• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42 
43 #include <asm/futex.h>
44 
45 #include "../locking/rtmutex_common.h"
46 
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *	X = Y = 0
126  *
127  *	w[X]=1		w[Y]=1
128  *	MB		MB
129  *	r[Y]=y		r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146 
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152 
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED		0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED		0x00
165 #endif
166 #define FLAGS_CLOCKRT		0x02
167 #define FLAGS_HAS_TIMEOUT	0x04
168 
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173 	/*
174 	 * list of 'owned' pi_state instances - these have to be
175 	 * cleaned up in do_exit() if the task exits prematurely:
176 	 */
177 	struct list_head list;
178 
179 	/*
180 	 * The PI object:
181 	 */
182 	struct rt_mutex pi_mutex;
183 
184 	struct task_struct *owner;
185 	refcount_t refcount;
186 
187 	union futex_key key;
188 } __randomize_layout;
189 
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:		priority-sorted list of tasks waiting on this futex
193  * @task:		the task waiting on the futex
194  * @lock_ptr:		the hash bucket lock
195  * @key:		the key the futex is hashed on
196  * @pi_state:		optional priority inheritance state
197  * @rt_waiter:		rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:	the requeue_pi target futex key
199  * @bitset:		bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213 	struct plist_node list;
214 
215 	struct task_struct *task;
216 	spinlock_t *lock_ptr;
217 	union futex_key key;
218 	struct futex_pi_state *pi_state;
219 	struct rt_mutex_waiter *rt_waiter;
220 	union futex_key *requeue_pi_key;
221 	u32 bitset;
222 } __randomize_layout;
223 
224 static const struct futex_q futex_q_init = {
225 	/* list gets initialized in queue_me()*/
226 	.key = FUTEX_KEY_INIT,
227 	.bitset = FUTEX_BITSET_MATCH_ANY
228 };
229 
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236 	atomic_t waiters;
237 	spinlock_t lock;
238 	struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240 
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247 	struct futex_hash_bucket *queues;
248 	unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252 
253 
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258 
259 static struct {
260 	struct fault_attr attr;
261 
262 	bool ignore_private;
263 } fail_futex = {
264 	.attr = FAULT_ATTR_INITIALIZER,
265 	.ignore_private = false,
266 };
267 
setup_fail_futex(char * str)268 static int __init setup_fail_futex(char *str)
269 {
270 	return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273 
should_fail_futex(bool fshared)274 static bool should_fail_futex(bool fshared)
275 {
276 	if (fail_futex.ignore_private && !fshared)
277 		return false;
278 
279 	return should_fail(&fail_futex.attr, 1);
280 }
281 
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283 
fail_futex_debugfs(void)284 static int __init fail_futex_debugfs(void)
285 {
286 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 	struct dentry *dir;
288 
289 	dir = fault_create_debugfs_attr("fail_futex", NULL,
290 					&fail_futex.attr);
291 	if (IS_ERR(dir))
292 		return PTR_ERR(dir);
293 
294 	debugfs_create_bool("ignore-private", mode, dir,
295 			    &fail_futex.ignore_private);
296 	return 0;
297 }
298 
299 late_initcall(fail_futex_debugfs);
300 
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302 
303 #else
should_fail_futex(bool fshared)304 static inline bool should_fail_futex(bool fshared)
305 {
306 	return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309 
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
compat_exit_robust_list(struct task_struct * curr)313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315 
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
hb_waiters_inc(struct futex_hash_bucket * hb)319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322 	atomic_inc(&hb->waiters);
323 	/*
324 	 * Full barrier (A), see the ordering comment above.
325 	 */
326 	smp_mb__after_atomic();
327 #endif
328 }
329 
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
hb_waiters_dec(struct futex_hash_bucket * hb)334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337 	atomic_dec(&hb->waiters);
338 #endif
339 }
340 
hb_waiters_pending(struct futex_hash_bucket * hb)341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344 	/*
345 	 * Full barrier (B), see the ordering comment above.
346 	 */
347 	smp_mb();
348 	return atomic_read(&hb->waiters);
349 #else
350 	return 1;
351 #endif
352 }
353 
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:	Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
hash_futex(union futex_key * key)361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364 			  key->both.offset);
365 
366 	return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368 
369 
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:	Pointer to key1
373  * @key2:	Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
match_futex(union futex_key * key1,union futex_key * key2)377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379 	return (key1 && key2
380 		&& key1->both.word == key2->both.word
381 		&& key1->both.ptr == key2->both.ptr
382 		&& key1->both.offset == key2->both.offset);
383 }
384 
385 enum futex_access {
386 	FUTEX_READ,
387 	FUTEX_WRITE
388 };
389 
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:	ptr to the given timeout value
393  * @timeout:	the hrtimer_sleeper structure to be set up
394  * @flags:	futex flags
395  * @range_ns:	optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *	   value given
399  */
400 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402 		  int flags, u64 range_ns)
403 {
404 	if (!time)
405 		return NULL;
406 
407 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
409 				      HRTIMER_MODE_ABS);
410 	/*
411 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412 	 * effectively the same as calling hrtimer_set_expires().
413 	 */
414 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415 
416 	return timeout;
417 }
418 
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
get_inode_sequence_number(struct inode * inode)437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439 	static atomic64_t i_seq;
440 	u64 old;
441 
442 	/* Does the inode already have a sequence number? */
443 	old = atomic64_read(&inode->i_sequence);
444 	if (likely(old))
445 		return old;
446 
447 	for (;;) {
448 		u64 new = atomic64_add_return(1, &i_seq);
449 		if (WARN_ON_ONCE(!new))
450 			continue;
451 
452 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453 		if (old)
454 			return old;
455 		return new;
456 	}
457 }
458 
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:	virtual address of the futex
462  * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:	address where result is stored.
464  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487 			 enum futex_access rw)
488 {
489 	unsigned long address = (unsigned long)uaddr;
490 	struct mm_struct *mm = current->mm;
491 	struct page *page, *tail;
492 	struct address_space *mapping;
493 	int err, ro = 0;
494 
495 	/*
496 	 * The futex address must be "naturally" aligned.
497 	 */
498 	key->both.offset = address % PAGE_SIZE;
499 	if (unlikely((address % sizeof(u32)) != 0))
500 		return -EINVAL;
501 	address -= key->both.offset;
502 
503 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
504 		return -EFAULT;
505 
506 	if (unlikely(should_fail_futex(fshared)))
507 		return -EFAULT;
508 
509 	/*
510 	 * PROCESS_PRIVATE futexes are fast.
511 	 * As the mm cannot disappear under us and the 'key' only needs
512 	 * virtual address, we dont even have to find the underlying vma.
513 	 * Note : We do have to check 'uaddr' is a valid user address,
514 	 *        but access_ok() should be faster than find_vma()
515 	 */
516 	if (!fshared) {
517 		/*
518 		 * On no-MMU, shared futexes are treated as private, therefore
519 		 * we must not include the current process in the key. Since
520 		 * there is only one address space, the address is a unique key
521 		 * on its own.
522 		 */
523 		if (IS_ENABLED(CONFIG_MMU))
524 			key->private.mm = mm;
525 		else
526 			key->private.mm = NULL;
527 
528 		key->private.address = address;
529 		return 0;
530 	}
531 
532 again:
533 	/* Ignore any VERIFY_READ mapping (futex common case) */
534 	if (unlikely(should_fail_futex(true)))
535 		return -EFAULT;
536 
537 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
538 	/*
539 	 * If write access is not required (eg. FUTEX_WAIT), try
540 	 * and get read-only access.
541 	 */
542 	if (err == -EFAULT && rw == FUTEX_READ) {
543 		err = get_user_pages_fast(address, 1, 0, &page);
544 		ro = 1;
545 	}
546 	if (err < 0)
547 		return err;
548 	else
549 		err = 0;
550 
551 	/*
552 	 * The treatment of mapping from this point on is critical. The page
553 	 * lock protects many things but in this context the page lock
554 	 * stabilizes mapping, prevents inode freeing in the shared
555 	 * file-backed region case and guards against movement to swap cache.
556 	 *
557 	 * Strictly speaking the page lock is not needed in all cases being
558 	 * considered here and page lock forces unnecessarily serialization
559 	 * From this point on, mapping will be re-verified if necessary and
560 	 * page lock will be acquired only if it is unavoidable
561 	 *
562 	 * Mapping checks require the head page for any compound page so the
563 	 * head page and mapping is looked up now. For anonymous pages, it
564 	 * does not matter if the page splits in the future as the key is
565 	 * based on the address. For filesystem-backed pages, the tail is
566 	 * required as the index of the page determines the key. For
567 	 * base pages, there is no tail page and tail == page.
568 	 */
569 	tail = page;
570 	page = compound_head(page);
571 	mapping = READ_ONCE(page->mapping);
572 
573 	/*
574 	 * If page->mapping is NULL, then it cannot be a PageAnon
575 	 * page; but it might be the ZERO_PAGE or in the gate area or
576 	 * in a special mapping (all cases which we are happy to fail);
577 	 * or it may have been a good file page when get_user_pages_fast
578 	 * found it, but truncated or holepunched or subjected to
579 	 * invalidate_complete_page2 before we got the page lock (also
580 	 * cases which we are happy to fail).  And we hold a reference,
581 	 * so refcount care in invalidate_complete_page's remove_mapping
582 	 * prevents drop_caches from setting mapping to NULL beneath us.
583 	 *
584 	 * The case we do have to guard against is when memory pressure made
585 	 * shmem_writepage move it from filecache to swapcache beneath us:
586 	 * an unlikely race, but we do need to retry for page->mapping.
587 	 */
588 	if (unlikely(!mapping)) {
589 		int shmem_swizzled;
590 
591 		/*
592 		 * Page lock is required to identify which special case above
593 		 * applies. If this is really a shmem page then the page lock
594 		 * will prevent unexpected transitions.
595 		 */
596 		lock_page(page);
597 		shmem_swizzled = PageSwapCache(page) || page->mapping;
598 		unlock_page(page);
599 		put_page(page);
600 
601 		if (shmem_swizzled)
602 			goto again;
603 
604 		return -EFAULT;
605 	}
606 
607 	/*
608 	 * Private mappings are handled in a simple way.
609 	 *
610 	 * If the futex key is stored on an anonymous page, then the associated
611 	 * object is the mm which is implicitly pinned by the calling process.
612 	 *
613 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
614 	 * it's a read-only handle, it's expected that futexes attach to
615 	 * the object not the particular process.
616 	 */
617 	if (PageAnon(page)) {
618 		/*
619 		 * A RO anonymous page will never change and thus doesn't make
620 		 * sense for futex operations.
621 		 */
622 		if (unlikely(should_fail_futex(true)) || ro) {
623 			err = -EFAULT;
624 			goto out;
625 		}
626 
627 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
628 		key->private.mm = mm;
629 		key->private.address = address;
630 
631 	} else {
632 		struct inode *inode;
633 
634 		/*
635 		 * The associated futex object in this case is the inode and
636 		 * the page->mapping must be traversed. Ordinarily this should
637 		 * be stabilised under page lock but it's not strictly
638 		 * necessary in this case as we just want to pin the inode, not
639 		 * update the radix tree or anything like that.
640 		 *
641 		 * The RCU read lock is taken as the inode is finally freed
642 		 * under RCU. If the mapping still matches expectations then the
643 		 * mapping->host can be safely accessed as being a valid inode.
644 		 */
645 		rcu_read_lock();
646 
647 		if (READ_ONCE(page->mapping) != mapping) {
648 			rcu_read_unlock();
649 			put_page(page);
650 
651 			goto again;
652 		}
653 
654 		inode = READ_ONCE(mapping->host);
655 		if (!inode) {
656 			rcu_read_unlock();
657 			put_page(page);
658 
659 			goto again;
660 		}
661 
662 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
663 		key->shared.i_seq = get_inode_sequence_number(inode);
664 		key->shared.pgoff = page_to_pgoff(tail);
665 		rcu_read_unlock();
666 	}
667 
668 out:
669 	put_page(page);
670 	return err;
671 }
672 
673 /**
674  * fault_in_user_writeable() - Fault in user address and verify RW access
675  * @uaddr:	pointer to faulting user space address
676  *
677  * Slow path to fixup the fault we just took in the atomic write
678  * access to @uaddr.
679  *
680  * We have no generic implementation of a non-destructive write to the
681  * user address. We know that we faulted in the atomic pagefault
682  * disabled section so we can as well avoid the #PF overhead by
683  * calling get_user_pages() right away.
684  */
fault_in_user_writeable(u32 __user * uaddr)685 static int fault_in_user_writeable(u32 __user *uaddr)
686 {
687 	struct mm_struct *mm = current->mm;
688 	int ret;
689 
690 	mmap_read_lock(mm);
691 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
692 			       FAULT_FLAG_WRITE, NULL);
693 	mmap_read_unlock(mm);
694 
695 	return ret < 0 ? ret : 0;
696 }
697 
698 /**
699  * futex_top_waiter() - Return the highest priority waiter on a futex
700  * @hb:		the hash bucket the futex_q's reside in
701  * @key:	the futex key (to distinguish it from other futex futex_q's)
702  *
703  * Must be called with the hb lock held.
704  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)705 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
706 					union futex_key *key)
707 {
708 	struct futex_q *this;
709 
710 	plist_for_each_entry(this, &hb->chain, list) {
711 		if (match_futex(&this->key, key))
712 			return this;
713 	}
714 	return NULL;
715 }
716 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)717 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
718 				      u32 uval, u32 newval)
719 {
720 	int ret;
721 
722 	pagefault_disable();
723 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
724 	pagefault_enable();
725 
726 	return ret;
727 }
728 
get_futex_value_locked(u32 * dest,u32 __user * from)729 static int get_futex_value_locked(u32 *dest, u32 __user *from)
730 {
731 	int ret;
732 
733 	pagefault_disable();
734 	ret = __get_user(*dest, from);
735 	pagefault_enable();
736 
737 	return ret ? -EFAULT : 0;
738 }
739 
740 
741 /*
742  * PI code:
743  */
refill_pi_state_cache(void)744 static int refill_pi_state_cache(void)
745 {
746 	struct futex_pi_state *pi_state;
747 
748 	if (likely(current->pi_state_cache))
749 		return 0;
750 
751 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
752 
753 	if (!pi_state)
754 		return -ENOMEM;
755 
756 	INIT_LIST_HEAD(&pi_state->list);
757 	/* pi_mutex gets initialized later */
758 	pi_state->owner = NULL;
759 	refcount_set(&pi_state->refcount, 1);
760 	pi_state->key = FUTEX_KEY_INIT;
761 
762 	current->pi_state_cache = pi_state;
763 
764 	return 0;
765 }
766 
alloc_pi_state(void)767 static struct futex_pi_state *alloc_pi_state(void)
768 {
769 	struct futex_pi_state *pi_state = current->pi_state_cache;
770 
771 	WARN_ON(!pi_state);
772 	current->pi_state_cache = NULL;
773 
774 	return pi_state;
775 }
776 
pi_state_update_owner(struct futex_pi_state * pi_state,struct task_struct * new_owner)777 static void pi_state_update_owner(struct futex_pi_state *pi_state,
778 				  struct task_struct *new_owner)
779 {
780 	struct task_struct *old_owner = pi_state->owner;
781 
782 	lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
783 
784 	if (old_owner) {
785 		raw_spin_lock(&old_owner->pi_lock);
786 		WARN_ON(list_empty(&pi_state->list));
787 		list_del_init(&pi_state->list);
788 		raw_spin_unlock(&old_owner->pi_lock);
789 	}
790 
791 	if (new_owner) {
792 		raw_spin_lock(&new_owner->pi_lock);
793 		WARN_ON(!list_empty(&pi_state->list));
794 		list_add(&pi_state->list, &new_owner->pi_state_list);
795 		pi_state->owner = new_owner;
796 		raw_spin_unlock(&new_owner->pi_lock);
797 	}
798 }
799 
get_pi_state(struct futex_pi_state * pi_state)800 static void get_pi_state(struct futex_pi_state *pi_state)
801 {
802 	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
803 }
804 
805 /*
806  * Drops a reference to the pi_state object and frees or caches it
807  * when the last reference is gone.
808  */
put_pi_state(struct futex_pi_state * pi_state)809 static void put_pi_state(struct futex_pi_state *pi_state)
810 {
811 	if (!pi_state)
812 		return;
813 
814 	if (!refcount_dec_and_test(&pi_state->refcount))
815 		return;
816 
817 	/*
818 	 * If pi_state->owner is NULL, the owner is most probably dying
819 	 * and has cleaned up the pi_state already
820 	 */
821 	if (pi_state->owner) {
822 		unsigned long flags;
823 
824 		raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
825 		pi_state_update_owner(pi_state, NULL);
826 		rt_mutex_proxy_unlock(&pi_state->pi_mutex);
827 		raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
828 	}
829 
830 	if (current->pi_state_cache) {
831 		kfree(pi_state);
832 	} else {
833 		/*
834 		 * pi_state->list is already empty.
835 		 * clear pi_state->owner.
836 		 * refcount is at 0 - put it back to 1.
837 		 */
838 		pi_state->owner = NULL;
839 		refcount_set(&pi_state->refcount, 1);
840 		current->pi_state_cache = pi_state;
841 	}
842 }
843 
844 #ifdef CONFIG_FUTEX_PI
845 
846 /*
847  * This task is holding PI mutexes at exit time => bad.
848  * Kernel cleans up PI-state, but userspace is likely hosed.
849  * (Robust-futex cleanup is separate and might save the day for userspace.)
850  */
exit_pi_state_list(struct task_struct * curr)851 static void exit_pi_state_list(struct task_struct *curr)
852 {
853 	struct list_head *next, *head = &curr->pi_state_list;
854 	struct futex_pi_state *pi_state;
855 	struct futex_hash_bucket *hb;
856 	union futex_key key = FUTEX_KEY_INIT;
857 
858 	if (!futex_cmpxchg_enabled)
859 		return;
860 	/*
861 	 * We are a ZOMBIE and nobody can enqueue itself on
862 	 * pi_state_list anymore, but we have to be careful
863 	 * versus waiters unqueueing themselves:
864 	 */
865 	raw_spin_lock_irq(&curr->pi_lock);
866 	while (!list_empty(head)) {
867 		next = head->next;
868 		pi_state = list_entry(next, struct futex_pi_state, list);
869 		key = pi_state->key;
870 		hb = hash_futex(&key);
871 
872 		/*
873 		 * We can race against put_pi_state() removing itself from the
874 		 * list (a waiter going away). put_pi_state() will first
875 		 * decrement the reference count and then modify the list, so
876 		 * its possible to see the list entry but fail this reference
877 		 * acquire.
878 		 *
879 		 * In that case; drop the locks to let put_pi_state() make
880 		 * progress and retry the loop.
881 		 */
882 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
883 			raw_spin_unlock_irq(&curr->pi_lock);
884 			cpu_relax();
885 			raw_spin_lock_irq(&curr->pi_lock);
886 			continue;
887 		}
888 		raw_spin_unlock_irq(&curr->pi_lock);
889 
890 		spin_lock(&hb->lock);
891 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
892 		raw_spin_lock(&curr->pi_lock);
893 		/*
894 		 * We dropped the pi-lock, so re-check whether this
895 		 * task still owns the PI-state:
896 		 */
897 		if (head->next != next) {
898 			/* retain curr->pi_lock for the loop invariant */
899 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
900 			spin_unlock(&hb->lock);
901 			put_pi_state(pi_state);
902 			continue;
903 		}
904 
905 		WARN_ON(pi_state->owner != curr);
906 		WARN_ON(list_empty(&pi_state->list));
907 		list_del_init(&pi_state->list);
908 		pi_state->owner = NULL;
909 
910 		raw_spin_unlock(&curr->pi_lock);
911 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
912 		spin_unlock(&hb->lock);
913 
914 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
915 		put_pi_state(pi_state);
916 
917 		raw_spin_lock_irq(&curr->pi_lock);
918 	}
919 	raw_spin_unlock_irq(&curr->pi_lock);
920 }
921 #else
exit_pi_state_list(struct task_struct * curr)922 static inline void exit_pi_state_list(struct task_struct *curr) { }
923 #endif
924 
925 /*
926  * We need to check the following states:
927  *
928  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
929  *
930  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
931  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
932  *
933  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
934  *
935  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
936  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
937  *
938  * [6]  Found  | Found    | task      | 0         | 1      | Valid
939  *
940  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
941  *
942  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
943  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
944  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
945  *
946  * [1]	Indicates that the kernel can acquire the futex atomically. We
947  *	came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
948  *
949  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
950  *      thread is found then it indicates that the owner TID has died.
951  *
952  * [3]	Invalid. The waiter is queued on a non PI futex
953  *
954  * [4]	Valid state after exit_robust_list(), which sets the user space
955  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
956  *
957  * [5]	The user space value got manipulated between exit_robust_list()
958  *	and exit_pi_state_list()
959  *
960  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
961  *	the pi_state but cannot access the user space value.
962  *
963  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
964  *
965  * [8]	Owner and user space value match
966  *
967  * [9]	There is no transient state which sets the user space TID to 0
968  *	except exit_robust_list(), but this is indicated by the
969  *	FUTEX_OWNER_DIED bit. See [4]
970  *
971  * [10] There is no transient state which leaves owner and user space
972  *	TID out of sync. Except one error case where the kernel is denied
973  *	write access to the user address, see fixup_pi_state_owner().
974  *
975  *
976  * Serialization and lifetime rules:
977  *
978  * hb->lock:
979  *
980  *	hb -> futex_q, relation
981  *	futex_q -> pi_state, relation
982  *
983  *	(cannot be raw because hb can contain arbitrary amount
984  *	 of futex_q's)
985  *
986  * pi_mutex->wait_lock:
987  *
988  *	{uval, pi_state}
989  *
990  *	(and pi_mutex 'obviously')
991  *
992  * p->pi_lock:
993  *
994  *	p->pi_state_list -> pi_state->list, relation
995  *
996  * pi_state->refcount:
997  *
998  *	pi_state lifetime
999  *
1000  *
1001  * Lock order:
1002  *
1003  *   hb->lock
1004  *     pi_mutex->wait_lock
1005  *       p->pi_lock
1006  *
1007  */
1008 
1009 /*
1010  * Validate that the existing waiter has a pi_state and sanity check
1011  * the pi_state against the user space value. If correct, attach to
1012  * it.
1013  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1014 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1015 			      struct futex_pi_state *pi_state,
1016 			      struct futex_pi_state **ps)
1017 {
1018 	pid_t pid = uval & FUTEX_TID_MASK;
1019 	u32 uval2;
1020 	int ret;
1021 
1022 	/*
1023 	 * Userspace might have messed up non-PI and PI futexes [3]
1024 	 */
1025 	if (unlikely(!pi_state))
1026 		return -EINVAL;
1027 
1028 	/*
1029 	 * We get here with hb->lock held, and having found a
1030 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1031 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1032 	 * which in turn means that futex_lock_pi() still has a reference on
1033 	 * our pi_state.
1034 	 *
1035 	 * The waiter holding a reference on @pi_state also protects against
1036 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1037 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1038 	 * free pi_state before we can take a reference ourselves.
1039 	 */
1040 	WARN_ON(!refcount_read(&pi_state->refcount));
1041 
1042 	/*
1043 	 * Now that we have a pi_state, we can acquire wait_lock
1044 	 * and do the state validation.
1045 	 */
1046 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1047 
1048 	/*
1049 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1050 	 * uval was read without holding it, it can have changed. Verify it
1051 	 * still is what we expect it to be, otherwise retry the entire
1052 	 * operation.
1053 	 */
1054 	if (get_futex_value_locked(&uval2, uaddr))
1055 		goto out_efault;
1056 
1057 	if (uval != uval2)
1058 		goto out_eagain;
1059 
1060 	/*
1061 	 * Handle the owner died case:
1062 	 */
1063 	if (uval & FUTEX_OWNER_DIED) {
1064 		/*
1065 		 * exit_pi_state_list sets owner to NULL and wakes the
1066 		 * topmost waiter. The task which acquires the
1067 		 * pi_state->rt_mutex will fixup owner.
1068 		 */
1069 		if (!pi_state->owner) {
1070 			/*
1071 			 * No pi state owner, but the user space TID
1072 			 * is not 0. Inconsistent state. [5]
1073 			 */
1074 			if (pid)
1075 				goto out_einval;
1076 			/*
1077 			 * Take a ref on the state and return success. [4]
1078 			 */
1079 			goto out_attach;
1080 		}
1081 
1082 		/*
1083 		 * If TID is 0, then either the dying owner has not
1084 		 * yet executed exit_pi_state_list() or some waiter
1085 		 * acquired the rtmutex in the pi state, but did not
1086 		 * yet fixup the TID in user space.
1087 		 *
1088 		 * Take a ref on the state and return success. [6]
1089 		 */
1090 		if (!pid)
1091 			goto out_attach;
1092 	} else {
1093 		/*
1094 		 * If the owner died bit is not set, then the pi_state
1095 		 * must have an owner. [7]
1096 		 */
1097 		if (!pi_state->owner)
1098 			goto out_einval;
1099 	}
1100 
1101 	/*
1102 	 * Bail out if user space manipulated the futex value. If pi
1103 	 * state exists then the owner TID must be the same as the
1104 	 * user space TID. [9/10]
1105 	 */
1106 	if (pid != task_pid_vnr(pi_state->owner))
1107 		goto out_einval;
1108 
1109 out_attach:
1110 	get_pi_state(pi_state);
1111 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1112 	*ps = pi_state;
1113 	return 0;
1114 
1115 out_einval:
1116 	ret = -EINVAL;
1117 	goto out_error;
1118 
1119 out_eagain:
1120 	ret = -EAGAIN;
1121 	goto out_error;
1122 
1123 out_efault:
1124 	ret = -EFAULT;
1125 	goto out_error;
1126 
1127 out_error:
1128 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1129 	return ret;
1130 }
1131 
1132 /**
1133  * wait_for_owner_exiting - Block until the owner has exited
1134  * @ret: owner's current futex lock status
1135  * @exiting:	Pointer to the exiting task
1136  *
1137  * Caller must hold a refcount on @exiting.
1138  */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1139 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1140 {
1141 	if (ret != -EBUSY) {
1142 		WARN_ON_ONCE(exiting);
1143 		return;
1144 	}
1145 
1146 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1147 		return;
1148 
1149 	mutex_lock(&exiting->futex_exit_mutex);
1150 	/*
1151 	 * No point in doing state checking here. If the waiter got here
1152 	 * while the task was in exec()->exec_futex_release() then it can
1153 	 * have any FUTEX_STATE_* value when the waiter has acquired the
1154 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1155 	 * already. Highly unlikely and not a problem. Just one more round
1156 	 * through the futex maze.
1157 	 */
1158 	mutex_unlock(&exiting->futex_exit_mutex);
1159 
1160 	put_task_struct(exiting);
1161 }
1162 
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1163 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1164 			    struct task_struct *tsk)
1165 {
1166 	u32 uval2;
1167 
1168 	/*
1169 	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1170 	 * caller that the alleged owner is busy.
1171 	 */
1172 	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1173 		return -EBUSY;
1174 
1175 	/*
1176 	 * Reread the user space value to handle the following situation:
1177 	 *
1178 	 * CPU0				CPU1
1179 	 *
1180 	 * sys_exit()			sys_futex()
1181 	 *  do_exit()			 futex_lock_pi()
1182 	 *                                futex_lock_pi_atomic()
1183 	 *   exit_signals(tsk)		    No waiters:
1184 	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1185 	 *  mm_release(tsk)		    Set waiter bit
1186 	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1187 	 *      Set owner died		    attach_to_pi_owner() {
1188 	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1189 	 *   }				     if (!tsk->flags & PF_EXITING) {
1190 	 *  ...				       attach();
1191 	 *  tsk->futex_state =               } else {
1192 	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1193 	 *					  FUTEX_STATE_DEAD)
1194 	 *				         return -EAGAIN;
1195 	 *				       return -ESRCH; <--- FAIL
1196 	 *				     }
1197 	 *
1198 	 * Returning ESRCH unconditionally is wrong here because the
1199 	 * user space value has been changed by the exiting task.
1200 	 *
1201 	 * The same logic applies to the case where the exiting task is
1202 	 * already gone.
1203 	 */
1204 	if (get_futex_value_locked(&uval2, uaddr))
1205 		return -EFAULT;
1206 
1207 	/* If the user space value has changed, try again. */
1208 	if (uval2 != uval)
1209 		return -EAGAIN;
1210 
1211 	/*
1212 	 * The exiting task did not have a robust list, the robust list was
1213 	 * corrupted or the user space value in *uaddr is simply bogus.
1214 	 * Give up and tell user space.
1215 	 */
1216 	return -ESRCH;
1217 }
1218 
1219 /*
1220  * Lookup the task for the TID provided from user space and attach to
1221  * it after doing proper sanity checks.
1222  */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1223 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1224 			      struct futex_pi_state **ps,
1225 			      struct task_struct **exiting)
1226 {
1227 	pid_t pid = uval & FUTEX_TID_MASK;
1228 	struct futex_pi_state *pi_state;
1229 	struct task_struct *p;
1230 
1231 	/*
1232 	 * We are the first waiter - try to look up the real owner and attach
1233 	 * the new pi_state to it, but bail out when TID = 0 [1]
1234 	 *
1235 	 * The !pid check is paranoid. None of the call sites should end up
1236 	 * with pid == 0, but better safe than sorry. Let the caller retry
1237 	 */
1238 	if (!pid)
1239 		return -EAGAIN;
1240 	p = find_get_task_by_vpid(pid);
1241 	if (!p)
1242 		return handle_exit_race(uaddr, uval, NULL);
1243 
1244 	if (unlikely(p->flags & PF_KTHREAD)) {
1245 		put_task_struct(p);
1246 		return -EPERM;
1247 	}
1248 
1249 	/*
1250 	 * We need to look at the task state to figure out, whether the
1251 	 * task is exiting. To protect against the change of the task state
1252 	 * in futex_exit_release(), we do this protected by p->pi_lock:
1253 	 */
1254 	raw_spin_lock_irq(&p->pi_lock);
1255 	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1256 		/*
1257 		 * The task is on the way out. When the futex state is
1258 		 * FUTEX_STATE_DEAD, we know that the task has finished
1259 		 * the cleanup:
1260 		 */
1261 		int ret = handle_exit_race(uaddr, uval, p);
1262 
1263 		raw_spin_unlock_irq(&p->pi_lock);
1264 		/*
1265 		 * If the owner task is between FUTEX_STATE_EXITING and
1266 		 * FUTEX_STATE_DEAD then store the task pointer and keep
1267 		 * the reference on the task struct. The calling code will
1268 		 * drop all locks, wait for the task to reach
1269 		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1270 		 * required to prevent a live lock when the current task
1271 		 * preempted the exiting task between the two states.
1272 		 */
1273 		if (ret == -EBUSY)
1274 			*exiting = p;
1275 		else
1276 			put_task_struct(p);
1277 		return ret;
1278 	}
1279 
1280 	/*
1281 	 * No existing pi state. First waiter. [2]
1282 	 *
1283 	 * This creates pi_state, we have hb->lock held, this means nothing can
1284 	 * observe this state, wait_lock is irrelevant.
1285 	 */
1286 	pi_state = alloc_pi_state();
1287 
1288 	/*
1289 	 * Initialize the pi_mutex in locked state and make @p
1290 	 * the owner of it:
1291 	 */
1292 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1293 
1294 	/* Store the key for possible exit cleanups: */
1295 	pi_state->key = *key;
1296 
1297 	WARN_ON(!list_empty(&pi_state->list));
1298 	list_add(&pi_state->list, &p->pi_state_list);
1299 	/*
1300 	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1301 	 * because there is no concurrency as the object is not published yet.
1302 	 */
1303 	pi_state->owner = p;
1304 	raw_spin_unlock_irq(&p->pi_lock);
1305 
1306 	put_task_struct(p);
1307 
1308 	*ps = pi_state;
1309 
1310 	return 0;
1311 }
1312 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1313 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1314 			   struct futex_hash_bucket *hb,
1315 			   union futex_key *key, struct futex_pi_state **ps,
1316 			   struct task_struct **exiting)
1317 {
1318 	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1319 
1320 	/*
1321 	 * If there is a waiter on that futex, validate it and
1322 	 * attach to the pi_state when the validation succeeds.
1323 	 */
1324 	if (top_waiter)
1325 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1326 
1327 	/*
1328 	 * We are the first waiter - try to look up the owner based on
1329 	 * @uval and attach to it.
1330 	 */
1331 	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1332 }
1333 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1334 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1335 {
1336 	int err;
1337 	u32 curval;
1338 
1339 	if (unlikely(should_fail_futex(true)))
1340 		return -EFAULT;
1341 
1342 	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1343 	if (unlikely(err))
1344 		return err;
1345 
1346 	/* If user space value changed, let the caller retry */
1347 	return curval != uval ? -EAGAIN : 0;
1348 }
1349 
1350 /**
1351  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1352  * @uaddr:		the pi futex user address
1353  * @hb:			the pi futex hash bucket
1354  * @key:		the futex key associated with uaddr and hb
1355  * @ps:			the pi_state pointer where we store the result of the
1356  *			lookup
1357  * @task:		the task to perform the atomic lock work for.  This will
1358  *			be "current" except in the case of requeue pi.
1359  * @exiting:		Pointer to store the task pointer of the owner task
1360  *			which is in the middle of exiting
1361  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1362  *
1363  * Return:
1364  *  -  0 - ready to wait;
1365  *  -  1 - acquired the lock;
1366  *  - <0 - error
1367  *
1368  * The hb->lock and futex_key refs shall be held by the caller.
1369  *
1370  * @exiting is only set when the return value is -EBUSY. If so, this holds
1371  * a refcount on the exiting task on return and the caller needs to drop it
1372  * after waiting for the exit to complete.
1373  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1374 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1375 				union futex_key *key,
1376 				struct futex_pi_state **ps,
1377 				struct task_struct *task,
1378 				struct task_struct **exiting,
1379 				int set_waiters)
1380 {
1381 	u32 uval, newval, vpid = task_pid_vnr(task);
1382 	struct futex_q *top_waiter;
1383 	int ret;
1384 
1385 	/*
1386 	 * Read the user space value first so we can validate a few
1387 	 * things before proceeding further.
1388 	 */
1389 	if (get_futex_value_locked(&uval, uaddr))
1390 		return -EFAULT;
1391 
1392 	if (unlikely(should_fail_futex(true)))
1393 		return -EFAULT;
1394 
1395 	/*
1396 	 * Detect deadlocks.
1397 	 */
1398 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1399 		return -EDEADLK;
1400 
1401 	if ((unlikely(should_fail_futex(true))))
1402 		return -EDEADLK;
1403 
1404 	/*
1405 	 * Lookup existing state first. If it exists, try to attach to
1406 	 * its pi_state.
1407 	 */
1408 	top_waiter = futex_top_waiter(hb, key);
1409 	if (top_waiter)
1410 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1411 
1412 	/*
1413 	 * No waiter and user TID is 0. We are here because the
1414 	 * waiters or the owner died bit is set or called from
1415 	 * requeue_cmp_pi or for whatever reason something took the
1416 	 * syscall.
1417 	 */
1418 	if (!(uval & FUTEX_TID_MASK)) {
1419 		/*
1420 		 * We take over the futex. No other waiters and the user space
1421 		 * TID is 0. We preserve the owner died bit.
1422 		 */
1423 		newval = uval & FUTEX_OWNER_DIED;
1424 		newval |= vpid;
1425 
1426 		/* The futex requeue_pi code can enforce the waiters bit */
1427 		if (set_waiters)
1428 			newval |= FUTEX_WAITERS;
1429 
1430 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 		/* If the take over worked, return 1 */
1432 		return ret < 0 ? ret : 1;
1433 	}
1434 
1435 	/*
1436 	 * First waiter. Set the waiters bit before attaching ourself to
1437 	 * the owner. If owner tries to unlock, it will be forced into
1438 	 * the kernel and blocked on hb->lock.
1439 	 */
1440 	newval = uval | FUTEX_WAITERS;
1441 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1442 	if (ret)
1443 		return ret;
1444 	/*
1445 	 * If the update of the user space value succeeded, we try to
1446 	 * attach to the owner. If that fails, no harm done, we only
1447 	 * set the FUTEX_WAITERS bit in the user space variable.
1448 	 */
1449 	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1450 }
1451 
1452 /**
1453  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1454  * @q:	The futex_q to unqueue
1455  *
1456  * The q->lock_ptr must not be NULL and must be held by the caller.
1457  */
__unqueue_futex(struct futex_q * q)1458 static void __unqueue_futex(struct futex_q *q)
1459 {
1460 	struct futex_hash_bucket *hb;
1461 
1462 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1463 		return;
1464 	lockdep_assert_held(q->lock_ptr);
1465 
1466 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1467 	plist_del(&q->list, &hb->chain);
1468 	hb_waiters_dec(hb);
1469 }
1470 
1471 /*
1472  * The hash bucket lock must be held when this is called.
1473  * Afterwards, the futex_q must not be accessed. Callers
1474  * must ensure to later call wake_up_q() for the actual
1475  * wakeups to occur.
1476  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1477 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1478 {
1479 	struct task_struct *p = q->task;
1480 
1481 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1482 		return;
1483 
1484 	get_task_struct(p);
1485 	__unqueue_futex(q);
1486 	/*
1487 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1488 	 * is written, without taking any locks. This is possible in the event
1489 	 * of a spurious wakeup, for example. A memory barrier is required here
1490 	 * to prevent the following store to lock_ptr from getting ahead of the
1491 	 * plist_del in __unqueue_futex().
1492 	 */
1493 	smp_store_release(&q->lock_ptr, NULL);
1494 
1495 	/*
1496 	 * Queue the task for later wakeup for after we've released
1497 	 * the hb->lock.
1498 	 */
1499 	wake_q_add_safe(wake_q, p);
1500 }
1501 
1502 /*
1503  * Caller must hold a reference on @pi_state.
1504  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1505 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1506 {
1507 	u32 curval, newval;
1508 	struct task_struct *new_owner;
1509 	bool postunlock = false;
1510 	DEFINE_WAKE_Q(wake_q);
1511 	int ret = 0;
1512 
1513 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1514 	if (WARN_ON_ONCE(!new_owner)) {
1515 		/*
1516 		 * As per the comment in futex_unlock_pi() this should not happen.
1517 		 *
1518 		 * When this happens, give up our locks and try again, giving
1519 		 * the futex_lock_pi() instance time to complete, either by
1520 		 * waiting on the rtmutex or removing itself from the futex
1521 		 * queue.
1522 		 */
1523 		ret = -EAGAIN;
1524 		goto out_unlock;
1525 	}
1526 
1527 	/*
1528 	 * We pass it to the next owner. The WAITERS bit is always kept
1529 	 * enabled while there is PI state around. We cleanup the owner
1530 	 * died bit, because we are the owner.
1531 	 */
1532 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1533 
1534 	if (unlikely(should_fail_futex(true))) {
1535 		ret = -EFAULT;
1536 		goto out_unlock;
1537 	}
1538 
1539 	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1540 	if (!ret && (curval != uval)) {
1541 		/*
1542 		 * If a unconditional UNLOCK_PI operation (user space did not
1543 		 * try the TID->0 transition) raced with a waiter setting the
1544 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1545 		 * bucket lock, retry the operation.
1546 		 */
1547 		if ((FUTEX_TID_MASK & curval) == uval)
1548 			ret = -EAGAIN;
1549 		else
1550 			ret = -EINVAL;
1551 	}
1552 
1553 	if (!ret) {
1554 		/*
1555 		 * This is a point of no return; once we modified the uval
1556 		 * there is no going back and subsequent operations must
1557 		 * not fail.
1558 		 */
1559 		pi_state_update_owner(pi_state, new_owner);
1560 		postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1561 	}
1562 
1563 out_unlock:
1564 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1565 
1566 	if (postunlock)
1567 		rt_mutex_postunlock(&wake_q);
1568 
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Express the locking dependencies for lockdep:
1574  */
1575 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1576 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1577 {
1578 	if (hb1 <= hb2) {
1579 		spin_lock(&hb1->lock);
1580 		if (hb1 < hb2)
1581 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1582 	} else { /* hb1 > hb2 */
1583 		spin_lock(&hb2->lock);
1584 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1585 	}
1586 }
1587 
1588 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1589 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1590 {
1591 	spin_unlock(&hb1->lock);
1592 	if (hb1 != hb2)
1593 		spin_unlock(&hb2->lock);
1594 }
1595 
1596 /*
1597  * Wake up waiters matching bitset queued on this futex (uaddr).
1598  */
1599 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1600 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1601 {
1602 	struct futex_hash_bucket *hb;
1603 	struct futex_q *this, *next;
1604 	union futex_key key = FUTEX_KEY_INIT;
1605 	int ret;
1606 	DEFINE_WAKE_Q(wake_q);
1607 
1608 	if (!bitset)
1609 		return -EINVAL;
1610 
1611 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1612 	if (unlikely(ret != 0))
1613 		return ret;
1614 
1615 	hb = hash_futex(&key);
1616 
1617 	/* Make sure we really have tasks to wakeup */
1618 	if (!hb_waiters_pending(hb))
1619 		return ret;
1620 
1621 	spin_lock(&hb->lock);
1622 
1623 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1624 		if (match_futex (&this->key, &key)) {
1625 			if (this->pi_state || this->rt_waiter) {
1626 				ret = -EINVAL;
1627 				break;
1628 			}
1629 
1630 			/* Check if one of the bits is set in both bitsets */
1631 			if (!(this->bitset & bitset))
1632 				continue;
1633 
1634 			mark_wake_futex(&wake_q, this);
1635 			if (++ret >= nr_wake)
1636 				break;
1637 		}
1638 	}
1639 
1640 	spin_unlock(&hb->lock);
1641 	wake_up_q(&wake_q);
1642 	return ret;
1643 }
1644 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1645 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1646 {
1647 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1648 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1649 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1650 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1651 	int oldval, ret;
1652 
1653 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1654 		if (oparg < 0 || oparg > 31) {
1655 			char comm[sizeof(current->comm)];
1656 			/*
1657 			 * kill this print and return -EINVAL when userspace
1658 			 * is sane again
1659 			 */
1660 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1661 					get_task_comm(comm, current), oparg);
1662 			oparg &= 31;
1663 		}
1664 		oparg = 1 << oparg;
1665 	}
1666 
1667 	pagefault_disable();
1668 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669 	pagefault_enable();
1670 	if (ret)
1671 		return ret;
1672 
1673 	switch (cmp) {
1674 	case FUTEX_OP_CMP_EQ:
1675 		return oldval == cmparg;
1676 	case FUTEX_OP_CMP_NE:
1677 		return oldval != cmparg;
1678 	case FUTEX_OP_CMP_LT:
1679 		return oldval < cmparg;
1680 	case FUTEX_OP_CMP_GE:
1681 		return oldval >= cmparg;
1682 	case FUTEX_OP_CMP_LE:
1683 		return oldval <= cmparg;
1684 	case FUTEX_OP_CMP_GT:
1685 		return oldval > cmparg;
1686 	default:
1687 		return -ENOSYS;
1688 	}
1689 }
1690 
1691 /*
1692  * Wake up all waiters hashed on the physical page that is mapped
1693  * to this virtual address:
1694  */
1695 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1696 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1697 	      int nr_wake, int nr_wake2, int op)
1698 {
1699 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1700 	struct futex_hash_bucket *hb1, *hb2;
1701 	struct futex_q *this, *next;
1702 	int ret, op_ret;
1703 	DEFINE_WAKE_Q(wake_q);
1704 
1705 retry:
1706 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1707 	if (unlikely(ret != 0))
1708 		return ret;
1709 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1710 	if (unlikely(ret != 0))
1711 		return ret;
1712 
1713 	hb1 = hash_futex(&key1);
1714 	hb2 = hash_futex(&key2);
1715 
1716 retry_private:
1717 	double_lock_hb(hb1, hb2);
1718 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1719 	if (unlikely(op_ret < 0)) {
1720 		double_unlock_hb(hb1, hb2);
1721 
1722 		if (!IS_ENABLED(CONFIG_MMU) ||
1723 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1724 			/*
1725 			 * we don't get EFAULT from MMU faults if we don't have
1726 			 * an MMU, but we might get them from range checking
1727 			 */
1728 			ret = op_ret;
1729 			return ret;
1730 		}
1731 
1732 		if (op_ret == -EFAULT) {
1733 			ret = fault_in_user_writeable(uaddr2);
1734 			if (ret)
1735 				return ret;
1736 		}
1737 
1738 		if (!(flags & FLAGS_SHARED)) {
1739 			cond_resched();
1740 			goto retry_private;
1741 		}
1742 
1743 		cond_resched();
1744 		goto retry;
1745 	}
1746 
1747 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1748 		if (match_futex (&this->key, &key1)) {
1749 			if (this->pi_state || this->rt_waiter) {
1750 				ret = -EINVAL;
1751 				goto out_unlock;
1752 			}
1753 			mark_wake_futex(&wake_q, this);
1754 			if (++ret >= nr_wake)
1755 				break;
1756 		}
1757 	}
1758 
1759 	if (op_ret > 0) {
1760 		op_ret = 0;
1761 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1762 			if (match_futex (&this->key, &key2)) {
1763 				if (this->pi_state || this->rt_waiter) {
1764 					ret = -EINVAL;
1765 					goto out_unlock;
1766 				}
1767 				mark_wake_futex(&wake_q, this);
1768 				if (++op_ret >= nr_wake2)
1769 					break;
1770 			}
1771 		}
1772 		ret += op_ret;
1773 	}
1774 
1775 out_unlock:
1776 	double_unlock_hb(hb1, hb2);
1777 	wake_up_q(&wake_q);
1778 	return ret;
1779 }
1780 
1781 /**
1782  * requeue_futex() - Requeue a futex_q from one hb to another
1783  * @q:		the futex_q to requeue
1784  * @hb1:	the source hash_bucket
1785  * @hb2:	the target hash_bucket
1786  * @key2:	the new key for the requeued futex_q
1787  */
1788 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1789 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1790 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1791 {
1792 
1793 	/*
1794 	 * If key1 and key2 hash to the same bucket, no need to
1795 	 * requeue.
1796 	 */
1797 	if (likely(&hb1->chain != &hb2->chain)) {
1798 		plist_del(&q->list, &hb1->chain);
1799 		hb_waiters_dec(hb1);
1800 		hb_waiters_inc(hb2);
1801 		plist_add(&q->list, &hb2->chain);
1802 		q->lock_ptr = &hb2->lock;
1803 	}
1804 	q->key = *key2;
1805 }
1806 
1807 /**
1808  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1809  * @q:		the futex_q
1810  * @key:	the key of the requeue target futex
1811  * @hb:		the hash_bucket of the requeue target futex
1812  *
1813  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1814  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1815  * to the requeue target futex so the waiter can detect the wakeup on the right
1816  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1817  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1818  * to protect access to the pi_state to fixup the owner later.  Must be called
1819  * with both q->lock_ptr and hb->lock held.
1820  */
1821 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1822 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1823 			   struct futex_hash_bucket *hb)
1824 {
1825 	q->key = *key;
1826 
1827 	__unqueue_futex(q);
1828 
1829 	WARN_ON(!q->rt_waiter);
1830 	q->rt_waiter = NULL;
1831 
1832 	q->lock_ptr = &hb->lock;
1833 
1834 	wake_up_state(q->task, TASK_NORMAL);
1835 }
1836 
1837 /**
1838  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1839  * @pifutex:		the user address of the to futex
1840  * @hb1:		the from futex hash bucket, must be locked by the caller
1841  * @hb2:		the to futex hash bucket, must be locked by the caller
1842  * @key1:		the from futex key
1843  * @key2:		the to futex key
1844  * @ps:			address to store the pi_state pointer
1845  * @exiting:		Pointer to store the task pointer of the owner task
1846  *			which is in the middle of exiting
1847  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1848  *
1849  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1850  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1851  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1852  * hb1 and hb2 must be held by the caller.
1853  *
1854  * @exiting is only set when the return value is -EBUSY. If so, this holds
1855  * a refcount on the exiting task on return and the caller needs to drop it
1856  * after waiting for the exit to complete.
1857  *
1858  * Return:
1859  *  -  0 - failed to acquire the lock atomically;
1860  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1861  *  - <0 - error
1862  */
1863 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1864 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1865 			   struct futex_hash_bucket *hb2, union futex_key *key1,
1866 			   union futex_key *key2, struct futex_pi_state **ps,
1867 			   struct task_struct **exiting, int set_waiters)
1868 {
1869 	struct futex_q *top_waiter = NULL;
1870 	u32 curval;
1871 	int ret, vpid;
1872 
1873 	if (get_futex_value_locked(&curval, pifutex))
1874 		return -EFAULT;
1875 
1876 	if (unlikely(should_fail_futex(true)))
1877 		return -EFAULT;
1878 
1879 	/*
1880 	 * Find the top_waiter and determine if there are additional waiters.
1881 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1882 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1883 	 * as we have means to handle the possible fault.  If not, don't set
1884 	 * the bit unecessarily as it will force the subsequent unlock to enter
1885 	 * the kernel.
1886 	 */
1887 	top_waiter = futex_top_waiter(hb1, key1);
1888 
1889 	/* There are no waiters, nothing for us to do. */
1890 	if (!top_waiter)
1891 		return 0;
1892 
1893 	/* Ensure we requeue to the expected futex. */
1894 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1895 		return -EINVAL;
1896 
1897 	/*
1898 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1899 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1900 	 * in ps in contended cases.
1901 	 */
1902 	vpid = task_pid_vnr(top_waiter->task);
1903 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1904 				   exiting, set_waiters);
1905 	if (ret == 1) {
1906 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1907 		return vpid;
1908 	}
1909 	return ret;
1910 }
1911 
1912 /**
1913  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1914  * @uaddr1:	source futex user address
1915  * @flags:	futex flags (FLAGS_SHARED, etc.)
1916  * @uaddr2:	target futex user address
1917  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1918  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1919  * @cmpval:	@uaddr1 expected value (or %NULL)
1920  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1921  *		pi futex (pi to pi requeue is not supported)
1922  *
1923  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1924  * uaddr2 atomically on behalf of the top waiter.
1925  *
1926  * Return:
1927  *  - >=0 - on success, the number of tasks requeued or woken;
1928  *  -  <0 - on error
1929  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1930 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1931 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1932 			 u32 *cmpval, int requeue_pi)
1933 {
1934 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1935 	int task_count = 0, ret;
1936 	struct futex_pi_state *pi_state = NULL;
1937 	struct futex_hash_bucket *hb1, *hb2;
1938 	struct futex_q *this, *next;
1939 	DEFINE_WAKE_Q(wake_q);
1940 
1941 	if (nr_wake < 0 || nr_requeue < 0)
1942 		return -EINVAL;
1943 
1944 	/*
1945 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1946 	 * consequently the compiler knows requeue_pi is always false past
1947 	 * this point which will optimize away all the conditional code
1948 	 * further down.
1949 	 */
1950 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1951 		return -ENOSYS;
1952 
1953 	if (requeue_pi) {
1954 		/*
1955 		 * Requeue PI only works on two distinct uaddrs. This
1956 		 * check is only valid for private futexes. See below.
1957 		 */
1958 		if (uaddr1 == uaddr2)
1959 			return -EINVAL;
1960 
1961 		/*
1962 		 * requeue_pi requires a pi_state, try to allocate it now
1963 		 * without any locks in case it fails.
1964 		 */
1965 		if (refill_pi_state_cache())
1966 			return -ENOMEM;
1967 		/*
1968 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1969 		 * + nr_requeue, since it acquires the rt_mutex prior to
1970 		 * returning to userspace, so as to not leave the rt_mutex with
1971 		 * waiters and no owner.  However, second and third wake-ups
1972 		 * cannot be predicted as they involve race conditions with the
1973 		 * first wake and a fault while looking up the pi_state.  Both
1974 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1975 		 * use nr_wake=1.
1976 		 */
1977 		if (nr_wake != 1)
1978 			return -EINVAL;
1979 	}
1980 
1981 retry:
1982 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1983 	if (unlikely(ret != 0))
1984 		return ret;
1985 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1986 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1987 	if (unlikely(ret != 0))
1988 		return ret;
1989 
1990 	/*
1991 	 * The check above which compares uaddrs is not sufficient for
1992 	 * shared futexes. We need to compare the keys:
1993 	 */
1994 	if (requeue_pi && match_futex(&key1, &key2))
1995 		return -EINVAL;
1996 
1997 	hb1 = hash_futex(&key1);
1998 	hb2 = hash_futex(&key2);
1999 
2000 retry_private:
2001 	hb_waiters_inc(hb2);
2002 	double_lock_hb(hb1, hb2);
2003 
2004 	if (likely(cmpval != NULL)) {
2005 		u32 curval;
2006 
2007 		ret = get_futex_value_locked(&curval, uaddr1);
2008 
2009 		if (unlikely(ret)) {
2010 			double_unlock_hb(hb1, hb2);
2011 			hb_waiters_dec(hb2);
2012 
2013 			ret = get_user(curval, uaddr1);
2014 			if (ret)
2015 				return ret;
2016 
2017 			if (!(flags & FLAGS_SHARED))
2018 				goto retry_private;
2019 
2020 			goto retry;
2021 		}
2022 		if (curval != *cmpval) {
2023 			ret = -EAGAIN;
2024 			goto out_unlock;
2025 		}
2026 	}
2027 
2028 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2029 		struct task_struct *exiting = NULL;
2030 
2031 		/*
2032 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2033 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2034 		 * bit.  We force this here where we are able to easily handle
2035 		 * faults rather in the requeue loop below.
2036 		 */
2037 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2038 						 &key2, &pi_state,
2039 						 &exiting, nr_requeue);
2040 
2041 		/*
2042 		 * At this point the top_waiter has either taken uaddr2 or is
2043 		 * waiting on it.  If the former, then the pi_state will not
2044 		 * exist yet, look it up one more time to ensure we have a
2045 		 * reference to it. If the lock was taken, ret contains the
2046 		 * vpid of the top waiter task.
2047 		 * If the lock was not taken, we have pi_state and an initial
2048 		 * refcount on it. In case of an error we have nothing.
2049 		 */
2050 		if (ret > 0) {
2051 			WARN_ON(pi_state);
2052 			task_count++;
2053 			/*
2054 			 * If we acquired the lock, then the user space value
2055 			 * of uaddr2 should be vpid. It cannot be changed by
2056 			 * the top waiter as it is blocked on hb2 lock if it
2057 			 * tries to do so. If something fiddled with it behind
2058 			 * our back the pi state lookup might unearth it. So
2059 			 * we rather use the known value than rereading and
2060 			 * handing potential crap to lookup_pi_state.
2061 			 *
2062 			 * If that call succeeds then we have pi_state and an
2063 			 * initial refcount on it.
2064 			 */
2065 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2066 					      &pi_state, &exiting);
2067 		}
2068 
2069 		switch (ret) {
2070 		case 0:
2071 			/* We hold a reference on the pi state. */
2072 			break;
2073 
2074 			/* If the above failed, then pi_state is NULL */
2075 		case -EFAULT:
2076 			double_unlock_hb(hb1, hb2);
2077 			hb_waiters_dec(hb2);
2078 			ret = fault_in_user_writeable(uaddr2);
2079 			if (!ret)
2080 				goto retry;
2081 			return ret;
2082 		case -EBUSY:
2083 		case -EAGAIN:
2084 			/*
2085 			 * Two reasons for this:
2086 			 * - EBUSY: Owner is exiting and we just wait for the
2087 			 *   exit to complete.
2088 			 * - EAGAIN: The user space value changed.
2089 			 */
2090 			double_unlock_hb(hb1, hb2);
2091 			hb_waiters_dec(hb2);
2092 			/*
2093 			 * Handle the case where the owner is in the middle of
2094 			 * exiting. Wait for the exit to complete otherwise
2095 			 * this task might loop forever, aka. live lock.
2096 			 */
2097 			wait_for_owner_exiting(ret, exiting);
2098 			cond_resched();
2099 			goto retry;
2100 		default:
2101 			goto out_unlock;
2102 		}
2103 	}
2104 
2105 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106 		if (task_count - nr_wake >= nr_requeue)
2107 			break;
2108 
2109 		if (!match_futex(&this->key, &key1))
2110 			continue;
2111 
2112 		/*
2113 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114 		 * be paired with each other and no other futex ops.
2115 		 *
2116 		 * We should never be requeueing a futex_q with a pi_state,
2117 		 * which is awaiting a futex_unlock_pi().
2118 		 */
2119 		if ((requeue_pi && !this->rt_waiter) ||
2120 		    (!requeue_pi && this->rt_waiter) ||
2121 		    this->pi_state) {
2122 			ret = -EINVAL;
2123 			break;
2124 		}
2125 
2126 		/*
2127 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2128 		 * lock, we already woke the top_waiter.  If not, it will be
2129 		 * woken by futex_unlock_pi().
2130 		 */
2131 		if (++task_count <= nr_wake && !requeue_pi) {
2132 			mark_wake_futex(&wake_q, this);
2133 			continue;
2134 		}
2135 
2136 		/* Ensure we requeue to the expected futex for requeue_pi. */
2137 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138 			ret = -EINVAL;
2139 			break;
2140 		}
2141 
2142 		/*
2143 		 * Requeue nr_requeue waiters and possibly one more in the case
2144 		 * of requeue_pi if we couldn't acquire the lock atomically.
2145 		 */
2146 		if (requeue_pi) {
2147 			/*
2148 			 * Prepare the waiter to take the rt_mutex. Take a
2149 			 * refcount on the pi_state and store the pointer in
2150 			 * the futex_q object of the waiter.
2151 			 */
2152 			get_pi_state(pi_state);
2153 			this->pi_state = pi_state;
2154 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155 							this->rt_waiter,
2156 							this->task);
2157 			if (ret == 1) {
2158 				/*
2159 				 * We got the lock. We do neither drop the
2160 				 * refcount on pi_state nor clear
2161 				 * this->pi_state because the waiter needs the
2162 				 * pi_state for cleaning up the user space
2163 				 * value. It will drop the refcount after
2164 				 * doing so.
2165 				 */
2166 				requeue_pi_wake_futex(this, &key2, hb2);
2167 				continue;
2168 			} else if (ret) {
2169 				/*
2170 				 * rt_mutex_start_proxy_lock() detected a
2171 				 * potential deadlock when we tried to queue
2172 				 * that waiter. Drop the pi_state reference
2173 				 * which we took above and remove the pointer
2174 				 * to the state from the waiters futex_q
2175 				 * object.
2176 				 */
2177 				this->pi_state = NULL;
2178 				put_pi_state(pi_state);
2179 				/*
2180 				 * We stop queueing more waiters and let user
2181 				 * space deal with the mess.
2182 				 */
2183 				break;
2184 			}
2185 		}
2186 		requeue_futex(this, hb1, hb2, &key2);
2187 	}
2188 
2189 	/*
2190 	 * We took an extra initial reference to the pi_state either
2191 	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2192 	 * need to drop it here again.
2193 	 */
2194 	put_pi_state(pi_state);
2195 
2196 out_unlock:
2197 	double_unlock_hb(hb1, hb2);
2198 	wake_up_q(&wake_q);
2199 	hb_waiters_dec(hb2);
2200 	return ret ? ret : task_count;
2201 }
2202 
2203 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2204 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2205 	__acquires(&hb->lock)
2206 {
2207 	struct futex_hash_bucket *hb;
2208 
2209 	hb = hash_futex(&q->key);
2210 
2211 	/*
2212 	 * Increment the counter before taking the lock so that
2213 	 * a potential waker won't miss a to-be-slept task that is
2214 	 * waiting for the spinlock. This is safe as all queue_lock()
2215 	 * users end up calling queue_me(). Similarly, for housekeeping,
2216 	 * decrement the counter at queue_unlock() when some error has
2217 	 * occurred and we don't end up adding the task to the list.
2218 	 */
2219 	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2220 
2221 	q->lock_ptr = &hb->lock;
2222 
2223 	spin_lock(&hb->lock);
2224 	return hb;
2225 }
2226 
2227 static inline void
queue_unlock(struct futex_hash_bucket * hb)2228 queue_unlock(struct futex_hash_bucket *hb)
2229 	__releases(&hb->lock)
2230 {
2231 	spin_unlock(&hb->lock);
2232 	hb_waiters_dec(hb);
2233 }
2234 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2235 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2236 {
2237 	int prio;
2238 
2239 	/*
2240 	 * The priority used to register this element is
2241 	 * - either the real thread-priority for the real-time threads
2242 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2243 	 * - or MAX_RT_PRIO for non-RT threads.
2244 	 * Thus, all RT-threads are woken first in priority order, and
2245 	 * the others are woken last, in FIFO order.
2246 	 */
2247 	prio = min(current->normal_prio, MAX_RT_PRIO);
2248 
2249 	plist_node_init(&q->list, prio);
2250 	plist_add(&q->list, &hb->chain);
2251 	q->task = current;
2252 }
2253 
2254 /**
2255  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2256  * @q:	The futex_q to enqueue
2257  * @hb:	The destination hash bucket
2258  *
2259  * The hb->lock must be held by the caller, and is released here. A call to
2260  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2261  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2262  * or nothing if the unqueue is done as part of the wake process and the unqueue
2263  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2264  * an example).
2265  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2266 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2267 	__releases(&hb->lock)
2268 {
2269 	__queue_me(q, hb);
2270 	spin_unlock(&hb->lock);
2271 }
2272 
2273 /**
2274  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2275  * @q:	The futex_q to unqueue
2276  *
2277  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2278  * be paired with exactly one earlier call to queue_me().
2279  *
2280  * Return:
2281  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2282  *  - 0 - if the futex_q was already removed by the waking thread
2283  */
unqueue_me(struct futex_q * q)2284 static int unqueue_me(struct futex_q *q)
2285 {
2286 	spinlock_t *lock_ptr;
2287 	int ret = 0;
2288 
2289 	/* In the common case we don't take the spinlock, which is nice. */
2290 retry:
2291 	/*
2292 	 * q->lock_ptr can change between this read and the following spin_lock.
2293 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2294 	 * optimizing lock_ptr out of the logic below.
2295 	 */
2296 	lock_ptr = READ_ONCE(q->lock_ptr);
2297 	if (lock_ptr != NULL) {
2298 		spin_lock(lock_ptr);
2299 		/*
2300 		 * q->lock_ptr can change between reading it and
2301 		 * spin_lock(), causing us to take the wrong lock.  This
2302 		 * corrects the race condition.
2303 		 *
2304 		 * Reasoning goes like this: if we have the wrong lock,
2305 		 * q->lock_ptr must have changed (maybe several times)
2306 		 * between reading it and the spin_lock().  It can
2307 		 * change again after the spin_lock() but only if it was
2308 		 * already changed before the spin_lock().  It cannot,
2309 		 * however, change back to the original value.  Therefore
2310 		 * we can detect whether we acquired the correct lock.
2311 		 */
2312 		if (unlikely(lock_ptr != q->lock_ptr)) {
2313 			spin_unlock(lock_ptr);
2314 			goto retry;
2315 		}
2316 		__unqueue_futex(q);
2317 
2318 		BUG_ON(q->pi_state);
2319 
2320 		spin_unlock(lock_ptr);
2321 		ret = 1;
2322 	}
2323 
2324 	return ret;
2325 }
2326 
2327 /*
2328  * PI futexes can not be requeued and must remove themself from the
2329  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2330  * and dropped here.
2331  */
unqueue_me_pi(struct futex_q * q)2332 static void unqueue_me_pi(struct futex_q *q)
2333 	__releases(q->lock_ptr)
2334 {
2335 	__unqueue_futex(q);
2336 
2337 	BUG_ON(!q->pi_state);
2338 	put_pi_state(q->pi_state);
2339 	q->pi_state = NULL;
2340 
2341 	spin_unlock(q->lock_ptr);
2342 }
2343 
__fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2344 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2345 				  struct task_struct *argowner)
2346 {
2347 	struct futex_pi_state *pi_state = q->pi_state;
2348 	struct task_struct *oldowner, *newowner;
2349 	u32 uval, curval, newval, newtid;
2350 	int err = 0;
2351 
2352 	oldowner = pi_state->owner;
2353 
2354 	/*
2355 	 * We are here because either:
2356 	 *
2357 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2358 	 *    that (@argowner == current),
2359 	 *
2360 	 * or:
2361 	 *
2362 	 *  - someone stole our lock and we need to fix things to point to the
2363 	 *    new owner (@argowner == NULL).
2364 	 *
2365 	 * Either way, we have to replace the TID in the user space variable.
2366 	 * This must be atomic as we have to preserve the owner died bit here.
2367 	 *
2368 	 * Note: We write the user space value _before_ changing the pi_state
2369 	 * because we can fault here. Imagine swapped out pages or a fork
2370 	 * that marked all the anonymous memory readonly for cow.
2371 	 *
2372 	 * Modifying pi_state _before_ the user space value would leave the
2373 	 * pi_state in an inconsistent state when we fault here, because we
2374 	 * need to drop the locks to handle the fault. This might be observed
2375 	 * in the PID check in lookup_pi_state.
2376 	 */
2377 retry:
2378 	if (!argowner) {
2379 		if (oldowner != current) {
2380 			/*
2381 			 * We raced against a concurrent self; things are
2382 			 * already fixed up. Nothing to do.
2383 			 */
2384 			return 0;
2385 		}
2386 
2387 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2388 			/* We got the lock. pi_state is correct. Tell caller. */
2389 			return 1;
2390 		}
2391 
2392 		/*
2393 		 * The trylock just failed, so either there is an owner or
2394 		 * there is a higher priority waiter than this one.
2395 		 */
2396 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2397 		/*
2398 		 * If the higher priority waiter has not yet taken over the
2399 		 * rtmutex then newowner is NULL. We can't return here with
2400 		 * that state because it's inconsistent vs. the user space
2401 		 * state. So drop the locks and try again. It's a valid
2402 		 * situation and not any different from the other retry
2403 		 * conditions.
2404 		 */
2405 		if (unlikely(!newowner)) {
2406 			err = -EAGAIN;
2407 			goto handle_err;
2408 		}
2409 	} else {
2410 		WARN_ON_ONCE(argowner != current);
2411 		if (oldowner == current) {
2412 			/*
2413 			 * We raced against a concurrent self; things are
2414 			 * already fixed up. Nothing to do.
2415 			 */
2416 			return 1;
2417 		}
2418 		newowner = argowner;
2419 	}
2420 
2421 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2422 	/* Owner died? */
2423 	if (!pi_state->owner)
2424 		newtid |= FUTEX_OWNER_DIED;
2425 
2426 	err = get_futex_value_locked(&uval, uaddr);
2427 	if (err)
2428 		goto handle_err;
2429 
2430 	for (;;) {
2431 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2432 
2433 		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2434 		if (err)
2435 			goto handle_err;
2436 
2437 		if (curval == uval)
2438 			break;
2439 		uval = curval;
2440 	}
2441 
2442 	/*
2443 	 * We fixed up user space. Now we need to fix the pi_state
2444 	 * itself.
2445 	 */
2446 	pi_state_update_owner(pi_state, newowner);
2447 
2448 	return argowner == current;
2449 
2450 	/*
2451 	 * In order to reschedule or handle a page fault, we need to drop the
2452 	 * locks here. In the case of a fault, this gives the other task
2453 	 * (either the highest priority waiter itself or the task which stole
2454 	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2455 	 * are back from handling the fault we need to check the pi_state after
2456 	 * reacquiring the locks and before trying to do another fixup. When
2457 	 * the fixup has been done already we simply return.
2458 	 *
2459 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2460 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2461 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2462 	 */
2463 handle_err:
2464 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2465 	spin_unlock(q->lock_ptr);
2466 
2467 	switch (err) {
2468 	case -EFAULT:
2469 		err = fault_in_user_writeable(uaddr);
2470 		break;
2471 
2472 	case -EAGAIN:
2473 		cond_resched();
2474 		err = 0;
2475 		break;
2476 
2477 	default:
2478 		WARN_ON_ONCE(1);
2479 		break;
2480 	}
2481 
2482 	spin_lock(q->lock_ptr);
2483 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2484 
2485 	/*
2486 	 * Check if someone else fixed it for us:
2487 	 */
2488 	if (pi_state->owner != oldowner)
2489 		return argowner == current;
2490 
2491 	/* Retry if err was -EAGAIN or the fault in succeeded */
2492 	if (!err)
2493 		goto retry;
2494 
2495 	/*
2496 	 * fault_in_user_writeable() failed so user state is immutable. At
2497 	 * best we can make the kernel state consistent but user state will
2498 	 * be most likely hosed and any subsequent unlock operation will be
2499 	 * rejected due to PI futex rule [10].
2500 	 *
2501 	 * Ensure that the rtmutex owner is also the pi_state owner despite
2502 	 * the user space value claiming something different. There is no
2503 	 * point in unlocking the rtmutex if current is the owner as it
2504 	 * would need to wait until the next waiter has taken the rtmutex
2505 	 * to guarantee consistent state. Keep it simple. Userspace asked
2506 	 * for this wreckaged state.
2507 	 *
2508 	 * The rtmutex has an owner - either current or some other
2509 	 * task. See the EAGAIN loop above.
2510 	 */
2511 	pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2512 
2513 	return err;
2514 }
2515 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2516 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2517 				struct task_struct *argowner)
2518 {
2519 	struct futex_pi_state *pi_state = q->pi_state;
2520 	int ret;
2521 
2522 	lockdep_assert_held(q->lock_ptr);
2523 
2524 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2525 	ret = __fixup_pi_state_owner(uaddr, q, argowner);
2526 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2527 	return ret;
2528 }
2529 
2530 static long futex_wait_restart(struct restart_block *restart);
2531 
2532 /**
2533  * fixup_owner() - Post lock pi_state and corner case management
2534  * @uaddr:	user address of the futex
2535  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2536  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2537  *
2538  * After attempting to lock an rt_mutex, this function is called to cleanup
2539  * the pi_state owner as well as handle race conditions that may allow us to
2540  * acquire the lock. Must be called with the hb lock held.
2541  *
2542  * Return:
2543  *  -  1 - success, lock taken;
2544  *  -  0 - success, lock not taken;
2545  *  - <0 - on error (-EFAULT)
2546  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2547 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2548 {
2549 	if (locked) {
2550 		/*
2551 		 * Got the lock. We might not be the anticipated owner if we
2552 		 * did a lock-steal - fix up the PI-state in that case:
2553 		 *
2554 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2555 		 * since we own the lock pi_state->owner == current is the
2556 		 * stable state, anything else needs more attention.
2557 		 */
2558 		if (q->pi_state->owner != current)
2559 			return fixup_pi_state_owner(uaddr, q, current);
2560 		return 1;
2561 	}
2562 
2563 	/*
2564 	 * If we didn't get the lock; check if anybody stole it from us. In
2565 	 * that case, we need to fix up the uval to point to them instead of
2566 	 * us, otherwise bad things happen. [10]
2567 	 *
2568 	 * Another speculative read; pi_state->owner == current is unstable
2569 	 * but needs our attention.
2570 	 */
2571 	if (q->pi_state->owner == current)
2572 		return fixup_pi_state_owner(uaddr, q, NULL);
2573 
2574 	/*
2575 	 * Paranoia check. If we did not take the lock, then we should not be
2576 	 * the owner of the rt_mutex. Warn and establish consistent state.
2577 	 */
2578 	if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2579 		return fixup_pi_state_owner(uaddr, q, current);
2580 
2581 	return 0;
2582 }
2583 
2584 /**
2585  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2586  * @hb:		the futex hash bucket, must be locked by the caller
2587  * @q:		the futex_q to queue up on
2588  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2589  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2590 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2591 				struct hrtimer_sleeper *timeout)
2592 {
2593 	/*
2594 	 * The task state is guaranteed to be set before another task can
2595 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2596 	 * queue_me() calls spin_unlock() upon completion, both serializing
2597 	 * access to the hash list and forcing another memory barrier.
2598 	 */
2599 	set_current_state(TASK_INTERRUPTIBLE);
2600 	queue_me(q, hb);
2601 
2602 	/* Arm the timer */
2603 	if (timeout)
2604 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2605 
2606 	/*
2607 	 * If we have been removed from the hash list, then another task
2608 	 * has tried to wake us, and we can skip the call to schedule().
2609 	 */
2610 	if (likely(!plist_node_empty(&q->list))) {
2611 		/*
2612 		 * If the timer has already expired, current will already be
2613 		 * flagged for rescheduling. Only call schedule if there
2614 		 * is no timeout, or if it has yet to expire.
2615 		 */
2616 		if (!timeout || timeout->task)
2617 			freezable_schedule();
2618 	}
2619 	__set_current_state(TASK_RUNNING);
2620 }
2621 
2622 /**
2623  * futex_wait_setup() - Prepare to wait on a futex
2624  * @uaddr:	the futex userspace address
2625  * @val:	the expected value
2626  * @flags:	futex flags (FLAGS_SHARED, etc.)
2627  * @q:		the associated futex_q
2628  * @hb:		storage for hash_bucket pointer to be returned to caller
2629  *
2630  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2631  * compare it with the expected value.  Handle atomic faults internally.
2632  * Return with the hb lock held and a q.key reference on success, and unlocked
2633  * with no q.key reference on failure.
2634  *
2635  * Return:
2636  *  -  0 - uaddr contains val and hb has been locked;
2637  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2638  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2639 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2640 			   struct futex_q *q, struct futex_hash_bucket **hb)
2641 {
2642 	u32 uval;
2643 	int ret;
2644 
2645 	/*
2646 	 * Access the page AFTER the hash-bucket is locked.
2647 	 * Order is important:
2648 	 *
2649 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2650 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2651 	 *
2652 	 * The basic logical guarantee of a futex is that it blocks ONLY
2653 	 * if cond(var) is known to be true at the time of blocking, for
2654 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2655 	 * would open a race condition where we could block indefinitely with
2656 	 * cond(var) false, which would violate the guarantee.
2657 	 *
2658 	 * On the other hand, we insert q and release the hash-bucket only
2659 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2660 	 * absorb a wakeup if *uaddr does not match the desired values
2661 	 * while the syscall executes.
2662 	 */
2663 retry:
2664 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2665 	if (unlikely(ret != 0))
2666 		return ret;
2667 
2668 retry_private:
2669 	*hb = queue_lock(q);
2670 
2671 	ret = get_futex_value_locked(&uval, uaddr);
2672 
2673 	if (ret) {
2674 		queue_unlock(*hb);
2675 
2676 		ret = get_user(uval, uaddr);
2677 		if (ret)
2678 			return ret;
2679 
2680 		if (!(flags & FLAGS_SHARED))
2681 			goto retry_private;
2682 
2683 		goto retry;
2684 	}
2685 
2686 	if (uval != val) {
2687 		queue_unlock(*hb);
2688 		ret = -EWOULDBLOCK;
2689 	}
2690 
2691 	return ret;
2692 }
2693 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2694 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2695 		      ktime_t *abs_time, u32 bitset)
2696 {
2697 	struct hrtimer_sleeper timeout, *to;
2698 	struct restart_block *restart;
2699 	struct futex_hash_bucket *hb;
2700 	struct futex_q q = futex_q_init;
2701 	int ret;
2702 
2703 	if (!bitset)
2704 		return -EINVAL;
2705 	q.bitset = bitset;
2706 
2707 	to = futex_setup_timer(abs_time, &timeout, flags,
2708 			       current->timer_slack_ns);
2709 retry:
2710 	/*
2711 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2712 	 * q.key refs.
2713 	 */
2714 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2715 	if (ret)
2716 		goto out;
2717 
2718 	/* queue_me and wait for wakeup, timeout, or a signal. */
2719 	futex_wait_queue_me(hb, &q, to);
2720 
2721 	/* If we were woken (and unqueued), we succeeded, whatever. */
2722 	ret = 0;
2723 	/* unqueue_me() drops q.key ref */
2724 	if (!unqueue_me(&q))
2725 		goto out;
2726 	ret = -ETIMEDOUT;
2727 	if (to && !to->task)
2728 		goto out;
2729 
2730 	/*
2731 	 * We expect signal_pending(current), but we might be the
2732 	 * victim of a spurious wakeup as well.
2733 	 */
2734 	if (!signal_pending(current))
2735 		goto retry;
2736 
2737 	ret = -ERESTARTSYS;
2738 	if (!abs_time)
2739 		goto out;
2740 
2741 	restart = &current->restart_block;
2742 	restart->futex.uaddr = uaddr;
2743 	restart->futex.val = val;
2744 	restart->futex.time = *abs_time;
2745 	restart->futex.bitset = bitset;
2746 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2747 
2748 	ret = set_restart_fn(restart, futex_wait_restart);
2749 
2750 out:
2751 	if (to) {
2752 		hrtimer_cancel(&to->timer);
2753 		destroy_hrtimer_on_stack(&to->timer);
2754 	}
2755 	return ret;
2756 }
2757 
2758 
futex_wait_restart(struct restart_block * restart)2759 static long futex_wait_restart(struct restart_block *restart)
2760 {
2761 	u32 __user *uaddr = restart->futex.uaddr;
2762 	ktime_t t, *tp = NULL;
2763 
2764 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2765 		t = restart->futex.time;
2766 		tp = &t;
2767 	}
2768 	restart->fn = do_no_restart_syscall;
2769 
2770 	return (long)futex_wait(uaddr, restart->futex.flags,
2771 				restart->futex.val, tp, restart->futex.bitset);
2772 }
2773 
2774 
2775 /*
2776  * Userspace tried a 0 -> TID atomic transition of the futex value
2777  * and failed. The kernel side here does the whole locking operation:
2778  * if there are waiters then it will block as a consequence of relying
2779  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2780  * a 0 value of the futex too.).
2781  *
2782  * Also serves as futex trylock_pi()'ing, and due semantics.
2783  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2784 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2785 			 ktime_t *time, int trylock)
2786 {
2787 	struct hrtimer_sleeper timeout, *to;
2788 	struct task_struct *exiting = NULL;
2789 	struct rt_mutex_waiter rt_waiter;
2790 	struct futex_hash_bucket *hb;
2791 	struct futex_q q = futex_q_init;
2792 	int res, ret;
2793 
2794 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2795 		return -ENOSYS;
2796 
2797 	if (refill_pi_state_cache())
2798 		return -ENOMEM;
2799 
2800 	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2801 
2802 retry:
2803 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2804 	if (unlikely(ret != 0))
2805 		goto out;
2806 
2807 retry_private:
2808 	hb = queue_lock(&q);
2809 
2810 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2811 				   &exiting, 0);
2812 	if (unlikely(ret)) {
2813 		/*
2814 		 * Atomic work succeeded and we got the lock,
2815 		 * or failed. Either way, we do _not_ block.
2816 		 */
2817 		switch (ret) {
2818 		case 1:
2819 			/* We got the lock. */
2820 			ret = 0;
2821 			goto out_unlock_put_key;
2822 		case -EFAULT:
2823 			goto uaddr_faulted;
2824 		case -EBUSY:
2825 		case -EAGAIN:
2826 			/*
2827 			 * Two reasons for this:
2828 			 * - EBUSY: Task is exiting and we just wait for the
2829 			 *   exit to complete.
2830 			 * - EAGAIN: The user space value changed.
2831 			 */
2832 			queue_unlock(hb);
2833 			/*
2834 			 * Handle the case where the owner is in the middle of
2835 			 * exiting. Wait for the exit to complete otherwise
2836 			 * this task might loop forever, aka. live lock.
2837 			 */
2838 			wait_for_owner_exiting(ret, exiting);
2839 			cond_resched();
2840 			goto retry;
2841 		default:
2842 			goto out_unlock_put_key;
2843 		}
2844 	}
2845 
2846 	WARN_ON(!q.pi_state);
2847 
2848 	/*
2849 	 * Only actually queue now that the atomic ops are done:
2850 	 */
2851 	__queue_me(&q, hb);
2852 
2853 	if (trylock) {
2854 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2855 		/* Fixup the trylock return value: */
2856 		ret = ret ? 0 : -EWOULDBLOCK;
2857 		goto no_block;
2858 	}
2859 
2860 	rt_mutex_init_waiter(&rt_waiter);
2861 
2862 	/*
2863 	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2864 	 * hold it while doing rt_mutex_start_proxy(), because then it will
2865 	 * include hb->lock in the blocking chain, even through we'll not in
2866 	 * fact hold it while blocking. This will lead it to report -EDEADLK
2867 	 * and BUG when futex_unlock_pi() interleaves with this.
2868 	 *
2869 	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2870 	 * latter before calling __rt_mutex_start_proxy_lock(). This
2871 	 * interleaves with futex_unlock_pi() -- which does a similar lock
2872 	 * handoff -- such that the latter can observe the futex_q::pi_state
2873 	 * before __rt_mutex_start_proxy_lock() is done.
2874 	 */
2875 	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2876 	spin_unlock(q.lock_ptr);
2877 	/*
2878 	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2879 	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2880 	 * it sees the futex_q::pi_state.
2881 	 */
2882 	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2883 	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2884 
2885 	if (ret) {
2886 		if (ret == 1)
2887 			ret = 0;
2888 		goto cleanup;
2889 	}
2890 
2891 	if (unlikely(to))
2892 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2893 
2894 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2895 
2896 cleanup:
2897 	spin_lock(q.lock_ptr);
2898 	/*
2899 	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2900 	 * first acquire the hb->lock before removing the lock from the
2901 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2902 	 * lists consistent.
2903 	 *
2904 	 * In particular; it is important that futex_unlock_pi() can not
2905 	 * observe this inconsistency.
2906 	 */
2907 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2908 		ret = 0;
2909 
2910 no_block:
2911 	/*
2912 	 * Fixup the pi_state owner and possibly acquire the lock if we
2913 	 * haven't already.
2914 	 */
2915 	res = fixup_owner(uaddr, &q, !ret);
2916 	/*
2917 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2918 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2919 	 */
2920 	if (res)
2921 		ret = (res < 0) ? res : 0;
2922 
2923 	/* Unqueue and drop the lock */
2924 	unqueue_me_pi(&q);
2925 	goto out;
2926 
2927 out_unlock_put_key:
2928 	queue_unlock(hb);
2929 
2930 out:
2931 	if (to) {
2932 		hrtimer_cancel(&to->timer);
2933 		destroy_hrtimer_on_stack(&to->timer);
2934 	}
2935 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2936 
2937 uaddr_faulted:
2938 	queue_unlock(hb);
2939 
2940 	ret = fault_in_user_writeable(uaddr);
2941 	if (ret)
2942 		goto out;
2943 
2944 	if (!(flags & FLAGS_SHARED))
2945 		goto retry_private;
2946 
2947 	goto retry;
2948 }
2949 
2950 /*
2951  * Userspace attempted a TID -> 0 atomic transition, and failed.
2952  * This is the in-kernel slowpath: we look up the PI state (if any),
2953  * and do the rt-mutex unlock.
2954  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2955 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2956 {
2957 	u32 curval, uval, vpid = task_pid_vnr(current);
2958 	union futex_key key = FUTEX_KEY_INIT;
2959 	struct futex_hash_bucket *hb;
2960 	struct futex_q *top_waiter;
2961 	int ret;
2962 
2963 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2964 		return -ENOSYS;
2965 
2966 retry:
2967 	if (get_user(uval, uaddr))
2968 		return -EFAULT;
2969 	/*
2970 	 * We release only a lock we actually own:
2971 	 */
2972 	if ((uval & FUTEX_TID_MASK) != vpid)
2973 		return -EPERM;
2974 
2975 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2976 	if (ret)
2977 		return ret;
2978 
2979 	hb = hash_futex(&key);
2980 	spin_lock(&hb->lock);
2981 
2982 	/*
2983 	 * Check waiters first. We do not trust user space values at
2984 	 * all and we at least want to know if user space fiddled
2985 	 * with the futex value instead of blindly unlocking.
2986 	 */
2987 	top_waiter = futex_top_waiter(hb, &key);
2988 	if (top_waiter) {
2989 		struct futex_pi_state *pi_state = top_waiter->pi_state;
2990 
2991 		ret = -EINVAL;
2992 		if (!pi_state)
2993 			goto out_unlock;
2994 
2995 		/*
2996 		 * If current does not own the pi_state then the futex is
2997 		 * inconsistent and user space fiddled with the futex value.
2998 		 */
2999 		if (pi_state->owner != current)
3000 			goto out_unlock;
3001 
3002 		get_pi_state(pi_state);
3003 		/*
3004 		 * By taking wait_lock while still holding hb->lock, we ensure
3005 		 * there is no point where we hold neither; and therefore
3006 		 * wake_futex_pi() must observe a state consistent with what we
3007 		 * observed.
3008 		 *
3009 		 * In particular; this forces __rt_mutex_start_proxy() to
3010 		 * complete such that we're guaranteed to observe the
3011 		 * rt_waiter. Also see the WARN in wake_futex_pi().
3012 		 */
3013 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3014 		spin_unlock(&hb->lock);
3015 
3016 		/* drops pi_state->pi_mutex.wait_lock */
3017 		ret = wake_futex_pi(uaddr, uval, pi_state);
3018 
3019 		put_pi_state(pi_state);
3020 
3021 		/*
3022 		 * Success, we're done! No tricky corner cases.
3023 		 */
3024 		if (!ret)
3025 			goto out_putkey;
3026 		/*
3027 		 * The atomic access to the futex value generated a
3028 		 * pagefault, so retry the user-access and the wakeup:
3029 		 */
3030 		if (ret == -EFAULT)
3031 			goto pi_faulted;
3032 		/*
3033 		 * A unconditional UNLOCK_PI op raced against a waiter
3034 		 * setting the FUTEX_WAITERS bit. Try again.
3035 		 */
3036 		if (ret == -EAGAIN)
3037 			goto pi_retry;
3038 		/*
3039 		 * wake_futex_pi has detected invalid state. Tell user
3040 		 * space.
3041 		 */
3042 		goto out_putkey;
3043 	}
3044 
3045 	/*
3046 	 * We have no kernel internal state, i.e. no waiters in the
3047 	 * kernel. Waiters which are about to queue themselves are stuck
3048 	 * on hb->lock. So we can safely ignore them. We do neither
3049 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3050 	 * owner.
3051 	 */
3052 	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3053 		spin_unlock(&hb->lock);
3054 		switch (ret) {
3055 		case -EFAULT:
3056 			goto pi_faulted;
3057 
3058 		case -EAGAIN:
3059 			goto pi_retry;
3060 
3061 		default:
3062 			WARN_ON_ONCE(1);
3063 			goto out_putkey;
3064 		}
3065 	}
3066 
3067 	/*
3068 	 * If uval has changed, let user space handle it.
3069 	 */
3070 	ret = (curval == uval) ? 0 : -EAGAIN;
3071 
3072 out_unlock:
3073 	spin_unlock(&hb->lock);
3074 out_putkey:
3075 	return ret;
3076 
3077 pi_retry:
3078 	cond_resched();
3079 	goto retry;
3080 
3081 pi_faulted:
3082 
3083 	ret = fault_in_user_writeable(uaddr);
3084 	if (!ret)
3085 		goto retry;
3086 
3087 	return ret;
3088 }
3089 
3090 /**
3091  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3092  * @hb:		the hash_bucket futex_q was original enqueued on
3093  * @q:		the futex_q woken while waiting to be requeued
3094  * @key2:	the futex_key of the requeue target futex
3095  * @timeout:	the timeout associated with the wait (NULL if none)
3096  *
3097  * Detect if the task was woken on the initial futex as opposed to the requeue
3098  * target futex.  If so, determine if it was a timeout or a signal that caused
3099  * the wakeup and return the appropriate error code to the caller.  Must be
3100  * called with the hb lock held.
3101  *
3102  * Return:
3103  *  -  0 = no early wakeup detected;
3104  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3105  */
3106 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3107 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3108 				   struct futex_q *q, union futex_key *key2,
3109 				   struct hrtimer_sleeper *timeout)
3110 {
3111 	int ret = 0;
3112 
3113 	/*
3114 	 * With the hb lock held, we avoid races while we process the wakeup.
3115 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3116 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3117 	 * It can't be requeued from uaddr2 to something else since we don't
3118 	 * support a PI aware source futex for requeue.
3119 	 */
3120 	if (!match_futex(&q->key, key2)) {
3121 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3122 		/*
3123 		 * We were woken prior to requeue by a timeout or a signal.
3124 		 * Unqueue the futex_q and determine which it was.
3125 		 */
3126 		plist_del(&q->list, &hb->chain);
3127 		hb_waiters_dec(hb);
3128 
3129 		/* Handle spurious wakeups gracefully */
3130 		ret = -EWOULDBLOCK;
3131 		if (timeout && !timeout->task)
3132 			ret = -ETIMEDOUT;
3133 		else if (signal_pending(current))
3134 			ret = -ERESTARTNOINTR;
3135 	}
3136 	return ret;
3137 }
3138 
3139 /**
3140  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3141  * @uaddr:	the futex we initially wait on (non-pi)
3142  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3143  *		the same type, no requeueing from private to shared, etc.
3144  * @val:	the expected value of uaddr
3145  * @abs_time:	absolute timeout
3146  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3147  * @uaddr2:	the pi futex we will take prior to returning to user-space
3148  *
3149  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3150  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3151  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3152  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3153  * without one, the pi logic would not know which task to boost/deboost, if
3154  * there was a need to.
3155  *
3156  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3157  * via the following--
3158  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3159  * 2) wakeup on uaddr2 after a requeue
3160  * 3) signal
3161  * 4) timeout
3162  *
3163  * If 3, cleanup and return -ERESTARTNOINTR.
3164  *
3165  * If 2, we may then block on trying to take the rt_mutex and return via:
3166  * 5) successful lock
3167  * 6) signal
3168  * 7) timeout
3169  * 8) other lock acquisition failure
3170  *
3171  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3172  *
3173  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3174  *
3175  * Return:
3176  *  -  0 - On success;
3177  *  - <0 - On error
3178  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3179 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3180 				 u32 val, ktime_t *abs_time, u32 bitset,
3181 				 u32 __user *uaddr2)
3182 {
3183 	struct hrtimer_sleeper timeout, *to;
3184 	struct rt_mutex_waiter rt_waiter;
3185 	struct futex_hash_bucket *hb;
3186 	union futex_key key2 = FUTEX_KEY_INIT;
3187 	struct futex_q q = futex_q_init;
3188 	int res, ret;
3189 
3190 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3191 		return -ENOSYS;
3192 
3193 	if (uaddr == uaddr2)
3194 		return -EINVAL;
3195 
3196 	if (!bitset)
3197 		return -EINVAL;
3198 
3199 	to = futex_setup_timer(abs_time, &timeout, flags,
3200 			       current->timer_slack_ns);
3201 
3202 	/*
3203 	 * The waiter is allocated on our stack, manipulated by the requeue
3204 	 * code while we sleep on uaddr.
3205 	 */
3206 	rt_mutex_init_waiter(&rt_waiter);
3207 
3208 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3209 	if (unlikely(ret != 0))
3210 		goto out;
3211 
3212 	q.bitset = bitset;
3213 	q.rt_waiter = &rt_waiter;
3214 	q.requeue_pi_key = &key2;
3215 
3216 	/*
3217 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3218 	 * count.
3219 	 */
3220 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3221 	if (ret)
3222 		goto out;
3223 
3224 	/*
3225 	 * The check above which compares uaddrs is not sufficient for
3226 	 * shared futexes. We need to compare the keys:
3227 	 */
3228 	if (match_futex(&q.key, &key2)) {
3229 		queue_unlock(hb);
3230 		ret = -EINVAL;
3231 		goto out;
3232 	}
3233 
3234 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3235 	futex_wait_queue_me(hb, &q, to);
3236 
3237 	spin_lock(&hb->lock);
3238 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3239 	spin_unlock(&hb->lock);
3240 	if (ret)
3241 		goto out;
3242 
3243 	/*
3244 	 * In order for us to be here, we know our q.key == key2, and since
3245 	 * we took the hb->lock above, we also know that futex_requeue() has
3246 	 * completed and we no longer have to concern ourselves with a wakeup
3247 	 * race with the atomic proxy lock acquisition by the requeue code. The
3248 	 * futex_requeue dropped our key1 reference and incremented our key2
3249 	 * reference count.
3250 	 */
3251 
3252 	/* Check if the requeue code acquired the second futex for us. */
3253 	if (!q.rt_waiter) {
3254 		/*
3255 		 * Got the lock. We might not be the anticipated owner if we
3256 		 * did a lock-steal - fix up the PI-state in that case.
3257 		 */
3258 		if (q.pi_state && (q.pi_state->owner != current)) {
3259 			spin_lock(q.lock_ptr);
3260 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3261 			/*
3262 			 * Drop the reference to the pi state which
3263 			 * the requeue_pi() code acquired for us.
3264 			 */
3265 			put_pi_state(q.pi_state);
3266 			spin_unlock(q.lock_ptr);
3267 			/*
3268 			 * Adjust the return value. It's either -EFAULT or
3269 			 * success (1) but the caller expects 0 for success.
3270 			 */
3271 			ret = ret < 0 ? ret : 0;
3272 		}
3273 	} else {
3274 		struct rt_mutex *pi_mutex;
3275 
3276 		/*
3277 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3278 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3279 		 * the pi_state.
3280 		 */
3281 		WARN_ON(!q.pi_state);
3282 		pi_mutex = &q.pi_state->pi_mutex;
3283 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3284 
3285 		spin_lock(q.lock_ptr);
3286 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3287 			ret = 0;
3288 
3289 		debug_rt_mutex_free_waiter(&rt_waiter);
3290 		/*
3291 		 * Fixup the pi_state owner and possibly acquire the lock if we
3292 		 * haven't already.
3293 		 */
3294 		res = fixup_owner(uaddr2, &q, !ret);
3295 		/*
3296 		 * If fixup_owner() returned an error, proprogate that.  If it
3297 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3298 		 */
3299 		if (res)
3300 			ret = (res < 0) ? res : 0;
3301 
3302 		/* Unqueue and drop the lock. */
3303 		unqueue_me_pi(&q);
3304 	}
3305 
3306 	if (ret == -EINTR) {
3307 		/*
3308 		 * We've already been requeued, but cannot restart by calling
3309 		 * futex_lock_pi() directly. We could restart this syscall, but
3310 		 * it would detect that the user space "val" changed and return
3311 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3312 		 * -EWOULDBLOCK directly.
3313 		 */
3314 		ret = -EWOULDBLOCK;
3315 	}
3316 
3317 out:
3318 	if (to) {
3319 		hrtimer_cancel(&to->timer);
3320 		destroy_hrtimer_on_stack(&to->timer);
3321 	}
3322 	return ret;
3323 }
3324 
3325 /*
3326  * Support for robust futexes: the kernel cleans up held futexes at
3327  * thread exit time.
3328  *
3329  * Implementation: user-space maintains a per-thread list of locks it
3330  * is holding. Upon do_exit(), the kernel carefully walks this list,
3331  * and marks all locks that are owned by this thread with the
3332  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3333  * always manipulated with the lock held, so the list is private and
3334  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3335  * field, to allow the kernel to clean up if the thread dies after
3336  * acquiring the lock, but just before it could have added itself to
3337  * the list. There can only be one such pending lock.
3338  */
3339 
3340 /**
3341  * sys_set_robust_list() - Set the robust-futex list head of a task
3342  * @head:	pointer to the list-head
3343  * @len:	length of the list-head, as userspace expects
3344  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3345 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3346 		size_t, len)
3347 {
3348 	if (!futex_cmpxchg_enabled)
3349 		return -ENOSYS;
3350 	/*
3351 	 * The kernel knows only one size for now:
3352 	 */
3353 	if (unlikely(len != sizeof(*head)))
3354 		return -EINVAL;
3355 
3356 	current->robust_list = head;
3357 
3358 	return 0;
3359 }
3360 
3361 /**
3362  * sys_get_robust_list() - Get the robust-futex list head of a task
3363  * @pid:	pid of the process [zero for current task]
3364  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3365  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3366  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3367 SYSCALL_DEFINE3(get_robust_list, int, pid,
3368 		struct robust_list_head __user * __user *, head_ptr,
3369 		size_t __user *, len_ptr)
3370 {
3371 	struct robust_list_head __user *head;
3372 	unsigned long ret;
3373 	struct task_struct *p;
3374 
3375 	if (!futex_cmpxchg_enabled)
3376 		return -ENOSYS;
3377 
3378 	rcu_read_lock();
3379 
3380 	ret = -ESRCH;
3381 	if (!pid)
3382 		p = current;
3383 	else {
3384 		p = find_task_by_vpid(pid);
3385 		if (!p)
3386 			goto err_unlock;
3387 	}
3388 
3389 	ret = -EPERM;
3390 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3391 		goto err_unlock;
3392 
3393 	head = p->robust_list;
3394 	rcu_read_unlock();
3395 
3396 	if (put_user(sizeof(*head), len_ptr))
3397 		return -EFAULT;
3398 	return put_user(head, head_ptr);
3399 
3400 err_unlock:
3401 	rcu_read_unlock();
3402 
3403 	return ret;
3404 }
3405 
3406 /* Constants for the pending_op argument of handle_futex_death */
3407 #define HANDLE_DEATH_PENDING	true
3408 #define HANDLE_DEATH_LIST	false
3409 
3410 /*
3411  * Process a futex-list entry, check whether it's owned by the
3412  * dying task, and do notification if so:
3413  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3414 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3415 			      bool pi, bool pending_op)
3416 {
3417 	u32 uval, nval, mval;
3418 	pid_t owner;
3419 	int err;
3420 
3421 	/* Futex address must be 32bit aligned */
3422 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3423 		return -1;
3424 
3425 retry:
3426 	if (get_user(uval, uaddr))
3427 		return -1;
3428 
3429 	/*
3430 	 * Special case for regular (non PI) futexes. The unlock path in
3431 	 * user space has two race scenarios:
3432 	 *
3433 	 * 1. The unlock path releases the user space futex value and
3434 	 *    before it can execute the futex() syscall to wake up
3435 	 *    waiters it is killed.
3436 	 *
3437 	 * 2. A woken up waiter is killed before it can acquire the
3438 	 *    futex in user space.
3439 	 *
3440 	 * In the second case, the wake up notification could be generated
3441 	 * by the unlock path in user space after setting the futex value
3442 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
3443 	 *
3444 	 * In both cases the TID validation below prevents a wakeup of
3445 	 * potential waiters which can cause these waiters to block
3446 	 * forever.
3447 	 *
3448 	 * In both cases the following conditions are met:
3449 	 *
3450 	 *	1) task->robust_list->list_op_pending != NULL
3451 	 *	   @pending_op == true
3452 	 *	2) The owner part of user space futex value == 0
3453 	 *	3) Regular futex: @pi == false
3454 	 *
3455 	 * If these conditions are met, it is safe to attempt waking up a
3456 	 * potential waiter without touching the user space futex value and
3457 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
3458 	 * the rest of the user space mutex state is consistent, so a woken
3459 	 * waiter will just take over the uncontended futex. Setting the
3460 	 * OWNER_DIED bit would create inconsistent state and malfunction
3461 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
3462 	 * bit is already set, and the woken waiter is expected to deal with
3463 	 * this.
3464 	 */
3465 	owner = uval & FUTEX_TID_MASK;
3466 
3467 	if (pending_op && !pi && !owner) {
3468 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3469 		return 0;
3470 	}
3471 
3472 	if (owner != task_pid_vnr(curr))
3473 		return 0;
3474 
3475 	/*
3476 	 * Ok, this dying thread is truly holding a futex
3477 	 * of interest. Set the OWNER_DIED bit atomically
3478 	 * via cmpxchg, and if the value had FUTEX_WAITERS
3479 	 * set, wake up a waiter (if any). (We have to do a
3480 	 * futex_wake() even if OWNER_DIED is already set -
3481 	 * to handle the rare but possible case of recursive
3482 	 * thread-death.) The rest of the cleanup is done in
3483 	 * userspace.
3484 	 */
3485 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486 
3487 	/*
3488 	 * We are not holding a lock here, but we want to have
3489 	 * the pagefault_disable/enable() protection because
3490 	 * we want to handle the fault gracefully. If the
3491 	 * access fails we try to fault in the futex with R/W
3492 	 * verification via get_user_pages. get_user() above
3493 	 * does not guarantee R/W access. If that fails we
3494 	 * give up and leave the futex locked.
3495 	 */
3496 	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497 		switch (err) {
3498 		case -EFAULT:
3499 			if (fault_in_user_writeable(uaddr))
3500 				return -1;
3501 			goto retry;
3502 
3503 		case -EAGAIN:
3504 			cond_resched();
3505 			goto retry;
3506 
3507 		default:
3508 			WARN_ON_ONCE(1);
3509 			return err;
3510 		}
3511 	}
3512 
3513 	if (nval != uval)
3514 		goto retry;
3515 
3516 	/*
3517 	 * Wake robust non-PI futexes here. The wakeup of
3518 	 * PI futexes happens in exit_pi_state():
3519 	 */
3520 	if (!pi && (uval & FUTEX_WAITERS))
3521 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522 
3523 	return 0;
3524 }
3525 
3526 /*
3527  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3529 static inline int fetch_robust_entry(struct robust_list __user **entry,
3530 				     struct robust_list __user * __user *head,
3531 				     unsigned int *pi)
3532 {
3533 	unsigned long uentry;
3534 
3535 	if (get_user(uentry, (unsigned long __user *)head))
3536 		return -EFAULT;
3537 
3538 	*entry = (void __user *)(uentry & ~1UL);
3539 	*pi = uentry & 1;
3540 
3541 	return 0;
3542 }
3543 
3544 /*
3545  * Walk curr->robust_list (very carefully, it's a userspace list!)
3546  * and mark any locks found there dead, and notify any waiters.
3547  *
3548  * We silently return on any sign of list-walking problem.
3549  */
exit_robust_list(struct task_struct * curr)3550 static void exit_robust_list(struct task_struct *curr)
3551 {
3552 	struct robust_list_head __user *head = curr->robust_list;
3553 	struct robust_list __user *entry, *next_entry, *pending;
3554 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555 	unsigned int next_pi;
3556 	unsigned long futex_offset;
3557 	int rc;
3558 
3559 	if (!futex_cmpxchg_enabled)
3560 		return;
3561 
3562 	/*
3563 	 * Fetch the list head (which was registered earlier, via
3564 	 * sys_set_robust_list()):
3565 	 */
3566 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567 		return;
3568 	/*
3569 	 * Fetch the relative futex offset:
3570 	 */
3571 	if (get_user(futex_offset, &head->futex_offset))
3572 		return;
3573 	/*
3574 	 * Fetch any possibly pending lock-add first, and handle it
3575 	 * if it exists:
3576 	 */
3577 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578 		return;
3579 
3580 	next_entry = NULL;	/* avoid warning with gcc */
3581 	while (entry != &head->list) {
3582 		/*
3583 		 * Fetch the next entry in the list before calling
3584 		 * handle_futex_death:
3585 		 */
3586 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587 		/*
3588 		 * A pending lock might already be on the list, so
3589 		 * don't process it twice:
3590 		 */
3591 		if (entry != pending) {
3592 			if (handle_futex_death((void __user *)entry + futex_offset,
3593 						curr, pi, HANDLE_DEATH_LIST))
3594 				return;
3595 		}
3596 		if (rc)
3597 			return;
3598 		entry = next_entry;
3599 		pi = next_pi;
3600 		/*
3601 		 * Avoid excessively long or circular lists:
3602 		 */
3603 		if (!--limit)
3604 			break;
3605 
3606 		cond_resched();
3607 	}
3608 
3609 	if (pending) {
3610 		handle_futex_death((void __user *)pending + futex_offset,
3611 				   curr, pip, HANDLE_DEATH_PENDING);
3612 	}
3613 }
3614 
futex_cleanup(struct task_struct * tsk)3615 static void futex_cleanup(struct task_struct *tsk)
3616 {
3617 	if (unlikely(tsk->robust_list)) {
3618 		exit_robust_list(tsk);
3619 		tsk->robust_list = NULL;
3620 	}
3621 
3622 #ifdef CONFIG_COMPAT
3623 	if (unlikely(tsk->compat_robust_list)) {
3624 		compat_exit_robust_list(tsk);
3625 		tsk->compat_robust_list = NULL;
3626 	}
3627 #endif
3628 
3629 	if (unlikely(!list_empty(&tsk->pi_state_list)))
3630 		exit_pi_state_list(tsk);
3631 }
3632 
3633 /**
3634  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3635  * @tsk:	task to set the state on
3636  *
3637  * Set the futex exit state of the task lockless. The futex waiter code
3638  * observes that state when a task is exiting and loops until the task has
3639  * actually finished the futex cleanup. The worst case for this is that the
3640  * waiter runs through the wait loop until the state becomes visible.
3641  *
3642  * This is called from the recursive fault handling path in do_exit().
3643  *
3644  * This is best effort. Either the futex exit code has run already or
3645  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3646  * take it over. If not, the problem is pushed back to user space. If the
3647  * futex exit code did not run yet, then an already queued waiter might
3648  * block forever, but there is nothing which can be done about that.
3649  */
futex_exit_recursive(struct task_struct * tsk)3650 void futex_exit_recursive(struct task_struct *tsk)
3651 {
3652 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3653 	if (tsk->futex_state == FUTEX_STATE_EXITING)
3654 		mutex_unlock(&tsk->futex_exit_mutex);
3655 	tsk->futex_state = FUTEX_STATE_DEAD;
3656 }
3657 
futex_cleanup_begin(struct task_struct * tsk)3658 static void futex_cleanup_begin(struct task_struct *tsk)
3659 {
3660 	/*
3661 	 * Prevent various race issues against a concurrent incoming waiter
3662 	 * including live locks by forcing the waiter to block on
3663 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3664 	 * attach_to_pi_owner().
3665 	 */
3666 	mutex_lock(&tsk->futex_exit_mutex);
3667 
3668 	/*
3669 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3670 	 *
3671 	 * This ensures that all subsequent checks of tsk->futex_state in
3672 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3673 	 * tsk->pi_lock held.
3674 	 *
3675 	 * It guarantees also that a pi_state which was queued right before
3676 	 * the state change under tsk->pi_lock by a concurrent waiter must
3677 	 * be observed in exit_pi_state_list().
3678 	 */
3679 	raw_spin_lock_irq(&tsk->pi_lock);
3680 	tsk->futex_state = FUTEX_STATE_EXITING;
3681 	raw_spin_unlock_irq(&tsk->pi_lock);
3682 }
3683 
futex_cleanup_end(struct task_struct * tsk,int state)3684 static void futex_cleanup_end(struct task_struct *tsk, int state)
3685 {
3686 	/*
3687 	 * Lockless store. The only side effect is that an observer might
3688 	 * take another loop until it becomes visible.
3689 	 */
3690 	tsk->futex_state = state;
3691 	/*
3692 	 * Drop the exit protection. This unblocks waiters which observed
3693 	 * FUTEX_STATE_EXITING to reevaluate the state.
3694 	 */
3695 	mutex_unlock(&tsk->futex_exit_mutex);
3696 }
3697 
futex_exec_release(struct task_struct * tsk)3698 void futex_exec_release(struct task_struct *tsk)
3699 {
3700 	/*
3701 	 * The state handling is done for consistency, but in the case of
3702 	 * exec() there is no way to prevent futher damage as the PID stays
3703 	 * the same. But for the unlikely and arguably buggy case that a
3704 	 * futex is held on exec(), this provides at least as much state
3705 	 * consistency protection which is possible.
3706 	 */
3707 	futex_cleanup_begin(tsk);
3708 	futex_cleanup(tsk);
3709 	/*
3710 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3711 	 * exec a new binary.
3712 	 */
3713 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3714 }
3715 
futex_exit_release(struct task_struct * tsk)3716 void futex_exit_release(struct task_struct *tsk)
3717 {
3718 	futex_cleanup_begin(tsk);
3719 	futex_cleanup(tsk);
3720 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3721 }
3722 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3723 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3724 		u32 __user *uaddr2, u32 val2, u32 val3)
3725 {
3726 	int cmd = op & FUTEX_CMD_MASK;
3727 	unsigned int flags = 0;
3728 
3729 	if (!(op & FUTEX_PRIVATE_FLAG))
3730 		flags |= FLAGS_SHARED;
3731 
3732 	if (op & FUTEX_CLOCK_REALTIME) {
3733 		flags |= FLAGS_CLOCKRT;
3734 		if (cmd != FUTEX_WAIT_BITSET &&	cmd != FUTEX_WAIT_REQUEUE_PI)
3735 			return -ENOSYS;
3736 	}
3737 
3738 	switch (cmd) {
3739 	case FUTEX_LOCK_PI:
3740 	case FUTEX_UNLOCK_PI:
3741 	case FUTEX_TRYLOCK_PI:
3742 	case FUTEX_WAIT_REQUEUE_PI:
3743 	case FUTEX_CMP_REQUEUE_PI:
3744 		if (!futex_cmpxchg_enabled)
3745 			return -ENOSYS;
3746 	}
3747 
3748 	switch (cmd) {
3749 	case FUTEX_WAIT:
3750 		val3 = FUTEX_BITSET_MATCH_ANY;
3751 		fallthrough;
3752 	case FUTEX_WAIT_BITSET:
3753 		return futex_wait(uaddr, flags, val, timeout, val3);
3754 	case FUTEX_WAKE:
3755 		val3 = FUTEX_BITSET_MATCH_ANY;
3756 		fallthrough;
3757 	case FUTEX_WAKE_BITSET:
3758 		return futex_wake(uaddr, flags, val, val3);
3759 	case FUTEX_REQUEUE:
3760 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3761 	case FUTEX_CMP_REQUEUE:
3762 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3763 	case FUTEX_WAKE_OP:
3764 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3765 	case FUTEX_LOCK_PI:
3766 		return futex_lock_pi(uaddr, flags, timeout, 0);
3767 	case FUTEX_UNLOCK_PI:
3768 		return futex_unlock_pi(uaddr, flags);
3769 	case FUTEX_TRYLOCK_PI:
3770 		return futex_lock_pi(uaddr, flags, NULL, 1);
3771 	case FUTEX_WAIT_REQUEUE_PI:
3772 		val3 = FUTEX_BITSET_MATCH_ANY;
3773 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3774 					     uaddr2);
3775 	case FUTEX_CMP_REQUEUE_PI:
3776 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3777 	}
3778 	return -ENOSYS;
3779 }
3780 
3781 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3782 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3783 		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3784 		u32, val3)
3785 {
3786 	struct timespec64 ts;
3787 	ktime_t t, *tp = NULL;
3788 	u32 val2 = 0;
3789 	int cmd = op & FUTEX_CMD_MASK;
3790 
3791 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3792 		      cmd == FUTEX_WAIT_BITSET ||
3793 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3794 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3795 			return -EFAULT;
3796 		if (get_timespec64(&ts, utime))
3797 			return -EFAULT;
3798 		if (!timespec64_valid(&ts))
3799 			return -EINVAL;
3800 
3801 		t = timespec64_to_ktime(ts);
3802 		if (cmd == FUTEX_WAIT)
3803 			t = ktime_add_safe(ktime_get(), t);
3804 		else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3805 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3806 		tp = &t;
3807 	}
3808 	/*
3809 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3810 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3811 	 */
3812 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3813 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3814 		val2 = (u32) (unsigned long) utime;
3815 
3816 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3817 }
3818 
3819 #ifdef CONFIG_COMPAT
3820 /*
3821  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3822  */
3823 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3824 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3825 		   compat_uptr_t __user *head, unsigned int *pi)
3826 {
3827 	if (get_user(*uentry, head))
3828 		return -EFAULT;
3829 
3830 	*entry = compat_ptr((*uentry) & ~1);
3831 	*pi = (unsigned int)(*uentry) & 1;
3832 
3833 	return 0;
3834 }
3835 
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3836 static void __user *futex_uaddr(struct robust_list __user *entry,
3837 				compat_long_t futex_offset)
3838 {
3839 	compat_uptr_t base = ptr_to_compat(entry);
3840 	void __user *uaddr = compat_ptr(base + futex_offset);
3841 
3842 	return uaddr;
3843 }
3844 
3845 /*
3846  * Walk curr->robust_list (very carefully, it's a userspace list!)
3847  * and mark any locks found there dead, and notify any waiters.
3848  *
3849  * We silently return on any sign of list-walking problem.
3850  */
compat_exit_robust_list(struct task_struct * curr)3851 static void compat_exit_robust_list(struct task_struct *curr)
3852 {
3853 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3854 	struct robust_list __user *entry, *next_entry, *pending;
3855 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3856 	unsigned int next_pi;
3857 	compat_uptr_t uentry, next_uentry, upending;
3858 	compat_long_t futex_offset;
3859 	int rc;
3860 
3861 	if (!futex_cmpxchg_enabled)
3862 		return;
3863 
3864 	/*
3865 	 * Fetch the list head (which was registered earlier, via
3866 	 * sys_set_robust_list()):
3867 	 */
3868 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3869 		return;
3870 	/*
3871 	 * Fetch the relative futex offset:
3872 	 */
3873 	if (get_user(futex_offset, &head->futex_offset))
3874 		return;
3875 	/*
3876 	 * Fetch any possibly pending lock-add first, and handle it
3877 	 * if it exists:
3878 	 */
3879 	if (compat_fetch_robust_entry(&upending, &pending,
3880 			       &head->list_op_pending, &pip))
3881 		return;
3882 
3883 	next_entry = NULL;	/* avoid warning with gcc */
3884 	while (entry != (struct robust_list __user *) &head->list) {
3885 		/*
3886 		 * Fetch the next entry in the list before calling
3887 		 * handle_futex_death:
3888 		 */
3889 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3890 			(compat_uptr_t __user *)&entry->next, &next_pi);
3891 		/*
3892 		 * A pending lock might already be on the list, so
3893 		 * dont process it twice:
3894 		 */
3895 		if (entry != pending) {
3896 			void __user *uaddr = futex_uaddr(entry, futex_offset);
3897 
3898 			if (handle_futex_death(uaddr, curr, pi,
3899 					       HANDLE_DEATH_LIST))
3900 				return;
3901 		}
3902 		if (rc)
3903 			return;
3904 		uentry = next_uentry;
3905 		entry = next_entry;
3906 		pi = next_pi;
3907 		/*
3908 		 * Avoid excessively long or circular lists:
3909 		 */
3910 		if (!--limit)
3911 			break;
3912 
3913 		cond_resched();
3914 	}
3915 	if (pending) {
3916 		void __user *uaddr = futex_uaddr(pending, futex_offset);
3917 
3918 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3919 	}
3920 }
3921 
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3922 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3923 		struct compat_robust_list_head __user *, head,
3924 		compat_size_t, len)
3925 {
3926 	if (!futex_cmpxchg_enabled)
3927 		return -ENOSYS;
3928 
3929 	if (unlikely(len != sizeof(*head)))
3930 		return -EINVAL;
3931 
3932 	current->compat_robust_list = head;
3933 
3934 	return 0;
3935 }
3936 
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3937 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3938 			compat_uptr_t __user *, head_ptr,
3939 			compat_size_t __user *, len_ptr)
3940 {
3941 	struct compat_robust_list_head __user *head;
3942 	unsigned long ret;
3943 	struct task_struct *p;
3944 
3945 	if (!futex_cmpxchg_enabled)
3946 		return -ENOSYS;
3947 
3948 	rcu_read_lock();
3949 
3950 	ret = -ESRCH;
3951 	if (!pid)
3952 		p = current;
3953 	else {
3954 		p = find_task_by_vpid(pid);
3955 		if (!p)
3956 			goto err_unlock;
3957 	}
3958 
3959 	ret = -EPERM;
3960 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3961 		goto err_unlock;
3962 
3963 	head = p->compat_robust_list;
3964 	rcu_read_unlock();
3965 
3966 	if (put_user(sizeof(*head), len_ptr))
3967 		return -EFAULT;
3968 	return put_user(ptr_to_compat(head), head_ptr);
3969 
3970 err_unlock:
3971 	rcu_read_unlock();
3972 
3973 	return ret;
3974 }
3975 #endif /* CONFIG_COMPAT */
3976 
3977 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)3978 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3979 		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3980 		u32, val3)
3981 {
3982 	struct timespec64 ts;
3983 	ktime_t t, *tp = NULL;
3984 	int val2 = 0;
3985 	int cmd = op & FUTEX_CMD_MASK;
3986 
3987 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3988 		      cmd == FUTEX_WAIT_BITSET ||
3989 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3990 		if (get_old_timespec32(&ts, utime))
3991 			return -EFAULT;
3992 		if (!timespec64_valid(&ts))
3993 			return -EINVAL;
3994 
3995 		t = timespec64_to_ktime(ts);
3996 		if (cmd == FUTEX_WAIT)
3997 			t = ktime_add_safe(ktime_get(), t);
3998 		else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3999 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4000 		tp = &t;
4001 	}
4002 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4003 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4004 		val2 = (int) (unsigned long) utime;
4005 
4006 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4007 }
4008 #endif /* CONFIG_COMPAT_32BIT_TIME */
4009 
futex_detect_cmpxchg(void)4010 static void __init futex_detect_cmpxchg(void)
4011 {
4012 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4013 	u32 curval;
4014 
4015 	/*
4016 	 * This will fail and we want it. Some arch implementations do
4017 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4018 	 * functionality. We want to know that before we call in any
4019 	 * of the complex code paths. Also we want to prevent
4020 	 * registration of robust lists in that case. NULL is
4021 	 * guaranteed to fault and we get -EFAULT on functional
4022 	 * implementation, the non-functional ones will return
4023 	 * -ENOSYS.
4024 	 */
4025 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4026 		futex_cmpxchg_enabled = 1;
4027 #endif
4028 }
4029 
futex_init(void)4030 static int __init futex_init(void)
4031 {
4032 	unsigned int futex_shift;
4033 	unsigned long i;
4034 
4035 #if CONFIG_BASE_SMALL
4036 	futex_hashsize = 16;
4037 #else
4038 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4039 #endif
4040 
4041 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4042 					       futex_hashsize, 0,
4043 					       futex_hashsize < 256 ? HASH_SMALL : 0,
4044 					       &futex_shift, NULL,
4045 					       futex_hashsize, futex_hashsize);
4046 	futex_hashsize = 1UL << futex_shift;
4047 
4048 	futex_detect_cmpxchg();
4049 
4050 	for (i = 0; i < futex_hashsize; i++) {
4051 		atomic_set(&futex_queues[i].waiters, 0);
4052 		plist_head_init(&futex_queues[i].chain);
4053 		spin_lock_init(&futex_queues[i].lock);
4054 	}
4055 
4056 	return 0;
4057 }
4058 core_initcall(futex_init);
4059