1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "../locking/rtmutex_common.h"
46
47 /*
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
59 *
60 * The waker side modifies the user space value of the futex and calls
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
64 *
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
90 *
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
99 *
100 * waiters++; (a)
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
111 * if (uval == val)
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
118 *
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
121 * to futex and the waiters read (see hb_waiters_pending()).
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
145 */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED 0x01
159 #else
160 /*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164 # define FLAGS_SHARED 0x00
165 #endif
166 #define FLAGS_CLOCKRT 0x02
167 #define FLAGS_HAS_TIMEOUT 0x04
168
169 /*
170 * Priority Inheritance state:
171 */
172 struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
182 struct rt_mutex pi_mutex;
183
184 struct task_struct *owner;
185 refcount_t refcount;
186
187 union futex_key key;
188 } __randomize_layout;
189
190 /**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
192 * @list: priority-sorted list of tasks waiting on this futex
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 *
201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202 * we can wake only the relevant ones (hashed queues may be shared).
203 *
204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206 * The order of wakeup is always to make the first condition true, then
207 * the second.
208 *
209 * PI futexes are typically woken before they are removed from the hash list via
210 * the rt_mutex code. See unqueue_me_pi().
211 */
212 struct futex_q {
213 struct plist_node list;
214
215 struct task_struct *task;
216 spinlock_t *lock_ptr;
217 union futex_key key;
218 struct futex_pi_state *pi_state;
219 struct rt_mutex_waiter *rt_waiter;
220 union futex_key *requeue_pi_key;
221 u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225 /* list gets initialized in queue_me()*/
226 .key = FUTEX_KEY_INIT,
227 .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231 * Hash buckets are shared by all the futex_keys that hash to the same
232 * location. Each key may have multiple futex_q structures, one for each task
233 * waiting on a futex.
234 */
235 struct futex_hash_bucket {
236 atomic_t waiters;
237 spinlock_t lock;
238 struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242 * The base of the bucket array and its size are always used together
243 * (after initialization only in hash_futex()), so ensure that they
244 * reside in the same cacheline.
245 */
246 static struct {
247 struct futex_hash_bucket *queues;
248 unsigned long hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255 * Fault injections for futexes.
256 */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260 struct fault_attr attr;
261
262 bool ignore_private;
263 } fail_futex = {
264 .attr = FAULT_ATTR_INITIALIZER,
265 .ignore_private = false,
266 };
267
setup_fail_futex(char * str)268 static int __init setup_fail_futex(char *str)
269 {
270 return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
should_fail_futex(bool fshared)274 static bool should_fail_futex(bool fshared)
275 {
276 if (fail_futex.ignore_private && !fshared)
277 return false;
278
279 return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
fail_futex_debugfs(void)284 static int __init fail_futex_debugfs(void)
285 {
286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 struct dentry *dir;
288
289 dir = fault_create_debugfs_attr("fail_futex", NULL,
290 &fail_futex.attr);
291 if (IS_ERR(dir))
292 return PTR_ERR(dir);
293
294 debugfs_create_bool("ignore-private", mode, dir,
295 &fail_futex.ignore_private);
296 return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
should_fail_futex(bool fshared)304 static inline bool should_fail_futex(bool fshared)
305 {
306 return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
compat_exit_robust_list(struct task_struct * curr)313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315
316 /*
317 * Reflects a new waiter being added to the waitqueue.
318 */
hb_waiters_inc(struct futex_hash_bucket * hb)319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322 atomic_inc(&hb->waiters);
323 /*
324 * Full barrier (A), see the ordering comment above.
325 */
326 smp_mb__after_atomic();
327 #endif
328 }
329
330 /*
331 * Reflects a waiter being removed from the waitqueue by wakeup
332 * paths.
333 */
hb_waiters_dec(struct futex_hash_bucket * hb)334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337 atomic_dec(&hb->waiters);
338 #endif
339 }
340
hb_waiters_pending(struct futex_hash_bucket * hb)341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344 /*
345 * Full barrier (B), see the ordering comment above.
346 */
347 smp_mb();
348 return atomic_read(&hb->waiters);
349 #else
350 return 1;
351 #endif
352 }
353
354 /**
355 * hash_futex - Return the hash bucket in the global hash
356 * @key: Pointer to the futex key for which the hash is calculated
357 *
358 * We hash on the keys returned from get_futex_key (see below) and return the
359 * corresponding hash bucket in the global hash.
360 */
hash_futex(union futex_key * key)361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364 key->both.offset);
365
366 return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368
369
370 /**
371 * match_futex - Check whether two futex keys are equal
372 * @key1: Pointer to key1
373 * @key2: Pointer to key2
374 *
375 * Return 1 if two futex_keys are equal, 0 otherwise.
376 */
match_futex(union futex_key * key1,union futex_key * key2)377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379 return (key1 && key2
380 && key1->both.word == key2->both.word
381 && key1->both.ptr == key2->both.ptr
382 && key1->both.offset == key2->both.offset);
383 }
384
385 enum futex_access {
386 FUTEX_READ,
387 FUTEX_WRITE
388 };
389
390 /**
391 * futex_setup_timer - set up the sleeping hrtimer.
392 * @time: ptr to the given timeout value
393 * @timeout: the hrtimer_sleeper structure to be set up
394 * @flags: futex flags
395 * @range_ns: optional range in ns
396 *
397 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398 * value given
399 */
400 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402 int flags, u64 range_ns)
403 {
404 if (!time)
405 return NULL;
406
407 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408 CLOCK_REALTIME : CLOCK_MONOTONIC,
409 HRTIMER_MODE_ABS);
410 /*
411 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412 * effectively the same as calling hrtimer_set_expires().
413 */
414 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416 return timeout;
417 }
418
419 /*
420 * Generate a machine wide unique identifier for this inode.
421 *
422 * This relies on u64 not wrapping in the life-time of the machine; which with
423 * 1ns resolution means almost 585 years.
424 *
425 * This further relies on the fact that a well formed program will not unmap
426 * the file while it has a (shared) futex waiting on it. This mapping will have
427 * a file reference which pins the mount and inode.
428 *
429 * If for some reason an inode gets evicted and read back in again, it will get
430 * a new sequence number and will _NOT_ match, even though it is the exact same
431 * file.
432 *
433 * It is important that match_futex() will never have a false-positive, esp.
434 * for PI futexes that can mess up the state. The above argues that false-negatives
435 * are only possible for malformed programs.
436 */
get_inode_sequence_number(struct inode * inode)437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439 static atomic64_t i_seq;
440 u64 old;
441
442 /* Does the inode already have a sequence number? */
443 old = atomic64_read(&inode->i_sequence);
444 if (likely(old))
445 return old;
446
447 for (;;) {
448 u64 new = atomic64_add_return(1, &i_seq);
449 if (WARN_ON_ONCE(!new))
450 continue;
451
452 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453 if (old)
454 return old;
455 return new;
456 }
457 }
458
459 /**
460 * get_futex_key() - Get parameters which are the keys for a futex
461 * @uaddr: virtual address of the futex
462 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463 * @key: address where result is stored.
464 * @rw: mapping needs to be read/write (values: FUTEX_READ,
465 * FUTEX_WRITE)
466 *
467 * Return: a negative error code or 0
468 *
469 * The key words are stored in @key on success.
470 *
471 * For shared mappings (when @fshared), the key is:
472 *
473 * ( inode->i_sequence, page->index, offset_within_page )
474 *
475 * [ also see get_inode_sequence_number() ]
476 *
477 * For private mappings (or when !@fshared), the key is:
478 *
479 * ( current->mm, address, 0 )
480 *
481 * This allows (cross process, where applicable) identification of the futex
482 * without keeping the page pinned for the duration of the FUTEX_WAIT.
483 *
484 * lock_page() might sleep, the caller should not hold a spinlock.
485 */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487 enum futex_access rw)
488 {
489 unsigned long address = (unsigned long)uaddr;
490 struct mm_struct *mm = current->mm;
491 struct page *page, *tail;
492 struct address_space *mapping;
493 int err, ro = 0;
494
495 /*
496 * The futex address must be "naturally" aligned.
497 */
498 key->both.offset = address % PAGE_SIZE;
499 if (unlikely((address % sizeof(u32)) != 0))
500 return -EINVAL;
501 address -= key->both.offset;
502
503 if (unlikely(!access_ok(uaddr, sizeof(u32))))
504 return -EFAULT;
505
506 if (unlikely(should_fail_futex(fshared)))
507 return -EFAULT;
508
509 /*
510 * PROCESS_PRIVATE futexes are fast.
511 * As the mm cannot disappear under us and the 'key' only needs
512 * virtual address, we dont even have to find the underlying vma.
513 * Note : We do have to check 'uaddr' is a valid user address,
514 * but access_ok() should be faster than find_vma()
515 */
516 if (!fshared) {
517 /*
518 * On no-MMU, shared futexes are treated as private, therefore
519 * we must not include the current process in the key. Since
520 * there is only one address space, the address is a unique key
521 * on its own.
522 */
523 if (IS_ENABLED(CONFIG_MMU))
524 key->private.mm = mm;
525 else
526 key->private.mm = NULL;
527
528 key->private.address = address;
529 return 0;
530 }
531
532 again:
533 /* Ignore any VERIFY_READ mapping (futex common case) */
534 if (unlikely(should_fail_futex(true)))
535 return -EFAULT;
536
537 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
538 /*
539 * If write access is not required (eg. FUTEX_WAIT), try
540 * and get read-only access.
541 */
542 if (err == -EFAULT && rw == FUTEX_READ) {
543 err = get_user_pages_fast(address, 1, 0, &page);
544 ro = 1;
545 }
546 if (err < 0)
547 return err;
548 else
549 err = 0;
550
551 /*
552 * The treatment of mapping from this point on is critical. The page
553 * lock protects many things but in this context the page lock
554 * stabilizes mapping, prevents inode freeing in the shared
555 * file-backed region case and guards against movement to swap cache.
556 *
557 * Strictly speaking the page lock is not needed in all cases being
558 * considered here and page lock forces unnecessarily serialization
559 * From this point on, mapping will be re-verified if necessary and
560 * page lock will be acquired only if it is unavoidable
561 *
562 * Mapping checks require the head page for any compound page so the
563 * head page and mapping is looked up now. For anonymous pages, it
564 * does not matter if the page splits in the future as the key is
565 * based on the address. For filesystem-backed pages, the tail is
566 * required as the index of the page determines the key. For
567 * base pages, there is no tail page and tail == page.
568 */
569 tail = page;
570 page = compound_head(page);
571 mapping = READ_ONCE(page->mapping);
572
573 /*
574 * If page->mapping is NULL, then it cannot be a PageAnon
575 * page; but it might be the ZERO_PAGE or in the gate area or
576 * in a special mapping (all cases which we are happy to fail);
577 * or it may have been a good file page when get_user_pages_fast
578 * found it, but truncated or holepunched or subjected to
579 * invalidate_complete_page2 before we got the page lock (also
580 * cases which we are happy to fail). And we hold a reference,
581 * so refcount care in invalidate_complete_page's remove_mapping
582 * prevents drop_caches from setting mapping to NULL beneath us.
583 *
584 * The case we do have to guard against is when memory pressure made
585 * shmem_writepage move it from filecache to swapcache beneath us:
586 * an unlikely race, but we do need to retry for page->mapping.
587 */
588 if (unlikely(!mapping)) {
589 int shmem_swizzled;
590
591 /*
592 * Page lock is required to identify which special case above
593 * applies. If this is really a shmem page then the page lock
594 * will prevent unexpected transitions.
595 */
596 lock_page(page);
597 shmem_swizzled = PageSwapCache(page) || page->mapping;
598 unlock_page(page);
599 put_page(page);
600
601 if (shmem_swizzled)
602 goto again;
603
604 return -EFAULT;
605 }
606
607 /*
608 * Private mappings are handled in a simple way.
609 *
610 * If the futex key is stored on an anonymous page, then the associated
611 * object is the mm which is implicitly pinned by the calling process.
612 *
613 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
614 * it's a read-only handle, it's expected that futexes attach to
615 * the object not the particular process.
616 */
617 if (PageAnon(page)) {
618 /*
619 * A RO anonymous page will never change and thus doesn't make
620 * sense for futex operations.
621 */
622 if (unlikely(should_fail_futex(true)) || ro) {
623 err = -EFAULT;
624 goto out;
625 }
626
627 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
628 key->private.mm = mm;
629 key->private.address = address;
630
631 } else {
632 struct inode *inode;
633
634 /*
635 * The associated futex object in this case is the inode and
636 * the page->mapping must be traversed. Ordinarily this should
637 * be stabilised under page lock but it's not strictly
638 * necessary in this case as we just want to pin the inode, not
639 * update the radix tree or anything like that.
640 *
641 * The RCU read lock is taken as the inode is finally freed
642 * under RCU. If the mapping still matches expectations then the
643 * mapping->host can be safely accessed as being a valid inode.
644 */
645 rcu_read_lock();
646
647 if (READ_ONCE(page->mapping) != mapping) {
648 rcu_read_unlock();
649 put_page(page);
650
651 goto again;
652 }
653
654 inode = READ_ONCE(mapping->host);
655 if (!inode) {
656 rcu_read_unlock();
657 put_page(page);
658
659 goto again;
660 }
661
662 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
663 key->shared.i_seq = get_inode_sequence_number(inode);
664 key->shared.pgoff = page_to_pgoff(tail);
665 rcu_read_unlock();
666 }
667
668 out:
669 put_page(page);
670 return err;
671 }
672
673 /**
674 * fault_in_user_writeable() - Fault in user address and verify RW access
675 * @uaddr: pointer to faulting user space address
676 *
677 * Slow path to fixup the fault we just took in the atomic write
678 * access to @uaddr.
679 *
680 * We have no generic implementation of a non-destructive write to the
681 * user address. We know that we faulted in the atomic pagefault
682 * disabled section so we can as well avoid the #PF overhead by
683 * calling get_user_pages() right away.
684 */
fault_in_user_writeable(u32 __user * uaddr)685 static int fault_in_user_writeable(u32 __user *uaddr)
686 {
687 struct mm_struct *mm = current->mm;
688 int ret;
689
690 mmap_read_lock(mm);
691 ret = fixup_user_fault(mm, (unsigned long)uaddr,
692 FAULT_FLAG_WRITE, NULL);
693 mmap_read_unlock(mm);
694
695 return ret < 0 ? ret : 0;
696 }
697
698 /**
699 * futex_top_waiter() - Return the highest priority waiter on a futex
700 * @hb: the hash bucket the futex_q's reside in
701 * @key: the futex key (to distinguish it from other futex futex_q's)
702 *
703 * Must be called with the hb lock held.
704 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)705 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
706 union futex_key *key)
707 {
708 struct futex_q *this;
709
710 plist_for_each_entry(this, &hb->chain, list) {
711 if (match_futex(&this->key, key))
712 return this;
713 }
714 return NULL;
715 }
716
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)717 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
718 u32 uval, u32 newval)
719 {
720 int ret;
721
722 pagefault_disable();
723 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
724 pagefault_enable();
725
726 return ret;
727 }
728
get_futex_value_locked(u32 * dest,u32 __user * from)729 static int get_futex_value_locked(u32 *dest, u32 __user *from)
730 {
731 int ret;
732
733 pagefault_disable();
734 ret = __get_user(*dest, from);
735 pagefault_enable();
736
737 return ret ? -EFAULT : 0;
738 }
739
740
741 /*
742 * PI code:
743 */
refill_pi_state_cache(void)744 static int refill_pi_state_cache(void)
745 {
746 struct futex_pi_state *pi_state;
747
748 if (likely(current->pi_state_cache))
749 return 0;
750
751 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
752
753 if (!pi_state)
754 return -ENOMEM;
755
756 INIT_LIST_HEAD(&pi_state->list);
757 /* pi_mutex gets initialized later */
758 pi_state->owner = NULL;
759 refcount_set(&pi_state->refcount, 1);
760 pi_state->key = FUTEX_KEY_INIT;
761
762 current->pi_state_cache = pi_state;
763
764 return 0;
765 }
766
alloc_pi_state(void)767 static struct futex_pi_state *alloc_pi_state(void)
768 {
769 struct futex_pi_state *pi_state = current->pi_state_cache;
770
771 WARN_ON(!pi_state);
772 current->pi_state_cache = NULL;
773
774 return pi_state;
775 }
776
pi_state_update_owner(struct futex_pi_state * pi_state,struct task_struct * new_owner)777 static void pi_state_update_owner(struct futex_pi_state *pi_state,
778 struct task_struct *new_owner)
779 {
780 struct task_struct *old_owner = pi_state->owner;
781
782 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
783
784 if (old_owner) {
785 raw_spin_lock(&old_owner->pi_lock);
786 WARN_ON(list_empty(&pi_state->list));
787 list_del_init(&pi_state->list);
788 raw_spin_unlock(&old_owner->pi_lock);
789 }
790
791 if (new_owner) {
792 raw_spin_lock(&new_owner->pi_lock);
793 WARN_ON(!list_empty(&pi_state->list));
794 list_add(&pi_state->list, &new_owner->pi_state_list);
795 pi_state->owner = new_owner;
796 raw_spin_unlock(&new_owner->pi_lock);
797 }
798 }
799
get_pi_state(struct futex_pi_state * pi_state)800 static void get_pi_state(struct futex_pi_state *pi_state)
801 {
802 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
803 }
804
805 /*
806 * Drops a reference to the pi_state object and frees or caches it
807 * when the last reference is gone.
808 */
put_pi_state(struct futex_pi_state * pi_state)809 static void put_pi_state(struct futex_pi_state *pi_state)
810 {
811 if (!pi_state)
812 return;
813
814 if (!refcount_dec_and_test(&pi_state->refcount))
815 return;
816
817 /*
818 * If pi_state->owner is NULL, the owner is most probably dying
819 * and has cleaned up the pi_state already
820 */
821 if (pi_state->owner) {
822 unsigned long flags;
823
824 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
825 pi_state_update_owner(pi_state, NULL);
826 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
827 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
828 }
829
830 if (current->pi_state_cache) {
831 kfree(pi_state);
832 } else {
833 /*
834 * pi_state->list is already empty.
835 * clear pi_state->owner.
836 * refcount is at 0 - put it back to 1.
837 */
838 pi_state->owner = NULL;
839 refcount_set(&pi_state->refcount, 1);
840 current->pi_state_cache = pi_state;
841 }
842 }
843
844 #ifdef CONFIG_FUTEX_PI
845
846 /*
847 * This task is holding PI mutexes at exit time => bad.
848 * Kernel cleans up PI-state, but userspace is likely hosed.
849 * (Robust-futex cleanup is separate and might save the day for userspace.)
850 */
exit_pi_state_list(struct task_struct * curr)851 static void exit_pi_state_list(struct task_struct *curr)
852 {
853 struct list_head *next, *head = &curr->pi_state_list;
854 struct futex_pi_state *pi_state;
855 struct futex_hash_bucket *hb;
856 union futex_key key = FUTEX_KEY_INIT;
857
858 if (!futex_cmpxchg_enabled)
859 return;
860 /*
861 * We are a ZOMBIE and nobody can enqueue itself on
862 * pi_state_list anymore, but we have to be careful
863 * versus waiters unqueueing themselves:
864 */
865 raw_spin_lock_irq(&curr->pi_lock);
866 while (!list_empty(head)) {
867 next = head->next;
868 pi_state = list_entry(next, struct futex_pi_state, list);
869 key = pi_state->key;
870 hb = hash_futex(&key);
871
872 /*
873 * We can race against put_pi_state() removing itself from the
874 * list (a waiter going away). put_pi_state() will first
875 * decrement the reference count and then modify the list, so
876 * its possible to see the list entry but fail this reference
877 * acquire.
878 *
879 * In that case; drop the locks to let put_pi_state() make
880 * progress and retry the loop.
881 */
882 if (!refcount_inc_not_zero(&pi_state->refcount)) {
883 raw_spin_unlock_irq(&curr->pi_lock);
884 cpu_relax();
885 raw_spin_lock_irq(&curr->pi_lock);
886 continue;
887 }
888 raw_spin_unlock_irq(&curr->pi_lock);
889
890 spin_lock(&hb->lock);
891 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
892 raw_spin_lock(&curr->pi_lock);
893 /*
894 * We dropped the pi-lock, so re-check whether this
895 * task still owns the PI-state:
896 */
897 if (head->next != next) {
898 /* retain curr->pi_lock for the loop invariant */
899 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
900 spin_unlock(&hb->lock);
901 put_pi_state(pi_state);
902 continue;
903 }
904
905 WARN_ON(pi_state->owner != curr);
906 WARN_ON(list_empty(&pi_state->list));
907 list_del_init(&pi_state->list);
908 pi_state->owner = NULL;
909
910 raw_spin_unlock(&curr->pi_lock);
911 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
912 spin_unlock(&hb->lock);
913
914 rt_mutex_futex_unlock(&pi_state->pi_mutex);
915 put_pi_state(pi_state);
916
917 raw_spin_lock_irq(&curr->pi_lock);
918 }
919 raw_spin_unlock_irq(&curr->pi_lock);
920 }
921 #else
exit_pi_state_list(struct task_struct * curr)922 static inline void exit_pi_state_list(struct task_struct *curr) { }
923 #endif
924
925 /*
926 * We need to check the following states:
927 *
928 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
929 *
930 * [1] NULL | --- | --- | 0 | 0/1 | Valid
931 * [2] NULL | --- | --- | >0 | 0/1 | Valid
932 *
933 * [3] Found | NULL | -- | Any | 0/1 | Invalid
934 *
935 * [4] Found | Found | NULL | 0 | 1 | Valid
936 * [5] Found | Found | NULL | >0 | 1 | Invalid
937 *
938 * [6] Found | Found | task | 0 | 1 | Valid
939 *
940 * [7] Found | Found | NULL | Any | 0 | Invalid
941 *
942 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
943 * [9] Found | Found | task | 0 | 0 | Invalid
944 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
945 *
946 * [1] Indicates that the kernel can acquire the futex atomically. We
947 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
948 *
949 * [2] Valid, if TID does not belong to a kernel thread. If no matching
950 * thread is found then it indicates that the owner TID has died.
951 *
952 * [3] Invalid. The waiter is queued on a non PI futex
953 *
954 * [4] Valid state after exit_robust_list(), which sets the user space
955 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
956 *
957 * [5] The user space value got manipulated between exit_robust_list()
958 * and exit_pi_state_list()
959 *
960 * [6] Valid state after exit_pi_state_list() which sets the new owner in
961 * the pi_state but cannot access the user space value.
962 *
963 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
964 *
965 * [8] Owner and user space value match
966 *
967 * [9] There is no transient state which sets the user space TID to 0
968 * except exit_robust_list(), but this is indicated by the
969 * FUTEX_OWNER_DIED bit. See [4]
970 *
971 * [10] There is no transient state which leaves owner and user space
972 * TID out of sync. Except one error case where the kernel is denied
973 * write access to the user address, see fixup_pi_state_owner().
974 *
975 *
976 * Serialization and lifetime rules:
977 *
978 * hb->lock:
979 *
980 * hb -> futex_q, relation
981 * futex_q -> pi_state, relation
982 *
983 * (cannot be raw because hb can contain arbitrary amount
984 * of futex_q's)
985 *
986 * pi_mutex->wait_lock:
987 *
988 * {uval, pi_state}
989 *
990 * (and pi_mutex 'obviously')
991 *
992 * p->pi_lock:
993 *
994 * p->pi_state_list -> pi_state->list, relation
995 *
996 * pi_state->refcount:
997 *
998 * pi_state lifetime
999 *
1000 *
1001 * Lock order:
1002 *
1003 * hb->lock
1004 * pi_mutex->wait_lock
1005 * p->pi_lock
1006 *
1007 */
1008
1009 /*
1010 * Validate that the existing waiter has a pi_state and sanity check
1011 * the pi_state against the user space value. If correct, attach to
1012 * it.
1013 */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1014 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1015 struct futex_pi_state *pi_state,
1016 struct futex_pi_state **ps)
1017 {
1018 pid_t pid = uval & FUTEX_TID_MASK;
1019 u32 uval2;
1020 int ret;
1021
1022 /*
1023 * Userspace might have messed up non-PI and PI futexes [3]
1024 */
1025 if (unlikely(!pi_state))
1026 return -EINVAL;
1027
1028 /*
1029 * We get here with hb->lock held, and having found a
1030 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1031 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1032 * which in turn means that futex_lock_pi() still has a reference on
1033 * our pi_state.
1034 *
1035 * The waiter holding a reference on @pi_state also protects against
1036 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1037 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1038 * free pi_state before we can take a reference ourselves.
1039 */
1040 WARN_ON(!refcount_read(&pi_state->refcount));
1041
1042 /*
1043 * Now that we have a pi_state, we can acquire wait_lock
1044 * and do the state validation.
1045 */
1046 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1047
1048 /*
1049 * Since {uval, pi_state} is serialized by wait_lock, and our current
1050 * uval was read without holding it, it can have changed. Verify it
1051 * still is what we expect it to be, otherwise retry the entire
1052 * operation.
1053 */
1054 if (get_futex_value_locked(&uval2, uaddr))
1055 goto out_efault;
1056
1057 if (uval != uval2)
1058 goto out_eagain;
1059
1060 /*
1061 * Handle the owner died case:
1062 */
1063 if (uval & FUTEX_OWNER_DIED) {
1064 /*
1065 * exit_pi_state_list sets owner to NULL and wakes the
1066 * topmost waiter. The task which acquires the
1067 * pi_state->rt_mutex will fixup owner.
1068 */
1069 if (!pi_state->owner) {
1070 /*
1071 * No pi state owner, but the user space TID
1072 * is not 0. Inconsistent state. [5]
1073 */
1074 if (pid)
1075 goto out_einval;
1076 /*
1077 * Take a ref on the state and return success. [4]
1078 */
1079 goto out_attach;
1080 }
1081
1082 /*
1083 * If TID is 0, then either the dying owner has not
1084 * yet executed exit_pi_state_list() or some waiter
1085 * acquired the rtmutex in the pi state, but did not
1086 * yet fixup the TID in user space.
1087 *
1088 * Take a ref on the state and return success. [6]
1089 */
1090 if (!pid)
1091 goto out_attach;
1092 } else {
1093 /*
1094 * If the owner died bit is not set, then the pi_state
1095 * must have an owner. [7]
1096 */
1097 if (!pi_state->owner)
1098 goto out_einval;
1099 }
1100
1101 /*
1102 * Bail out if user space manipulated the futex value. If pi
1103 * state exists then the owner TID must be the same as the
1104 * user space TID. [9/10]
1105 */
1106 if (pid != task_pid_vnr(pi_state->owner))
1107 goto out_einval;
1108
1109 out_attach:
1110 get_pi_state(pi_state);
1111 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1112 *ps = pi_state;
1113 return 0;
1114
1115 out_einval:
1116 ret = -EINVAL;
1117 goto out_error;
1118
1119 out_eagain:
1120 ret = -EAGAIN;
1121 goto out_error;
1122
1123 out_efault:
1124 ret = -EFAULT;
1125 goto out_error;
1126
1127 out_error:
1128 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1129 return ret;
1130 }
1131
1132 /**
1133 * wait_for_owner_exiting - Block until the owner has exited
1134 * @ret: owner's current futex lock status
1135 * @exiting: Pointer to the exiting task
1136 *
1137 * Caller must hold a refcount on @exiting.
1138 */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1139 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1140 {
1141 if (ret != -EBUSY) {
1142 WARN_ON_ONCE(exiting);
1143 return;
1144 }
1145
1146 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1147 return;
1148
1149 mutex_lock(&exiting->futex_exit_mutex);
1150 /*
1151 * No point in doing state checking here. If the waiter got here
1152 * while the task was in exec()->exec_futex_release() then it can
1153 * have any FUTEX_STATE_* value when the waiter has acquired the
1154 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1155 * already. Highly unlikely and not a problem. Just one more round
1156 * through the futex maze.
1157 */
1158 mutex_unlock(&exiting->futex_exit_mutex);
1159
1160 put_task_struct(exiting);
1161 }
1162
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1163 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1164 struct task_struct *tsk)
1165 {
1166 u32 uval2;
1167
1168 /*
1169 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1170 * caller that the alleged owner is busy.
1171 */
1172 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1173 return -EBUSY;
1174
1175 /*
1176 * Reread the user space value to handle the following situation:
1177 *
1178 * CPU0 CPU1
1179 *
1180 * sys_exit() sys_futex()
1181 * do_exit() futex_lock_pi()
1182 * futex_lock_pi_atomic()
1183 * exit_signals(tsk) No waiters:
1184 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1185 * mm_release(tsk) Set waiter bit
1186 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1187 * Set owner died attach_to_pi_owner() {
1188 * *uaddr = 0xC0000000; tsk = get_task(PID);
1189 * } if (!tsk->flags & PF_EXITING) {
1190 * ... attach();
1191 * tsk->futex_state = } else {
1192 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1193 * FUTEX_STATE_DEAD)
1194 * return -EAGAIN;
1195 * return -ESRCH; <--- FAIL
1196 * }
1197 *
1198 * Returning ESRCH unconditionally is wrong here because the
1199 * user space value has been changed by the exiting task.
1200 *
1201 * The same logic applies to the case where the exiting task is
1202 * already gone.
1203 */
1204 if (get_futex_value_locked(&uval2, uaddr))
1205 return -EFAULT;
1206
1207 /* If the user space value has changed, try again. */
1208 if (uval2 != uval)
1209 return -EAGAIN;
1210
1211 /*
1212 * The exiting task did not have a robust list, the robust list was
1213 * corrupted or the user space value in *uaddr is simply bogus.
1214 * Give up and tell user space.
1215 */
1216 return -ESRCH;
1217 }
1218
1219 /*
1220 * Lookup the task for the TID provided from user space and attach to
1221 * it after doing proper sanity checks.
1222 */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1223 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1224 struct futex_pi_state **ps,
1225 struct task_struct **exiting)
1226 {
1227 pid_t pid = uval & FUTEX_TID_MASK;
1228 struct futex_pi_state *pi_state;
1229 struct task_struct *p;
1230
1231 /*
1232 * We are the first waiter - try to look up the real owner and attach
1233 * the new pi_state to it, but bail out when TID = 0 [1]
1234 *
1235 * The !pid check is paranoid. None of the call sites should end up
1236 * with pid == 0, but better safe than sorry. Let the caller retry
1237 */
1238 if (!pid)
1239 return -EAGAIN;
1240 p = find_get_task_by_vpid(pid);
1241 if (!p)
1242 return handle_exit_race(uaddr, uval, NULL);
1243
1244 if (unlikely(p->flags & PF_KTHREAD)) {
1245 put_task_struct(p);
1246 return -EPERM;
1247 }
1248
1249 /*
1250 * We need to look at the task state to figure out, whether the
1251 * task is exiting. To protect against the change of the task state
1252 * in futex_exit_release(), we do this protected by p->pi_lock:
1253 */
1254 raw_spin_lock_irq(&p->pi_lock);
1255 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1256 /*
1257 * The task is on the way out. When the futex state is
1258 * FUTEX_STATE_DEAD, we know that the task has finished
1259 * the cleanup:
1260 */
1261 int ret = handle_exit_race(uaddr, uval, p);
1262
1263 raw_spin_unlock_irq(&p->pi_lock);
1264 /*
1265 * If the owner task is between FUTEX_STATE_EXITING and
1266 * FUTEX_STATE_DEAD then store the task pointer and keep
1267 * the reference on the task struct. The calling code will
1268 * drop all locks, wait for the task to reach
1269 * FUTEX_STATE_DEAD and then drop the refcount. This is
1270 * required to prevent a live lock when the current task
1271 * preempted the exiting task between the two states.
1272 */
1273 if (ret == -EBUSY)
1274 *exiting = p;
1275 else
1276 put_task_struct(p);
1277 return ret;
1278 }
1279
1280 /*
1281 * No existing pi state. First waiter. [2]
1282 *
1283 * This creates pi_state, we have hb->lock held, this means nothing can
1284 * observe this state, wait_lock is irrelevant.
1285 */
1286 pi_state = alloc_pi_state();
1287
1288 /*
1289 * Initialize the pi_mutex in locked state and make @p
1290 * the owner of it:
1291 */
1292 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1293
1294 /* Store the key for possible exit cleanups: */
1295 pi_state->key = *key;
1296
1297 WARN_ON(!list_empty(&pi_state->list));
1298 list_add(&pi_state->list, &p->pi_state_list);
1299 /*
1300 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1301 * because there is no concurrency as the object is not published yet.
1302 */
1303 pi_state->owner = p;
1304 raw_spin_unlock_irq(&p->pi_lock);
1305
1306 put_task_struct(p);
1307
1308 *ps = pi_state;
1309
1310 return 0;
1311 }
1312
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1313 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1314 struct futex_hash_bucket *hb,
1315 union futex_key *key, struct futex_pi_state **ps,
1316 struct task_struct **exiting)
1317 {
1318 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1319
1320 /*
1321 * If there is a waiter on that futex, validate it and
1322 * attach to the pi_state when the validation succeeds.
1323 */
1324 if (top_waiter)
1325 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1326
1327 /*
1328 * We are the first waiter - try to look up the owner based on
1329 * @uval and attach to it.
1330 */
1331 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1332 }
1333
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1334 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1335 {
1336 int err;
1337 u32 curval;
1338
1339 if (unlikely(should_fail_futex(true)))
1340 return -EFAULT;
1341
1342 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1343 if (unlikely(err))
1344 return err;
1345
1346 /* If user space value changed, let the caller retry */
1347 return curval != uval ? -EAGAIN : 0;
1348 }
1349
1350 /**
1351 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1352 * @uaddr: the pi futex user address
1353 * @hb: the pi futex hash bucket
1354 * @key: the futex key associated with uaddr and hb
1355 * @ps: the pi_state pointer where we store the result of the
1356 * lookup
1357 * @task: the task to perform the atomic lock work for. This will
1358 * be "current" except in the case of requeue pi.
1359 * @exiting: Pointer to store the task pointer of the owner task
1360 * which is in the middle of exiting
1361 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1362 *
1363 * Return:
1364 * - 0 - ready to wait;
1365 * - 1 - acquired the lock;
1366 * - <0 - error
1367 *
1368 * The hb->lock and futex_key refs shall be held by the caller.
1369 *
1370 * @exiting is only set when the return value is -EBUSY. If so, this holds
1371 * a refcount on the exiting task on return and the caller needs to drop it
1372 * after waiting for the exit to complete.
1373 */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1374 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1375 union futex_key *key,
1376 struct futex_pi_state **ps,
1377 struct task_struct *task,
1378 struct task_struct **exiting,
1379 int set_waiters)
1380 {
1381 u32 uval, newval, vpid = task_pid_vnr(task);
1382 struct futex_q *top_waiter;
1383 int ret;
1384
1385 /*
1386 * Read the user space value first so we can validate a few
1387 * things before proceeding further.
1388 */
1389 if (get_futex_value_locked(&uval, uaddr))
1390 return -EFAULT;
1391
1392 if (unlikely(should_fail_futex(true)))
1393 return -EFAULT;
1394
1395 /*
1396 * Detect deadlocks.
1397 */
1398 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1399 return -EDEADLK;
1400
1401 if ((unlikely(should_fail_futex(true))))
1402 return -EDEADLK;
1403
1404 /*
1405 * Lookup existing state first. If it exists, try to attach to
1406 * its pi_state.
1407 */
1408 top_waiter = futex_top_waiter(hb, key);
1409 if (top_waiter)
1410 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1411
1412 /*
1413 * No waiter and user TID is 0. We are here because the
1414 * waiters or the owner died bit is set or called from
1415 * requeue_cmp_pi or for whatever reason something took the
1416 * syscall.
1417 */
1418 if (!(uval & FUTEX_TID_MASK)) {
1419 /*
1420 * We take over the futex. No other waiters and the user space
1421 * TID is 0. We preserve the owner died bit.
1422 */
1423 newval = uval & FUTEX_OWNER_DIED;
1424 newval |= vpid;
1425
1426 /* The futex requeue_pi code can enforce the waiters bit */
1427 if (set_waiters)
1428 newval |= FUTEX_WAITERS;
1429
1430 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 /* If the take over worked, return 1 */
1432 return ret < 0 ? ret : 1;
1433 }
1434
1435 /*
1436 * First waiter. Set the waiters bit before attaching ourself to
1437 * the owner. If owner tries to unlock, it will be forced into
1438 * the kernel and blocked on hb->lock.
1439 */
1440 newval = uval | FUTEX_WAITERS;
1441 ret = lock_pi_update_atomic(uaddr, uval, newval);
1442 if (ret)
1443 return ret;
1444 /*
1445 * If the update of the user space value succeeded, we try to
1446 * attach to the owner. If that fails, no harm done, we only
1447 * set the FUTEX_WAITERS bit in the user space variable.
1448 */
1449 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1450 }
1451
1452 /**
1453 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1454 * @q: The futex_q to unqueue
1455 *
1456 * The q->lock_ptr must not be NULL and must be held by the caller.
1457 */
__unqueue_futex(struct futex_q * q)1458 static void __unqueue_futex(struct futex_q *q)
1459 {
1460 struct futex_hash_bucket *hb;
1461
1462 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1463 return;
1464 lockdep_assert_held(q->lock_ptr);
1465
1466 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1467 plist_del(&q->list, &hb->chain);
1468 hb_waiters_dec(hb);
1469 }
1470
1471 /*
1472 * The hash bucket lock must be held when this is called.
1473 * Afterwards, the futex_q must not be accessed. Callers
1474 * must ensure to later call wake_up_q() for the actual
1475 * wakeups to occur.
1476 */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1477 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1478 {
1479 struct task_struct *p = q->task;
1480
1481 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1482 return;
1483
1484 get_task_struct(p);
1485 __unqueue_futex(q);
1486 /*
1487 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1488 * is written, without taking any locks. This is possible in the event
1489 * of a spurious wakeup, for example. A memory barrier is required here
1490 * to prevent the following store to lock_ptr from getting ahead of the
1491 * plist_del in __unqueue_futex().
1492 */
1493 smp_store_release(&q->lock_ptr, NULL);
1494
1495 /*
1496 * Queue the task for later wakeup for after we've released
1497 * the hb->lock.
1498 */
1499 wake_q_add_safe(wake_q, p);
1500 }
1501
1502 /*
1503 * Caller must hold a reference on @pi_state.
1504 */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1505 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1506 {
1507 u32 curval, newval;
1508 struct task_struct *new_owner;
1509 bool postunlock = false;
1510 DEFINE_WAKE_Q(wake_q);
1511 int ret = 0;
1512
1513 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1514 if (WARN_ON_ONCE(!new_owner)) {
1515 /*
1516 * As per the comment in futex_unlock_pi() this should not happen.
1517 *
1518 * When this happens, give up our locks and try again, giving
1519 * the futex_lock_pi() instance time to complete, either by
1520 * waiting on the rtmutex or removing itself from the futex
1521 * queue.
1522 */
1523 ret = -EAGAIN;
1524 goto out_unlock;
1525 }
1526
1527 /*
1528 * We pass it to the next owner. The WAITERS bit is always kept
1529 * enabled while there is PI state around. We cleanup the owner
1530 * died bit, because we are the owner.
1531 */
1532 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1533
1534 if (unlikely(should_fail_futex(true))) {
1535 ret = -EFAULT;
1536 goto out_unlock;
1537 }
1538
1539 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1540 if (!ret && (curval != uval)) {
1541 /*
1542 * If a unconditional UNLOCK_PI operation (user space did not
1543 * try the TID->0 transition) raced with a waiter setting the
1544 * FUTEX_WAITERS flag between get_user() and locking the hash
1545 * bucket lock, retry the operation.
1546 */
1547 if ((FUTEX_TID_MASK & curval) == uval)
1548 ret = -EAGAIN;
1549 else
1550 ret = -EINVAL;
1551 }
1552
1553 if (!ret) {
1554 /*
1555 * This is a point of no return; once we modified the uval
1556 * there is no going back and subsequent operations must
1557 * not fail.
1558 */
1559 pi_state_update_owner(pi_state, new_owner);
1560 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1561 }
1562
1563 out_unlock:
1564 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1565
1566 if (postunlock)
1567 rt_mutex_postunlock(&wake_q);
1568
1569 return ret;
1570 }
1571
1572 /*
1573 * Express the locking dependencies for lockdep:
1574 */
1575 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1576 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1577 {
1578 if (hb1 <= hb2) {
1579 spin_lock(&hb1->lock);
1580 if (hb1 < hb2)
1581 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1582 } else { /* hb1 > hb2 */
1583 spin_lock(&hb2->lock);
1584 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1585 }
1586 }
1587
1588 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1589 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1590 {
1591 spin_unlock(&hb1->lock);
1592 if (hb1 != hb2)
1593 spin_unlock(&hb2->lock);
1594 }
1595
1596 /*
1597 * Wake up waiters matching bitset queued on this futex (uaddr).
1598 */
1599 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1600 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1601 {
1602 struct futex_hash_bucket *hb;
1603 struct futex_q *this, *next;
1604 union futex_key key = FUTEX_KEY_INIT;
1605 int ret;
1606 DEFINE_WAKE_Q(wake_q);
1607
1608 if (!bitset)
1609 return -EINVAL;
1610
1611 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1612 if (unlikely(ret != 0))
1613 return ret;
1614
1615 hb = hash_futex(&key);
1616
1617 /* Make sure we really have tasks to wakeup */
1618 if (!hb_waiters_pending(hb))
1619 return ret;
1620
1621 spin_lock(&hb->lock);
1622
1623 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1624 if (match_futex (&this->key, &key)) {
1625 if (this->pi_state || this->rt_waiter) {
1626 ret = -EINVAL;
1627 break;
1628 }
1629
1630 /* Check if one of the bits is set in both bitsets */
1631 if (!(this->bitset & bitset))
1632 continue;
1633
1634 mark_wake_futex(&wake_q, this);
1635 if (++ret >= nr_wake)
1636 break;
1637 }
1638 }
1639
1640 spin_unlock(&hb->lock);
1641 wake_up_q(&wake_q);
1642 return ret;
1643 }
1644
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1645 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1646 {
1647 unsigned int op = (encoded_op & 0x70000000) >> 28;
1648 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1649 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1650 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1651 int oldval, ret;
1652
1653 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1654 if (oparg < 0 || oparg > 31) {
1655 char comm[sizeof(current->comm)];
1656 /*
1657 * kill this print and return -EINVAL when userspace
1658 * is sane again
1659 */
1660 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1661 get_task_comm(comm, current), oparg);
1662 oparg &= 31;
1663 }
1664 oparg = 1 << oparg;
1665 }
1666
1667 pagefault_disable();
1668 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669 pagefault_enable();
1670 if (ret)
1671 return ret;
1672
1673 switch (cmp) {
1674 case FUTEX_OP_CMP_EQ:
1675 return oldval == cmparg;
1676 case FUTEX_OP_CMP_NE:
1677 return oldval != cmparg;
1678 case FUTEX_OP_CMP_LT:
1679 return oldval < cmparg;
1680 case FUTEX_OP_CMP_GE:
1681 return oldval >= cmparg;
1682 case FUTEX_OP_CMP_LE:
1683 return oldval <= cmparg;
1684 case FUTEX_OP_CMP_GT:
1685 return oldval > cmparg;
1686 default:
1687 return -ENOSYS;
1688 }
1689 }
1690
1691 /*
1692 * Wake up all waiters hashed on the physical page that is mapped
1693 * to this virtual address:
1694 */
1695 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1696 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1697 int nr_wake, int nr_wake2, int op)
1698 {
1699 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1700 struct futex_hash_bucket *hb1, *hb2;
1701 struct futex_q *this, *next;
1702 int ret, op_ret;
1703 DEFINE_WAKE_Q(wake_q);
1704
1705 retry:
1706 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1707 if (unlikely(ret != 0))
1708 return ret;
1709 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1710 if (unlikely(ret != 0))
1711 return ret;
1712
1713 hb1 = hash_futex(&key1);
1714 hb2 = hash_futex(&key2);
1715
1716 retry_private:
1717 double_lock_hb(hb1, hb2);
1718 op_ret = futex_atomic_op_inuser(op, uaddr2);
1719 if (unlikely(op_ret < 0)) {
1720 double_unlock_hb(hb1, hb2);
1721
1722 if (!IS_ENABLED(CONFIG_MMU) ||
1723 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1724 /*
1725 * we don't get EFAULT from MMU faults if we don't have
1726 * an MMU, but we might get them from range checking
1727 */
1728 ret = op_ret;
1729 return ret;
1730 }
1731
1732 if (op_ret == -EFAULT) {
1733 ret = fault_in_user_writeable(uaddr2);
1734 if (ret)
1735 return ret;
1736 }
1737
1738 if (!(flags & FLAGS_SHARED)) {
1739 cond_resched();
1740 goto retry_private;
1741 }
1742
1743 cond_resched();
1744 goto retry;
1745 }
1746
1747 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1748 if (match_futex (&this->key, &key1)) {
1749 if (this->pi_state || this->rt_waiter) {
1750 ret = -EINVAL;
1751 goto out_unlock;
1752 }
1753 mark_wake_futex(&wake_q, this);
1754 if (++ret >= nr_wake)
1755 break;
1756 }
1757 }
1758
1759 if (op_ret > 0) {
1760 op_ret = 0;
1761 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1762 if (match_futex (&this->key, &key2)) {
1763 if (this->pi_state || this->rt_waiter) {
1764 ret = -EINVAL;
1765 goto out_unlock;
1766 }
1767 mark_wake_futex(&wake_q, this);
1768 if (++op_ret >= nr_wake2)
1769 break;
1770 }
1771 }
1772 ret += op_ret;
1773 }
1774
1775 out_unlock:
1776 double_unlock_hb(hb1, hb2);
1777 wake_up_q(&wake_q);
1778 return ret;
1779 }
1780
1781 /**
1782 * requeue_futex() - Requeue a futex_q from one hb to another
1783 * @q: the futex_q to requeue
1784 * @hb1: the source hash_bucket
1785 * @hb2: the target hash_bucket
1786 * @key2: the new key for the requeued futex_q
1787 */
1788 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1789 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1790 struct futex_hash_bucket *hb2, union futex_key *key2)
1791 {
1792
1793 /*
1794 * If key1 and key2 hash to the same bucket, no need to
1795 * requeue.
1796 */
1797 if (likely(&hb1->chain != &hb2->chain)) {
1798 plist_del(&q->list, &hb1->chain);
1799 hb_waiters_dec(hb1);
1800 hb_waiters_inc(hb2);
1801 plist_add(&q->list, &hb2->chain);
1802 q->lock_ptr = &hb2->lock;
1803 }
1804 q->key = *key2;
1805 }
1806
1807 /**
1808 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1809 * @q: the futex_q
1810 * @key: the key of the requeue target futex
1811 * @hb: the hash_bucket of the requeue target futex
1812 *
1813 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1814 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1815 * to the requeue target futex so the waiter can detect the wakeup on the right
1816 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1817 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1818 * to protect access to the pi_state to fixup the owner later. Must be called
1819 * with both q->lock_ptr and hb->lock held.
1820 */
1821 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1822 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1823 struct futex_hash_bucket *hb)
1824 {
1825 q->key = *key;
1826
1827 __unqueue_futex(q);
1828
1829 WARN_ON(!q->rt_waiter);
1830 q->rt_waiter = NULL;
1831
1832 q->lock_ptr = &hb->lock;
1833
1834 wake_up_state(q->task, TASK_NORMAL);
1835 }
1836
1837 /**
1838 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1839 * @pifutex: the user address of the to futex
1840 * @hb1: the from futex hash bucket, must be locked by the caller
1841 * @hb2: the to futex hash bucket, must be locked by the caller
1842 * @key1: the from futex key
1843 * @key2: the to futex key
1844 * @ps: address to store the pi_state pointer
1845 * @exiting: Pointer to store the task pointer of the owner task
1846 * which is in the middle of exiting
1847 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1848 *
1849 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1850 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1851 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1852 * hb1 and hb2 must be held by the caller.
1853 *
1854 * @exiting is only set when the return value is -EBUSY. If so, this holds
1855 * a refcount on the exiting task on return and the caller needs to drop it
1856 * after waiting for the exit to complete.
1857 *
1858 * Return:
1859 * - 0 - failed to acquire the lock atomically;
1860 * - >0 - acquired the lock, return value is vpid of the top_waiter
1861 * - <0 - error
1862 */
1863 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1864 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1865 struct futex_hash_bucket *hb2, union futex_key *key1,
1866 union futex_key *key2, struct futex_pi_state **ps,
1867 struct task_struct **exiting, int set_waiters)
1868 {
1869 struct futex_q *top_waiter = NULL;
1870 u32 curval;
1871 int ret, vpid;
1872
1873 if (get_futex_value_locked(&curval, pifutex))
1874 return -EFAULT;
1875
1876 if (unlikely(should_fail_futex(true)))
1877 return -EFAULT;
1878
1879 /*
1880 * Find the top_waiter and determine if there are additional waiters.
1881 * If the caller intends to requeue more than 1 waiter to pifutex,
1882 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1883 * as we have means to handle the possible fault. If not, don't set
1884 * the bit unecessarily as it will force the subsequent unlock to enter
1885 * the kernel.
1886 */
1887 top_waiter = futex_top_waiter(hb1, key1);
1888
1889 /* There are no waiters, nothing for us to do. */
1890 if (!top_waiter)
1891 return 0;
1892
1893 /* Ensure we requeue to the expected futex. */
1894 if (!match_futex(top_waiter->requeue_pi_key, key2))
1895 return -EINVAL;
1896
1897 /*
1898 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1899 * the contended case or if set_waiters is 1. The pi_state is returned
1900 * in ps in contended cases.
1901 */
1902 vpid = task_pid_vnr(top_waiter->task);
1903 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1904 exiting, set_waiters);
1905 if (ret == 1) {
1906 requeue_pi_wake_futex(top_waiter, key2, hb2);
1907 return vpid;
1908 }
1909 return ret;
1910 }
1911
1912 /**
1913 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1914 * @uaddr1: source futex user address
1915 * @flags: futex flags (FLAGS_SHARED, etc.)
1916 * @uaddr2: target futex user address
1917 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1918 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1919 * @cmpval: @uaddr1 expected value (or %NULL)
1920 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1921 * pi futex (pi to pi requeue is not supported)
1922 *
1923 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1924 * uaddr2 atomically on behalf of the top waiter.
1925 *
1926 * Return:
1927 * - >=0 - on success, the number of tasks requeued or woken;
1928 * - <0 - on error
1929 */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1930 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1931 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1932 u32 *cmpval, int requeue_pi)
1933 {
1934 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1935 int task_count = 0, ret;
1936 struct futex_pi_state *pi_state = NULL;
1937 struct futex_hash_bucket *hb1, *hb2;
1938 struct futex_q *this, *next;
1939 DEFINE_WAKE_Q(wake_q);
1940
1941 if (nr_wake < 0 || nr_requeue < 0)
1942 return -EINVAL;
1943
1944 /*
1945 * When PI not supported: return -ENOSYS if requeue_pi is true,
1946 * consequently the compiler knows requeue_pi is always false past
1947 * this point which will optimize away all the conditional code
1948 * further down.
1949 */
1950 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1951 return -ENOSYS;
1952
1953 if (requeue_pi) {
1954 /*
1955 * Requeue PI only works on two distinct uaddrs. This
1956 * check is only valid for private futexes. See below.
1957 */
1958 if (uaddr1 == uaddr2)
1959 return -EINVAL;
1960
1961 /*
1962 * requeue_pi requires a pi_state, try to allocate it now
1963 * without any locks in case it fails.
1964 */
1965 if (refill_pi_state_cache())
1966 return -ENOMEM;
1967 /*
1968 * requeue_pi must wake as many tasks as it can, up to nr_wake
1969 * + nr_requeue, since it acquires the rt_mutex prior to
1970 * returning to userspace, so as to not leave the rt_mutex with
1971 * waiters and no owner. However, second and third wake-ups
1972 * cannot be predicted as they involve race conditions with the
1973 * first wake and a fault while looking up the pi_state. Both
1974 * pthread_cond_signal() and pthread_cond_broadcast() should
1975 * use nr_wake=1.
1976 */
1977 if (nr_wake != 1)
1978 return -EINVAL;
1979 }
1980
1981 retry:
1982 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1983 if (unlikely(ret != 0))
1984 return ret;
1985 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1986 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1987 if (unlikely(ret != 0))
1988 return ret;
1989
1990 /*
1991 * The check above which compares uaddrs is not sufficient for
1992 * shared futexes. We need to compare the keys:
1993 */
1994 if (requeue_pi && match_futex(&key1, &key2))
1995 return -EINVAL;
1996
1997 hb1 = hash_futex(&key1);
1998 hb2 = hash_futex(&key2);
1999
2000 retry_private:
2001 hb_waiters_inc(hb2);
2002 double_lock_hb(hb1, hb2);
2003
2004 if (likely(cmpval != NULL)) {
2005 u32 curval;
2006
2007 ret = get_futex_value_locked(&curval, uaddr1);
2008
2009 if (unlikely(ret)) {
2010 double_unlock_hb(hb1, hb2);
2011 hb_waiters_dec(hb2);
2012
2013 ret = get_user(curval, uaddr1);
2014 if (ret)
2015 return ret;
2016
2017 if (!(flags & FLAGS_SHARED))
2018 goto retry_private;
2019
2020 goto retry;
2021 }
2022 if (curval != *cmpval) {
2023 ret = -EAGAIN;
2024 goto out_unlock;
2025 }
2026 }
2027
2028 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2029 struct task_struct *exiting = NULL;
2030
2031 /*
2032 * Attempt to acquire uaddr2 and wake the top waiter. If we
2033 * intend to requeue waiters, force setting the FUTEX_WAITERS
2034 * bit. We force this here where we are able to easily handle
2035 * faults rather in the requeue loop below.
2036 */
2037 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2038 &key2, &pi_state,
2039 &exiting, nr_requeue);
2040
2041 /*
2042 * At this point the top_waiter has either taken uaddr2 or is
2043 * waiting on it. If the former, then the pi_state will not
2044 * exist yet, look it up one more time to ensure we have a
2045 * reference to it. If the lock was taken, ret contains the
2046 * vpid of the top waiter task.
2047 * If the lock was not taken, we have pi_state and an initial
2048 * refcount on it. In case of an error we have nothing.
2049 */
2050 if (ret > 0) {
2051 WARN_ON(pi_state);
2052 task_count++;
2053 /*
2054 * If we acquired the lock, then the user space value
2055 * of uaddr2 should be vpid. It cannot be changed by
2056 * the top waiter as it is blocked on hb2 lock if it
2057 * tries to do so. If something fiddled with it behind
2058 * our back the pi state lookup might unearth it. So
2059 * we rather use the known value than rereading and
2060 * handing potential crap to lookup_pi_state.
2061 *
2062 * If that call succeeds then we have pi_state and an
2063 * initial refcount on it.
2064 */
2065 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2066 &pi_state, &exiting);
2067 }
2068
2069 switch (ret) {
2070 case 0:
2071 /* We hold a reference on the pi state. */
2072 break;
2073
2074 /* If the above failed, then pi_state is NULL */
2075 case -EFAULT:
2076 double_unlock_hb(hb1, hb2);
2077 hb_waiters_dec(hb2);
2078 ret = fault_in_user_writeable(uaddr2);
2079 if (!ret)
2080 goto retry;
2081 return ret;
2082 case -EBUSY:
2083 case -EAGAIN:
2084 /*
2085 * Two reasons for this:
2086 * - EBUSY: Owner is exiting and we just wait for the
2087 * exit to complete.
2088 * - EAGAIN: The user space value changed.
2089 */
2090 double_unlock_hb(hb1, hb2);
2091 hb_waiters_dec(hb2);
2092 /*
2093 * Handle the case where the owner is in the middle of
2094 * exiting. Wait for the exit to complete otherwise
2095 * this task might loop forever, aka. live lock.
2096 */
2097 wait_for_owner_exiting(ret, exiting);
2098 cond_resched();
2099 goto retry;
2100 default:
2101 goto out_unlock;
2102 }
2103 }
2104
2105 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106 if (task_count - nr_wake >= nr_requeue)
2107 break;
2108
2109 if (!match_futex(&this->key, &key1))
2110 continue;
2111
2112 /*
2113 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114 * be paired with each other and no other futex ops.
2115 *
2116 * We should never be requeueing a futex_q with a pi_state,
2117 * which is awaiting a futex_unlock_pi().
2118 */
2119 if ((requeue_pi && !this->rt_waiter) ||
2120 (!requeue_pi && this->rt_waiter) ||
2121 this->pi_state) {
2122 ret = -EINVAL;
2123 break;
2124 }
2125
2126 /*
2127 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2128 * lock, we already woke the top_waiter. If not, it will be
2129 * woken by futex_unlock_pi().
2130 */
2131 if (++task_count <= nr_wake && !requeue_pi) {
2132 mark_wake_futex(&wake_q, this);
2133 continue;
2134 }
2135
2136 /* Ensure we requeue to the expected futex for requeue_pi. */
2137 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138 ret = -EINVAL;
2139 break;
2140 }
2141
2142 /*
2143 * Requeue nr_requeue waiters and possibly one more in the case
2144 * of requeue_pi if we couldn't acquire the lock atomically.
2145 */
2146 if (requeue_pi) {
2147 /*
2148 * Prepare the waiter to take the rt_mutex. Take a
2149 * refcount on the pi_state and store the pointer in
2150 * the futex_q object of the waiter.
2151 */
2152 get_pi_state(pi_state);
2153 this->pi_state = pi_state;
2154 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155 this->rt_waiter,
2156 this->task);
2157 if (ret == 1) {
2158 /*
2159 * We got the lock. We do neither drop the
2160 * refcount on pi_state nor clear
2161 * this->pi_state because the waiter needs the
2162 * pi_state for cleaning up the user space
2163 * value. It will drop the refcount after
2164 * doing so.
2165 */
2166 requeue_pi_wake_futex(this, &key2, hb2);
2167 continue;
2168 } else if (ret) {
2169 /*
2170 * rt_mutex_start_proxy_lock() detected a
2171 * potential deadlock when we tried to queue
2172 * that waiter. Drop the pi_state reference
2173 * which we took above and remove the pointer
2174 * to the state from the waiters futex_q
2175 * object.
2176 */
2177 this->pi_state = NULL;
2178 put_pi_state(pi_state);
2179 /*
2180 * We stop queueing more waiters and let user
2181 * space deal with the mess.
2182 */
2183 break;
2184 }
2185 }
2186 requeue_futex(this, hb1, hb2, &key2);
2187 }
2188
2189 /*
2190 * We took an extra initial reference to the pi_state either
2191 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2192 * need to drop it here again.
2193 */
2194 put_pi_state(pi_state);
2195
2196 out_unlock:
2197 double_unlock_hb(hb1, hb2);
2198 wake_up_q(&wake_q);
2199 hb_waiters_dec(hb2);
2200 return ret ? ret : task_count;
2201 }
2202
2203 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2204 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2205 __acquires(&hb->lock)
2206 {
2207 struct futex_hash_bucket *hb;
2208
2209 hb = hash_futex(&q->key);
2210
2211 /*
2212 * Increment the counter before taking the lock so that
2213 * a potential waker won't miss a to-be-slept task that is
2214 * waiting for the spinlock. This is safe as all queue_lock()
2215 * users end up calling queue_me(). Similarly, for housekeeping,
2216 * decrement the counter at queue_unlock() when some error has
2217 * occurred and we don't end up adding the task to the list.
2218 */
2219 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2220
2221 q->lock_ptr = &hb->lock;
2222
2223 spin_lock(&hb->lock);
2224 return hb;
2225 }
2226
2227 static inline void
queue_unlock(struct futex_hash_bucket * hb)2228 queue_unlock(struct futex_hash_bucket *hb)
2229 __releases(&hb->lock)
2230 {
2231 spin_unlock(&hb->lock);
2232 hb_waiters_dec(hb);
2233 }
2234
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2235 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2236 {
2237 int prio;
2238
2239 /*
2240 * The priority used to register this element is
2241 * - either the real thread-priority for the real-time threads
2242 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2243 * - or MAX_RT_PRIO for non-RT threads.
2244 * Thus, all RT-threads are woken first in priority order, and
2245 * the others are woken last, in FIFO order.
2246 */
2247 prio = min(current->normal_prio, MAX_RT_PRIO);
2248
2249 plist_node_init(&q->list, prio);
2250 plist_add(&q->list, &hb->chain);
2251 q->task = current;
2252 }
2253
2254 /**
2255 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2256 * @q: The futex_q to enqueue
2257 * @hb: The destination hash bucket
2258 *
2259 * The hb->lock must be held by the caller, and is released here. A call to
2260 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2261 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2262 * or nothing if the unqueue is done as part of the wake process and the unqueue
2263 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2264 * an example).
2265 */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2266 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2267 __releases(&hb->lock)
2268 {
2269 __queue_me(q, hb);
2270 spin_unlock(&hb->lock);
2271 }
2272
2273 /**
2274 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2275 * @q: The futex_q to unqueue
2276 *
2277 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2278 * be paired with exactly one earlier call to queue_me().
2279 *
2280 * Return:
2281 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2282 * - 0 - if the futex_q was already removed by the waking thread
2283 */
unqueue_me(struct futex_q * q)2284 static int unqueue_me(struct futex_q *q)
2285 {
2286 spinlock_t *lock_ptr;
2287 int ret = 0;
2288
2289 /* In the common case we don't take the spinlock, which is nice. */
2290 retry:
2291 /*
2292 * q->lock_ptr can change between this read and the following spin_lock.
2293 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2294 * optimizing lock_ptr out of the logic below.
2295 */
2296 lock_ptr = READ_ONCE(q->lock_ptr);
2297 if (lock_ptr != NULL) {
2298 spin_lock(lock_ptr);
2299 /*
2300 * q->lock_ptr can change between reading it and
2301 * spin_lock(), causing us to take the wrong lock. This
2302 * corrects the race condition.
2303 *
2304 * Reasoning goes like this: if we have the wrong lock,
2305 * q->lock_ptr must have changed (maybe several times)
2306 * between reading it and the spin_lock(). It can
2307 * change again after the spin_lock() but only if it was
2308 * already changed before the spin_lock(). It cannot,
2309 * however, change back to the original value. Therefore
2310 * we can detect whether we acquired the correct lock.
2311 */
2312 if (unlikely(lock_ptr != q->lock_ptr)) {
2313 spin_unlock(lock_ptr);
2314 goto retry;
2315 }
2316 __unqueue_futex(q);
2317
2318 BUG_ON(q->pi_state);
2319
2320 spin_unlock(lock_ptr);
2321 ret = 1;
2322 }
2323
2324 return ret;
2325 }
2326
2327 /*
2328 * PI futexes can not be requeued and must remove themself from the
2329 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2330 * and dropped here.
2331 */
unqueue_me_pi(struct futex_q * q)2332 static void unqueue_me_pi(struct futex_q *q)
2333 __releases(q->lock_ptr)
2334 {
2335 __unqueue_futex(q);
2336
2337 BUG_ON(!q->pi_state);
2338 put_pi_state(q->pi_state);
2339 q->pi_state = NULL;
2340
2341 spin_unlock(q->lock_ptr);
2342 }
2343
__fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2344 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2345 struct task_struct *argowner)
2346 {
2347 struct futex_pi_state *pi_state = q->pi_state;
2348 struct task_struct *oldowner, *newowner;
2349 u32 uval, curval, newval, newtid;
2350 int err = 0;
2351
2352 oldowner = pi_state->owner;
2353
2354 /*
2355 * We are here because either:
2356 *
2357 * - we stole the lock and pi_state->owner needs updating to reflect
2358 * that (@argowner == current),
2359 *
2360 * or:
2361 *
2362 * - someone stole our lock and we need to fix things to point to the
2363 * new owner (@argowner == NULL).
2364 *
2365 * Either way, we have to replace the TID in the user space variable.
2366 * This must be atomic as we have to preserve the owner died bit here.
2367 *
2368 * Note: We write the user space value _before_ changing the pi_state
2369 * because we can fault here. Imagine swapped out pages or a fork
2370 * that marked all the anonymous memory readonly for cow.
2371 *
2372 * Modifying pi_state _before_ the user space value would leave the
2373 * pi_state in an inconsistent state when we fault here, because we
2374 * need to drop the locks to handle the fault. This might be observed
2375 * in the PID check in lookup_pi_state.
2376 */
2377 retry:
2378 if (!argowner) {
2379 if (oldowner != current) {
2380 /*
2381 * We raced against a concurrent self; things are
2382 * already fixed up. Nothing to do.
2383 */
2384 return 0;
2385 }
2386
2387 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2388 /* We got the lock. pi_state is correct. Tell caller. */
2389 return 1;
2390 }
2391
2392 /*
2393 * The trylock just failed, so either there is an owner or
2394 * there is a higher priority waiter than this one.
2395 */
2396 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2397 /*
2398 * If the higher priority waiter has not yet taken over the
2399 * rtmutex then newowner is NULL. We can't return here with
2400 * that state because it's inconsistent vs. the user space
2401 * state. So drop the locks and try again. It's a valid
2402 * situation and not any different from the other retry
2403 * conditions.
2404 */
2405 if (unlikely(!newowner)) {
2406 err = -EAGAIN;
2407 goto handle_err;
2408 }
2409 } else {
2410 WARN_ON_ONCE(argowner != current);
2411 if (oldowner == current) {
2412 /*
2413 * We raced against a concurrent self; things are
2414 * already fixed up. Nothing to do.
2415 */
2416 return 1;
2417 }
2418 newowner = argowner;
2419 }
2420
2421 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2422 /* Owner died? */
2423 if (!pi_state->owner)
2424 newtid |= FUTEX_OWNER_DIED;
2425
2426 err = get_futex_value_locked(&uval, uaddr);
2427 if (err)
2428 goto handle_err;
2429
2430 for (;;) {
2431 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2432
2433 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2434 if (err)
2435 goto handle_err;
2436
2437 if (curval == uval)
2438 break;
2439 uval = curval;
2440 }
2441
2442 /*
2443 * We fixed up user space. Now we need to fix the pi_state
2444 * itself.
2445 */
2446 pi_state_update_owner(pi_state, newowner);
2447
2448 return argowner == current;
2449
2450 /*
2451 * In order to reschedule or handle a page fault, we need to drop the
2452 * locks here. In the case of a fault, this gives the other task
2453 * (either the highest priority waiter itself or the task which stole
2454 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2455 * are back from handling the fault we need to check the pi_state after
2456 * reacquiring the locks and before trying to do another fixup. When
2457 * the fixup has been done already we simply return.
2458 *
2459 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2460 * drop hb->lock since the caller owns the hb -> futex_q relation.
2461 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2462 */
2463 handle_err:
2464 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2465 spin_unlock(q->lock_ptr);
2466
2467 switch (err) {
2468 case -EFAULT:
2469 err = fault_in_user_writeable(uaddr);
2470 break;
2471
2472 case -EAGAIN:
2473 cond_resched();
2474 err = 0;
2475 break;
2476
2477 default:
2478 WARN_ON_ONCE(1);
2479 break;
2480 }
2481
2482 spin_lock(q->lock_ptr);
2483 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2484
2485 /*
2486 * Check if someone else fixed it for us:
2487 */
2488 if (pi_state->owner != oldowner)
2489 return argowner == current;
2490
2491 /* Retry if err was -EAGAIN or the fault in succeeded */
2492 if (!err)
2493 goto retry;
2494
2495 /*
2496 * fault_in_user_writeable() failed so user state is immutable. At
2497 * best we can make the kernel state consistent but user state will
2498 * be most likely hosed and any subsequent unlock operation will be
2499 * rejected due to PI futex rule [10].
2500 *
2501 * Ensure that the rtmutex owner is also the pi_state owner despite
2502 * the user space value claiming something different. There is no
2503 * point in unlocking the rtmutex if current is the owner as it
2504 * would need to wait until the next waiter has taken the rtmutex
2505 * to guarantee consistent state. Keep it simple. Userspace asked
2506 * for this wreckaged state.
2507 *
2508 * The rtmutex has an owner - either current or some other
2509 * task. See the EAGAIN loop above.
2510 */
2511 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2512
2513 return err;
2514 }
2515
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2516 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2517 struct task_struct *argowner)
2518 {
2519 struct futex_pi_state *pi_state = q->pi_state;
2520 int ret;
2521
2522 lockdep_assert_held(q->lock_ptr);
2523
2524 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2525 ret = __fixup_pi_state_owner(uaddr, q, argowner);
2526 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2527 return ret;
2528 }
2529
2530 static long futex_wait_restart(struct restart_block *restart);
2531
2532 /**
2533 * fixup_owner() - Post lock pi_state and corner case management
2534 * @uaddr: user address of the futex
2535 * @q: futex_q (contains pi_state and access to the rt_mutex)
2536 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2537 *
2538 * After attempting to lock an rt_mutex, this function is called to cleanup
2539 * the pi_state owner as well as handle race conditions that may allow us to
2540 * acquire the lock. Must be called with the hb lock held.
2541 *
2542 * Return:
2543 * - 1 - success, lock taken;
2544 * - 0 - success, lock not taken;
2545 * - <0 - on error (-EFAULT)
2546 */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2547 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2548 {
2549 if (locked) {
2550 /*
2551 * Got the lock. We might not be the anticipated owner if we
2552 * did a lock-steal - fix up the PI-state in that case:
2553 *
2554 * Speculative pi_state->owner read (we don't hold wait_lock);
2555 * since we own the lock pi_state->owner == current is the
2556 * stable state, anything else needs more attention.
2557 */
2558 if (q->pi_state->owner != current)
2559 return fixup_pi_state_owner(uaddr, q, current);
2560 return 1;
2561 }
2562
2563 /*
2564 * If we didn't get the lock; check if anybody stole it from us. In
2565 * that case, we need to fix up the uval to point to them instead of
2566 * us, otherwise bad things happen. [10]
2567 *
2568 * Another speculative read; pi_state->owner == current is unstable
2569 * but needs our attention.
2570 */
2571 if (q->pi_state->owner == current)
2572 return fixup_pi_state_owner(uaddr, q, NULL);
2573
2574 /*
2575 * Paranoia check. If we did not take the lock, then we should not be
2576 * the owner of the rt_mutex. Warn and establish consistent state.
2577 */
2578 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2579 return fixup_pi_state_owner(uaddr, q, current);
2580
2581 return 0;
2582 }
2583
2584 /**
2585 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2586 * @hb: the futex hash bucket, must be locked by the caller
2587 * @q: the futex_q to queue up on
2588 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2589 */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2590 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2591 struct hrtimer_sleeper *timeout)
2592 {
2593 /*
2594 * The task state is guaranteed to be set before another task can
2595 * wake it. set_current_state() is implemented using smp_store_mb() and
2596 * queue_me() calls spin_unlock() upon completion, both serializing
2597 * access to the hash list and forcing another memory barrier.
2598 */
2599 set_current_state(TASK_INTERRUPTIBLE);
2600 queue_me(q, hb);
2601
2602 /* Arm the timer */
2603 if (timeout)
2604 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2605
2606 /*
2607 * If we have been removed from the hash list, then another task
2608 * has tried to wake us, and we can skip the call to schedule().
2609 */
2610 if (likely(!plist_node_empty(&q->list))) {
2611 /*
2612 * If the timer has already expired, current will already be
2613 * flagged for rescheduling. Only call schedule if there
2614 * is no timeout, or if it has yet to expire.
2615 */
2616 if (!timeout || timeout->task)
2617 freezable_schedule();
2618 }
2619 __set_current_state(TASK_RUNNING);
2620 }
2621
2622 /**
2623 * futex_wait_setup() - Prepare to wait on a futex
2624 * @uaddr: the futex userspace address
2625 * @val: the expected value
2626 * @flags: futex flags (FLAGS_SHARED, etc.)
2627 * @q: the associated futex_q
2628 * @hb: storage for hash_bucket pointer to be returned to caller
2629 *
2630 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2631 * compare it with the expected value. Handle atomic faults internally.
2632 * Return with the hb lock held and a q.key reference on success, and unlocked
2633 * with no q.key reference on failure.
2634 *
2635 * Return:
2636 * - 0 - uaddr contains val and hb has been locked;
2637 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2638 */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2639 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2640 struct futex_q *q, struct futex_hash_bucket **hb)
2641 {
2642 u32 uval;
2643 int ret;
2644
2645 /*
2646 * Access the page AFTER the hash-bucket is locked.
2647 * Order is important:
2648 *
2649 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2650 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2651 *
2652 * The basic logical guarantee of a futex is that it blocks ONLY
2653 * if cond(var) is known to be true at the time of blocking, for
2654 * any cond. If we locked the hash-bucket after testing *uaddr, that
2655 * would open a race condition where we could block indefinitely with
2656 * cond(var) false, which would violate the guarantee.
2657 *
2658 * On the other hand, we insert q and release the hash-bucket only
2659 * after testing *uaddr. This guarantees that futex_wait() will NOT
2660 * absorb a wakeup if *uaddr does not match the desired values
2661 * while the syscall executes.
2662 */
2663 retry:
2664 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2665 if (unlikely(ret != 0))
2666 return ret;
2667
2668 retry_private:
2669 *hb = queue_lock(q);
2670
2671 ret = get_futex_value_locked(&uval, uaddr);
2672
2673 if (ret) {
2674 queue_unlock(*hb);
2675
2676 ret = get_user(uval, uaddr);
2677 if (ret)
2678 return ret;
2679
2680 if (!(flags & FLAGS_SHARED))
2681 goto retry_private;
2682
2683 goto retry;
2684 }
2685
2686 if (uval != val) {
2687 queue_unlock(*hb);
2688 ret = -EWOULDBLOCK;
2689 }
2690
2691 return ret;
2692 }
2693
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2694 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2695 ktime_t *abs_time, u32 bitset)
2696 {
2697 struct hrtimer_sleeper timeout, *to;
2698 struct restart_block *restart;
2699 struct futex_hash_bucket *hb;
2700 struct futex_q q = futex_q_init;
2701 int ret;
2702
2703 if (!bitset)
2704 return -EINVAL;
2705 q.bitset = bitset;
2706
2707 to = futex_setup_timer(abs_time, &timeout, flags,
2708 current->timer_slack_ns);
2709 retry:
2710 /*
2711 * Prepare to wait on uaddr. On success, holds hb lock and increments
2712 * q.key refs.
2713 */
2714 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2715 if (ret)
2716 goto out;
2717
2718 /* queue_me and wait for wakeup, timeout, or a signal. */
2719 futex_wait_queue_me(hb, &q, to);
2720
2721 /* If we were woken (and unqueued), we succeeded, whatever. */
2722 ret = 0;
2723 /* unqueue_me() drops q.key ref */
2724 if (!unqueue_me(&q))
2725 goto out;
2726 ret = -ETIMEDOUT;
2727 if (to && !to->task)
2728 goto out;
2729
2730 /*
2731 * We expect signal_pending(current), but we might be the
2732 * victim of a spurious wakeup as well.
2733 */
2734 if (!signal_pending(current))
2735 goto retry;
2736
2737 ret = -ERESTARTSYS;
2738 if (!abs_time)
2739 goto out;
2740
2741 restart = ¤t->restart_block;
2742 restart->futex.uaddr = uaddr;
2743 restart->futex.val = val;
2744 restart->futex.time = *abs_time;
2745 restart->futex.bitset = bitset;
2746 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2747
2748 ret = set_restart_fn(restart, futex_wait_restart);
2749
2750 out:
2751 if (to) {
2752 hrtimer_cancel(&to->timer);
2753 destroy_hrtimer_on_stack(&to->timer);
2754 }
2755 return ret;
2756 }
2757
2758
futex_wait_restart(struct restart_block * restart)2759 static long futex_wait_restart(struct restart_block *restart)
2760 {
2761 u32 __user *uaddr = restart->futex.uaddr;
2762 ktime_t t, *tp = NULL;
2763
2764 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2765 t = restart->futex.time;
2766 tp = &t;
2767 }
2768 restart->fn = do_no_restart_syscall;
2769
2770 return (long)futex_wait(uaddr, restart->futex.flags,
2771 restart->futex.val, tp, restart->futex.bitset);
2772 }
2773
2774
2775 /*
2776 * Userspace tried a 0 -> TID atomic transition of the futex value
2777 * and failed. The kernel side here does the whole locking operation:
2778 * if there are waiters then it will block as a consequence of relying
2779 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2780 * a 0 value of the futex too.).
2781 *
2782 * Also serves as futex trylock_pi()'ing, and due semantics.
2783 */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2784 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2785 ktime_t *time, int trylock)
2786 {
2787 struct hrtimer_sleeper timeout, *to;
2788 struct task_struct *exiting = NULL;
2789 struct rt_mutex_waiter rt_waiter;
2790 struct futex_hash_bucket *hb;
2791 struct futex_q q = futex_q_init;
2792 int res, ret;
2793
2794 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2795 return -ENOSYS;
2796
2797 if (refill_pi_state_cache())
2798 return -ENOMEM;
2799
2800 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2801
2802 retry:
2803 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2804 if (unlikely(ret != 0))
2805 goto out;
2806
2807 retry_private:
2808 hb = queue_lock(&q);
2809
2810 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2811 &exiting, 0);
2812 if (unlikely(ret)) {
2813 /*
2814 * Atomic work succeeded and we got the lock,
2815 * or failed. Either way, we do _not_ block.
2816 */
2817 switch (ret) {
2818 case 1:
2819 /* We got the lock. */
2820 ret = 0;
2821 goto out_unlock_put_key;
2822 case -EFAULT:
2823 goto uaddr_faulted;
2824 case -EBUSY:
2825 case -EAGAIN:
2826 /*
2827 * Two reasons for this:
2828 * - EBUSY: Task is exiting and we just wait for the
2829 * exit to complete.
2830 * - EAGAIN: The user space value changed.
2831 */
2832 queue_unlock(hb);
2833 /*
2834 * Handle the case where the owner is in the middle of
2835 * exiting. Wait for the exit to complete otherwise
2836 * this task might loop forever, aka. live lock.
2837 */
2838 wait_for_owner_exiting(ret, exiting);
2839 cond_resched();
2840 goto retry;
2841 default:
2842 goto out_unlock_put_key;
2843 }
2844 }
2845
2846 WARN_ON(!q.pi_state);
2847
2848 /*
2849 * Only actually queue now that the atomic ops are done:
2850 */
2851 __queue_me(&q, hb);
2852
2853 if (trylock) {
2854 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2855 /* Fixup the trylock return value: */
2856 ret = ret ? 0 : -EWOULDBLOCK;
2857 goto no_block;
2858 }
2859
2860 rt_mutex_init_waiter(&rt_waiter);
2861
2862 /*
2863 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2864 * hold it while doing rt_mutex_start_proxy(), because then it will
2865 * include hb->lock in the blocking chain, even through we'll not in
2866 * fact hold it while blocking. This will lead it to report -EDEADLK
2867 * and BUG when futex_unlock_pi() interleaves with this.
2868 *
2869 * Therefore acquire wait_lock while holding hb->lock, but drop the
2870 * latter before calling __rt_mutex_start_proxy_lock(). This
2871 * interleaves with futex_unlock_pi() -- which does a similar lock
2872 * handoff -- such that the latter can observe the futex_q::pi_state
2873 * before __rt_mutex_start_proxy_lock() is done.
2874 */
2875 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2876 spin_unlock(q.lock_ptr);
2877 /*
2878 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2879 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2880 * it sees the futex_q::pi_state.
2881 */
2882 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2883 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2884
2885 if (ret) {
2886 if (ret == 1)
2887 ret = 0;
2888 goto cleanup;
2889 }
2890
2891 if (unlikely(to))
2892 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2893
2894 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2895
2896 cleanup:
2897 spin_lock(q.lock_ptr);
2898 /*
2899 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2900 * first acquire the hb->lock before removing the lock from the
2901 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2902 * lists consistent.
2903 *
2904 * In particular; it is important that futex_unlock_pi() can not
2905 * observe this inconsistency.
2906 */
2907 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2908 ret = 0;
2909
2910 no_block:
2911 /*
2912 * Fixup the pi_state owner and possibly acquire the lock if we
2913 * haven't already.
2914 */
2915 res = fixup_owner(uaddr, &q, !ret);
2916 /*
2917 * If fixup_owner() returned an error, proprogate that. If it acquired
2918 * the lock, clear our -ETIMEDOUT or -EINTR.
2919 */
2920 if (res)
2921 ret = (res < 0) ? res : 0;
2922
2923 /* Unqueue and drop the lock */
2924 unqueue_me_pi(&q);
2925 goto out;
2926
2927 out_unlock_put_key:
2928 queue_unlock(hb);
2929
2930 out:
2931 if (to) {
2932 hrtimer_cancel(&to->timer);
2933 destroy_hrtimer_on_stack(&to->timer);
2934 }
2935 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2936
2937 uaddr_faulted:
2938 queue_unlock(hb);
2939
2940 ret = fault_in_user_writeable(uaddr);
2941 if (ret)
2942 goto out;
2943
2944 if (!(flags & FLAGS_SHARED))
2945 goto retry_private;
2946
2947 goto retry;
2948 }
2949
2950 /*
2951 * Userspace attempted a TID -> 0 atomic transition, and failed.
2952 * This is the in-kernel slowpath: we look up the PI state (if any),
2953 * and do the rt-mutex unlock.
2954 */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2955 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2956 {
2957 u32 curval, uval, vpid = task_pid_vnr(current);
2958 union futex_key key = FUTEX_KEY_INIT;
2959 struct futex_hash_bucket *hb;
2960 struct futex_q *top_waiter;
2961 int ret;
2962
2963 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2964 return -ENOSYS;
2965
2966 retry:
2967 if (get_user(uval, uaddr))
2968 return -EFAULT;
2969 /*
2970 * We release only a lock we actually own:
2971 */
2972 if ((uval & FUTEX_TID_MASK) != vpid)
2973 return -EPERM;
2974
2975 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2976 if (ret)
2977 return ret;
2978
2979 hb = hash_futex(&key);
2980 spin_lock(&hb->lock);
2981
2982 /*
2983 * Check waiters first. We do not trust user space values at
2984 * all and we at least want to know if user space fiddled
2985 * with the futex value instead of blindly unlocking.
2986 */
2987 top_waiter = futex_top_waiter(hb, &key);
2988 if (top_waiter) {
2989 struct futex_pi_state *pi_state = top_waiter->pi_state;
2990
2991 ret = -EINVAL;
2992 if (!pi_state)
2993 goto out_unlock;
2994
2995 /*
2996 * If current does not own the pi_state then the futex is
2997 * inconsistent and user space fiddled with the futex value.
2998 */
2999 if (pi_state->owner != current)
3000 goto out_unlock;
3001
3002 get_pi_state(pi_state);
3003 /*
3004 * By taking wait_lock while still holding hb->lock, we ensure
3005 * there is no point where we hold neither; and therefore
3006 * wake_futex_pi() must observe a state consistent with what we
3007 * observed.
3008 *
3009 * In particular; this forces __rt_mutex_start_proxy() to
3010 * complete such that we're guaranteed to observe the
3011 * rt_waiter. Also see the WARN in wake_futex_pi().
3012 */
3013 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3014 spin_unlock(&hb->lock);
3015
3016 /* drops pi_state->pi_mutex.wait_lock */
3017 ret = wake_futex_pi(uaddr, uval, pi_state);
3018
3019 put_pi_state(pi_state);
3020
3021 /*
3022 * Success, we're done! No tricky corner cases.
3023 */
3024 if (!ret)
3025 goto out_putkey;
3026 /*
3027 * The atomic access to the futex value generated a
3028 * pagefault, so retry the user-access and the wakeup:
3029 */
3030 if (ret == -EFAULT)
3031 goto pi_faulted;
3032 /*
3033 * A unconditional UNLOCK_PI op raced against a waiter
3034 * setting the FUTEX_WAITERS bit. Try again.
3035 */
3036 if (ret == -EAGAIN)
3037 goto pi_retry;
3038 /*
3039 * wake_futex_pi has detected invalid state. Tell user
3040 * space.
3041 */
3042 goto out_putkey;
3043 }
3044
3045 /*
3046 * We have no kernel internal state, i.e. no waiters in the
3047 * kernel. Waiters which are about to queue themselves are stuck
3048 * on hb->lock. So we can safely ignore them. We do neither
3049 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3050 * owner.
3051 */
3052 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3053 spin_unlock(&hb->lock);
3054 switch (ret) {
3055 case -EFAULT:
3056 goto pi_faulted;
3057
3058 case -EAGAIN:
3059 goto pi_retry;
3060
3061 default:
3062 WARN_ON_ONCE(1);
3063 goto out_putkey;
3064 }
3065 }
3066
3067 /*
3068 * If uval has changed, let user space handle it.
3069 */
3070 ret = (curval == uval) ? 0 : -EAGAIN;
3071
3072 out_unlock:
3073 spin_unlock(&hb->lock);
3074 out_putkey:
3075 return ret;
3076
3077 pi_retry:
3078 cond_resched();
3079 goto retry;
3080
3081 pi_faulted:
3082
3083 ret = fault_in_user_writeable(uaddr);
3084 if (!ret)
3085 goto retry;
3086
3087 return ret;
3088 }
3089
3090 /**
3091 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3092 * @hb: the hash_bucket futex_q was original enqueued on
3093 * @q: the futex_q woken while waiting to be requeued
3094 * @key2: the futex_key of the requeue target futex
3095 * @timeout: the timeout associated with the wait (NULL if none)
3096 *
3097 * Detect if the task was woken on the initial futex as opposed to the requeue
3098 * target futex. If so, determine if it was a timeout or a signal that caused
3099 * the wakeup and return the appropriate error code to the caller. Must be
3100 * called with the hb lock held.
3101 *
3102 * Return:
3103 * - 0 = no early wakeup detected;
3104 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3105 */
3106 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3107 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3108 struct futex_q *q, union futex_key *key2,
3109 struct hrtimer_sleeper *timeout)
3110 {
3111 int ret = 0;
3112
3113 /*
3114 * With the hb lock held, we avoid races while we process the wakeup.
3115 * We only need to hold hb (and not hb2) to ensure atomicity as the
3116 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3117 * It can't be requeued from uaddr2 to something else since we don't
3118 * support a PI aware source futex for requeue.
3119 */
3120 if (!match_futex(&q->key, key2)) {
3121 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3122 /*
3123 * We were woken prior to requeue by a timeout or a signal.
3124 * Unqueue the futex_q and determine which it was.
3125 */
3126 plist_del(&q->list, &hb->chain);
3127 hb_waiters_dec(hb);
3128
3129 /* Handle spurious wakeups gracefully */
3130 ret = -EWOULDBLOCK;
3131 if (timeout && !timeout->task)
3132 ret = -ETIMEDOUT;
3133 else if (signal_pending(current))
3134 ret = -ERESTARTNOINTR;
3135 }
3136 return ret;
3137 }
3138
3139 /**
3140 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3141 * @uaddr: the futex we initially wait on (non-pi)
3142 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3143 * the same type, no requeueing from private to shared, etc.
3144 * @val: the expected value of uaddr
3145 * @abs_time: absolute timeout
3146 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3147 * @uaddr2: the pi futex we will take prior to returning to user-space
3148 *
3149 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3150 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3151 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3152 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3153 * without one, the pi logic would not know which task to boost/deboost, if
3154 * there was a need to.
3155 *
3156 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3157 * via the following--
3158 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3159 * 2) wakeup on uaddr2 after a requeue
3160 * 3) signal
3161 * 4) timeout
3162 *
3163 * If 3, cleanup and return -ERESTARTNOINTR.
3164 *
3165 * If 2, we may then block on trying to take the rt_mutex and return via:
3166 * 5) successful lock
3167 * 6) signal
3168 * 7) timeout
3169 * 8) other lock acquisition failure
3170 *
3171 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3172 *
3173 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3174 *
3175 * Return:
3176 * - 0 - On success;
3177 * - <0 - On error
3178 */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3179 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3180 u32 val, ktime_t *abs_time, u32 bitset,
3181 u32 __user *uaddr2)
3182 {
3183 struct hrtimer_sleeper timeout, *to;
3184 struct rt_mutex_waiter rt_waiter;
3185 struct futex_hash_bucket *hb;
3186 union futex_key key2 = FUTEX_KEY_INIT;
3187 struct futex_q q = futex_q_init;
3188 int res, ret;
3189
3190 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3191 return -ENOSYS;
3192
3193 if (uaddr == uaddr2)
3194 return -EINVAL;
3195
3196 if (!bitset)
3197 return -EINVAL;
3198
3199 to = futex_setup_timer(abs_time, &timeout, flags,
3200 current->timer_slack_ns);
3201
3202 /*
3203 * The waiter is allocated on our stack, manipulated by the requeue
3204 * code while we sleep on uaddr.
3205 */
3206 rt_mutex_init_waiter(&rt_waiter);
3207
3208 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3209 if (unlikely(ret != 0))
3210 goto out;
3211
3212 q.bitset = bitset;
3213 q.rt_waiter = &rt_waiter;
3214 q.requeue_pi_key = &key2;
3215
3216 /*
3217 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3218 * count.
3219 */
3220 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3221 if (ret)
3222 goto out;
3223
3224 /*
3225 * The check above which compares uaddrs is not sufficient for
3226 * shared futexes. We need to compare the keys:
3227 */
3228 if (match_futex(&q.key, &key2)) {
3229 queue_unlock(hb);
3230 ret = -EINVAL;
3231 goto out;
3232 }
3233
3234 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3235 futex_wait_queue_me(hb, &q, to);
3236
3237 spin_lock(&hb->lock);
3238 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3239 spin_unlock(&hb->lock);
3240 if (ret)
3241 goto out;
3242
3243 /*
3244 * In order for us to be here, we know our q.key == key2, and since
3245 * we took the hb->lock above, we also know that futex_requeue() has
3246 * completed and we no longer have to concern ourselves with a wakeup
3247 * race with the atomic proxy lock acquisition by the requeue code. The
3248 * futex_requeue dropped our key1 reference and incremented our key2
3249 * reference count.
3250 */
3251
3252 /* Check if the requeue code acquired the second futex for us. */
3253 if (!q.rt_waiter) {
3254 /*
3255 * Got the lock. We might not be the anticipated owner if we
3256 * did a lock-steal - fix up the PI-state in that case.
3257 */
3258 if (q.pi_state && (q.pi_state->owner != current)) {
3259 spin_lock(q.lock_ptr);
3260 ret = fixup_pi_state_owner(uaddr2, &q, current);
3261 /*
3262 * Drop the reference to the pi state which
3263 * the requeue_pi() code acquired for us.
3264 */
3265 put_pi_state(q.pi_state);
3266 spin_unlock(q.lock_ptr);
3267 /*
3268 * Adjust the return value. It's either -EFAULT or
3269 * success (1) but the caller expects 0 for success.
3270 */
3271 ret = ret < 0 ? ret : 0;
3272 }
3273 } else {
3274 struct rt_mutex *pi_mutex;
3275
3276 /*
3277 * We have been woken up by futex_unlock_pi(), a timeout, or a
3278 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3279 * the pi_state.
3280 */
3281 WARN_ON(!q.pi_state);
3282 pi_mutex = &q.pi_state->pi_mutex;
3283 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3284
3285 spin_lock(q.lock_ptr);
3286 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3287 ret = 0;
3288
3289 debug_rt_mutex_free_waiter(&rt_waiter);
3290 /*
3291 * Fixup the pi_state owner and possibly acquire the lock if we
3292 * haven't already.
3293 */
3294 res = fixup_owner(uaddr2, &q, !ret);
3295 /*
3296 * If fixup_owner() returned an error, proprogate that. If it
3297 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3298 */
3299 if (res)
3300 ret = (res < 0) ? res : 0;
3301
3302 /* Unqueue and drop the lock. */
3303 unqueue_me_pi(&q);
3304 }
3305
3306 if (ret == -EINTR) {
3307 /*
3308 * We've already been requeued, but cannot restart by calling
3309 * futex_lock_pi() directly. We could restart this syscall, but
3310 * it would detect that the user space "val" changed and return
3311 * -EWOULDBLOCK. Save the overhead of the restart and return
3312 * -EWOULDBLOCK directly.
3313 */
3314 ret = -EWOULDBLOCK;
3315 }
3316
3317 out:
3318 if (to) {
3319 hrtimer_cancel(&to->timer);
3320 destroy_hrtimer_on_stack(&to->timer);
3321 }
3322 return ret;
3323 }
3324
3325 /*
3326 * Support for robust futexes: the kernel cleans up held futexes at
3327 * thread exit time.
3328 *
3329 * Implementation: user-space maintains a per-thread list of locks it
3330 * is holding. Upon do_exit(), the kernel carefully walks this list,
3331 * and marks all locks that are owned by this thread with the
3332 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3333 * always manipulated with the lock held, so the list is private and
3334 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3335 * field, to allow the kernel to clean up if the thread dies after
3336 * acquiring the lock, but just before it could have added itself to
3337 * the list. There can only be one such pending lock.
3338 */
3339
3340 /**
3341 * sys_set_robust_list() - Set the robust-futex list head of a task
3342 * @head: pointer to the list-head
3343 * @len: length of the list-head, as userspace expects
3344 */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3345 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3346 size_t, len)
3347 {
3348 if (!futex_cmpxchg_enabled)
3349 return -ENOSYS;
3350 /*
3351 * The kernel knows only one size for now:
3352 */
3353 if (unlikely(len != sizeof(*head)))
3354 return -EINVAL;
3355
3356 current->robust_list = head;
3357
3358 return 0;
3359 }
3360
3361 /**
3362 * sys_get_robust_list() - Get the robust-futex list head of a task
3363 * @pid: pid of the process [zero for current task]
3364 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3365 * @len_ptr: pointer to a length field, the kernel fills in the header size
3366 */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3367 SYSCALL_DEFINE3(get_robust_list, int, pid,
3368 struct robust_list_head __user * __user *, head_ptr,
3369 size_t __user *, len_ptr)
3370 {
3371 struct robust_list_head __user *head;
3372 unsigned long ret;
3373 struct task_struct *p;
3374
3375 if (!futex_cmpxchg_enabled)
3376 return -ENOSYS;
3377
3378 rcu_read_lock();
3379
3380 ret = -ESRCH;
3381 if (!pid)
3382 p = current;
3383 else {
3384 p = find_task_by_vpid(pid);
3385 if (!p)
3386 goto err_unlock;
3387 }
3388
3389 ret = -EPERM;
3390 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3391 goto err_unlock;
3392
3393 head = p->robust_list;
3394 rcu_read_unlock();
3395
3396 if (put_user(sizeof(*head), len_ptr))
3397 return -EFAULT;
3398 return put_user(head, head_ptr);
3399
3400 err_unlock:
3401 rcu_read_unlock();
3402
3403 return ret;
3404 }
3405
3406 /* Constants for the pending_op argument of handle_futex_death */
3407 #define HANDLE_DEATH_PENDING true
3408 #define HANDLE_DEATH_LIST false
3409
3410 /*
3411 * Process a futex-list entry, check whether it's owned by the
3412 * dying task, and do notification if so:
3413 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3414 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3415 bool pi, bool pending_op)
3416 {
3417 u32 uval, nval, mval;
3418 pid_t owner;
3419 int err;
3420
3421 /* Futex address must be 32bit aligned */
3422 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3423 return -1;
3424
3425 retry:
3426 if (get_user(uval, uaddr))
3427 return -1;
3428
3429 /*
3430 * Special case for regular (non PI) futexes. The unlock path in
3431 * user space has two race scenarios:
3432 *
3433 * 1. The unlock path releases the user space futex value and
3434 * before it can execute the futex() syscall to wake up
3435 * waiters it is killed.
3436 *
3437 * 2. A woken up waiter is killed before it can acquire the
3438 * futex in user space.
3439 *
3440 * In the second case, the wake up notification could be generated
3441 * by the unlock path in user space after setting the futex value
3442 * to zero or by the kernel after setting the OWNER_DIED bit below.
3443 *
3444 * In both cases the TID validation below prevents a wakeup of
3445 * potential waiters which can cause these waiters to block
3446 * forever.
3447 *
3448 * In both cases the following conditions are met:
3449 *
3450 * 1) task->robust_list->list_op_pending != NULL
3451 * @pending_op == true
3452 * 2) The owner part of user space futex value == 0
3453 * 3) Regular futex: @pi == false
3454 *
3455 * If these conditions are met, it is safe to attempt waking up a
3456 * potential waiter without touching the user space futex value and
3457 * trying to set the OWNER_DIED bit. If the futex value is zero,
3458 * the rest of the user space mutex state is consistent, so a woken
3459 * waiter will just take over the uncontended futex. Setting the
3460 * OWNER_DIED bit would create inconsistent state and malfunction
3461 * of the user space owner died handling. Otherwise, the OWNER_DIED
3462 * bit is already set, and the woken waiter is expected to deal with
3463 * this.
3464 */
3465 owner = uval & FUTEX_TID_MASK;
3466
3467 if (pending_op && !pi && !owner) {
3468 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3469 return 0;
3470 }
3471
3472 if (owner != task_pid_vnr(curr))
3473 return 0;
3474
3475 /*
3476 * Ok, this dying thread is truly holding a futex
3477 * of interest. Set the OWNER_DIED bit atomically
3478 * via cmpxchg, and if the value had FUTEX_WAITERS
3479 * set, wake up a waiter (if any). (We have to do a
3480 * futex_wake() even if OWNER_DIED is already set -
3481 * to handle the rare but possible case of recursive
3482 * thread-death.) The rest of the cleanup is done in
3483 * userspace.
3484 */
3485 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487 /*
3488 * We are not holding a lock here, but we want to have
3489 * the pagefault_disable/enable() protection because
3490 * we want to handle the fault gracefully. If the
3491 * access fails we try to fault in the futex with R/W
3492 * verification via get_user_pages. get_user() above
3493 * does not guarantee R/W access. If that fails we
3494 * give up and leave the futex locked.
3495 */
3496 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497 switch (err) {
3498 case -EFAULT:
3499 if (fault_in_user_writeable(uaddr))
3500 return -1;
3501 goto retry;
3502
3503 case -EAGAIN:
3504 cond_resched();
3505 goto retry;
3506
3507 default:
3508 WARN_ON_ONCE(1);
3509 return err;
3510 }
3511 }
3512
3513 if (nval != uval)
3514 goto retry;
3515
3516 /*
3517 * Wake robust non-PI futexes here. The wakeup of
3518 * PI futexes happens in exit_pi_state():
3519 */
3520 if (!pi && (uval & FUTEX_WAITERS))
3521 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
3523 return 0;
3524 }
3525
3526 /*
3527 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3529 static inline int fetch_robust_entry(struct robust_list __user **entry,
3530 struct robust_list __user * __user *head,
3531 unsigned int *pi)
3532 {
3533 unsigned long uentry;
3534
3535 if (get_user(uentry, (unsigned long __user *)head))
3536 return -EFAULT;
3537
3538 *entry = (void __user *)(uentry & ~1UL);
3539 *pi = uentry & 1;
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * Walk curr->robust_list (very carefully, it's a userspace list!)
3546 * and mark any locks found there dead, and notify any waiters.
3547 *
3548 * We silently return on any sign of list-walking problem.
3549 */
exit_robust_list(struct task_struct * curr)3550 static void exit_robust_list(struct task_struct *curr)
3551 {
3552 struct robust_list_head __user *head = curr->robust_list;
3553 struct robust_list __user *entry, *next_entry, *pending;
3554 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555 unsigned int next_pi;
3556 unsigned long futex_offset;
3557 int rc;
3558
3559 if (!futex_cmpxchg_enabled)
3560 return;
3561
3562 /*
3563 * Fetch the list head (which was registered earlier, via
3564 * sys_set_robust_list()):
3565 */
3566 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567 return;
3568 /*
3569 * Fetch the relative futex offset:
3570 */
3571 if (get_user(futex_offset, &head->futex_offset))
3572 return;
3573 /*
3574 * Fetch any possibly pending lock-add first, and handle it
3575 * if it exists:
3576 */
3577 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578 return;
3579
3580 next_entry = NULL; /* avoid warning with gcc */
3581 while (entry != &head->list) {
3582 /*
3583 * Fetch the next entry in the list before calling
3584 * handle_futex_death:
3585 */
3586 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587 /*
3588 * A pending lock might already be on the list, so
3589 * don't process it twice:
3590 */
3591 if (entry != pending) {
3592 if (handle_futex_death((void __user *)entry + futex_offset,
3593 curr, pi, HANDLE_DEATH_LIST))
3594 return;
3595 }
3596 if (rc)
3597 return;
3598 entry = next_entry;
3599 pi = next_pi;
3600 /*
3601 * Avoid excessively long or circular lists:
3602 */
3603 if (!--limit)
3604 break;
3605
3606 cond_resched();
3607 }
3608
3609 if (pending) {
3610 handle_futex_death((void __user *)pending + futex_offset,
3611 curr, pip, HANDLE_DEATH_PENDING);
3612 }
3613 }
3614
futex_cleanup(struct task_struct * tsk)3615 static void futex_cleanup(struct task_struct *tsk)
3616 {
3617 if (unlikely(tsk->robust_list)) {
3618 exit_robust_list(tsk);
3619 tsk->robust_list = NULL;
3620 }
3621
3622 #ifdef CONFIG_COMPAT
3623 if (unlikely(tsk->compat_robust_list)) {
3624 compat_exit_robust_list(tsk);
3625 tsk->compat_robust_list = NULL;
3626 }
3627 #endif
3628
3629 if (unlikely(!list_empty(&tsk->pi_state_list)))
3630 exit_pi_state_list(tsk);
3631 }
3632
3633 /**
3634 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3635 * @tsk: task to set the state on
3636 *
3637 * Set the futex exit state of the task lockless. The futex waiter code
3638 * observes that state when a task is exiting and loops until the task has
3639 * actually finished the futex cleanup. The worst case for this is that the
3640 * waiter runs through the wait loop until the state becomes visible.
3641 *
3642 * This is called from the recursive fault handling path in do_exit().
3643 *
3644 * This is best effort. Either the futex exit code has run already or
3645 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3646 * take it over. If not, the problem is pushed back to user space. If the
3647 * futex exit code did not run yet, then an already queued waiter might
3648 * block forever, but there is nothing which can be done about that.
3649 */
futex_exit_recursive(struct task_struct * tsk)3650 void futex_exit_recursive(struct task_struct *tsk)
3651 {
3652 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3653 if (tsk->futex_state == FUTEX_STATE_EXITING)
3654 mutex_unlock(&tsk->futex_exit_mutex);
3655 tsk->futex_state = FUTEX_STATE_DEAD;
3656 }
3657
futex_cleanup_begin(struct task_struct * tsk)3658 static void futex_cleanup_begin(struct task_struct *tsk)
3659 {
3660 /*
3661 * Prevent various race issues against a concurrent incoming waiter
3662 * including live locks by forcing the waiter to block on
3663 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3664 * attach_to_pi_owner().
3665 */
3666 mutex_lock(&tsk->futex_exit_mutex);
3667
3668 /*
3669 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3670 *
3671 * This ensures that all subsequent checks of tsk->futex_state in
3672 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3673 * tsk->pi_lock held.
3674 *
3675 * It guarantees also that a pi_state which was queued right before
3676 * the state change under tsk->pi_lock by a concurrent waiter must
3677 * be observed in exit_pi_state_list().
3678 */
3679 raw_spin_lock_irq(&tsk->pi_lock);
3680 tsk->futex_state = FUTEX_STATE_EXITING;
3681 raw_spin_unlock_irq(&tsk->pi_lock);
3682 }
3683
futex_cleanup_end(struct task_struct * tsk,int state)3684 static void futex_cleanup_end(struct task_struct *tsk, int state)
3685 {
3686 /*
3687 * Lockless store. The only side effect is that an observer might
3688 * take another loop until it becomes visible.
3689 */
3690 tsk->futex_state = state;
3691 /*
3692 * Drop the exit protection. This unblocks waiters which observed
3693 * FUTEX_STATE_EXITING to reevaluate the state.
3694 */
3695 mutex_unlock(&tsk->futex_exit_mutex);
3696 }
3697
futex_exec_release(struct task_struct * tsk)3698 void futex_exec_release(struct task_struct *tsk)
3699 {
3700 /*
3701 * The state handling is done for consistency, but in the case of
3702 * exec() there is no way to prevent futher damage as the PID stays
3703 * the same. But for the unlikely and arguably buggy case that a
3704 * futex is held on exec(), this provides at least as much state
3705 * consistency protection which is possible.
3706 */
3707 futex_cleanup_begin(tsk);
3708 futex_cleanup(tsk);
3709 /*
3710 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3711 * exec a new binary.
3712 */
3713 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3714 }
3715
futex_exit_release(struct task_struct * tsk)3716 void futex_exit_release(struct task_struct *tsk)
3717 {
3718 futex_cleanup_begin(tsk);
3719 futex_cleanup(tsk);
3720 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3721 }
3722
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3723 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3724 u32 __user *uaddr2, u32 val2, u32 val3)
3725 {
3726 int cmd = op & FUTEX_CMD_MASK;
3727 unsigned int flags = 0;
3728
3729 if (!(op & FUTEX_PRIVATE_FLAG))
3730 flags |= FLAGS_SHARED;
3731
3732 if (op & FUTEX_CLOCK_REALTIME) {
3733 flags |= FLAGS_CLOCKRT;
3734 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3735 return -ENOSYS;
3736 }
3737
3738 switch (cmd) {
3739 case FUTEX_LOCK_PI:
3740 case FUTEX_UNLOCK_PI:
3741 case FUTEX_TRYLOCK_PI:
3742 case FUTEX_WAIT_REQUEUE_PI:
3743 case FUTEX_CMP_REQUEUE_PI:
3744 if (!futex_cmpxchg_enabled)
3745 return -ENOSYS;
3746 }
3747
3748 switch (cmd) {
3749 case FUTEX_WAIT:
3750 val3 = FUTEX_BITSET_MATCH_ANY;
3751 fallthrough;
3752 case FUTEX_WAIT_BITSET:
3753 return futex_wait(uaddr, flags, val, timeout, val3);
3754 case FUTEX_WAKE:
3755 val3 = FUTEX_BITSET_MATCH_ANY;
3756 fallthrough;
3757 case FUTEX_WAKE_BITSET:
3758 return futex_wake(uaddr, flags, val, val3);
3759 case FUTEX_REQUEUE:
3760 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3761 case FUTEX_CMP_REQUEUE:
3762 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3763 case FUTEX_WAKE_OP:
3764 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3765 case FUTEX_LOCK_PI:
3766 return futex_lock_pi(uaddr, flags, timeout, 0);
3767 case FUTEX_UNLOCK_PI:
3768 return futex_unlock_pi(uaddr, flags);
3769 case FUTEX_TRYLOCK_PI:
3770 return futex_lock_pi(uaddr, flags, NULL, 1);
3771 case FUTEX_WAIT_REQUEUE_PI:
3772 val3 = FUTEX_BITSET_MATCH_ANY;
3773 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3774 uaddr2);
3775 case FUTEX_CMP_REQUEUE_PI:
3776 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3777 }
3778 return -ENOSYS;
3779 }
3780
3781
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3782 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3783 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3784 u32, val3)
3785 {
3786 struct timespec64 ts;
3787 ktime_t t, *tp = NULL;
3788 u32 val2 = 0;
3789 int cmd = op & FUTEX_CMD_MASK;
3790
3791 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3792 cmd == FUTEX_WAIT_BITSET ||
3793 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3794 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3795 return -EFAULT;
3796 if (get_timespec64(&ts, utime))
3797 return -EFAULT;
3798 if (!timespec64_valid(&ts))
3799 return -EINVAL;
3800
3801 t = timespec64_to_ktime(ts);
3802 if (cmd == FUTEX_WAIT)
3803 t = ktime_add_safe(ktime_get(), t);
3804 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3805 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3806 tp = &t;
3807 }
3808 /*
3809 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3810 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3811 */
3812 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3813 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3814 val2 = (u32) (unsigned long) utime;
3815
3816 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3817 }
3818
3819 #ifdef CONFIG_COMPAT
3820 /*
3821 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3822 */
3823 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3824 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3825 compat_uptr_t __user *head, unsigned int *pi)
3826 {
3827 if (get_user(*uentry, head))
3828 return -EFAULT;
3829
3830 *entry = compat_ptr((*uentry) & ~1);
3831 *pi = (unsigned int)(*uentry) & 1;
3832
3833 return 0;
3834 }
3835
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3836 static void __user *futex_uaddr(struct robust_list __user *entry,
3837 compat_long_t futex_offset)
3838 {
3839 compat_uptr_t base = ptr_to_compat(entry);
3840 void __user *uaddr = compat_ptr(base + futex_offset);
3841
3842 return uaddr;
3843 }
3844
3845 /*
3846 * Walk curr->robust_list (very carefully, it's a userspace list!)
3847 * and mark any locks found there dead, and notify any waiters.
3848 *
3849 * We silently return on any sign of list-walking problem.
3850 */
compat_exit_robust_list(struct task_struct * curr)3851 static void compat_exit_robust_list(struct task_struct *curr)
3852 {
3853 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3854 struct robust_list __user *entry, *next_entry, *pending;
3855 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3856 unsigned int next_pi;
3857 compat_uptr_t uentry, next_uentry, upending;
3858 compat_long_t futex_offset;
3859 int rc;
3860
3861 if (!futex_cmpxchg_enabled)
3862 return;
3863
3864 /*
3865 * Fetch the list head (which was registered earlier, via
3866 * sys_set_robust_list()):
3867 */
3868 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3869 return;
3870 /*
3871 * Fetch the relative futex offset:
3872 */
3873 if (get_user(futex_offset, &head->futex_offset))
3874 return;
3875 /*
3876 * Fetch any possibly pending lock-add first, and handle it
3877 * if it exists:
3878 */
3879 if (compat_fetch_robust_entry(&upending, &pending,
3880 &head->list_op_pending, &pip))
3881 return;
3882
3883 next_entry = NULL; /* avoid warning with gcc */
3884 while (entry != (struct robust_list __user *) &head->list) {
3885 /*
3886 * Fetch the next entry in the list before calling
3887 * handle_futex_death:
3888 */
3889 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3890 (compat_uptr_t __user *)&entry->next, &next_pi);
3891 /*
3892 * A pending lock might already be on the list, so
3893 * dont process it twice:
3894 */
3895 if (entry != pending) {
3896 void __user *uaddr = futex_uaddr(entry, futex_offset);
3897
3898 if (handle_futex_death(uaddr, curr, pi,
3899 HANDLE_DEATH_LIST))
3900 return;
3901 }
3902 if (rc)
3903 return;
3904 uentry = next_uentry;
3905 entry = next_entry;
3906 pi = next_pi;
3907 /*
3908 * Avoid excessively long or circular lists:
3909 */
3910 if (!--limit)
3911 break;
3912
3913 cond_resched();
3914 }
3915 if (pending) {
3916 void __user *uaddr = futex_uaddr(pending, futex_offset);
3917
3918 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3919 }
3920 }
3921
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3922 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3923 struct compat_robust_list_head __user *, head,
3924 compat_size_t, len)
3925 {
3926 if (!futex_cmpxchg_enabled)
3927 return -ENOSYS;
3928
3929 if (unlikely(len != sizeof(*head)))
3930 return -EINVAL;
3931
3932 current->compat_robust_list = head;
3933
3934 return 0;
3935 }
3936
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3937 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3938 compat_uptr_t __user *, head_ptr,
3939 compat_size_t __user *, len_ptr)
3940 {
3941 struct compat_robust_list_head __user *head;
3942 unsigned long ret;
3943 struct task_struct *p;
3944
3945 if (!futex_cmpxchg_enabled)
3946 return -ENOSYS;
3947
3948 rcu_read_lock();
3949
3950 ret = -ESRCH;
3951 if (!pid)
3952 p = current;
3953 else {
3954 p = find_task_by_vpid(pid);
3955 if (!p)
3956 goto err_unlock;
3957 }
3958
3959 ret = -EPERM;
3960 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3961 goto err_unlock;
3962
3963 head = p->compat_robust_list;
3964 rcu_read_unlock();
3965
3966 if (put_user(sizeof(*head), len_ptr))
3967 return -EFAULT;
3968 return put_user(ptr_to_compat(head), head_ptr);
3969
3970 err_unlock:
3971 rcu_read_unlock();
3972
3973 return ret;
3974 }
3975 #endif /* CONFIG_COMPAT */
3976
3977 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)3978 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3979 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3980 u32, val3)
3981 {
3982 struct timespec64 ts;
3983 ktime_t t, *tp = NULL;
3984 int val2 = 0;
3985 int cmd = op & FUTEX_CMD_MASK;
3986
3987 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3988 cmd == FUTEX_WAIT_BITSET ||
3989 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3990 if (get_old_timespec32(&ts, utime))
3991 return -EFAULT;
3992 if (!timespec64_valid(&ts))
3993 return -EINVAL;
3994
3995 t = timespec64_to_ktime(ts);
3996 if (cmd == FUTEX_WAIT)
3997 t = ktime_add_safe(ktime_get(), t);
3998 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3999 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4000 tp = &t;
4001 }
4002 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4003 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4004 val2 = (int) (unsigned long) utime;
4005
4006 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4007 }
4008 #endif /* CONFIG_COMPAT_32BIT_TIME */
4009
futex_detect_cmpxchg(void)4010 static void __init futex_detect_cmpxchg(void)
4011 {
4012 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4013 u32 curval;
4014
4015 /*
4016 * This will fail and we want it. Some arch implementations do
4017 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4018 * functionality. We want to know that before we call in any
4019 * of the complex code paths. Also we want to prevent
4020 * registration of robust lists in that case. NULL is
4021 * guaranteed to fault and we get -EFAULT on functional
4022 * implementation, the non-functional ones will return
4023 * -ENOSYS.
4024 */
4025 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4026 futex_cmpxchg_enabled = 1;
4027 #endif
4028 }
4029
futex_init(void)4030 static int __init futex_init(void)
4031 {
4032 unsigned int futex_shift;
4033 unsigned long i;
4034
4035 #if CONFIG_BASE_SMALL
4036 futex_hashsize = 16;
4037 #else
4038 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4039 #endif
4040
4041 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4042 futex_hashsize, 0,
4043 futex_hashsize < 256 ? HASH_SMALL : 0,
4044 &futex_shift, NULL,
4045 futex_hashsize, futex_hashsize);
4046 futex_hashsize = 1UL << futex_shift;
4047
4048 futex_detect_cmpxchg();
4049
4050 for (i = 0; i < futex_hashsize; i++) {
4051 atomic_set(&futex_queues[i].waiters, 0);
4052 plist_head_init(&futex_queues[i].chain);
4053 spin_lock_init(&futex_queues[i].lock);
4054 }
4055
4056 return 0;
4057 }
4058 core_initcall(futex_init);
4059