1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
m_hash(struct vfsmount * mnt,struct dentry * dentry)90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
mp_hash(struct dentry * dentry)98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
mnt_alloc_id(struct mount * mnt)105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
mnt_free_id(struct mount * mnt)115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
mnt_alloc_group_id(struct mount * mnt)123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
mnt_release_group_id(struct mount * mnt)136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
mnt_add_count(struct mount * mnt,int n)145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
mnt_get_count(struct mount * mnt)159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
alloc_vfsmnt(const char * name)175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name,
187 GFP_KERNEL_ACCOUNT);
188 if (!mnt->mnt_devname)
189 goto out_free_id;
190 }
191
192 #ifdef CONFIG_SMP
193 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
194 if (!mnt->mnt_pcp)
195 goto out_free_devname;
196
197 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
198 #else
199 mnt->mnt_count = 1;
200 mnt->mnt_writers = 0;
201 #endif
202
203 INIT_HLIST_NODE(&mnt->mnt_hash);
204 INIT_LIST_HEAD(&mnt->mnt_child);
205 INIT_LIST_HEAD(&mnt->mnt_mounts);
206 INIT_LIST_HEAD(&mnt->mnt_list);
207 INIT_LIST_HEAD(&mnt->mnt_expire);
208 INIT_LIST_HEAD(&mnt->mnt_share);
209 INIT_LIST_HEAD(&mnt->mnt_slave_list);
210 INIT_LIST_HEAD(&mnt->mnt_slave);
211 INIT_HLIST_NODE(&mnt->mnt_mp_list);
212 INIT_LIST_HEAD(&mnt->mnt_umounting);
213 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
214 }
215 return mnt;
216
217 #ifdef CONFIG_SMP
218 out_free_devname:
219 kfree_const(mnt->mnt_devname);
220 #endif
221 out_free_id:
222 mnt_free_id(mnt);
223 out_free_cache:
224 kmem_cache_free(mnt_cache, mnt);
225 return NULL;
226 }
227
228 /*
229 * Most r/o checks on a fs are for operations that take
230 * discrete amounts of time, like a write() or unlink().
231 * We must keep track of when those operations start
232 * (for permission checks) and when they end, so that
233 * we can determine when writes are able to occur to
234 * a filesystem.
235 */
236 /*
237 * __mnt_is_readonly: check whether a mount is read-only
238 * @mnt: the mount to check for its write status
239 *
240 * This shouldn't be used directly ouside of the VFS.
241 * It does not guarantee that the filesystem will stay
242 * r/w, just that it is right *now*. This can not and
243 * should not be used in place of IS_RDONLY(inode).
244 * mnt_want/drop_write() will _keep_ the filesystem
245 * r/w.
246 */
__mnt_is_readonly(struct vfsmount * mnt)247 bool __mnt_is_readonly(struct vfsmount *mnt)
248 {
249 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
250 }
251 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
252
mnt_inc_writers(struct mount * mnt)253 static inline void mnt_inc_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers++;
259 #endif
260 }
261
mnt_dec_writers(struct mount * mnt)262 static inline void mnt_dec_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
266 #else
267 mnt->mnt_writers--;
268 #endif
269 }
270
mnt_get_writers(struct mount * mnt)271 static unsigned int mnt_get_writers(struct mount *mnt)
272 {
273 #ifdef CONFIG_SMP
274 unsigned int count = 0;
275 int cpu;
276
277 for_each_possible_cpu(cpu) {
278 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
279 }
280
281 return count;
282 #else
283 return mnt->mnt_writers;
284 #endif
285 }
286
mnt_is_readonly(struct vfsmount * mnt)287 static int mnt_is_readonly(struct vfsmount *mnt)
288 {
289 if (mnt->mnt_sb->s_readonly_remount)
290 return 1;
291 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 smp_rmb();
293 return __mnt_is_readonly(mnt);
294 }
295
296 /*
297 * Most r/o & frozen checks on a fs are for operations that take discrete
298 * amounts of time, like a write() or unlink(). We must keep track of when
299 * those operations start (for permission checks) and when they end, so that we
300 * can determine when writes are able to occur to a filesystem.
301 */
302 /**
303 * __mnt_want_write - get write access to a mount without freeze protection
304 * @m: the mount on which to take a write
305 *
306 * This tells the low-level filesystem that a write is about to be performed to
307 * it, and makes sure that writes are allowed (mnt it read-write) before
308 * returning success. This operation does not protect against filesystem being
309 * frozen. When the write operation is finished, __mnt_drop_write() must be
310 * called. This is effectively a refcount.
311 */
__mnt_want_write(struct vfsmount * m)312 int __mnt_want_write(struct vfsmount *m)
313 {
314 struct mount *mnt = real_mount(m);
315 int ret = 0;
316
317 preempt_disable();
318 mnt_inc_writers(mnt);
319 /*
320 * The store to mnt_inc_writers must be visible before we pass
321 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
322 * incremented count after it has set MNT_WRITE_HOLD.
323 */
324 smp_mb();
325 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
326 cpu_relax();
327 /*
328 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
329 * be set to match its requirements. So we must not load that until
330 * MNT_WRITE_HOLD is cleared.
331 */
332 smp_rmb();
333 if (mnt_is_readonly(m)) {
334 mnt_dec_writers(mnt);
335 ret = -EROFS;
336 }
337 preempt_enable();
338
339 return ret;
340 }
341
342 /**
343 * mnt_want_write - get write access to a mount
344 * @m: the mount on which to take a write
345 *
346 * This tells the low-level filesystem that a write is about to be performed to
347 * it, and makes sure that writes are allowed (mount is read-write, filesystem
348 * is not frozen) before returning success. When the write operation is
349 * finished, mnt_drop_write() must be called. This is effectively a refcount.
350 */
mnt_want_write(struct vfsmount * m)351 int mnt_want_write(struct vfsmount *m)
352 {
353 int ret;
354
355 sb_start_write(m->mnt_sb);
356 ret = __mnt_want_write(m);
357 if (ret)
358 sb_end_write(m->mnt_sb);
359 return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362
363 /**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
mnt_clone_write(struct vfsmount * mnt)375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(real_mount(mnt));
382 preempt_enable();
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387 /**
388 * __mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like __mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
__mnt_want_write_file(struct file * file)394 int __mnt_want_write_file(struct file *file)
395 {
396 if (!(file->f_mode & FMODE_WRITER))
397 return __mnt_want_write(file->f_path.mnt);
398 else
399 return mnt_clone_write(file->f_path.mnt);
400 }
401
402 /**
403 * mnt_want_write_file - get write access to a file's mount
404 * @file: the file who's mount on which to take a write
405 *
406 * This is like mnt_want_write, but it takes a file and can
407 * do some optimisations if the file is open for write already
408 */
mnt_want_write_file(struct file * file)409 int mnt_want_write_file(struct file *file)
410 {
411 int ret;
412
413 sb_start_write(file_inode(file)->i_sb);
414 ret = __mnt_want_write_file(file);
415 if (ret)
416 sb_end_write(file_inode(file)->i_sb);
417 return ret;
418 }
419 EXPORT_SYMBOL_GPL(mnt_want_write_file);
420
421 /**
422 * __mnt_drop_write - give up write access to a mount
423 * @mnt: the mount on which to give up write access
424 *
425 * Tells the low-level filesystem that we are done
426 * performing writes to it. Must be matched with
427 * __mnt_want_write() call above.
428 */
__mnt_drop_write(struct vfsmount * mnt)429 void __mnt_drop_write(struct vfsmount *mnt)
430 {
431 preempt_disable();
432 mnt_dec_writers(real_mount(mnt));
433 preempt_enable();
434 }
435
436 /**
437 * mnt_drop_write - give up write access to a mount
438 * @mnt: the mount on which to give up write access
439 *
440 * Tells the low-level filesystem that we are done performing writes to it and
441 * also allows filesystem to be frozen again. Must be matched with
442 * mnt_want_write() call above.
443 */
mnt_drop_write(struct vfsmount * mnt)444 void mnt_drop_write(struct vfsmount *mnt)
445 {
446 __mnt_drop_write(mnt);
447 sb_end_write(mnt->mnt_sb);
448 }
449 EXPORT_SYMBOL_GPL(mnt_drop_write);
450
__mnt_drop_write_file(struct file * file)451 void __mnt_drop_write_file(struct file *file)
452 {
453 __mnt_drop_write(file->f_path.mnt);
454 }
455
mnt_drop_write_file(struct file * file)456 void mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write_file(file);
459 sb_end_write(file_inode(file)->i_sb);
460 }
461 EXPORT_SYMBOL(mnt_drop_write_file);
462
mnt_make_readonly(struct mount * mnt)463 static int mnt_make_readonly(struct mount *mnt)
464 {
465 int ret = 0;
466
467 lock_mount_hash();
468 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 /*
470 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 * should be visible before we do.
472 */
473 smp_mb();
474
475 /*
476 * With writers on hold, if this value is zero, then there are
477 * definitely no active writers (although held writers may subsequently
478 * increment the count, they'll have to wait, and decrement it after
479 * seeing MNT_READONLY).
480 *
481 * It is OK to have counter incremented on one CPU and decremented on
482 * another: the sum will add up correctly. The danger would be when we
483 * sum up each counter, if we read a counter before it is incremented,
484 * but then read another CPU's count which it has been subsequently
485 * decremented from -- we would see more decrements than we should.
486 * MNT_WRITE_HOLD protects against this scenario, because
487 * mnt_want_write first increments count, then smp_mb, then spins on
488 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 * we're counting up here.
490 */
491 if (mnt_get_writers(mnt) > 0)
492 ret = -EBUSY;
493 else
494 mnt->mnt.mnt_flags |= MNT_READONLY;
495 /*
496 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 * that become unheld will see MNT_READONLY.
498 */
499 smp_wmb();
500 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
501 unlock_mount_hash();
502 return ret;
503 }
504
__mnt_unmake_readonly(struct mount * mnt)505 static int __mnt_unmake_readonly(struct mount *mnt)
506 {
507 lock_mount_hash();
508 mnt->mnt.mnt_flags &= ~MNT_READONLY;
509 unlock_mount_hash();
510 return 0;
511 }
512
sb_prepare_remount_readonly(struct super_block * sb)513 int sb_prepare_remount_readonly(struct super_block *sb)
514 {
515 struct mount *mnt;
516 int err = 0;
517
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
522 lock_mount_hash();
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
544 unlock_mount_hash();
545
546 return err;
547 }
548
free_vfsmnt(struct mount * mnt)549 static void free_vfsmnt(struct mount *mnt)
550 {
551 kfree_const(mnt->mnt_devname);
552 #ifdef CONFIG_SMP
553 free_percpu(mnt->mnt_pcp);
554 #endif
555 kmem_cache_free(mnt_cache, mnt);
556 }
557
delayed_free_vfsmnt(struct rcu_head * head)558 static void delayed_free_vfsmnt(struct rcu_head *head)
559 {
560 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
561 }
562
563 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)564 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
565 {
566 struct mount *mnt;
567 if (read_seqretry(&mount_lock, seq))
568 return 1;
569 if (bastard == NULL)
570 return 0;
571 mnt = real_mount(bastard);
572 mnt_add_count(mnt, 1);
573 smp_mb(); // see mntput_no_expire()
574 if (likely(!read_seqretry(&mount_lock, seq)))
575 return 0;
576 lock_mount_hash();
577 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
578 mnt_add_count(mnt, -1);
579 unlock_mount_hash();
580 return 1;
581 }
582 unlock_mount_hash();
583 /* caller will mntput() */
584 return -1;
585 }
586
587 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)588 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
589 {
590 int res = __legitimize_mnt(bastard, seq);
591 if (likely(!res))
592 return true;
593 if (unlikely(res < 0)) {
594 rcu_read_unlock();
595 mntput(bastard);
596 rcu_read_lock();
597 }
598 return false;
599 }
600
601 /*
602 * find the first mount at @dentry on vfsmount @mnt.
603 * call under rcu_read_lock()
604 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)605 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
606 {
607 struct hlist_head *head = m_hash(mnt, dentry);
608 struct mount *p;
609
610 hlist_for_each_entry_rcu(p, head, mnt_hash)
611 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
612 return p;
613 return NULL;
614 }
615
616 /*
617 * lookup_mnt - Return the first child mount mounted at path
618 *
619 * "First" means first mounted chronologically. If you create the
620 * following mounts:
621 *
622 * mount /dev/sda1 /mnt
623 * mount /dev/sda2 /mnt
624 * mount /dev/sda3 /mnt
625 *
626 * Then lookup_mnt() on the base /mnt dentry in the root mount will
627 * return successively the root dentry and vfsmount of /dev/sda1, then
628 * /dev/sda2, then /dev/sda3, then NULL.
629 *
630 * lookup_mnt takes a reference to the found vfsmount.
631 */
lookup_mnt(const struct path * path)632 struct vfsmount *lookup_mnt(const struct path *path)
633 {
634 struct mount *child_mnt;
635 struct vfsmount *m;
636 unsigned seq;
637
638 rcu_read_lock();
639 do {
640 seq = read_seqbegin(&mount_lock);
641 child_mnt = __lookup_mnt(path->mnt, path->dentry);
642 m = child_mnt ? &child_mnt->mnt : NULL;
643 } while (!legitimize_mnt(m, seq));
644 rcu_read_unlock();
645 return m;
646 }
647
lock_ns_list(struct mnt_namespace * ns)648 static inline void lock_ns_list(struct mnt_namespace *ns)
649 {
650 spin_lock(&ns->ns_lock);
651 }
652
unlock_ns_list(struct mnt_namespace * ns)653 static inline void unlock_ns_list(struct mnt_namespace *ns)
654 {
655 spin_unlock(&ns->ns_lock);
656 }
657
mnt_is_cursor(struct mount * mnt)658 static inline bool mnt_is_cursor(struct mount *mnt)
659 {
660 return mnt->mnt.mnt_flags & MNT_CURSOR;
661 }
662
663 /*
664 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
665 * current mount namespace.
666 *
667 * The common case is dentries are not mountpoints at all and that
668 * test is handled inline. For the slow case when we are actually
669 * dealing with a mountpoint of some kind, walk through all of the
670 * mounts in the current mount namespace and test to see if the dentry
671 * is a mountpoint.
672 *
673 * The mount_hashtable is not usable in the context because we
674 * need to identify all mounts that may be in the current mount
675 * namespace not just a mount that happens to have some specified
676 * parent mount.
677 */
__is_local_mountpoint(struct dentry * dentry)678 bool __is_local_mountpoint(struct dentry *dentry)
679 {
680 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
681 struct mount *mnt;
682 bool is_covered = false;
683
684 down_read(&namespace_sem);
685 lock_ns_list(ns);
686 list_for_each_entry(mnt, &ns->list, mnt_list) {
687 if (mnt_is_cursor(mnt))
688 continue;
689 is_covered = (mnt->mnt_mountpoint == dentry);
690 if (is_covered)
691 break;
692 }
693 unlock_ns_list(ns);
694 up_read(&namespace_sem);
695
696 return is_covered;
697 }
698
lookup_mountpoint(struct dentry * dentry)699 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
700 {
701 struct hlist_head *chain = mp_hash(dentry);
702 struct mountpoint *mp;
703
704 hlist_for_each_entry(mp, chain, m_hash) {
705 if (mp->m_dentry == dentry) {
706 mp->m_count++;
707 return mp;
708 }
709 }
710 return NULL;
711 }
712
get_mountpoint(struct dentry * dentry)713 static struct mountpoint *get_mountpoint(struct dentry *dentry)
714 {
715 struct mountpoint *mp, *new = NULL;
716 int ret;
717
718 if (d_mountpoint(dentry)) {
719 /* might be worth a WARN_ON() */
720 if (d_unlinked(dentry))
721 return ERR_PTR(-ENOENT);
722 mountpoint:
723 read_seqlock_excl(&mount_lock);
724 mp = lookup_mountpoint(dentry);
725 read_sequnlock_excl(&mount_lock);
726 if (mp)
727 goto done;
728 }
729
730 if (!new)
731 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
732 if (!new)
733 return ERR_PTR(-ENOMEM);
734
735
736 /* Exactly one processes may set d_mounted */
737 ret = d_set_mounted(dentry);
738
739 /* Someone else set d_mounted? */
740 if (ret == -EBUSY)
741 goto mountpoint;
742
743 /* The dentry is not available as a mountpoint? */
744 mp = ERR_PTR(ret);
745 if (ret)
746 goto done;
747
748 /* Add the new mountpoint to the hash table */
749 read_seqlock_excl(&mount_lock);
750 new->m_dentry = dget(dentry);
751 new->m_count = 1;
752 hlist_add_head(&new->m_hash, mp_hash(dentry));
753 INIT_HLIST_HEAD(&new->m_list);
754 read_sequnlock_excl(&mount_lock);
755
756 mp = new;
757 new = NULL;
758 done:
759 kfree(new);
760 return mp;
761 }
762
763 /*
764 * vfsmount lock must be held. Additionally, the caller is responsible
765 * for serializing calls for given disposal list.
766 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)767 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
768 {
769 if (!--mp->m_count) {
770 struct dentry *dentry = mp->m_dentry;
771 BUG_ON(!hlist_empty(&mp->m_list));
772 spin_lock(&dentry->d_lock);
773 dentry->d_flags &= ~DCACHE_MOUNTED;
774 spin_unlock(&dentry->d_lock);
775 dput_to_list(dentry, list);
776 hlist_del(&mp->m_hash);
777 kfree(mp);
778 }
779 }
780
781 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)782 static void put_mountpoint(struct mountpoint *mp)
783 {
784 __put_mountpoint(mp, &ex_mountpoints);
785 }
786
check_mnt(struct mount * mnt)787 static inline int check_mnt(struct mount *mnt)
788 {
789 return mnt->mnt_ns == current->nsproxy->mnt_ns;
790 }
791
792 /*
793 * vfsmount lock must be held for write
794 */
touch_mnt_namespace(struct mnt_namespace * ns)795 static void touch_mnt_namespace(struct mnt_namespace *ns)
796 {
797 if (ns) {
798 ns->event = ++event;
799 wake_up_interruptible(&ns->poll);
800 }
801 }
802
803 /*
804 * vfsmount lock must be held for write
805 */
__touch_mnt_namespace(struct mnt_namespace * ns)806 static void __touch_mnt_namespace(struct mnt_namespace *ns)
807 {
808 if (ns && ns->event != event) {
809 ns->event = event;
810 wake_up_interruptible(&ns->poll);
811 }
812 }
813
814 /*
815 * vfsmount lock must be held for write
816 */
unhash_mnt(struct mount * mnt)817 static struct mountpoint *unhash_mnt(struct mount *mnt)
818 {
819 struct mountpoint *mp;
820 mnt->mnt_parent = mnt;
821 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
822 list_del_init(&mnt->mnt_child);
823 hlist_del_init_rcu(&mnt->mnt_hash);
824 hlist_del_init(&mnt->mnt_mp_list);
825 mp = mnt->mnt_mp;
826 mnt->mnt_mp = NULL;
827 return mp;
828 }
829
830 /*
831 * vfsmount lock must be held for write
832 */
umount_mnt(struct mount * mnt)833 static void umount_mnt(struct mount *mnt)
834 {
835 put_mountpoint(unhash_mnt(mnt));
836 }
837
838 /*
839 * vfsmount lock must be held for write
840 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)841 void mnt_set_mountpoint(struct mount *mnt,
842 struct mountpoint *mp,
843 struct mount *child_mnt)
844 {
845 mp->m_count++;
846 mnt_add_count(mnt, 1); /* essentially, that's mntget */
847 child_mnt->mnt_mountpoint = mp->m_dentry;
848 child_mnt->mnt_parent = mnt;
849 child_mnt->mnt_mp = mp;
850 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
851 }
852
__attach_mnt(struct mount * mnt,struct mount * parent)853 static void __attach_mnt(struct mount *mnt, struct mount *parent)
854 {
855 hlist_add_head_rcu(&mnt->mnt_hash,
856 m_hash(&parent->mnt, mnt->mnt_mountpoint));
857 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
858 }
859
860 /*
861 * vfsmount lock must be held for write
862 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)863 static void attach_mnt(struct mount *mnt,
864 struct mount *parent,
865 struct mountpoint *mp)
866 {
867 mnt_set_mountpoint(parent, mp, mnt);
868 __attach_mnt(mnt, parent);
869 }
870
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)871 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
872 {
873 struct mountpoint *old_mp = mnt->mnt_mp;
874 struct mount *old_parent = mnt->mnt_parent;
875
876 list_del_init(&mnt->mnt_child);
877 hlist_del_init(&mnt->mnt_mp_list);
878 hlist_del_init_rcu(&mnt->mnt_hash);
879
880 attach_mnt(mnt, parent, mp);
881
882 put_mountpoint(old_mp);
883 mnt_add_count(old_parent, -1);
884 }
885
886 /*
887 * vfsmount lock must be held for write
888 */
commit_tree(struct mount * mnt)889 static void commit_tree(struct mount *mnt)
890 {
891 struct mount *parent = mnt->mnt_parent;
892 struct mount *m;
893 LIST_HEAD(head);
894 struct mnt_namespace *n = parent->mnt_ns;
895
896 BUG_ON(parent == mnt);
897
898 list_add_tail(&head, &mnt->mnt_list);
899 list_for_each_entry(m, &head, mnt_list)
900 m->mnt_ns = n;
901
902 list_splice(&head, n->list.prev);
903
904 n->mounts += n->pending_mounts;
905 n->pending_mounts = 0;
906
907 __attach_mnt(mnt, parent);
908 touch_mnt_namespace(n);
909 }
910
next_mnt(struct mount * p,struct mount * root)911 static struct mount *next_mnt(struct mount *p, struct mount *root)
912 {
913 struct list_head *next = p->mnt_mounts.next;
914 if (next == &p->mnt_mounts) {
915 while (1) {
916 if (p == root)
917 return NULL;
918 next = p->mnt_child.next;
919 if (next != &p->mnt_parent->mnt_mounts)
920 break;
921 p = p->mnt_parent;
922 }
923 }
924 return list_entry(next, struct mount, mnt_child);
925 }
926
skip_mnt_tree(struct mount * p)927 static struct mount *skip_mnt_tree(struct mount *p)
928 {
929 struct list_head *prev = p->mnt_mounts.prev;
930 while (prev != &p->mnt_mounts) {
931 p = list_entry(prev, struct mount, mnt_child);
932 prev = p->mnt_mounts.prev;
933 }
934 return p;
935 }
936
937 /**
938 * vfs_create_mount - Create a mount for a configured superblock
939 * @fc: The configuration context with the superblock attached
940 *
941 * Create a mount to an already configured superblock. If necessary, the
942 * caller should invoke vfs_get_tree() before calling this.
943 *
944 * Note that this does not attach the mount to anything.
945 */
vfs_create_mount(struct fs_context * fc)946 struct vfsmount *vfs_create_mount(struct fs_context *fc)
947 {
948 struct mount *mnt;
949
950 if (!fc->root)
951 return ERR_PTR(-EINVAL);
952
953 mnt = alloc_vfsmnt(fc->source ?: "none");
954 if (!mnt)
955 return ERR_PTR(-ENOMEM);
956
957 if (fc->sb_flags & SB_KERNMOUNT)
958 mnt->mnt.mnt_flags = MNT_INTERNAL;
959
960 atomic_inc(&fc->root->d_sb->s_active);
961 mnt->mnt.mnt_sb = fc->root->d_sb;
962 mnt->mnt.mnt_root = dget(fc->root);
963 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
964 mnt->mnt_parent = mnt;
965
966 lock_mount_hash();
967 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
968 unlock_mount_hash();
969 return &mnt->mnt;
970 }
971 EXPORT_SYMBOL(vfs_create_mount);
972
fc_mount(struct fs_context * fc)973 struct vfsmount *fc_mount(struct fs_context *fc)
974 {
975 int err = vfs_get_tree(fc);
976 if (!err) {
977 up_write(&fc->root->d_sb->s_umount);
978 return vfs_create_mount(fc);
979 }
980 return ERR_PTR(err);
981 }
982 EXPORT_SYMBOL(fc_mount);
983
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)984 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
985 int flags, const char *name,
986 void *data)
987 {
988 struct fs_context *fc;
989 struct vfsmount *mnt;
990 int ret = 0;
991
992 if (!type)
993 return ERR_PTR(-EINVAL);
994
995 fc = fs_context_for_mount(type, flags);
996 if (IS_ERR(fc))
997 return ERR_CAST(fc);
998
999 if (name)
1000 ret = vfs_parse_fs_string(fc, "source",
1001 name, strlen(name));
1002 if (!ret)
1003 ret = parse_monolithic_mount_data(fc, data);
1004 if (!ret)
1005 mnt = fc_mount(fc);
1006 else
1007 mnt = ERR_PTR(ret);
1008
1009 put_fs_context(fc);
1010 return mnt;
1011 }
1012 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1013
1014 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1015 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1016 const char *name, void *data)
1017 {
1018 /* Until it is worked out how to pass the user namespace
1019 * through from the parent mount to the submount don't support
1020 * unprivileged mounts with submounts.
1021 */
1022 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1023 return ERR_PTR(-EPERM);
1024
1025 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1026 }
1027 EXPORT_SYMBOL_GPL(vfs_submount);
1028
clone_mnt(struct mount * old,struct dentry * root,int flag)1029 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1030 int flag)
1031 {
1032 struct super_block *sb = old->mnt.mnt_sb;
1033 struct mount *mnt;
1034 int err;
1035
1036 mnt = alloc_vfsmnt(old->mnt_devname);
1037 if (!mnt)
1038 return ERR_PTR(-ENOMEM);
1039
1040 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1041 mnt->mnt_group_id = 0; /* not a peer of original */
1042 else
1043 mnt->mnt_group_id = old->mnt_group_id;
1044
1045 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1046 err = mnt_alloc_group_id(mnt);
1047 if (err)
1048 goto out_free;
1049 }
1050
1051 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1052 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1053
1054 atomic_inc(&sb->s_active);
1055 mnt->mnt.mnt_sb = sb;
1056 mnt->mnt.mnt_root = dget(root);
1057 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1058 mnt->mnt_parent = mnt;
1059 lock_mount_hash();
1060 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1061 unlock_mount_hash();
1062
1063 if ((flag & CL_SLAVE) ||
1064 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1065 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1066 mnt->mnt_master = old;
1067 CLEAR_MNT_SHARED(mnt);
1068 } else if (!(flag & CL_PRIVATE)) {
1069 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1070 list_add(&mnt->mnt_share, &old->mnt_share);
1071 if (IS_MNT_SLAVE(old))
1072 list_add(&mnt->mnt_slave, &old->mnt_slave);
1073 mnt->mnt_master = old->mnt_master;
1074 } else {
1075 CLEAR_MNT_SHARED(mnt);
1076 }
1077 if (flag & CL_MAKE_SHARED)
1078 set_mnt_shared(mnt);
1079
1080 /* stick the duplicate mount on the same expiry list
1081 * as the original if that was on one */
1082 if (flag & CL_EXPIRE) {
1083 if (!list_empty(&old->mnt_expire))
1084 list_add(&mnt->mnt_expire, &old->mnt_expire);
1085 }
1086
1087 return mnt;
1088
1089 out_free:
1090 mnt_free_id(mnt);
1091 free_vfsmnt(mnt);
1092 return ERR_PTR(err);
1093 }
1094
cleanup_mnt(struct mount * mnt)1095 static void cleanup_mnt(struct mount *mnt)
1096 {
1097 struct hlist_node *p;
1098 struct mount *m;
1099 /*
1100 * The warning here probably indicates that somebody messed
1101 * up a mnt_want/drop_write() pair. If this happens, the
1102 * filesystem was probably unable to make r/w->r/o transitions.
1103 * The locking used to deal with mnt_count decrement provides barriers,
1104 * so mnt_get_writers() below is safe.
1105 */
1106 WARN_ON(mnt_get_writers(mnt));
1107 if (unlikely(mnt->mnt_pins.first))
1108 mnt_pin_kill(mnt);
1109 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1110 hlist_del(&m->mnt_umount);
1111 mntput(&m->mnt);
1112 }
1113 fsnotify_vfsmount_delete(&mnt->mnt);
1114 dput(mnt->mnt.mnt_root);
1115 deactivate_super(mnt->mnt.mnt_sb);
1116 mnt_free_id(mnt);
1117 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1118 }
1119
__cleanup_mnt(struct rcu_head * head)1120 static void __cleanup_mnt(struct rcu_head *head)
1121 {
1122 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1123 }
1124
1125 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1126 static void delayed_mntput(struct work_struct *unused)
1127 {
1128 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1129 struct mount *m, *t;
1130
1131 llist_for_each_entry_safe(m, t, node, mnt_llist)
1132 cleanup_mnt(m);
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
mntput_no_expire(struct mount * mnt)1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 LIST_HEAD(list);
1139 int count;
1140
1141 rcu_read_lock();
1142 if (likely(READ_ONCE(mnt->mnt_ns))) {
1143 /*
1144 * Since we don't do lock_mount_hash() here,
1145 * ->mnt_ns can change under us. However, if it's
1146 * non-NULL, then there's a reference that won't
1147 * be dropped until after an RCU delay done after
1148 * turning ->mnt_ns NULL. So if we observe it
1149 * non-NULL under rcu_read_lock(), the reference
1150 * we are dropping is not the final one.
1151 */
1152 mnt_add_count(mnt, -1);
1153 rcu_read_unlock();
1154 return;
1155 }
1156 lock_mount_hash();
1157 /*
1158 * make sure that if __legitimize_mnt() has not seen us grab
1159 * mount_lock, we'll see their refcount increment here.
1160 */
1161 smp_mb();
1162 mnt_add_count(mnt, -1);
1163 count = mnt_get_count(mnt);
1164 if (count != 0) {
1165 WARN_ON(count < 0);
1166 rcu_read_unlock();
1167 unlock_mount_hash();
1168 return;
1169 }
1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 rcu_read_unlock();
1172 unlock_mount_hash();
1173 return;
1174 }
1175 mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 rcu_read_unlock();
1177
1178 list_del(&mnt->mnt_instance);
1179
1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 struct mount *p, *tmp;
1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1183 __put_mountpoint(unhash_mnt(p), &list);
1184 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1185 }
1186 }
1187 unlock_mount_hash();
1188 shrink_dentry_list(&list);
1189
1190 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1191 struct task_struct *task = current;
1192 if (likely(!(task->flags & PF_KTHREAD))) {
1193 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1194 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1195 return;
1196 }
1197 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1198 schedule_delayed_work(&delayed_mntput_work, 1);
1199 return;
1200 }
1201 cleanup_mnt(mnt);
1202 }
1203
mntput(struct vfsmount * mnt)1204 void mntput(struct vfsmount *mnt)
1205 {
1206 if (mnt) {
1207 struct mount *m = real_mount(mnt);
1208 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209 if (unlikely(m->mnt_expiry_mark))
1210 m->mnt_expiry_mark = 0;
1211 mntput_no_expire(m);
1212 }
1213 }
1214 EXPORT_SYMBOL(mntput);
1215
mntget(struct vfsmount * mnt)1216 struct vfsmount *mntget(struct vfsmount *mnt)
1217 {
1218 if (mnt)
1219 mnt_add_count(real_mount(mnt), 1);
1220 return mnt;
1221 }
1222 EXPORT_SYMBOL(mntget);
1223
1224 /* path_is_mountpoint() - Check if path is a mount in the current
1225 * namespace.
1226 *
1227 * d_mountpoint() can only be used reliably to establish if a dentry is
1228 * not mounted in any namespace and that common case is handled inline.
1229 * d_mountpoint() isn't aware of the possibility there may be multiple
1230 * mounts using a given dentry in a different namespace. This function
1231 * checks if the passed in path is a mountpoint rather than the dentry
1232 * alone.
1233 */
path_is_mountpoint(const struct path * path)1234 bool path_is_mountpoint(const struct path *path)
1235 {
1236 unsigned seq;
1237 bool res;
1238
1239 if (!d_mountpoint(path->dentry))
1240 return false;
1241
1242 rcu_read_lock();
1243 do {
1244 seq = read_seqbegin(&mount_lock);
1245 res = __path_is_mountpoint(path);
1246 } while (read_seqretry(&mount_lock, seq));
1247 rcu_read_unlock();
1248
1249 return res;
1250 }
1251 EXPORT_SYMBOL(path_is_mountpoint);
1252
mnt_clone_internal(const struct path * path)1253 struct vfsmount *mnt_clone_internal(const struct path *path)
1254 {
1255 struct mount *p;
1256 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1257 if (IS_ERR(p))
1258 return ERR_CAST(p);
1259 p->mnt.mnt_flags |= MNT_INTERNAL;
1260 return &p->mnt;
1261 }
1262
1263 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1264 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1265 struct list_head *p)
1266 {
1267 struct mount *mnt, *ret = NULL;
1268
1269 lock_ns_list(ns);
1270 list_for_each_continue(p, &ns->list) {
1271 mnt = list_entry(p, typeof(*mnt), mnt_list);
1272 if (!mnt_is_cursor(mnt)) {
1273 ret = mnt;
1274 break;
1275 }
1276 }
1277 unlock_ns_list(ns);
1278
1279 return ret;
1280 }
1281
1282 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1283 static void *m_start(struct seq_file *m, loff_t *pos)
1284 {
1285 struct proc_mounts *p = m->private;
1286 struct list_head *prev;
1287
1288 down_read(&namespace_sem);
1289 if (!*pos) {
1290 prev = &p->ns->list;
1291 } else {
1292 prev = &p->cursor.mnt_list;
1293
1294 /* Read after we'd reached the end? */
1295 if (list_empty(prev))
1296 return NULL;
1297 }
1298
1299 return mnt_list_next(p->ns, prev);
1300 }
1301
m_next(struct seq_file * m,void * v,loff_t * pos)1302 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1303 {
1304 struct proc_mounts *p = m->private;
1305 struct mount *mnt = v;
1306
1307 ++*pos;
1308 return mnt_list_next(p->ns, &mnt->mnt_list);
1309 }
1310
m_stop(struct seq_file * m,void * v)1311 static void m_stop(struct seq_file *m, void *v)
1312 {
1313 struct proc_mounts *p = m->private;
1314 struct mount *mnt = v;
1315
1316 lock_ns_list(p->ns);
1317 if (mnt)
1318 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1319 else
1320 list_del_init(&p->cursor.mnt_list);
1321 unlock_ns_list(p->ns);
1322 up_read(&namespace_sem);
1323 }
1324
m_show(struct seq_file * m,void * v)1325 static int m_show(struct seq_file *m, void *v)
1326 {
1327 struct proc_mounts *p = m->private;
1328 struct mount *r = v;
1329 return p->show(m, &r->mnt);
1330 }
1331
1332 const struct seq_operations mounts_op = {
1333 .start = m_start,
1334 .next = m_next,
1335 .stop = m_stop,
1336 .show = m_show,
1337 };
1338
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1339 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1340 {
1341 down_read(&namespace_sem);
1342 lock_ns_list(ns);
1343 list_del(&cursor->mnt_list);
1344 unlock_ns_list(ns);
1345 up_read(&namespace_sem);
1346 }
1347 #endif /* CONFIG_PROC_FS */
1348
1349 /**
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1352 *
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1355 * busy.
1356 */
may_umount_tree(struct vfsmount * m)1357 int may_umount_tree(struct vfsmount *m)
1358 {
1359 struct mount *mnt = real_mount(m);
1360 int actual_refs = 0;
1361 int minimum_refs = 0;
1362 struct mount *p;
1363 BUG_ON(!m);
1364
1365 /* write lock needed for mnt_get_count */
1366 lock_mount_hash();
1367 for (p = mnt; p; p = next_mnt(p, mnt)) {
1368 actual_refs += mnt_get_count(p);
1369 minimum_refs += 2;
1370 }
1371 unlock_mount_hash();
1372
1373 if (actual_refs > minimum_refs)
1374 return 0;
1375
1376 return 1;
1377 }
1378
1379 EXPORT_SYMBOL(may_umount_tree);
1380
1381 /**
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1384 *
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1389 *
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1393 */
may_umount(struct vfsmount * mnt)1394 int may_umount(struct vfsmount *mnt)
1395 {
1396 int ret = 1;
1397 down_read(&namespace_sem);
1398 lock_mount_hash();
1399 if (propagate_mount_busy(real_mount(mnt), 2))
1400 ret = 0;
1401 unlock_mount_hash();
1402 up_read(&namespace_sem);
1403 return ret;
1404 }
1405
1406 EXPORT_SYMBOL(may_umount);
1407
namespace_unlock(void)1408 static void namespace_unlock(void)
1409 {
1410 struct hlist_head head;
1411 struct hlist_node *p;
1412 struct mount *m;
1413 LIST_HEAD(list);
1414
1415 hlist_move_list(&unmounted, &head);
1416 list_splice_init(&ex_mountpoints, &list);
1417
1418 up_write(&namespace_sem);
1419
1420 shrink_dentry_list(&list);
1421
1422 if (likely(hlist_empty(&head)))
1423 return;
1424
1425 synchronize_rcu_expedited();
1426
1427 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1428 hlist_del(&m->mnt_umount);
1429 mntput(&m->mnt);
1430 }
1431 }
1432
namespace_lock(void)1433 static inline void namespace_lock(void)
1434 {
1435 down_write(&namespace_sem);
1436 }
1437
1438 enum umount_tree_flags {
1439 UMOUNT_SYNC = 1,
1440 UMOUNT_PROPAGATE = 2,
1441 UMOUNT_CONNECTED = 4,
1442 };
1443
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1444 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1445 {
1446 /* Leaving mounts connected is only valid for lazy umounts */
1447 if (how & UMOUNT_SYNC)
1448 return true;
1449
1450 /* A mount without a parent has nothing to be connected to */
1451 if (!mnt_has_parent(mnt))
1452 return true;
1453
1454 /* Because the reference counting rules change when mounts are
1455 * unmounted and connected, umounted mounts may not be
1456 * connected to mounted mounts.
1457 */
1458 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1459 return true;
1460
1461 /* Has it been requested that the mount remain connected? */
1462 if (how & UMOUNT_CONNECTED)
1463 return false;
1464
1465 /* Is the mount locked such that it needs to remain connected? */
1466 if (IS_MNT_LOCKED(mnt))
1467 return false;
1468
1469 /* By default disconnect the mount */
1470 return true;
1471 }
1472
1473 /*
1474 * mount_lock must be held
1475 * namespace_sem must be held for write
1476 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1477 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1478 {
1479 LIST_HEAD(tmp_list);
1480 struct mount *p;
1481
1482 if (how & UMOUNT_PROPAGATE)
1483 propagate_mount_unlock(mnt);
1484
1485 /* Gather the mounts to umount */
1486 for (p = mnt; p; p = next_mnt(p, mnt)) {
1487 p->mnt.mnt_flags |= MNT_UMOUNT;
1488 list_move(&p->mnt_list, &tmp_list);
1489 }
1490
1491 /* Hide the mounts from mnt_mounts */
1492 list_for_each_entry(p, &tmp_list, mnt_list) {
1493 list_del_init(&p->mnt_child);
1494 }
1495
1496 /* Add propogated mounts to the tmp_list */
1497 if (how & UMOUNT_PROPAGATE)
1498 propagate_umount(&tmp_list);
1499
1500 while (!list_empty(&tmp_list)) {
1501 struct mnt_namespace *ns;
1502 bool disconnect;
1503 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1504 list_del_init(&p->mnt_expire);
1505 list_del_init(&p->mnt_list);
1506 ns = p->mnt_ns;
1507 if (ns) {
1508 ns->mounts--;
1509 __touch_mnt_namespace(ns);
1510 }
1511 p->mnt_ns = NULL;
1512 if (how & UMOUNT_SYNC)
1513 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1514
1515 disconnect = disconnect_mount(p, how);
1516 if (mnt_has_parent(p)) {
1517 mnt_add_count(p->mnt_parent, -1);
1518 if (!disconnect) {
1519 /* Don't forget about p */
1520 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521 } else {
1522 umount_mnt(p);
1523 }
1524 }
1525 change_mnt_propagation(p, MS_PRIVATE);
1526 if (disconnect)
1527 hlist_add_head(&p->mnt_umount, &unmounted);
1528 }
1529 }
1530
1531 static void shrink_submounts(struct mount *mnt);
1532
do_umount_root(struct super_block * sb)1533 static int do_umount_root(struct super_block *sb)
1534 {
1535 int ret = 0;
1536
1537 down_write(&sb->s_umount);
1538 if (!sb_rdonly(sb)) {
1539 struct fs_context *fc;
1540
1541 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1542 SB_RDONLY);
1543 if (IS_ERR(fc)) {
1544 ret = PTR_ERR(fc);
1545 } else {
1546 ret = parse_monolithic_mount_data(fc, NULL);
1547 if (!ret)
1548 ret = reconfigure_super(fc);
1549 put_fs_context(fc);
1550 }
1551 }
1552 up_write(&sb->s_umount);
1553 return ret;
1554 }
1555
do_umount(struct mount * mnt,int flags)1556 static int do_umount(struct mount *mnt, int flags)
1557 {
1558 struct super_block *sb = mnt->mnt.mnt_sb;
1559 int retval;
1560
1561 retval = security_sb_umount(&mnt->mnt, flags);
1562 if (retval)
1563 return retval;
1564
1565 /*
1566 * Allow userspace to request a mountpoint be expired rather than
1567 * unmounting unconditionally. Unmount only happens if:
1568 * (1) the mark is already set (the mark is cleared by mntput())
1569 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1570 */
1571 if (flags & MNT_EXPIRE) {
1572 if (&mnt->mnt == current->fs->root.mnt ||
1573 flags & (MNT_FORCE | MNT_DETACH))
1574 return -EINVAL;
1575
1576 /*
1577 * probably don't strictly need the lock here if we examined
1578 * all race cases, but it's a slowpath.
1579 */
1580 lock_mount_hash();
1581 if (mnt_get_count(mnt) != 2) {
1582 unlock_mount_hash();
1583 return -EBUSY;
1584 }
1585 unlock_mount_hash();
1586
1587 if (!xchg(&mnt->mnt_expiry_mark, 1))
1588 return -EAGAIN;
1589 }
1590
1591 /*
1592 * If we may have to abort operations to get out of this
1593 * mount, and they will themselves hold resources we must
1594 * allow the fs to do things. In the Unix tradition of
1595 * 'Gee thats tricky lets do it in userspace' the umount_begin
1596 * might fail to complete on the first run through as other tasks
1597 * must return, and the like. Thats for the mount program to worry
1598 * about for the moment.
1599 */
1600
1601 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1602 sb->s_op->umount_begin(sb);
1603 }
1604
1605 /*
1606 * No sense to grab the lock for this test, but test itself looks
1607 * somewhat bogus. Suggestions for better replacement?
1608 * Ho-hum... In principle, we might treat that as umount + switch
1609 * to rootfs. GC would eventually take care of the old vfsmount.
1610 * Actually it makes sense, especially if rootfs would contain a
1611 * /reboot - static binary that would close all descriptors and
1612 * call reboot(9). Then init(8) could umount root and exec /reboot.
1613 */
1614 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1615 /*
1616 * Special case for "unmounting" root ...
1617 * we just try to remount it readonly.
1618 */
1619 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1620 return -EPERM;
1621 return do_umount_root(sb);
1622 }
1623
1624 namespace_lock();
1625 lock_mount_hash();
1626
1627 /* Recheck MNT_LOCKED with the locks held */
1628 retval = -EINVAL;
1629 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 goto out;
1631
1632 event++;
1633 if (flags & MNT_DETACH) {
1634 if (!list_empty(&mnt->mnt_list))
1635 umount_tree(mnt, UMOUNT_PROPAGATE);
1636 retval = 0;
1637 } else {
1638 shrink_submounts(mnt);
1639 retval = -EBUSY;
1640 if (!propagate_mount_busy(mnt, 2)) {
1641 if (!list_empty(&mnt->mnt_list))
1642 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1643 retval = 0;
1644 }
1645 }
1646 out:
1647 unlock_mount_hash();
1648 namespace_unlock();
1649 return retval;
1650 }
1651
1652 /*
1653 * __detach_mounts - lazily unmount all mounts on the specified dentry
1654 *
1655 * During unlink, rmdir, and d_drop it is possible to loose the path
1656 * to an existing mountpoint, and wind up leaking the mount.
1657 * detach_mounts allows lazily unmounting those mounts instead of
1658 * leaking them.
1659 *
1660 * The caller may hold dentry->d_inode->i_mutex.
1661 */
__detach_mounts(struct dentry * dentry)1662 void __detach_mounts(struct dentry *dentry)
1663 {
1664 struct mountpoint *mp;
1665 struct mount *mnt;
1666
1667 namespace_lock();
1668 lock_mount_hash();
1669 mp = lookup_mountpoint(dentry);
1670 if (!mp)
1671 goto out_unlock;
1672
1673 event++;
1674 while (!hlist_empty(&mp->m_list)) {
1675 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1676 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1677 umount_mnt(mnt);
1678 hlist_add_head(&mnt->mnt_umount, &unmounted);
1679 }
1680 else umount_tree(mnt, UMOUNT_CONNECTED);
1681 }
1682 put_mountpoint(mp);
1683 out_unlock:
1684 unlock_mount_hash();
1685 namespace_unlock();
1686 }
1687
1688 /*
1689 * Is the caller allowed to modify his namespace?
1690 */
may_mount(void)1691 static inline bool may_mount(void)
1692 {
1693 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1694 }
1695
1696 #ifdef CONFIG_MANDATORY_FILE_LOCKING
may_mandlock(void)1697 static bool may_mandlock(void)
1698 {
1699 pr_warn_once("======================================================\n"
1700 "WARNING: the mand mount option is being deprecated and\n"
1701 " will be removed in v5.15!\n"
1702 "======================================================\n");
1703 return capable(CAP_SYS_ADMIN);
1704 }
1705 #else
may_mandlock(void)1706 static inline bool may_mandlock(void)
1707 {
1708 pr_warn("VFS: \"mand\" mount option not supported");
1709 return false;
1710 }
1711 #endif
1712
can_umount(const struct path * path,int flags)1713 static int can_umount(const struct path *path, int flags)
1714 {
1715 struct mount *mnt = real_mount(path->mnt);
1716
1717 if (!may_mount())
1718 return -EPERM;
1719 if (path->dentry != path->mnt->mnt_root)
1720 return -EINVAL;
1721 if (!check_mnt(mnt))
1722 return -EINVAL;
1723 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1724 return -EINVAL;
1725 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1726 return -EPERM;
1727 return 0;
1728 }
1729
1730 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1731 int path_umount(struct path *path, int flags)
1732 {
1733 struct mount *mnt = real_mount(path->mnt);
1734 int ret;
1735
1736 ret = can_umount(path, flags);
1737 if (!ret)
1738 ret = do_umount(mnt, flags);
1739
1740 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1741 dput(path->dentry);
1742 mntput_no_expire(mnt);
1743 return ret;
1744 }
1745
ksys_umount(char __user * name,int flags)1746 static int ksys_umount(char __user *name, int flags)
1747 {
1748 int lookup_flags = LOOKUP_MOUNTPOINT;
1749 struct path path;
1750 int ret;
1751
1752 // basic validity checks done first
1753 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1754 return -EINVAL;
1755
1756 if (!(flags & UMOUNT_NOFOLLOW))
1757 lookup_flags |= LOOKUP_FOLLOW;
1758 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1759 if (ret)
1760 return ret;
1761 return path_umount(&path, flags);
1762 }
1763
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1764 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1765 {
1766 return ksys_umount(name, flags);
1767 }
1768
1769 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1770
1771 /*
1772 * The 2.0 compatible umount. No flags.
1773 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1774 SYSCALL_DEFINE1(oldumount, char __user *, name)
1775 {
1776 return ksys_umount(name, 0);
1777 }
1778
1779 #endif
1780
is_mnt_ns_file(struct dentry * dentry)1781 static bool is_mnt_ns_file(struct dentry *dentry)
1782 {
1783 /* Is this a proxy for a mount namespace? */
1784 return dentry->d_op == &ns_dentry_operations &&
1785 dentry->d_fsdata == &mntns_operations;
1786 }
1787
to_mnt_ns(struct ns_common * ns)1788 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1789 {
1790 return container_of(ns, struct mnt_namespace, ns);
1791 }
1792
from_mnt_ns(struct mnt_namespace * mnt)1793 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1794 {
1795 return &mnt->ns;
1796 }
1797
mnt_ns_loop(struct dentry * dentry)1798 static bool mnt_ns_loop(struct dentry *dentry)
1799 {
1800 /* Could bind mounting the mount namespace inode cause a
1801 * mount namespace loop?
1802 */
1803 struct mnt_namespace *mnt_ns;
1804 if (!is_mnt_ns_file(dentry))
1805 return false;
1806
1807 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1808 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1809 }
1810
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1811 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1812 int flag)
1813 {
1814 struct mount *res, *p, *q, *r, *parent;
1815
1816 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1817 return ERR_PTR(-EINVAL);
1818
1819 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1820 return ERR_PTR(-EINVAL);
1821
1822 res = q = clone_mnt(mnt, dentry, flag);
1823 if (IS_ERR(q))
1824 return q;
1825
1826 q->mnt_mountpoint = mnt->mnt_mountpoint;
1827
1828 p = mnt;
1829 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1830 struct mount *s;
1831 if (!is_subdir(r->mnt_mountpoint, dentry))
1832 continue;
1833
1834 for (s = r; s; s = next_mnt(s, r)) {
1835 if (!(flag & CL_COPY_UNBINDABLE) &&
1836 IS_MNT_UNBINDABLE(s)) {
1837 if (s->mnt.mnt_flags & MNT_LOCKED) {
1838 /* Both unbindable and locked. */
1839 q = ERR_PTR(-EPERM);
1840 goto out;
1841 } else {
1842 s = skip_mnt_tree(s);
1843 continue;
1844 }
1845 }
1846 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1847 is_mnt_ns_file(s->mnt.mnt_root)) {
1848 s = skip_mnt_tree(s);
1849 continue;
1850 }
1851 while (p != s->mnt_parent) {
1852 p = p->mnt_parent;
1853 q = q->mnt_parent;
1854 }
1855 p = s;
1856 parent = q;
1857 q = clone_mnt(p, p->mnt.mnt_root, flag);
1858 if (IS_ERR(q))
1859 goto out;
1860 lock_mount_hash();
1861 list_add_tail(&q->mnt_list, &res->mnt_list);
1862 attach_mnt(q, parent, p->mnt_mp);
1863 unlock_mount_hash();
1864 }
1865 }
1866 return res;
1867 out:
1868 if (res) {
1869 lock_mount_hash();
1870 umount_tree(res, UMOUNT_SYNC);
1871 unlock_mount_hash();
1872 }
1873 return q;
1874 }
1875
1876 /* Caller should check returned pointer for errors */
1877
collect_mounts(const struct path * path)1878 struct vfsmount *collect_mounts(const struct path *path)
1879 {
1880 struct mount *tree;
1881 namespace_lock();
1882 if (!check_mnt(real_mount(path->mnt)))
1883 tree = ERR_PTR(-EINVAL);
1884 else
1885 tree = copy_tree(real_mount(path->mnt), path->dentry,
1886 CL_COPY_ALL | CL_PRIVATE);
1887 namespace_unlock();
1888 if (IS_ERR(tree))
1889 return ERR_CAST(tree);
1890 return &tree->mnt;
1891 }
1892
1893 static void free_mnt_ns(struct mnt_namespace *);
1894 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1895
dissolve_on_fput(struct vfsmount * mnt)1896 void dissolve_on_fput(struct vfsmount *mnt)
1897 {
1898 struct mnt_namespace *ns;
1899 namespace_lock();
1900 lock_mount_hash();
1901 ns = real_mount(mnt)->mnt_ns;
1902 if (ns) {
1903 if (is_anon_ns(ns))
1904 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1905 else
1906 ns = NULL;
1907 }
1908 unlock_mount_hash();
1909 namespace_unlock();
1910 if (ns)
1911 free_mnt_ns(ns);
1912 }
1913
drop_collected_mounts(struct vfsmount * mnt)1914 void drop_collected_mounts(struct vfsmount *mnt)
1915 {
1916 namespace_lock();
1917 lock_mount_hash();
1918 umount_tree(real_mount(mnt), 0);
1919 unlock_mount_hash();
1920 namespace_unlock();
1921 }
1922
has_locked_children(struct mount * mnt,struct dentry * dentry)1923 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1924 {
1925 struct mount *child;
1926
1927 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1928 if (!is_subdir(child->mnt_mountpoint, dentry))
1929 continue;
1930
1931 if (child->mnt.mnt_flags & MNT_LOCKED)
1932 return true;
1933 }
1934 return false;
1935 }
1936
1937 /**
1938 * clone_private_mount - create a private clone of a path
1939 *
1940 * This creates a new vfsmount, which will be the clone of @path. The new will
1941 * not be attached anywhere in the namespace and will be private (i.e. changes
1942 * to the originating mount won't be propagated into this).
1943 *
1944 * Release with mntput().
1945 */
clone_private_mount(const struct path * path)1946 struct vfsmount *clone_private_mount(const struct path *path)
1947 {
1948 struct mount *old_mnt = real_mount(path->mnt);
1949 struct mount *new_mnt;
1950
1951 down_read(&namespace_sem);
1952 if (IS_MNT_UNBINDABLE(old_mnt))
1953 goto invalid;
1954
1955 if (!check_mnt(old_mnt))
1956 goto invalid;
1957
1958 if (has_locked_children(old_mnt, path->dentry))
1959 goto invalid;
1960
1961 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1962 up_read(&namespace_sem);
1963
1964 if (IS_ERR(new_mnt))
1965 return ERR_CAST(new_mnt);
1966
1967 /* Longterm mount to be removed by kern_unmount*() */
1968 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1969
1970 return &new_mnt->mnt;
1971
1972 invalid:
1973 up_read(&namespace_sem);
1974 return ERR_PTR(-EINVAL);
1975 }
1976 EXPORT_SYMBOL_GPL(clone_private_mount);
1977
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1978 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1979 struct vfsmount *root)
1980 {
1981 struct mount *mnt;
1982 int res = f(root, arg);
1983 if (res)
1984 return res;
1985 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1986 res = f(&mnt->mnt, arg);
1987 if (res)
1988 return res;
1989 }
1990 return 0;
1991 }
1992
lock_mnt_tree(struct mount * mnt)1993 static void lock_mnt_tree(struct mount *mnt)
1994 {
1995 struct mount *p;
1996
1997 for (p = mnt; p; p = next_mnt(p, mnt)) {
1998 int flags = p->mnt.mnt_flags;
1999 /* Don't allow unprivileged users to change mount flags */
2000 flags |= MNT_LOCK_ATIME;
2001
2002 if (flags & MNT_READONLY)
2003 flags |= MNT_LOCK_READONLY;
2004
2005 if (flags & MNT_NODEV)
2006 flags |= MNT_LOCK_NODEV;
2007
2008 if (flags & MNT_NOSUID)
2009 flags |= MNT_LOCK_NOSUID;
2010
2011 if (flags & MNT_NOEXEC)
2012 flags |= MNT_LOCK_NOEXEC;
2013 /* Don't allow unprivileged users to reveal what is under a mount */
2014 if (list_empty(&p->mnt_expire))
2015 flags |= MNT_LOCKED;
2016 p->mnt.mnt_flags = flags;
2017 }
2018 }
2019
cleanup_group_ids(struct mount * mnt,struct mount * end)2020 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2021 {
2022 struct mount *p;
2023
2024 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2025 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2026 mnt_release_group_id(p);
2027 }
2028 }
2029
invent_group_ids(struct mount * mnt,bool recurse)2030 static int invent_group_ids(struct mount *mnt, bool recurse)
2031 {
2032 struct mount *p;
2033
2034 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2035 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2036 int err = mnt_alloc_group_id(p);
2037 if (err) {
2038 cleanup_group_ids(mnt, p);
2039 return err;
2040 }
2041 }
2042 }
2043
2044 return 0;
2045 }
2046
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2047 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2048 {
2049 unsigned int max = READ_ONCE(sysctl_mount_max);
2050 unsigned int mounts = 0, old, pending, sum;
2051 struct mount *p;
2052
2053 for (p = mnt; p; p = next_mnt(p, mnt))
2054 mounts++;
2055
2056 old = ns->mounts;
2057 pending = ns->pending_mounts;
2058 sum = old + pending;
2059 if ((old > sum) ||
2060 (pending > sum) ||
2061 (max < sum) ||
2062 (mounts > (max - sum)))
2063 return -ENOSPC;
2064
2065 ns->pending_mounts = pending + mounts;
2066 return 0;
2067 }
2068
2069 /*
2070 * @source_mnt : mount tree to be attached
2071 * @nd : place the mount tree @source_mnt is attached
2072 * @parent_nd : if non-null, detach the source_mnt from its parent and
2073 * store the parent mount and mountpoint dentry.
2074 * (done when source_mnt is moved)
2075 *
2076 * NOTE: in the table below explains the semantics when a source mount
2077 * of a given type is attached to a destination mount of a given type.
2078 * ---------------------------------------------------------------------------
2079 * | BIND MOUNT OPERATION |
2080 * |**************************************************************************
2081 * | source-->| shared | private | slave | unbindable |
2082 * | dest | | | | |
2083 * | | | | | | |
2084 * | v | | | | |
2085 * |**************************************************************************
2086 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2087 * | | | | | |
2088 * |non-shared| shared (+) | private | slave (*) | invalid |
2089 * ***************************************************************************
2090 * A bind operation clones the source mount and mounts the clone on the
2091 * destination mount.
2092 *
2093 * (++) the cloned mount is propagated to all the mounts in the propagation
2094 * tree of the destination mount and the cloned mount is added to
2095 * the peer group of the source mount.
2096 * (+) the cloned mount is created under the destination mount and is marked
2097 * as shared. The cloned mount is added to the peer group of the source
2098 * mount.
2099 * (+++) the mount is propagated to all the mounts in the propagation tree
2100 * of the destination mount and the cloned mount is made slave
2101 * of the same master as that of the source mount. The cloned mount
2102 * is marked as 'shared and slave'.
2103 * (*) the cloned mount is made a slave of the same master as that of the
2104 * source mount.
2105 *
2106 * ---------------------------------------------------------------------------
2107 * | MOVE MOUNT OPERATION |
2108 * |**************************************************************************
2109 * | source-->| shared | private | slave | unbindable |
2110 * | dest | | | | |
2111 * | | | | | | |
2112 * | v | | | | |
2113 * |**************************************************************************
2114 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2115 * | | | | | |
2116 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2117 * ***************************************************************************
2118 *
2119 * (+) the mount is moved to the destination. And is then propagated to
2120 * all the mounts in the propagation tree of the destination mount.
2121 * (+*) the mount is moved to the destination.
2122 * (+++) the mount is moved to the destination and is then propagated to
2123 * all the mounts belonging to the destination mount's propagation tree.
2124 * the mount is marked as 'shared and slave'.
2125 * (*) the mount continues to be a slave at the new location.
2126 *
2127 * if the source mount is a tree, the operations explained above is
2128 * applied to each mount in the tree.
2129 * Must be called without spinlocks held, since this function can sleep
2130 * in allocations.
2131 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2132 static int attach_recursive_mnt(struct mount *source_mnt,
2133 struct mount *dest_mnt,
2134 struct mountpoint *dest_mp,
2135 bool moving)
2136 {
2137 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2138 HLIST_HEAD(tree_list);
2139 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2140 struct mountpoint *smp;
2141 struct mount *child, *p;
2142 struct hlist_node *n;
2143 int err;
2144
2145 /* Preallocate a mountpoint in case the new mounts need
2146 * to be tucked under other mounts.
2147 */
2148 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2149 if (IS_ERR(smp))
2150 return PTR_ERR(smp);
2151
2152 /* Is there space to add these mounts to the mount namespace? */
2153 if (!moving) {
2154 err = count_mounts(ns, source_mnt);
2155 if (err)
2156 goto out;
2157 }
2158
2159 if (IS_MNT_SHARED(dest_mnt)) {
2160 err = invent_group_ids(source_mnt, true);
2161 if (err)
2162 goto out;
2163 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2164 lock_mount_hash();
2165 if (err)
2166 goto out_cleanup_ids;
2167 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2168 set_mnt_shared(p);
2169 } else {
2170 lock_mount_hash();
2171 }
2172 if (moving) {
2173 unhash_mnt(source_mnt);
2174 attach_mnt(source_mnt, dest_mnt, dest_mp);
2175 touch_mnt_namespace(source_mnt->mnt_ns);
2176 } else {
2177 if (source_mnt->mnt_ns) {
2178 /* move from anon - the caller will destroy */
2179 list_del_init(&source_mnt->mnt_ns->list);
2180 }
2181 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2182 commit_tree(source_mnt);
2183 }
2184
2185 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2186 struct mount *q;
2187 hlist_del_init(&child->mnt_hash);
2188 q = __lookup_mnt(&child->mnt_parent->mnt,
2189 child->mnt_mountpoint);
2190 if (q)
2191 mnt_change_mountpoint(child, smp, q);
2192 /* Notice when we are propagating across user namespaces */
2193 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2194 lock_mnt_tree(child);
2195 child->mnt.mnt_flags &= ~MNT_LOCKED;
2196 commit_tree(child);
2197 }
2198 put_mountpoint(smp);
2199 unlock_mount_hash();
2200
2201 return 0;
2202
2203 out_cleanup_ids:
2204 while (!hlist_empty(&tree_list)) {
2205 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2206 child->mnt_parent->mnt_ns->pending_mounts = 0;
2207 umount_tree(child, UMOUNT_SYNC);
2208 }
2209 unlock_mount_hash();
2210 cleanup_group_ids(source_mnt, NULL);
2211 out:
2212 ns->pending_mounts = 0;
2213
2214 read_seqlock_excl(&mount_lock);
2215 put_mountpoint(smp);
2216 read_sequnlock_excl(&mount_lock);
2217
2218 return err;
2219 }
2220
lock_mount(struct path * path)2221 static struct mountpoint *lock_mount(struct path *path)
2222 {
2223 struct vfsmount *mnt;
2224 struct dentry *dentry = path->dentry;
2225 retry:
2226 inode_lock(dentry->d_inode);
2227 if (unlikely(cant_mount(dentry))) {
2228 inode_unlock(dentry->d_inode);
2229 return ERR_PTR(-ENOENT);
2230 }
2231 namespace_lock();
2232 mnt = lookup_mnt(path);
2233 if (likely(!mnt)) {
2234 struct mountpoint *mp = get_mountpoint(dentry);
2235 if (IS_ERR(mp)) {
2236 namespace_unlock();
2237 inode_unlock(dentry->d_inode);
2238 return mp;
2239 }
2240 return mp;
2241 }
2242 namespace_unlock();
2243 inode_unlock(path->dentry->d_inode);
2244 path_put(path);
2245 path->mnt = mnt;
2246 dentry = path->dentry = dget(mnt->mnt_root);
2247 goto retry;
2248 }
2249
unlock_mount(struct mountpoint * where)2250 static void unlock_mount(struct mountpoint *where)
2251 {
2252 struct dentry *dentry = where->m_dentry;
2253
2254 read_seqlock_excl(&mount_lock);
2255 put_mountpoint(where);
2256 read_sequnlock_excl(&mount_lock);
2257
2258 namespace_unlock();
2259 inode_unlock(dentry->d_inode);
2260 }
2261
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2262 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2263 {
2264 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2265 return -EINVAL;
2266
2267 if (d_is_dir(mp->m_dentry) !=
2268 d_is_dir(mnt->mnt.mnt_root))
2269 return -ENOTDIR;
2270
2271 return attach_recursive_mnt(mnt, p, mp, false);
2272 }
2273
2274 /*
2275 * Sanity check the flags to change_mnt_propagation.
2276 */
2277
flags_to_propagation_type(int ms_flags)2278 static int flags_to_propagation_type(int ms_flags)
2279 {
2280 int type = ms_flags & ~(MS_REC | MS_SILENT);
2281
2282 /* Fail if any non-propagation flags are set */
2283 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2284 return 0;
2285 /* Only one propagation flag should be set */
2286 if (!is_power_of_2(type))
2287 return 0;
2288 return type;
2289 }
2290
2291 /*
2292 * recursively change the type of the mountpoint.
2293 */
do_change_type(struct path * path,int ms_flags)2294 static int do_change_type(struct path *path, int ms_flags)
2295 {
2296 struct mount *m;
2297 struct mount *mnt = real_mount(path->mnt);
2298 int recurse = ms_flags & MS_REC;
2299 int type;
2300 int err = 0;
2301
2302 if (path->dentry != path->mnt->mnt_root)
2303 return -EINVAL;
2304
2305 type = flags_to_propagation_type(ms_flags);
2306 if (!type)
2307 return -EINVAL;
2308
2309 namespace_lock();
2310 if (!check_mnt(mnt)) {
2311 err = -EINVAL;
2312 goto out_unlock;
2313 }
2314 if (type == MS_SHARED) {
2315 err = invent_group_ids(mnt, recurse);
2316 if (err)
2317 goto out_unlock;
2318 }
2319
2320 lock_mount_hash();
2321 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2322 change_mnt_propagation(m, type);
2323 unlock_mount_hash();
2324
2325 out_unlock:
2326 namespace_unlock();
2327 return err;
2328 }
2329
__do_loopback(struct path * old_path,int recurse)2330 static struct mount *__do_loopback(struct path *old_path, int recurse)
2331 {
2332 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2333
2334 if (IS_MNT_UNBINDABLE(old))
2335 return mnt;
2336
2337 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2338 return mnt;
2339
2340 if (!recurse && has_locked_children(old, old_path->dentry))
2341 return mnt;
2342
2343 if (recurse)
2344 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2345 else
2346 mnt = clone_mnt(old, old_path->dentry, 0);
2347
2348 if (!IS_ERR(mnt))
2349 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2350
2351 return mnt;
2352 }
2353
2354 /*
2355 * do loopback mount.
2356 */
do_loopback(struct path * path,const char * old_name,int recurse)2357 static int do_loopback(struct path *path, const char *old_name,
2358 int recurse)
2359 {
2360 struct path old_path;
2361 struct mount *mnt = NULL, *parent;
2362 struct mountpoint *mp;
2363 int err;
2364 if (!old_name || !*old_name)
2365 return -EINVAL;
2366 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2367 if (err)
2368 return err;
2369
2370 err = -EINVAL;
2371 if (mnt_ns_loop(old_path.dentry))
2372 goto out;
2373
2374 mp = lock_mount(path);
2375 if (IS_ERR(mp)) {
2376 err = PTR_ERR(mp);
2377 goto out;
2378 }
2379
2380 parent = real_mount(path->mnt);
2381 if (!check_mnt(parent))
2382 goto out2;
2383
2384 mnt = __do_loopback(&old_path, recurse);
2385 if (IS_ERR(mnt)) {
2386 err = PTR_ERR(mnt);
2387 goto out2;
2388 }
2389
2390 err = graft_tree(mnt, parent, mp);
2391 if (err) {
2392 lock_mount_hash();
2393 umount_tree(mnt, UMOUNT_SYNC);
2394 unlock_mount_hash();
2395 }
2396 out2:
2397 unlock_mount(mp);
2398 out:
2399 path_put(&old_path);
2400 return err;
2401 }
2402
open_detached_copy(struct path * path,bool recursive)2403 static struct file *open_detached_copy(struct path *path, bool recursive)
2404 {
2405 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2406 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2407 struct mount *mnt, *p;
2408 struct file *file;
2409
2410 if (IS_ERR(ns))
2411 return ERR_CAST(ns);
2412
2413 namespace_lock();
2414 mnt = __do_loopback(path, recursive);
2415 if (IS_ERR(mnt)) {
2416 namespace_unlock();
2417 free_mnt_ns(ns);
2418 return ERR_CAST(mnt);
2419 }
2420
2421 lock_mount_hash();
2422 for (p = mnt; p; p = next_mnt(p, mnt)) {
2423 p->mnt_ns = ns;
2424 ns->mounts++;
2425 }
2426 ns->root = mnt;
2427 list_add_tail(&ns->list, &mnt->mnt_list);
2428 mntget(&mnt->mnt);
2429 unlock_mount_hash();
2430 namespace_unlock();
2431
2432 mntput(path->mnt);
2433 path->mnt = &mnt->mnt;
2434 file = dentry_open(path, O_PATH, current_cred());
2435 if (IS_ERR(file))
2436 dissolve_on_fput(path->mnt);
2437 else
2438 file->f_mode |= FMODE_NEED_UNMOUNT;
2439 return file;
2440 }
2441
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2442 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2443 {
2444 struct file *file;
2445 struct path path;
2446 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2447 bool detached = flags & OPEN_TREE_CLONE;
2448 int error;
2449 int fd;
2450
2451 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2452
2453 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2454 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2455 OPEN_TREE_CLOEXEC))
2456 return -EINVAL;
2457
2458 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2459 return -EINVAL;
2460
2461 if (flags & AT_NO_AUTOMOUNT)
2462 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2463 if (flags & AT_SYMLINK_NOFOLLOW)
2464 lookup_flags &= ~LOOKUP_FOLLOW;
2465 if (flags & AT_EMPTY_PATH)
2466 lookup_flags |= LOOKUP_EMPTY;
2467
2468 if (detached && !may_mount())
2469 return -EPERM;
2470
2471 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2472 if (fd < 0)
2473 return fd;
2474
2475 error = user_path_at(dfd, filename, lookup_flags, &path);
2476 if (unlikely(error)) {
2477 file = ERR_PTR(error);
2478 } else {
2479 if (detached)
2480 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2481 else
2482 file = dentry_open(&path, O_PATH, current_cred());
2483 path_put(&path);
2484 }
2485 if (IS_ERR(file)) {
2486 put_unused_fd(fd);
2487 return PTR_ERR(file);
2488 }
2489 fd_install(fd, file);
2490 return fd;
2491 }
2492
2493 /*
2494 * Don't allow locked mount flags to be cleared.
2495 *
2496 * No locks need to be held here while testing the various MNT_LOCK
2497 * flags because those flags can never be cleared once they are set.
2498 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2499 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2500 {
2501 unsigned int fl = mnt->mnt.mnt_flags;
2502
2503 if ((fl & MNT_LOCK_READONLY) &&
2504 !(mnt_flags & MNT_READONLY))
2505 return false;
2506
2507 if ((fl & MNT_LOCK_NODEV) &&
2508 !(mnt_flags & MNT_NODEV))
2509 return false;
2510
2511 if ((fl & MNT_LOCK_NOSUID) &&
2512 !(mnt_flags & MNT_NOSUID))
2513 return false;
2514
2515 if ((fl & MNT_LOCK_NOEXEC) &&
2516 !(mnt_flags & MNT_NOEXEC))
2517 return false;
2518
2519 if ((fl & MNT_LOCK_ATIME) &&
2520 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2521 return false;
2522
2523 return true;
2524 }
2525
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2526 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2527 {
2528 bool readonly_request = (mnt_flags & MNT_READONLY);
2529
2530 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2531 return 0;
2532
2533 if (readonly_request)
2534 return mnt_make_readonly(mnt);
2535
2536 return __mnt_unmake_readonly(mnt);
2537 }
2538
2539 /*
2540 * Update the user-settable attributes on a mount. The caller must hold
2541 * sb->s_umount for writing.
2542 */
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2543 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2544 {
2545 lock_mount_hash();
2546 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2547 mnt->mnt.mnt_flags = mnt_flags;
2548 touch_mnt_namespace(mnt->mnt_ns);
2549 unlock_mount_hash();
2550 }
2551
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2552 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2553 {
2554 struct super_block *sb = mnt->mnt_sb;
2555
2556 if (!__mnt_is_readonly(mnt) &&
2557 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2558 char *buf = (char *)__get_free_page(GFP_KERNEL);
2559 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2560 struct tm tm;
2561
2562 time64_to_tm(sb->s_time_max, 0, &tm);
2563
2564 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2565 sb->s_type->name,
2566 is_mounted(mnt) ? "remounted" : "mounted",
2567 mntpath,
2568 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2569
2570 free_page((unsigned long)buf);
2571 }
2572 }
2573
2574 /*
2575 * Handle reconfiguration of the mountpoint only without alteration of the
2576 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2577 * to mount(2).
2578 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2579 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2580 {
2581 struct super_block *sb = path->mnt->mnt_sb;
2582 struct mount *mnt = real_mount(path->mnt);
2583 int ret;
2584
2585 if (!check_mnt(mnt))
2586 return -EINVAL;
2587
2588 if (path->dentry != mnt->mnt.mnt_root)
2589 return -EINVAL;
2590
2591 if (!can_change_locked_flags(mnt, mnt_flags))
2592 return -EPERM;
2593
2594 down_write(&sb->s_umount);
2595 ret = change_mount_ro_state(mnt, mnt_flags);
2596 if (ret == 0)
2597 set_mount_attributes(mnt, mnt_flags);
2598 up_write(&sb->s_umount);
2599
2600 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2601
2602 return ret;
2603 }
2604
2605 /*
2606 * change filesystem flags. dir should be a physical root of filesystem.
2607 * If you've mounted a non-root directory somewhere and want to do remount
2608 * on it - tough luck.
2609 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2610 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2611 int mnt_flags, void *data)
2612 {
2613 int err;
2614 struct super_block *sb = path->mnt->mnt_sb;
2615 struct mount *mnt = real_mount(path->mnt);
2616 struct fs_context *fc;
2617
2618 if (!check_mnt(mnt))
2619 return -EINVAL;
2620
2621 if (path->dentry != path->mnt->mnt_root)
2622 return -EINVAL;
2623
2624 if (!can_change_locked_flags(mnt, mnt_flags))
2625 return -EPERM;
2626
2627 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2628 if (IS_ERR(fc))
2629 return PTR_ERR(fc);
2630
2631 /*
2632 * Indicate to the filesystem that the remount request is coming
2633 * from the legacy mount system call.
2634 */
2635 fc->oldapi = true;
2636
2637 err = parse_monolithic_mount_data(fc, data);
2638 if (!err) {
2639 down_write(&sb->s_umount);
2640 err = -EPERM;
2641 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2642 err = reconfigure_super(fc);
2643 if (!err)
2644 set_mount_attributes(mnt, mnt_flags);
2645 }
2646 up_write(&sb->s_umount);
2647 }
2648
2649 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2650
2651 put_fs_context(fc);
2652 return err;
2653 }
2654
tree_contains_unbindable(struct mount * mnt)2655 static inline int tree_contains_unbindable(struct mount *mnt)
2656 {
2657 struct mount *p;
2658 for (p = mnt; p; p = next_mnt(p, mnt)) {
2659 if (IS_MNT_UNBINDABLE(p))
2660 return 1;
2661 }
2662 return 0;
2663 }
2664
2665 /*
2666 * Check that there aren't references to earlier/same mount namespaces in the
2667 * specified subtree. Such references can act as pins for mount namespaces
2668 * that aren't checked by the mount-cycle checking code, thereby allowing
2669 * cycles to be made.
2670 */
check_for_nsfs_mounts(struct mount * subtree)2671 static bool check_for_nsfs_mounts(struct mount *subtree)
2672 {
2673 struct mount *p;
2674 bool ret = false;
2675
2676 lock_mount_hash();
2677 for (p = subtree; p; p = next_mnt(p, subtree))
2678 if (mnt_ns_loop(p->mnt.mnt_root))
2679 goto out;
2680
2681 ret = true;
2682 out:
2683 unlock_mount_hash();
2684 return ret;
2685 }
2686
do_move_mount(struct path * old_path,struct path * new_path)2687 static int do_move_mount(struct path *old_path, struct path *new_path)
2688 {
2689 struct mnt_namespace *ns;
2690 struct mount *p;
2691 struct mount *old;
2692 struct mount *parent;
2693 struct mountpoint *mp, *old_mp;
2694 int err;
2695 bool attached;
2696
2697 mp = lock_mount(new_path);
2698 if (IS_ERR(mp))
2699 return PTR_ERR(mp);
2700
2701 old = real_mount(old_path->mnt);
2702 p = real_mount(new_path->mnt);
2703 parent = old->mnt_parent;
2704 attached = mnt_has_parent(old);
2705 old_mp = old->mnt_mp;
2706 ns = old->mnt_ns;
2707
2708 err = -EINVAL;
2709 /* The mountpoint must be in our namespace. */
2710 if (!check_mnt(p))
2711 goto out;
2712
2713 /* The thing moved must be mounted... */
2714 if (!is_mounted(&old->mnt))
2715 goto out;
2716
2717 /* ... and either ours or the root of anon namespace */
2718 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2719 goto out;
2720
2721 if (old->mnt.mnt_flags & MNT_LOCKED)
2722 goto out;
2723
2724 if (old_path->dentry != old_path->mnt->mnt_root)
2725 goto out;
2726
2727 if (d_is_dir(new_path->dentry) !=
2728 d_is_dir(old_path->dentry))
2729 goto out;
2730 /*
2731 * Don't move a mount residing in a shared parent.
2732 */
2733 if (attached && IS_MNT_SHARED(parent))
2734 goto out;
2735 /*
2736 * Don't move a mount tree containing unbindable mounts to a destination
2737 * mount which is shared.
2738 */
2739 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2740 goto out;
2741 err = -ELOOP;
2742 if (!check_for_nsfs_mounts(old))
2743 goto out;
2744 for (; mnt_has_parent(p); p = p->mnt_parent)
2745 if (p == old)
2746 goto out;
2747
2748 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2749 attached);
2750 if (err)
2751 goto out;
2752
2753 /* if the mount is moved, it should no longer be expire
2754 * automatically */
2755 list_del_init(&old->mnt_expire);
2756 if (attached)
2757 put_mountpoint(old_mp);
2758 out:
2759 unlock_mount(mp);
2760 if (!err) {
2761 if (attached)
2762 mntput_no_expire(parent);
2763 else
2764 free_mnt_ns(ns);
2765 }
2766 return err;
2767 }
2768
do_move_mount_old(struct path * path,const char * old_name)2769 static int do_move_mount_old(struct path *path, const char *old_name)
2770 {
2771 struct path old_path;
2772 int err;
2773
2774 if (!old_name || !*old_name)
2775 return -EINVAL;
2776
2777 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2778 if (err)
2779 return err;
2780
2781 err = do_move_mount(&old_path, path);
2782 path_put(&old_path);
2783 return err;
2784 }
2785
2786 /*
2787 * add a mount into a namespace's mount tree
2788 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,struct path * path,int mnt_flags)2789 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2790 struct path *path, int mnt_flags)
2791 {
2792 struct mount *parent = real_mount(path->mnt);
2793
2794 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2795
2796 if (unlikely(!check_mnt(parent))) {
2797 /* that's acceptable only for automounts done in private ns */
2798 if (!(mnt_flags & MNT_SHRINKABLE))
2799 return -EINVAL;
2800 /* ... and for those we'd better have mountpoint still alive */
2801 if (!parent->mnt_ns)
2802 return -EINVAL;
2803 }
2804
2805 /* Refuse the same filesystem on the same mount point */
2806 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2807 path->mnt->mnt_root == path->dentry)
2808 return -EBUSY;
2809
2810 if (d_is_symlink(newmnt->mnt.mnt_root))
2811 return -EINVAL;
2812
2813 newmnt->mnt.mnt_flags = mnt_flags;
2814 return graft_tree(newmnt, parent, mp);
2815 }
2816
2817 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2818
2819 /*
2820 * Create a new mount using a superblock configuration and request it
2821 * be added to the namespace tree.
2822 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2823 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2824 unsigned int mnt_flags)
2825 {
2826 struct vfsmount *mnt;
2827 struct mountpoint *mp;
2828 struct super_block *sb = fc->root->d_sb;
2829 int error;
2830
2831 error = security_sb_kern_mount(sb);
2832 if (!error && mount_too_revealing(sb, &mnt_flags))
2833 error = -EPERM;
2834
2835 if (unlikely(error)) {
2836 fc_drop_locked(fc);
2837 return error;
2838 }
2839
2840 up_write(&sb->s_umount);
2841
2842 mnt = vfs_create_mount(fc);
2843 if (IS_ERR(mnt))
2844 return PTR_ERR(mnt);
2845
2846 mnt_warn_timestamp_expiry(mountpoint, mnt);
2847
2848 mp = lock_mount(mountpoint);
2849 if (IS_ERR(mp)) {
2850 mntput(mnt);
2851 return PTR_ERR(mp);
2852 }
2853 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2854 unlock_mount(mp);
2855 if (error < 0)
2856 mntput(mnt);
2857 return error;
2858 }
2859
2860 /*
2861 * create a new mount for userspace and request it to be added into the
2862 * namespace's tree
2863 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2864 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2865 int mnt_flags, const char *name, void *data)
2866 {
2867 struct file_system_type *type;
2868 struct fs_context *fc;
2869 const char *subtype = NULL;
2870 int err = 0;
2871
2872 if (!fstype)
2873 return -EINVAL;
2874
2875 type = get_fs_type(fstype);
2876 if (!type)
2877 return -ENODEV;
2878
2879 if (type->fs_flags & FS_HAS_SUBTYPE) {
2880 subtype = strchr(fstype, '.');
2881 if (subtype) {
2882 subtype++;
2883 if (!*subtype) {
2884 put_filesystem(type);
2885 return -EINVAL;
2886 }
2887 }
2888 }
2889
2890 fc = fs_context_for_mount(type, sb_flags);
2891 put_filesystem(type);
2892 if (IS_ERR(fc))
2893 return PTR_ERR(fc);
2894
2895 /*
2896 * Indicate to the filesystem that the mount request is coming
2897 * from the legacy mount system call.
2898 */
2899 fc->oldapi = true;
2900
2901 if (subtype)
2902 err = vfs_parse_fs_string(fc, "subtype",
2903 subtype, strlen(subtype));
2904 if (!err && name)
2905 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2906 if (!err)
2907 err = parse_monolithic_mount_data(fc, data);
2908 if (!err && !mount_capable(fc))
2909 err = -EPERM;
2910 if (!err)
2911 err = vfs_get_tree(fc);
2912 if (!err)
2913 err = do_new_mount_fc(fc, path, mnt_flags);
2914
2915 put_fs_context(fc);
2916 return err;
2917 }
2918
finish_automount(struct vfsmount * m,struct path * path)2919 int finish_automount(struct vfsmount *m, struct path *path)
2920 {
2921 struct dentry *dentry = path->dentry;
2922 struct mountpoint *mp;
2923 struct mount *mnt;
2924 int err;
2925
2926 if (!m)
2927 return 0;
2928 if (IS_ERR(m))
2929 return PTR_ERR(m);
2930
2931 mnt = real_mount(m);
2932 /* The new mount record should have at least 2 refs to prevent it being
2933 * expired before we get a chance to add it
2934 */
2935 BUG_ON(mnt_get_count(mnt) < 2);
2936
2937 if (m->mnt_sb == path->mnt->mnt_sb &&
2938 m->mnt_root == dentry) {
2939 err = -ELOOP;
2940 goto discard;
2941 }
2942
2943 /*
2944 * we don't want to use lock_mount() - in this case finding something
2945 * that overmounts our mountpoint to be means "quitely drop what we've
2946 * got", not "try to mount it on top".
2947 */
2948 inode_lock(dentry->d_inode);
2949 namespace_lock();
2950 if (unlikely(cant_mount(dentry))) {
2951 err = -ENOENT;
2952 goto discard_locked;
2953 }
2954 rcu_read_lock();
2955 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2956 rcu_read_unlock();
2957 err = 0;
2958 goto discard_locked;
2959 }
2960 rcu_read_unlock();
2961 mp = get_mountpoint(dentry);
2962 if (IS_ERR(mp)) {
2963 err = PTR_ERR(mp);
2964 goto discard_locked;
2965 }
2966
2967 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2968 unlock_mount(mp);
2969 if (unlikely(err))
2970 goto discard;
2971 mntput(m);
2972 return 0;
2973
2974 discard_locked:
2975 namespace_unlock();
2976 inode_unlock(dentry->d_inode);
2977 discard:
2978 /* remove m from any expiration list it may be on */
2979 if (!list_empty(&mnt->mnt_expire)) {
2980 namespace_lock();
2981 list_del_init(&mnt->mnt_expire);
2982 namespace_unlock();
2983 }
2984 mntput(m);
2985 mntput(m);
2986 return err;
2987 }
2988
2989 /**
2990 * mnt_set_expiry - Put a mount on an expiration list
2991 * @mnt: The mount to list.
2992 * @expiry_list: The list to add the mount to.
2993 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2994 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2995 {
2996 namespace_lock();
2997
2998 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2999
3000 namespace_unlock();
3001 }
3002 EXPORT_SYMBOL(mnt_set_expiry);
3003
3004 /*
3005 * process a list of expirable mountpoints with the intent of discarding any
3006 * mountpoints that aren't in use and haven't been touched since last we came
3007 * here
3008 */
mark_mounts_for_expiry(struct list_head * mounts)3009 void mark_mounts_for_expiry(struct list_head *mounts)
3010 {
3011 struct mount *mnt, *next;
3012 LIST_HEAD(graveyard);
3013
3014 if (list_empty(mounts))
3015 return;
3016
3017 namespace_lock();
3018 lock_mount_hash();
3019
3020 /* extract from the expiration list every vfsmount that matches the
3021 * following criteria:
3022 * - only referenced by its parent vfsmount
3023 * - still marked for expiry (marked on the last call here; marks are
3024 * cleared by mntput())
3025 */
3026 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3027 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3028 propagate_mount_busy(mnt, 1))
3029 continue;
3030 list_move(&mnt->mnt_expire, &graveyard);
3031 }
3032 while (!list_empty(&graveyard)) {
3033 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3034 touch_mnt_namespace(mnt->mnt_ns);
3035 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3036 }
3037 unlock_mount_hash();
3038 namespace_unlock();
3039 }
3040
3041 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3042
3043 /*
3044 * Ripoff of 'select_parent()'
3045 *
3046 * search the list of submounts for a given mountpoint, and move any
3047 * shrinkable submounts to the 'graveyard' list.
3048 */
select_submounts(struct mount * parent,struct list_head * graveyard)3049 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3050 {
3051 struct mount *this_parent = parent;
3052 struct list_head *next;
3053 int found = 0;
3054
3055 repeat:
3056 next = this_parent->mnt_mounts.next;
3057 resume:
3058 while (next != &this_parent->mnt_mounts) {
3059 struct list_head *tmp = next;
3060 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3061
3062 next = tmp->next;
3063 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3064 continue;
3065 /*
3066 * Descend a level if the d_mounts list is non-empty.
3067 */
3068 if (!list_empty(&mnt->mnt_mounts)) {
3069 this_parent = mnt;
3070 goto repeat;
3071 }
3072
3073 if (!propagate_mount_busy(mnt, 1)) {
3074 list_move_tail(&mnt->mnt_expire, graveyard);
3075 found++;
3076 }
3077 }
3078 /*
3079 * All done at this level ... ascend and resume the search
3080 */
3081 if (this_parent != parent) {
3082 next = this_parent->mnt_child.next;
3083 this_parent = this_parent->mnt_parent;
3084 goto resume;
3085 }
3086 return found;
3087 }
3088
3089 /*
3090 * process a list of expirable mountpoints with the intent of discarding any
3091 * submounts of a specific parent mountpoint
3092 *
3093 * mount_lock must be held for write
3094 */
shrink_submounts(struct mount * mnt)3095 static void shrink_submounts(struct mount *mnt)
3096 {
3097 LIST_HEAD(graveyard);
3098 struct mount *m;
3099
3100 /* extract submounts of 'mountpoint' from the expiration list */
3101 while (select_submounts(mnt, &graveyard)) {
3102 while (!list_empty(&graveyard)) {
3103 m = list_first_entry(&graveyard, struct mount,
3104 mnt_expire);
3105 touch_mnt_namespace(m->mnt_ns);
3106 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3107 }
3108 }
3109 }
3110
copy_mount_options(const void __user * data)3111 static void *copy_mount_options(const void __user * data)
3112 {
3113 char *copy;
3114 unsigned left, offset;
3115
3116 if (!data)
3117 return NULL;
3118
3119 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3120 if (!copy)
3121 return ERR_PTR(-ENOMEM);
3122
3123 left = copy_from_user(copy, data, PAGE_SIZE);
3124
3125 /*
3126 * Not all architectures have an exact copy_from_user(). Resort to
3127 * byte at a time.
3128 */
3129 offset = PAGE_SIZE - left;
3130 while (left) {
3131 char c;
3132 if (get_user(c, (const char __user *)data + offset))
3133 break;
3134 copy[offset] = c;
3135 left--;
3136 offset++;
3137 }
3138
3139 if (left == PAGE_SIZE) {
3140 kfree(copy);
3141 return ERR_PTR(-EFAULT);
3142 }
3143
3144 return copy;
3145 }
3146
copy_mount_string(const void __user * data)3147 static char *copy_mount_string(const void __user *data)
3148 {
3149 return data ? strndup_user(data, PATH_MAX) : NULL;
3150 }
3151
3152 /*
3153 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3154 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3155 *
3156 * data is a (void *) that can point to any structure up to
3157 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3158 * information (or be NULL).
3159 *
3160 * Pre-0.97 versions of mount() didn't have a flags word.
3161 * When the flags word was introduced its top half was required
3162 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3163 * Therefore, if this magic number is present, it carries no information
3164 * and must be discarded.
3165 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3166 int path_mount(const char *dev_name, struct path *path,
3167 const char *type_page, unsigned long flags, void *data_page)
3168 {
3169 unsigned int mnt_flags = 0, sb_flags;
3170 int ret;
3171
3172 /* Discard magic */
3173 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3174 flags &= ~MS_MGC_MSK;
3175
3176 /* Basic sanity checks */
3177 if (data_page)
3178 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3179
3180 if (flags & MS_NOUSER)
3181 return -EINVAL;
3182
3183 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3184 if (ret)
3185 return ret;
3186 if (!may_mount())
3187 return -EPERM;
3188 if ((flags & SB_MANDLOCK) && !may_mandlock())
3189 return -EPERM;
3190
3191 /* Default to relatime unless overriden */
3192 if (!(flags & MS_NOATIME))
3193 mnt_flags |= MNT_RELATIME;
3194
3195 /* Separate the per-mountpoint flags */
3196 if (flags & MS_NOSUID)
3197 mnt_flags |= MNT_NOSUID;
3198 if (flags & MS_NODEV)
3199 mnt_flags |= MNT_NODEV;
3200 if (flags & MS_NOEXEC)
3201 mnt_flags |= MNT_NOEXEC;
3202 if (flags & MS_NOATIME)
3203 mnt_flags |= MNT_NOATIME;
3204 if (flags & MS_NODIRATIME)
3205 mnt_flags |= MNT_NODIRATIME;
3206 if (flags & MS_STRICTATIME)
3207 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3208 if (flags & MS_RDONLY)
3209 mnt_flags |= MNT_READONLY;
3210 if (flags & MS_NOSYMFOLLOW)
3211 mnt_flags |= MNT_NOSYMFOLLOW;
3212
3213 /* The default atime for remount is preservation */
3214 if ((flags & MS_REMOUNT) &&
3215 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3216 MS_STRICTATIME)) == 0)) {
3217 mnt_flags &= ~MNT_ATIME_MASK;
3218 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3219 }
3220
3221 sb_flags = flags & (SB_RDONLY |
3222 SB_SYNCHRONOUS |
3223 SB_MANDLOCK |
3224 SB_DIRSYNC |
3225 SB_SILENT |
3226 SB_POSIXACL |
3227 SB_LAZYTIME |
3228 SB_I_VERSION);
3229
3230 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3231 return do_reconfigure_mnt(path, mnt_flags);
3232 if (flags & MS_REMOUNT)
3233 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3234 if (flags & MS_BIND)
3235 return do_loopback(path, dev_name, flags & MS_REC);
3236 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3237 return do_change_type(path, flags);
3238 if (flags & MS_MOVE)
3239 return do_move_mount_old(path, dev_name);
3240
3241 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3242 data_page);
3243 }
3244
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3245 long do_mount(const char *dev_name, const char __user *dir_name,
3246 const char *type_page, unsigned long flags, void *data_page)
3247 {
3248 struct path path;
3249 int ret;
3250
3251 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3252 if (ret)
3253 return ret;
3254 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3255 path_put(&path);
3256 return ret;
3257 }
3258
inc_mnt_namespaces(struct user_namespace * ns)3259 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3260 {
3261 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3262 }
3263
dec_mnt_namespaces(struct ucounts * ucounts)3264 static void dec_mnt_namespaces(struct ucounts *ucounts)
3265 {
3266 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3267 }
3268
free_mnt_ns(struct mnt_namespace * ns)3269 static void free_mnt_ns(struct mnt_namespace *ns)
3270 {
3271 if (!is_anon_ns(ns))
3272 ns_free_inum(&ns->ns);
3273 dec_mnt_namespaces(ns->ucounts);
3274 put_user_ns(ns->user_ns);
3275 kfree(ns);
3276 }
3277
3278 /*
3279 * Assign a sequence number so we can detect when we attempt to bind
3280 * mount a reference to an older mount namespace into the current
3281 * mount namespace, preventing reference counting loops. A 64bit
3282 * number incrementing at 10Ghz will take 12,427 years to wrap which
3283 * is effectively never, so we can ignore the possibility.
3284 */
3285 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3286
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3287 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3288 {
3289 struct mnt_namespace *new_ns;
3290 struct ucounts *ucounts;
3291 int ret;
3292
3293 ucounts = inc_mnt_namespaces(user_ns);
3294 if (!ucounts)
3295 return ERR_PTR(-ENOSPC);
3296
3297 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3298 if (!new_ns) {
3299 dec_mnt_namespaces(ucounts);
3300 return ERR_PTR(-ENOMEM);
3301 }
3302 if (!anon) {
3303 ret = ns_alloc_inum(&new_ns->ns);
3304 if (ret) {
3305 kfree(new_ns);
3306 dec_mnt_namespaces(ucounts);
3307 return ERR_PTR(ret);
3308 }
3309 }
3310 new_ns->ns.ops = &mntns_operations;
3311 if (!anon)
3312 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3313 atomic_set(&new_ns->count, 1);
3314 INIT_LIST_HEAD(&new_ns->list);
3315 init_waitqueue_head(&new_ns->poll);
3316 spin_lock_init(&new_ns->ns_lock);
3317 new_ns->user_ns = get_user_ns(user_ns);
3318 new_ns->ucounts = ucounts;
3319 return new_ns;
3320 }
3321
3322 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3323 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3324 struct user_namespace *user_ns, struct fs_struct *new_fs)
3325 {
3326 struct mnt_namespace *new_ns;
3327 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3328 struct mount *p, *q;
3329 struct mount *old;
3330 struct mount *new;
3331 int copy_flags;
3332
3333 BUG_ON(!ns);
3334
3335 if (likely(!(flags & CLONE_NEWNS))) {
3336 get_mnt_ns(ns);
3337 return ns;
3338 }
3339
3340 old = ns->root;
3341
3342 new_ns = alloc_mnt_ns(user_ns, false);
3343 if (IS_ERR(new_ns))
3344 return new_ns;
3345
3346 namespace_lock();
3347 /* First pass: copy the tree topology */
3348 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3349 if (user_ns != ns->user_ns)
3350 copy_flags |= CL_SHARED_TO_SLAVE;
3351 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3352 if (IS_ERR(new)) {
3353 namespace_unlock();
3354 free_mnt_ns(new_ns);
3355 return ERR_CAST(new);
3356 }
3357 if (user_ns != ns->user_ns) {
3358 lock_mount_hash();
3359 lock_mnt_tree(new);
3360 unlock_mount_hash();
3361 }
3362 new_ns->root = new;
3363 list_add_tail(&new_ns->list, &new->mnt_list);
3364
3365 /*
3366 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3367 * as belonging to new namespace. We have already acquired a private
3368 * fs_struct, so tsk->fs->lock is not needed.
3369 */
3370 p = old;
3371 q = new;
3372 while (p) {
3373 q->mnt_ns = new_ns;
3374 new_ns->mounts++;
3375 if (new_fs) {
3376 if (&p->mnt == new_fs->root.mnt) {
3377 new_fs->root.mnt = mntget(&q->mnt);
3378 rootmnt = &p->mnt;
3379 }
3380 if (&p->mnt == new_fs->pwd.mnt) {
3381 new_fs->pwd.mnt = mntget(&q->mnt);
3382 pwdmnt = &p->mnt;
3383 }
3384 }
3385 p = next_mnt(p, old);
3386 q = next_mnt(q, new);
3387 if (!q)
3388 break;
3389 while (p->mnt.mnt_root != q->mnt.mnt_root)
3390 p = next_mnt(p, old);
3391 }
3392 namespace_unlock();
3393
3394 if (rootmnt)
3395 mntput(rootmnt);
3396 if (pwdmnt)
3397 mntput(pwdmnt);
3398
3399 return new_ns;
3400 }
3401
mount_subtree(struct vfsmount * m,const char * name)3402 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3403 {
3404 struct mount *mnt = real_mount(m);
3405 struct mnt_namespace *ns;
3406 struct super_block *s;
3407 struct path path;
3408 int err;
3409
3410 ns = alloc_mnt_ns(&init_user_ns, true);
3411 if (IS_ERR(ns)) {
3412 mntput(m);
3413 return ERR_CAST(ns);
3414 }
3415 mnt->mnt_ns = ns;
3416 ns->root = mnt;
3417 ns->mounts++;
3418 list_add(&mnt->mnt_list, &ns->list);
3419
3420 err = vfs_path_lookup(m->mnt_root, m,
3421 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3422
3423 put_mnt_ns(ns);
3424
3425 if (err)
3426 return ERR_PTR(err);
3427
3428 /* trade a vfsmount reference for active sb one */
3429 s = path.mnt->mnt_sb;
3430 atomic_inc(&s->s_active);
3431 mntput(path.mnt);
3432 /* lock the sucker */
3433 down_write(&s->s_umount);
3434 /* ... and return the root of (sub)tree on it */
3435 return path.dentry;
3436 }
3437 EXPORT_SYMBOL(mount_subtree);
3438
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3439 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3440 char __user *, type, unsigned long, flags, void __user *, data)
3441 {
3442 int ret;
3443 char *kernel_type;
3444 char *kernel_dev;
3445 void *options;
3446
3447 kernel_type = copy_mount_string(type);
3448 ret = PTR_ERR(kernel_type);
3449 if (IS_ERR(kernel_type))
3450 goto out_type;
3451
3452 kernel_dev = copy_mount_string(dev_name);
3453 ret = PTR_ERR(kernel_dev);
3454 if (IS_ERR(kernel_dev))
3455 goto out_dev;
3456
3457 options = copy_mount_options(data);
3458 ret = PTR_ERR(options);
3459 if (IS_ERR(options))
3460 goto out_data;
3461
3462 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3463
3464 kfree(options);
3465 out_data:
3466 kfree(kernel_dev);
3467 out_dev:
3468 kfree(kernel_type);
3469 out_type:
3470 return ret;
3471 }
3472
3473 /*
3474 * Create a kernel mount representation for a new, prepared superblock
3475 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3476 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3477 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3478 unsigned int, attr_flags)
3479 {
3480 struct mnt_namespace *ns;
3481 struct fs_context *fc;
3482 struct file *file;
3483 struct path newmount;
3484 struct mount *mnt;
3485 struct fd f;
3486 unsigned int mnt_flags = 0;
3487 long ret;
3488
3489 if (!may_mount())
3490 return -EPERM;
3491
3492 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3493 return -EINVAL;
3494
3495 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3496 MOUNT_ATTR_NOSUID |
3497 MOUNT_ATTR_NODEV |
3498 MOUNT_ATTR_NOEXEC |
3499 MOUNT_ATTR__ATIME |
3500 MOUNT_ATTR_NODIRATIME))
3501 return -EINVAL;
3502
3503 if (attr_flags & MOUNT_ATTR_RDONLY)
3504 mnt_flags |= MNT_READONLY;
3505 if (attr_flags & MOUNT_ATTR_NOSUID)
3506 mnt_flags |= MNT_NOSUID;
3507 if (attr_flags & MOUNT_ATTR_NODEV)
3508 mnt_flags |= MNT_NODEV;
3509 if (attr_flags & MOUNT_ATTR_NOEXEC)
3510 mnt_flags |= MNT_NOEXEC;
3511 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3512 mnt_flags |= MNT_NODIRATIME;
3513
3514 switch (attr_flags & MOUNT_ATTR__ATIME) {
3515 case MOUNT_ATTR_STRICTATIME:
3516 break;
3517 case MOUNT_ATTR_NOATIME:
3518 mnt_flags |= MNT_NOATIME;
3519 break;
3520 case MOUNT_ATTR_RELATIME:
3521 mnt_flags |= MNT_RELATIME;
3522 break;
3523 default:
3524 return -EINVAL;
3525 }
3526
3527 f = fdget(fs_fd);
3528 if (!f.file)
3529 return -EBADF;
3530
3531 ret = -EINVAL;
3532 if (f.file->f_op != &fscontext_fops)
3533 goto err_fsfd;
3534
3535 fc = f.file->private_data;
3536
3537 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3538 if (ret < 0)
3539 goto err_fsfd;
3540
3541 /* There must be a valid superblock or we can't mount it */
3542 ret = -EINVAL;
3543 if (!fc->root)
3544 goto err_unlock;
3545
3546 ret = -EPERM;
3547 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3548 pr_warn("VFS: Mount too revealing\n");
3549 goto err_unlock;
3550 }
3551
3552 ret = -EBUSY;
3553 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3554 goto err_unlock;
3555
3556 ret = -EPERM;
3557 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3558 goto err_unlock;
3559
3560 newmount.mnt = vfs_create_mount(fc);
3561 if (IS_ERR(newmount.mnt)) {
3562 ret = PTR_ERR(newmount.mnt);
3563 goto err_unlock;
3564 }
3565 newmount.dentry = dget(fc->root);
3566 newmount.mnt->mnt_flags = mnt_flags;
3567
3568 /* We've done the mount bit - now move the file context into more or
3569 * less the same state as if we'd done an fspick(). We don't want to
3570 * do any memory allocation or anything like that at this point as we
3571 * don't want to have to handle any errors incurred.
3572 */
3573 vfs_clean_context(fc);
3574
3575 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3576 if (IS_ERR(ns)) {
3577 ret = PTR_ERR(ns);
3578 goto err_path;
3579 }
3580 mnt = real_mount(newmount.mnt);
3581 mnt->mnt_ns = ns;
3582 ns->root = mnt;
3583 ns->mounts = 1;
3584 list_add(&mnt->mnt_list, &ns->list);
3585 mntget(newmount.mnt);
3586
3587 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3588 * it, not just simply put it.
3589 */
3590 file = dentry_open(&newmount, O_PATH, fc->cred);
3591 if (IS_ERR(file)) {
3592 dissolve_on_fput(newmount.mnt);
3593 ret = PTR_ERR(file);
3594 goto err_path;
3595 }
3596 file->f_mode |= FMODE_NEED_UNMOUNT;
3597
3598 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3599 if (ret >= 0)
3600 fd_install(ret, file);
3601 else
3602 fput(file);
3603
3604 err_path:
3605 path_put(&newmount);
3606 err_unlock:
3607 mutex_unlock(&fc->uapi_mutex);
3608 err_fsfd:
3609 fdput(f);
3610 return ret;
3611 }
3612
3613 /*
3614 * Move a mount from one place to another. In combination with
3615 * fsopen()/fsmount() this is used to install a new mount and in combination
3616 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3617 * a mount subtree.
3618 *
3619 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3620 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)3621 SYSCALL_DEFINE5(move_mount,
3622 int, from_dfd, const char __user *, from_pathname,
3623 int, to_dfd, const char __user *, to_pathname,
3624 unsigned int, flags)
3625 {
3626 struct path from_path, to_path;
3627 unsigned int lflags;
3628 int ret = 0;
3629
3630 if (!may_mount())
3631 return -EPERM;
3632
3633 if (flags & ~MOVE_MOUNT__MASK)
3634 return -EINVAL;
3635
3636 /* If someone gives a pathname, they aren't permitted to move
3637 * from an fd that requires unmount as we can't get at the flag
3638 * to clear it afterwards.
3639 */
3640 lflags = 0;
3641 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3642 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3643 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3644
3645 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3646 if (ret < 0)
3647 return ret;
3648
3649 lflags = 0;
3650 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3651 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3652 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3653
3654 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3655 if (ret < 0)
3656 goto out_from;
3657
3658 ret = security_move_mount(&from_path, &to_path);
3659 if (ret < 0)
3660 goto out_to;
3661
3662 ret = do_move_mount(&from_path, &to_path);
3663
3664 out_to:
3665 path_put(&to_path);
3666 out_from:
3667 path_put(&from_path);
3668 return ret;
3669 }
3670
3671 /*
3672 * Return true if path is reachable from root
3673 *
3674 * namespace_sem or mount_lock is held
3675 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3676 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3677 const struct path *root)
3678 {
3679 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3680 dentry = mnt->mnt_mountpoint;
3681 mnt = mnt->mnt_parent;
3682 }
3683 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3684 }
3685
path_is_under(const struct path * path1,const struct path * path2)3686 bool path_is_under(const struct path *path1, const struct path *path2)
3687 {
3688 bool res;
3689 read_seqlock_excl(&mount_lock);
3690 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3691 read_sequnlock_excl(&mount_lock);
3692 return res;
3693 }
3694 EXPORT_SYMBOL(path_is_under);
3695
3696 /*
3697 * pivot_root Semantics:
3698 * Moves the root file system of the current process to the directory put_old,
3699 * makes new_root as the new root file system of the current process, and sets
3700 * root/cwd of all processes which had them on the current root to new_root.
3701 *
3702 * Restrictions:
3703 * The new_root and put_old must be directories, and must not be on the
3704 * same file system as the current process root. The put_old must be
3705 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3706 * pointed to by put_old must yield the same directory as new_root. No other
3707 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3708 *
3709 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3710 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3711 * in this situation.
3712 *
3713 * Notes:
3714 * - we don't move root/cwd if they are not at the root (reason: if something
3715 * cared enough to change them, it's probably wrong to force them elsewhere)
3716 * - it's okay to pick a root that isn't the root of a file system, e.g.
3717 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3718 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3719 * first.
3720 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3721 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3722 const char __user *, put_old)
3723 {
3724 struct path new, old, root;
3725 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3726 struct mountpoint *old_mp, *root_mp;
3727 int error;
3728
3729 if (!may_mount())
3730 return -EPERM;
3731
3732 error = user_path_at(AT_FDCWD, new_root,
3733 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3734 if (error)
3735 goto out0;
3736
3737 error = user_path_at(AT_FDCWD, put_old,
3738 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3739 if (error)
3740 goto out1;
3741
3742 error = security_sb_pivotroot(&old, &new);
3743 if (error)
3744 goto out2;
3745
3746 get_fs_root(current->fs, &root);
3747 old_mp = lock_mount(&old);
3748 error = PTR_ERR(old_mp);
3749 if (IS_ERR(old_mp))
3750 goto out3;
3751
3752 error = -EINVAL;
3753 new_mnt = real_mount(new.mnt);
3754 root_mnt = real_mount(root.mnt);
3755 old_mnt = real_mount(old.mnt);
3756 ex_parent = new_mnt->mnt_parent;
3757 root_parent = root_mnt->mnt_parent;
3758 if (IS_MNT_SHARED(old_mnt) ||
3759 IS_MNT_SHARED(ex_parent) ||
3760 IS_MNT_SHARED(root_parent))
3761 goto out4;
3762 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3763 goto out4;
3764 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3765 goto out4;
3766 error = -ENOENT;
3767 if (d_unlinked(new.dentry))
3768 goto out4;
3769 error = -EBUSY;
3770 if (new_mnt == root_mnt || old_mnt == root_mnt)
3771 goto out4; /* loop, on the same file system */
3772 error = -EINVAL;
3773 if (root.mnt->mnt_root != root.dentry)
3774 goto out4; /* not a mountpoint */
3775 if (!mnt_has_parent(root_mnt))
3776 goto out4; /* not attached */
3777 if (new.mnt->mnt_root != new.dentry)
3778 goto out4; /* not a mountpoint */
3779 if (!mnt_has_parent(new_mnt))
3780 goto out4; /* not attached */
3781 /* make sure we can reach put_old from new_root */
3782 if (!is_path_reachable(old_mnt, old.dentry, &new))
3783 goto out4;
3784 /* make certain new is below the root */
3785 if (!is_path_reachable(new_mnt, new.dentry, &root))
3786 goto out4;
3787 lock_mount_hash();
3788 umount_mnt(new_mnt);
3789 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3790 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3791 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3792 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3793 }
3794 /* mount old root on put_old */
3795 attach_mnt(root_mnt, old_mnt, old_mp);
3796 /* mount new_root on / */
3797 attach_mnt(new_mnt, root_parent, root_mp);
3798 mnt_add_count(root_parent, -1);
3799 touch_mnt_namespace(current->nsproxy->mnt_ns);
3800 /* A moved mount should not expire automatically */
3801 list_del_init(&new_mnt->mnt_expire);
3802 put_mountpoint(root_mp);
3803 unlock_mount_hash();
3804 chroot_fs_refs(&root, &new);
3805 error = 0;
3806 out4:
3807 unlock_mount(old_mp);
3808 if (!error)
3809 mntput_no_expire(ex_parent);
3810 out3:
3811 path_put(&root);
3812 out2:
3813 path_put(&old);
3814 out1:
3815 path_put(&new);
3816 out0:
3817 return error;
3818 }
3819
init_mount_tree(void)3820 static void __init init_mount_tree(void)
3821 {
3822 struct vfsmount *mnt;
3823 struct mount *m;
3824 struct mnt_namespace *ns;
3825 struct path root;
3826
3827 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3828 if (IS_ERR(mnt))
3829 panic("Can't create rootfs");
3830
3831 ns = alloc_mnt_ns(&init_user_ns, false);
3832 if (IS_ERR(ns))
3833 panic("Can't allocate initial namespace");
3834 m = real_mount(mnt);
3835 m->mnt_ns = ns;
3836 ns->root = m;
3837 ns->mounts = 1;
3838 list_add(&m->mnt_list, &ns->list);
3839 init_task.nsproxy->mnt_ns = ns;
3840 get_mnt_ns(ns);
3841
3842 root.mnt = mnt;
3843 root.dentry = mnt->mnt_root;
3844 mnt->mnt_flags |= MNT_LOCKED;
3845
3846 set_fs_pwd(current->fs, &root);
3847 set_fs_root(current->fs, &root);
3848 }
3849
mnt_init(void)3850 void __init mnt_init(void)
3851 {
3852 int err;
3853
3854 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3855 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
3856
3857 mount_hashtable = alloc_large_system_hash("Mount-cache",
3858 sizeof(struct hlist_head),
3859 mhash_entries, 19,
3860 HASH_ZERO,
3861 &m_hash_shift, &m_hash_mask, 0, 0);
3862 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3863 sizeof(struct hlist_head),
3864 mphash_entries, 19,
3865 HASH_ZERO,
3866 &mp_hash_shift, &mp_hash_mask, 0, 0);
3867
3868 if (!mount_hashtable || !mountpoint_hashtable)
3869 panic("Failed to allocate mount hash table\n");
3870
3871 kernfs_init();
3872
3873 err = sysfs_init();
3874 if (err)
3875 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3876 __func__, err);
3877 fs_kobj = kobject_create_and_add("fs", NULL);
3878 if (!fs_kobj)
3879 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3880 shmem_init();
3881 init_rootfs();
3882 init_mount_tree();
3883 }
3884
put_mnt_ns(struct mnt_namespace * ns)3885 void put_mnt_ns(struct mnt_namespace *ns)
3886 {
3887 if (!atomic_dec_and_test(&ns->count))
3888 return;
3889 drop_collected_mounts(&ns->root->mnt);
3890 free_mnt_ns(ns);
3891 }
3892
kern_mount(struct file_system_type * type)3893 struct vfsmount *kern_mount(struct file_system_type *type)
3894 {
3895 struct vfsmount *mnt;
3896 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3897 if (!IS_ERR(mnt)) {
3898 /*
3899 * it is a longterm mount, don't release mnt until
3900 * we unmount before file sys is unregistered
3901 */
3902 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3903 }
3904 return mnt;
3905 }
3906 EXPORT_SYMBOL_GPL(kern_mount);
3907
kern_unmount(struct vfsmount * mnt)3908 void kern_unmount(struct vfsmount *mnt)
3909 {
3910 /* release long term mount so mount point can be released */
3911 if (!IS_ERR_OR_NULL(mnt)) {
3912 real_mount(mnt)->mnt_ns = NULL;
3913 synchronize_rcu(); /* yecchhh... */
3914 mntput(mnt);
3915 }
3916 }
3917 EXPORT_SYMBOL(kern_unmount);
3918
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)3919 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3920 {
3921 unsigned int i;
3922
3923 for (i = 0; i < num; i++)
3924 if (mnt[i])
3925 real_mount(mnt[i])->mnt_ns = NULL;
3926 synchronize_rcu_expedited();
3927 for (i = 0; i < num; i++)
3928 mntput(mnt[i]);
3929 }
3930 EXPORT_SYMBOL(kern_unmount_array);
3931
our_mnt(struct vfsmount * mnt)3932 bool our_mnt(struct vfsmount *mnt)
3933 {
3934 return check_mnt(real_mount(mnt));
3935 }
3936
current_chrooted(void)3937 bool current_chrooted(void)
3938 {
3939 /* Does the current process have a non-standard root */
3940 struct path ns_root;
3941 struct path fs_root;
3942 bool chrooted;
3943
3944 /* Find the namespace root */
3945 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3946 ns_root.dentry = ns_root.mnt->mnt_root;
3947 path_get(&ns_root);
3948 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3949 ;
3950
3951 get_fs_root(current->fs, &fs_root);
3952
3953 chrooted = !path_equal(&fs_root, &ns_root);
3954
3955 path_put(&fs_root);
3956 path_put(&ns_root);
3957
3958 return chrooted;
3959 }
3960
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)3961 static bool mnt_already_visible(struct mnt_namespace *ns,
3962 const struct super_block *sb,
3963 int *new_mnt_flags)
3964 {
3965 int new_flags = *new_mnt_flags;
3966 struct mount *mnt;
3967 bool visible = false;
3968
3969 down_read(&namespace_sem);
3970 lock_ns_list(ns);
3971 list_for_each_entry(mnt, &ns->list, mnt_list) {
3972 struct mount *child;
3973 int mnt_flags;
3974
3975 if (mnt_is_cursor(mnt))
3976 continue;
3977
3978 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3979 continue;
3980
3981 /* This mount is not fully visible if it's root directory
3982 * is not the root directory of the filesystem.
3983 */
3984 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3985 continue;
3986
3987 /* A local view of the mount flags */
3988 mnt_flags = mnt->mnt.mnt_flags;
3989
3990 /* Don't miss readonly hidden in the superblock flags */
3991 if (sb_rdonly(mnt->mnt.mnt_sb))
3992 mnt_flags |= MNT_LOCK_READONLY;
3993
3994 /* Verify the mount flags are equal to or more permissive
3995 * than the proposed new mount.
3996 */
3997 if ((mnt_flags & MNT_LOCK_READONLY) &&
3998 !(new_flags & MNT_READONLY))
3999 continue;
4000 if ((mnt_flags & MNT_LOCK_ATIME) &&
4001 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4002 continue;
4003
4004 /* This mount is not fully visible if there are any
4005 * locked child mounts that cover anything except for
4006 * empty directories.
4007 */
4008 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4009 struct inode *inode = child->mnt_mountpoint->d_inode;
4010 /* Only worry about locked mounts */
4011 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4012 continue;
4013 /* Is the directory permanetly empty? */
4014 if (!is_empty_dir_inode(inode))
4015 goto next;
4016 }
4017 /* Preserve the locked attributes */
4018 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4019 MNT_LOCK_ATIME);
4020 visible = true;
4021 goto found;
4022 next: ;
4023 }
4024 found:
4025 unlock_ns_list(ns);
4026 up_read(&namespace_sem);
4027 return visible;
4028 }
4029
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4030 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4031 {
4032 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4033 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4034 unsigned long s_iflags;
4035
4036 if (ns->user_ns == &init_user_ns)
4037 return false;
4038
4039 /* Can this filesystem be too revealing? */
4040 s_iflags = sb->s_iflags;
4041 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4042 return false;
4043
4044 if ((s_iflags & required_iflags) != required_iflags) {
4045 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4046 required_iflags);
4047 return true;
4048 }
4049
4050 return !mnt_already_visible(ns, sb, new_mnt_flags);
4051 }
4052
mnt_may_suid(struct vfsmount * mnt)4053 bool mnt_may_suid(struct vfsmount *mnt)
4054 {
4055 /*
4056 * Foreign mounts (accessed via fchdir or through /proc
4057 * symlinks) are always treated as if they are nosuid. This
4058 * prevents namespaces from trusting potentially unsafe
4059 * suid/sgid bits, file caps, or security labels that originate
4060 * in other namespaces.
4061 */
4062 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4063 current_in_userns(mnt->mnt_sb->s_user_ns);
4064 }
4065
mntns_get(struct task_struct * task)4066 static struct ns_common *mntns_get(struct task_struct *task)
4067 {
4068 struct ns_common *ns = NULL;
4069 struct nsproxy *nsproxy;
4070
4071 task_lock(task);
4072 nsproxy = task->nsproxy;
4073 if (nsproxy) {
4074 ns = &nsproxy->mnt_ns->ns;
4075 get_mnt_ns(to_mnt_ns(ns));
4076 }
4077 task_unlock(task);
4078
4079 return ns;
4080 }
4081
mntns_put(struct ns_common * ns)4082 static void mntns_put(struct ns_common *ns)
4083 {
4084 put_mnt_ns(to_mnt_ns(ns));
4085 }
4086
mntns_install(struct nsset * nsset,struct ns_common * ns)4087 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4088 {
4089 struct nsproxy *nsproxy = nsset->nsproxy;
4090 struct fs_struct *fs = nsset->fs;
4091 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4092 struct user_namespace *user_ns = nsset->cred->user_ns;
4093 struct path root;
4094 int err;
4095
4096 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4097 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4098 !ns_capable(user_ns, CAP_SYS_ADMIN))
4099 return -EPERM;
4100
4101 if (is_anon_ns(mnt_ns))
4102 return -EINVAL;
4103
4104 if (fs->users != 1)
4105 return -EINVAL;
4106
4107 get_mnt_ns(mnt_ns);
4108 old_mnt_ns = nsproxy->mnt_ns;
4109 nsproxy->mnt_ns = mnt_ns;
4110
4111 /* Find the root */
4112 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4113 "/", LOOKUP_DOWN, &root);
4114 if (err) {
4115 /* revert to old namespace */
4116 nsproxy->mnt_ns = old_mnt_ns;
4117 put_mnt_ns(mnt_ns);
4118 return err;
4119 }
4120
4121 put_mnt_ns(old_mnt_ns);
4122
4123 /* Update the pwd and root */
4124 set_fs_pwd(fs, &root);
4125 set_fs_root(fs, &root);
4126
4127 path_put(&root);
4128 return 0;
4129 }
4130
mntns_owner(struct ns_common * ns)4131 static struct user_namespace *mntns_owner(struct ns_common *ns)
4132 {
4133 return to_mnt_ns(ns)->user_ns;
4134 }
4135
4136 const struct proc_ns_operations mntns_operations = {
4137 .name = "mnt",
4138 .type = CLONE_NEWNS,
4139 .get = mntns_get,
4140 .put = mntns_put,
4141 .install = mntns_install,
4142 .owner = mntns_owner,
4143 };
4144