• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016 Facebook
3  */
4 #include <linux/bpf.h>
5 #include <linux/jhash.h>
6 #include <linux/filter.h>
7 #include <linux/kernel.h>
8 #include <linux/stacktrace.h>
9 #include <linux/perf_event.h>
10 #include <linux/elf.h>
11 #include <linux/pagemap.h>
12 #include <linux/irq_work.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 
16 #define STACK_CREATE_FLAG_MASK					\
17 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY |	\
18 	 BPF_F_STACK_BUILD_ID)
19 
20 struct stack_map_bucket {
21 	struct pcpu_freelist_node fnode;
22 	u32 hash;
23 	u32 nr;
24 	u64 data[];
25 };
26 
27 struct bpf_stack_map {
28 	struct bpf_map map;
29 	void *elems;
30 	struct pcpu_freelist freelist;
31 	u32 n_buckets;
32 	struct stack_map_bucket *buckets[];
33 };
34 
35 /* irq_work to run up_read() for build_id lookup in nmi context */
36 struct stack_map_irq_work {
37 	struct irq_work irq_work;
38 	struct mm_struct *mm;
39 };
40 
do_up_read(struct irq_work * entry)41 static void do_up_read(struct irq_work *entry)
42 {
43 	struct stack_map_irq_work *work;
44 
45 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
46 		return;
47 
48 	work = container_of(entry, struct stack_map_irq_work, irq_work);
49 	mmap_read_unlock_non_owner(work->mm);
50 }
51 
52 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work);
53 
stack_map_use_build_id(struct bpf_map * map)54 static inline bool stack_map_use_build_id(struct bpf_map *map)
55 {
56 	return (map->map_flags & BPF_F_STACK_BUILD_ID);
57 }
58 
stack_map_data_size(struct bpf_map * map)59 static inline int stack_map_data_size(struct bpf_map *map)
60 {
61 	return stack_map_use_build_id(map) ?
62 		sizeof(struct bpf_stack_build_id) : sizeof(u64);
63 }
64 
prealloc_elems_and_freelist(struct bpf_stack_map * smap)65 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
66 {
67 	u64 elem_size = sizeof(struct stack_map_bucket) +
68 			(u64)smap->map.value_size;
69 	int err;
70 
71 	smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
72 					 smap->map.numa_node);
73 	if (!smap->elems)
74 		return -ENOMEM;
75 
76 	err = pcpu_freelist_init(&smap->freelist);
77 	if (err)
78 		goto free_elems;
79 
80 	pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
81 			       smap->map.max_entries);
82 	return 0;
83 
84 free_elems:
85 	bpf_map_area_free(smap->elems);
86 	return err;
87 }
88 
89 /* Called from syscall */
stack_map_alloc(union bpf_attr * attr)90 static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
91 {
92 	u32 value_size = attr->value_size;
93 	struct bpf_stack_map *smap;
94 	struct bpf_map_memory mem;
95 	u64 cost, n_buckets;
96 	int err;
97 
98 	if (!bpf_capable())
99 		return ERR_PTR(-EPERM);
100 
101 	if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
102 		return ERR_PTR(-EINVAL);
103 
104 	/* check sanity of attributes */
105 	if (attr->max_entries == 0 || attr->key_size != 4 ||
106 	    value_size < 8 || value_size % 8)
107 		return ERR_PTR(-EINVAL);
108 
109 	BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
110 	if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
111 		if (value_size % sizeof(struct bpf_stack_build_id) ||
112 		    value_size / sizeof(struct bpf_stack_build_id)
113 		    > sysctl_perf_event_max_stack)
114 			return ERR_PTR(-EINVAL);
115 	} else if (value_size / 8 > sysctl_perf_event_max_stack)
116 		return ERR_PTR(-EINVAL);
117 
118 	/* hash table size must be power of 2; roundup_pow_of_two() can overflow
119 	 * into UB on 32-bit arches, so check that first
120 	 */
121 	if (attr->max_entries > 1UL << 31)
122 		return ERR_PTR(-E2BIG);
123 
124 	n_buckets = roundup_pow_of_two(attr->max_entries);
125 
126 	cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
127 	err = bpf_map_charge_init(&mem, cost + attr->max_entries *
128 			   (sizeof(struct stack_map_bucket) + (u64)value_size));
129 	if (err)
130 		return ERR_PTR(err);
131 
132 	smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
133 	if (!smap) {
134 		bpf_map_charge_finish(&mem);
135 		return ERR_PTR(-ENOMEM);
136 	}
137 
138 	bpf_map_init_from_attr(&smap->map, attr);
139 	smap->map.value_size = value_size;
140 	smap->n_buckets = n_buckets;
141 
142 	err = get_callchain_buffers(sysctl_perf_event_max_stack);
143 	if (err)
144 		goto free_charge;
145 
146 	err = prealloc_elems_and_freelist(smap);
147 	if (err)
148 		goto put_buffers;
149 
150 	bpf_map_charge_move(&smap->map.memory, &mem);
151 
152 	return &smap->map;
153 
154 put_buffers:
155 	put_callchain_buffers();
156 free_charge:
157 	bpf_map_charge_finish(&mem);
158 	bpf_map_area_free(smap);
159 	return ERR_PTR(err);
160 }
161 
162 #define BPF_BUILD_ID 3
163 /*
164  * Parse build id from the note segment. This logic can be shared between
165  * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are
166  * identical.
167  */
stack_map_parse_build_id(void * page_addr,unsigned char * build_id,void * note_start,Elf32_Word note_size)168 static inline int stack_map_parse_build_id(void *page_addr,
169 					   unsigned char *build_id,
170 					   void *note_start,
171 					   Elf32_Word note_size)
172 {
173 	Elf32_Word note_offs = 0, new_offs;
174 
175 	/* check for overflow */
176 	if (note_start < page_addr || note_start + note_size < note_start)
177 		return -EINVAL;
178 
179 	/* only supports note that fits in the first page */
180 	if (note_start + note_size > page_addr + PAGE_SIZE)
181 		return -EINVAL;
182 
183 	while (note_offs + sizeof(Elf32_Nhdr) < note_size) {
184 		Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs);
185 
186 		if (nhdr->n_type == BPF_BUILD_ID &&
187 		    nhdr->n_namesz == sizeof("GNU") &&
188 		    nhdr->n_descsz > 0 &&
189 		    nhdr->n_descsz <= BPF_BUILD_ID_SIZE) {
190 			memcpy(build_id,
191 			       note_start + note_offs +
192 			       ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr),
193 			       nhdr->n_descsz);
194 			memset(build_id + nhdr->n_descsz, 0,
195 			       BPF_BUILD_ID_SIZE - nhdr->n_descsz);
196 			return 0;
197 		}
198 		new_offs = note_offs + sizeof(Elf32_Nhdr) +
199 			ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4);
200 		if (new_offs <= note_offs)  /* overflow */
201 			break;
202 		note_offs = new_offs;
203 	}
204 	return -EINVAL;
205 }
206 
207 /* Parse build ID from 32-bit ELF */
stack_map_get_build_id_32(void * page_addr,unsigned char * build_id)208 static int stack_map_get_build_id_32(void *page_addr,
209 				     unsigned char *build_id)
210 {
211 	Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr;
212 	Elf32_Phdr *phdr;
213 	int i;
214 
215 	/* only supports phdr that fits in one page */
216 	if (ehdr->e_phnum >
217 	    (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr))
218 		return -EINVAL;
219 
220 	phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr));
221 
222 	for (i = 0; i < ehdr->e_phnum; ++i) {
223 		if (phdr[i].p_type == PT_NOTE &&
224 		    !stack_map_parse_build_id(page_addr, build_id,
225 					      page_addr + phdr[i].p_offset,
226 					      phdr[i].p_filesz))
227 			return 0;
228 	}
229 	return -EINVAL;
230 }
231 
232 /* Parse build ID from 64-bit ELF */
stack_map_get_build_id_64(void * page_addr,unsigned char * build_id)233 static int stack_map_get_build_id_64(void *page_addr,
234 				     unsigned char *build_id)
235 {
236 	Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr;
237 	Elf64_Phdr *phdr;
238 	int i;
239 
240 	/* only supports phdr that fits in one page */
241 	if (ehdr->e_phnum >
242 	    (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr))
243 		return -EINVAL;
244 
245 	phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr));
246 
247 	for (i = 0; i < ehdr->e_phnum; ++i) {
248 		if (phdr[i].p_type == PT_NOTE &&
249 		    !stack_map_parse_build_id(page_addr, build_id,
250 					      page_addr + phdr[i].p_offset,
251 					      phdr[i].p_filesz))
252 			return 0;
253 	}
254 	return -EINVAL;
255 }
256 
257 /* Parse build ID of ELF file mapped to vma */
stack_map_get_build_id(struct vm_area_struct * vma,unsigned char * build_id)258 static int stack_map_get_build_id(struct vm_area_struct *vma,
259 				  unsigned char *build_id)
260 {
261 	Elf32_Ehdr *ehdr;
262 	struct page *page;
263 	void *page_addr;
264 	int ret;
265 
266 	/* only works for page backed storage  */
267 	if (!vma->vm_file)
268 		return -EINVAL;
269 
270 	page = find_get_page(vma->vm_file->f_mapping, 0);
271 	if (!page)
272 		return -EFAULT;	/* page not mapped */
273 
274 	ret = -EINVAL;
275 	page_addr = kmap_atomic(page);
276 	ehdr = (Elf32_Ehdr *)page_addr;
277 
278 	/* compare magic x7f "ELF" */
279 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0)
280 		goto out;
281 
282 	/* only support executable file and shared object file */
283 	if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN)
284 		goto out;
285 
286 	if (ehdr->e_ident[EI_CLASS] == ELFCLASS32)
287 		ret = stack_map_get_build_id_32(page_addr, build_id);
288 	else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
289 		ret = stack_map_get_build_id_64(page_addr, build_id);
290 out:
291 	kunmap_atomic(page_addr);
292 	put_page(page);
293 	return ret;
294 }
295 
stack_map_get_build_id_offset(struct bpf_stack_build_id * id_offs,u64 * ips,u32 trace_nr,bool user)296 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
297 					  u64 *ips, u32 trace_nr, bool user)
298 {
299 	int i;
300 	struct vm_area_struct *vma;
301 	bool irq_work_busy = false;
302 	struct stack_map_irq_work *work = NULL;
303 
304 	if (irqs_disabled()) {
305 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
306 			work = this_cpu_ptr(&up_read_work);
307 			if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) {
308 				/* cannot queue more up_read, fallback */
309 				irq_work_busy = true;
310 			}
311 		} else {
312 			/*
313 			 * PREEMPT_RT does not allow to trylock mmap sem in
314 			 * interrupt disabled context. Force the fallback code.
315 			 */
316 			irq_work_busy = true;
317 		}
318 	}
319 
320 	/*
321 	 * We cannot do up_read() when the irq is disabled, because of
322 	 * risk to deadlock with rq_lock. To do build_id lookup when the
323 	 * irqs are disabled, we need to run up_read() in irq_work. We use
324 	 * a percpu variable to do the irq_work. If the irq_work is
325 	 * already used by another lookup, we fall back to report ips.
326 	 *
327 	 * Same fallback is used for kernel stack (!user) on a stackmap
328 	 * with build_id.
329 	 */
330 	if (!user || !current || !current->mm || irq_work_busy ||
331 	    !mmap_read_trylock_non_owner(current->mm)) {
332 		/* cannot access current->mm, fall back to ips */
333 		for (i = 0; i < trace_nr; i++) {
334 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
335 			id_offs[i].ip = ips[i];
336 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
337 		}
338 		return;
339 	}
340 
341 	for (i = 0; i < trace_nr; i++) {
342 		vma = find_vma(current->mm, ips[i]);
343 		if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) {
344 			/* per entry fall back to ips */
345 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
346 			id_offs[i].ip = ips[i];
347 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
348 			continue;
349 		}
350 		id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i]
351 			- vma->vm_start;
352 		id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
353 	}
354 
355 	if (!work) {
356 		mmap_read_unlock_non_owner(current->mm);
357 	} else {
358 		work->mm = current->mm;
359 		irq_work_queue(&work->irq_work);
360 	}
361 }
362 
363 static struct perf_callchain_entry *
get_callchain_entry_for_task(struct task_struct * task,u32 max_depth)364 get_callchain_entry_for_task(struct task_struct *task, u32 max_depth)
365 {
366 #ifdef CONFIG_STACKTRACE
367 	struct perf_callchain_entry *entry;
368 	int rctx;
369 
370 	entry = get_callchain_entry(&rctx);
371 
372 	if (!entry)
373 		return NULL;
374 
375 	entry->nr = stack_trace_save_tsk(task, (unsigned long *)entry->ip,
376 					 max_depth, 0);
377 
378 	/* stack_trace_save_tsk() works on unsigned long array, while
379 	 * perf_callchain_entry uses u64 array. For 32-bit systems, it is
380 	 * necessary to fix this mismatch.
381 	 */
382 	if (__BITS_PER_LONG != 64) {
383 		unsigned long *from = (unsigned long *) entry->ip;
384 		u64 *to = entry->ip;
385 		int i;
386 
387 		/* copy data from the end to avoid using extra buffer */
388 		for (i = entry->nr - 1; i >= 0; i--)
389 			to[i] = (u64)(from[i]);
390 	}
391 
392 	put_callchain_entry(rctx);
393 
394 	return entry;
395 #else /* CONFIG_STACKTRACE */
396 	return NULL;
397 #endif
398 }
399 
__bpf_get_stackid(struct bpf_map * map,struct perf_callchain_entry * trace,u64 flags)400 static long __bpf_get_stackid(struct bpf_map *map,
401 			      struct perf_callchain_entry *trace, u64 flags)
402 {
403 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
404 	struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
405 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
406 	u32 hash, id, trace_nr, trace_len;
407 	bool user = flags & BPF_F_USER_STACK;
408 	u64 *ips;
409 	bool hash_matches;
410 
411 	if (trace->nr <= skip)
412 		/* skipping more than usable stack trace */
413 		return -EFAULT;
414 
415 	trace_nr = trace->nr - skip;
416 	trace_len = trace_nr * sizeof(u64);
417 	ips = trace->ip + skip;
418 	hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
419 	id = hash & (smap->n_buckets - 1);
420 	bucket = READ_ONCE(smap->buckets[id]);
421 
422 	hash_matches = bucket && bucket->hash == hash;
423 	/* fast cmp */
424 	if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
425 		return id;
426 
427 	if (stack_map_use_build_id(map)) {
428 		/* for build_id+offset, pop a bucket before slow cmp */
429 		new_bucket = (struct stack_map_bucket *)
430 			pcpu_freelist_pop(&smap->freelist);
431 		if (unlikely(!new_bucket))
432 			return -ENOMEM;
433 		new_bucket->nr = trace_nr;
434 		stack_map_get_build_id_offset(
435 			(struct bpf_stack_build_id *)new_bucket->data,
436 			ips, trace_nr, user);
437 		trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
438 		if (hash_matches && bucket->nr == trace_nr &&
439 		    memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
440 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
441 			return id;
442 		}
443 		if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
444 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
445 			return -EEXIST;
446 		}
447 	} else {
448 		if (hash_matches && bucket->nr == trace_nr &&
449 		    memcmp(bucket->data, ips, trace_len) == 0)
450 			return id;
451 		if (bucket && !(flags & BPF_F_REUSE_STACKID))
452 			return -EEXIST;
453 
454 		new_bucket = (struct stack_map_bucket *)
455 			pcpu_freelist_pop(&smap->freelist);
456 		if (unlikely(!new_bucket))
457 			return -ENOMEM;
458 		memcpy(new_bucket->data, ips, trace_len);
459 	}
460 
461 	new_bucket->hash = hash;
462 	new_bucket->nr = trace_nr;
463 
464 	old_bucket = xchg(&smap->buckets[id], new_bucket);
465 	if (old_bucket)
466 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
467 	return id;
468 }
469 
BPF_CALL_3(bpf_get_stackid,struct pt_regs *,regs,struct bpf_map *,map,u64,flags)470 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
471 	   u64, flags)
472 {
473 	u32 max_depth = map->value_size / stack_map_data_size(map);
474 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
475 	bool user = flags & BPF_F_USER_STACK;
476 	struct perf_callchain_entry *trace;
477 	bool kernel = !user;
478 
479 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
480 			       BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
481 		return -EINVAL;
482 
483 	max_depth += skip;
484 	if (max_depth > sysctl_perf_event_max_stack)
485 		max_depth = sysctl_perf_event_max_stack;
486 
487 	trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
488 				   false, false);
489 
490 	if (unlikely(!trace))
491 		/* couldn't fetch the stack trace */
492 		return -EFAULT;
493 
494 	return __bpf_get_stackid(map, trace, flags);
495 }
496 
497 const struct bpf_func_proto bpf_get_stackid_proto = {
498 	.func		= bpf_get_stackid,
499 	.gpl_only	= true,
500 	.ret_type	= RET_INTEGER,
501 	.arg1_type	= ARG_PTR_TO_CTX,
502 	.arg2_type	= ARG_CONST_MAP_PTR,
503 	.arg3_type	= ARG_ANYTHING,
504 };
505 
count_kernel_ip(struct perf_callchain_entry * trace)506 static __u64 count_kernel_ip(struct perf_callchain_entry *trace)
507 {
508 	__u64 nr_kernel = 0;
509 
510 	while (nr_kernel < trace->nr) {
511 		if (trace->ip[nr_kernel] == PERF_CONTEXT_USER)
512 			break;
513 		nr_kernel++;
514 	}
515 	return nr_kernel;
516 }
517 
BPF_CALL_3(bpf_get_stackid_pe,struct bpf_perf_event_data_kern *,ctx,struct bpf_map *,map,u64,flags)518 BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx,
519 	   struct bpf_map *, map, u64, flags)
520 {
521 	struct perf_event *event = ctx->event;
522 	struct perf_callchain_entry *trace;
523 	bool kernel, user;
524 	__u64 nr_kernel;
525 	int ret;
526 
527 	/* perf_sample_data doesn't have callchain, use bpf_get_stackid */
528 	if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
529 		return bpf_get_stackid((unsigned long)(ctx->regs),
530 				       (unsigned long) map, flags, 0, 0);
531 
532 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
533 			       BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
534 		return -EINVAL;
535 
536 	user = flags & BPF_F_USER_STACK;
537 	kernel = !user;
538 
539 	trace = ctx->data->callchain;
540 	if (unlikely(!trace))
541 		return -EFAULT;
542 
543 	nr_kernel = count_kernel_ip(trace);
544 
545 	if (kernel) {
546 		__u64 nr = trace->nr;
547 
548 		trace->nr = nr_kernel;
549 		ret = __bpf_get_stackid(map, trace, flags);
550 
551 		/* restore nr */
552 		trace->nr = nr;
553 	} else { /* user */
554 		u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
555 
556 		skip += nr_kernel;
557 		if (skip > BPF_F_SKIP_FIELD_MASK)
558 			return -EFAULT;
559 
560 		flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
561 		ret = __bpf_get_stackid(map, trace, flags);
562 	}
563 	return ret;
564 }
565 
566 const struct bpf_func_proto bpf_get_stackid_proto_pe = {
567 	.func		= bpf_get_stackid_pe,
568 	.gpl_only	= false,
569 	.ret_type	= RET_INTEGER,
570 	.arg1_type	= ARG_PTR_TO_CTX,
571 	.arg2_type	= ARG_CONST_MAP_PTR,
572 	.arg3_type	= ARG_ANYTHING,
573 };
574 
__bpf_get_stack(struct pt_regs * regs,struct task_struct * task,struct perf_callchain_entry * trace_in,void * buf,u32 size,u64 flags)575 static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task,
576 			    struct perf_callchain_entry *trace_in,
577 			    void *buf, u32 size, u64 flags)
578 {
579 	u32 trace_nr, copy_len, elem_size, num_elem, max_depth;
580 	bool user_build_id = flags & BPF_F_USER_BUILD_ID;
581 	bool crosstask = task && task != current;
582 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
583 	bool user = flags & BPF_F_USER_STACK;
584 	struct perf_callchain_entry *trace;
585 	bool kernel = !user;
586 	int err = -EINVAL;
587 	u64 *ips;
588 
589 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
590 			       BPF_F_USER_BUILD_ID)))
591 		goto clear;
592 	if (kernel && user_build_id)
593 		goto clear;
594 
595 	elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id)
596 					    : sizeof(u64);
597 	if (unlikely(size % elem_size))
598 		goto clear;
599 
600 	/* cannot get valid user stack for task without user_mode regs */
601 	if (task && user && !user_mode(regs))
602 		goto err_fault;
603 
604 	/* get_perf_callchain does not support crosstask user stack walking
605 	 * but returns an empty stack instead of NULL.
606 	 */
607 	if (crosstask && user) {
608 		err = -EOPNOTSUPP;
609 		goto clear;
610 	}
611 
612 	num_elem = size / elem_size;
613 	max_depth = num_elem + skip;
614 	if (sysctl_perf_event_max_stack < max_depth)
615 		max_depth = sysctl_perf_event_max_stack;
616 
617 	if (trace_in)
618 		trace = trace_in;
619 	else if (kernel && task)
620 		trace = get_callchain_entry_for_task(task, max_depth);
621 	else
622 		trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
623 					   crosstask, false);
624 	if (unlikely(!trace))
625 		goto err_fault;
626 
627 	if (trace->nr < skip)
628 		goto err_fault;
629 
630 	trace_nr = trace->nr - skip;
631 	trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
632 	copy_len = trace_nr * elem_size;
633 
634 	ips = trace->ip + skip;
635 	if (user && user_build_id)
636 		stack_map_get_build_id_offset(buf, ips, trace_nr, user);
637 	else
638 		memcpy(buf, ips, copy_len);
639 
640 	if (size > copy_len)
641 		memset(buf + copy_len, 0, size - copy_len);
642 	return copy_len;
643 
644 err_fault:
645 	err = -EFAULT;
646 clear:
647 	memset(buf, 0, size);
648 	return err;
649 }
650 
BPF_CALL_4(bpf_get_stack,struct pt_regs *,regs,void *,buf,u32,size,u64,flags)651 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
652 	   u64, flags)
653 {
654 	return __bpf_get_stack(regs, NULL, NULL, buf, size, flags);
655 }
656 
657 const struct bpf_func_proto bpf_get_stack_proto = {
658 	.func		= bpf_get_stack,
659 	.gpl_only	= true,
660 	.ret_type	= RET_INTEGER,
661 	.arg1_type	= ARG_PTR_TO_CTX,
662 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
663 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
664 	.arg4_type	= ARG_ANYTHING,
665 };
666 
BPF_CALL_4(bpf_get_task_stack,struct task_struct *,task,void *,buf,u32,size,u64,flags)667 BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf,
668 	   u32, size, u64, flags)
669 {
670 	struct pt_regs *regs;
671 	long res = -EINVAL;
672 
673 	if (!try_get_task_stack(task))
674 		return -EFAULT;
675 
676 	regs = task_pt_regs(task);
677 	if (regs)
678 		res = __bpf_get_stack(regs, task, NULL, buf, size, flags);
679 	put_task_stack(task);
680 
681 	return res;
682 }
683 
684 BTF_ID_LIST_SINGLE(bpf_get_task_stack_btf_ids, struct, task_struct)
685 
686 const struct bpf_func_proto bpf_get_task_stack_proto = {
687 	.func		= bpf_get_task_stack,
688 	.gpl_only	= false,
689 	.ret_type	= RET_INTEGER,
690 	.arg1_type	= ARG_PTR_TO_BTF_ID,
691 	.arg1_btf_id	= &bpf_get_task_stack_btf_ids[0],
692 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
693 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
694 	.arg4_type	= ARG_ANYTHING,
695 };
696 
BPF_CALL_4(bpf_get_stack_pe,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)697 BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx,
698 	   void *, buf, u32, size, u64, flags)
699 {
700 	struct pt_regs *regs = (struct pt_regs *)(ctx->regs);
701 	struct perf_event *event = ctx->event;
702 	struct perf_callchain_entry *trace;
703 	bool kernel, user;
704 	int err = -EINVAL;
705 	__u64 nr_kernel;
706 
707 	if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
708 		return __bpf_get_stack(regs, NULL, NULL, buf, size, flags);
709 
710 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
711 			       BPF_F_USER_BUILD_ID)))
712 		goto clear;
713 
714 	user = flags & BPF_F_USER_STACK;
715 	kernel = !user;
716 
717 	err = -EFAULT;
718 	trace = ctx->data->callchain;
719 	if (unlikely(!trace))
720 		goto clear;
721 
722 	nr_kernel = count_kernel_ip(trace);
723 
724 	if (kernel) {
725 		__u64 nr = trace->nr;
726 
727 		trace->nr = nr_kernel;
728 		err = __bpf_get_stack(regs, NULL, trace, buf, size, flags);
729 
730 		/* restore nr */
731 		trace->nr = nr;
732 	} else { /* user */
733 		u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
734 
735 		skip += nr_kernel;
736 		if (skip > BPF_F_SKIP_FIELD_MASK)
737 			goto clear;
738 
739 		flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
740 		err = __bpf_get_stack(regs, NULL, trace, buf, size, flags);
741 	}
742 	return err;
743 
744 clear:
745 	memset(buf, 0, size);
746 	return err;
747 
748 }
749 
750 const struct bpf_func_proto bpf_get_stack_proto_pe = {
751 	.func		= bpf_get_stack_pe,
752 	.gpl_only	= true,
753 	.ret_type	= RET_INTEGER,
754 	.arg1_type	= ARG_PTR_TO_CTX,
755 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
756 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
757 	.arg4_type	= ARG_ANYTHING,
758 };
759 
760 /* Called from eBPF program */
stack_map_lookup_elem(struct bpf_map * map,void * key)761 static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
762 {
763 	return ERR_PTR(-EOPNOTSUPP);
764 }
765 
766 /* Called from syscall */
bpf_stackmap_copy(struct bpf_map * map,void * key,void * value)767 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
768 {
769 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
770 	struct stack_map_bucket *bucket, *old_bucket;
771 	u32 id = *(u32 *)key, trace_len;
772 
773 	if (unlikely(id >= smap->n_buckets))
774 		return -ENOENT;
775 
776 	bucket = xchg(&smap->buckets[id], NULL);
777 	if (!bucket)
778 		return -ENOENT;
779 
780 	trace_len = bucket->nr * stack_map_data_size(map);
781 	memcpy(value, bucket->data, trace_len);
782 	memset(value + trace_len, 0, map->value_size - trace_len);
783 
784 	old_bucket = xchg(&smap->buckets[id], bucket);
785 	if (old_bucket)
786 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
787 	return 0;
788 }
789 
stack_map_get_next_key(struct bpf_map * map,void * key,void * next_key)790 static int stack_map_get_next_key(struct bpf_map *map, void *key,
791 				  void *next_key)
792 {
793 	struct bpf_stack_map *smap = container_of(map,
794 						  struct bpf_stack_map, map);
795 	u32 id;
796 
797 	WARN_ON_ONCE(!rcu_read_lock_held());
798 
799 	if (!key) {
800 		id = 0;
801 	} else {
802 		id = *(u32 *)key;
803 		if (id >= smap->n_buckets || !smap->buckets[id])
804 			id = 0;
805 		else
806 			id++;
807 	}
808 
809 	while (id < smap->n_buckets && !smap->buckets[id])
810 		id++;
811 
812 	if (id >= smap->n_buckets)
813 		return -ENOENT;
814 
815 	*(u32 *)next_key = id;
816 	return 0;
817 }
818 
stack_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)819 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value,
820 				 u64 map_flags)
821 {
822 	return -EINVAL;
823 }
824 
825 /* Called from syscall or from eBPF program */
stack_map_delete_elem(struct bpf_map * map,void * key)826 static int stack_map_delete_elem(struct bpf_map *map, void *key)
827 {
828 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
829 	struct stack_map_bucket *old_bucket;
830 	u32 id = *(u32 *)key;
831 
832 	if (unlikely(id >= smap->n_buckets))
833 		return -E2BIG;
834 
835 	old_bucket = xchg(&smap->buckets[id], NULL);
836 	if (old_bucket) {
837 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
838 		return 0;
839 	} else {
840 		return -ENOENT;
841 	}
842 }
843 
844 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
stack_map_free(struct bpf_map * map)845 static void stack_map_free(struct bpf_map *map)
846 {
847 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
848 
849 	bpf_map_area_free(smap->elems);
850 	pcpu_freelist_destroy(&smap->freelist);
851 	bpf_map_area_free(smap);
852 	put_callchain_buffers();
853 }
854 
855 static int stack_trace_map_btf_id;
856 const struct bpf_map_ops stack_trace_map_ops = {
857 	.map_meta_equal = bpf_map_meta_equal,
858 	.map_alloc = stack_map_alloc,
859 	.map_free = stack_map_free,
860 	.map_get_next_key = stack_map_get_next_key,
861 	.map_lookup_elem = stack_map_lookup_elem,
862 	.map_update_elem = stack_map_update_elem,
863 	.map_delete_elem = stack_map_delete_elem,
864 	.map_check_btf = map_check_no_btf,
865 	.map_btf_name = "bpf_stack_map",
866 	.map_btf_id = &stack_trace_map_btf_id,
867 };
868 
stack_map_init(void)869 static int __init stack_map_init(void)
870 {
871 	int cpu;
872 	struct stack_map_irq_work *work;
873 
874 	for_each_possible_cpu(cpu) {
875 		work = per_cpu_ptr(&up_read_work, cpu);
876 		init_irq_work(&work->irq_work, do_up_read);
877 	}
878 	return 0;
879 }
880 subsys_initcall(stack_map_init);
881