1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16
17 #define HTAB_CREATE_FLAG_MASK \
18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20
21 #define BATCH_OPS(_name) \
22 .map_lookup_batch = \
23 _name##_map_lookup_batch, \
24 .map_lookup_and_delete_batch = \
25 _name##_map_lookup_and_delete_batch, \
26 .map_update_batch = \
27 generic_map_update_batch, \
28 .map_delete_batch = \
29 generic_map_delete_batch
30
31 /*
32 * The bucket lock has two protection scopes:
33 *
34 * 1) Serializing concurrent operations from BPF programs on differrent
35 * CPUs
36 *
37 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38 *
39 * BPF programs can execute in any context including perf, kprobes and
40 * tracing. As there are almost no limits where perf, kprobes and tracing
41 * can be invoked from the lock operations need to be protected against
42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43 * the lock held section when functions which acquire this lock are invoked
44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45 * variable bpf_prog_active, which prevents BPF programs attached to perf
46 * events, kprobes and tracing to be invoked before the prior invocation
47 * from one of these contexts completed. sys_bpf() uses the same mechanism
48 * by pinning the task to the current CPU and incrementing the recursion
49 * protection accross the map operation.
50 *
51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52 * operations like memory allocations (even with GFP_ATOMIC) from atomic
53 * contexts. This is required because even with GFP_ATOMIC the memory
54 * allocator calls into code pathes which acquire locks with long held lock
55 * sections. To ensure the deterministic behaviour these locks are regular
56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57 * true atomic contexts on an RT kernel are the low level hardware
58 * handling, scheduling, low level interrupt handling, NMIs etc. None of
59 * these contexts should ever do memory allocations.
60 *
61 * As regular device interrupt handlers and soft interrupts are forced into
62 * thread context, the existing code which does
63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64 * just works.
65 *
66 * In theory the BPF locks could be converted to regular spinlocks as well,
67 * but the bucket locks and percpu_freelist locks can be taken from
68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69 * atomic contexts even on RT. These mechanisms require preallocated maps,
70 * so there is no need to invoke memory allocations within the lock held
71 * sections.
72 *
73 * BPF maps which need dynamic allocation are only used from (forced)
74 * thread context on RT and can therefore use regular spinlocks which in
75 * turn allows to invoke memory allocations from the lock held section.
76 *
77 * On a non RT kernel this distinction is neither possible nor required.
78 * spinlock maps to raw_spinlock and the extra code is optimized out by the
79 * compiler.
80 */
81 struct bucket {
82 struct hlist_nulls_head head;
83 union {
84 raw_spinlock_t raw_lock;
85 spinlock_t lock;
86 };
87 };
88
89 struct bpf_htab {
90 struct bpf_map map;
91 struct bucket *buckets;
92 void *elems;
93 union {
94 struct pcpu_freelist freelist;
95 struct bpf_lru lru;
96 };
97 struct htab_elem *__percpu *extra_elems;
98 atomic_t count; /* number of elements in this hashtable */
99 u32 n_buckets; /* number of hash buckets */
100 u32 elem_size; /* size of each element in bytes */
101 u32 hashrnd;
102 };
103
104 /* each htab element is struct htab_elem + key + value */
105 struct htab_elem {
106 union {
107 struct hlist_nulls_node hash_node;
108 struct {
109 void *padding;
110 union {
111 struct bpf_htab *htab;
112 struct pcpu_freelist_node fnode;
113 struct htab_elem *batch_flink;
114 };
115 };
116 };
117 union {
118 struct rcu_head rcu;
119 struct bpf_lru_node lru_node;
120 };
121 u32 hash;
122 char key[] __aligned(8);
123 };
124
htab_is_prealloc(const struct bpf_htab * htab)125 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
126 {
127 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
128 }
129
htab_use_raw_lock(const struct bpf_htab * htab)130 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
131 {
132 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
133 }
134
htab_init_buckets(struct bpf_htab * htab)135 static void htab_init_buckets(struct bpf_htab *htab)
136 {
137 unsigned i;
138
139 for (i = 0; i < htab->n_buckets; i++) {
140 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
141 if (htab_use_raw_lock(htab))
142 raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 else
144 spin_lock_init(&htab->buckets[i].lock);
145 }
146 }
147
htab_lock_bucket(const struct bpf_htab * htab,struct bucket * b)148 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
149 struct bucket *b)
150 {
151 unsigned long flags;
152
153 if (htab_use_raw_lock(htab))
154 raw_spin_lock_irqsave(&b->raw_lock, flags);
155 else
156 spin_lock_irqsave(&b->lock, flags);
157 return flags;
158 }
159
htab_unlock_bucket(const struct bpf_htab * htab,struct bucket * b,unsigned long flags)160 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
161 struct bucket *b,
162 unsigned long flags)
163 {
164 if (htab_use_raw_lock(htab))
165 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
166 else
167 spin_unlock_irqrestore(&b->lock, flags);
168 }
169
170 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
171
htab_is_lru(const struct bpf_htab * htab)172 static bool htab_is_lru(const struct bpf_htab *htab)
173 {
174 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
175 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
176 }
177
htab_is_percpu(const struct bpf_htab * htab)178 static bool htab_is_percpu(const struct bpf_htab *htab)
179 {
180 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
181 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
182 }
183
htab_elem_set_ptr(struct htab_elem * l,u32 key_size,void __percpu * pptr)184 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
185 void __percpu *pptr)
186 {
187 *(void __percpu **)(l->key + roundup(key_size, 8)) = pptr;
188 }
189
htab_elem_get_ptr(struct htab_elem * l,u32 key_size)190 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
191 {
192 return *(void __percpu **)(l->key + roundup(key_size, 8));
193 }
194
fd_htab_map_get_ptr(const struct bpf_map * map,struct htab_elem * l)195 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
196 {
197 return *(void **)(l->key + roundup(map->key_size, 8));
198 }
199
get_htab_elem(struct bpf_htab * htab,int i)200 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
201 {
202 return (struct htab_elem *) (htab->elems + i * htab->elem_size);
203 }
204
htab_free_elems(struct bpf_htab * htab)205 static void htab_free_elems(struct bpf_htab *htab)
206 {
207 int i;
208
209 if (!htab_is_percpu(htab))
210 goto free_elems;
211
212 for (i = 0; i < htab->map.max_entries; i++) {
213 void __percpu *pptr;
214
215 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
216 htab->map.key_size);
217 free_percpu(pptr);
218 cond_resched();
219 }
220 free_elems:
221 bpf_map_area_free(htab->elems);
222 }
223
224 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
225 * (bucket_lock). If both locks need to be acquired together, the lock
226 * order is always lru_lock -> bucket_lock and this only happens in
227 * bpf_lru_list.c logic. For example, certain code path of
228 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
229 * will acquire lru_lock first followed by acquiring bucket_lock.
230 *
231 * In hashtab.c, to avoid deadlock, lock acquisition of
232 * bucket_lock followed by lru_lock is not allowed. In such cases,
233 * bucket_lock needs to be released first before acquiring lru_lock.
234 */
prealloc_lru_pop(struct bpf_htab * htab,void * key,u32 hash)235 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
236 u32 hash)
237 {
238 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
239 struct htab_elem *l;
240
241 if (node) {
242 l = container_of(node, struct htab_elem, lru_node);
243 memcpy(l->key, key, htab->map.key_size);
244 return l;
245 }
246
247 return NULL;
248 }
249
prealloc_init(struct bpf_htab * htab)250 static int prealloc_init(struct bpf_htab *htab)
251 {
252 u32 num_entries = htab->map.max_entries;
253 int err = -ENOMEM, i;
254
255 if (!htab_is_percpu(htab) && !htab_is_lru(htab))
256 num_entries += num_possible_cpus();
257
258 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
259 htab->map.numa_node);
260 if (!htab->elems)
261 return -ENOMEM;
262
263 if (!htab_is_percpu(htab))
264 goto skip_percpu_elems;
265
266 for (i = 0; i < num_entries; i++) {
267 u32 size = round_up(htab->map.value_size, 8);
268 void __percpu *pptr;
269
270 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
271 if (!pptr)
272 goto free_elems;
273 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
274 pptr);
275 cond_resched();
276 }
277
278 skip_percpu_elems:
279 if (htab_is_lru(htab))
280 err = bpf_lru_init(&htab->lru,
281 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
282 offsetof(struct htab_elem, hash) -
283 offsetof(struct htab_elem, lru_node),
284 htab_lru_map_delete_node,
285 htab);
286 else
287 err = pcpu_freelist_init(&htab->freelist);
288
289 if (err)
290 goto free_elems;
291
292 if (htab_is_lru(htab))
293 bpf_lru_populate(&htab->lru, htab->elems,
294 offsetof(struct htab_elem, lru_node),
295 htab->elem_size, num_entries);
296 else
297 pcpu_freelist_populate(&htab->freelist,
298 htab->elems + offsetof(struct htab_elem, fnode),
299 htab->elem_size, num_entries);
300
301 return 0;
302
303 free_elems:
304 htab_free_elems(htab);
305 return err;
306 }
307
prealloc_destroy(struct bpf_htab * htab)308 static void prealloc_destroy(struct bpf_htab *htab)
309 {
310 htab_free_elems(htab);
311
312 if (htab_is_lru(htab))
313 bpf_lru_destroy(&htab->lru);
314 else
315 pcpu_freelist_destroy(&htab->freelist);
316 }
317
alloc_extra_elems(struct bpf_htab * htab)318 static int alloc_extra_elems(struct bpf_htab *htab)
319 {
320 struct htab_elem *__percpu *pptr, *l_new;
321 struct pcpu_freelist_node *l;
322 int cpu;
323
324 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
325 GFP_USER | __GFP_NOWARN);
326 if (!pptr)
327 return -ENOMEM;
328
329 for_each_possible_cpu(cpu) {
330 l = pcpu_freelist_pop(&htab->freelist);
331 /* pop will succeed, since prealloc_init()
332 * preallocated extra num_possible_cpus elements
333 */
334 l_new = container_of(l, struct htab_elem, fnode);
335 *per_cpu_ptr(pptr, cpu) = l_new;
336 }
337 htab->extra_elems = pptr;
338 return 0;
339 }
340
341 /* Called from syscall */
htab_map_alloc_check(union bpf_attr * attr)342 static int htab_map_alloc_check(union bpf_attr *attr)
343 {
344 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
345 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
346 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
347 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
348 /* percpu_lru means each cpu has its own LRU list.
349 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
350 * the map's value itself is percpu. percpu_lru has
351 * nothing to do with the map's value.
352 */
353 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
354 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
355 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
356 int numa_node = bpf_map_attr_numa_node(attr);
357
358 BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
359 offsetof(struct htab_elem, hash_node.pprev));
360 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
361 offsetof(struct htab_elem, hash_node.pprev));
362
363 if (lru && !bpf_capable())
364 /* LRU implementation is much complicated than other
365 * maps. Hence, limit to CAP_BPF.
366 */
367 return -EPERM;
368
369 if (zero_seed && !capable(CAP_SYS_ADMIN))
370 /* Guard against local DoS, and discourage production use. */
371 return -EPERM;
372
373 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
374 !bpf_map_flags_access_ok(attr->map_flags))
375 return -EINVAL;
376
377 if (!lru && percpu_lru)
378 return -EINVAL;
379
380 if (lru && !prealloc)
381 return -ENOTSUPP;
382
383 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
384 return -EINVAL;
385
386 /* check sanity of attributes.
387 * value_size == 0 may be allowed in the future to use map as a set
388 */
389 if (attr->max_entries == 0 || attr->key_size == 0 ||
390 attr->value_size == 0)
391 return -EINVAL;
392
393 if (attr->key_size > MAX_BPF_STACK)
394 /* eBPF programs initialize keys on stack, so they cannot be
395 * larger than max stack size
396 */
397 return -E2BIG;
398
399 if (attr->value_size >= KMALLOC_MAX_SIZE -
400 MAX_BPF_STACK - sizeof(struct htab_elem))
401 /* if value_size is bigger, the user space won't be able to
402 * access the elements via bpf syscall. This check also makes
403 * sure that the elem_size doesn't overflow and it's
404 * kmalloc-able later in htab_map_update_elem()
405 */
406 return -E2BIG;
407
408 return 0;
409 }
410
htab_map_alloc(union bpf_attr * attr)411 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
412 {
413 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
414 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
415 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
416 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
417 /* percpu_lru means each cpu has its own LRU list.
418 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
419 * the map's value itself is percpu. percpu_lru has
420 * nothing to do with the map's value.
421 */
422 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
423 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
424 struct bpf_htab *htab;
425 u64 cost;
426 int err;
427
428 htab = kzalloc(sizeof(*htab), GFP_USER);
429 if (!htab)
430 return ERR_PTR(-ENOMEM);
431
432 bpf_map_init_from_attr(&htab->map, attr);
433
434 if (percpu_lru) {
435 /* ensure each CPU's lru list has >=1 elements.
436 * since we are at it, make each lru list has the same
437 * number of elements.
438 */
439 htab->map.max_entries = roundup(attr->max_entries,
440 num_possible_cpus());
441 if (htab->map.max_entries < attr->max_entries)
442 htab->map.max_entries = rounddown(attr->max_entries,
443 num_possible_cpus());
444 }
445
446 /* hash table size must be power of 2; roundup_pow_of_two() can overflow
447 * into UB on 32-bit arches, so check that first
448 */
449 err = -E2BIG;
450 if (htab->map.max_entries > 1UL << 31)
451 goto free_htab;
452
453 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
454
455 htab->elem_size = sizeof(struct htab_elem) +
456 round_up(htab->map.key_size, 8);
457 if (percpu)
458 htab->elem_size += sizeof(void *);
459 else
460 htab->elem_size += round_up(htab->map.value_size, 8);
461
462 /* check for u32 overflow */
463 if (htab->n_buckets > U32_MAX / sizeof(struct bucket))
464 goto free_htab;
465
466 cost = (u64) htab->n_buckets * sizeof(struct bucket) +
467 (u64) htab->elem_size * htab->map.max_entries;
468
469 if (percpu)
470 cost += (u64) round_up(htab->map.value_size, 8) *
471 num_possible_cpus() * htab->map.max_entries;
472 else
473 cost += (u64) htab->elem_size * num_possible_cpus();
474
475 /* if map size is larger than memlock limit, reject it */
476 err = bpf_map_charge_init(&htab->map.memory, cost);
477 if (err)
478 goto free_htab;
479
480 err = -ENOMEM;
481 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
482 sizeof(struct bucket),
483 htab->map.numa_node);
484 if (!htab->buckets)
485 goto free_charge;
486
487 if (htab->map.map_flags & BPF_F_ZERO_SEED)
488 htab->hashrnd = 0;
489 else
490 htab->hashrnd = get_random_int();
491
492 htab_init_buckets(htab);
493
494 if (prealloc) {
495 err = prealloc_init(htab);
496 if (err)
497 goto free_buckets;
498
499 if (!percpu && !lru) {
500 /* lru itself can remove the least used element, so
501 * there is no need for an extra elem during map_update.
502 */
503 err = alloc_extra_elems(htab);
504 if (err)
505 goto free_prealloc;
506 }
507 }
508
509 return &htab->map;
510
511 free_prealloc:
512 prealloc_destroy(htab);
513 free_buckets:
514 bpf_map_area_free(htab->buckets);
515 free_charge:
516 bpf_map_charge_finish(&htab->map.memory);
517 free_htab:
518 kfree(htab);
519 return ERR_PTR(err);
520 }
521
htab_map_hash(const void * key,u32 key_len,u32 hashrnd)522 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
523 {
524 return jhash(key, key_len, hashrnd);
525 }
526
__select_bucket(struct bpf_htab * htab,u32 hash)527 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
528 {
529 return &htab->buckets[hash & (htab->n_buckets - 1)];
530 }
531
select_bucket(struct bpf_htab * htab,u32 hash)532 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
533 {
534 return &__select_bucket(htab, hash)->head;
535 }
536
537 /* this lookup function can only be called with bucket lock taken */
lookup_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size)538 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
539 void *key, u32 key_size)
540 {
541 struct hlist_nulls_node *n;
542 struct htab_elem *l;
543
544 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
545 if (l->hash == hash && !memcmp(&l->key, key, key_size))
546 return l;
547
548 return NULL;
549 }
550
551 /* can be called without bucket lock. it will repeat the loop in
552 * the unlikely event when elements moved from one bucket into another
553 * while link list is being walked
554 */
lookup_nulls_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size,u32 n_buckets)555 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
556 u32 hash, void *key,
557 u32 key_size, u32 n_buckets)
558 {
559 struct hlist_nulls_node *n;
560 struct htab_elem *l;
561
562 again:
563 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
564 if (l->hash == hash && !memcmp(&l->key, key, key_size))
565 return l;
566
567 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
568 goto again;
569
570 return NULL;
571 }
572
573 /* Called from syscall or from eBPF program directly, so
574 * arguments have to match bpf_map_lookup_elem() exactly.
575 * The return value is adjusted by BPF instructions
576 * in htab_map_gen_lookup().
577 */
__htab_map_lookup_elem(struct bpf_map * map,void * key)578 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
579 {
580 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
581 struct hlist_nulls_head *head;
582 struct htab_elem *l;
583 u32 hash, key_size;
584
585 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
586
587 key_size = map->key_size;
588
589 hash = htab_map_hash(key, key_size, htab->hashrnd);
590
591 head = select_bucket(htab, hash);
592
593 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
594
595 return l;
596 }
597
htab_map_lookup_elem(struct bpf_map * map,void * key)598 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
599 {
600 struct htab_elem *l = __htab_map_lookup_elem(map, key);
601
602 if (l)
603 return l->key + round_up(map->key_size, 8);
604
605 return NULL;
606 }
607
608 /* inline bpf_map_lookup_elem() call.
609 * Instead of:
610 * bpf_prog
611 * bpf_map_lookup_elem
612 * map->ops->map_lookup_elem
613 * htab_map_lookup_elem
614 * __htab_map_lookup_elem
615 * do:
616 * bpf_prog
617 * __htab_map_lookup_elem
618 */
htab_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)619 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
620 {
621 struct bpf_insn *insn = insn_buf;
622 const int ret = BPF_REG_0;
623
624 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
625 (void *(*)(struct bpf_map *map, void *key))NULL));
626 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
627 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
628 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
629 offsetof(struct htab_elem, key) +
630 round_up(map->key_size, 8));
631 return insn - insn_buf;
632 }
633
__htab_lru_map_lookup_elem(struct bpf_map * map,void * key,const bool mark)634 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
635 void *key, const bool mark)
636 {
637 struct htab_elem *l = __htab_map_lookup_elem(map, key);
638
639 if (l) {
640 if (mark)
641 bpf_lru_node_set_ref(&l->lru_node);
642 return l->key + round_up(map->key_size, 8);
643 }
644
645 return NULL;
646 }
647
htab_lru_map_lookup_elem(struct bpf_map * map,void * key)648 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
649 {
650 return __htab_lru_map_lookup_elem(map, key, true);
651 }
652
htab_lru_map_lookup_elem_sys(struct bpf_map * map,void * key)653 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
654 {
655 return __htab_lru_map_lookup_elem(map, key, false);
656 }
657
htab_lru_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)658 static int htab_lru_map_gen_lookup(struct bpf_map *map,
659 struct bpf_insn *insn_buf)
660 {
661 struct bpf_insn *insn = insn_buf;
662 const int ret = BPF_REG_0;
663 const int ref_reg = BPF_REG_1;
664
665 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
666 (void *(*)(struct bpf_map *map, void *key))NULL));
667 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
668 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
669 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
670 offsetof(struct htab_elem, lru_node) +
671 offsetof(struct bpf_lru_node, ref));
672 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
673 *insn++ = BPF_ST_MEM(BPF_B, ret,
674 offsetof(struct htab_elem, lru_node) +
675 offsetof(struct bpf_lru_node, ref),
676 1);
677 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
678 offsetof(struct htab_elem, key) +
679 round_up(map->key_size, 8));
680 return insn - insn_buf;
681 }
682
683 /* It is called from the bpf_lru_list when the LRU needs to delete
684 * older elements from the htab.
685 */
htab_lru_map_delete_node(void * arg,struct bpf_lru_node * node)686 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
687 {
688 struct bpf_htab *htab = (struct bpf_htab *)arg;
689 struct htab_elem *l = NULL, *tgt_l;
690 struct hlist_nulls_head *head;
691 struct hlist_nulls_node *n;
692 unsigned long flags;
693 struct bucket *b;
694
695 tgt_l = container_of(node, struct htab_elem, lru_node);
696 b = __select_bucket(htab, tgt_l->hash);
697 head = &b->head;
698
699 flags = htab_lock_bucket(htab, b);
700
701 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
702 if (l == tgt_l) {
703 hlist_nulls_del_rcu(&l->hash_node);
704 break;
705 }
706
707 htab_unlock_bucket(htab, b, flags);
708
709 return l == tgt_l;
710 }
711
712 /* Called from syscall */
htab_map_get_next_key(struct bpf_map * map,void * key,void * next_key)713 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
714 {
715 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
716 struct hlist_nulls_head *head;
717 struct htab_elem *l, *next_l;
718 u32 hash, key_size;
719 int i = 0;
720
721 WARN_ON_ONCE(!rcu_read_lock_held());
722
723 key_size = map->key_size;
724
725 if (!key)
726 goto find_first_elem;
727
728 hash = htab_map_hash(key, key_size, htab->hashrnd);
729
730 head = select_bucket(htab, hash);
731
732 /* lookup the key */
733 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
734
735 if (!l)
736 goto find_first_elem;
737
738 /* key was found, get next key in the same bucket */
739 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
740 struct htab_elem, hash_node);
741
742 if (next_l) {
743 /* if next elem in this hash list is non-zero, just return it */
744 memcpy(next_key, next_l->key, key_size);
745 return 0;
746 }
747
748 /* no more elements in this hash list, go to the next bucket */
749 i = hash & (htab->n_buckets - 1);
750 i++;
751
752 find_first_elem:
753 /* iterate over buckets */
754 for (; i < htab->n_buckets; i++) {
755 head = select_bucket(htab, i);
756
757 /* pick first element in the bucket */
758 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
759 struct htab_elem, hash_node);
760 if (next_l) {
761 /* if it's not empty, just return it */
762 memcpy(next_key, next_l->key, key_size);
763 return 0;
764 }
765 }
766
767 /* iterated over all buckets and all elements */
768 return -ENOENT;
769 }
770
htab_elem_free(struct bpf_htab * htab,struct htab_elem * l)771 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
772 {
773 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
774 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
775 kfree(l);
776 }
777
htab_elem_free_rcu(struct rcu_head * head)778 static void htab_elem_free_rcu(struct rcu_head *head)
779 {
780 struct htab_elem *l = container_of(head, struct htab_elem, rcu);
781 struct bpf_htab *htab = l->htab;
782
783 htab_elem_free(htab, l);
784 }
785
htab_put_fd_value(struct bpf_htab * htab,struct htab_elem * l)786 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
787 {
788 struct bpf_map *map = &htab->map;
789 void *ptr;
790
791 if (map->ops->map_fd_put_ptr) {
792 ptr = fd_htab_map_get_ptr(map, l);
793 map->ops->map_fd_put_ptr(map, ptr, true);
794 }
795 }
796
free_htab_elem(struct bpf_htab * htab,struct htab_elem * l)797 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
798 {
799 htab_put_fd_value(htab, l);
800
801 if (htab_is_prealloc(htab)) {
802 __pcpu_freelist_push(&htab->freelist, &l->fnode);
803 } else {
804 atomic_dec(&htab->count);
805 l->htab = htab;
806 call_rcu(&l->rcu, htab_elem_free_rcu);
807 }
808 }
809
pcpu_copy_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)810 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
811 void *value, bool onallcpus)
812 {
813 if (!onallcpus) {
814 /* copy true value_size bytes */
815 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
816 } else {
817 u32 size = round_up(htab->map.value_size, 8);
818 int off = 0, cpu;
819
820 for_each_possible_cpu(cpu) {
821 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
822 value + off, size);
823 off += size;
824 }
825 }
826 }
827
pcpu_init_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)828 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
829 void *value, bool onallcpus)
830 {
831 /* When using prealloc and not setting the initial value on all cpus,
832 * zero-fill element values for other cpus (just as what happens when
833 * not using prealloc). Otherwise, bpf program has no way to ensure
834 * known initial values for cpus other than current one
835 * (onallcpus=false always when coming from bpf prog).
836 */
837 if (htab_is_prealloc(htab) && !onallcpus) {
838 u32 size = round_up(htab->map.value_size, 8);
839 int current_cpu = raw_smp_processor_id();
840 int cpu;
841
842 for_each_possible_cpu(cpu) {
843 if (cpu == current_cpu)
844 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
845 size);
846 else
847 memset(per_cpu_ptr(pptr, cpu), 0, size);
848 }
849 } else {
850 pcpu_copy_value(htab, pptr, value, onallcpus);
851 }
852 }
853
fd_htab_map_needs_adjust(const struct bpf_htab * htab)854 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
855 {
856 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
857 BITS_PER_LONG == 64;
858 }
859
alloc_htab_elem(struct bpf_htab * htab,void * key,void * value,u32 key_size,u32 hash,bool percpu,bool onallcpus,struct htab_elem * old_elem)860 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
861 void *value, u32 key_size, u32 hash,
862 bool percpu, bool onallcpus,
863 struct htab_elem *old_elem)
864 {
865 u32 size = htab->map.value_size;
866 bool prealloc = htab_is_prealloc(htab);
867 struct htab_elem *l_new, **pl_new;
868 void __percpu *pptr;
869
870 if (prealloc) {
871 if (old_elem) {
872 /* if we're updating the existing element,
873 * use per-cpu extra elems to avoid freelist_pop/push
874 */
875 pl_new = this_cpu_ptr(htab->extra_elems);
876 l_new = *pl_new;
877 htab_put_fd_value(htab, old_elem);
878 *pl_new = old_elem;
879 } else {
880 struct pcpu_freelist_node *l;
881
882 l = __pcpu_freelist_pop(&htab->freelist);
883 if (!l)
884 return ERR_PTR(-E2BIG);
885 l_new = container_of(l, struct htab_elem, fnode);
886 }
887 } else {
888 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
889 if (!old_elem) {
890 /* when map is full and update() is replacing
891 * old element, it's ok to allocate, since
892 * old element will be freed immediately.
893 * Otherwise return an error
894 */
895 l_new = ERR_PTR(-E2BIG);
896 goto dec_count;
897 }
898 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
899 htab->map.numa_node);
900 if (!l_new) {
901 l_new = ERR_PTR(-ENOMEM);
902 goto dec_count;
903 }
904 check_and_init_map_lock(&htab->map,
905 l_new->key + round_up(key_size, 8));
906 }
907
908 memcpy(l_new->key, key, key_size);
909 if (percpu) {
910 size = round_up(size, 8);
911 if (prealloc) {
912 pptr = htab_elem_get_ptr(l_new, key_size);
913 } else {
914 /* alloc_percpu zero-fills */
915 pptr = __alloc_percpu_gfp(size, 8,
916 GFP_ATOMIC | __GFP_NOWARN);
917 if (!pptr) {
918 kfree(l_new);
919 l_new = ERR_PTR(-ENOMEM);
920 goto dec_count;
921 }
922 }
923
924 pcpu_init_value(htab, pptr, value, onallcpus);
925
926 if (!prealloc)
927 htab_elem_set_ptr(l_new, key_size, pptr);
928 } else if (fd_htab_map_needs_adjust(htab)) {
929 size = round_up(size, 8);
930 memcpy(l_new->key + round_up(key_size, 8), value, size);
931 } else {
932 copy_map_value(&htab->map,
933 l_new->key + round_up(key_size, 8),
934 value);
935 }
936
937 l_new->hash = hash;
938 return l_new;
939 dec_count:
940 atomic_dec(&htab->count);
941 return l_new;
942 }
943
check_flags(struct bpf_htab * htab,struct htab_elem * l_old,u64 map_flags)944 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
945 u64 map_flags)
946 {
947 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
948 /* elem already exists */
949 return -EEXIST;
950
951 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
952 /* elem doesn't exist, cannot update it */
953 return -ENOENT;
954
955 return 0;
956 }
957
958 /* Called from syscall or from eBPF program */
htab_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)959 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
960 u64 map_flags)
961 {
962 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
963 struct htab_elem *l_new = NULL, *l_old;
964 struct hlist_nulls_head *head;
965 unsigned long flags;
966 struct bucket *b;
967 u32 key_size, hash;
968 int ret;
969
970 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
971 /* unknown flags */
972 return -EINVAL;
973
974 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
975
976 key_size = map->key_size;
977
978 hash = htab_map_hash(key, key_size, htab->hashrnd);
979
980 b = __select_bucket(htab, hash);
981 head = &b->head;
982
983 if (unlikely(map_flags & BPF_F_LOCK)) {
984 if (unlikely(!map_value_has_spin_lock(map)))
985 return -EINVAL;
986 /* find an element without taking the bucket lock */
987 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
988 htab->n_buckets);
989 ret = check_flags(htab, l_old, map_flags);
990 if (ret)
991 return ret;
992 if (l_old) {
993 /* grab the element lock and update value in place */
994 copy_map_value_locked(map,
995 l_old->key + round_up(key_size, 8),
996 value, false);
997 return 0;
998 }
999 /* fall through, grab the bucket lock and lookup again.
1000 * 99.9% chance that the element won't be found,
1001 * but second lookup under lock has to be done.
1002 */
1003 }
1004
1005 flags = htab_lock_bucket(htab, b);
1006
1007 l_old = lookup_elem_raw(head, hash, key, key_size);
1008
1009 ret = check_flags(htab, l_old, map_flags);
1010 if (ret)
1011 goto err;
1012
1013 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1014 /* first lookup without the bucket lock didn't find the element,
1015 * but second lookup with the bucket lock found it.
1016 * This case is highly unlikely, but has to be dealt with:
1017 * grab the element lock in addition to the bucket lock
1018 * and update element in place
1019 */
1020 copy_map_value_locked(map,
1021 l_old->key + round_up(key_size, 8),
1022 value, false);
1023 ret = 0;
1024 goto err;
1025 }
1026
1027 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1028 l_old);
1029 if (IS_ERR(l_new)) {
1030 /* all pre-allocated elements are in use or memory exhausted */
1031 ret = PTR_ERR(l_new);
1032 goto err;
1033 }
1034
1035 /* add new element to the head of the list, so that
1036 * concurrent search will find it before old elem
1037 */
1038 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1039 if (l_old) {
1040 hlist_nulls_del_rcu(&l_old->hash_node);
1041 if (!htab_is_prealloc(htab))
1042 free_htab_elem(htab, l_old);
1043 }
1044 ret = 0;
1045 err:
1046 htab_unlock_bucket(htab, b, flags);
1047 return ret;
1048 }
1049
htab_lru_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1050 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1051 u64 map_flags)
1052 {
1053 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1054 struct htab_elem *l_new, *l_old = NULL;
1055 struct hlist_nulls_head *head;
1056 unsigned long flags;
1057 struct bucket *b;
1058 u32 key_size, hash;
1059 int ret;
1060
1061 if (unlikely(map_flags > BPF_EXIST))
1062 /* unknown flags */
1063 return -EINVAL;
1064
1065 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1066
1067 key_size = map->key_size;
1068
1069 hash = htab_map_hash(key, key_size, htab->hashrnd);
1070
1071 b = __select_bucket(htab, hash);
1072 head = &b->head;
1073
1074 /* For LRU, we need to alloc before taking bucket's
1075 * spinlock because getting free nodes from LRU may need
1076 * to remove older elements from htab and this removal
1077 * operation will need a bucket lock.
1078 */
1079 l_new = prealloc_lru_pop(htab, key, hash);
1080 if (!l_new)
1081 return -ENOMEM;
1082 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1083
1084 flags = htab_lock_bucket(htab, b);
1085
1086 l_old = lookup_elem_raw(head, hash, key, key_size);
1087
1088 ret = check_flags(htab, l_old, map_flags);
1089 if (ret)
1090 goto err;
1091
1092 /* add new element to the head of the list, so that
1093 * concurrent search will find it before old elem
1094 */
1095 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1096 if (l_old) {
1097 bpf_lru_node_set_ref(&l_new->lru_node);
1098 hlist_nulls_del_rcu(&l_old->hash_node);
1099 }
1100 ret = 0;
1101
1102 err:
1103 htab_unlock_bucket(htab, b, flags);
1104
1105 if (ret)
1106 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1107 else if (l_old)
1108 bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1109
1110 return ret;
1111 }
1112
__htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1113 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1114 void *value, u64 map_flags,
1115 bool onallcpus)
1116 {
1117 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1118 struct htab_elem *l_new = NULL, *l_old;
1119 struct hlist_nulls_head *head;
1120 unsigned long flags;
1121 struct bucket *b;
1122 u32 key_size, hash;
1123 int ret;
1124
1125 if (unlikely(map_flags > BPF_EXIST))
1126 /* unknown flags */
1127 return -EINVAL;
1128
1129 WARN_ON_ONCE(!rcu_read_lock_held());
1130
1131 key_size = map->key_size;
1132
1133 hash = htab_map_hash(key, key_size, htab->hashrnd);
1134
1135 b = __select_bucket(htab, hash);
1136 head = &b->head;
1137
1138 flags = htab_lock_bucket(htab, b);
1139
1140 l_old = lookup_elem_raw(head, hash, key, key_size);
1141
1142 ret = check_flags(htab, l_old, map_flags);
1143 if (ret)
1144 goto err;
1145
1146 if (l_old) {
1147 /* per-cpu hash map can update value in-place */
1148 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1149 value, onallcpus);
1150 } else {
1151 l_new = alloc_htab_elem(htab, key, value, key_size,
1152 hash, true, onallcpus, NULL);
1153 if (IS_ERR(l_new)) {
1154 ret = PTR_ERR(l_new);
1155 goto err;
1156 }
1157 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1158 }
1159 ret = 0;
1160 err:
1161 htab_unlock_bucket(htab, b, flags);
1162 return ret;
1163 }
1164
__htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1165 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1166 void *value, u64 map_flags,
1167 bool onallcpus)
1168 {
1169 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1170 struct htab_elem *l_new = NULL, *l_old;
1171 struct hlist_nulls_head *head;
1172 unsigned long flags;
1173 struct bucket *b;
1174 u32 key_size, hash;
1175 int ret;
1176
1177 if (unlikely(map_flags > BPF_EXIST))
1178 /* unknown flags */
1179 return -EINVAL;
1180
1181 WARN_ON_ONCE(!rcu_read_lock_held());
1182
1183 key_size = map->key_size;
1184
1185 hash = htab_map_hash(key, key_size, htab->hashrnd);
1186
1187 b = __select_bucket(htab, hash);
1188 head = &b->head;
1189
1190 /* For LRU, we need to alloc before taking bucket's
1191 * spinlock because LRU's elem alloc may need
1192 * to remove older elem from htab and this removal
1193 * operation will need a bucket lock.
1194 */
1195 if (map_flags != BPF_EXIST) {
1196 l_new = prealloc_lru_pop(htab, key, hash);
1197 if (!l_new)
1198 return -ENOMEM;
1199 }
1200
1201 flags = htab_lock_bucket(htab, b);
1202
1203 l_old = lookup_elem_raw(head, hash, key, key_size);
1204
1205 ret = check_flags(htab, l_old, map_flags);
1206 if (ret)
1207 goto err;
1208
1209 if (l_old) {
1210 bpf_lru_node_set_ref(&l_old->lru_node);
1211
1212 /* per-cpu hash map can update value in-place */
1213 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1214 value, onallcpus);
1215 } else {
1216 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1217 value, onallcpus);
1218 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1219 l_new = NULL;
1220 }
1221 ret = 0;
1222 err:
1223 htab_unlock_bucket(htab, b, flags);
1224 if (l_new)
1225 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1226 return ret;
1227 }
1228
htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1229 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1230 void *value, u64 map_flags)
1231 {
1232 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1233 }
1234
htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1235 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1236 void *value, u64 map_flags)
1237 {
1238 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1239 false);
1240 }
1241
1242 /* Called from syscall or from eBPF program */
htab_map_delete_elem(struct bpf_map * map,void * key)1243 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1244 {
1245 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1246 struct hlist_nulls_head *head;
1247 struct bucket *b;
1248 struct htab_elem *l;
1249 unsigned long flags;
1250 u32 hash, key_size;
1251 int ret = -ENOENT;
1252
1253 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1254
1255 key_size = map->key_size;
1256
1257 hash = htab_map_hash(key, key_size, htab->hashrnd);
1258 b = __select_bucket(htab, hash);
1259 head = &b->head;
1260
1261 flags = htab_lock_bucket(htab, b);
1262
1263 l = lookup_elem_raw(head, hash, key, key_size);
1264
1265 if (l) {
1266 hlist_nulls_del_rcu(&l->hash_node);
1267 free_htab_elem(htab, l);
1268 ret = 0;
1269 }
1270
1271 htab_unlock_bucket(htab, b, flags);
1272 return ret;
1273 }
1274
htab_lru_map_delete_elem(struct bpf_map * map,void * key)1275 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1276 {
1277 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1278 struct hlist_nulls_head *head;
1279 struct bucket *b;
1280 struct htab_elem *l;
1281 unsigned long flags;
1282 u32 hash, key_size;
1283 int ret = -ENOENT;
1284
1285 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1286
1287 key_size = map->key_size;
1288
1289 hash = htab_map_hash(key, key_size, htab->hashrnd);
1290 b = __select_bucket(htab, hash);
1291 head = &b->head;
1292
1293 flags = htab_lock_bucket(htab, b);
1294
1295 l = lookup_elem_raw(head, hash, key, key_size);
1296
1297 if (l) {
1298 hlist_nulls_del_rcu(&l->hash_node);
1299 ret = 0;
1300 }
1301
1302 htab_unlock_bucket(htab, b, flags);
1303 if (l)
1304 bpf_lru_push_free(&htab->lru, &l->lru_node);
1305 return ret;
1306 }
1307
delete_all_elements(struct bpf_htab * htab)1308 static void delete_all_elements(struct bpf_htab *htab)
1309 {
1310 int i;
1311
1312 for (i = 0; i < htab->n_buckets; i++) {
1313 struct hlist_nulls_head *head = select_bucket(htab, i);
1314 struct hlist_nulls_node *n;
1315 struct htab_elem *l;
1316
1317 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1318 hlist_nulls_del_rcu(&l->hash_node);
1319 htab_elem_free(htab, l);
1320 }
1321 }
1322 }
1323
1324 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
htab_map_free(struct bpf_map * map)1325 static void htab_map_free(struct bpf_map *map)
1326 {
1327 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1328
1329 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1330 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1331 * There is no need to synchronize_rcu() here to protect map elements.
1332 */
1333
1334 /* some of free_htab_elem() callbacks for elements of this map may
1335 * not have executed. Wait for them.
1336 */
1337 rcu_barrier();
1338 if (!htab_is_prealloc(htab))
1339 delete_all_elements(htab);
1340 else
1341 prealloc_destroy(htab);
1342
1343 free_percpu(htab->extra_elems);
1344 bpf_map_area_free(htab->buckets);
1345 kfree(htab);
1346 }
1347
htab_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)1348 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1349 struct seq_file *m)
1350 {
1351 void *value;
1352
1353 rcu_read_lock();
1354
1355 value = htab_map_lookup_elem(map, key);
1356 if (!value) {
1357 rcu_read_unlock();
1358 return;
1359 }
1360
1361 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1362 seq_puts(m, ": ");
1363 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1364 seq_puts(m, "\n");
1365
1366 rcu_read_unlock();
1367 }
1368
1369 static int
__htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr,bool do_delete,bool is_lru_map,bool is_percpu)1370 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1371 const union bpf_attr *attr,
1372 union bpf_attr __user *uattr,
1373 bool do_delete, bool is_lru_map,
1374 bool is_percpu)
1375 {
1376 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1377 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1378 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1379 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1380 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1381 void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1382 u32 batch, max_count, size, bucket_size;
1383 struct htab_elem *node_to_free = NULL;
1384 u64 elem_map_flags, map_flags;
1385 struct hlist_nulls_head *head;
1386 struct hlist_nulls_node *n;
1387 unsigned long flags = 0;
1388 bool locked = false;
1389 struct htab_elem *l;
1390 struct bucket *b;
1391 int ret = 0;
1392
1393 elem_map_flags = attr->batch.elem_flags;
1394 if ((elem_map_flags & ~BPF_F_LOCK) ||
1395 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1396 return -EINVAL;
1397
1398 map_flags = attr->batch.flags;
1399 if (map_flags)
1400 return -EINVAL;
1401
1402 max_count = attr->batch.count;
1403 if (!max_count)
1404 return 0;
1405
1406 if (put_user(0, &uattr->batch.count))
1407 return -EFAULT;
1408
1409 batch = 0;
1410 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1411 return -EFAULT;
1412
1413 if (batch >= htab->n_buckets)
1414 return -ENOENT;
1415
1416 key_size = htab->map.key_size;
1417 roundup_key_size = round_up(htab->map.key_size, 8);
1418 value_size = htab->map.value_size;
1419 size = round_up(value_size, 8);
1420 if (is_percpu)
1421 value_size = size * num_possible_cpus();
1422 total = 0;
1423 /* while experimenting with hash tables with sizes ranging from 10 to
1424 * 1000, it was observed that a bucket can have upto 5 entries.
1425 */
1426 bucket_size = 5;
1427
1428 alloc:
1429 /* We cannot do copy_from_user or copy_to_user inside
1430 * the rcu_read_lock. Allocate enough space here.
1431 */
1432 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1433 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1434 if (!keys || !values) {
1435 ret = -ENOMEM;
1436 goto after_loop;
1437 }
1438
1439 again:
1440 bpf_disable_instrumentation();
1441 rcu_read_lock();
1442 again_nocopy:
1443 dst_key = keys;
1444 dst_val = values;
1445 b = &htab->buckets[batch];
1446 head = &b->head;
1447 /* do not grab the lock unless need it (bucket_cnt > 0). */
1448 if (locked)
1449 flags = htab_lock_bucket(htab, b);
1450
1451 bucket_cnt = 0;
1452 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1453 bucket_cnt++;
1454
1455 if (bucket_cnt && !locked) {
1456 locked = true;
1457 goto again_nocopy;
1458 }
1459
1460 if (bucket_cnt > (max_count - total)) {
1461 if (total == 0)
1462 ret = -ENOSPC;
1463 /* Note that since bucket_cnt > 0 here, it is implicit
1464 * that the locked was grabbed, so release it.
1465 */
1466 htab_unlock_bucket(htab, b, flags);
1467 rcu_read_unlock();
1468 bpf_enable_instrumentation();
1469 goto after_loop;
1470 }
1471
1472 if (bucket_cnt > bucket_size) {
1473 bucket_size = bucket_cnt;
1474 /* Note that since bucket_cnt > 0 here, it is implicit
1475 * that the locked was grabbed, so release it.
1476 */
1477 htab_unlock_bucket(htab, b, flags);
1478 rcu_read_unlock();
1479 bpf_enable_instrumentation();
1480 kvfree(keys);
1481 kvfree(values);
1482 goto alloc;
1483 }
1484
1485 /* Next block is only safe to run if you have grabbed the lock */
1486 if (!locked)
1487 goto next_batch;
1488
1489 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1490 memcpy(dst_key, l->key, key_size);
1491
1492 if (is_percpu) {
1493 int off = 0, cpu;
1494 void __percpu *pptr;
1495
1496 pptr = htab_elem_get_ptr(l, map->key_size);
1497 for_each_possible_cpu(cpu) {
1498 bpf_long_memcpy(dst_val + off,
1499 per_cpu_ptr(pptr, cpu), size);
1500 off += size;
1501 }
1502 } else {
1503 value = l->key + roundup_key_size;
1504 if (elem_map_flags & BPF_F_LOCK)
1505 copy_map_value_locked(map, dst_val, value,
1506 true);
1507 else
1508 copy_map_value(map, dst_val, value);
1509 check_and_init_map_lock(map, dst_val);
1510 }
1511 if (do_delete) {
1512 hlist_nulls_del_rcu(&l->hash_node);
1513
1514 /* bpf_lru_push_free() will acquire lru_lock, which
1515 * may cause deadlock. See comments in function
1516 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1517 * after releasing the bucket lock.
1518 */
1519 if (is_lru_map) {
1520 l->batch_flink = node_to_free;
1521 node_to_free = l;
1522 } else {
1523 free_htab_elem(htab, l);
1524 }
1525 }
1526 dst_key += key_size;
1527 dst_val += value_size;
1528 }
1529
1530 htab_unlock_bucket(htab, b, flags);
1531 locked = false;
1532
1533 while (node_to_free) {
1534 l = node_to_free;
1535 node_to_free = node_to_free->batch_flink;
1536 bpf_lru_push_free(&htab->lru, &l->lru_node);
1537 }
1538
1539 next_batch:
1540 /* If we are not copying data, we can go to next bucket and avoid
1541 * unlocking the rcu.
1542 */
1543 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1544 batch++;
1545 goto again_nocopy;
1546 }
1547
1548 rcu_read_unlock();
1549 bpf_enable_instrumentation();
1550 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1551 key_size * bucket_cnt) ||
1552 copy_to_user(uvalues + total * value_size, values,
1553 value_size * bucket_cnt))) {
1554 ret = -EFAULT;
1555 goto after_loop;
1556 }
1557
1558 total += bucket_cnt;
1559 batch++;
1560 if (batch >= htab->n_buckets) {
1561 ret = -ENOENT;
1562 goto after_loop;
1563 }
1564 goto again;
1565
1566 after_loop:
1567 if (ret == -EFAULT)
1568 goto out;
1569
1570 /* copy # of entries and next batch */
1571 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1572 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1573 put_user(total, &uattr->batch.count))
1574 ret = -EFAULT;
1575
1576 out:
1577 kvfree(keys);
1578 kvfree(values);
1579 return ret;
1580 }
1581
1582 static int
htab_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1583 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1584 union bpf_attr __user *uattr)
1585 {
1586 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1587 false, true);
1588 }
1589
1590 static int
htab_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1591 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1592 const union bpf_attr *attr,
1593 union bpf_attr __user *uattr)
1594 {
1595 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1596 false, true);
1597 }
1598
1599 static int
htab_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1600 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1601 union bpf_attr __user *uattr)
1602 {
1603 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1604 false, false);
1605 }
1606
1607 static int
htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1608 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1609 const union bpf_attr *attr,
1610 union bpf_attr __user *uattr)
1611 {
1612 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1613 false, false);
1614 }
1615
1616 static int
htab_lru_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1617 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1618 const union bpf_attr *attr,
1619 union bpf_attr __user *uattr)
1620 {
1621 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1622 true, true);
1623 }
1624
1625 static int
htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1626 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1627 const union bpf_attr *attr,
1628 union bpf_attr __user *uattr)
1629 {
1630 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1631 true, true);
1632 }
1633
1634 static int
htab_lru_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1635 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1636 union bpf_attr __user *uattr)
1637 {
1638 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1639 true, false);
1640 }
1641
1642 static int
htab_lru_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1643 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1644 const union bpf_attr *attr,
1645 union bpf_attr __user *uattr)
1646 {
1647 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1648 true, false);
1649 }
1650
1651 struct bpf_iter_seq_hash_map_info {
1652 struct bpf_map *map;
1653 struct bpf_htab *htab;
1654 void *percpu_value_buf; // non-zero means percpu hash
1655 u32 bucket_id;
1656 u32 skip_elems;
1657 };
1658
1659 static struct htab_elem *
bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info * info,struct htab_elem * prev_elem)1660 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1661 struct htab_elem *prev_elem)
1662 {
1663 const struct bpf_htab *htab = info->htab;
1664 u32 skip_elems = info->skip_elems;
1665 u32 bucket_id = info->bucket_id;
1666 struct hlist_nulls_head *head;
1667 struct hlist_nulls_node *n;
1668 struct htab_elem *elem;
1669 struct bucket *b;
1670 u32 i, count;
1671
1672 if (bucket_id >= htab->n_buckets)
1673 return NULL;
1674
1675 /* try to find next elem in the same bucket */
1676 if (prev_elem) {
1677 /* no update/deletion on this bucket, prev_elem should be still valid
1678 * and we won't skip elements.
1679 */
1680 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1681 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1682 if (elem)
1683 return elem;
1684
1685 /* not found, unlock and go to the next bucket */
1686 b = &htab->buckets[bucket_id++];
1687 rcu_read_unlock();
1688 skip_elems = 0;
1689 }
1690
1691 for (i = bucket_id; i < htab->n_buckets; i++) {
1692 b = &htab->buckets[i];
1693 rcu_read_lock();
1694
1695 count = 0;
1696 head = &b->head;
1697 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1698 if (count >= skip_elems) {
1699 info->bucket_id = i;
1700 info->skip_elems = count;
1701 return elem;
1702 }
1703 count++;
1704 }
1705
1706 rcu_read_unlock();
1707 skip_elems = 0;
1708 }
1709
1710 info->bucket_id = i;
1711 info->skip_elems = 0;
1712 return NULL;
1713 }
1714
bpf_hash_map_seq_start(struct seq_file * seq,loff_t * pos)1715 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1716 {
1717 struct bpf_iter_seq_hash_map_info *info = seq->private;
1718 struct htab_elem *elem;
1719
1720 elem = bpf_hash_map_seq_find_next(info, NULL);
1721 if (!elem)
1722 return NULL;
1723
1724 if (*pos == 0)
1725 ++*pos;
1726 return elem;
1727 }
1728
bpf_hash_map_seq_next(struct seq_file * seq,void * v,loff_t * pos)1729 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1730 {
1731 struct bpf_iter_seq_hash_map_info *info = seq->private;
1732
1733 ++*pos;
1734 ++info->skip_elems;
1735 return bpf_hash_map_seq_find_next(info, v);
1736 }
1737
__bpf_hash_map_seq_show(struct seq_file * seq,struct htab_elem * elem)1738 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1739 {
1740 struct bpf_iter_seq_hash_map_info *info = seq->private;
1741 u32 roundup_key_size, roundup_value_size;
1742 struct bpf_iter__bpf_map_elem ctx = {};
1743 struct bpf_map *map = info->map;
1744 struct bpf_iter_meta meta;
1745 int ret = 0, off = 0, cpu;
1746 struct bpf_prog *prog;
1747 void __percpu *pptr;
1748
1749 meta.seq = seq;
1750 prog = bpf_iter_get_info(&meta, elem == NULL);
1751 if (prog) {
1752 ctx.meta = &meta;
1753 ctx.map = info->map;
1754 if (elem) {
1755 roundup_key_size = round_up(map->key_size, 8);
1756 ctx.key = elem->key;
1757 if (!info->percpu_value_buf) {
1758 ctx.value = elem->key + roundup_key_size;
1759 } else {
1760 roundup_value_size = round_up(map->value_size, 8);
1761 pptr = htab_elem_get_ptr(elem, map->key_size);
1762 for_each_possible_cpu(cpu) {
1763 bpf_long_memcpy(info->percpu_value_buf + off,
1764 per_cpu_ptr(pptr, cpu),
1765 roundup_value_size);
1766 off += roundup_value_size;
1767 }
1768 ctx.value = info->percpu_value_buf;
1769 }
1770 }
1771 ret = bpf_iter_run_prog(prog, &ctx);
1772 }
1773
1774 return ret;
1775 }
1776
bpf_hash_map_seq_show(struct seq_file * seq,void * v)1777 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1778 {
1779 return __bpf_hash_map_seq_show(seq, v);
1780 }
1781
bpf_hash_map_seq_stop(struct seq_file * seq,void * v)1782 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1783 {
1784 if (!v)
1785 (void)__bpf_hash_map_seq_show(seq, NULL);
1786 else
1787 rcu_read_unlock();
1788 }
1789
bpf_iter_init_hash_map(void * priv_data,struct bpf_iter_aux_info * aux)1790 static int bpf_iter_init_hash_map(void *priv_data,
1791 struct bpf_iter_aux_info *aux)
1792 {
1793 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1794 struct bpf_map *map = aux->map;
1795 void *value_buf;
1796 u32 buf_size;
1797
1798 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1799 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1800 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1801 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1802 if (!value_buf)
1803 return -ENOMEM;
1804
1805 seq_info->percpu_value_buf = value_buf;
1806 }
1807
1808 bpf_map_inc_with_uref(map);
1809 seq_info->map = map;
1810 seq_info->htab = container_of(map, struct bpf_htab, map);
1811 return 0;
1812 }
1813
bpf_iter_fini_hash_map(void * priv_data)1814 static void bpf_iter_fini_hash_map(void *priv_data)
1815 {
1816 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1817
1818 bpf_map_put_with_uref(seq_info->map);
1819 kfree(seq_info->percpu_value_buf);
1820 }
1821
1822 static const struct seq_operations bpf_hash_map_seq_ops = {
1823 .start = bpf_hash_map_seq_start,
1824 .next = bpf_hash_map_seq_next,
1825 .stop = bpf_hash_map_seq_stop,
1826 .show = bpf_hash_map_seq_show,
1827 };
1828
1829 static const struct bpf_iter_seq_info iter_seq_info = {
1830 .seq_ops = &bpf_hash_map_seq_ops,
1831 .init_seq_private = bpf_iter_init_hash_map,
1832 .fini_seq_private = bpf_iter_fini_hash_map,
1833 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
1834 };
1835
1836 static int htab_map_btf_id;
1837 const struct bpf_map_ops htab_map_ops = {
1838 .map_meta_equal = bpf_map_meta_equal,
1839 .map_alloc_check = htab_map_alloc_check,
1840 .map_alloc = htab_map_alloc,
1841 .map_free = htab_map_free,
1842 .map_get_next_key = htab_map_get_next_key,
1843 .map_lookup_elem = htab_map_lookup_elem,
1844 .map_update_elem = htab_map_update_elem,
1845 .map_delete_elem = htab_map_delete_elem,
1846 .map_gen_lookup = htab_map_gen_lookup,
1847 .map_seq_show_elem = htab_map_seq_show_elem,
1848 BATCH_OPS(htab),
1849 .map_btf_name = "bpf_htab",
1850 .map_btf_id = &htab_map_btf_id,
1851 .iter_seq_info = &iter_seq_info,
1852 };
1853
1854 static int htab_lru_map_btf_id;
1855 const struct bpf_map_ops htab_lru_map_ops = {
1856 .map_meta_equal = bpf_map_meta_equal,
1857 .map_alloc_check = htab_map_alloc_check,
1858 .map_alloc = htab_map_alloc,
1859 .map_free = htab_map_free,
1860 .map_get_next_key = htab_map_get_next_key,
1861 .map_lookup_elem = htab_lru_map_lookup_elem,
1862 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1863 .map_update_elem = htab_lru_map_update_elem,
1864 .map_delete_elem = htab_lru_map_delete_elem,
1865 .map_gen_lookup = htab_lru_map_gen_lookup,
1866 .map_seq_show_elem = htab_map_seq_show_elem,
1867 BATCH_OPS(htab_lru),
1868 .map_btf_name = "bpf_htab",
1869 .map_btf_id = &htab_lru_map_btf_id,
1870 .iter_seq_info = &iter_seq_info,
1871 };
1872
1873 /* Called from eBPF program */
htab_percpu_map_lookup_elem(struct bpf_map * map,void * key)1874 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1875 {
1876 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1877
1878 if (l)
1879 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1880 else
1881 return NULL;
1882 }
1883
htab_lru_percpu_map_lookup_elem(struct bpf_map * map,void * key)1884 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1885 {
1886 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1887
1888 if (l) {
1889 bpf_lru_node_set_ref(&l->lru_node);
1890 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1891 }
1892
1893 return NULL;
1894 }
1895
bpf_percpu_hash_copy(struct bpf_map * map,void * key,void * value)1896 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1897 {
1898 struct htab_elem *l;
1899 void __percpu *pptr;
1900 int ret = -ENOENT;
1901 int cpu, off = 0;
1902 u32 size;
1903
1904 /* per_cpu areas are zero-filled and bpf programs can only
1905 * access 'value_size' of them, so copying rounded areas
1906 * will not leak any kernel data
1907 */
1908 size = round_up(map->value_size, 8);
1909 rcu_read_lock();
1910 l = __htab_map_lookup_elem(map, key);
1911 if (!l)
1912 goto out;
1913 /* We do not mark LRU map element here in order to not mess up
1914 * eviction heuristics when user space does a map walk.
1915 */
1916 pptr = htab_elem_get_ptr(l, map->key_size);
1917 for_each_possible_cpu(cpu) {
1918 bpf_long_memcpy(value + off,
1919 per_cpu_ptr(pptr, cpu), size);
1920 off += size;
1921 }
1922 ret = 0;
1923 out:
1924 rcu_read_unlock();
1925 return ret;
1926 }
1927
bpf_percpu_hash_update(struct bpf_map * map,void * key,void * value,u64 map_flags)1928 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1929 u64 map_flags)
1930 {
1931 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1932 int ret;
1933
1934 rcu_read_lock();
1935 if (htab_is_lru(htab))
1936 ret = __htab_lru_percpu_map_update_elem(map, key, value,
1937 map_flags, true);
1938 else
1939 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1940 true);
1941 rcu_read_unlock();
1942
1943 return ret;
1944 }
1945
htab_percpu_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)1946 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1947 struct seq_file *m)
1948 {
1949 struct htab_elem *l;
1950 void __percpu *pptr;
1951 int cpu;
1952
1953 rcu_read_lock();
1954
1955 l = __htab_map_lookup_elem(map, key);
1956 if (!l) {
1957 rcu_read_unlock();
1958 return;
1959 }
1960
1961 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1962 seq_puts(m, ": {\n");
1963 pptr = htab_elem_get_ptr(l, map->key_size);
1964 for_each_possible_cpu(cpu) {
1965 seq_printf(m, "\tcpu%d: ", cpu);
1966 btf_type_seq_show(map->btf, map->btf_value_type_id,
1967 per_cpu_ptr(pptr, cpu), m);
1968 seq_puts(m, "\n");
1969 }
1970 seq_puts(m, "}\n");
1971
1972 rcu_read_unlock();
1973 }
1974
1975 static int htab_percpu_map_btf_id;
1976 const struct bpf_map_ops htab_percpu_map_ops = {
1977 .map_meta_equal = bpf_map_meta_equal,
1978 .map_alloc_check = htab_map_alloc_check,
1979 .map_alloc = htab_map_alloc,
1980 .map_free = htab_map_free,
1981 .map_get_next_key = htab_map_get_next_key,
1982 .map_lookup_elem = htab_percpu_map_lookup_elem,
1983 .map_update_elem = htab_percpu_map_update_elem,
1984 .map_delete_elem = htab_map_delete_elem,
1985 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1986 BATCH_OPS(htab_percpu),
1987 .map_btf_name = "bpf_htab",
1988 .map_btf_id = &htab_percpu_map_btf_id,
1989 .iter_seq_info = &iter_seq_info,
1990 };
1991
1992 static int htab_lru_percpu_map_btf_id;
1993 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1994 .map_meta_equal = bpf_map_meta_equal,
1995 .map_alloc_check = htab_map_alloc_check,
1996 .map_alloc = htab_map_alloc,
1997 .map_free = htab_map_free,
1998 .map_get_next_key = htab_map_get_next_key,
1999 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2000 .map_update_elem = htab_lru_percpu_map_update_elem,
2001 .map_delete_elem = htab_lru_map_delete_elem,
2002 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2003 BATCH_OPS(htab_lru_percpu),
2004 .map_btf_name = "bpf_htab",
2005 .map_btf_id = &htab_lru_percpu_map_btf_id,
2006 .iter_seq_info = &iter_seq_info,
2007 };
2008
fd_htab_map_alloc_check(union bpf_attr * attr)2009 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2010 {
2011 if (attr->value_size != sizeof(u32))
2012 return -EINVAL;
2013 return htab_map_alloc_check(attr);
2014 }
2015
fd_htab_map_free(struct bpf_map * map)2016 static void fd_htab_map_free(struct bpf_map *map)
2017 {
2018 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2019 struct hlist_nulls_node *n;
2020 struct hlist_nulls_head *head;
2021 struct htab_elem *l;
2022 int i;
2023
2024 for (i = 0; i < htab->n_buckets; i++) {
2025 head = select_bucket(htab, i);
2026
2027 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2028 void *ptr = fd_htab_map_get_ptr(map, l);
2029
2030 map->ops->map_fd_put_ptr(map, ptr, false);
2031 }
2032 }
2033
2034 htab_map_free(map);
2035 }
2036
2037 /* only called from syscall */
bpf_fd_htab_map_lookup_elem(struct bpf_map * map,void * key,u32 * value)2038 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2039 {
2040 void **ptr;
2041 int ret = 0;
2042
2043 if (!map->ops->map_fd_sys_lookup_elem)
2044 return -ENOTSUPP;
2045
2046 rcu_read_lock();
2047 ptr = htab_map_lookup_elem(map, key);
2048 if (ptr)
2049 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2050 else
2051 ret = -ENOENT;
2052 rcu_read_unlock();
2053
2054 return ret;
2055 }
2056
2057 /* only called from syscall */
bpf_fd_htab_map_update_elem(struct bpf_map * map,struct file * map_file,void * key,void * value,u64 map_flags)2058 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2059 void *key, void *value, u64 map_flags)
2060 {
2061 void *ptr;
2062 int ret;
2063 u32 ufd = *(u32 *)value;
2064
2065 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2066 if (IS_ERR(ptr))
2067 return PTR_ERR(ptr);
2068
2069 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2070 if (ret)
2071 map->ops->map_fd_put_ptr(map, ptr, false);
2072
2073 return ret;
2074 }
2075
htab_of_map_alloc(union bpf_attr * attr)2076 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2077 {
2078 struct bpf_map *map, *inner_map_meta;
2079
2080 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2081 if (IS_ERR(inner_map_meta))
2082 return inner_map_meta;
2083
2084 map = htab_map_alloc(attr);
2085 if (IS_ERR(map)) {
2086 bpf_map_meta_free(inner_map_meta);
2087 return map;
2088 }
2089
2090 map->inner_map_meta = inner_map_meta;
2091
2092 return map;
2093 }
2094
htab_of_map_lookup_elem(struct bpf_map * map,void * key)2095 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2096 {
2097 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2098
2099 if (!inner_map)
2100 return NULL;
2101
2102 return READ_ONCE(*inner_map);
2103 }
2104
htab_of_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)2105 static int htab_of_map_gen_lookup(struct bpf_map *map,
2106 struct bpf_insn *insn_buf)
2107 {
2108 struct bpf_insn *insn = insn_buf;
2109 const int ret = BPF_REG_0;
2110
2111 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2112 (void *(*)(struct bpf_map *map, void *key))NULL));
2113 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2114 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2115 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2116 offsetof(struct htab_elem, key) +
2117 round_up(map->key_size, 8));
2118 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2119
2120 return insn - insn_buf;
2121 }
2122
htab_of_map_free(struct bpf_map * map)2123 static void htab_of_map_free(struct bpf_map *map)
2124 {
2125 bpf_map_meta_free(map->inner_map_meta);
2126 fd_htab_map_free(map);
2127 }
2128
2129 static int htab_of_maps_map_btf_id;
2130 const struct bpf_map_ops htab_of_maps_map_ops = {
2131 .map_alloc_check = fd_htab_map_alloc_check,
2132 .map_alloc = htab_of_map_alloc,
2133 .map_free = htab_of_map_free,
2134 .map_get_next_key = htab_map_get_next_key,
2135 .map_lookup_elem = htab_of_map_lookup_elem,
2136 .map_delete_elem = htab_map_delete_elem,
2137 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2138 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2139 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2140 .map_gen_lookup = htab_of_map_gen_lookup,
2141 .map_check_btf = map_check_no_btf,
2142 .map_btf_name = "bpf_htab",
2143 .map_btf_id = &htab_of_maps_map_btf_id,
2144 };
2145