	}
3240 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3241 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3242 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3243 	spin_unlock(&nm_i->nid_list_lock);
3244 
3245 	/* destroy nat cache */
3246 	down_write(&nm_i->nat_tree_lock);
3247 	while ((found = __gang_lookup_nat_cache(nm_i,
3248 					nid, NATVEC_SIZE, natvec))) {
3249 		unsigned idx;
3250 
3251 		nid = nat_get_nid(natvec[found - 1]) + 1;
3252 		for (idx = 0; idx < found; idx++) {
3253 			spin_lock(&nm_i->nat_list_lock);
3254 			list_del(&natvec[idx]->list);
3255 			spin_unlock(&nm_i->nat_list_lock);
3256 
3257 			__del_from_nat_cache(nm_i, natvec[idx]);
3258 		}
3259 	}
3260 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3261 
3262 	/* destroy nat set cache */
3263 	nid = 0;
3264 	while ((found = __gang_lookup_nat_set(nm_i,
3265 					nid, SETVEC_SIZE, setvec))) {
3266 		unsigned idx;
3267 
3268 		nid = setvec[found - 1]->set + 1;
3269 		for (idx = 0; idx < found; idx++) {
3270 			/* entry_cnt is not zero, when cp_error was occurred */
3271 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3272 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3273 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3274 		}
3275 	}
3276 	up_write(&nm_i->nat_tree_lock);
3277 
3278 	kvfree(nm_i->nat_block_bitmap);
3279 	if (nm_i->free_nid_bitmap) {
3280 		int i;
3281 
3282 		for (i = 0; i < nm_i->nat_blocks; i++)
3283 			kvfree(nm_i->free_nid_bitmap[i]);
3284 		kvfree(nm_i->free_nid_bitmap);
3285 	}
3286 	kvfree(nm_i->free_nid_count);
3287 
3288 	kvfree(nm_i->nat_bitmap);
3289 	kvfree(nm_i->nat_bits);
3290 #ifdef CONFIG_F2FS_CHECK_FS
3291 	kvfree(nm_i->nat_bitmap_mir);
3292 #endif
3293 	sbi->nm_info = NULL;
3294 	kfree(nm_i);
3295 }
3296 
f2fs_create_node_manager_caches(void)3297 int __init f2fs_create_node_manager_caches(void)
3298 {
3299 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3300 			sizeof(struct nat_entry));
3301 	if (!nat_entry_slab)
3302 		goto fail;
3303 
3304 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3305 			sizeof(struct free_nid));
3306 	if (!free_nid_slab)
3307 		goto destroy_nat_entry;
3308 
3309 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3310 			sizeof(struct nat_entry_set));
3311 	if (!nat_entry_set_slab)
3312 		goto destroy_free_nid;
3313 
3314 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3315 			sizeof(struct fsync_node_entry));
3316 	if (!fsync_node_entry_slab)
3317 		goto destroy_nat_entry_set;
3318 	return 0;
3319 
3320 destroy_nat_entry_set:
3321 	kmem_cache_destroy(nat_entry_set_slab);
3322 destroy_free_nid:
3323 	kmem_cache_destroy(free_nid_slab);
3324 destroy_nat_entry:
3325 	kmem_cache_destroy(nat_entry_slab);
3326 fail:
3327 	return -ENOMEM;
3328 }
3329 
f2fs_destroy_node_manager_caches(void)3330 void f2fs_destroy_node_manager_caches(void)
3331 {
3332 	kmem_cache_destroy(fsync_node_entry_slab);
3333 	kmem_cache_destroy(nat_entry_set_slab);
3334 	kmem_cache_destroy(free_nid_slab);
3335 	kmem_cache_destroy(nat_entry_slab);
3336 }
3337