1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44
45 #include <linux/uaccess.h>
46
47 #include <trace/events/timer.h>
48
49 #include "tick-internal.h"
50
51 /*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60 /*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114 };
115
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124 };
125
126 /*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130 #ifdef CONFIG_SMP
131
132 /*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { {
139 .cpu_base = &migration_cpu_base,
140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 &migration_cpu_base.lock),
142 }, },
143 };
144
145 #define migration_base migration_cpu_base.clock_base[0]
146
is_migration_base(struct hrtimer_clock_base * base)147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 return base == &migration_base;
150 }
151
152 /*
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
156 *
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
159 *
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = &migration_base and drop the lock: the timer
162 * remains locked.
163 */
164 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
167 {
168 struct hrtimer_clock_base *base;
169
170 for (;;) {
171 base = READ_ONCE(timer->base);
172 if (likely(base != &migration_base)) {
173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 if (likely(base == timer->base))
175 return base;
176 /* The timer has migrated to another CPU: */
177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 }
179 cpu_relax();
180 }
181 }
182
183 /*
184 * We do not migrate the timer when it is expiring before the next
185 * event on the target cpu. When high resolution is enabled, we cannot
186 * reprogram the target cpu hardware and we would cause it to fire
187 * late. To keep it simple, we handle the high resolution enabled and
188 * disabled case similar.
189 *
190 * Called with cpu_base->lock of target cpu held.
191 */
192 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 ktime_t expires;
196
197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 return expires < new_base->cpu_base->expires_next;
199 }
200
201 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 return base;
210 }
211
212 /*
213 * We switch the timer base to a power-optimized selected CPU target,
214 * if:
215 * - NO_HZ_COMMON is enabled
216 * - timer migration is enabled
217 * - the timer callback is not running
218 * - the timer is not the first expiring timer on the new target
219 *
220 * If one of the above requirements is not fulfilled we move the timer
221 * to the current CPU or leave it on the previously assigned CPU if
222 * the timer callback is currently running.
223 */
224 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 int pinned)
227 {
228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 struct hrtimer_clock_base *new_base;
230 int basenum = base->index;
231
232 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 new_base = &new_cpu_base->clock_base[basenum];
236
237 if (base != new_base) {
238 /*
239 * We are trying to move timer to new_base.
240 * However we can't change timer's base while it is running,
241 * so we keep it on the same CPU. No hassle vs. reprogramming
242 * the event source in the high resolution case. The softirq
243 * code will take care of this when the timer function has
244 * completed. There is no conflict as we hold the lock until
245 * the timer is enqueued.
246 */
247 if (unlikely(hrtimer_callback_running(timer)))
248 return base;
249
250 /* See the comment in lock_hrtimer_base() */
251 WRITE_ONCE(timer->base, &migration_base);
252 raw_spin_unlock(&base->cpu_base->lock);
253 raw_spin_lock(&new_base->cpu_base->lock);
254
255 if (new_cpu_base != this_cpu_base &&
256 hrtimer_check_target(timer, new_base)) {
257 raw_spin_unlock(&new_base->cpu_base->lock);
258 raw_spin_lock(&base->cpu_base->lock);
259 new_cpu_base = this_cpu_base;
260 WRITE_ONCE(timer->base, base);
261 goto again;
262 }
263 WRITE_ONCE(timer->base, new_base);
264 } else {
265 if (new_cpu_base != this_cpu_base &&
266 hrtimer_check_target(timer, new_base)) {
267 new_cpu_base = this_cpu_base;
268 goto again;
269 }
270 }
271 return new_base;
272 }
273
274 #else /* CONFIG_SMP */
275
is_migration_base(struct hrtimer_clock_base * base)276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 return false;
279 }
280
281 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 struct hrtimer_clock_base *base = timer->base;
285
286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287
288 return base;
289 }
290
291 # define switch_hrtimer_base(t, b, p) (b)
292
293 #endif /* !CONFIG_SMP */
294
295 /*
296 * Functions for the union type storage format of ktime_t which are
297 * too large for inlining:
298 */
299 #if BITS_PER_LONG < 64
300 /*
301 * Divide a ktime value by a nanosecond value
302 */
__ktime_divns(const ktime_t kt,s64 div)303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 int sft = 0;
306 s64 dclc;
307 u64 tmp;
308
309 dclc = ktime_to_ns(kt);
310 tmp = dclc < 0 ? -dclc : dclc;
311
312 /* Make sure the divisor is less than 2^32: */
313 while (div >> 32) {
314 sft++;
315 div >>= 1;
316 }
317 tmp >>= sft;
318 do_div(tmp, (u32) div);
319 return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323
324 /*
325 * Add two ktime values and do a safety check for overflow:
326 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 ktime_t res = ktime_add_unsafe(lhs, rhs);
330
331 /*
332 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 * return to user space in a timespec:
334 */
335 if (res < 0 || res < lhs || res < rhs)
336 res = ktime_set(KTIME_SEC_MAX, 0);
337
338 return res;
339 }
340
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344
345 static const struct debug_obj_descr hrtimer_debug_descr;
346
hrtimer_debug_hint(void * addr)347 static void *hrtimer_debug_hint(void *addr)
348 {
349 return ((struct hrtimer *) addr)->function;
350 }
351
352 /*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 struct hrtimer *timer = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 hrtimer_cancel(timer);
363 debug_object_init(timer, &hrtimer_debug_descr);
364 return true;
365 default:
366 return false;
367 }
368 }
369
370 /*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown non-static object is activated
374 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 WARN_ON(1);
380 fallthrough;
381 default:
382 return false;
383 }
384 }
385
386 /*
387 * fixup_free is called when:
388 * - an active object is freed
389 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 struct hrtimer *timer = addr;
393
394 switch (state) {
395 case ODEBUG_STATE_ACTIVE:
396 hrtimer_cancel(timer);
397 debug_object_free(timer, &hrtimer_debug_descr);
398 return true;
399 default:
400 return false;
401 }
402 }
403
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 .name = "hrtimer",
406 .debug_hint = hrtimer_debug_hint,
407 .fixup_init = hrtimer_fixup_init,
408 .fixup_activate = hrtimer_fixup_activate,
409 .fixup_free = hrtimer_fixup_free,
410 };
411
debug_hrtimer_init(struct hrtimer * timer)412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 debug_object_init(timer, &hrtimer_debug_descr);
415 }
416
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 enum hrtimer_mode mode)
419 {
420 debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422
debug_hrtimer_deactivate(struct hrtimer * timer)423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode);
430
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 enum hrtimer_mode mode)
433 {
434 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 __hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 clockid_t clock_id, enum hrtimer_mode mode);
441
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 __hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449
destroy_hrtimer_on_stack(struct hrtimer * timer)450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455
456 #else
457
debug_hrtimer_init(struct hrtimer * timer)458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463
464 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 enum hrtimer_mode mode)
467 {
468 debug_hrtimer_init(timer);
469 trace_hrtimer_init(timer, clockid, mode);
470 }
471
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)472 static inline void debug_activate(struct hrtimer *timer,
473 enum hrtimer_mode mode)
474 {
475 debug_hrtimer_activate(timer, mode);
476 trace_hrtimer_start(timer, mode);
477 }
478
debug_deactivate(struct hrtimer * timer)479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483 }
484
485 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 unsigned int idx;
489
490 if (!*active)
491 return NULL;
492
493 idx = __ffs(*active);
494 *active &= ~(1U << idx);
495
496 return &cpu_base->clock_base[idx];
497 }
498
499 #define for_each_active_base(base, cpu_base, active) \
500 while ((base = __next_base((cpu_base), &(active))))
501
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 const struct hrtimer *exclude,
504 unsigned int active,
505 ktime_t expires_next)
506 {
507 struct hrtimer_clock_base *base;
508 ktime_t expires;
509
510 for_each_active_base(base, cpu_base, active) {
511 struct timerqueue_node *next;
512 struct hrtimer *timer;
513
514 next = timerqueue_getnext(&base->active);
515 timer = container_of(next, struct hrtimer, node);
516 if (timer == exclude) {
517 /* Get to the next timer in the queue. */
518 next = timerqueue_iterate_next(next);
519 if (!next)
520 continue;
521
522 timer = container_of(next, struct hrtimer, node);
523 }
524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 if (expires < expires_next) {
526 expires_next = expires;
527
528 /* Skip cpu_base update if a timer is being excluded. */
529 if (exclude)
530 continue;
531
532 if (timer->is_soft)
533 cpu_base->softirq_next_timer = timer;
534 else
535 cpu_base->next_timer = timer;
536 }
537 }
538 /*
539 * clock_was_set() might have changed base->offset of any of
540 * the clock bases so the result might be negative. Fix it up
541 * to prevent a false positive in clockevents_program_event().
542 */
543 if (expires_next < 0)
544 expires_next = 0;
545 return expires_next;
546 }
547
548 /*
549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550 * but does not set cpu_base::*expires_next, that is done by
551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552 * cpu_base::*expires_next right away, reprogramming logic would no longer
553 * work.
554 *
555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556 * those timers will get run whenever the softirq gets handled, at the end of
557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
558 *
559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
562 *
563 * @active_mask must be one of:
564 * - HRTIMER_ACTIVE_ALL,
565 * - HRTIMER_ACTIVE_SOFT, or
566 * - HRTIMER_ACTIVE_HARD.
567 */
568 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
570 {
571 unsigned int active;
572 struct hrtimer *next_timer = NULL;
573 ktime_t expires_next = KTIME_MAX;
574
575 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 cpu_base->softirq_next_timer = NULL;
578 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
579 active, KTIME_MAX);
580
581 next_timer = cpu_base->softirq_next_timer;
582 }
583
584 if (active_mask & HRTIMER_ACTIVE_HARD) {
585 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 cpu_base->next_timer = next_timer;
587 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
588 expires_next);
589 }
590
591 return expires_next;
592 }
593
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
595 {
596 ktime_t expires_next, soft = KTIME_MAX;
597
598 /*
599 * If the soft interrupt has already been activated, ignore the
600 * soft bases. They will be handled in the already raised soft
601 * interrupt.
602 */
603 if (!cpu_base->softirq_activated) {
604 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
605 /*
606 * Update the soft expiry time. clock_settime() might have
607 * affected it.
608 */
609 cpu_base->softirq_expires_next = soft;
610 }
611
612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
613 /*
614 * If a softirq timer is expiring first, update cpu_base->next_timer
615 * and program the hardware with the soft expiry time.
616 */
617 if (expires_next > soft) {
618 cpu_base->next_timer = cpu_base->softirq_next_timer;
619 expires_next = soft;
620 }
621
622 return expires_next;
623 }
624
hrtimer_update_base(struct hrtimer_cpu_base * base)625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
626 {
627 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
630
631 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 offs_real, offs_boot, offs_tai);
633
634 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
637
638 return now;
639 }
640
641 /*
642 * Is the high resolution mode active ?
643 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
645 {
646 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 cpu_base->hres_active : 0;
648 }
649
hrtimer_hres_active(void)650 static inline int hrtimer_hres_active(void)
651 {
652 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
653 }
654
655 /*
656 * Reprogram the event source with checking both queues for the
657 * next event
658 * Called with interrupts disabled and base->lock held
659 */
660 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
662 {
663 ktime_t expires_next;
664
665 expires_next = hrtimer_update_next_event(cpu_base);
666
667 if (skip_equal && expires_next == cpu_base->expires_next)
668 return;
669
670 cpu_base->expires_next = expires_next;
671
672 /*
673 * If hres is not active, hardware does not have to be
674 * reprogrammed yet.
675 *
676 * If a hang was detected in the last timer interrupt then we
677 * leave the hang delay active in the hardware. We want the
678 * system to make progress. That also prevents the following
679 * scenario:
680 * T1 expires 50ms from now
681 * T2 expires 5s from now
682 *
683 * T1 is removed, so this code is called and would reprogram
684 * the hardware to 5s from now. Any hrtimer_start after that
685 * will not reprogram the hardware due to hang_detected being
686 * set. So we'd effectivly block all timers until the T2 event
687 * fires.
688 */
689 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
690 return;
691
692 tick_program_event(cpu_base->expires_next, 1);
693 }
694
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697
698 /*
699 * High resolution timer enabled ?
700 */
701 static bool hrtimer_hres_enabled __read_mostly = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704
705 /*
706 * Enable / Disable high resolution mode
707 */
setup_hrtimer_hres(char * str)708 static int __init setup_hrtimer_hres(char *str)
709 {
710 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712
713 __setup("highres=", setup_hrtimer_hres);
714
715 /*
716 * hrtimer_high_res_enabled - query, if the highres mode is enabled
717 */
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 return hrtimer_hres_enabled;
721 }
722
723 /*
724 * Retrigger next event is called after clock was set
725 *
726 * Called with interrupts disabled via on_each_cpu()
727 */
retrigger_next_event(void * arg)728 static void retrigger_next_event(void *arg)
729 {
730 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731
732 if (!__hrtimer_hres_active(base))
733 return;
734
735 raw_spin_lock(&base->lock);
736 hrtimer_update_base(base);
737 hrtimer_force_reprogram(base, 0);
738 raw_spin_unlock(&base->lock);
739 }
740
741 /*
742 * Switch to high resolution mode
743 */
hrtimer_switch_to_hres(void)744 static void hrtimer_switch_to_hres(void)
745 {
746 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
747
748 if (tick_init_highres()) {
749 pr_warn("Could not switch to high resolution mode on CPU %u\n",
750 base->cpu);
751 return;
752 }
753 base->hres_active = 1;
754 hrtimer_resolution = HIGH_RES_NSEC;
755
756 tick_setup_sched_timer();
757 /* "Retrigger" the interrupt to get things going */
758 retrigger_next_event(NULL);
759 }
760
761 #else
762
hrtimer_is_hres_enabled(void)763 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)764 static inline void hrtimer_switch_to_hres(void) { }
retrigger_next_event(void * arg)765 static inline void retrigger_next_event(void *arg) { }
766
767 #endif /* CONFIG_HIGH_RES_TIMERS */
768
769 /*
770 * When a timer is enqueued and expires earlier than the already enqueued
771 * timers, we have to check, whether it expires earlier than the timer for
772 * which the clock event device was armed.
773 *
774 * Called with interrupts disabled and base->cpu_base.lock held
775 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)776 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
777 {
778 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
779 struct hrtimer_clock_base *base = timer->base;
780 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
781
782 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
783
784 /*
785 * CLOCK_REALTIME timer might be requested with an absolute
786 * expiry time which is less than base->offset. Set it to 0.
787 */
788 if (expires < 0)
789 expires = 0;
790
791 if (timer->is_soft) {
792 /*
793 * soft hrtimer could be started on a remote CPU. In this
794 * case softirq_expires_next needs to be updated on the
795 * remote CPU. The soft hrtimer will not expire before the
796 * first hard hrtimer on the remote CPU -
797 * hrtimer_check_target() prevents this case.
798 */
799 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
800
801 if (timer_cpu_base->softirq_activated)
802 return;
803
804 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
805 return;
806
807 timer_cpu_base->softirq_next_timer = timer;
808 timer_cpu_base->softirq_expires_next = expires;
809
810 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
811 !reprogram)
812 return;
813 }
814
815 /*
816 * If the timer is not on the current cpu, we cannot reprogram
817 * the other cpus clock event device.
818 */
819 if (base->cpu_base != cpu_base)
820 return;
821
822 /*
823 * If the hrtimer interrupt is running, then it will
824 * reevaluate the clock bases and reprogram the clock event
825 * device. The callbacks are always executed in hard interrupt
826 * context so we don't need an extra check for a running
827 * callback.
828 */
829 if (cpu_base->in_hrtirq)
830 return;
831
832 if (expires >= cpu_base->expires_next)
833 return;
834
835 /* Update the pointer to the next expiring timer */
836 cpu_base->next_timer = timer;
837 cpu_base->expires_next = expires;
838
839 /*
840 * If hres is not active, hardware does not have to be
841 * programmed yet.
842 *
843 * If a hang was detected in the last timer interrupt then we
844 * do not schedule a timer which is earlier than the expiry
845 * which we enforced in the hang detection. We want the system
846 * to make progress.
847 */
848 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
849 return;
850
851 /*
852 * Program the timer hardware. We enforce the expiry for
853 * events which are already in the past.
854 */
855 tick_program_event(expires, 1);
856 }
857
858 /*
859 * Clock realtime was set
860 *
861 * Change the offset of the realtime clock vs. the monotonic
862 * clock.
863 *
864 * We might have to reprogram the high resolution timer interrupt. On
865 * SMP we call the architecture specific code to retrigger _all_ high
866 * resolution timer interrupts. On UP we just disable interrupts and
867 * call the high resolution interrupt code.
868 */
clock_was_set(void)869 void clock_was_set(void)
870 {
871 #ifdef CONFIG_HIGH_RES_TIMERS
872 /* Retrigger the CPU local events everywhere */
873 on_each_cpu(retrigger_next_event, NULL, 1);
874 #endif
875 timerfd_clock_was_set();
876 }
877
clock_was_set_work(struct work_struct * work)878 static void clock_was_set_work(struct work_struct *work)
879 {
880 clock_was_set();
881 }
882
883 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
884
885 /*
886 * Called from timekeeping and resume code to reprogram the hrtimer
887 * interrupt device on all cpus and to notify timerfd.
888 */
clock_was_set_delayed(void)889 void clock_was_set_delayed(void)
890 {
891 schedule_work(&hrtimer_work);
892 }
893
894 /*
895 * During resume we might have to reprogram the high resolution timer
896 * interrupt on all online CPUs. However, all other CPUs will be
897 * stopped with IRQs interrupts disabled so the clock_was_set() call
898 * must be deferred.
899 */
hrtimers_resume(void)900 void hrtimers_resume(void)
901 {
902 lockdep_assert_irqs_disabled();
903 /* Retrigger on the local CPU */
904 retrigger_next_event(NULL);
905 /* And schedule a retrigger for all others */
906 clock_was_set_delayed();
907 }
908
909 /*
910 * Counterpart to lock_hrtimer_base above:
911 */
912 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
914 {
915 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
916 }
917
918 /**
919 * hrtimer_forward - forward the timer expiry
920 * @timer: hrtimer to forward
921 * @now: forward past this time
922 * @interval: the interval to forward
923 *
924 * Forward the timer expiry so it will expire in the future.
925 * Returns the number of overruns.
926 *
927 * Can be safely called from the callback function of @timer. If
928 * called from other contexts @timer must neither be enqueued nor
929 * running the callback and the caller needs to take care of
930 * serialization.
931 *
932 * Note: This only updates the timer expiry value and does not requeue
933 * the timer.
934 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
936 {
937 u64 orun = 1;
938 ktime_t delta;
939
940 delta = ktime_sub(now, hrtimer_get_expires(timer));
941
942 if (delta < 0)
943 return 0;
944
945 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
946 return 0;
947
948 if (interval < hrtimer_resolution)
949 interval = hrtimer_resolution;
950
951 if (unlikely(delta >= interval)) {
952 s64 incr = ktime_to_ns(interval);
953
954 orun = ktime_divns(delta, incr);
955 hrtimer_add_expires_ns(timer, incr * orun);
956 if (hrtimer_get_expires_tv64(timer) > now)
957 return orun;
958 /*
959 * This (and the ktime_add() below) is the
960 * correction for exact:
961 */
962 orun++;
963 }
964 hrtimer_add_expires(timer, interval);
965
966 return orun;
967 }
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
969
970 /*
971 * enqueue_hrtimer - internal function to (re)start a timer
972 *
973 * The timer is inserted in expiry order. Insertion into the
974 * red black tree is O(log(n)). Must hold the base lock.
975 *
976 * Returns 1 when the new timer is the leftmost timer in the tree.
977 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)978 static int enqueue_hrtimer(struct hrtimer *timer,
979 struct hrtimer_clock_base *base,
980 enum hrtimer_mode mode)
981 {
982 debug_activate(timer, mode);
983 WARN_ON_ONCE(!base->cpu_base->online);
984
985 base->cpu_base->active_bases |= 1 << base->index;
986
987 /* Pairs with the lockless read in hrtimer_is_queued() */
988 #ifdef CONFIG_CPU_ISOLATION_OPT
989 WRITE_ONCE(timer->state, (timer->state | HRTIMER_STATE_ENQUEUED));
990 #else
991 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
992 #endif
993
994 return timerqueue_add(&base->active, &timer->node);
995 }
996
997 /*
998 * __remove_hrtimer - internal function to remove a timer
999 *
1000 * Caller must hold the base lock.
1001 *
1002 * High resolution timer mode reprograms the clock event device when the
1003 * timer is the one which expires next. The caller can disable this by setting
1004 * reprogram to zero. This is useful, when the context does a reprogramming
1005 * anyway (e.g. timer interrupt)
1006 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1007 static void __remove_hrtimer(struct hrtimer *timer,
1008 struct hrtimer_clock_base *base,
1009 u8 newstate, int reprogram)
1010 {
1011 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1012 u8 state = timer->state;
1013
1014 /* Pairs with the lockless read in hrtimer_is_queued() */
1015 #ifdef CONFIG_CPU_ISOLATION_OPT
1016 /*
1017 * We need to preserve PINNED state here, otherwise we may end up
1018 * migrating pinned hrtimers as well.
1019 */
1020 WRITE_ONCE(timer->state, newstate | (timer->state & HRTIMER_STATE_PINNED));
1021 #else
1022 WRITE_ONCE(timer->state, newstate);
1023 #endif
1024 if (!(state & HRTIMER_STATE_ENQUEUED))
1025 return;
1026
1027 if (!timerqueue_del(&base->active, &timer->node))
1028 cpu_base->active_bases &= ~(1 << base->index);
1029
1030 /*
1031 * Note: If reprogram is false we do not update
1032 * cpu_base->next_timer. This happens when we remove the first
1033 * timer on a remote cpu. No harm as we never dereference
1034 * cpu_base->next_timer. So the worst thing what can happen is
1035 * an superflous call to hrtimer_force_reprogram() on the
1036 * remote cpu later on if the same timer gets enqueued again.
1037 */
1038 if (reprogram && timer == cpu_base->next_timer)
1039 hrtimer_force_reprogram(cpu_base, 1);
1040 }
1041
1042 /*
1043 * remove hrtimer, called with base lock held
1044 */
1045 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1046 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1047 bool restart, bool keep_local)
1048 {
1049 u8 state = timer->state;
1050
1051 if (state & HRTIMER_STATE_ENQUEUED) {
1052 bool reprogram;
1053
1054 /*
1055 * Remove the timer and force reprogramming when high
1056 * resolution mode is active and the timer is on the current
1057 * CPU. If we remove a timer on another CPU, reprogramming is
1058 * skipped. The interrupt event on this CPU is fired and
1059 * reprogramming happens in the interrupt handler. This is a
1060 * rare case and less expensive than a smp call.
1061 */
1062 debug_deactivate(timer);
1063 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1064
1065 /*
1066 * If the timer is not restarted then reprogramming is
1067 * required if the timer is local. If it is local and about
1068 * to be restarted, avoid programming it twice (on removal
1069 * and a moment later when it's requeued).
1070 */
1071 if (!restart)
1072 state = HRTIMER_STATE_INACTIVE;
1073 else
1074 reprogram &= !keep_local;
1075
1076 __remove_hrtimer(timer, base, state, reprogram);
1077 #ifdef CONFIG_CPU_ISOLATION_OPT
1078 /* Make sure PINNED flag is cleared after removing hrtimer */
1079 timer->state &= ~HRTIMER_STATE_PINNED;
1080 #endif
1081 return 1;
1082 }
1083 return 0;
1084 }
1085
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1086 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1087 const enum hrtimer_mode mode)
1088 {
1089 #ifdef CONFIG_TIME_LOW_RES
1090 /*
1091 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1092 * granular time values. For relative timers we add hrtimer_resolution
1093 * (i.e. one jiffie) to prevent short timeouts.
1094 */
1095 timer->is_rel = mode & HRTIMER_MODE_REL;
1096 if (timer->is_rel)
1097 tim = ktime_add_safe(tim, hrtimer_resolution);
1098 #endif
1099 return tim;
1100 }
1101
1102 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1103 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1104 {
1105 ktime_t expires;
1106
1107 /*
1108 * Find the next SOFT expiration.
1109 */
1110 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1111
1112 /*
1113 * reprogramming needs to be triggered, even if the next soft
1114 * hrtimer expires at the same time than the next hard
1115 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1116 */
1117 if (expires == KTIME_MAX)
1118 return;
1119
1120 /*
1121 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1122 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1123 */
1124 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1125 }
1126
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1127 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1128 u64 delta_ns, const enum hrtimer_mode mode,
1129 struct hrtimer_clock_base *base)
1130 {
1131 struct hrtimer_clock_base *new_base;
1132 bool force_local, first;
1133
1134 /*
1135 * If the timer is on the local cpu base and is the first expiring
1136 * timer then this might end up reprogramming the hardware twice
1137 * (on removal and on enqueue). To avoid that by prevent the
1138 * reprogram on removal, keep the timer local to the current CPU
1139 * and enforce reprogramming after it is queued no matter whether
1140 * it is the new first expiring timer again or not.
1141 */
1142 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1143 force_local &= base->cpu_base->next_timer == timer;
1144
1145 /*
1146 * Remove an active timer from the queue. In case it is not queued
1147 * on the current CPU, make sure that remove_hrtimer() updates the
1148 * remote data correctly.
1149 *
1150 * If it's on the current CPU and the first expiring timer, then
1151 * skip reprogramming, keep the timer local and enforce
1152 * reprogramming later if it was the first expiring timer. This
1153 * avoids programming the underlying clock event twice (once at
1154 * removal and once after enqueue).
1155 */
1156 remove_hrtimer(timer, base, true, force_local);
1157
1158 if (mode & HRTIMER_MODE_REL)
1159 tim = ktime_add_safe(tim, base->get_time());
1160
1161 tim = hrtimer_update_lowres(timer, tim, mode);
1162
1163 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1164
1165 /* Switch the timer base, if necessary: */
1166 if (!force_local) {
1167 new_base = switch_hrtimer_base(timer, base,
1168 mode & HRTIMER_MODE_PINNED);
1169 } else {
1170 new_base = base;
1171 }
1172
1173 #ifdef CONFIG_CPU_ISOLATION_OPT
1174 timer->state &= ~HRTIMER_STATE_PINNED;
1175 if (mode & HRTIMER_MODE_PINNED)
1176 timer->state |= HRTIMER_STATE_PINNED;
1177 #endif
1178
1179 first = enqueue_hrtimer(timer, new_base, mode);
1180 if (!force_local)
1181 return first;
1182
1183 /*
1184 * Timer was forced to stay on the current CPU to avoid
1185 * reprogramming on removal and enqueue. Force reprogram the
1186 * hardware by evaluating the new first expiring timer.
1187 */
1188 hrtimer_force_reprogram(new_base->cpu_base, 1);
1189 return 0;
1190 }
1191
1192 /**
1193 * hrtimer_start_range_ns - (re)start an hrtimer
1194 * @timer: the timer to be added
1195 * @tim: expiry time
1196 * @delta_ns: "slack" range for the timer
1197 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1198 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1199 * softirq based mode is considered for debug purpose only!
1200 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1201 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1202 u64 delta_ns, const enum hrtimer_mode mode)
1203 {
1204 struct hrtimer_clock_base *base;
1205 unsigned long flags;
1206
1207 /*
1208 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1209 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1210 * expiry mode because unmarked timers are moved to softirq expiry.
1211 */
1212 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1213 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1214 else
1215 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1216
1217 base = lock_hrtimer_base(timer, &flags);
1218
1219 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1220 hrtimer_reprogram(timer, true);
1221
1222 unlock_hrtimer_base(timer, &flags);
1223 }
1224 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1225
1226 /**
1227 * hrtimer_try_to_cancel - try to deactivate a timer
1228 * @timer: hrtimer to stop
1229 *
1230 * Returns:
1231 *
1232 * * 0 when the timer was not active
1233 * * 1 when the timer was active
1234 * * -1 when the timer is currently executing the callback function and
1235 * cannot be stopped
1236 */
hrtimer_try_to_cancel(struct hrtimer * timer)1237 int hrtimer_try_to_cancel(struct hrtimer *timer)
1238 {
1239 struct hrtimer_clock_base *base;
1240 unsigned long flags;
1241 int ret = -1;
1242
1243 /*
1244 * Check lockless first. If the timer is not active (neither
1245 * enqueued nor running the callback, nothing to do here. The
1246 * base lock does not serialize against a concurrent enqueue,
1247 * so we can avoid taking it.
1248 */
1249 if (!hrtimer_active(timer))
1250 return 0;
1251
1252 base = lock_hrtimer_base(timer, &flags);
1253
1254 if (!hrtimer_callback_running(timer))
1255 ret = remove_hrtimer(timer, base, false, false);
1256
1257 unlock_hrtimer_base(timer, &flags);
1258
1259 return ret;
1260
1261 }
1262 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1263
1264 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1265 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1266 {
1267 spin_lock_init(&base->softirq_expiry_lock);
1268 }
1269
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1270 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1271 {
1272 spin_lock(&base->softirq_expiry_lock);
1273 }
1274
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1275 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1276 {
1277 spin_unlock(&base->softirq_expiry_lock);
1278 }
1279
1280 /*
1281 * The counterpart to hrtimer_cancel_wait_running().
1282 *
1283 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1284 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1285 * allows the waiter to acquire the lock and make progress.
1286 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1287 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1288 unsigned long flags)
1289 {
1290 if (atomic_read(&cpu_base->timer_waiters)) {
1291 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1292 spin_unlock(&cpu_base->softirq_expiry_lock);
1293 spin_lock(&cpu_base->softirq_expiry_lock);
1294 raw_spin_lock_irq(&cpu_base->lock);
1295 }
1296 }
1297
1298 /*
1299 * This function is called on PREEMPT_RT kernels when the fast path
1300 * deletion of a timer failed because the timer callback function was
1301 * running.
1302 *
1303 * This prevents priority inversion: if the soft irq thread is preempted
1304 * in the middle of a timer callback, then calling del_timer_sync() can
1305 * lead to two issues:
1306 *
1307 * - If the caller is on a remote CPU then it has to spin wait for the timer
1308 * handler to complete. This can result in unbound priority inversion.
1309 *
1310 * - If the caller originates from the task which preempted the timer
1311 * handler on the same CPU, then spin waiting for the timer handler to
1312 * complete is never going to end.
1313 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1314 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1315 {
1316 /* Lockless read. Prevent the compiler from reloading it below */
1317 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1318
1319 /*
1320 * Just relax if the timer expires in hard interrupt context or if
1321 * it is currently on the migration base.
1322 */
1323 if (!timer->is_soft || is_migration_base(base)) {
1324 cpu_relax();
1325 return;
1326 }
1327
1328 /*
1329 * Mark the base as contended and grab the expiry lock, which is
1330 * held by the softirq across the timer callback. Drop the lock
1331 * immediately so the softirq can expire the next timer. In theory
1332 * the timer could already be running again, but that's more than
1333 * unlikely and just causes another wait loop.
1334 */
1335 atomic_inc(&base->cpu_base->timer_waiters);
1336 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1337 atomic_dec(&base->cpu_base->timer_waiters);
1338 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1339 }
1340 #else
1341 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1342 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1343 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1344 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1345 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1346 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1347 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1348 unsigned long flags) { }
1349 #endif
1350
1351 /**
1352 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1353 * @timer: the timer to be cancelled
1354 *
1355 * Returns:
1356 * 0 when the timer was not active
1357 * 1 when the timer was active
1358 */
hrtimer_cancel(struct hrtimer * timer)1359 int hrtimer_cancel(struct hrtimer *timer)
1360 {
1361 int ret;
1362
1363 do {
1364 ret = hrtimer_try_to_cancel(timer);
1365
1366 if (ret < 0)
1367 hrtimer_cancel_wait_running(timer);
1368 } while (ret < 0);
1369 return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1372
1373 /**
1374 * hrtimer_get_remaining - get remaining time for the timer
1375 * @timer: the timer to read
1376 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1377 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1378 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1379 {
1380 unsigned long flags;
1381 ktime_t rem;
1382
1383 lock_hrtimer_base(timer, &flags);
1384 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1385 rem = hrtimer_expires_remaining_adjusted(timer);
1386 else
1387 rem = hrtimer_expires_remaining(timer);
1388 unlock_hrtimer_base(timer, &flags);
1389
1390 return rem;
1391 }
1392 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1393
1394 #ifdef CONFIG_NO_HZ_COMMON
1395 /**
1396 * hrtimer_get_next_event - get the time until next expiry event
1397 *
1398 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1399 */
hrtimer_get_next_event(void)1400 u64 hrtimer_get_next_event(void)
1401 {
1402 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1403 u64 expires = KTIME_MAX;
1404 unsigned long flags;
1405
1406 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1407
1408 if (!__hrtimer_hres_active(cpu_base))
1409 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1410
1411 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1412
1413 return expires;
1414 }
1415
1416 /**
1417 * hrtimer_next_event_without - time until next expiry event w/o one timer
1418 * @exclude: timer to exclude
1419 *
1420 * Returns the next expiry time over all timers except for the @exclude one or
1421 * KTIME_MAX if none of them is pending.
1422 */
hrtimer_next_event_without(const struct hrtimer * exclude)1423 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1424 {
1425 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1426 u64 expires = KTIME_MAX;
1427 unsigned long flags;
1428
1429 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1430
1431 if (__hrtimer_hres_active(cpu_base)) {
1432 unsigned int active;
1433
1434 if (!cpu_base->softirq_activated) {
1435 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1436 expires = __hrtimer_next_event_base(cpu_base, exclude,
1437 active, KTIME_MAX);
1438 }
1439 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1440 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1441 expires);
1442 }
1443
1444 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1445
1446 return expires;
1447 }
1448 #endif
1449
hrtimer_clockid_to_base(clockid_t clock_id)1450 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1451 {
1452 if (likely(clock_id < MAX_CLOCKS)) {
1453 int base = hrtimer_clock_to_base_table[clock_id];
1454
1455 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1456 return base;
1457 }
1458 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1459 return HRTIMER_BASE_MONOTONIC;
1460 }
1461
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1462 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1463 enum hrtimer_mode mode)
1464 {
1465 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1466 struct hrtimer_cpu_base *cpu_base;
1467 int base;
1468
1469 /*
1470 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1471 * marked for hard interrupt expiry mode are moved into soft
1472 * interrupt context for latency reasons and because the callbacks
1473 * can invoke functions which might sleep on RT, e.g. spin_lock().
1474 */
1475 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1476 softtimer = true;
1477
1478 memset(timer, 0, sizeof(struct hrtimer));
1479
1480 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1481
1482 /*
1483 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1484 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1485 * ensure POSIX compliance.
1486 */
1487 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1488 clock_id = CLOCK_MONOTONIC;
1489
1490 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1491 base += hrtimer_clockid_to_base(clock_id);
1492 timer->is_soft = softtimer;
1493 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1494 timer->base = &cpu_base->clock_base[base];
1495 timerqueue_init(&timer->node);
1496 }
1497
1498 /**
1499 * hrtimer_init - initialize a timer to the given clock
1500 * @timer: the timer to be initialized
1501 * @clock_id: the clock to be used
1502 * @mode: The modes which are relevant for intitialization:
1503 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1504 * HRTIMER_MODE_REL_SOFT
1505 *
1506 * The PINNED variants of the above can be handed in,
1507 * but the PINNED bit is ignored as pinning happens
1508 * when the hrtimer is started
1509 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1510 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1511 enum hrtimer_mode mode)
1512 {
1513 debug_init(timer, clock_id, mode);
1514 __hrtimer_init(timer, clock_id, mode);
1515 }
1516 EXPORT_SYMBOL_GPL(hrtimer_init);
1517
1518 /*
1519 * A timer is active, when it is enqueued into the rbtree or the
1520 * callback function is running or it's in the state of being migrated
1521 * to another cpu.
1522 *
1523 * It is important for this function to not return a false negative.
1524 */
hrtimer_active(const struct hrtimer * timer)1525 bool hrtimer_active(const struct hrtimer *timer)
1526 {
1527 struct hrtimer_clock_base *base;
1528 unsigned int seq;
1529
1530 do {
1531 base = READ_ONCE(timer->base);
1532 seq = raw_read_seqcount_begin(&base->seq);
1533 #ifdef CONFIG_CPU_ISOLATION_OPT
1534 if (((timer->state & ~HRTIMER_STATE_PINNED) !=
1535 HRTIMER_STATE_INACTIVE) || base->running == timer)
1536 #else
1537 if (timer->state != HRTIMER_STATE_INACTIVE ||
1538 base->running == timer)
1539 #endif
1540 return true;
1541
1542 } while (read_seqcount_retry(&base->seq, seq) ||
1543 base != READ_ONCE(timer->base));
1544
1545 return false;
1546 }
1547 EXPORT_SYMBOL_GPL(hrtimer_active);
1548
1549 /*
1550 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1551 * distinct sections:
1552 *
1553 * - queued: the timer is queued
1554 * - callback: the timer is being ran
1555 * - post: the timer is inactive or (re)queued
1556 *
1557 * On the read side we ensure we observe timer->state and cpu_base->running
1558 * from the same section, if anything changed while we looked at it, we retry.
1559 * This includes timer->base changing because sequence numbers alone are
1560 * insufficient for that.
1561 *
1562 * The sequence numbers are required because otherwise we could still observe
1563 * a false negative if the read side got smeared over multiple consequtive
1564 * __run_hrtimer() invocations.
1565 */
1566
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1567 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1568 struct hrtimer_clock_base *base,
1569 struct hrtimer *timer, ktime_t *now,
1570 unsigned long flags) __must_hold(&cpu_base->lock)
1571 {
1572 enum hrtimer_restart (*fn)(struct hrtimer *);
1573 bool expires_in_hardirq;
1574 int restart;
1575
1576 lockdep_assert_held(&cpu_base->lock);
1577
1578 debug_deactivate(timer);
1579 base->running = timer;
1580
1581 /*
1582 * Separate the ->running assignment from the ->state assignment.
1583 *
1584 * As with a regular write barrier, this ensures the read side in
1585 * hrtimer_active() cannot observe base->running == NULL &&
1586 * timer->state == INACTIVE.
1587 */
1588 raw_write_seqcount_barrier(&base->seq);
1589
1590 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1591 fn = timer->function;
1592
1593 /*
1594 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1595 * timer is restarted with a period then it becomes an absolute
1596 * timer. If its not restarted it does not matter.
1597 */
1598 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1599 timer->is_rel = false;
1600
1601 /*
1602 * The timer is marked as running in the CPU base, so it is
1603 * protected against migration to a different CPU even if the lock
1604 * is dropped.
1605 */
1606 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1607 trace_hrtimer_expire_entry(timer, now);
1608 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1609
1610 restart = fn(timer);
1611
1612 lockdep_hrtimer_exit(expires_in_hardirq);
1613 trace_hrtimer_expire_exit(timer);
1614 raw_spin_lock_irq(&cpu_base->lock);
1615
1616 /*
1617 * Note: We clear the running state after enqueue_hrtimer and
1618 * we do not reprogram the event hardware. Happens either in
1619 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1620 *
1621 * Note: Because we dropped the cpu_base->lock above,
1622 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1623 * for us already.
1624 */
1625 if (restart != HRTIMER_NORESTART &&
1626 !(timer->state & HRTIMER_STATE_ENQUEUED))
1627 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1628
1629 /*
1630 * Separate the ->running assignment from the ->state assignment.
1631 *
1632 * As with a regular write barrier, this ensures the read side in
1633 * hrtimer_active() cannot observe base->running.timer == NULL &&
1634 * timer->state == INACTIVE.
1635 */
1636 raw_write_seqcount_barrier(&base->seq);
1637
1638 WARN_ON_ONCE(base->running != timer);
1639 base->running = NULL;
1640 }
1641
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1642 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1643 unsigned long flags, unsigned int active_mask)
1644 {
1645 struct hrtimer_clock_base *base;
1646 unsigned int active = cpu_base->active_bases & active_mask;
1647
1648 for_each_active_base(base, cpu_base, active) {
1649 struct timerqueue_node *node;
1650 ktime_t basenow;
1651
1652 basenow = ktime_add(now, base->offset);
1653
1654 while ((node = timerqueue_getnext(&base->active))) {
1655 struct hrtimer *timer;
1656
1657 timer = container_of(node, struct hrtimer, node);
1658
1659 /*
1660 * The immediate goal for using the softexpires is
1661 * minimizing wakeups, not running timers at the
1662 * earliest interrupt after their soft expiration.
1663 * This allows us to avoid using a Priority Search
1664 * Tree, which can answer a stabbing querry for
1665 * overlapping intervals and instead use the simple
1666 * BST we already have.
1667 * We don't add extra wakeups by delaying timers that
1668 * are right-of a not yet expired timer, because that
1669 * timer will have to trigger a wakeup anyway.
1670 */
1671 if (basenow < hrtimer_get_softexpires_tv64(timer))
1672 break;
1673
1674 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1675 if (active_mask == HRTIMER_ACTIVE_SOFT)
1676 hrtimer_sync_wait_running(cpu_base, flags);
1677 }
1678 }
1679 }
1680
hrtimer_run_softirq(struct softirq_action * h)1681 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1682 {
1683 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1684 unsigned long flags;
1685 ktime_t now;
1686
1687 hrtimer_cpu_base_lock_expiry(cpu_base);
1688 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1689
1690 now = hrtimer_update_base(cpu_base);
1691 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1692
1693 cpu_base->softirq_activated = 0;
1694 hrtimer_update_softirq_timer(cpu_base, true);
1695
1696 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1697 hrtimer_cpu_base_unlock_expiry(cpu_base);
1698 }
1699
1700 #ifdef CONFIG_HIGH_RES_TIMERS
1701
1702 /*
1703 * High resolution timer interrupt
1704 * Called with interrupts disabled
1705 */
hrtimer_interrupt(struct clock_event_device * dev)1706 void hrtimer_interrupt(struct clock_event_device *dev)
1707 {
1708 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1709 ktime_t expires_next, now, entry_time, delta;
1710 unsigned long flags;
1711 int retries = 0;
1712
1713 BUG_ON(!cpu_base->hres_active);
1714 cpu_base->nr_events++;
1715 dev->next_event = KTIME_MAX;
1716
1717 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1718 entry_time = now = hrtimer_update_base(cpu_base);
1719 retry:
1720 cpu_base->in_hrtirq = 1;
1721 /*
1722 * We set expires_next to KTIME_MAX here with cpu_base->lock
1723 * held to prevent that a timer is enqueued in our queue via
1724 * the migration code. This does not affect enqueueing of
1725 * timers which run their callback and need to be requeued on
1726 * this CPU.
1727 */
1728 cpu_base->expires_next = KTIME_MAX;
1729
1730 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1731 cpu_base->softirq_expires_next = KTIME_MAX;
1732 cpu_base->softirq_activated = 1;
1733 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1734 }
1735
1736 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1737
1738 /* Reevaluate the clock bases for the [soft] next expiry */
1739 expires_next = hrtimer_update_next_event(cpu_base);
1740 /*
1741 * Store the new expiry value so the migration code can verify
1742 * against it.
1743 */
1744 cpu_base->expires_next = expires_next;
1745 cpu_base->in_hrtirq = 0;
1746 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1747
1748 /* Reprogramming necessary ? */
1749 if (!tick_program_event(expires_next, 0)) {
1750 cpu_base->hang_detected = 0;
1751 return;
1752 }
1753
1754 /*
1755 * The next timer was already expired due to:
1756 * - tracing
1757 * - long lasting callbacks
1758 * - being scheduled away when running in a VM
1759 *
1760 * We need to prevent that we loop forever in the hrtimer
1761 * interrupt routine. We give it 3 attempts to avoid
1762 * overreacting on some spurious event.
1763 *
1764 * Acquire base lock for updating the offsets and retrieving
1765 * the current time.
1766 */
1767 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 now = hrtimer_update_base(cpu_base);
1769 cpu_base->nr_retries++;
1770 if (++retries < 3)
1771 goto retry;
1772 /*
1773 * Give the system a chance to do something else than looping
1774 * here. We stored the entry time, so we know exactly how long
1775 * we spent here. We schedule the next event this amount of
1776 * time away.
1777 */
1778 cpu_base->nr_hangs++;
1779 cpu_base->hang_detected = 1;
1780 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1781
1782 delta = ktime_sub(now, entry_time);
1783 if ((unsigned int)delta > cpu_base->max_hang_time)
1784 cpu_base->max_hang_time = (unsigned int) delta;
1785 /*
1786 * Limit it to a sensible value as we enforce a longer
1787 * delay. Give the CPU at least 100ms to catch up.
1788 */
1789 if (delta > 100 * NSEC_PER_MSEC)
1790 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1791 else
1792 expires_next = ktime_add(now, delta);
1793 tick_program_event(expires_next, 1);
1794 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1795 }
1796
1797 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1798 static inline void __hrtimer_peek_ahead_timers(void)
1799 {
1800 struct tick_device *td;
1801
1802 if (!hrtimer_hres_active())
1803 return;
1804
1805 td = this_cpu_ptr(&tick_cpu_device);
1806 if (td && td->evtdev)
1807 hrtimer_interrupt(td->evtdev);
1808 }
1809
1810 #else /* CONFIG_HIGH_RES_TIMERS */
1811
__hrtimer_peek_ahead_timers(void)1812 static inline void __hrtimer_peek_ahead_timers(void) { }
1813
1814 #endif /* !CONFIG_HIGH_RES_TIMERS */
1815
1816 /*
1817 * Called from run_local_timers in hardirq context every jiffy
1818 */
hrtimer_run_queues(void)1819 void hrtimer_run_queues(void)
1820 {
1821 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1822 unsigned long flags;
1823 ktime_t now;
1824
1825 if (__hrtimer_hres_active(cpu_base))
1826 return;
1827
1828 /*
1829 * This _is_ ugly: We have to check periodically, whether we
1830 * can switch to highres and / or nohz mode. The clocksource
1831 * switch happens with xtime_lock held. Notification from
1832 * there only sets the check bit in the tick_oneshot code,
1833 * otherwise we might deadlock vs. xtime_lock.
1834 */
1835 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1836 hrtimer_switch_to_hres();
1837 return;
1838 }
1839
1840 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1841 now = hrtimer_update_base(cpu_base);
1842
1843 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1844 cpu_base->softirq_expires_next = KTIME_MAX;
1845 cpu_base->softirq_activated = 1;
1846 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1847 }
1848
1849 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1850 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1851 }
1852
1853 /*
1854 * Sleep related functions:
1855 */
hrtimer_wakeup(struct hrtimer * timer)1856 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1857 {
1858 struct hrtimer_sleeper *t =
1859 container_of(timer, struct hrtimer_sleeper, timer);
1860 struct task_struct *task = t->task;
1861
1862 t->task = NULL;
1863 if (task)
1864 wake_up_process(task);
1865
1866 return HRTIMER_NORESTART;
1867 }
1868
1869 /**
1870 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1871 * @sl: sleeper to be started
1872 * @mode: timer mode abs/rel
1873 *
1874 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1875 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1876 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1877 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1878 enum hrtimer_mode mode)
1879 {
1880 /*
1881 * Make the enqueue delivery mode check work on RT. If the sleeper
1882 * was initialized for hard interrupt delivery, force the mode bit.
1883 * This is a special case for hrtimer_sleepers because
1884 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1885 * fiddling with this decision is avoided at the call sites.
1886 */
1887 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1888 mode |= HRTIMER_MODE_HARD;
1889
1890 hrtimer_start_expires(&sl->timer, mode);
1891 }
1892 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1893
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1894 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1895 clockid_t clock_id, enum hrtimer_mode mode)
1896 {
1897 /*
1898 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1899 * marked for hard interrupt expiry mode are moved into soft
1900 * interrupt context either for latency reasons or because the
1901 * hrtimer callback takes regular spinlocks or invokes other
1902 * functions which are not suitable for hard interrupt context on
1903 * PREEMPT_RT.
1904 *
1905 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1906 * context, but there is a latency concern: Untrusted userspace can
1907 * spawn many threads which arm timers for the same expiry time on
1908 * the same CPU. That causes a latency spike due to the wakeup of
1909 * a gazillion threads.
1910 *
1911 * OTOH, priviledged real-time user space applications rely on the
1912 * low latency of hard interrupt wakeups. If the current task is in
1913 * a real-time scheduling class, mark the mode for hard interrupt
1914 * expiry.
1915 */
1916 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1917 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1918 mode |= HRTIMER_MODE_HARD;
1919 }
1920
1921 __hrtimer_init(&sl->timer, clock_id, mode);
1922 sl->timer.function = hrtimer_wakeup;
1923 sl->task = current;
1924 }
1925
1926 /**
1927 * hrtimer_init_sleeper - initialize sleeper to the given clock
1928 * @sl: sleeper to be initialized
1929 * @clock_id: the clock to be used
1930 * @mode: timer mode abs/rel
1931 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1932 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1933 enum hrtimer_mode mode)
1934 {
1935 debug_init(&sl->timer, clock_id, mode);
1936 __hrtimer_init_sleeper(sl, clock_id, mode);
1937
1938 }
1939 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1940
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1941 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1942 {
1943 switch(restart->nanosleep.type) {
1944 #ifdef CONFIG_COMPAT_32BIT_TIME
1945 case TT_COMPAT:
1946 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1947 return -EFAULT;
1948 break;
1949 #endif
1950 case TT_NATIVE:
1951 if (put_timespec64(ts, restart->nanosleep.rmtp))
1952 return -EFAULT;
1953 break;
1954 default:
1955 BUG();
1956 }
1957 return -ERESTART_RESTARTBLOCK;
1958 }
1959
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1960 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1961 {
1962 struct restart_block *restart;
1963
1964 do {
1965 set_current_state(TASK_INTERRUPTIBLE);
1966 hrtimer_sleeper_start_expires(t, mode);
1967
1968 if (likely(t->task))
1969 freezable_schedule();
1970
1971 hrtimer_cancel(&t->timer);
1972 mode = HRTIMER_MODE_ABS;
1973
1974 } while (t->task && !signal_pending(current));
1975
1976 __set_current_state(TASK_RUNNING);
1977
1978 if (!t->task)
1979 return 0;
1980
1981 restart = ¤t->restart_block;
1982 if (restart->nanosleep.type != TT_NONE) {
1983 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1984 struct timespec64 rmt;
1985
1986 if (rem <= 0)
1987 return 0;
1988 rmt = ktime_to_timespec64(rem);
1989
1990 return nanosleep_copyout(restart, &rmt);
1991 }
1992 return -ERESTART_RESTARTBLOCK;
1993 }
1994
hrtimer_nanosleep_restart(struct restart_block * restart)1995 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1996 {
1997 struct hrtimer_sleeper t;
1998 int ret;
1999
2000 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2001 HRTIMER_MODE_ABS);
2002 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2003 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2004 destroy_hrtimer_on_stack(&t.timer);
2005 return ret;
2006 }
2007
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2008 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2009 const clockid_t clockid)
2010 {
2011 struct restart_block *restart;
2012 struct hrtimer_sleeper t;
2013 int ret = 0;
2014 u64 slack;
2015
2016 slack = current->timer_slack_ns;
2017 if (dl_task(current) || rt_task(current))
2018 slack = 0;
2019
2020 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2021 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2022 ret = do_nanosleep(&t, mode);
2023 if (ret != -ERESTART_RESTARTBLOCK)
2024 goto out;
2025
2026 /* Absolute timers do not update the rmtp value and restart: */
2027 if (mode == HRTIMER_MODE_ABS) {
2028 ret = -ERESTARTNOHAND;
2029 goto out;
2030 }
2031
2032 restart = ¤t->restart_block;
2033 restart->nanosleep.clockid = t.timer.base->clockid;
2034 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2035 set_restart_fn(restart, hrtimer_nanosleep_restart);
2036 out:
2037 destroy_hrtimer_on_stack(&t.timer);
2038 return ret;
2039 }
2040
2041 #ifdef CONFIG_64BIT
2042
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2043 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2044 struct __kernel_timespec __user *, rmtp)
2045 {
2046 struct timespec64 tu;
2047
2048 if (get_timespec64(&tu, rqtp))
2049 return -EFAULT;
2050
2051 if (!timespec64_valid(&tu))
2052 return -EINVAL;
2053
2054 current->restart_block.fn = do_no_restart_syscall;
2055 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2056 current->restart_block.nanosleep.rmtp = rmtp;
2057 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2058 CLOCK_MONOTONIC);
2059 }
2060
2061 #endif
2062
2063 #ifdef CONFIG_COMPAT_32BIT_TIME
2064
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2065 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2066 struct old_timespec32 __user *, rmtp)
2067 {
2068 struct timespec64 tu;
2069
2070 if (get_old_timespec32(&tu, rqtp))
2071 return -EFAULT;
2072
2073 if (!timespec64_valid(&tu))
2074 return -EINVAL;
2075
2076 current->restart_block.fn = do_no_restart_syscall;
2077 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2078 current->restart_block.nanosleep.compat_rmtp = rmtp;
2079 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2080 CLOCK_MONOTONIC);
2081 }
2082 #endif
2083
2084 /*
2085 * Functions related to boot-time initialization:
2086 */
hrtimers_prepare_cpu(unsigned int cpu)2087 int hrtimers_prepare_cpu(unsigned int cpu)
2088 {
2089 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2090 int i;
2091
2092 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2093 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2094
2095 clock_b->cpu_base = cpu_base;
2096 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2097 timerqueue_init_head(&clock_b->active);
2098 }
2099
2100 cpu_base->cpu = cpu;
2101 cpu_base->active_bases = 0;
2102 cpu_base->hres_active = 0;
2103 cpu_base->hang_detected = 0;
2104 cpu_base->next_timer = NULL;
2105 cpu_base->softirq_next_timer = NULL;
2106 cpu_base->expires_next = KTIME_MAX;
2107 cpu_base->softirq_expires_next = KTIME_MAX;
2108 cpu_base->online = 1;
2109 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2110 return 0;
2111 }
2112
2113 #ifdef CONFIG_HOTPLUG_CPU
2114
2115 #ifdef CONFIG_CPU_ISOLATION_OPT
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base,bool remove_pinned)2116 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2117 struct hrtimer_clock_base *new_base,
2118 bool remove_pinned)
2119 {
2120 struct hrtimer *timer;
2121 struct timerqueue_node *node;
2122 struct timerqueue_head pinned;
2123 int is_pinned;
2124 bool is_hotplug = !cpu_online(old_base->cpu_base->cpu);
2125
2126 timerqueue_init_head(&pinned);
2127
2128 while ((node = timerqueue_getnext(&old_base->active))) {
2129 timer = container_of(node, struct hrtimer, node);
2130 if (is_hotplug)
2131 BUG_ON(hrtimer_callback_running(timer));
2132 debug_deactivate(timer);
2133
2134 /*
2135 * Mark it as ENQUEUED not INACTIVE otherwise the
2136 * timer could be seen as !active and just vanish away
2137 * under us on another CPU
2138 */
2139 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2140
2141 is_pinned = timer->state & HRTIMER_STATE_PINNED;
2142 if (!remove_pinned && is_pinned) {
2143 timerqueue_add(&pinned, &timer->node);
2144 continue;
2145 }
2146
2147 timer->base = new_base;
2148 /*
2149 * Enqueue the timers on the new cpu. This does not
2150 * reprogram the event device in case the timer
2151 * expires before the earliest on this CPU, but we run
2152 * hrtimer_interrupt after we migrated everything to
2153 * sort out already expired timers and reprogram the
2154 * event device.
2155 */
2156 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2157 }
2158
2159 /* Re-queue pinned timers for non-hotplug usecase */
2160 while ((node = timerqueue_getnext(&pinned))) {
2161 timer = container_of(node, struct hrtimer, node);
2162
2163 timerqueue_del(&pinned, &timer->node);
2164 enqueue_hrtimer(timer, old_base, HRTIMER_MODE_ABS);
2165 }
2166 }
2167
__migrate_hrtimers(unsigned int scpu,bool remove_pinned)2168 static void __migrate_hrtimers(unsigned int scpu, bool remove_pinned)
2169 {
2170 struct hrtimer_cpu_base *old_base, *new_base;
2171 unsigned long flags;
2172 int i;
2173
2174 local_irq_save(flags);
2175 old_base = &per_cpu(hrtimer_bases, scpu);
2176 new_base = this_cpu_ptr(&hrtimer_bases);
2177 /*
2178 * The caller is globally serialized and nobody else
2179 * takes two locks at once, deadlock is not possible.
2180 */
2181 raw_spin_lock(&new_base->lock);
2182 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2183
2184 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2185 migrate_hrtimer_list(&old_base->clock_base[i],
2186 &new_base->clock_base[i], remove_pinned);
2187 }
2188
2189 /*
2190 * The migration might have changed the first expiring softirq
2191 * timer on this CPU. Update it.
2192 */
2193 hrtimer_update_softirq_timer(new_base, false);
2194
2195 raw_spin_unlock(&old_base->lock);
2196 raw_spin_unlock(&new_base->lock);
2197
2198 /* Check, if we got expired work to do */
2199 __hrtimer_peek_ahead_timers();
2200 local_irq_restore(flags);
2201 }
2202
hrtimers_dead_cpu(unsigned int scpu)2203 int hrtimers_dead_cpu(unsigned int scpu)
2204 {
2205 BUG_ON(cpu_online(scpu));
2206 tick_cancel_sched_timer(scpu);
2207
2208 /*
2209 * this BH disable ensures that raise_softirq_irqoff() does
2210 * not wakeup ksoftirqd (and acquire the pi-lock) while
2211 * holding the cpu_base lock
2212 */
2213 local_bh_disable();
2214 __migrate_hrtimers(scpu, true);
2215 local_bh_enable();
2216 return 0;
2217 }
2218
hrtimer_quiesce_cpu(void * cpup)2219 void hrtimer_quiesce_cpu(void *cpup)
2220 {
2221 __migrate_hrtimers(*(int *)cpup, false);
2222 }
2223
2224 #else
2225
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2226 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2227 struct hrtimer_clock_base *new_base)
2228 {
2229 struct hrtimer *timer;
2230 struct timerqueue_node *node;
2231
2232 while ((node = timerqueue_getnext(&old_base->active))) {
2233 timer = container_of(node, struct hrtimer, node);
2234 BUG_ON(hrtimer_callback_running(timer));
2235 debug_deactivate(timer);
2236
2237 /*
2238 * Mark it as ENQUEUED not INACTIVE otherwise the
2239 * timer could be seen as !active and just vanish away
2240 * under us on another CPU
2241 */
2242 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2243 timer->base = new_base;
2244 /*
2245 * Enqueue the timers on the new cpu. This does not
2246 * reprogram the event device in case the timer
2247 * expires before the earliest on this CPU, but we run
2248 * hrtimer_interrupt after we migrated everything to
2249 * sort out already expired timers and reprogram the
2250 * event device.
2251 */
2252 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2253 }
2254 }
2255
hrtimers_dead_cpu(unsigned int scpu)2256 int hrtimers_dead_cpu(unsigned int scpu)
2257 {
2258 struct hrtimer_cpu_base *old_base, *new_base;
2259 int i;
2260
2261 BUG_ON(cpu_online(scpu));
2262 tick_cancel_sched_timer(scpu);
2263
2264 /*
2265 * this BH disable ensures that raise_softirq_irqoff() does
2266 * not wakeup ksoftirqd (and acquire the pi-lock) while
2267 * holding the cpu_base lock
2268 */
2269 local_bh_disable();
2270 local_irq_disable();
2271 old_base = &per_cpu(hrtimer_bases, scpu);
2272 new_base = this_cpu_ptr(&hrtimer_bases);
2273 /*
2274 * The caller is globally serialized and nobody else
2275 * takes two locks at once, deadlock is not possible.
2276 */
2277 raw_spin_lock(&new_base->lock);
2278 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2279
2280 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2281 migrate_hrtimer_list(&old_base->clock_base[i],
2282 &new_base->clock_base[i]);
2283 }
2284
2285 /*
2286 * The migration might have changed the first expiring softirq
2287 * timer on this CPU. Update it.
2288 */
2289 hrtimer_update_softirq_timer(new_base, false);
2290
2291 raw_spin_unlock(&old_base->lock);
2292 raw_spin_unlock(&new_base->lock);
2293
2294 /* Check, if we got expired work to do */
2295 __hrtimer_peek_ahead_timers();
2296 local_irq_enable();
2297 local_bh_enable();
2298 return 0;
2299 }
2300
2301 #endif /* CONFIG_CPU_ISOLATION_OPT */
2302
2303 #endif /* CONFIG_HOTPLUG_CPU */
2304
hrtimers_init(void)2305 void __init hrtimers_init(void)
2306 {
2307 hrtimers_prepare_cpu(smp_processor_id());
2308 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2309 }
2310
2311 /**
2312 * schedule_hrtimeout_range_clock - sleep until timeout
2313 * @expires: timeout value (ktime_t)
2314 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2315 * @mode: timer mode
2316 * @clock_id: timer clock to be used
2317 */
2318 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2319 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2320 const enum hrtimer_mode mode, clockid_t clock_id)
2321 {
2322 struct hrtimer_sleeper t;
2323
2324 /*
2325 * Optimize when a zero timeout value is given. It does not
2326 * matter whether this is an absolute or a relative time.
2327 */
2328 if (expires && *expires == 0) {
2329 __set_current_state(TASK_RUNNING);
2330 return 0;
2331 }
2332
2333 /*
2334 * A NULL parameter means "infinite"
2335 */
2336 if (!expires) {
2337 schedule();
2338 return -EINTR;
2339 }
2340
2341 /*
2342 * Override any slack passed by the user if under
2343 * rt contraints.
2344 */
2345 if (rt_task(current))
2346 delta = 0;
2347
2348 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2349 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2350 hrtimer_sleeper_start_expires(&t, mode);
2351
2352 if (likely(t.task))
2353 schedule();
2354
2355 hrtimer_cancel(&t.timer);
2356 destroy_hrtimer_on_stack(&t.timer);
2357
2358 __set_current_state(TASK_RUNNING);
2359
2360 return !t.task ? 0 : -EINTR;
2361 }
2362 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2363
2364 /**
2365 * schedule_hrtimeout_range - sleep until timeout
2366 * @expires: timeout value (ktime_t)
2367 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2368 * @mode: timer mode
2369 *
2370 * Make the current task sleep until the given expiry time has
2371 * elapsed. The routine will return immediately unless
2372 * the current task state has been set (see set_current_state()).
2373 *
2374 * The @delta argument gives the kernel the freedom to schedule the
2375 * actual wakeup to a time that is both power and performance friendly
2376 * for regular (non RT/DL) tasks.
2377 * The kernel give the normal best effort behavior for "@expires+@delta",
2378 * but may decide to fire the timer earlier, but no earlier than @expires.
2379 *
2380 * You can set the task state as follows -
2381 *
2382 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2383 * pass before the routine returns unless the current task is explicitly
2384 * woken up, (e.g. by wake_up_process()).
2385 *
2386 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2387 * delivered to the current task or the current task is explicitly woken
2388 * up.
2389 *
2390 * The current task state is guaranteed to be TASK_RUNNING when this
2391 * routine returns.
2392 *
2393 * Returns 0 when the timer has expired. If the task was woken before the
2394 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2395 * by an explicit wakeup, it returns -EINTR.
2396 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2397 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2398 const enum hrtimer_mode mode)
2399 {
2400 return schedule_hrtimeout_range_clock(expires, delta, mode,
2401 CLOCK_MONOTONIC);
2402 }
2403 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2404
2405 /**
2406 * schedule_hrtimeout - sleep until timeout
2407 * @expires: timeout value (ktime_t)
2408 * @mode: timer mode
2409 *
2410 * Make the current task sleep until the given expiry time has
2411 * elapsed. The routine will return immediately unless
2412 * the current task state has been set (see set_current_state()).
2413 *
2414 * You can set the task state as follows -
2415 *
2416 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2417 * pass before the routine returns unless the current task is explicitly
2418 * woken up, (e.g. by wake_up_process()).
2419 *
2420 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2421 * delivered to the current task or the current task is explicitly woken
2422 * up.
2423 *
2424 * The current task state is guaranteed to be TASK_RUNNING when this
2425 * routine returns.
2426 *
2427 * Returns 0 when the timer has expired. If the task was woken before the
2428 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2429 * by an explicit wakeup, it returns -EINTR.
2430 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2431 int __sched schedule_hrtimeout(ktime_t *expires,
2432 const enum hrtimer_mode mode)
2433 {
2434 return schedule_hrtimeout_range(expires, 0, mode);
2435 }
2436 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2437