• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
is_migration_base(struct hrtimer_clock_base * base)147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
is_migration_base(struct hrtimer_clock_base * base)276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
__ktime_divns(const ktime_t kt,s64 div)303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static const struct debug_obj_descr hrtimer_debug_descr;
346 
hrtimer_debug_hint(void * addr)347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
debug_hrtimer_init(struct hrtimer * timer)412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
debug_hrtimer_deactivate(struct hrtimer * timer)423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 			   enum hrtimer_mode mode);
430 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode)
433 {
434 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 	__hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438 
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 				   clockid_t clock_id, enum hrtimer_mode mode);
441 
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 	__hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449 
destroy_hrtimer_on_stack(struct hrtimer * timer)450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 	debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455 
456 #else
457 
debug_hrtimer_init(struct hrtimer * timer)458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463 
464 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 	   enum hrtimer_mode mode)
467 {
468 	debug_hrtimer_init(timer);
469 	trace_hrtimer_init(timer, clockid, mode);
470 }
471 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)472 static inline void debug_activate(struct hrtimer *timer,
473 				  enum hrtimer_mode mode)
474 {
475 	debug_hrtimer_activate(timer, mode);
476 	trace_hrtimer_start(timer, mode);
477 }
478 
debug_deactivate(struct hrtimer * timer)479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 	unsigned int idx;
489 
490 	if (!*active)
491 		return NULL;
492 
493 	idx = __ffs(*active);
494 	*active &= ~(1U << idx);
495 
496 	return &cpu_base->clock_base[idx];
497 }
498 
499 #define for_each_active_base(base, cpu_base, active)	\
500 	while ((base = __next_base((cpu_base), &(active))))
501 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 					 const struct hrtimer *exclude,
504 					 unsigned int active,
505 					 ktime_t expires_next)
506 {
507 	struct hrtimer_clock_base *base;
508 	ktime_t expires;
509 
510 	for_each_active_base(base, cpu_base, active) {
511 		struct timerqueue_node *next;
512 		struct hrtimer *timer;
513 
514 		next = timerqueue_getnext(&base->active);
515 		timer = container_of(next, struct hrtimer, node);
516 		if (timer == exclude) {
517 			/* Get to the next timer in the queue. */
518 			next = timerqueue_iterate_next(next);
519 			if (!next)
520 				continue;
521 
522 			timer = container_of(next, struct hrtimer, node);
523 		}
524 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 		if (expires < expires_next) {
526 			expires_next = expires;
527 
528 			/* Skip cpu_base update if a timer is being excluded. */
529 			if (exclude)
530 				continue;
531 
532 			if (timer->is_soft)
533 				cpu_base->softirq_next_timer = timer;
534 			else
535 				cpu_base->next_timer = timer;
536 		}
537 	}
538 	/*
539 	 * clock_was_set() might have changed base->offset of any of
540 	 * the clock bases so the result might be negative. Fix it up
541 	 * to prevent a false positive in clockevents_program_event().
542 	 */
543 	if (expires_next < 0)
544 		expires_next = 0;
545 	return expires_next;
546 }
547 
548 /*
549  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550  * but does not set cpu_base::*expires_next, that is done by
551  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552  * cpu_base::*expires_next right away, reprogramming logic would no longer
553  * work.
554  *
555  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556  * those timers will get run whenever the softirq gets handled, at the end of
557  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
558  *
559  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
562  *
563  * @active_mask must be one of:
564  *  - HRTIMER_ACTIVE_ALL,
565  *  - HRTIMER_ACTIVE_SOFT, or
566  *  - HRTIMER_ACTIVE_HARD.
567  */
568 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
570 {
571 	unsigned int active;
572 	struct hrtimer *next_timer = NULL;
573 	ktime_t expires_next = KTIME_MAX;
574 
575 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 		cpu_base->softirq_next_timer = NULL;
578 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
579 							 active, KTIME_MAX);
580 
581 		next_timer = cpu_base->softirq_next_timer;
582 	}
583 
584 	if (active_mask & HRTIMER_ACTIVE_HARD) {
585 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 		cpu_base->next_timer = next_timer;
587 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
588 							 expires_next);
589 	}
590 
591 	return expires_next;
592 }
593 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
595 {
596 	ktime_t expires_next, soft = KTIME_MAX;
597 
598 	/*
599 	 * If the soft interrupt has already been activated, ignore the
600 	 * soft bases. They will be handled in the already raised soft
601 	 * interrupt.
602 	 */
603 	if (!cpu_base->softirq_activated) {
604 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
605 		/*
606 		 * Update the soft expiry time. clock_settime() might have
607 		 * affected it.
608 		 */
609 		cpu_base->softirq_expires_next = soft;
610 	}
611 
612 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
613 	/*
614 	 * If a softirq timer is expiring first, update cpu_base->next_timer
615 	 * and program the hardware with the soft expiry time.
616 	 */
617 	if (expires_next > soft) {
618 		cpu_base->next_timer = cpu_base->softirq_next_timer;
619 		expires_next = soft;
620 	}
621 
622 	return expires_next;
623 }
624 
hrtimer_update_base(struct hrtimer_cpu_base * base)625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
626 {
627 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
630 
631 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 					    offs_real, offs_boot, offs_tai);
633 
634 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
637 
638 	return now;
639 }
640 
641 /*
642  * Is the high resolution mode active ?
643  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
645 {
646 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 		cpu_base->hres_active : 0;
648 }
649 
hrtimer_hres_active(void)650 static inline int hrtimer_hres_active(void)
651 {
652 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
653 }
654 
655 /*
656  * Reprogram the event source with checking both queues for the
657  * next event
658  * Called with interrupts disabled and base->lock held
659  */
660 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
662 {
663 	ktime_t expires_next;
664 
665 	expires_next = hrtimer_update_next_event(cpu_base);
666 
667 	if (skip_equal && expires_next == cpu_base->expires_next)
668 		return;
669 
670 	cpu_base->expires_next = expires_next;
671 
672 	/*
673 	 * If hres is not active, hardware does not have to be
674 	 * reprogrammed yet.
675 	 *
676 	 * If a hang was detected in the last timer interrupt then we
677 	 * leave the hang delay active in the hardware. We want the
678 	 * system to make progress. That also prevents the following
679 	 * scenario:
680 	 * T1 expires 50ms from now
681 	 * T2 expires 5s from now
682 	 *
683 	 * T1 is removed, so this code is called and would reprogram
684 	 * the hardware to 5s from now. Any hrtimer_start after that
685 	 * will not reprogram the hardware due to hang_detected being
686 	 * set. So we'd effectivly block all timers until the T2 event
687 	 * fires.
688 	 */
689 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
690 		return;
691 
692 	tick_program_event(cpu_base->expires_next, 1);
693 }
694 
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697 
698 /*
699  * High resolution timer enabled ?
700  */
701 static bool hrtimer_hres_enabled __read_mostly  = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704 
705 /*
706  * Enable / Disable high resolution mode
707  */
setup_hrtimer_hres(char * str)708 static int __init setup_hrtimer_hres(char *str)
709 {
710 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712 
713 __setup("highres=", setup_hrtimer_hres);
714 
715 /*
716  * hrtimer_high_res_enabled - query, if the highres mode is enabled
717  */
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 	return hrtimer_hres_enabled;
721 }
722 
723 /*
724  * Retrigger next event is called after clock was set
725  *
726  * Called with interrupts disabled via on_each_cpu()
727  */
retrigger_next_event(void * arg)728 static void retrigger_next_event(void *arg)
729 {
730 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731 
732 	if (!__hrtimer_hres_active(base))
733 		return;
734 
735 	raw_spin_lock(&base->lock);
736 	hrtimer_update_base(base);
737 	hrtimer_force_reprogram(base, 0);
738 	raw_spin_unlock(&base->lock);
739 }
740 
741 /*
742  * Switch to high resolution mode
743  */
hrtimer_switch_to_hres(void)744 static void hrtimer_switch_to_hres(void)
745 {
746 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
747 
748 	if (tick_init_highres()) {
749 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
750 			base->cpu);
751 		return;
752 	}
753 	base->hres_active = 1;
754 	hrtimer_resolution = HIGH_RES_NSEC;
755 
756 	tick_setup_sched_timer();
757 	/* "Retrigger" the interrupt to get things going */
758 	retrigger_next_event(NULL);
759 }
760 
761 #else
762 
hrtimer_is_hres_enabled(void)763 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)764 static inline void hrtimer_switch_to_hres(void) { }
retrigger_next_event(void * arg)765 static inline void retrigger_next_event(void *arg) { }
766 
767 #endif /* CONFIG_HIGH_RES_TIMERS */
768 
769 /*
770  * When a timer is enqueued and expires earlier than the already enqueued
771  * timers, we have to check, whether it expires earlier than the timer for
772  * which the clock event device was armed.
773  *
774  * Called with interrupts disabled and base->cpu_base.lock held
775  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)776 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
777 {
778 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
779 	struct hrtimer_clock_base *base = timer->base;
780 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
781 
782 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
783 
784 	/*
785 	 * CLOCK_REALTIME timer might be requested with an absolute
786 	 * expiry time which is less than base->offset. Set it to 0.
787 	 */
788 	if (expires < 0)
789 		expires = 0;
790 
791 	if (timer->is_soft) {
792 		/*
793 		 * soft hrtimer could be started on a remote CPU. In this
794 		 * case softirq_expires_next needs to be updated on the
795 		 * remote CPU. The soft hrtimer will not expire before the
796 		 * first hard hrtimer on the remote CPU -
797 		 * hrtimer_check_target() prevents this case.
798 		 */
799 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
800 
801 		if (timer_cpu_base->softirq_activated)
802 			return;
803 
804 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
805 			return;
806 
807 		timer_cpu_base->softirq_next_timer = timer;
808 		timer_cpu_base->softirq_expires_next = expires;
809 
810 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
811 		    !reprogram)
812 			return;
813 	}
814 
815 	/*
816 	 * If the timer is not on the current cpu, we cannot reprogram
817 	 * the other cpus clock event device.
818 	 */
819 	if (base->cpu_base != cpu_base)
820 		return;
821 
822 	/*
823 	 * If the hrtimer interrupt is running, then it will
824 	 * reevaluate the clock bases and reprogram the clock event
825 	 * device. The callbacks are always executed in hard interrupt
826 	 * context so we don't need an extra check for a running
827 	 * callback.
828 	 */
829 	if (cpu_base->in_hrtirq)
830 		return;
831 
832 	if (expires >= cpu_base->expires_next)
833 		return;
834 
835 	/* Update the pointer to the next expiring timer */
836 	cpu_base->next_timer = timer;
837 	cpu_base->expires_next = expires;
838 
839 	/*
840 	 * If hres is not active, hardware does not have to be
841 	 * programmed yet.
842 	 *
843 	 * If a hang was detected in the last timer interrupt then we
844 	 * do not schedule a timer which is earlier than the expiry
845 	 * which we enforced in the hang detection. We want the system
846 	 * to make progress.
847 	 */
848 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
849 		return;
850 
851 	/*
852 	 * Program the timer hardware. We enforce the expiry for
853 	 * events which are already in the past.
854 	 */
855 	tick_program_event(expires, 1);
856 }
857 
858 /*
859  * Clock realtime was set
860  *
861  * Change the offset of the realtime clock vs. the monotonic
862  * clock.
863  *
864  * We might have to reprogram the high resolution timer interrupt. On
865  * SMP we call the architecture specific code to retrigger _all_ high
866  * resolution timer interrupts. On UP we just disable interrupts and
867  * call the high resolution interrupt code.
868  */
clock_was_set(void)869 void clock_was_set(void)
870 {
871 #ifdef CONFIG_HIGH_RES_TIMERS
872 	/* Retrigger the CPU local events everywhere */
873 	on_each_cpu(retrigger_next_event, NULL, 1);
874 #endif
875 	timerfd_clock_was_set();
876 }
877 
clock_was_set_work(struct work_struct * work)878 static void clock_was_set_work(struct work_struct *work)
879 {
880 	clock_was_set();
881 }
882 
883 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
884 
885 /*
886  * Called from timekeeping and resume code to reprogram the hrtimer
887  * interrupt device on all cpus and to notify timerfd.
888  */
clock_was_set_delayed(void)889 void clock_was_set_delayed(void)
890 {
891 	schedule_work(&hrtimer_work);
892 }
893 
894 /*
895  * During resume we might have to reprogram the high resolution timer
896  * interrupt on all online CPUs.  However, all other CPUs will be
897  * stopped with IRQs interrupts disabled so the clock_was_set() call
898  * must be deferred.
899  */
hrtimers_resume(void)900 void hrtimers_resume(void)
901 {
902 	lockdep_assert_irqs_disabled();
903 	/* Retrigger on the local CPU */
904 	retrigger_next_event(NULL);
905 	/* And schedule a retrigger for all others */
906 	clock_was_set_delayed();
907 }
908 
909 /*
910  * Counterpart to lock_hrtimer_base above:
911  */
912 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
914 {
915 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
916 }
917 
918 /**
919  * hrtimer_forward - forward the timer expiry
920  * @timer:	hrtimer to forward
921  * @now:	forward past this time
922  * @interval:	the interval to forward
923  *
924  * Forward the timer expiry so it will expire in the future.
925  * Returns the number of overruns.
926  *
927  * Can be safely called from the callback function of @timer. If
928  * called from other contexts @timer must neither be enqueued nor
929  * running the callback and the caller needs to take care of
930  * serialization.
931  *
932  * Note: This only updates the timer expiry value and does not requeue
933  * the timer.
934  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
936 {
937 	u64 orun = 1;
938 	ktime_t delta;
939 
940 	delta = ktime_sub(now, hrtimer_get_expires(timer));
941 
942 	if (delta < 0)
943 		return 0;
944 
945 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
946 		return 0;
947 
948 	if (interval < hrtimer_resolution)
949 		interval = hrtimer_resolution;
950 
951 	if (unlikely(delta >= interval)) {
952 		s64 incr = ktime_to_ns(interval);
953 
954 		orun = ktime_divns(delta, incr);
955 		hrtimer_add_expires_ns(timer, incr * orun);
956 		if (hrtimer_get_expires_tv64(timer) > now)
957 			return orun;
958 		/*
959 		 * This (and the ktime_add() below) is the
960 		 * correction for exact:
961 		 */
962 		orun++;
963 	}
964 	hrtimer_add_expires(timer, interval);
965 
966 	return orun;
967 }
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
969 
970 /*
971  * enqueue_hrtimer - internal function to (re)start a timer
972  *
973  * The timer is inserted in expiry order. Insertion into the
974  * red black tree is O(log(n)). Must hold the base lock.
975  *
976  * Returns 1 when the new timer is the leftmost timer in the tree.
977  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)978 static int enqueue_hrtimer(struct hrtimer *timer,
979 			   struct hrtimer_clock_base *base,
980 			   enum hrtimer_mode mode)
981 {
982 	debug_activate(timer, mode);
983 	WARN_ON_ONCE(!base->cpu_base->online);
984 
985 	base->cpu_base->active_bases |= 1 << base->index;
986 
987 	/* Pairs with the lockless read in hrtimer_is_queued() */
988 #ifdef CONFIG_CPU_ISOLATION_OPT
989 	WRITE_ONCE(timer->state, (timer->state | HRTIMER_STATE_ENQUEUED));
990 #else
991 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
992 #endif
993 
994 	return timerqueue_add(&base->active, &timer->node);
995 }
996 
997 /*
998  * __remove_hrtimer - internal function to remove a timer
999  *
1000  * Caller must hold the base lock.
1001  *
1002  * High resolution timer mode reprograms the clock event device when the
1003  * timer is the one which expires next. The caller can disable this by setting
1004  * reprogram to zero. This is useful, when the context does a reprogramming
1005  * anyway (e.g. timer interrupt)
1006  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1007 static void __remove_hrtimer(struct hrtimer *timer,
1008 			     struct hrtimer_clock_base *base,
1009 			     u8 newstate, int reprogram)
1010 {
1011 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1012 	u8 state = timer->state;
1013 
1014 	/* Pairs with the lockless read in hrtimer_is_queued() */
1015 #ifdef CONFIG_CPU_ISOLATION_OPT
1016 	/*
1017 	 * We need to preserve PINNED state here, otherwise we may end up
1018 	 * migrating pinned hrtimers as well.
1019 	 */
1020 	WRITE_ONCE(timer->state, newstate | (timer->state & HRTIMER_STATE_PINNED));
1021 #else
1022 	WRITE_ONCE(timer->state, newstate);
1023 #endif
1024 	if (!(state & HRTIMER_STATE_ENQUEUED))
1025 		return;
1026 
1027 	if (!timerqueue_del(&base->active, &timer->node))
1028 		cpu_base->active_bases &= ~(1 << base->index);
1029 
1030 	/*
1031 	 * Note: If reprogram is false we do not update
1032 	 * cpu_base->next_timer. This happens when we remove the first
1033 	 * timer on a remote cpu. No harm as we never dereference
1034 	 * cpu_base->next_timer. So the worst thing what can happen is
1035 	 * an superflous call to hrtimer_force_reprogram() on the
1036 	 * remote cpu later on if the same timer gets enqueued again.
1037 	 */
1038 	if (reprogram && timer == cpu_base->next_timer)
1039 		hrtimer_force_reprogram(cpu_base, 1);
1040 }
1041 
1042 /*
1043  * remove hrtimer, called with base lock held
1044  */
1045 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1046 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1047 	       bool restart, bool keep_local)
1048 {
1049 	u8 state = timer->state;
1050 
1051 	if (state & HRTIMER_STATE_ENQUEUED) {
1052 		bool reprogram;
1053 
1054 		/*
1055 		 * Remove the timer and force reprogramming when high
1056 		 * resolution mode is active and the timer is on the current
1057 		 * CPU. If we remove a timer on another CPU, reprogramming is
1058 		 * skipped. The interrupt event on this CPU is fired and
1059 		 * reprogramming happens in the interrupt handler. This is a
1060 		 * rare case and less expensive than a smp call.
1061 		 */
1062 		debug_deactivate(timer);
1063 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1064 
1065 		/*
1066 		 * If the timer is not restarted then reprogramming is
1067 		 * required if the timer is local. If it is local and about
1068 		 * to be restarted, avoid programming it twice (on removal
1069 		 * and a moment later when it's requeued).
1070 		 */
1071 		if (!restart)
1072 			state = HRTIMER_STATE_INACTIVE;
1073 		else
1074 			reprogram &= !keep_local;
1075 
1076 		__remove_hrtimer(timer, base, state, reprogram);
1077 #ifdef CONFIG_CPU_ISOLATION_OPT
1078 		/* Make sure PINNED flag is cleared after removing hrtimer */
1079 		timer->state &= ~HRTIMER_STATE_PINNED;
1080 #endif
1081 		return 1;
1082 	}
1083 	return 0;
1084 }
1085 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1086 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1087 					    const enum hrtimer_mode mode)
1088 {
1089 #ifdef CONFIG_TIME_LOW_RES
1090 	/*
1091 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1092 	 * granular time values. For relative timers we add hrtimer_resolution
1093 	 * (i.e. one jiffie) to prevent short timeouts.
1094 	 */
1095 	timer->is_rel = mode & HRTIMER_MODE_REL;
1096 	if (timer->is_rel)
1097 		tim = ktime_add_safe(tim, hrtimer_resolution);
1098 #endif
1099 	return tim;
1100 }
1101 
1102 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1103 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1104 {
1105 	ktime_t expires;
1106 
1107 	/*
1108 	 * Find the next SOFT expiration.
1109 	 */
1110 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1111 
1112 	/*
1113 	 * reprogramming needs to be triggered, even if the next soft
1114 	 * hrtimer expires at the same time than the next hard
1115 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1116 	 */
1117 	if (expires == KTIME_MAX)
1118 		return;
1119 
1120 	/*
1121 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1122 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1123 	 */
1124 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1125 }
1126 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1127 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1128 				    u64 delta_ns, const enum hrtimer_mode mode,
1129 				    struct hrtimer_clock_base *base)
1130 {
1131 	struct hrtimer_clock_base *new_base;
1132 	bool force_local, first;
1133 
1134 	/*
1135 	 * If the timer is on the local cpu base and is the first expiring
1136 	 * timer then this might end up reprogramming the hardware twice
1137 	 * (on removal and on enqueue). To avoid that by prevent the
1138 	 * reprogram on removal, keep the timer local to the current CPU
1139 	 * and enforce reprogramming after it is queued no matter whether
1140 	 * it is the new first expiring timer again or not.
1141 	 */
1142 	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1143 	force_local &= base->cpu_base->next_timer == timer;
1144 
1145 	/*
1146 	 * Remove an active timer from the queue. In case it is not queued
1147 	 * on the current CPU, make sure that remove_hrtimer() updates the
1148 	 * remote data correctly.
1149 	 *
1150 	 * If it's on the current CPU and the first expiring timer, then
1151 	 * skip reprogramming, keep the timer local and enforce
1152 	 * reprogramming later if it was the first expiring timer.  This
1153 	 * avoids programming the underlying clock event twice (once at
1154 	 * removal and once after enqueue).
1155 	 */
1156 	remove_hrtimer(timer, base, true, force_local);
1157 
1158 	if (mode & HRTIMER_MODE_REL)
1159 		tim = ktime_add_safe(tim, base->get_time());
1160 
1161 	tim = hrtimer_update_lowres(timer, tim, mode);
1162 
1163 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1164 
1165 	/* Switch the timer base, if necessary: */
1166 	if (!force_local) {
1167 		new_base = switch_hrtimer_base(timer, base,
1168 					       mode & HRTIMER_MODE_PINNED);
1169 	} else {
1170 		new_base = base;
1171 	}
1172 
1173 #ifdef CONFIG_CPU_ISOLATION_OPT
1174 	timer->state &= ~HRTIMER_STATE_PINNED;
1175 	if (mode & HRTIMER_MODE_PINNED)
1176 		timer->state |= HRTIMER_STATE_PINNED;
1177 #endif
1178 
1179 	first = enqueue_hrtimer(timer, new_base, mode);
1180 	if (!force_local)
1181 		return first;
1182 
1183 	/*
1184 	 * Timer was forced to stay on the current CPU to avoid
1185 	 * reprogramming on removal and enqueue. Force reprogram the
1186 	 * hardware by evaluating the new first expiring timer.
1187 	 */
1188 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1189 	return 0;
1190 }
1191 
1192 /**
1193  * hrtimer_start_range_ns - (re)start an hrtimer
1194  * @timer:	the timer to be added
1195  * @tim:	expiry time
1196  * @delta_ns:	"slack" range for the timer
1197  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1198  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1199  *		softirq based mode is considered for debug purpose only!
1200  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1201 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1202 			    u64 delta_ns, const enum hrtimer_mode mode)
1203 {
1204 	struct hrtimer_clock_base *base;
1205 	unsigned long flags;
1206 
1207 	/*
1208 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1209 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1210 	 * expiry mode because unmarked timers are moved to softirq expiry.
1211 	 */
1212 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1213 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1214 	else
1215 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1216 
1217 	base = lock_hrtimer_base(timer, &flags);
1218 
1219 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1220 		hrtimer_reprogram(timer, true);
1221 
1222 	unlock_hrtimer_base(timer, &flags);
1223 }
1224 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1225 
1226 /**
1227  * hrtimer_try_to_cancel - try to deactivate a timer
1228  * @timer:	hrtimer to stop
1229  *
1230  * Returns:
1231  *
1232  *  *  0 when the timer was not active
1233  *  *  1 when the timer was active
1234  *  * -1 when the timer is currently executing the callback function and
1235  *    cannot be stopped
1236  */
hrtimer_try_to_cancel(struct hrtimer * timer)1237 int hrtimer_try_to_cancel(struct hrtimer *timer)
1238 {
1239 	struct hrtimer_clock_base *base;
1240 	unsigned long flags;
1241 	int ret = -1;
1242 
1243 	/*
1244 	 * Check lockless first. If the timer is not active (neither
1245 	 * enqueued nor running the callback, nothing to do here.  The
1246 	 * base lock does not serialize against a concurrent enqueue,
1247 	 * so we can avoid taking it.
1248 	 */
1249 	if (!hrtimer_active(timer))
1250 		return 0;
1251 
1252 	base = lock_hrtimer_base(timer, &flags);
1253 
1254 	if (!hrtimer_callback_running(timer))
1255 		ret = remove_hrtimer(timer, base, false, false);
1256 
1257 	unlock_hrtimer_base(timer, &flags);
1258 
1259 	return ret;
1260 
1261 }
1262 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1263 
1264 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1265 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1266 {
1267 	spin_lock_init(&base->softirq_expiry_lock);
1268 }
1269 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1270 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1271 {
1272 	spin_lock(&base->softirq_expiry_lock);
1273 }
1274 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1275 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1276 {
1277 	spin_unlock(&base->softirq_expiry_lock);
1278 }
1279 
1280 /*
1281  * The counterpart to hrtimer_cancel_wait_running().
1282  *
1283  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1284  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1285  * allows the waiter to acquire the lock and make progress.
1286  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1287 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1288 				      unsigned long flags)
1289 {
1290 	if (atomic_read(&cpu_base->timer_waiters)) {
1291 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1292 		spin_unlock(&cpu_base->softirq_expiry_lock);
1293 		spin_lock(&cpu_base->softirq_expiry_lock);
1294 		raw_spin_lock_irq(&cpu_base->lock);
1295 	}
1296 }
1297 
1298 /*
1299  * This function is called on PREEMPT_RT kernels when the fast path
1300  * deletion of a timer failed because the timer callback function was
1301  * running.
1302  *
1303  * This prevents priority inversion: if the soft irq thread is preempted
1304  * in the middle of a timer callback, then calling del_timer_sync() can
1305  * lead to two issues:
1306  *
1307  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1308  *    handler to complete. This can result in unbound priority inversion.
1309  *
1310  *  - If the caller originates from the task which preempted the timer
1311  *    handler on the same CPU, then spin waiting for the timer handler to
1312  *    complete is never going to end.
1313  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1314 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1315 {
1316 	/* Lockless read. Prevent the compiler from reloading it below */
1317 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1318 
1319 	/*
1320 	 * Just relax if the timer expires in hard interrupt context or if
1321 	 * it is currently on the migration base.
1322 	 */
1323 	if (!timer->is_soft || is_migration_base(base)) {
1324 		cpu_relax();
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * Mark the base as contended and grab the expiry lock, which is
1330 	 * held by the softirq across the timer callback. Drop the lock
1331 	 * immediately so the softirq can expire the next timer. In theory
1332 	 * the timer could already be running again, but that's more than
1333 	 * unlikely and just causes another wait loop.
1334 	 */
1335 	atomic_inc(&base->cpu_base->timer_waiters);
1336 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1337 	atomic_dec(&base->cpu_base->timer_waiters);
1338 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1339 }
1340 #else
1341 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1342 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1343 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1344 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1345 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1346 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1347 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1348 					     unsigned long flags) { }
1349 #endif
1350 
1351 /**
1352  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1353  * @timer:	the timer to be cancelled
1354  *
1355  * Returns:
1356  *  0 when the timer was not active
1357  *  1 when the timer was active
1358  */
hrtimer_cancel(struct hrtimer * timer)1359 int hrtimer_cancel(struct hrtimer *timer)
1360 {
1361 	int ret;
1362 
1363 	do {
1364 		ret = hrtimer_try_to_cancel(timer);
1365 
1366 		if (ret < 0)
1367 			hrtimer_cancel_wait_running(timer);
1368 	} while (ret < 0);
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1372 
1373 /**
1374  * hrtimer_get_remaining - get remaining time for the timer
1375  * @timer:	the timer to read
1376  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1377  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1378 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1379 {
1380 	unsigned long flags;
1381 	ktime_t rem;
1382 
1383 	lock_hrtimer_base(timer, &flags);
1384 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1385 		rem = hrtimer_expires_remaining_adjusted(timer);
1386 	else
1387 		rem = hrtimer_expires_remaining(timer);
1388 	unlock_hrtimer_base(timer, &flags);
1389 
1390 	return rem;
1391 }
1392 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1393 
1394 #ifdef CONFIG_NO_HZ_COMMON
1395 /**
1396  * hrtimer_get_next_event - get the time until next expiry event
1397  *
1398  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1399  */
hrtimer_get_next_event(void)1400 u64 hrtimer_get_next_event(void)
1401 {
1402 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1403 	u64 expires = KTIME_MAX;
1404 	unsigned long flags;
1405 
1406 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1407 
1408 	if (!__hrtimer_hres_active(cpu_base))
1409 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1410 
1411 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1412 
1413 	return expires;
1414 }
1415 
1416 /**
1417  * hrtimer_next_event_without - time until next expiry event w/o one timer
1418  * @exclude:	timer to exclude
1419  *
1420  * Returns the next expiry time over all timers except for the @exclude one or
1421  * KTIME_MAX if none of them is pending.
1422  */
hrtimer_next_event_without(const struct hrtimer * exclude)1423 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1424 {
1425 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1426 	u64 expires = KTIME_MAX;
1427 	unsigned long flags;
1428 
1429 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1430 
1431 	if (__hrtimer_hres_active(cpu_base)) {
1432 		unsigned int active;
1433 
1434 		if (!cpu_base->softirq_activated) {
1435 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1436 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1437 							    active, KTIME_MAX);
1438 		}
1439 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1440 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1441 						    expires);
1442 	}
1443 
1444 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1445 
1446 	return expires;
1447 }
1448 #endif
1449 
hrtimer_clockid_to_base(clockid_t clock_id)1450 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1451 {
1452 	if (likely(clock_id < MAX_CLOCKS)) {
1453 		int base = hrtimer_clock_to_base_table[clock_id];
1454 
1455 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1456 			return base;
1457 	}
1458 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1459 	return HRTIMER_BASE_MONOTONIC;
1460 }
1461 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1462 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1463 			   enum hrtimer_mode mode)
1464 {
1465 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1466 	struct hrtimer_cpu_base *cpu_base;
1467 	int base;
1468 
1469 	/*
1470 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1471 	 * marked for hard interrupt expiry mode are moved into soft
1472 	 * interrupt context for latency reasons and because the callbacks
1473 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1474 	 */
1475 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1476 		softtimer = true;
1477 
1478 	memset(timer, 0, sizeof(struct hrtimer));
1479 
1480 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1481 
1482 	/*
1483 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1484 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1485 	 * ensure POSIX compliance.
1486 	 */
1487 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1488 		clock_id = CLOCK_MONOTONIC;
1489 
1490 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1491 	base += hrtimer_clockid_to_base(clock_id);
1492 	timer->is_soft = softtimer;
1493 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1494 	timer->base = &cpu_base->clock_base[base];
1495 	timerqueue_init(&timer->node);
1496 }
1497 
1498 /**
1499  * hrtimer_init - initialize a timer to the given clock
1500  * @timer:	the timer to be initialized
1501  * @clock_id:	the clock to be used
1502  * @mode:       The modes which are relevant for intitialization:
1503  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1504  *              HRTIMER_MODE_REL_SOFT
1505  *
1506  *              The PINNED variants of the above can be handed in,
1507  *              but the PINNED bit is ignored as pinning happens
1508  *              when the hrtimer is started
1509  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1510 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1511 		  enum hrtimer_mode mode)
1512 {
1513 	debug_init(timer, clock_id, mode);
1514 	__hrtimer_init(timer, clock_id, mode);
1515 }
1516 EXPORT_SYMBOL_GPL(hrtimer_init);
1517 
1518 /*
1519  * A timer is active, when it is enqueued into the rbtree or the
1520  * callback function is running or it's in the state of being migrated
1521  * to another cpu.
1522  *
1523  * It is important for this function to not return a false negative.
1524  */
hrtimer_active(const struct hrtimer * timer)1525 bool hrtimer_active(const struct hrtimer *timer)
1526 {
1527 	struct hrtimer_clock_base *base;
1528 	unsigned int seq;
1529 
1530 	do {
1531 		base = READ_ONCE(timer->base);
1532 		seq = raw_read_seqcount_begin(&base->seq);
1533 #ifdef CONFIG_CPU_ISOLATION_OPT
1534 		if (((timer->state & ~HRTIMER_STATE_PINNED) !=
1535 		      HRTIMER_STATE_INACTIVE) || base->running == timer)
1536 #else
1537 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1538 		    base->running == timer)
1539 #endif
1540 			return true;
1541 
1542 	} while (read_seqcount_retry(&base->seq, seq) ||
1543 		 base != READ_ONCE(timer->base));
1544 
1545 	return false;
1546 }
1547 EXPORT_SYMBOL_GPL(hrtimer_active);
1548 
1549 /*
1550  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1551  * distinct sections:
1552  *
1553  *  - queued:	the timer is queued
1554  *  - callback:	the timer is being ran
1555  *  - post:	the timer is inactive or (re)queued
1556  *
1557  * On the read side we ensure we observe timer->state and cpu_base->running
1558  * from the same section, if anything changed while we looked at it, we retry.
1559  * This includes timer->base changing because sequence numbers alone are
1560  * insufficient for that.
1561  *
1562  * The sequence numbers are required because otherwise we could still observe
1563  * a false negative if the read side got smeared over multiple consequtive
1564  * __run_hrtimer() invocations.
1565  */
1566 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1567 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1568 			  struct hrtimer_clock_base *base,
1569 			  struct hrtimer *timer, ktime_t *now,
1570 			  unsigned long flags) __must_hold(&cpu_base->lock)
1571 {
1572 	enum hrtimer_restart (*fn)(struct hrtimer *);
1573 	bool expires_in_hardirq;
1574 	int restart;
1575 
1576 	lockdep_assert_held(&cpu_base->lock);
1577 
1578 	debug_deactivate(timer);
1579 	base->running = timer;
1580 
1581 	/*
1582 	 * Separate the ->running assignment from the ->state assignment.
1583 	 *
1584 	 * As with a regular write barrier, this ensures the read side in
1585 	 * hrtimer_active() cannot observe base->running == NULL &&
1586 	 * timer->state == INACTIVE.
1587 	 */
1588 	raw_write_seqcount_barrier(&base->seq);
1589 
1590 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1591 	fn = timer->function;
1592 
1593 	/*
1594 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1595 	 * timer is restarted with a period then it becomes an absolute
1596 	 * timer. If its not restarted it does not matter.
1597 	 */
1598 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1599 		timer->is_rel = false;
1600 
1601 	/*
1602 	 * The timer is marked as running in the CPU base, so it is
1603 	 * protected against migration to a different CPU even if the lock
1604 	 * is dropped.
1605 	 */
1606 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1607 	trace_hrtimer_expire_entry(timer, now);
1608 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1609 
1610 	restart = fn(timer);
1611 
1612 	lockdep_hrtimer_exit(expires_in_hardirq);
1613 	trace_hrtimer_expire_exit(timer);
1614 	raw_spin_lock_irq(&cpu_base->lock);
1615 
1616 	/*
1617 	 * Note: We clear the running state after enqueue_hrtimer and
1618 	 * we do not reprogram the event hardware. Happens either in
1619 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1620 	 *
1621 	 * Note: Because we dropped the cpu_base->lock above,
1622 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1623 	 * for us already.
1624 	 */
1625 	if (restart != HRTIMER_NORESTART &&
1626 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1627 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1628 
1629 	/*
1630 	 * Separate the ->running assignment from the ->state assignment.
1631 	 *
1632 	 * As with a regular write barrier, this ensures the read side in
1633 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1634 	 * timer->state == INACTIVE.
1635 	 */
1636 	raw_write_seqcount_barrier(&base->seq);
1637 
1638 	WARN_ON_ONCE(base->running != timer);
1639 	base->running = NULL;
1640 }
1641 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1642 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1643 				 unsigned long flags, unsigned int active_mask)
1644 {
1645 	struct hrtimer_clock_base *base;
1646 	unsigned int active = cpu_base->active_bases & active_mask;
1647 
1648 	for_each_active_base(base, cpu_base, active) {
1649 		struct timerqueue_node *node;
1650 		ktime_t basenow;
1651 
1652 		basenow = ktime_add(now, base->offset);
1653 
1654 		while ((node = timerqueue_getnext(&base->active))) {
1655 			struct hrtimer *timer;
1656 
1657 			timer = container_of(node, struct hrtimer, node);
1658 
1659 			/*
1660 			 * The immediate goal for using the softexpires is
1661 			 * minimizing wakeups, not running timers at the
1662 			 * earliest interrupt after their soft expiration.
1663 			 * This allows us to avoid using a Priority Search
1664 			 * Tree, which can answer a stabbing querry for
1665 			 * overlapping intervals and instead use the simple
1666 			 * BST we already have.
1667 			 * We don't add extra wakeups by delaying timers that
1668 			 * are right-of a not yet expired timer, because that
1669 			 * timer will have to trigger a wakeup anyway.
1670 			 */
1671 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1672 				break;
1673 
1674 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1675 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1676 				hrtimer_sync_wait_running(cpu_base, flags);
1677 		}
1678 	}
1679 }
1680 
hrtimer_run_softirq(struct softirq_action * h)1681 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1682 {
1683 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1684 	unsigned long flags;
1685 	ktime_t now;
1686 
1687 	hrtimer_cpu_base_lock_expiry(cpu_base);
1688 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1689 
1690 	now = hrtimer_update_base(cpu_base);
1691 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1692 
1693 	cpu_base->softirq_activated = 0;
1694 	hrtimer_update_softirq_timer(cpu_base, true);
1695 
1696 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1697 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1698 }
1699 
1700 #ifdef CONFIG_HIGH_RES_TIMERS
1701 
1702 /*
1703  * High resolution timer interrupt
1704  * Called with interrupts disabled
1705  */
hrtimer_interrupt(struct clock_event_device * dev)1706 void hrtimer_interrupt(struct clock_event_device *dev)
1707 {
1708 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1709 	ktime_t expires_next, now, entry_time, delta;
1710 	unsigned long flags;
1711 	int retries = 0;
1712 
1713 	BUG_ON(!cpu_base->hres_active);
1714 	cpu_base->nr_events++;
1715 	dev->next_event = KTIME_MAX;
1716 
1717 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1718 	entry_time = now = hrtimer_update_base(cpu_base);
1719 retry:
1720 	cpu_base->in_hrtirq = 1;
1721 	/*
1722 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1723 	 * held to prevent that a timer is enqueued in our queue via
1724 	 * the migration code. This does not affect enqueueing of
1725 	 * timers which run their callback and need to be requeued on
1726 	 * this CPU.
1727 	 */
1728 	cpu_base->expires_next = KTIME_MAX;
1729 
1730 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1731 		cpu_base->softirq_expires_next = KTIME_MAX;
1732 		cpu_base->softirq_activated = 1;
1733 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1734 	}
1735 
1736 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1737 
1738 	/* Reevaluate the clock bases for the [soft] next expiry */
1739 	expires_next = hrtimer_update_next_event(cpu_base);
1740 	/*
1741 	 * Store the new expiry value so the migration code can verify
1742 	 * against it.
1743 	 */
1744 	cpu_base->expires_next = expires_next;
1745 	cpu_base->in_hrtirq = 0;
1746 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1747 
1748 	/* Reprogramming necessary ? */
1749 	if (!tick_program_event(expires_next, 0)) {
1750 		cpu_base->hang_detected = 0;
1751 		return;
1752 	}
1753 
1754 	/*
1755 	 * The next timer was already expired due to:
1756 	 * - tracing
1757 	 * - long lasting callbacks
1758 	 * - being scheduled away when running in a VM
1759 	 *
1760 	 * We need to prevent that we loop forever in the hrtimer
1761 	 * interrupt routine. We give it 3 attempts to avoid
1762 	 * overreacting on some spurious event.
1763 	 *
1764 	 * Acquire base lock for updating the offsets and retrieving
1765 	 * the current time.
1766 	 */
1767 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 	now = hrtimer_update_base(cpu_base);
1769 	cpu_base->nr_retries++;
1770 	if (++retries < 3)
1771 		goto retry;
1772 	/*
1773 	 * Give the system a chance to do something else than looping
1774 	 * here. We stored the entry time, so we know exactly how long
1775 	 * we spent here. We schedule the next event this amount of
1776 	 * time away.
1777 	 */
1778 	cpu_base->nr_hangs++;
1779 	cpu_base->hang_detected = 1;
1780 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1781 
1782 	delta = ktime_sub(now, entry_time);
1783 	if ((unsigned int)delta > cpu_base->max_hang_time)
1784 		cpu_base->max_hang_time = (unsigned int) delta;
1785 	/*
1786 	 * Limit it to a sensible value as we enforce a longer
1787 	 * delay. Give the CPU at least 100ms to catch up.
1788 	 */
1789 	if (delta > 100 * NSEC_PER_MSEC)
1790 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1791 	else
1792 		expires_next = ktime_add(now, delta);
1793 	tick_program_event(expires_next, 1);
1794 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1795 }
1796 
1797 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1798 static inline void __hrtimer_peek_ahead_timers(void)
1799 {
1800 	struct tick_device *td;
1801 
1802 	if (!hrtimer_hres_active())
1803 		return;
1804 
1805 	td = this_cpu_ptr(&tick_cpu_device);
1806 	if (td && td->evtdev)
1807 		hrtimer_interrupt(td->evtdev);
1808 }
1809 
1810 #else /* CONFIG_HIGH_RES_TIMERS */
1811 
__hrtimer_peek_ahead_timers(void)1812 static inline void __hrtimer_peek_ahead_timers(void) { }
1813 
1814 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1815 
1816 /*
1817  * Called from run_local_timers in hardirq context every jiffy
1818  */
hrtimer_run_queues(void)1819 void hrtimer_run_queues(void)
1820 {
1821 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1822 	unsigned long flags;
1823 	ktime_t now;
1824 
1825 	if (__hrtimer_hres_active(cpu_base))
1826 		return;
1827 
1828 	/*
1829 	 * This _is_ ugly: We have to check periodically, whether we
1830 	 * can switch to highres and / or nohz mode. The clocksource
1831 	 * switch happens with xtime_lock held. Notification from
1832 	 * there only sets the check bit in the tick_oneshot code,
1833 	 * otherwise we might deadlock vs. xtime_lock.
1834 	 */
1835 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1836 		hrtimer_switch_to_hres();
1837 		return;
1838 	}
1839 
1840 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1841 	now = hrtimer_update_base(cpu_base);
1842 
1843 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1844 		cpu_base->softirq_expires_next = KTIME_MAX;
1845 		cpu_base->softirq_activated = 1;
1846 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1847 	}
1848 
1849 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1850 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1851 }
1852 
1853 /*
1854  * Sleep related functions:
1855  */
hrtimer_wakeup(struct hrtimer * timer)1856 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1857 {
1858 	struct hrtimer_sleeper *t =
1859 		container_of(timer, struct hrtimer_sleeper, timer);
1860 	struct task_struct *task = t->task;
1861 
1862 	t->task = NULL;
1863 	if (task)
1864 		wake_up_process(task);
1865 
1866 	return HRTIMER_NORESTART;
1867 }
1868 
1869 /**
1870  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1871  * @sl:		sleeper to be started
1872  * @mode:	timer mode abs/rel
1873  *
1874  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1875  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1876  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1877 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1878 				   enum hrtimer_mode mode)
1879 {
1880 	/*
1881 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1882 	 * was initialized for hard interrupt delivery, force the mode bit.
1883 	 * This is a special case for hrtimer_sleepers because
1884 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1885 	 * fiddling with this decision is avoided at the call sites.
1886 	 */
1887 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1888 		mode |= HRTIMER_MODE_HARD;
1889 
1890 	hrtimer_start_expires(&sl->timer, mode);
1891 }
1892 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1893 
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1894 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1895 				   clockid_t clock_id, enum hrtimer_mode mode)
1896 {
1897 	/*
1898 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1899 	 * marked for hard interrupt expiry mode are moved into soft
1900 	 * interrupt context either for latency reasons or because the
1901 	 * hrtimer callback takes regular spinlocks or invokes other
1902 	 * functions which are not suitable for hard interrupt context on
1903 	 * PREEMPT_RT.
1904 	 *
1905 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1906 	 * context, but there is a latency concern: Untrusted userspace can
1907 	 * spawn many threads which arm timers for the same expiry time on
1908 	 * the same CPU. That causes a latency spike due to the wakeup of
1909 	 * a gazillion threads.
1910 	 *
1911 	 * OTOH, priviledged real-time user space applications rely on the
1912 	 * low latency of hard interrupt wakeups. If the current task is in
1913 	 * a real-time scheduling class, mark the mode for hard interrupt
1914 	 * expiry.
1915 	 */
1916 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1917 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1918 			mode |= HRTIMER_MODE_HARD;
1919 	}
1920 
1921 	__hrtimer_init(&sl->timer, clock_id, mode);
1922 	sl->timer.function = hrtimer_wakeup;
1923 	sl->task = current;
1924 }
1925 
1926 /**
1927  * hrtimer_init_sleeper - initialize sleeper to the given clock
1928  * @sl:		sleeper to be initialized
1929  * @clock_id:	the clock to be used
1930  * @mode:	timer mode abs/rel
1931  */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1932 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1933 			  enum hrtimer_mode mode)
1934 {
1935 	debug_init(&sl->timer, clock_id, mode);
1936 	__hrtimer_init_sleeper(sl, clock_id, mode);
1937 
1938 }
1939 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1940 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1941 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1942 {
1943 	switch(restart->nanosleep.type) {
1944 #ifdef CONFIG_COMPAT_32BIT_TIME
1945 	case TT_COMPAT:
1946 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1947 			return -EFAULT;
1948 		break;
1949 #endif
1950 	case TT_NATIVE:
1951 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1952 			return -EFAULT;
1953 		break;
1954 	default:
1955 		BUG();
1956 	}
1957 	return -ERESTART_RESTARTBLOCK;
1958 }
1959 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1960 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1961 {
1962 	struct restart_block *restart;
1963 
1964 	do {
1965 		set_current_state(TASK_INTERRUPTIBLE);
1966 		hrtimer_sleeper_start_expires(t, mode);
1967 
1968 		if (likely(t->task))
1969 			freezable_schedule();
1970 
1971 		hrtimer_cancel(&t->timer);
1972 		mode = HRTIMER_MODE_ABS;
1973 
1974 	} while (t->task && !signal_pending(current));
1975 
1976 	__set_current_state(TASK_RUNNING);
1977 
1978 	if (!t->task)
1979 		return 0;
1980 
1981 	restart = &current->restart_block;
1982 	if (restart->nanosleep.type != TT_NONE) {
1983 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1984 		struct timespec64 rmt;
1985 
1986 		if (rem <= 0)
1987 			return 0;
1988 		rmt = ktime_to_timespec64(rem);
1989 
1990 		return nanosleep_copyout(restart, &rmt);
1991 	}
1992 	return -ERESTART_RESTARTBLOCK;
1993 }
1994 
hrtimer_nanosleep_restart(struct restart_block * restart)1995 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1996 {
1997 	struct hrtimer_sleeper t;
1998 	int ret;
1999 
2000 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2001 				      HRTIMER_MODE_ABS);
2002 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2003 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2004 	destroy_hrtimer_on_stack(&t.timer);
2005 	return ret;
2006 }
2007 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2008 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2009 		       const clockid_t clockid)
2010 {
2011 	struct restart_block *restart;
2012 	struct hrtimer_sleeper t;
2013 	int ret = 0;
2014 	u64 slack;
2015 
2016 	slack = current->timer_slack_ns;
2017 	if (dl_task(current) || rt_task(current))
2018 		slack = 0;
2019 
2020 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2021 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2022 	ret = do_nanosleep(&t, mode);
2023 	if (ret != -ERESTART_RESTARTBLOCK)
2024 		goto out;
2025 
2026 	/* Absolute timers do not update the rmtp value and restart: */
2027 	if (mode == HRTIMER_MODE_ABS) {
2028 		ret = -ERESTARTNOHAND;
2029 		goto out;
2030 	}
2031 
2032 	restart = &current->restart_block;
2033 	restart->nanosleep.clockid = t.timer.base->clockid;
2034 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2035 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2036 out:
2037 	destroy_hrtimer_on_stack(&t.timer);
2038 	return ret;
2039 }
2040 
2041 #ifdef CONFIG_64BIT
2042 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2043 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2044 		struct __kernel_timespec __user *, rmtp)
2045 {
2046 	struct timespec64 tu;
2047 
2048 	if (get_timespec64(&tu, rqtp))
2049 		return -EFAULT;
2050 
2051 	if (!timespec64_valid(&tu))
2052 		return -EINVAL;
2053 
2054 	current->restart_block.fn = do_no_restart_syscall;
2055 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2056 	current->restart_block.nanosleep.rmtp = rmtp;
2057 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2058 				 CLOCK_MONOTONIC);
2059 }
2060 
2061 #endif
2062 
2063 #ifdef CONFIG_COMPAT_32BIT_TIME
2064 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2065 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2066 		       struct old_timespec32 __user *, rmtp)
2067 {
2068 	struct timespec64 tu;
2069 
2070 	if (get_old_timespec32(&tu, rqtp))
2071 		return -EFAULT;
2072 
2073 	if (!timespec64_valid(&tu))
2074 		return -EINVAL;
2075 
2076 	current->restart_block.fn = do_no_restart_syscall;
2077 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2078 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2079 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2080 				 CLOCK_MONOTONIC);
2081 }
2082 #endif
2083 
2084 /*
2085  * Functions related to boot-time initialization:
2086  */
hrtimers_prepare_cpu(unsigned int cpu)2087 int hrtimers_prepare_cpu(unsigned int cpu)
2088 {
2089 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2090 	int i;
2091 
2092 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2093 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2094 
2095 		clock_b->cpu_base = cpu_base;
2096 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2097 		timerqueue_init_head(&clock_b->active);
2098 	}
2099 
2100 	cpu_base->cpu = cpu;
2101 	cpu_base->active_bases = 0;
2102 	cpu_base->hres_active = 0;
2103 	cpu_base->hang_detected = 0;
2104 	cpu_base->next_timer = NULL;
2105 	cpu_base->softirq_next_timer = NULL;
2106 	cpu_base->expires_next = KTIME_MAX;
2107 	cpu_base->softirq_expires_next = KTIME_MAX;
2108 	cpu_base->online = 1;
2109 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2110 	return 0;
2111 }
2112 
2113 #ifdef CONFIG_HOTPLUG_CPU
2114 
2115 #ifdef CONFIG_CPU_ISOLATION_OPT
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base,bool remove_pinned)2116 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2117 				 struct hrtimer_clock_base *new_base,
2118 				 bool remove_pinned)
2119 {
2120 	struct hrtimer *timer;
2121 	struct timerqueue_node *node;
2122 	struct timerqueue_head pinned;
2123 	int is_pinned;
2124 	bool is_hotplug = !cpu_online(old_base->cpu_base->cpu);
2125 
2126 	timerqueue_init_head(&pinned);
2127 
2128 	while ((node = timerqueue_getnext(&old_base->active))) {
2129 		timer = container_of(node, struct hrtimer, node);
2130 		if (is_hotplug)
2131 			BUG_ON(hrtimer_callback_running(timer));
2132 		debug_deactivate(timer);
2133 
2134 		/*
2135 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2136 		 * timer could be seen as !active and just vanish away
2137 		 * under us on another CPU
2138 		 */
2139 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2140 
2141 		is_pinned = timer->state & HRTIMER_STATE_PINNED;
2142 		if (!remove_pinned && is_pinned) {
2143 			timerqueue_add(&pinned, &timer->node);
2144 			continue;
2145 		}
2146 
2147 		timer->base = new_base;
2148 		/*
2149 		 * Enqueue the timers on the new cpu. This does not
2150 		 * reprogram the event device in case the timer
2151 		 * expires before the earliest on this CPU, but we run
2152 		 * hrtimer_interrupt after we migrated everything to
2153 		 * sort out already expired timers and reprogram the
2154 		 * event device.
2155 		 */
2156 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2157 	}
2158 
2159 	/* Re-queue pinned timers for non-hotplug usecase */
2160 	while ((node = timerqueue_getnext(&pinned))) {
2161 		timer = container_of(node, struct hrtimer, node);
2162 
2163 		timerqueue_del(&pinned, &timer->node);
2164 		enqueue_hrtimer(timer, old_base, HRTIMER_MODE_ABS);
2165 	}
2166 }
2167 
__migrate_hrtimers(unsigned int scpu,bool remove_pinned)2168 static void __migrate_hrtimers(unsigned int scpu, bool remove_pinned)
2169 {
2170 	struct hrtimer_cpu_base *old_base, *new_base;
2171 	unsigned long flags;
2172 	int i;
2173 
2174 	local_irq_save(flags);
2175 	old_base = &per_cpu(hrtimer_bases, scpu);
2176 	new_base = this_cpu_ptr(&hrtimer_bases);
2177 	/*
2178 	 * The caller is globally serialized and nobody else
2179 	 * takes two locks at once, deadlock is not possible.
2180 	 */
2181 	raw_spin_lock(&new_base->lock);
2182 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2183 
2184 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2185 		migrate_hrtimer_list(&old_base->clock_base[i],
2186 				     &new_base->clock_base[i], remove_pinned);
2187 	}
2188 
2189 	/*
2190 	 * The migration might have changed the first expiring softirq
2191 	 * timer on this CPU. Update it.
2192 	 */
2193 	hrtimer_update_softirq_timer(new_base, false);
2194 
2195 	raw_spin_unlock(&old_base->lock);
2196 	raw_spin_unlock(&new_base->lock);
2197 
2198 	/* Check, if we got expired work to do */
2199 	__hrtimer_peek_ahead_timers();
2200 	local_irq_restore(flags);
2201 }
2202 
hrtimers_dead_cpu(unsigned int scpu)2203 int hrtimers_dead_cpu(unsigned int scpu)
2204 {
2205 	BUG_ON(cpu_online(scpu));
2206 	tick_cancel_sched_timer(scpu);
2207 
2208 	/*
2209 	 * this BH disable ensures that raise_softirq_irqoff() does
2210 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2211 	 * holding the cpu_base lock
2212 	 */
2213 	local_bh_disable();
2214 	__migrate_hrtimers(scpu, true);
2215 	local_bh_enable();
2216 	return 0;
2217 }
2218 
hrtimer_quiesce_cpu(void * cpup)2219 void hrtimer_quiesce_cpu(void *cpup)
2220 {
2221 	__migrate_hrtimers(*(int *)cpup, false);
2222 }
2223 
2224 #else
2225 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2226 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2227 				struct hrtimer_clock_base *new_base)
2228 {
2229 	struct hrtimer *timer;
2230 	struct timerqueue_node *node;
2231 
2232 	while ((node = timerqueue_getnext(&old_base->active))) {
2233 		timer = container_of(node, struct hrtimer, node);
2234 		BUG_ON(hrtimer_callback_running(timer));
2235 		debug_deactivate(timer);
2236 
2237 		/*
2238 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2239 		 * timer could be seen as !active and just vanish away
2240 		 * under us on another CPU
2241 		 */
2242 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2243 		timer->base = new_base;
2244 		/*
2245 		 * Enqueue the timers on the new cpu. This does not
2246 		 * reprogram the event device in case the timer
2247 		 * expires before the earliest on this CPU, but we run
2248 		 * hrtimer_interrupt after we migrated everything to
2249 		 * sort out already expired timers and reprogram the
2250 		 * event device.
2251 		 */
2252 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2253 	}
2254 }
2255 
hrtimers_dead_cpu(unsigned int scpu)2256 int hrtimers_dead_cpu(unsigned int scpu)
2257 {
2258 	struct hrtimer_cpu_base *old_base, *new_base;
2259 	int i;
2260 
2261 	BUG_ON(cpu_online(scpu));
2262 	tick_cancel_sched_timer(scpu);
2263 
2264 	/*
2265 	 * this BH disable ensures that raise_softirq_irqoff() does
2266 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2267 	 * holding the cpu_base lock
2268 	 */
2269 	local_bh_disable();
2270 	local_irq_disable();
2271 	old_base = &per_cpu(hrtimer_bases, scpu);
2272 	new_base = this_cpu_ptr(&hrtimer_bases);
2273 	/*
2274 	 * The caller is globally serialized and nobody else
2275 	 * takes two locks at once, deadlock is not possible.
2276 	 */
2277 	raw_spin_lock(&new_base->lock);
2278 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2279 
2280 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2281 		migrate_hrtimer_list(&old_base->clock_base[i],
2282 				     &new_base->clock_base[i]);
2283 	}
2284 
2285 	/*
2286 	 * The migration might have changed the first expiring softirq
2287 	 * timer on this CPU. Update it.
2288 	 */
2289 	hrtimer_update_softirq_timer(new_base, false);
2290 
2291 	raw_spin_unlock(&old_base->lock);
2292 	raw_spin_unlock(&new_base->lock);
2293 
2294 	/* Check, if we got expired work to do */
2295 	__hrtimer_peek_ahead_timers();
2296 	local_irq_enable();
2297 	local_bh_enable();
2298 	return 0;
2299 }
2300 
2301 #endif /* CONFIG_CPU_ISOLATION_OPT */
2302 
2303 #endif /* CONFIG_HOTPLUG_CPU */
2304 
hrtimers_init(void)2305 void __init hrtimers_init(void)
2306 {
2307 	hrtimers_prepare_cpu(smp_processor_id());
2308 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2309 }
2310 
2311 /**
2312  * schedule_hrtimeout_range_clock - sleep until timeout
2313  * @expires:	timeout value (ktime_t)
2314  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2315  * @mode:	timer mode
2316  * @clock_id:	timer clock to be used
2317  */
2318 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2319 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2320 			       const enum hrtimer_mode mode, clockid_t clock_id)
2321 {
2322 	struct hrtimer_sleeper t;
2323 
2324 	/*
2325 	 * Optimize when a zero timeout value is given. It does not
2326 	 * matter whether this is an absolute or a relative time.
2327 	 */
2328 	if (expires && *expires == 0) {
2329 		__set_current_state(TASK_RUNNING);
2330 		return 0;
2331 	}
2332 
2333 	/*
2334 	 * A NULL parameter means "infinite"
2335 	 */
2336 	if (!expires) {
2337 		schedule();
2338 		return -EINTR;
2339 	}
2340 
2341 	/*
2342 	 * Override any slack passed by the user if under
2343 	 * rt contraints.
2344 	 */
2345 	if (rt_task(current))
2346 		delta = 0;
2347 
2348 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2349 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2350 	hrtimer_sleeper_start_expires(&t, mode);
2351 
2352 	if (likely(t.task))
2353 		schedule();
2354 
2355 	hrtimer_cancel(&t.timer);
2356 	destroy_hrtimer_on_stack(&t.timer);
2357 
2358 	__set_current_state(TASK_RUNNING);
2359 
2360 	return !t.task ? 0 : -EINTR;
2361 }
2362 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2363 
2364 /**
2365  * schedule_hrtimeout_range - sleep until timeout
2366  * @expires:	timeout value (ktime_t)
2367  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2368  * @mode:	timer mode
2369  *
2370  * Make the current task sleep until the given expiry time has
2371  * elapsed. The routine will return immediately unless
2372  * the current task state has been set (see set_current_state()).
2373  *
2374  * The @delta argument gives the kernel the freedom to schedule the
2375  * actual wakeup to a time that is both power and performance friendly
2376  * for regular (non RT/DL) tasks.
2377  * The kernel give the normal best effort behavior for "@expires+@delta",
2378  * but may decide to fire the timer earlier, but no earlier than @expires.
2379  *
2380  * You can set the task state as follows -
2381  *
2382  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2383  * pass before the routine returns unless the current task is explicitly
2384  * woken up, (e.g. by wake_up_process()).
2385  *
2386  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2387  * delivered to the current task or the current task is explicitly woken
2388  * up.
2389  *
2390  * The current task state is guaranteed to be TASK_RUNNING when this
2391  * routine returns.
2392  *
2393  * Returns 0 when the timer has expired. If the task was woken before the
2394  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2395  * by an explicit wakeup, it returns -EINTR.
2396  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2397 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2398 				     const enum hrtimer_mode mode)
2399 {
2400 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2401 					      CLOCK_MONOTONIC);
2402 }
2403 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2404 
2405 /**
2406  * schedule_hrtimeout - sleep until timeout
2407  * @expires:	timeout value (ktime_t)
2408  * @mode:	timer mode
2409  *
2410  * Make the current task sleep until the given expiry time has
2411  * elapsed. The routine will return immediately unless
2412  * the current task state has been set (see set_current_state()).
2413  *
2414  * You can set the task state as follows -
2415  *
2416  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2417  * pass before the routine returns unless the current task is explicitly
2418  * woken up, (e.g. by wake_up_process()).
2419  *
2420  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2421  * delivered to the current task or the current task is explicitly woken
2422  * up.
2423  *
2424  * The current task state is guaranteed to be TASK_RUNNING when this
2425  * routine returns.
2426  *
2427  * Returns 0 when the timer has expired. If the task was woken before the
2428  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2429  * by an explicit wakeup, it returns -EINTR.
2430  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2431 int __sched schedule_hrtimeout(ktime_t *expires,
2432 			       const enum hrtimer_mode mode)
2433 {
2434 	return schedule_hrtimeout_range(expires, 0, mode);
2435 }
2436 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2437