1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
183 }
184
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
214 }
215
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218 {
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233 }
234
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237 {
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
268 }
269
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
276
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
288 }
289
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
294 }
295
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
302 }
303
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
306 {
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
310
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
316
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324 return seq_id;
325 }
326
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
341 }
342 }
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
345 }
346
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
361
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
368 }
369 up_read(&nm_i->nat_tree_lock);
370 return need;
371 }
372
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
378
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
385 }
386
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
392
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
406 {
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
409
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
413
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
426 }
427
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
442 /*
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
446 */
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 }
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
453
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
462
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
467 }
468
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
474
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 }
483 up_write(&nm_i->nat_tree_lock);
484 }
485
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
490
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
493
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
497
498 if (list_empty(&nm_i->nat_entries))
499 break;
500
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
505
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
508
509 spin_lock(&nm_i->nat_list_lock);
510 }
511 spin_unlock(&nm_i->nat_list_lock);
512
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
515 }
516
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
577
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
581 }
582
583 /*
584 * readahead MAX_RA_NODE number of node pages.
585 */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
592
593 blk_start_plug(&plug);
594
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
601 }
602
603 blk_finish_plug(&plug);
604 }
605
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
615
616 if (!dn->max_level)
617 return pgofs + 1;
618
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
621
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 }
635
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
645 {
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
653
654 noffset[0] = 0;
655
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
659 }
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
685 }
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
695 }
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
712 }
713 got:
714 return level;
715 }
716
717 /*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
814
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
826 }
827 return err;
828 }
829
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
836
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
840
841 if (ni.blk_addr != NEW_ADDR &&
842 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
843 f2fs_err(sbi,
844 "nat entry is corrupted, run fsck to fix it, ino:%u, "
845 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
846 set_sbi_flag(sbi, SBI_NEED_FSCK);
847 return -EFSCORRUPTED;
848 }
849
850 /* Deallocate node address */
851 f2fs_invalidate_blocks(sbi, ni.blk_addr);
852 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
853 set_node_addr(sbi, &ni, NULL_ADDR, false);
854
855 if (dn->nid == dn->inode->i_ino) {
856 f2fs_remove_orphan_inode(sbi, dn->nid);
857 dec_valid_inode_count(sbi);
858 f2fs_inode_synced(dn->inode);
859 }
860
861 clear_node_page_dirty(dn->node_page);
862 set_sbi_flag(sbi, SBI_IS_DIRTY);
863
864 index = dn->node_page->index;
865 f2fs_put_page(dn->node_page, 1);
866
867 invalidate_mapping_pages(NODE_MAPPING(sbi),
868 index, index);
869
870 dn->node_page = NULL;
871 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
872
873 return 0;
874 }
875
truncate_dnode(struct dnode_of_data * dn)876 static int truncate_dnode(struct dnode_of_data *dn)
877 {
878 struct page *page;
879 int err;
880
881 if (dn->nid == 0)
882 return 1;
883
884 /* get direct node */
885 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
886 if (PTR_ERR(page) == -ENOENT)
887 return 1;
888 else if (IS_ERR(page))
889 return PTR_ERR(page);
890
891 /* Make dnode_of_data for parameter */
892 dn->node_page = page;
893 dn->ofs_in_node = 0;
894 f2fs_truncate_data_blocks(dn);
895 err = truncate_node(dn);
896 if (err) {
897 f2fs_put_page(page, 1);
898 return err;
899 }
900
901 return 1;
902 }
903
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)904 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
905 int ofs, int depth)
906 {
907 struct dnode_of_data rdn = *dn;
908 struct page *page;
909 struct f2fs_node *rn;
910 nid_t child_nid;
911 unsigned int child_nofs;
912 int freed = 0;
913 int i, ret;
914
915 if (dn->nid == 0)
916 return NIDS_PER_BLOCK + 1;
917
918 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
919
920 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
921 if (IS_ERR(page)) {
922 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
923 return PTR_ERR(page);
924 }
925
926 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
927
928 rn = F2FS_NODE(page);
929 if (depth < 3) {
930 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
931 child_nid = le32_to_cpu(rn->in.nid[i]);
932 if (child_nid == 0)
933 continue;
934 rdn.nid = child_nid;
935 ret = truncate_dnode(&rdn);
936 if (ret < 0)
937 goto out_err;
938 if (set_nid(page, i, 0, false))
939 dn->node_changed = true;
940 }
941 } else {
942 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
943 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
944 child_nid = le32_to_cpu(rn->in.nid[i]);
945 if (child_nid == 0) {
946 child_nofs += NIDS_PER_BLOCK + 1;
947 continue;
948 }
949 rdn.nid = child_nid;
950 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
951 if (ret == (NIDS_PER_BLOCK + 1)) {
952 if (set_nid(page, i, 0, false))
953 dn->node_changed = true;
954 child_nofs += ret;
955 } else if (ret < 0 && ret != -ENOENT) {
956 goto out_err;
957 }
958 }
959 freed = child_nofs;
960 }
961
962 if (!ofs) {
963 /* remove current indirect node */
964 dn->node_page = page;
965 ret = truncate_node(dn);
966 if (ret)
967 goto out_err;
968 freed++;
969 } else {
970 f2fs_put_page(page, 1);
971 }
972 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
973 return freed;
974
975 out_err:
976 f2fs_put_page(page, 1);
977 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
978 return ret;
979 }
980
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)981 static int truncate_partial_nodes(struct dnode_of_data *dn,
982 struct f2fs_inode *ri, int *offset, int depth)
983 {
984 struct page *pages[2];
985 nid_t nid[3];
986 nid_t child_nid;
987 int err = 0;
988 int i;
989 int idx = depth - 2;
990
991 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
992 if (!nid[0])
993 return 0;
994
995 /* get indirect nodes in the path */
996 for (i = 0; i < idx + 1; i++) {
997 /* reference count'll be increased */
998 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
999 if (IS_ERR(pages[i])) {
1000 err = PTR_ERR(pages[i]);
1001 idx = i - 1;
1002 goto fail;
1003 }
1004 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1005 }
1006
1007 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1008
1009 /* free direct nodes linked to a partial indirect node */
1010 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1011 child_nid = get_nid(pages[idx], i, false);
1012 if (!child_nid)
1013 continue;
1014 dn->nid = child_nid;
1015 err = truncate_dnode(dn);
1016 if (err < 0)
1017 goto fail;
1018 if (set_nid(pages[idx], i, 0, false))
1019 dn->node_changed = true;
1020 }
1021
1022 if (offset[idx + 1] == 0) {
1023 dn->node_page = pages[idx];
1024 dn->nid = nid[idx];
1025 err = truncate_node(dn);
1026 if (err)
1027 goto fail;
1028 } else {
1029 f2fs_put_page(pages[idx], 1);
1030 }
1031 offset[idx]++;
1032 offset[idx + 1] = 0;
1033 idx--;
1034 fail:
1035 for (i = idx; i >= 0; i--)
1036 f2fs_put_page(pages[i], 1);
1037
1038 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1039
1040 return err;
1041 }
1042
1043 /*
1044 * All the block addresses of data and nodes should be nullified.
1045 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1046 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1047 {
1048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1049 int err = 0, cont = 1;
1050 int level, offset[4], noffset[4];
1051 unsigned int nofs = 0;
1052 struct f2fs_inode *ri;
1053 struct dnode_of_data dn;
1054 struct page *page;
1055
1056 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1057
1058 level = get_node_path(inode, from, offset, noffset);
1059 if (level <= 0) {
1060 if (!level) {
1061 level = -EFSCORRUPTED;
1062 f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1063 __func__, inode->i_ino,
1064 from, ADDRS_PER_INODE(inode));
1065 set_sbi_flag(sbi, SBI_NEED_FSCK);
1066 }
1067 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1068 return level;
1069 }
1070
1071 page = f2fs_get_node_page(sbi, inode->i_ino);
1072 if (IS_ERR(page)) {
1073 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1074 return PTR_ERR(page);
1075 }
1076
1077 set_new_dnode(&dn, inode, page, NULL, 0);
1078 unlock_page(page);
1079
1080 ri = F2FS_INODE(page);
1081 switch (level) {
1082 case 0:
1083 case 1:
1084 nofs = noffset[1];
1085 break;
1086 case 2:
1087 nofs = noffset[1];
1088 if (!offset[level - 1])
1089 goto skip_partial;
1090 err = truncate_partial_nodes(&dn, ri, offset, level);
1091 if (err < 0 && err != -ENOENT)
1092 goto fail;
1093 nofs += 1 + NIDS_PER_BLOCK;
1094 break;
1095 case 3:
1096 nofs = 5 + 2 * NIDS_PER_BLOCK;
1097 if (!offset[level - 1])
1098 goto skip_partial;
1099 err = truncate_partial_nodes(&dn, ri, offset, level);
1100 if (err < 0 && err != -ENOENT)
1101 goto fail;
1102 break;
1103 default:
1104 BUG();
1105 }
1106
1107 skip_partial:
1108 while (cont) {
1109 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1110 switch (offset[0]) {
1111 case NODE_DIR1_BLOCK:
1112 case NODE_DIR2_BLOCK:
1113 err = truncate_dnode(&dn);
1114 break;
1115
1116 case NODE_IND1_BLOCK:
1117 case NODE_IND2_BLOCK:
1118 err = truncate_nodes(&dn, nofs, offset[1], 2);
1119 break;
1120
1121 case NODE_DIND_BLOCK:
1122 err = truncate_nodes(&dn, nofs, offset[1], 3);
1123 cont = 0;
1124 break;
1125
1126 default:
1127 BUG();
1128 }
1129 if (err < 0 && err != -ENOENT)
1130 goto fail;
1131 if (offset[1] == 0 &&
1132 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1133 lock_page(page);
1134 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1135 f2fs_wait_on_page_writeback(page, NODE, true, true);
1136 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1137 set_page_dirty(page);
1138 unlock_page(page);
1139 }
1140 offset[1] = 0;
1141 offset[0]++;
1142 nofs += err;
1143 }
1144 fail:
1145 f2fs_put_page(page, 0);
1146 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1147 return err > 0 ? 0 : err;
1148 }
1149
1150 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1151 int f2fs_truncate_xattr_node(struct inode *inode)
1152 {
1153 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1154 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1155 struct dnode_of_data dn;
1156 struct page *npage;
1157 int err;
1158
1159 if (!nid)
1160 return 0;
1161
1162 npage = f2fs_get_node_page(sbi, nid);
1163 if (IS_ERR(npage))
1164 return PTR_ERR(npage);
1165
1166 set_new_dnode(&dn, inode, NULL, npage, nid);
1167 err = truncate_node(&dn);
1168 if (err) {
1169 f2fs_put_page(npage, 1);
1170 return err;
1171 }
1172
1173 f2fs_i_xnid_write(inode, 0);
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1180 * f2fs_unlock_op().
1181 */
f2fs_remove_inode_page(struct inode * inode)1182 int f2fs_remove_inode_page(struct inode *inode)
1183 {
1184 struct dnode_of_data dn;
1185 int err;
1186
1187 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1188 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1189 if (err)
1190 return err;
1191
1192 err = f2fs_truncate_xattr_node(inode);
1193 if (err) {
1194 f2fs_put_dnode(&dn);
1195 return err;
1196 }
1197
1198 /* remove potential inline_data blocks */
1199 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1200 S_ISLNK(inode->i_mode))
1201 f2fs_truncate_data_blocks_range(&dn, 1);
1202
1203 /* 0 is possible, after f2fs_new_inode() has failed */
1204 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1205 f2fs_put_dnode(&dn);
1206 return -EIO;
1207 }
1208
1209 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1210 f2fs_warn(F2FS_I_SB(inode),
1211 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1212 inode->i_ino, (unsigned long long)inode->i_blocks);
1213 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1214 }
1215
1216 /* will put inode & node pages */
1217 err = truncate_node(&dn);
1218 if (err) {
1219 f2fs_put_dnode(&dn);
1220 return err;
1221 }
1222 return 0;
1223 }
1224
f2fs_new_inode_page(struct inode * inode)1225 struct page *f2fs_new_inode_page(struct inode *inode)
1226 {
1227 struct dnode_of_data dn;
1228
1229 /* allocate inode page for new inode */
1230 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1231
1232 /* caller should f2fs_put_page(page, 1); */
1233 return f2fs_new_node_page(&dn, 0);
1234 }
1235
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1236 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1237 {
1238 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1239 struct node_info new_ni;
1240 struct page *page;
1241 int err;
1242
1243 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1244 return ERR_PTR(-EPERM);
1245
1246 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1247 if (!page)
1248 return ERR_PTR(-ENOMEM);
1249
1250 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1251 goto fail;
1252
1253 #ifdef CONFIG_F2FS_CHECK_FS
1254 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1255 if (err) {
1256 dec_valid_node_count(sbi, dn->inode, !ofs);
1257 goto fail;
1258 }
1259 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1260 err = -EFSCORRUPTED;
1261 set_sbi_flag(sbi, SBI_NEED_FSCK);
1262 goto fail;
1263 }
1264 #endif
1265 new_ni.nid = dn->nid;
1266 new_ni.ino = dn->inode->i_ino;
1267 new_ni.blk_addr = NULL_ADDR;
1268 new_ni.flag = 0;
1269 new_ni.version = 0;
1270 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1271
1272 f2fs_wait_on_page_writeback(page, NODE, true, true);
1273 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1274 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1275 if (!PageUptodate(page))
1276 SetPageUptodate(page);
1277 if (set_page_dirty(page))
1278 dn->node_changed = true;
1279
1280 if (f2fs_has_xattr_block(ofs))
1281 f2fs_i_xnid_write(dn->inode, dn->nid);
1282
1283 if (ofs == 0)
1284 inc_valid_inode_count(sbi);
1285 return page;
1286
1287 fail:
1288 clear_node_page_dirty(page);
1289 f2fs_put_page(page, 1);
1290 return ERR_PTR(err);
1291 }
1292
1293 /*
1294 * Caller should do after getting the following values.
1295 * 0: f2fs_put_page(page, 0)
1296 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1297 */
read_node_page(struct page * page,int op_flags)1298 static int read_node_page(struct page *page, int op_flags)
1299 {
1300 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1301 struct node_info ni;
1302 struct f2fs_io_info fio = {
1303 .sbi = sbi,
1304 .type = NODE,
1305 .op = REQ_OP_READ,
1306 .op_flags = op_flags,
1307 .page = page,
1308 .encrypted_page = NULL,
1309 };
1310 int err;
1311
1312 if (PageUptodate(page)) {
1313 if (!f2fs_inode_chksum_verify(sbi, page)) {
1314 ClearPageUptodate(page);
1315 return -EFSBADCRC;
1316 }
1317 return LOCKED_PAGE;
1318 }
1319
1320 err = f2fs_get_node_info(sbi, page->index, &ni);
1321 if (err)
1322 return err;
1323
1324 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1325 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1326 ClearPageUptodate(page);
1327 return -ENOENT;
1328 }
1329
1330 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1331
1332 err = f2fs_submit_page_bio(&fio);
1333
1334 if (!err)
1335 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1336
1337 return err;
1338 }
1339
1340 /*
1341 * Readahead a node page
1342 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1343 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1344 {
1345 struct page *apage;
1346 int err;
1347
1348 if (!nid)
1349 return;
1350 if (f2fs_check_nid_range(sbi, nid))
1351 return;
1352
1353 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1354 if (apage)
1355 return;
1356
1357 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1358 if (!apage)
1359 return;
1360
1361 err = read_node_page(apage, REQ_RAHEAD);
1362 f2fs_put_page(apage, err ? 1 : 0);
1363 }
1364
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1365 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1366 struct page *parent, int start)
1367 {
1368 struct page *page;
1369 int err;
1370
1371 if (!nid)
1372 return ERR_PTR(-ENOENT);
1373 if (f2fs_check_nid_range(sbi, nid))
1374 return ERR_PTR(-EINVAL);
1375 repeat:
1376 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1377 if (!page)
1378 return ERR_PTR(-ENOMEM);
1379
1380 err = read_node_page(page, 0);
1381 if (err < 0) {
1382 f2fs_put_page(page, 1);
1383 return ERR_PTR(err);
1384 } else if (err == LOCKED_PAGE) {
1385 err = 0;
1386 goto page_hit;
1387 }
1388
1389 if (parent)
1390 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1391
1392 lock_page(page);
1393
1394 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1395 f2fs_put_page(page, 1);
1396 goto repeat;
1397 }
1398
1399 if (unlikely(!PageUptodate(page))) {
1400 err = -EIO;
1401 goto out_err;
1402 }
1403
1404 if (!f2fs_inode_chksum_verify(sbi, page)) {
1405 err = -EFSBADCRC;
1406 goto out_err;
1407 }
1408 page_hit:
1409 if(unlikely(nid != nid_of_node(page))) {
1410 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1411 nid, nid_of_node(page), ino_of_node(page),
1412 ofs_of_node(page), cpver_of_node(page),
1413 next_blkaddr_of_node(page));
1414 set_sbi_flag(sbi, SBI_NEED_FSCK);
1415 err = -EINVAL;
1416 out_err:
1417 ClearPageUptodate(page);
1418 f2fs_put_page(page, 1);
1419 return ERR_PTR(err);
1420 }
1421 return page;
1422 }
1423
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1424 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1425 {
1426 return __get_node_page(sbi, nid, NULL, 0);
1427 }
1428
f2fs_get_node_page_ra(struct page * parent,int start)1429 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1430 {
1431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1432 nid_t nid = get_nid(parent, start, false);
1433
1434 return __get_node_page(sbi, nid, parent, start);
1435 }
1436
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1437 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1438 {
1439 struct inode *inode;
1440 struct page *page;
1441 int ret;
1442
1443 /* should flush inline_data before evict_inode */
1444 inode = ilookup(sbi->sb, ino);
1445 if (!inode)
1446 return;
1447
1448 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1449 FGP_LOCK|FGP_NOWAIT, 0);
1450 if (!page)
1451 goto iput_out;
1452
1453 if (!PageUptodate(page))
1454 goto page_out;
1455
1456 if (!PageDirty(page))
1457 goto page_out;
1458
1459 if (!clear_page_dirty_for_io(page))
1460 goto page_out;
1461
1462 ret = f2fs_write_inline_data(inode, page);
1463 inode_dec_dirty_pages(inode);
1464 f2fs_remove_dirty_inode(inode);
1465 if (ret)
1466 set_page_dirty(page);
1467 page_out:
1468 f2fs_put_page(page, 1);
1469 iput_out:
1470 iput(inode);
1471 }
1472
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1473 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1474 {
1475 pgoff_t index;
1476 struct pagevec pvec;
1477 struct page *last_page = NULL;
1478 int nr_pages;
1479
1480 pagevec_init(&pvec);
1481 index = 0;
1482
1483 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1484 PAGECACHE_TAG_DIRTY))) {
1485 int i;
1486
1487 for (i = 0; i < nr_pages; i++) {
1488 struct page *page = pvec.pages[i];
1489
1490 if (unlikely(f2fs_cp_error(sbi))) {
1491 f2fs_put_page(last_page, 0);
1492 pagevec_release(&pvec);
1493 return ERR_PTR(-EIO);
1494 }
1495
1496 if (!IS_DNODE(page) || !is_cold_node(page))
1497 continue;
1498 if (ino_of_node(page) != ino)
1499 continue;
1500
1501 lock_page(page);
1502
1503 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1504 continue_unlock:
1505 unlock_page(page);
1506 continue;
1507 }
1508 if (ino_of_node(page) != ino)
1509 goto continue_unlock;
1510
1511 if (!PageDirty(page)) {
1512 /* someone wrote it for us */
1513 goto continue_unlock;
1514 }
1515
1516 if (last_page)
1517 f2fs_put_page(last_page, 0);
1518
1519 get_page(page);
1520 last_page = page;
1521 unlock_page(page);
1522 }
1523 pagevec_release(&pvec);
1524 cond_resched();
1525 }
1526 return last_page;
1527 }
1528
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1529 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1530 struct writeback_control *wbc, bool do_balance,
1531 enum iostat_type io_type, unsigned int *seq_id)
1532 {
1533 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1534 nid_t nid;
1535 struct node_info ni;
1536 struct f2fs_io_info fio = {
1537 .sbi = sbi,
1538 .ino = ino_of_node(page),
1539 .type = NODE,
1540 .op = REQ_OP_WRITE,
1541 .op_flags = wbc_to_write_flags(wbc),
1542 .page = page,
1543 .encrypted_page = NULL,
1544 .submitted = false,
1545 .io_type = io_type,
1546 .io_wbc = wbc,
1547 };
1548 unsigned int seq;
1549
1550 trace_f2fs_writepage(page, NODE);
1551
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1554 ClearPageUptodate(page);
1555 dec_page_count(sbi, F2FS_DIRTY_NODES);
1556 unlock_page(page);
1557 return 0;
1558 }
1559 goto redirty_out;
1560 }
1561
1562 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1563 goto redirty_out;
1564
1565 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1566 wbc->sync_mode == WB_SYNC_NONE &&
1567 IS_DNODE(page) && is_cold_node(page))
1568 goto redirty_out;
1569
1570 /* get old block addr of this node page */
1571 nid = nid_of_node(page);
1572 f2fs_bug_on(sbi, page->index != nid);
1573
1574 if (f2fs_get_node_info(sbi, nid, &ni))
1575 goto redirty_out;
1576
1577 if (wbc->for_reclaim) {
1578 if (!down_read_trylock(&sbi->node_write))
1579 goto redirty_out;
1580 } else {
1581 down_read(&sbi->node_write);
1582 }
1583
1584 /* This page is already truncated */
1585 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1586 ClearPageUptodate(page);
1587 dec_page_count(sbi, F2FS_DIRTY_NODES);
1588 up_read(&sbi->node_write);
1589 unlock_page(page);
1590 return 0;
1591 }
1592
1593 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1594 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1595 DATA_GENERIC_ENHANCE)) {
1596 up_read(&sbi->node_write);
1597 goto redirty_out;
1598 }
1599
1600 if (atomic && !test_opt(sbi, NOBARRIER))
1601 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1602
1603 /* should add to global list before clearing PAGECACHE status */
1604 if (f2fs_in_warm_node_list(sbi, page)) {
1605 seq = f2fs_add_fsync_node_entry(sbi, page);
1606 if (seq_id)
1607 *seq_id = seq;
1608 }
1609
1610 set_page_writeback(page);
1611 ClearPageError(page);
1612
1613 fio.old_blkaddr = ni.blk_addr;
1614 f2fs_do_write_node_page(nid, &fio);
1615 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1616 dec_page_count(sbi, F2FS_DIRTY_NODES);
1617 up_read(&sbi->node_write);
1618
1619 if (wbc->for_reclaim) {
1620 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1621 submitted = NULL;
1622 }
1623
1624 unlock_page(page);
1625
1626 if (unlikely(f2fs_cp_error(sbi))) {
1627 f2fs_submit_merged_write(sbi, NODE);
1628 submitted = NULL;
1629 }
1630 if (submitted)
1631 *submitted = fio.submitted;
1632
1633 if (do_balance)
1634 f2fs_balance_fs(sbi, false);
1635 return 0;
1636
1637 redirty_out:
1638 redirty_page_for_writepage(wbc, page);
1639 return AOP_WRITEPAGE_ACTIVATE;
1640 }
1641
f2fs_move_node_page(struct page * node_page,int gc_type)1642 int f2fs_move_node_page(struct page *node_page, int gc_type)
1643 {
1644 int err = 0;
1645
1646 if (gc_type == FG_GC) {
1647 struct writeback_control wbc = {
1648 .sync_mode = WB_SYNC_ALL,
1649 .nr_to_write = 1,
1650 .for_reclaim = 0,
1651 };
1652
1653 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1654
1655 set_page_dirty(node_page);
1656
1657 if (!clear_page_dirty_for_io(node_page)) {
1658 err = -EAGAIN;
1659 goto out_page;
1660 }
1661
1662 if (__write_node_page(node_page, false, NULL,
1663 &wbc, false, FS_GC_NODE_IO, NULL)) {
1664 err = -EAGAIN;
1665 unlock_page(node_page);
1666 }
1667 goto release_page;
1668 } else {
1669 /* set page dirty and write it */
1670 if (!PageWriteback(node_page))
1671 set_page_dirty(node_page);
1672 }
1673 out_page:
1674 unlock_page(node_page);
1675 release_page:
1676 f2fs_put_page(node_page, 0);
1677 return err;
1678 }
1679
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1680 static int f2fs_write_node_page(struct page *page,
1681 struct writeback_control *wbc)
1682 {
1683 return __write_node_page(page, false, NULL, wbc, false,
1684 FS_NODE_IO, NULL);
1685 }
1686
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1687 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1688 struct writeback_control *wbc, bool atomic,
1689 unsigned int *seq_id)
1690 {
1691 pgoff_t index;
1692 struct pagevec pvec;
1693 int ret = 0;
1694 struct page *last_page = NULL;
1695 bool marked = false;
1696 nid_t ino = inode->i_ino;
1697 int nr_pages;
1698 int nwritten = 0;
1699
1700 if (atomic) {
1701 last_page = last_fsync_dnode(sbi, ino);
1702 if (IS_ERR_OR_NULL(last_page))
1703 return PTR_ERR_OR_ZERO(last_page);
1704 }
1705 retry:
1706 pagevec_init(&pvec);
1707 index = 0;
1708
1709 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1710 PAGECACHE_TAG_DIRTY))) {
1711 int i;
1712
1713 for (i = 0; i < nr_pages; i++) {
1714 struct page *page = pvec.pages[i];
1715 bool submitted = false;
1716
1717 if (unlikely(f2fs_cp_error(sbi))) {
1718 f2fs_put_page(last_page, 0);
1719 pagevec_release(&pvec);
1720 ret = -EIO;
1721 goto out;
1722 }
1723
1724 if (!IS_DNODE(page) || !is_cold_node(page))
1725 continue;
1726 if (ino_of_node(page) != ino)
1727 continue;
1728
1729 lock_page(page);
1730
1731 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1732 continue_unlock:
1733 unlock_page(page);
1734 continue;
1735 }
1736 if (ino_of_node(page) != ino)
1737 goto continue_unlock;
1738
1739 if (!PageDirty(page) && page != last_page) {
1740 /* someone wrote it for us */
1741 goto continue_unlock;
1742 }
1743
1744 f2fs_wait_on_page_writeback(page, NODE, true, true);
1745
1746 set_fsync_mark(page, 0);
1747 set_dentry_mark(page, 0);
1748
1749 if (!atomic || page == last_page) {
1750 set_fsync_mark(page, 1);
1751 if (IS_INODE(page)) {
1752 if (is_inode_flag_set(inode,
1753 FI_DIRTY_INODE))
1754 f2fs_update_inode(inode, page);
1755 set_dentry_mark(page,
1756 f2fs_need_dentry_mark(sbi, ino));
1757 }
1758 /* may be written by other thread */
1759 if (!PageDirty(page))
1760 set_page_dirty(page);
1761 }
1762
1763 if (!clear_page_dirty_for_io(page))
1764 goto continue_unlock;
1765
1766 ret = __write_node_page(page, atomic &&
1767 page == last_page,
1768 &submitted, wbc, true,
1769 FS_NODE_IO, seq_id);
1770 if (ret) {
1771 unlock_page(page);
1772 f2fs_put_page(last_page, 0);
1773 break;
1774 } else if (submitted) {
1775 nwritten++;
1776 }
1777
1778 if (page == last_page) {
1779 f2fs_put_page(page, 0);
1780 marked = true;
1781 break;
1782 }
1783 }
1784 pagevec_release(&pvec);
1785 cond_resched();
1786
1787 if (ret || marked)
1788 break;
1789 }
1790 if (!ret && atomic && !marked) {
1791 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1792 ino, last_page->index);
1793 lock_page(last_page);
1794 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1795 set_page_dirty(last_page);
1796 unlock_page(last_page);
1797 goto retry;
1798 }
1799 out:
1800 if (nwritten)
1801 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1802 return ret ? -EIO: 0;
1803 }
1804
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1805 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1806 {
1807 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1808 bool clean;
1809
1810 if (inode->i_ino != ino)
1811 return 0;
1812
1813 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1814 return 0;
1815
1816 spin_lock(&sbi->inode_lock[DIRTY_META]);
1817 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1818 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1819
1820 if (clean)
1821 return 0;
1822
1823 inode = igrab(inode);
1824 if (!inode)
1825 return 0;
1826 return 1;
1827 }
1828
flush_dirty_inode(struct page * page)1829 static bool flush_dirty_inode(struct page *page)
1830 {
1831 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1832 struct inode *inode;
1833 nid_t ino = ino_of_node(page);
1834
1835 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1836 if (!inode)
1837 return false;
1838
1839 f2fs_update_inode(inode, page);
1840 unlock_page(page);
1841
1842 iput(inode);
1843 return true;
1844 }
1845
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1846 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1847 {
1848 pgoff_t index = 0;
1849 struct pagevec pvec;
1850 int nr_pages;
1851
1852 pagevec_init(&pvec);
1853
1854 while ((nr_pages = pagevec_lookup_tag(&pvec,
1855 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1856 int i;
1857
1858 for (i = 0; i < nr_pages; i++) {
1859 struct page *page = pvec.pages[i];
1860
1861 if (!IS_DNODE(page))
1862 continue;
1863
1864 lock_page(page);
1865
1866 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1867 continue_unlock:
1868 unlock_page(page);
1869 continue;
1870 }
1871
1872 if (!PageDirty(page)) {
1873 /* someone wrote it for us */
1874 goto continue_unlock;
1875 }
1876
1877 /* flush inline_data, if it's async context. */
1878 if (is_inline_node(page)) {
1879 clear_inline_node(page);
1880 unlock_page(page);
1881 flush_inline_data(sbi, ino_of_node(page));
1882 continue;
1883 }
1884 unlock_page(page);
1885 }
1886 pagevec_release(&pvec);
1887 cond_resched();
1888 }
1889 }
1890
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1891 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1892 struct writeback_control *wbc,
1893 bool do_balance, enum iostat_type io_type)
1894 {
1895 pgoff_t index;
1896 struct pagevec pvec;
1897 int step = 0;
1898 int nwritten = 0;
1899 int ret = 0;
1900 int nr_pages, done = 0;
1901
1902 pagevec_init(&pvec);
1903
1904 next_step:
1905 index = 0;
1906
1907 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1908 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1909 int i;
1910
1911 for (i = 0; i < nr_pages; i++) {
1912 struct page *page = pvec.pages[i];
1913 bool submitted = false;
1914 bool may_dirty = true;
1915
1916 /* give a priority to WB_SYNC threads */
1917 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1918 wbc->sync_mode == WB_SYNC_NONE) {
1919 done = 1;
1920 break;
1921 }
1922
1923 /*
1924 * flushing sequence with step:
1925 * 0. indirect nodes
1926 * 1. dentry dnodes
1927 * 2. file dnodes
1928 */
1929 if (step == 0 && IS_DNODE(page))
1930 continue;
1931 if (step == 1 && (!IS_DNODE(page) ||
1932 is_cold_node(page)))
1933 continue;
1934 if (step == 2 && (!IS_DNODE(page) ||
1935 !is_cold_node(page)))
1936 continue;
1937 lock_node:
1938 if (wbc->sync_mode == WB_SYNC_ALL)
1939 lock_page(page);
1940 else if (!trylock_page(page))
1941 continue;
1942
1943 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1944 continue_unlock:
1945 unlock_page(page);
1946 continue;
1947 }
1948
1949 if (!PageDirty(page)) {
1950 /* someone wrote it for us */
1951 goto continue_unlock;
1952 }
1953
1954 /* flush inline_data/inode, if it's async context. */
1955 if (!do_balance)
1956 goto write_node;
1957
1958 /* flush inline_data */
1959 if (is_inline_node(page)) {
1960 clear_inline_node(page);
1961 unlock_page(page);
1962 flush_inline_data(sbi, ino_of_node(page));
1963 goto lock_node;
1964 }
1965
1966 /* flush dirty inode */
1967 if (IS_INODE(page) && may_dirty) {
1968 may_dirty = false;
1969 if (flush_dirty_inode(page))
1970 goto lock_node;
1971 }
1972 write_node:
1973 f2fs_wait_on_page_writeback(page, NODE, true, true);
1974
1975 if (!clear_page_dirty_for_io(page))
1976 goto continue_unlock;
1977
1978 set_fsync_mark(page, 0);
1979 set_dentry_mark(page, 0);
1980
1981 ret = __write_node_page(page, false, &submitted,
1982 wbc, do_balance, io_type, NULL);
1983 if (ret)
1984 unlock_page(page);
1985 else if (submitted)
1986 nwritten++;
1987
1988 if (--wbc->nr_to_write == 0)
1989 break;
1990 }
1991 pagevec_release(&pvec);
1992 cond_resched();
1993
1994 if (wbc->nr_to_write == 0) {
1995 step = 2;
1996 break;
1997 }
1998 }
1999
2000 if (step < 2) {
2001 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2002 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2003 goto out;
2004 step++;
2005 goto next_step;
2006 }
2007 out:
2008 if (nwritten)
2009 f2fs_submit_merged_write(sbi, NODE);
2010
2011 if (unlikely(f2fs_cp_error(sbi)))
2012 return -EIO;
2013 return ret;
2014 }
2015
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2016 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2017 unsigned int seq_id)
2018 {
2019 struct fsync_node_entry *fn;
2020 struct page *page;
2021 struct list_head *head = &sbi->fsync_node_list;
2022 unsigned long flags;
2023 unsigned int cur_seq_id = 0;
2024 int ret2, ret = 0;
2025
2026 while (seq_id && cur_seq_id < seq_id) {
2027 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2028 if (list_empty(head)) {
2029 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2030 break;
2031 }
2032 fn = list_first_entry(head, struct fsync_node_entry, list);
2033 if (fn->seq_id > seq_id) {
2034 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2035 break;
2036 }
2037 cur_seq_id = fn->seq_id;
2038 page = fn->page;
2039 get_page(page);
2040 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2041
2042 f2fs_wait_on_page_writeback(page, NODE, true, false);
2043 if (TestClearPageError(page))
2044 ret = -EIO;
2045
2046 put_page(page);
2047
2048 if (ret)
2049 break;
2050 }
2051
2052 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2053 if (!ret)
2054 ret = ret2;
2055
2056 return ret;
2057 }
2058
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2059 static int f2fs_write_node_pages(struct address_space *mapping,
2060 struct writeback_control *wbc)
2061 {
2062 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2063 struct blk_plug plug;
2064 long diff;
2065
2066 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2067 goto skip_write;
2068
2069 /* balancing f2fs's metadata in background */
2070 f2fs_balance_fs_bg(sbi, true);
2071
2072 /* collect a number of dirty node pages and write together */
2073 if (wbc->sync_mode != WB_SYNC_ALL &&
2074 get_pages(sbi, F2FS_DIRTY_NODES) <
2075 nr_pages_to_skip(sbi, NODE))
2076 goto skip_write;
2077
2078 if (wbc->sync_mode == WB_SYNC_ALL)
2079 atomic_inc(&sbi->wb_sync_req[NODE]);
2080 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2081 /* to avoid potential deadlock */
2082 if (current->plug)
2083 blk_finish_plug(current->plug);
2084 goto skip_write;
2085 }
2086
2087 trace_f2fs_writepages(mapping->host, wbc, NODE);
2088
2089 diff = nr_pages_to_write(sbi, NODE, wbc);
2090 blk_start_plug(&plug);
2091 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2092 blk_finish_plug(&plug);
2093 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2094
2095 if (wbc->sync_mode == WB_SYNC_ALL)
2096 atomic_dec(&sbi->wb_sync_req[NODE]);
2097 return 0;
2098
2099 skip_write:
2100 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2101 trace_f2fs_writepages(mapping->host, wbc, NODE);
2102 return 0;
2103 }
2104
f2fs_set_node_page_dirty(struct page * page)2105 static int f2fs_set_node_page_dirty(struct page *page)
2106 {
2107 trace_f2fs_set_page_dirty(page, NODE);
2108
2109 if (!PageUptodate(page))
2110 SetPageUptodate(page);
2111 #ifdef CONFIG_F2FS_CHECK_FS
2112 if (IS_INODE(page))
2113 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2114 #endif
2115 if (!PageDirty(page)) {
2116 __set_page_dirty_nobuffers(page);
2117 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2118 f2fs_set_page_private(page, 0);
2119 f2fs_trace_pid(page);
2120 return 1;
2121 }
2122 return 0;
2123 }
2124
2125 /*
2126 * Structure of the f2fs node operations
2127 */
2128 const struct address_space_operations f2fs_node_aops = {
2129 .writepage = f2fs_write_node_page,
2130 .writepages = f2fs_write_node_pages,
2131 .set_page_dirty = f2fs_set_node_page_dirty,
2132 .invalidatepage = f2fs_invalidate_page,
2133 .releasepage = f2fs_release_page,
2134 #ifdef CONFIG_MIGRATION
2135 .migratepage = f2fs_migrate_page,
2136 #endif
2137 };
2138
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2139 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2140 nid_t n)
2141 {
2142 return radix_tree_lookup(&nm_i->free_nid_root, n);
2143 }
2144
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2145 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2146 struct free_nid *i)
2147 {
2148 struct f2fs_nm_info *nm_i = NM_I(sbi);
2149
2150 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2151 if (err)
2152 return err;
2153
2154 nm_i->nid_cnt[FREE_NID]++;
2155 list_add_tail(&i->list, &nm_i->free_nid_list);
2156 return 0;
2157 }
2158
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2159 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2160 struct free_nid *i, enum nid_state state)
2161 {
2162 struct f2fs_nm_info *nm_i = NM_I(sbi);
2163
2164 f2fs_bug_on(sbi, state != i->state);
2165 nm_i->nid_cnt[state]--;
2166 if (state == FREE_NID)
2167 list_del(&i->list);
2168 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2169 }
2170
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2171 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2172 enum nid_state org_state, enum nid_state dst_state)
2173 {
2174 struct f2fs_nm_info *nm_i = NM_I(sbi);
2175
2176 f2fs_bug_on(sbi, org_state != i->state);
2177 i->state = dst_state;
2178 nm_i->nid_cnt[org_state]--;
2179 nm_i->nid_cnt[dst_state]++;
2180
2181 switch (dst_state) {
2182 case PREALLOC_NID:
2183 list_del(&i->list);
2184 break;
2185 case FREE_NID:
2186 list_add_tail(&i->list, &nm_i->free_nid_list);
2187 break;
2188 default:
2189 BUG_ON(1);
2190 }
2191 }
2192
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2193 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2194 bool set, bool build)
2195 {
2196 struct f2fs_nm_info *nm_i = NM_I(sbi);
2197 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2198 unsigned int nid_ofs = nid - START_NID(nid);
2199
2200 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2201 return;
2202
2203 if (set) {
2204 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2205 return;
2206 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2207 nm_i->free_nid_count[nat_ofs]++;
2208 } else {
2209 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2210 return;
2211 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2212 if (!build)
2213 nm_i->free_nid_count[nat_ofs]--;
2214 }
2215 }
2216
2217 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2218 static bool add_free_nid(struct f2fs_sb_info *sbi,
2219 nid_t nid, bool build, bool update)
2220 {
2221 struct f2fs_nm_info *nm_i = NM_I(sbi);
2222 struct free_nid *i, *e;
2223 struct nat_entry *ne;
2224 int err = -EINVAL;
2225 bool ret = false;
2226
2227 /* 0 nid should not be used */
2228 if (unlikely(nid == 0))
2229 return false;
2230
2231 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2232 return false;
2233
2234 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2235 i->nid = nid;
2236 i->state = FREE_NID;
2237
2238 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2239
2240 spin_lock(&nm_i->nid_list_lock);
2241
2242 if (build) {
2243 /*
2244 * Thread A Thread B
2245 * - f2fs_create
2246 * - f2fs_new_inode
2247 * - f2fs_alloc_nid
2248 * - __insert_nid_to_list(PREALLOC_NID)
2249 * - f2fs_balance_fs_bg
2250 * - f2fs_build_free_nids
2251 * - __f2fs_build_free_nids
2252 * - scan_nat_page
2253 * - add_free_nid
2254 * - __lookup_nat_cache
2255 * - f2fs_add_link
2256 * - f2fs_init_inode_metadata
2257 * - f2fs_new_inode_page
2258 * - f2fs_new_node_page
2259 * - set_node_addr
2260 * - f2fs_alloc_nid_done
2261 * - __remove_nid_from_list(PREALLOC_NID)
2262 * - __insert_nid_to_list(FREE_NID)
2263 */
2264 ne = __lookup_nat_cache(nm_i, nid);
2265 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2266 nat_get_blkaddr(ne) != NULL_ADDR))
2267 goto err_out;
2268
2269 e = __lookup_free_nid_list(nm_i, nid);
2270 if (e) {
2271 if (e->state == FREE_NID)
2272 ret = true;
2273 goto err_out;
2274 }
2275 }
2276 ret = true;
2277 err = __insert_free_nid(sbi, i);
2278 err_out:
2279 if (update) {
2280 update_free_nid_bitmap(sbi, nid, ret, build);
2281 if (!build)
2282 nm_i->available_nids++;
2283 }
2284 spin_unlock(&nm_i->nid_list_lock);
2285 radix_tree_preload_end();
2286
2287 if (err)
2288 kmem_cache_free(free_nid_slab, i);
2289 return ret;
2290 }
2291
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2292 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2293 {
2294 struct f2fs_nm_info *nm_i = NM_I(sbi);
2295 struct free_nid *i;
2296 bool need_free = false;
2297
2298 spin_lock(&nm_i->nid_list_lock);
2299 i = __lookup_free_nid_list(nm_i, nid);
2300 if (i && i->state == FREE_NID) {
2301 __remove_free_nid(sbi, i, FREE_NID);
2302 need_free = true;
2303 }
2304 spin_unlock(&nm_i->nid_list_lock);
2305
2306 if (need_free)
2307 kmem_cache_free(free_nid_slab, i);
2308 }
2309
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2310 static int scan_nat_page(struct f2fs_sb_info *sbi,
2311 struct page *nat_page, nid_t start_nid)
2312 {
2313 struct f2fs_nm_info *nm_i = NM_I(sbi);
2314 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2315 block_t blk_addr;
2316 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2317 int i;
2318
2319 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2320
2321 i = start_nid % NAT_ENTRY_PER_BLOCK;
2322
2323 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2324 if (unlikely(start_nid >= nm_i->max_nid))
2325 break;
2326
2327 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2328
2329 if (blk_addr == NEW_ADDR)
2330 return -EINVAL;
2331
2332 if (blk_addr == NULL_ADDR) {
2333 add_free_nid(sbi, start_nid, true, true);
2334 } else {
2335 spin_lock(&NM_I(sbi)->nid_list_lock);
2336 update_free_nid_bitmap(sbi, start_nid, false, true);
2337 spin_unlock(&NM_I(sbi)->nid_list_lock);
2338 }
2339 }
2340
2341 return 0;
2342 }
2343
scan_curseg_cache(struct f2fs_sb_info * sbi)2344 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2345 {
2346 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2347 struct f2fs_journal *journal = curseg->journal;
2348 int i;
2349
2350 down_read(&curseg->journal_rwsem);
2351 for (i = 0; i < nats_in_cursum(journal); i++) {
2352 block_t addr;
2353 nid_t nid;
2354
2355 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2356 nid = le32_to_cpu(nid_in_journal(journal, i));
2357 if (addr == NULL_ADDR)
2358 add_free_nid(sbi, nid, true, false);
2359 else
2360 remove_free_nid(sbi, nid);
2361 }
2362 up_read(&curseg->journal_rwsem);
2363 }
2364
scan_free_nid_bits(struct f2fs_sb_info * sbi)2365 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2366 {
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 unsigned int i, idx;
2369 nid_t nid;
2370
2371 down_read(&nm_i->nat_tree_lock);
2372
2373 for (i = 0; i < nm_i->nat_blocks; i++) {
2374 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2375 continue;
2376 if (!nm_i->free_nid_count[i])
2377 continue;
2378 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2379 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2380 NAT_ENTRY_PER_BLOCK, idx);
2381 if (idx >= NAT_ENTRY_PER_BLOCK)
2382 break;
2383
2384 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2385 add_free_nid(sbi, nid, true, false);
2386
2387 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2388 goto out;
2389 }
2390 }
2391 out:
2392 scan_curseg_cache(sbi);
2393
2394 up_read(&nm_i->nat_tree_lock);
2395 }
2396
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2397 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2398 bool sync, bool mount)
2399 {
2400 struct f2fs_nm_info *nm_i = NM_I(sbi);
2401 int i = 0, ret;
2402 nid_t nid = nm_i->next_scan_nid;
2403
2404 if (unlikely(nid >= nm_i->max_nid))
2405 nid = 0;
2406
2407 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2408 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2409
2410 /* Enough entries */
2411 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2412 return 0;
2413
2414 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2415 return 0;
2416
2417 if (!mount) {
2418 /* try to find free nids in free_nid_bitmap */
2419 scan_free_nid_bits(sbi);
2420
2421 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2422 return 0;
2423 }
2424
2425 /* readahead nat pages to be scanned */
2426 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2427 META_NAT, true);
2428
2429 down_read(&nm_i->nat_tree_lock);
2430
2431 while (1) {
2432 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2433 nm_i->nat_block_bitmap)) {
2434 struct page *page = get_current_nat_page(sbi, nid);
2435
2436 if (IS_ERR(page)) {
2437 ret = PTR_ERR(page);
2438 } else {
2439 ret = scan_nat_page(sbi, page, nid);
2440 f2fs_put_page(page, 1);
2441 }
2442
2443 if (ret) {
2444 up_read(&nm_i->nat_tree_lock);
2445 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2446 return ret;
2447 }
2448 }
2449
2450 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2451 if (unlikely(nid >= nm_i->max_nid))
2452 nid = 0;
2453
2454 if (++i >= FREE_NID_PAGES)
2455 break;
2456 }
2457
2458 /* go to the next free nat pages to find free nids abundantly */
2459 nm_i->next_scan_nid = nid;
2460
2461 /* find free nids from current sum_pages */
2462 scan_curseg_cache(sbi);
2463
2464 up_read(&nm_i->nat_tree_lock);
2465
2466 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2467 nm_i->ra_nid_pages, META_NAT, false);
2468
2469 return 0;
2470 }
2471
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2472 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2473 {
2474 int ret;
2475
2476 mutex_lock(&NM_I(sbi)->build_lock);
2477 ret = __f2fs_build_free_nids(sbi, sync, mount);
2478 mutex_unlock(&NM_I(sbi)->build_lock);
2479
2480 return ret;
2481 }
2482
2483 /*
2484 * If this function returns success, caller can obtain a new nid
2485 * from second parameter of this function.
2486 * The returned nid could be used ino as well as nid when inode is created.
2487 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2488 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2489 {
2490 struct f2fs_nm_info *nm_i = NM_I(sbi);
2491 struct free_nid *i = NULL;
2492 retry:
2493 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2494 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2495 return false;
2496 }
2497
2498 spin_lock(&nm_i->nid_list_lock);
2499
2500 if (unlikely(nm_i->available_nids == 0)) {
2501 spin_unlock(&nm_i->nid_list_lock);
2502 return false;
2503 }
2504
2505 /* We should not use stale free nids created by f2fs_build_free_nids */
2506 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2507 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2508 i = list_first_entry(&nm_i->free_nid_list,
2509 struct free_nid, list);
2510 *nid = i->nid;
2511
2512 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2513 nm_i->available_nids--;
2514
2515 update_free_nid_bitmap(sbi, *nid, false, false);
2516
2517 spin_unlock(&nm_i->nid_list_lock);
2518 return true;
2519 }
2520 spin_unlock(&nm_i->nid_list_lock);
2521
2522 /* Let's scan nat pages and its caches to get free nids */
2523 if (!f2fs_build_free_nids(sbi, true, false))
2524 goto retry;
2525 return false;
2526 }
2527
2528 /*
2529 * f2fs_alloc_nid() should be called prior to this function.
2530 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2531 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2532 {
2533 struct f2fs_nm_info *nm_i = NM_I(sbi);
2534 struct free_nid *i;
2535
2536 spin_lock(&nm_i->nid_list_lock);
2537 i = __lookup_free_nid_list(nm_i, nid);
2538 f2fs_bug_on(sbi, !i);
2539 __remove_free_nid(sbi, i, PREALLOC_NID);
2540 spin_unlock(&nm_i->nid_list_lock);
2541
2542 kmem_cache_free(free_nid_slab, i);
2543 }
2544
2545 /*
2546 * f2fs_alloc_nid() should be called prior to this function.
2547 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2548 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2549 {
2550 struct f2fs_nm_info *nm_i = NM_I(sbi);
2551 struct free_nid *i;
2552 bool need_free = false;
2553
2554 if (!nid)
2555 return;
2556
2557 spin_lock(&nm_i->nid_list_lock);
2558 i = __lookup_free_nid_list(nm_i, nid);
2559 f2fs_bug_on(sbi, !i);
2560
2561 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2562 __remove_free_nid(sbi, i, PREALLOC_NID);
2563 need_free = true;
2564 } else {
2565 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2566 }
2567
2568 nm_i->available_nids++;
2569
2570 update_free_nid_bitmap(sbi, nid, true, false);
2571
2572 spin_unlock(&nm_i->nid_list_lock);
2573
2574 if (need_free)
2575 kmem_cache_free(free_nid_slab, i);
2576 }
2577
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2578 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2579 {
2580 struct f2fs_nm_info *nm_i = NM_I(sbi);
2581 int nr = nr_shrink;
2582
2583 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2584 return 0;
2585
2586 if (!mutex_trylock(&nm_i->build_lock))
2587 return 0;
2588
2589 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2590 struct free_nid *i, *next;
2591 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2592
2593 spin_lock(&nm_i->nid_list_lock);
2594 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2595 if (!nr_shrink || !batch ||
2596 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2597 break;
2598 __remove_free_nid(sbi, i, FREE_NID);
2599 kmem_cache_free(free_nid_slab, i);
2600 nr_shrink--;
2601 batch--;
2602 }
2603 spin_unlock(&nm_i->nid_list_lock);
2604 }
2605
2606 mutex_unlock(&nm_i->build_lock);
2607
2608 return nr - nr_shrink;
2609 }
2610
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2611 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2612 {
2613 void *src_addr, *dst_addr;
2614 size_t inline_size;
2615 struct page *ipage;
2616 struct f2fs_inode *ri;
2617
2618 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2619 if (IS_ERR(ipage))
2620 return PTR_ERR(ipage);
2621
2622 ri = F2FS_INODE(page);
2623 if (ri->i_inline & F2FS_INLINE_XATTR) {
2624 set_inode_flag(inode, FI_INLINE_XATTR);
2625 } else {
2626 clear_inode_flag(inode, FI_INLINE_XATTR);
2627 goto update_inode;
2628 }
2629
2630 dst_addr = inline_xattr_addr(inode, ipage);
2631 src_addr = inline_xattr_addr(inode, page);
2632 inline_size = inline_xattr_size(inode);
2633
2634 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2635 memcpy(dst_addr, src_addr, inline_size);
2636 update_inode:
2637 f2fs_update_inode(inode, ipage);
2638 f2fs_put_page(ipage, 1);
2639 return 0;
2640 }
2641
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2642 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2643 {
2644 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2645 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2646 nid_t new_xnid;
2647 struct dnode_of_data dn;
2648 struct node_info ni;
2649 struct page *xpage;
2650 int err;
2651
2652 if (!prev_xnid)
2653 goto recover_xnid;
2654
2655 /* 1: invalidate the previous xattr nid */
2656 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2657 if (err)
2658 return err;
2659
2660 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2661 dec_valid_node_count(sbi, inode, false);
2662 set_node_addr(sbi, &ni, NULL_ADDR, false);
2663
2664 recover_xnid:
2665 /* 2: update xattr nid in inode */
2666 if (!f2fs_alloc_nid(sbi, &new_xnid))
2667 return -ENOSPC;
2668
2669 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2670 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2671 if (IS_ERR(xpage)) {
2672 f2fs_alloc_nid_failed(sbi, new_xnid);
2673 return PTR_ERR(xpage);
2674 }
2675
2676 f2fs_alloc_nid_done(sbi, new_xnid);
2677 f2fs_update_inode_page(inode);
2678
2679 /* 3: update and set xattr node page dirty */
2680 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2681
2682 set_page_dirty(xpage);
2683 f2fs_put_page(xpage, 1);
2684
2685 return 0;
2686 }
2687
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2688 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2689 {
2690 struct f2fs_inode *src, *dst;
2691 nid_t ino = ino_of_node(page);
2692 struct node_info old_ni, new_ni;
2693 struct page *ipage;
2694 int err;
2695
2696 err = f2fs_get_node_info(sbi, ino, &old_ni);
2697 if (err)
2698 return err;
2699
2700 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2701 return -EINVAL;
2702 retry:
2703 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2704 if (!ipage) {
2705 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2706 goto retry;
2707 }
2708
2709 /* Should not use this inode from free nid list */
2710 remove_free_nid(sbi, ino);
2711
2712 if (!PageUptodate(ipage))
2713 SetPageUptodate(ipage);
2714 fill_node_footer(ipage, ino, ino, 0, true);
2715 set_cold_node(ipage, false);
2716
2717 src = F2FS_INODE(page);
2718 dst = F2FS_INODE(ipage);
2719
2720 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2721 dst->i_size = 0;
2722 dst->i_blocks = cpu_to_le64(1);
2723 dst->i_links = cpu_to_le32(1);
2724 dst->i_xattr_nid = 0;
2725 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2726 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2727 dst->i_extra_isize = src->i_extra_isize;
2728
2729 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2730 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2731 i_inline_xattr_size))
2732 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2733
2734 if (f2fs_sb_has_project_quota(sbi) &&
2735 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2736 i_projid))
2737 dst->i_projid = src->i_projid;
2738
2739 if (f2fs_sb_has_inode_crtime(sbi) &&
2740 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2741 i_crtime_nsec)) {
2742 dst->i_crtime = src->i_crtime;
2743 dst->i_crtime_nsec = src->i_crtime_nsec;
2744 }
2745 }
2746
2747 new_ni = old_ni;
2748 new_ni.ino = ino;
2749
2750 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2751 WARN_ON(1);
2752 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2753 inc_valid_inode_count(sbi);
2754 set_page_dirty(ipage);
2755 f2fs_put_page(ipage, 1);
2756 return 0;
2757 }
2758
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2759 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2760 unsigned int segno, struct f2fs_summary_block *sum)
2761 {
2762 struct f2fs_node *rn;
2763 struct f2fs_summary *sum_entry;
2764 block_t addr;
2765 int i, idx, last_offset, nrpages;
2766
2767 /* scan the node segment */
2768 last_offset = sbi->blocks_per_seg;
2769 addr = START_BLOCK(sbi, segno);
2770 sum_entry = &sum->entries[0];
2771
2772 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2773 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2774
2775 /* readahead node pages */
2776 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2777
2778 for (idx = addr; idx < addr + nrpages; idx++) {
2779 struct page *page = f2fs_get_tmp_page(sbi, idx);
2780
2781 if (IS_ERR(page))
2782 return PTR_ERR(page);
2783
2784 rn = F2FS_NODE(page);
2785 sum_entry->nid = rn->footer.nid;
2786 sum_entry->version = 0;
2787 sum_entry->ofs_in_node = 0;
2788 sum_entry++;
2789 f2fs_put_page(page, 1);
2790 }
2791
2792 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2793 addr + nrpages);
2794 }
2795 return 0;
2796 }
2797
remove_nats_in_journal(struct f2fs_sb_info * sbi)2798 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2799 {
2800 struct f2fs_nm_info *nm_i = NM_I(sbi);
2801 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2802 struct f2fs_journal *journal = curseg->journal;
2803 int i;
2804
2805 down_write(&curseg->journal_rwsem);
2806 for (i = 0; i < nats_in_cursum(journal); i++) {
2807 struct nat_entry *ne;
2808 struct f2fs_nat_entry raw_ne;
2809 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2810
2811 if (f2fs_check_nid_range(sbi, nid))
2812 continue;
2813
2814 raw_ne = nat_in_journal(journal, i);
2815
2816 ne = __lookup_nat_cache(nm_i, nid);
2817 if (!ne) {
2818 ne = __alloc_nat_entry(nid, true);
2819 __init_nat_entry(nm_i, ne, &raw_ne, true);
2820 }
2821
2822 /*
2823 * if a free nat in journal has not been used after last
2824 * checkpoint, we should remove it from available nids,
2825 * since later we will add it again.
2826 */
2827 if (!get_nat_flag(ne, IS_DIRTY) &&
2828 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2829 spin_lock(&nm_i->nid_list_lock);
2830 nm_i->available_nids--;
2831 spin_unlock(&nm_i->nid_list_lock);
2832 }
2833
2834 __set_nat_cache_dirty(nm_i, ne);
2835 }
2836 update_nats_in_cursum(journal, -i);
2837 up_write(&curseg->journal_rwsem);
2838 }
2839
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2840 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2841 struct list_head *head, int max)
2842 {
2843 struct nat_entry_set *cur;
2844
2845 if (nes->entry_cnt >= max)
2846 goto add_out;
2847
2848 list_for_each_entry(cur, head, set_list) {
2849 if (cur->entry_cnt >= nes->entry_cnt) {
2850 list_add(&nes->set_list, cur->set_list.prev);
2851 return;
2852 }
2853 }
2854 add_out:
2855 list_add_tail(&nes->set_list, head);
2856 }
2857
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2858 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2859 struct page *page)
2860 {
2861 struct f2fs_nm_info *nm_i = NM_I(sbi);
2862 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2863 struct f2fs_nat_block *nat_blk = page_address(page);
2864 int valid = 0;
2865 int i = 0;
2866
2867 if (!enabled_nat_bits(sbi, NULL))
2868 return;
2869
2870 if (nat_index == 0) {
2871 valid = 1;
2872 i = 1;
2873 }
2874 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2875 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2876 valid++;
2877 }
2878 if (valid == 0) {
2879 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2880 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2881 return;
2882 }
2883
2884 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2885 if (valid == NAT_ENTRY_PER_BLOCK)
2886 __set_bit_le(nat_index, nm_i->full_nat_bits);
2887 else
2888 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2889 }
2890
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2891 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2892 struct nat_entry_set *set, struct cp_control *cpc)
2893 {
2894 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2895 struct f2fs_journal *journal = curseg->journal;
2896 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2897 bool to_journal = true;
2898 struct f2fs_nat_block *nat_blk;
2899 struct nat_entry *ne, *cur;
2900 struct page *page = NULL;
2901
2902 /*
2903 * there are two steps to flush nat entries:
2904 * #1, flush nat entries to journal in current hot data summary block.
2905 * #2, flush nat entries to nat page.
2906 */
2907 if (enabled_nat_bits(sbi, cpc) ||
2908 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2909 to_journal = false;
2910
2911 if (to_journal) {
2912 down_write(&curseg->journal_rwsem);
2913 } else {
2914 page = get_next_nat_page(sbi, start_nid);
2915 if (IS_ERR(page))
2916 return PTR_ERR(page);
2917
2918 nat_blk = page_address(page);
2919 f2fs_bug_on(sbi, !nat_blk);
2920 }
2921
2922 /* flush dirty nats in nat entry set */
2923 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2924 struct f2fs_nat_entry *raw_ne;
2925 nid_t nid = nat_get_nid(ne);
2926 int offset;
2927
2928 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2929
2930 if (to_journal) {
2931 offset = f2fs_lookup_journal_in_cursum(journal,
2932 NAT_JOURNAL, nid, 1);
2933 f2fs_bug_on(sbi, offset < 0);
2934 raw_ne = &nat_in_journal(journal, offset);
2935 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2936 } else {
2937 raw_ne = &nat_blk->entries[nid - start_nid];
2938 }
2939 raw_nat_from_node_info(raw_ne, &ne->ni);
2940 nat_reset_flag(ne);
2941 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2942 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2943 add_free_nid(sbi, nid, false, true);
2944 } else {
2945 spin_lock(&NM_I(sbi)->nid_list_lock);
2946 update_free_nid_bitmap(sbi, nid, false, false);
2947 spin_unlock(&NM_I(sbi)->nid_list_lock);
2948 }
2949 }
2950
2951 if (to_journal) {
2952 up_write(&curseg->journal_rwsem);
2953 } else {
2954 __update_nat_bits(sbi, start_nid, page);
2955 f2fs_put_page(page, 1);
2956 }
2957
2958 /* Allow dirty nats by node block allocation in write_begin */
2959 if (!set->entry_cnt) {
2960 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2961 kmem_cache_free(nat_entry_set_slab, set);
2962 }
2963 return 0;
2964 }
2965
2966 /*
2967 * This function is called during the checkpointing process.
2968 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2969 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2970 {
2971 struct f2fs_nm_info *nm_i = NM_I(sbi);
2972 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2973 struct f2fs_journal *journal = curseg->journal;
2974 struct nat_entry_set *setvec[SETVEC_SIZE];
2975 struct nat_entry_set *set, *tmp;
2976 unsigned int found;
2977 nid_t set_idx = 0;
2978 LIST_HEAD(sets);
2979 int err = 0;
2980
2981 /*
2982 * during unmount, let's flush nat_bits before checking
2983 * nat_cnt[DIRTY_NAT].
2984 */
2985 if (enabled_nat_bits(sbi, cpc)) {
2986 down_write(&nm_i->nat_tree_lock);
2987 remove_nats_in_journal(sbi);
2988 up_write(&nm_i->nat_tree_lock);
2989 }
2990
2991 if (!nm_i->nat_cnt[DIRTY_NAT])
2992 return 0;
2993
2994 down_write(&nm_i->nat_tree_lock);
2995
2996 /*
2997 * if there are no enough space in journal to store dirty nat
2998 * entries, remove all entries from journal and merge them
2999 * into nat entry set.
3000 */
3001 if (enabled_nat_bits(sbi, cpc) ||
3002 !__has_cursum_space(journal,
3003 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3004 remove_nats_in_journal(sbi);
3005
3006 while ((found = __gang_lookup_nat_set(nm_i,
3007 set_idx, SETVEC_SIZE, setvec))) {
3008 unsigned idx;
3009 set_idx = setvec[found - 1]->set + 1;
3010 for (idx = 0; idx < found; idx++)
3011 __adjust_nat_entry_set(setvec[idx], &sets,
3012 MAX_NAT_JENTRIES(journal));
3013 }
3014
3015 /* flush dirty nats in nat entry set */
3016 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3017 err = __flush_nat_entry_set(sbi, set, cpc);
3018 if (err)
3019 break;
3020 }
3021
3022 up_write(&nm_i->nat_tree_lock);
3023 /* Allow dirty nats by node block allocation in write_begin */
3024
3025 return err;
3026 }
3027
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3028 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3029 {
3030 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3031 struct f2fs_nm_info *nm_i = NM_I(sbi);
3032 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3033 unsigned int i;
3034 __u64 cp_ver = cur_cp_version(ckpt);
3035 block_t nat_bits_addr;
3036
3037 if (!enabled_nat_bits(sbi, NULL))
3038 return 0;
3039
3040 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3041 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3042 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3043 if (!nm_i->nat_bits)
3044 return -ENOMEM;
3045
3046 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3047 nm_i->nat_bits_blocks;
3048 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3049 struct page *page;
3050
3051 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3052 if (IS_ERR(page))
3053 return PTR_ERR(page);
3054
3055 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3056 page_address(page), F2FS_BLKSIZE);
3057 f2fs_put_page(page, 1);
3058 }
3059
3060 cp_ver |= (cur_cp_crc(ckpt) << 32);
3061 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3062 disable_nat_bits(sbi, true);
3063 return 0;
3064 }
3065
3066 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3067 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3068
3069 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3070 return 0;
3071 }
3072
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3073 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3074 {
3075 struct f2fs_nm_info *nm_i = NM_I(sbi);
3076 unsigned int i = 0;
3077 nid_t nid, last_nid;
3078
3079 if (!enabled_nat_bits(sbi, NULL))
3080 return;
3081
3082 for (i = 0; i < nm_i->nat_blocks; i++) {
3083 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3084 if (i >= nm_i->nat_blocks)
3085 break;
3086
3087 __set_bit_le(i, nm_i->nat_block_bitmap);
3088
3089 nid = i * NAT_ENTRY_PER_BLOCK;
3090 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3091
3092 spin_lock(&NM_I(sbi)->nid_list_lock);
3093 for (; nid < last_nid; nid++)
3094 update_free_nid_bitmap(sbi, nid, true, true);
3095 spin_unlock(&NM_I(sbi)->nid_list_lock);
3096 }
3097
3098 for (i = 0; i < nm_i->nat_blocks; i++) {
3099 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3100 if (i >= nm_i->nat_blocks)
3101 break;
3102
3103 __set_bit_le(i, nm_i->nat_block_bitmap);
3104 }
3105 }
3106
init_node_manager(struct f2fs_sb_info * sbi)3107 static int init_node_manager(struct f2fs_sb_info *sbi)
3108 {
3109 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3110 struct f2fs_nm_info *nm_i = NM_I(sbi);
3111 unsigned char *version_bitmap;
3112 unsigned int nat_segs;
3113 int err;
3114
3115 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3116
3117 /* segment_count_nat includes pair segment so divide to 2. */
3118 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3119 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3120 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3121
3122 /* not used nids: 0, node, meta, (and root counted as valid node) */
3123 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3124 F2FS_RESERVED_NODE_NUM;
3125 nm_i->nid_cnt[FREE_NID] = 0;
3126 nm_i->nid_cnt[PREALLOC_NID] = 0;
3127 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3128 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3129 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3130
3131 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3132 INIT_LIST_HEAD(&nm_i->free_nid_list);
3133 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3134 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3135 INIT_LIST_HEAD(&nm_i->nat_entries);
3136 spin_lock_init(&nm_i->nat_list_lock);
3137
3138 mutex_init(&nm_i->build_lock);
3139 spin_lock_init(&nm_i->nid_list_lock);
3140 init_rwsem(&nm_i->nat_tree_lock);
3141
3142 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3143 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3144 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3145 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3146 GFP_KERNEL);
3147 if (!nm_i->nat_bitmap)
3148 return -ENOMEM;
3149
3150 err = __get_nat_bitmaps(sbi);
3151 if (err)
3152 return err;
3153
3154 #ifdef CONFIG_F2FS_CHECK_FS
3155 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3156 GFP_KERNEL);
3157 if (!nm_i->nat_bitmap_mir)
3158 return -ENOMEM;
3159 #endif
3160
3161 return 0;
3162 }
3163
init_free_nid_cache(struct f2fs_sb_info * sbi)3164 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3165 {
3166 struct f2fs_nm_info *nm_i = NM_I(sbi);
3167 int i;
3168
3169 nm_i->free_nid_bitmap =
3170 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3171 nm_i->nat_blocks),
3172 GFP_KERNEL);
3173 if (!nm_i->free_nid_bitmap)
3174 return -ENOMEM;
3175
3176 for (i = 0; i < nm_i->nat_blocks; i++) {
3177 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3178 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3179 if (!nm_i->free_nid_bitmap[i])
3180 return -ENOMEM;
3181 }
3182
3183 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3184 GFP_KERNEL);
3185 if (!nm_i->nat_block_bitmap)
3186 return -ENOMEM;
3187
3188 nm_i->free_nid_count =
3189 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3190 nm_i->nat_blocks),
3191 GFP_KERNEL);
3192 if (!nm_i->free_nid_count)
3193 return -ENOMEM;
3194 return 0;
3195 }
3196
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3197 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3198 {
3199 int err;
3200
3201 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3202 GFP_KERNEL);
3203 if (!sbi->nm_info)
3204 return -ENOMEM;
3205
3206 err = init_node_manager(sbi);
3207 if (err)
3208 return err;
3209
3210 err = init_free_nid_cache(sbi);
3211 if (err)
3212 return err;
3213
3214 /* load free nid status from nat_bits table */
3215 load_free_nid_bitmap(sbi);
3216
3217 return f2fs_build_free_nids(sbi, true, true);
3218 }
3219
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3220 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3221 {
3222 struct f2fs_nm_info *nm_i = NM_I(sbi);
3223 struct free_nid *i, *next_i;
3224 struct nat_entry *natvec[NATVEC_SIZE];
3225 struct nat_entry_set *setvec[SETVEC_SIZE];
3226 nid_t nid = 0;
3227 unsigned int found;
3228
3229 if (!nm_i)
3230 return;
3231
3232 /* destroy free nid list */
3233 spin_lock(&nm_i->nid_list_lock);
3234 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3235 __remove_free_nid(sbi, i, FREE_NID);
3236 spin_unlock(&nm_i->nid_list_lock);
3237 kmem_cache_free(free_nid_slab, i);
3238 spin_lock(&nm_i->nid_list_lock);
3239 }
3240 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3241 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3242 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3243 spin_unlock(&nm_i->nid_list_lock);
3244
3245 /* destroy nat cache */
3246 down_write(&nm_i->nat_tree_lock);
3247 while ((found = __gang_lookup_nat_cache(nm_i,
3248 nid, NATVEC_SIZE, natvec))) {
3249 unsigned idx;
3250
3251 nid = nat_get_nid(natvec[found - 1]) + 1;
3252 for (idx = 0; idx < found; idx++) {
3253 spin_lock(&nm_i->nat_list_lock);
3254 list_del(&natvec[idx]->list);
3255 spin_unlock(&nm_i->nat_list_lock);
3256
3257 __del_from_nat_cache(nm_i, natvec[idx]);
3258 }
3259 }
3260 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3261
3262 /* destroy nat set cache */
3263 nid = 0;
3264 while ((found = __gang_lookup_nat_set(nm_i,
3265 nid, SETVEC_SIZE, setvec))) {
3266 unsigned idx;
3267
3268 nid = setvec[found - 1]->set + 1;
3269 for (idx = 0; idx < found; idx++) {
3270 /* entry_cnt is not zero, when cp_error was occurred */
3271 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3272 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3273 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3274 }
3275 }
3276 up_write(&nm_i->nat_tree_lock);
3277
3278 kvfree(nm_i->nat_block_bitmap);
3279 if (nm_i->free_nid_bitmap) {
3280 int i;
3281
3282 for (i = 0; i < nm_i->nat_blocks; i++)
3283 kvfree(nm_i->free_nid_bitmap[i]);
3284 kvfree(nm_i->free_nid_bitmap);
3285 }
3286 kvfree(nm_i->free_nid_count);
3287
3288 kvfree(nm_i->nat_bitmap);
3289 kvfree(nm_i->nat_bits);
3290 #ifdef CONFIG_F2FS_CHECK_FS
3291 kvfree(nm_i->nat_bitmap_mir);
3292 #endif
3293 sbi->nm_info = NULL;
3294 kfree(nm_i);
3295 }
3296
f2fs_create_node_manager_caches(void)3297 int __init f2fs_create_node_manager_caches(void)
3298 {
3299 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3300 sizeof(struct nat_entry));
3301 if (!nat_entry_slab)
3302 goto fail;
3303
3304 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3305 sizeof(struct free_nid));
3306 if (!free_nid_slab)
3307 goto destroy_nat_entry;
3308
3309 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3310 sizeof(struct nat_entry_set));
3311 if (!nat_entry_set_slab)
3312 goto destroy_free_nid;
3313
3314 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3315 sizeof(struct fsync_node_entry));
3316 if (!fsync_node_entry_slab)
3317 goto destroy_nat_entry_set;
3318 return 0;
3319
3320 destroy_nat_entry_set:
3321 kmem_cache_destroy(nat_entry_set_slab);
3322 destroy_free_nid:
3323 kmem_cache_destroy(free_nid_slab);
3324 destroy_nat_entry:
3325 kmem_cache_destroy(nat_entry_slab);
3326 fail:
3327 return -ENOMEM;
3328 }
3329
f2fs_destroy_node_manager_caches(void)3330 void f2fs_destroy_node_manager_caches(void)
3331 {
3332 kmem_cache_destroy(fsync_node_entry_slab);
3333 kmem_cache_destroy(nat_entry_set_slab);
3334 kmem_cache_destroy(free_nid_slab);
3335 kmem_cache_destroy(nat_entry_slab);
3336 }
3337