1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_EXCEED_SWAP_PTE,
32 SCAN_EXCEED_SHARED_PTE,
33 SCAN_PTE_NON_PRESENT,
34 SCAN_PTE_UFFD_WP,
35 SCAN_PAGE_RO,
36 SCAN_LACK_REFERENCED_PAGE,
37 SCAN_PAGE_NULL,
38 SCAN_SCAN_ABORT,
39 SCAN_PAGE_COUNT,
40 SCAN_PAGE_LRU,
41 SCAN_PAGE_LOCK,
42 SCAN_PAGE_ANON,
43 SCAN_PAGE_COMPOUND,
44 SCAN_ANY_PROCESS,
45 SCAN_VMA_NULL,
46 SCAN_VMA_CHECK,
47 SCAN_ADDRESS_RANGE,
48 SCAN_SWAP_CACHE_PAGE,
49 SCAN_DEL_PAGE_LRU,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
52 SCAN_TRUNCATED,
53 SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
75 * fault.
76 */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 */
94 struct mm_slot {
95 struct hlist_node hash;
96 struct list_head mm_node;
97 struct mm_struct *mm;
98
99 /* pte-mapped THP in this mm */
100 int nr_pte_mapped_thp;
101 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
102 };
103
104 /**
105 * struct khugepaged_scan - cursor for scanning
106 * @mm_head: the head of the mm list to scan
107 * @mm_slot: the current mm_slot we are scanning
108 * @address: the next address inside that to be scanned
109 *
110 * There is only the one khugepaged_scan instance of this cursor structure.
111 */
112 struct khugepaged_scan {
113 struct list_head mm_head;
114 struct mm_slot *mm_slot;
115 unsigned long address;
116 };
117
118 static struct khugepaged_scan khugepaged_scan = {
119 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
120 };
121
122 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)123 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
124 struct kobj_attribute *attr,
125 char *buf)
126 {
127 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
128 }
129
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)130 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
131 struct kobj_attribute *attr,
132 const char *buf, size_t count)
133 {
134 unsigned long msecs;
135 int err;
136
137 err = kstrtoul(buf, 10, &msecs);
138 if (err || msecs > UINT_MAX)
139 return -EINVAL;
140
141 khugepaged_scan_sleep_millisecs = msecs;
142 khugepaged_sleep_expire = 0;
143 wake_up_interruptible(&khugepaged_wait);
144
145 return count;
146 }
147 static struct kobj_attribute scan_sleep_millisecs_attr =
148 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
149 scan_sleep_millisecs_store);
150
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)151 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
152 struct kobj_attribute *attr,
153 char *buf)
154 {
155 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
156 }
157
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)158 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
159 struct kobj_attribute *attr,
160 const char *buf, size_t count)
161 {
162 unsigned long msecs;
163 int err;
164
165 err = kstrtoul(buf, 10, &msecs);
166 if (err || msecs > UINT_MAX)
167 return -EINVAL;
168
169 khugepaged_alloc_sleep_millisecs = msecs;
170 khugepaged_sleep_expire = 0;
171 wake_up_interruptible(&khugepaged_wait);
172
173 return count;
174 }
175 static struct kobj_attribute alloc_sleep_millisecs_attr =
176 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
177 alloc_sleep_millisecs_store);
178
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 char *buf)
182 {
183 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
184 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count)
188 {
189 int err;
190 unsigned long pages;
191
192 err = kstrtoul(buf, 10, &pages);
193 if (err || !pages || pages > UINT_MAX)
194 return -EINVAL;
195
196 khugepaged_pages_to_scan = pages;
197
198 return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
202 pages_to_scan_store);
203
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)204 static ssize_t pages_collapsed_show(struct kobject *kobj,
205 struct kobj_attribute *attr,
206 char *buf)
207 {
208 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
209 }
210 static struct kobj_attribute pages_collapsed_attr =
211 __ATTR_RO(pages_collapsed);
212
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)213 static ssize_t full_scans_show(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 char *buf)
216 {
217 return sprintf(buf, "%u\n", khugepaged_full_scans);
218 }
219 static struct kobj_attribute full_scans_attr =
220 __ATTR_RO(full_scans);
221
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)222 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
223 struct kobj_attribute *attr, char *buf)
224 {
225 return single_hugepage_flag_show(kobj, attr, buf,
226 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
227 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)228 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
229 struct kobj_attribute *attr,
230 const char *buf, size_t count)
231 {
232 return single_hugepage_flag_store(kobj, attr, buf, count,
233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
235 static struct kobj_attribute khugepaged_defrag_attr =
236 __ATTR(defrag, 0644, khugepaged_defrag_show,
237 khugepaged_defrag_store);
238
239 /*
240 * max_ptes_none controls if khugepaged should collapse hugepages over
241 * any unmapped ptes in turn potentially increasing the memory
242 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
243 * reduce the available free memory in the system as it
244 * runs. Increasing max_ptes_none will instead potentially reduce the
245 * free memory in the system during the khugepaged scan.
246 */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)247 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
248 struct kobj_attribute *attr,
249 char *buf)
250 {
251 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
252 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)253 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t count)
256 {
257 int err;
258 unsigned long max_ptes_none;
259
260 err = kstrtoul(buf, 10, &max_ptes_none);
261 if (err || max_ptes_none > HPAGE_PMD_NR-1)
262 return -EINVAL;
263
264 khugepaged_max_ptes_none = max_ptes_none;
265
266 return count;
267 }
268 static struct kobj_attribute khugepaged_max_ptes_none_attr =
269 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
270 khugepaged_max_ptes_none_store);
271
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)272 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
273 struct kobj_attribute *attr,
274 char *buf)
275 {
276 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
277 }
278
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)279 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
280 struct kobj_attribute *attr,
281 const char *buf, size_t count)
282 {
283 int err;
284 unsigned long max_ptes_swap;
285
286 err = kstrtoul(buf, 10, &max_ptes_swap);
287 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
288 return -EINVAL;
289
290 khugepaged_max_ptes_swap = max_ptes_swap;
291
292 return count;
293 }
294
295 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
296 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
297 khugepaged_max_ptes_swap_store);
298
khugepaged_max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)299 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
300 struct kobj_attribute *attr,
301 char *buf)
302 {
303 return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
304 }
305
khugepaged_max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)306 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309 {
310 int err;
311 unsigned long max_ptes_shared;
312
313 err = kstrtoul(buf, 10, &max_ptes_shared);
314 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
315 return -EINVAL;
316
317 khugepaged_max_ptes_shared = max_ptes_shared;
318
319 return count;
320 }
321
322 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
323 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
324 khugepaged_max_ptes_shared_store);
325
326 static struct attribute *khugepaged_attr[] = {
327 &khugepaged_defrag_attr.attr,
328 &khugepaged_max_ptes_none_attr.attr,
329 &khugepaged_max_ptes_swap_attr.attr,
330 &khugepaged_max_ptes_shared_attr.attr,
331 &pages_to_scan_attr.attr,
332 &pages_collapsed_attr.attr,
333 &full_scans_attr.attr,
334 &scan_sleep_millisecs_attr.attr,
335 &alloc_sleep_millisecs_attr.attr,
336 NULL,
337 };
338
339 struct attribute_group khugepaged_attr_group = {
340 .attrs = khugepaged_attr,
341 .name = "khugepaged",
342 };
343 #endif /* CONFIG_SYSFS */
344
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)345 int hugepage_madvise(struct vm_area_struct *vma,
346 unsigned long *vm_flags, int advice)
347 {
348 switch (advice) {
349 case MADV_HUGEPAGE:
350 #ifdef CONFIG_S390
351 /*
352 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
353 * can't handle this properly after s390_enable_sie, so we simply
354 * ignore the madvise to prevent qemu from causing a SIGSEGV.
355 */
356 if (mm_has_pgste(vma->vm_mm))
357 return 0;
358 #endif
359 *vm_flags &= ~VM_NOHUGEPAGE;
360 *vm_flags |= VM_HUGEPAGE;
361 /*
362 * If the vma become good for khugepaged to scan,
363 * register it here without waiting a page fault that
364 * may not happen any time soon.
365 */
366 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
367 khugepaged_enter_vma_merge(vma, *vm_flags))
368 return -ENOMEM;
369 break;
370 case MADV_NOHUGEPAGE:
371 *vm_flags &= ~VM_HUGEPAGE;
372 *vm_flags |= VM_NOHUGEPAGE;
373 /*
374 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
375 * this vma even if we leave the mm registered in khugepaged if
376 * it got registered before VM_NOHUGEPAGE was set.
377 */
378 break;
379 }
380
381 return 0;
382 }
383
khugepaged_init(void)384 int __init khugepaged_init(void)
385 {
386 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
387 sizeof(struct mm_slot),
388 __alignof__(struct mm_slot), 0, NULL);
389 if (!mm_slot_cache)
390 return -ENOMEM;
391
392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396
397 return 0;
398 }
399
khugepaged_destroy(void)400 void __init khugepaged_destroy(void)
401 {
402 kmem_cache_destroy(mm_slot_cache);
403 }
404
alloc_mm_slot(void)405 static inline struct mm_slot *alloc_mm_slot(void)
406 {
407 if (!mm_slot_cache) /* initialization failed */
408 return NULL;
409 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
410 }
411
free_mm_slot(struct mm_slot * mm_slot)412 static inline void free_mm_slot(struct mm_slot *mm_slot)
413 {
414 kmem_cache_free(mm_slot_cache, mm_slot);
415 }
416
get_mm_slot(struct mm_struct * mm)417 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
418 {
419 struct mm_slot *mm_slot;
420
421 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
422 if (mm == mm_slot->mm)
423 return mm_slot;
424
425 return NULL;
426 }
427
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)428 static void insert_to_mm_slots_hash(struct mm_struct *mm,
429 struct mm_slot *mm_slot)
430 {
431 mm_slot->mm = mm;
432 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
433 }
434
khugepaged_test_exit(struct mm_struct * mm)435 static inline int khugepaged_test_exit(struct mm_struct *mm)
436 {
437 return atomic_read(&mm->mm_users) == 0;
438 }
439
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags)440 static bool hugepage_vma_check(struct vm_area_struct *vma,
441 unsigned long vm_flags)
442 {
443 if (!transhuge_vma_enabled(vma, vm_flags))
444 return false;
445
446 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
447 vma->vm_pgoff, HPAGE_PMD_NR))
448 return false;
449
450 /* Enabled via shmem mount options or sysfs settings. */
451 if (shmem_file(vma->vm_file))
452 return shmem_huge_enabled(vma);
453
454 /* THP settings require madvise. */
455 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
456 return false;
457
458 /* Only regular file is valid */
459 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
460 (vm_flags & VM_DENYWRITE)) {
461 struct inode *inode = vma->vm_file->f_inode;
462
463 return S_ISREG(inode->i_mode);
464 }
465
466 if (!vma->anon_vma || vma->vm_ops)
467 return false;
468 if (vma_is_temporary_stack(vma))
469 return false;
470 return !(vm_flags & VM_NO_KHUGEPAGED);
471 }
472
__khugepaged_enter(struct mm_struct * mm)473 int __khugepaged_enter(struct mm_struct *mm)
474 {
475 struct mm_slot *mm_slot;
476 int wakeup;
477
478 mm_slot = alloc_mm_slot();
479 if (!mm_slot)
480 return -ENOMEM;
481
482 /* __khugepaged_exit() must not run from under us */
483 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
484 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
485 free_mm_slot(mm_slot);
486 return 0;
487 }
488
489 spin_lock(&khugepaged_mm_lock);
490 insert_to_mm_slots_hash(mm, mm_slot);
491 /*
492 * Insert just behind the scanning cursor, to let the area settle
493 * down a little.
494 */
495 wakeup = list_empty(&khugepaged_scan.mm_head);
496 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
497 spin_unlock(&khugepaged_mm_lock);
498
499 mmgrab(mm);
500 if (wakeup)
501 wake_up_interruptible(&khugepaged_wait);
502
503 return 0;
504 }
505
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)506 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
507 unsigned long vm_flags)
508 {
509 unsigned long hstart, hend;
510
511 /*
512 * khugepaged only supports read-only files for non-shmem files.
513 * khugepaged does not yet work on special mappings. And
514 * file-private shmem THP is not supported.
515 */
516 if (!hugepage_vma_check(vma, vm_flags))
517 return 0;
518
519 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
520 hend = vma->vm_end & HPAGE_PMD_MASK;
521 if (hstart < hend)
522 return khugepaged_enter(vma, vm_flags);
523 return 0;
524 }
525
__khugepaged_exit(struct mm_struct * mm)526 void __khugepaged_exit(struct mm_struct *mm)
527 {
528 struct mm_slot *mm_slot;
529 int free = 0;
530
531 spin_lock(&khugepaged_mm_lock);
532 mm_slot = get_mm_slot(mm);
533 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
534 hash_del(&mm_slot->hash);
535 list_del(&mm_slot->mm_node);
536 free = 1;
537 }
538 spin_unlock(&khugepaged_mm_lock);
539
540 if (free) {
541 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
542 free_mm_slot(mm_slot);
543 mmdrop(mm);
544 } else if (mm_slot) {
545 /*
546 * This is required to serialize against
547 * khugepaged_test_exit() (which is guaranteed to run
548 * under mmap sem read mode). Stop here (after we
549 * return all pagetables will be destroyed) until
550 * khugepaged has finished working on the pagetables
551 * under the mmap_lock.
552 */
553 mmap_write_lock(mm);
554 mmap_write_unlock(mm);
555 }
556 }
557
release_pte_page(struct page * page)558 static void release_pte_page(struct page *page)
559 {
560 mod_node_page_state(page_pgdat(page),
561 NR_ISOLATED_ANON + page_is_file_lru(page),
562 -compound_nr(page));
563 unlock_page(page);
564 putback_lru_page(page);
565 }
566
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)567 static void release_pte_pages(pte_t *pte, pte_t *_pte,
568 struct list_head *compound_pagelist)
569 {
570 struct page *page, *tmp;
571
572 while (--_pte >= pte) {
573 pte_t pteval = *_pte;
574
575 page = pte_page(pteval);
576 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
577 !PageCompound(page))
578 release_pte_page(page);
579 }
580
581 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
582 list_del(&page->lru);
583 release_pte_page(page);
584 }
585 }
586
is_refcount_suitable(struct page * page)587 static bool is_refcount_suitable(struct page *page)
588 {
589 int expected_refcount;
590
591 expected_refcount = total_mapcount(page);
592 if (PageSwapCache(page))
593 expected_refcount += compound_nr(page);
594
595 return page_count(page) == expected_refcount;
596 }
597
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct list_head * compound_pagelist)598 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
599 unsigned long address,
600 pte_t *pte,
601 struct list_head *compound_pagelist)
602 {
603 struct page *page = NULL;
604 pte_t *_pte;
605 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
606 bool writable = false;
607
608 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
609 _pte++, address += PAGE_SIZE) {
610 pte_t pteval = *_pte;
611 if (pte_none(pteval) || (pte_present(pteval) &&
612 is_zero_pfn(pte_pfn(pteval)))) {
613 if (!userfaultfd_armed(vma) &&
614 ++none_or_zero <= khugepaged_max_ptes_none) {
615 continue;
616 } else {
617 result = SCAN_EXCEED_NONE_PTE;
618 goto out;
619 }
620 }
621 if (!pte_present(pteval)) {
622 result = SCAN_PTE_NON_PRESENT;
623 goto out;
624 }
625 if (pte_uffd_wp(pteval)) {
626 result = SCAN_PTE_UFFD_WP;
627 goto out;
628 }
629 page = vm_normal_page(vma, address, pteval);
630 if (unlikely(!page)) {
631 result = SCAN_PAGE_NULL;
632 goto out;
633 }
634
635 VM_BUG_ON_PAGE(!PageAnon(page), page);
636
637 if (page_mapcount(page) > 1 &&
638 ++shared > khugepaged_max_ptes_shared) {
639 result = SCAN_EXCEED_SHARED_PTE;
640 goto out;
641 }
642
643 if (PageCompound(page)) {
644 struct page *p;
645 page = compound_head(page);
646
647 /*
648 * Check if we have dealt with the compound page
649 * already
650 */
651 list_for_each_entry(p, compound_pagelist, lru) {
652 if (page == p)
653 goto next;
654 }
655 }
656
657 /*
658 * We can do it before isolate_lru_page because the
659 * page can't be freed from under us. NOTE: PG_lock
660 * is needed to serialize against split_huge_page
661 * when invoked from the VM.
662 */
663 if (!trylock_page(page)) {
664 result = SCAN_PAGE_LOCK;
665 goto out;
666 }
667
668 /*
669 * Check if the page has any GUP (or other external) pins.
670 *
671 * The page table that maps the page has been already unlinked
672 * from the page table tree and this process cannot get
673 * an additinal pin on the page.
674 *
675 * New pins can come later if the page is shared across fork,
676 * but not from this process. The other process cannot write to
677 * the page, only trigger CoW.
678 */
679 if (!is_refcount_suitable(page)) {
680 unlock_page(page);
681 result = SCAN_PAGE_COUNT;
682 goto out;
683 }
684 if (!pte_write(pteval) && PageSwapCache(page) &&
685 !reuse_swap_page(page, NULL)) {
686 /*
687 * Page is in the swap cache and cannot be re-used.
688 * It cannot be collapsed into a THP.
689 */
690 unlock_page(page);
691 result = SCAN_SWAP_CACHE_PAGE;
692 goto out;
693 }
694
695 /*
696 * Isolate the page to avoid collapsing an hugepage
697 * currently in use by the VM.
698 */
699 if (isolate_lru_page(page)) {
700 unlock_page(page);
701 result = SCAN_DEL_PAGE_LRU;
702 goto out;
703 }
704 mod_node_page_state(page_pgdat(page),
705 NR_ISOLATED_ANON + page_is_file_lru(page),
706 compound_nr(page));
707 VM_BUG_ON_PAGE(!PageLocked(page), page);
708 VM_BUG_ON_PAGE(PageLRU(page), page);
709
710 if (PageCompound(page))
711 list_add_tail(&page->lru, compound_pagelist);
712 next:
713 /* There should be enough young pte to collapse the page */
714 if (pte_young(pteval) ||
715 page_is_young(page) || PageReferenced(page) ||
716 mmu_notifier_test_young(vma->vm_mm, address))
717 referenced++;
718
719 if (pte_write(pteval))
720 writable = true;
721 }
722
723 if (unlikely(!writable)) {
724 result = SCAN_PAGE_RO;
725 } else if (unlikely(!referenced)) {
726 result = SCAN_LACK_REFERENCED_PAGE;
727 } else {
728 result = SCAN_SUCCEED;
729 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
730 referenced, writable, result);
731 return 1;
732 }
733 out:
734 release_pte_pages(pte, _pte, compound_pagelist);
735 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
736 referenced, writable, result);
737 return 0;
738 }
739
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)740 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
741 struct vm_area_struct *vma,
742 unsigned long address,
743 spinlock_t *ptl,
744 struct list_head *compound_pagelist)
745 {
746 struct page *src_page, *tmp;
747 pte_t *_pte;
748 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
749 _pte++, page++, address += PAGE_SIZE) {
750 pte_t pteval = *_pte;
751
752 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
753 clear_user_highpage(page, address);
754 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
755 if (is_zero_pfn(pte_pfn(pteval))) {
756 /*
757 * ptl mostly unnecessary.
758 */
759 spin_lock(ptl);
760 /*
761 * paravirt calls inside pte_clear here are
762 * superfluous.
763 */
764 pte_clear(vma->vm_mm, address, _pte);
765 spin_unlock(ptl);
766 }
767 } else {
768 src_page = pte_page(pteval);
769 copy_user_highpage(page, src_page, address, vma);
770 if (!PageCompound(src_page))
771 release_pte_page(src_page);
772 /*
773 * ptl mostly unnecessary, but preempt has to
774 * be disabled to update the per-cpu stats
775 * inside page_remove_rmap().
776 */
777 spin_lock(ptl);
778 /*
779 * paravirt calls inside pte_clear here are
780 * superfluous.
781 */
782 pte_clear(vma->vm_mm, address, _pte);
783 page_remove_rmap(src_page, false);
784 spin_unlock(ptl);
785 free_page_and_swap_cache(src_page);
786 }
787 }
788
789 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
790 list_del(&src_page->lru);
791 release_pte_page(src_page);
792 }
793 }
794
khugepaged_alloc_sleep(void)795 static void khugepaged_alloc_sleep(void)
796 {
797 DEFINE_WAIT(wait);
798
799 add_wait_queue(&khugepaged_wait, &wait);
800 freezable_schedule_timeout_interruptible(
801 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
802 remove_wait_queue(&khugepaged_wait, &wait);
803 }
804
805 static int khugepaged_node_load[MAX_NUMNODES];
806
khugepaged_scan_abort(int nid)807 static bool khugepaged_scan_abort(int nid)
808 {
809 int i;
810
811 /*
812 * If node_reclaim_mode is disabled, then no extra effort is made to
813 * allocate memory locally.
814 */
815 if (!node_reclaim_mode)
816 return false;
817
818 /* If there is a count for this node already, it must be acceptable */
819 if (khugepaged_node_load[nid])
820 return false;
821
822 for (i = 0; i < MAX_NUMNODES; i++) {
823 if (!khugepaged_node_load[i])
824 continue;
825 if (node_distance(nid, i) > node_reclaim_distance)
826 return true;
827 }
828 return false;
829 }
830
831 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)832 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
833 {
834 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
835 }
836
837 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)838 static int khugepaged_find_target_node(void)
839 {
840 static int last_khugepaged_target_node = NUMA_NO_NODE;
841 int nid, target_node = 0, max_value = 0;
842
843 /* find first node with max normal pages hit */
844 for (nid = 0; nid < MAX_NUMNODES; nid++)
845 if (khugepaged_node_load[nid] > max_value) {
846 max_value = khugepaged_node_load[nid];
847 target_node = nid;
848 }
849
850 /* do some balance if several nodes have the same hit record */
851 if (target_node <= last_khugepaged_target_node)
852 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
853 nid++)
854 if (max_value == khugepaged_node_load[nid]) {
855 target_node = nid;
856 break;
857 }
858
859 last_khugepaged_target_node = target_node;
860 return target_node;
861 }
862
khugepaged_prealloc_page(struct page ** hpage,bool * wait)863 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
864 {
865 if (IS_ERR(*hpage)) {
866 if (!*wait)
867 return false;
868
869 *wait = false;
870 *hpage = NULL;
871 khugepaged_alloc_sleep();
872 } else if (*hpage) {
873 put_page(*hpage);
874 *hpage = NULL;
875 }
876
877 return true;
878 }
879
880 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)881 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
882 {
883 VM_BUG_ON_PAGE(*hpage, *hpage);
884
885 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
886 if (unlikely(!*hpage)) {
887 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
888 *hpage = ERR_PTR(-ENOMEM);
889 return NULL;
890 }
891
892 prep_transhuge_page(*hpage);
893 count_vm_event(THP_COLLAPSE_ALLOC);
894 return *hpage;
895 }
896 #else
khugepaged_find_target_node(void)897 static int khugepaged_find_target_node(void)
898 {
899 return 0;
900 }
901
alloc_khugepaged_hugepage(void)902 static inline struct page *alloc_khugepaged_hugepage(void)
903 {
904 struct page *page;
905
906 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
907 HPAGE_PMD_ORDER);
908 if (page)
909 prep_transhuge_page(page);
910 return page;
911 }
912
khugepaged_alloc_hugepage(bool * wait)913 static struct page *khugepaged_alloc_hugepage(bool *wait)
914 {
915 struct page *hpage;
916
917 do {
918 hpage = alloc_khugepaged_hugepage();
919 if (!hpage) {
920 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
921 if (!*wait)
922 return NULL;
923
924 *wait = false;
925 khugepaged_alloc_sleep();
926 } else
927 count_vm_event(THP_COLLAPSE_ALLOC);
928 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
929
930 return hpage;
931 }
932
khugepaged_prealloc_page(struct page ** hpage,bool * wait)933 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
934 {
935 /*
936 * If the hpage allocated earlier was briefly exposed in page cache
937 * before collapse_file() failed, it is possible that racing lookups
938 * have not yet completed, and would then be unpleasantly surprised by
939 * finding the hpage reused for the same mapping at a different offset.
940 * Just release the previous allocation if there is any danger of that.
941 */
942 if (*hpage && page_count(*hpage) > 1) {
943 put_page(*hpage);
944 *hpage = NULL;
945 }
946
947 if (!*hpage)
948 *hpage = khugepaged_alloc_hugepage(wait);
949
950 if (unlikely(!*hpage))
951 return false;
952
953 return true;
954 }
955
956 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)957 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
958 {
959 VM_BUG_ON(!*hpage);
960
961 return *hpage;
962 }
963 #endif
964
965 /*
966 * If mmap_lock temporarily dropped, revalidate vma
967 * before taking mmap_lock.
968 * Return 0 if succeeds, otherwise return none-zero
969 * value (scan code).
970 */
971
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)972 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
973 struct vm_area_struct **vmap)
974 {
975 struct vm_area_struct *vma;
976 unsigned long hstart, hend;
977
978 if (unlikely(khugepaged_test_exit(mm)))
979 return SCAN_ANY_PROCESS;
980
981 *vmap = vma = find_vma(mm, address);
982 if (!vma)
983 return SCAN_VMA_NULL;
984
985 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
986 hend = vma->vm_end & HPAGE_PMD_MASK;
987 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
988 return SCAN_ADDRESS_RANGE;
989 if (!hugepage_vma_check(vma, vma->vm_flags))
990 return SCAN_VMA_CHECK;
991 /* Anon VMA expected */
992 if (!vma->anon_vma || vma->vm_ops)
993 return SCAN_VMA_CHECK;
994 return 0;
995 }
996
997 /*
998 * Bring missing pages in from swap, to complete THP collapse.
999 * Only done if khugepaged_scan_pmd believes it is worthwhile.
1000 *
1001 * Called and returns without pte mapped or spinlocks held,
1002 * but with mmap_lock held to protect against vma changes.
1003 */
1004
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,int referenced)1005 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1006 struct vm_area_struct *vma,
1007 unsigned long address, pmd_t *pmd,
1008 int referenced)
1009 {
1010 int swapped_in = 0;
1011 vm_fault_t ret = 0;
1012 struct vm_fault vmf = {
1013 .vma = vma,
1014 .address = address,
1015 .flags = FAULT_FLAG_ALLOW_RETRY,
1016 .pmd = pmd,
1017 .pgoff = linear_page_index(vma, address),
1018 };
1019
1020 vmf.pte = pte_offset_map(pmd, address);
1021 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
1022 vmf.pte++, vmf.address += PAGE_SIZE) {
1023 vmf.orig_pte = *vmf.pte;
1024 if (!is_swap_pte(vmf.orig_pte))
1025 continue;
1026 swapped_in++;
1027 ret = do_swap_page(&vmf);
1028
1029 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1030 if (ret & VM_FAULT_RETRY) {
1031 mmap_read_lock(mm);
1032 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1033 /* vma is no longer available, don't continue to swapin */
1034 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1035 return false;
1036 }
1037 /* check if the pmd is still valid */
1038 if (mm_find_pmd(mm, address) != pmd) {
1039 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1040 return false;
1041 }
1042 }
1043 if (ret & VM_FAULT_ERROR) {
1044 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1045 return false;
1046 }
1047 /* pte is unmapped now, we need to map it */
1048 vmf.pte = pte_offset_map(pmd, vmf.address);
1049 }
1050 vmf.pte--;
1051 pte_unmap(vmf.pte);
1052
1053 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1054 if (swapped_in)
1055 lru_add_drain();
1056
1057 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1058 return true;
1059 }
1060
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced,int unmapped)1061 static void collapse_huge_page(struct mm_struct *mm,
1062 unsigned long address,
1063 struct page **hpage,
1064 int node, int referenced, int unmapped)
1065 {
1066 LIST_HEAD(compound_pagelist);
1067 pmd_t *pmd, _pmd;
1068 pte_t *pte;
1069 pgtable_t pgtable;
1070 struct page *new_page;
1071 spinlock_t *pmd_ptl, *pte_ptl;
1072 int isolated = 0, result = 0;
1073 struct vm_area_struct *vma;
1074 struct mmu_notifier_range range;
1075 gfp_t gfp;
1076
1077 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1078
1079 /* Only allocate from the target node */
1080 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1081
1082 /*
1083 * Before allocating the hugepage, release the mmap_lock read lock.
1084 * The allocation can take potentially a long time if it involves
1085 * sync compaction, and we do not need to hold the mmap_lock during
1086 * that. We will recheck the vma after taking it again in write mode.
1087 */
1088 mmap_read_unlock(mm);
1089 new_page = khugepaged_alloc_page(hpage, gfp, node);
1090 if (!new_page) {
1091 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1092 goto out_nolock;
1093 }
1094
1095 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1096 result = SCAN_CGROUP_CHARGE_FAIL;
1097 goto out_nolock;
1098 }
1099 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1100
1101 mmap_read_lock(mm);
1102 result = hugepage_vma_revalidate(mm, address, &vma);
1103 if (result) {
1104 mmap_read_unlock(mm);
1105 goto out_nolock;
1106 }
1107
1108 pmd = mm_find_pmd(mm, address);
1109 if (!pmd) {
1110 result = SCAN_PMD_NULL;
1111 mmap_read_unlock(mm);
1112 goto out_nolock;
1113 }
1114
1115 /*
1116 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1117 * If it fails, we release mmap_lock and jump out_nolock.
1118 * Continuing to collapse causes inconsistency.
1119 */
1120 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1121 pmd, referenced)) {
1122 mmap_read_unlock(mm);
1123 goto out_nolock;
1124 }
1125
1126 mmap_read_unlock(mm);
1127 /*
1128 * Prevent all access to pagetables with the exception of
1129 * gup_fast later handled by the ptep_clear_flush and the VM
1130 * handled by the anon_vma lock + PG_lock.
1131 */
1132 mmap_write_lock(mm);
1133 result = hugepage_vma_revalidate(mm, address, &vma);
1134 if (result)
1135 goto out;
1136 /* check if the pmd is still valid */
1137 if (mm_find_pmd(mm, address) != pmd)
1138 goto out;
1139
1140 anon_vma_lock_write(vma->anon_vma);
1141
1142 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1143 address, address + HPAGE_PMD_SIZE);
1144 mmu_notifier_invalidate_range_start(&range);
1145
1146 pte = pte_offset_map(pmd, address);
1147 pte_ptl = pte_lockptr(mm, pmd);
1148
1149 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1150 /*
1151 * This removes any huge TLB entry from the CPU so we won't allow
1152 * huge and small TLB entries for the same virtual address to
1153 * avoid the risk of CPU bugs in that area.
1154 *
1155 * Parallel fast GUP is fine since fast GUP will back off when
1156 * it detects PMD is changed.
1157 */
1158 _pmd = pmdp_collapse_flush(vma, address, pmd);
1159 spin_unlock(pmd_ptl);
1160 mmu_notifier_invalidate_range_end(&range);
1161 tlb_remove_table_sync_one();
1162
1163 spin_lock(pte_ptl);
1164 isolated = __collapse_huge_page_isolate(vma, address, pte,
1165 &compound_pagelist);
1166 spin_unlock(pte_ptl);
1167
1168 if (unlikely(!isolated)) {
1169 pte_unmap(pte);
1170 spin_lock(pmd_ptl);
1171 BUG_ON(!pmd_none(*pmd));
1172 /*
1173 * We can only use set_pmd_at when establishing
1174 * hugepmds and never for establishing regular pmds that
1175 * points to regular pagetables. Use pmd_populate for that
1176 */
1177 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1178 spin_unlock(pmd_ptl);
1179 anon_vma_unlock_write(vma->anon_vma);
1180 result = SCAN_FAIL;
1181 goto out;
1182 }
1183
1184 /*
1185 * All pages are isolated and locked so anon_vma rmap
1186 * can't run anymore.
1187 */
1188 anon_vma_unlock_write(vma->anon_vma);
1189
1190 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1191 &compound_pagelist);
1192 pte_unmap(pte);
1193 __SetPageUptodate(new_page);
1194 pgtable = pmd_pgtable(_pmd);
1195
1196 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1197 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1198
1199 /*
1200 * spin_lock() below is not the equivalent of smp_wmb(), so
1201 * this is needed to avoid the copy_huge_page writes to become
1202 * visible after the set_pmd_at() write.
1203 */
1204 smp_wmb();
1205
1206 spin_lock(pmd_ptl);
1207 BUG_ON(!pmd_none(*pmd));
1208 page_add_new_anon_rmap(new_page, vma, address, true);
1209 lru_cache_add_inactive_or_unevictable(new_page, vma);
1210 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1211 set_pmd_at(mm, address, pmd, _pmd);
1212 update_mmu_cache_pmd(vma, address, pmd);
1213 spin_unlock(pmd_ptl);
1214
1215 *hpage = NULL;
1216
1217 khugepaged_pages_collapsed++;
1218 result = SCAN_SUCCEED;
1219 out_up_write:
1220 mmap_write_unlock(mm);
1221 out_nolock:
1222 if (!IS_ERR_OR_NULL(*hpage))
1223 mem_cgroup_uncharge(*hpage);
1224 trace_mm_collapse_huge_page(mm, isolated, result);
1225 return;
1226 out:
1227 goto out_up_write;
1228 }
1229
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1230 static int khugepaged_scan_pmd(struct mm_struct *mm,
1231 struct vm_area_struct *vma,
1232 unsigned long address,
1233 struct page **hpage)
1234 {
1235 pmd_t *pmd;
1236 pte_t *pte, *_pte;
1237 int ret = 0, result = 0, referenced = 0;
1238 int none_or_zero = 0, shared = 0;
1239 struct page *page = NULL;
1240 unsigned long _address;
1241 spinlock_t *ptl;
1242 int node = NUMA_NO_NODE, unmapped = 0;
1243 bool writable = false;
1244
1245 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1246
1247 pmd = mm_find_pmd(mm, address);
1248 if (!pmd) {
1249 result = SCAN_PMD_NULL;
1250 goto out;
1251 }
1252
1253 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1254 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1255 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1256 _pte++, _address += PAGE_SIZE) {
1257 pte_t pteval = *_pte;
1258 if (is_swap_pte(pteval)) {
1259 if (++unmapped <= khugepaged_max_ptes_swap) {
1260 /*
1261 * Always be strict with uffd-wp
1262 * enabled swap entries. Please see
1263 * comment below for pte_uffd_wp().
1264 */
1265 if (pte_swp_uffd_wp(pteval)) {
1266 result = SCAN_PTE_UFFD_WP;
1267 goto out_unmap;
1268 }
1269 continue;
1270 } else {
1271 result = SCAN_EXCEED_SWAP_PTE;
1272 goto out_unmap;
1273 }
1274 }
1275 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1276 if (!userfaultfd_armed(vma) &&
1277 ++none_or_zero <= khugepaged_max_ptes_none) {
1278 continue;
1279 } else {
1280 result = SCAN_EXCEED_NONE_PTE;
1281 goto out_unmap;
1282 }
1283 }
1284 if (!pte_present(pteval)) {
1285 result = SCAN_PTE_NON_PRESENT;
1286 goto out_unmap;
1287 }
1288 if (pte_uffd_wp(pteval)) {
1289 /*
1290 * Don't collapse the page if any of the small
1291 * PTEs are armed with uffd write protection.
1292 * Here we can also mark the new huge pmd as
1293 * write protected if any of the small ones is
1294 * marked but that could bring uknown
1295 * userfault messages that falls outside of
1296 * the registered range. So, just be simple.
1297 */
1298 result = SCAN_PTE_UFFD_WP;
1299 goto out_unmap;
1300 }
1301 if (pte_write(pteval))
1302 writable = true;
1303
1304 page = vm_normal_page(vma, _address, pteval);
1305 if (unlikely(!page)) {
1306 result = SCAN_PAGE_NULL;
1307 goto out_unmap;
1308 }
1309
1310 if (page_mapcount(page) > 1 &&
1311 ++shared > khugepaged_max_ptes_shared) {
1312 result = SCAN_EXCEED_SHARED_PTE;
1313 goto out_unmap;
1314 }
1315
1316 page = compound_head(page);
1317
1318 /*
1319 * Record which node the original page is from and save this
1320 * information to khugepaged_node_load[].
1321 * Khupaged will allocate hugepage from the node has the max
1322 * hit record.
1323 */
1324 node = page_to_nid(page);
1325 if (khugepaged_scan_abort(node)) {
1326 result = SCAN_SCAN_ABORT;
1327 goto out_unmap;
1328 }
1329 khugepaged_node_load[node]++;
1330 if (!PageLRU(page)) {
1331 result = SCAN_PAGE_LRU;
1332 goto out_unmap;
1333 }
1334 if (PageLocked(page)) {
1335 result = SCAN_PAGE_LOCK;
1336 goto out_unmap;
1337 }
1338 if (!PageAnon(page)) {
1339 result = SCAN_PAGE_ANON;
1340 goto out_unmap;
1341 }
1342
1343 /*
1344 * Check if the page has any GUP (or other external) pins.
1345 *
1346 * Here the check is racy it may see totmal_mapcount > refcount
1347 * in some cases.
1348 * For example, one process with one forked child process.
1349 * The parent has the PMD split due to MADV_DONTNEED, then
1350 * the child is trying unmap the whole PMD, but khugepaged
1351 * may be scanning the parent between the child has
1352 * PageDoubleMap flag cleared and dec the mapcount. So
1353 * khugepaged may see total_mapcount > refcount.
1354 *
1355 * But such case is ephemeral we could always retry collapse
1356 * later. However it may report false positive if the page
1357 * has excessive GUP pins (i.e. 512). Anyway the same check
1358 * will be done again later the risk seems low.
1359 */
1360 if (!is_refcount_suitable(page)) {
1361 result = SCAN_PAGE_COUNT;
1362 goto out_unmap;
1363 }
1364 if (pte_young(pteval) ||
1365 page_is_young(page) || PageReferenced(page) ||
1366 mmu_notifier_test_young(vma->vm_mm, address))
1367 referenced++;
1368 }
1369 if (!writable) {
1370 result = SCAN_PAGE_RO;
1371 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1372 result = SCAN_LACK_REFERENCED_PAGE;
1373 } else {
1374 result = SCAN_SUCCEED;
1375 ret = 1;
1376 }
1377 out_unmap:
1378 pte_unmap_unlock(pte, ptl);
1379 if (ret) {
1380 node = khugepaged_find_target_node();
1381 /* collapse_huge_page will return with the mmap_lock released */
1382 collapse_huge_page(mm, address, hpage, node,
1383 referenced, unmapped);
1384 }
1385 out:
1386 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1387 none_or_zero, result, unmapped);
1388 return ret;
1389 }
1390
collect_mm_slot(struct mm_slot * mm_slot)1391 static void collect_mm_slot(struct mm_slot *mm_slot)
1392 {
1393 struct mm_struct *mm = mm_slot->mm;
1394
1395 lockdep_assert_held(&khugepaged_mm_lock);
1396
1397 if (khugepaged_test_exit(mm)) {
1398 /* free mm_slot */
1399 hash_del(&mm_slot->hash);
1400 list_del(&mm_slot->mm_node);
1401
1402 /*
1403 * Not strictly needed because the mm exited already.
1404 *
1405 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1406 */
1407
1408 /* khugepaged_mm_lock actually not necessary for the below */
1409 free_mm_slot(mm_slot);
1410 mmdrop(mm);
1411 }
1412 }
1413
1414 #ifdef CONFIG_SHMEM
1415 /*
1416 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1417 * khugepaged should try to collapse the page table.
1418 */
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1419 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1420 unsigned long addr)
1421 {
1422 struct mm_slot *mm_slot;
1423
1424 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1425
1426 spin_lock(&khugepaged_mm_lock);
1427 mm_slot = get_mm_slot(mm);
1428 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1429 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1430 spin_unlock(&khugepaged_mm_lock);
1431 return 0;
1432 }
1433
1434 /**
1435 * Try to collapse a pte-mapped THP for mm at address haddr.
1436 *
1437 * This function checks whether all the PTEs in the PMD are pointing to the
1438 * right THP. If so, retract the page table so the THP can refault in with
1439 * as pmd-mapped.
1440 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1441 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1442 {
1443 unsigned long haddr = addr & HPAGE_PMD_MASK;
1444 struct vm_area_struct *vma = find_vma(mm, haddr);
1445 struct page *hpage;
1446 pte_t *start_pte, *pte;
1447 pmd_t *pmd, _pmd;
1448 spinlock_t *ptl;
1449 int count = 0;
1450 int i;
1451 struct mmu_notifier_range range;
1452
1453 if (!vma || !vma->vm_file ||
1454 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1455 return;
1456
1457 /*
1458 * This vm_flags may not have VM_HUGEPAGE if the page was not
1459 * collapsed by this mm. But we can still collapse if the page is
1460 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1461 * will not fail the vma for missing VM_HUGEPAGE
1462 */
1463 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1464 return;
1465
1466 hpage = find_lock_page(vma->vm_file->f_mapping,
1467 linear_page_index(vma, haddr));
1468 if (!hpage)
1469 return;
1470
1471 if (!PageHead(hpage))
1472 goto drop_hpage;
1473
1474 pmd = mm_find_pmd(mm, haddr);
1475 if (!pmd)
1476 goto drop_hpage;
1477
1478 /*
1479 * We need to lock the mapping so that from here on, only GUP-fast and
1480 * hardware page walks can access the parts of the page tables that
1481 * we're operating on.
1482 */
1483 i_mmap_lock_write(vma->vm_file->f_mapping);
1484
1485 /*
1486 * This spinlock should be unnecessary: Nobody else should be accessing
1487 * the page tables under spinlock protection here, only
1488 * lockless_pages_from_mm() and the hardware page walker can access page
1489 * tables while all the high-level locks are held in write mode.
1490 */
1491 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1492
1493 /* step 1: check all mapped PTEs are to the right huge page */
1494 for (i = 0, addr = haddr, pte = start_pte;
1495 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1496 struct page *page;
1497
1498 /* empty pte, skip */
1499 if (pte_none(*pte))
1500 continue;
1501
1502 /* page swapped out, abort */
1503 if (!pte_present(*pte))
1504 goto abort;
1505
1506 page = vm_normal_page(vma, addr, *pte);
1507
1508 /*
1509 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1510 * page table, but the new page will not be a subpage of hpage.
1511 */
1512 if (hpage + i != page)
1513 goto abort;
1514 count++;
1515 }
1516
1517 /* step 2: adjust rmap */
1518 for (i = 0, addr = haddr, pte = start_pte;
1519 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1520 struct page *page;
1521
1522 if (pte_none(*pte))
1523 continue;
1524 page = vm_normal_page(vma, addr, *pte);
1525 page_remove_rmap(page, false);
1526 }
1527
1528 pte_unmap_unlock(start_pte, ptl);
1529
1530 /* step 3: set proper refcount and mm_counters. */
1531 if (count) {
1532 page_ref_sub(hpage, count);
1533 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1534 }
1535
1536 /* step 4: collapse pmd */
1537 /* we make no change to anon, but protect concurrent anon page lookup */
1538 if (vma->anon_vma)
1539 anon_vma_lock_write(vma->anon_vma);
1540
1541 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1542 haddr + HPAGE_PMD_SIZE);
1543 mmu_notifier_invalidate_range_start(&range);
1544 _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1545 mm_dec_nr_ptes(mm);
1546 tlb_remove_table_sync_one();
1547 mmu_notifier_invalidate_range_end(&range);
1548 pte_free(mm, pmd_pgtable(_pmd));
1549
1550 if (vma->anon_vma)
1551 anon_vma_unlock_write(vma->anon_vma);
1552 i_mmap_unlock_write(vma->vm_file->f_mapping);
1553
1554 drop_hpage:
1555 unlock_page(hpage);
1556 put_page(hpage);
1557 return;
1558
1559 abort:
1560 pte_unmap_unlock(start_pte, ptl);
1561 i_mmap_unlock_write(vma->vm_file->f_mapping);
1562 goto drop_hpage;
1563 }
1564
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)1565 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1566 {
1567 struct mm_struct *mm = mm_slot->mm;
1568 int i;
1569
1570 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1571 return 0;
1572
1573 if (!mmap_write_trylock(mm))
1574 return -EBUSY;
1575
1576 if (unlikely(khugepaged_test_exit(mm)))
1577 goto out;
1578
1579 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1580 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1581
1582 out:
1583 mm_slot->nr_pte_mapped_thp = 0;
1584 mmap_write_unlock(mm);
1585 return 0;
1586 }
1587
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1588 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1589 {
1590 struct vm_area_struct *vma;
1591 struct mm_struct *mm;
1592 unsigned long addr;
1593 pmd_t *pmd, _pmd;
1594
1595 i_mmap_lock_write(mapping);
1596 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1597 /*
1598 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1599 * got written to. These VMAs are likely not worth investing
1600 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1601 * later.
1602 *
1603 * Not that vma->anon_vma check is racy: it can be set up after
1604 * the check but before we took mmap_lock by the fault path.
1605 * But page lock would prevent establishing any new ptes of the
1606 * page, so we are safe.
1607 *
1608 * An alternative would be drop the check, but check that page
1609 * table is clear before calling pmdp_collapse_flush() under
1610 * ptl. It has higher chance to recover THP for the VMA, but
1611 * has higher cost too. It would also probably require locking
1612 * the anon_vma.
1613 */
1614 if (READ_ONCE(vma->anon_vma))
1615 continue;
1616 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1617 if (addr & ~HPAGE_PMD_MASK)
1618 continue;
1619 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1620 continue;
1621 mm = vma->vm_mm;
1622 pmd = mm_find_pmd(mm, addr);
1623 if (!pmd)
1624 continue;
1625 /*
1626 * We need exclusive mmap_lock to retract page table.
1627 *
1628 * We use trylock due to lock inversion: we need to acquire
1629 * mmap_lock while holding page lock. Fault path does it in
1630 * reverse order. Trylock is a way to avoid deadlock.
1631 */
1632 if (mmap_write_trylock(mm)) {
1633 /*
1634 * Re-check whether we have an ->anon_vma, because
1635 * collapse_and_free_pmd() requires that either no
1636 * ->anon_vma exists or the anon_vma is locked.
1637 * We already checked ->anon_vma above, but that check
1638 * is racy because ->anon_vma can be populated under the
1639 * mmap lock in read mode.
1640 */
1641 if (vma->anon_vma) {
1642 result = SCAN_PAGE_ANON;
1643 goto unlock_next;
1644 }
1645 if (!khugepaged_test_exit(mm)) {
1646 struct mmu_notifier_range range;
1647
1648 mmu_notifier_range_init(&range,
1649 MMU_NOTIFY_CLEAR, 0,
1650 NULL, mm, addr,
1651 addr + HPAGE_PMD_SIZE);
1652 mmu_notifier_invalidate_range_start(&range);
1653 /* assume page table is clear */
1654 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1655 mm_dec_nr_ptes(mm);
1656 tlb_remove_table_sync_one();
1657 pte_free(mm, pmd_pgtable(_pmd));
1658 mmu_notifier_invalidate_range_end(&range);
1659 }
1660 mmap_write_unlock(mm);
1661 } else {
1662 /* Try again later */
1663 khugepaged_add_pte_mapped_thp(mm, addr);
1664 }
1665 }
1666 i_mmap_unlock_write(mapping);
1667 }
1668
1669 /**
1670 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1671 *
1672 * Basic scheme is simple, details are more complex:
1673 * - allocate and lock a new huge page;
1674 * - scan page cache replacing old pages with the new one
1675 * + swap/gup in pages if necessary;
1676 * + fill in gaps;
1677 * + keep old pages around in case rollback is required;
1678 * - if replacing succeeds:
1679 * + copy data over;
1680 * + free old pages;
1681 * + unlock huge page;
1682 * - if replacing failed;
1683 * + put all pages back and unfreeze them;
1684 * + restore gaps in the page cache;
1685 * + unlock and free huge page;
1686 */
collapse_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage,int node)1687 static void collapse_file(struct mm_struct *mm,
1688 struct file *file, pgoff_t start,
1689 struct page **hpage, int node)
1690 {
1691 struct address_space *mapping = file->f_mapping;
1692 gfp_t gfp;
1693 struct page *new_page;
1694 pgoff_t index, end = start + HPAGE_PMD_NR;
1695 LIST_HEAD(pagelist);
1696 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1697 int nr_none = 0, result = SCAN_SUCCEED;
1698 bool is_shmem = shmem_file(file);
1699
1700 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1701 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1702
1703 /* Only allocate from the target node */
1704 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1705
1706 new_page = khugepaged_alloc_page(hpage, gfp, node);
1707 if (!new_page) {
1708 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1709 goto out;
1710 }
1711
1712 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1713 result = SCAN_CGROUP_CHARGE_FAIL;
1714 goto out;
1715 }
1716 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1717
1718 /* This will be less messy when we use multi-index entries */
1719 do {
1720 xas_lock_irq(&xas);
1721 xas_create_range(&xas);
1722 if (!xas_error(&xas))
1723 break;
1724 xas_unlock_irq(&xas);
1725 if (!xas_nomem(&xas, GFP_KERNEL)) {
1726 result = SCAN_FAIL;
1727 goto out;
1728 }
1729 } while (1);
1730
1731 __SetPageLocked(new_page);
1732 if (is_shmem)
1733 __SetPageSwapBacked(new_page);
1734 new_page->index = start;
1735 new_page->mapping = mapping;
1736
1737 /*
1738 * At this point the new_page is locked and not up-to-date.
1739 * It's safe to insert it into the page cache, because nobody would
1740 * be able to map it or use it in another way until we unlock it.
1741 */
1742
1743 xas_set(&xas, start);
1744 for (index = start; index < end; index++) {
1745 struct page *page = xas_next(&xas);
1746
1747 VM_BUG_ON(index != xas.xa_index);
1748 if (is_shmem) {
1749 if (!page) {
1750 /*
1751 * Stop if extent has been truncated or
1752 * hole-punched, and is now completely
1753 * empty.
1754 */
1755 if (index == start) {
1756 if (!xas_next_entry(&xas, end - 1)) {
1757 result = SCAN_TRUNCATED;
1758 goto xa_locked;
1759 }
1760 xas_set(&xas, index);
1761 }
1762 if (!shmem_charge(mapping->host, 1)) {
1763 result = SCAN_FAIL;
1764 goto xa_locked;
1765 }
1766 xas_store(&xas, new_page);
1767 nr_none++;
1768 continue;
1769 }
1770
1771 if (xa_is_value(page) || !PageUptodate(page)) {
1772 xas_unlock_irq(&xas);
1773 /* swap in or instantiate fallocated page */
1774 if (shmem_getpage(mapping->host, index, &page,
1775 SGP_NOHUGE)) {
1776 result = SCAN_FAIL;
1777 goto xa_unlocked;
1778 }
1779 } else if (trylock_page(page)) {
1780 get_page(page);
1781 xas_unlock_irq(&xas);
1782 } else {
1783 result = SCAN_PAGE_LOCK;
1784 goto xa_locked;
1785 }
1786 } else { /* !is_shmem */
1787 if (!page || xa_is_value(page)) {
1788 xas_unlock_irq(&xas);
1789 page_cache_sync_readahead(mapping, &file->f_ra,
1790 file, index,
1791 end - index);
1792 /* drain pagevecs to help isolate_lru_page() */
1793 lru_add_drain();
1794 page = find_lock_page(mapping, index);
1795 if (unlikely(page == NULL)) {
1796 result = SCAN_FAIL;
1797 goto xa_unlocked;
1798 }
1799 } else if (PageDirty(page)) {
1800 /*
1801 * khugepaged only works on read-only fd,
1802 * so this page is dirty because it hasn't
1803 * been flushed since first write. There
1804 * won't be new dirty pages.
1805 *
1806 * Trigger async flush here and hope the
1807 * writeback is done when khugepaged
1808 * revisits this page.
1809 *
1810 * This is a one-off situation. We are not
1811 * forcing writeback in loop.
1812 */
1813 xas_unlock_irq(&xas);
1814 filemap_flush(mapping);
1815 result = SCAN_FAIL;
1816 goto xa_unlocked;
1817 } else if (PageWriteback(page)) {
1818 xas_unlock_irq(&xas);
1819 result = SCAN_FAIL;
1820 goto xa_unlocked;
1821 } else if (trylock_page(page)) {
1822 get_page(page);
1823 xas_unlock_irq(&xas);
1824 } else {
1825 result = SCAN_PAGE_LOCK;
1826 goto xa_locked;
1827 }
1828 }
1829
1830 /*
1831 * The page must be locked, so we can drop the i_pages lock
1832 * without racing with truncate.
1833 */
1834 VM_BUG_ON_PAGE(!PageLocked(page), page);
1835
1836 /* make sure the page is up to date */
1837 if (unlikely(!PageUptodate(page))) {
1838 result = SCAN_FAIL;
1839 goto out_unlock;
1840 }
1841
1842 /*
1843 * If file was truncated then extended, or hole-punched, before
1844 * we locked the first page, then a THP might be there already.
1845 */
1846 if (PageTransCompound(page)) {
1847 result = SCAN_PAGE_COMPOUND;
1848 goto out_unlock;
1849 }
1850
1851 if (page_mapping(page) != mapping) {
1852 result = SCAN_TRUNCATED;
1853 goto out_unlock;
1854 }
1855
1856 if (!is_shmem && (PageDirty(page) ||
1857 PageWriteback(page))) {
1858 /*
1859 * khugepaged only works on read-only fd, so this
1860 * page is dirty because it hasn't been flushed
1861 * since first write.
1862 */
1863 result = SCAN_FAIL;
1864 goto out_unlock;
1865 }
1866
1867 if (isolate_lru_page(page)) {
1868 result = SCAN_DEL_PAGE_LRU;
1869 goto out_unlock;
1870 }
1871
1872 if (page_has_private(page) &&
1873 !try_to_release_page(page, GFP_KERNEL)) {
1874 result = SCAN_PAGE_HAS_PRIVATE;
1875 putback_lru_page(page);
1876 goto out_unlock;
1877 }
1878
1879 if (page_mapped(page))
1880 unmap_mapping_pages(mapping, index, 1, false);
1881
1882 xas_lock_irq(&xas);
1883 xas_set(&xas, index);
1884
1885 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1886 VM_BUG_ON_PAGE(page_mapped(page), page);
1887
1888 /*
1889 * The page is expected to have page_count() == 3:
1890 * - we hold a pin on it;
1891 * - one reference from page cache;
1892 * - one from isolate_lru_page;
1893 */
1894 if (!page_ref_freeze(page, 3)) {
1895 result = SCAN_PAGE_COUNT;
1896 xas_unlock_irq(&xas);
1897 putback_lru_page(page);
1898 goto out_unlock;
1899 }
1900
1901 /*
1902 * Add the page to the list to be able to undo the collapse if
1903 * something go wrong.
1904 */
1905 list_add_tail(&page->lru, &pagelist);
1906
1907 /* Finally, replace with the new page. */
1908 xas_store(&xas, new_page);
1909 continue;
1910 out_unlock:
1911 unlock_page(page);
1912 put_page(page);
1913 goto xa_unlocked;
1914 }
1915
1916 if (is_shmem)
1917 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1918 else {
1919 __inc_node_page_state(new_page, NR_FILE_THPS);
1920 filemap_nr_thps_inc(mapping);
1921 }
1922
1923 if (nr_none) {
1924 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1925 if (is_shmem)
1926 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1927 }
1928
1929 xa_locked:
1930 xas_unlock_irq(&xas);
1931 xa_unlocked:
1932
1933 if (result == SCAN_SUCCEED) {
1934 struct page *page, *tmp;
1935
1936 /*
1937 * Replacing old pages with new one has succeeded, now we
1938 * need to copy the content and free the old pages.
1939 */
1940 index = start;
1941 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1942 while (index < page->index) {
1943 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1944 index++;
1945 }
1946 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1947 page);
1948 list_del(&page->lru);
1949 page->mapping = NULL;
1950 page_ref_unfreeze(page, 1);
1951 ClearPageActive(page);
1952 ClearPageUnevictable(page);
1953 unlock_page(page);
1954 put_page(page);
1955 index++;
1956 }
1957 while (index < end) {
1958 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1959 index++;
1960 }
1961
1962 SetPageUptodate(new_page);
1963 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1964 if (is_shmem)
1965 set_page_dirty(new_page);
1966 lru_cache_add(new_page);
1967
1968 /*
1969 * Remove pte page tables, so we can re-fault the page as huge.
1970 */
1971 retract_page_tables(mapping, start);
1972 *hpage = NULL;
1973
1974 khugepaged_pages_collapsed++;
1975 } else {
1976 struct page *page;
1977
1978 /* Something went wrong: roll back page cache changes */
1979 xas_lock_irq(&xas);
1980 mapping->nrpages -= nr_none;
1981
1982 if (is_shmem)
1983 shmem_uncharge(mapping->host, nr_none);
1984
1985 xas_set(&xas, start);
1986 xas_for_each(&xas, page, end - 1) {
1987 page = list_first_entry_or_null(&pagelist,
1988 struct page, lru);
1989 if (!page || xas.xa_index < page->index) {
1990 if (!nr_none)
1991 break;
1992 nr_none--;
1993 /* Put holes back where they were */
1994 xas_store(&xas, NULL);
1995 continue;
1996 }
1997
1998 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1999
2000 /* Unfreeze the page. */
2001 list_del(&page->lru);
2002 page_ref_unfreeze(page, 2);
2003 xas_store(&xas, page);
2004 xas_pause(&xas);
2005 xas_unlock_irq(&xas);
2006 unlock_page(page);
2007 putback_lru_page(page);
2008 xas_lock_irq(&xas);
2009 }
2010 VM_BUG_ON(nr_none);
2011 xas_unlock_irq(&xas);
2012
2013 new_page->mapping = NULL;
2014 }
2015
2016 unlock_page(new_page);
2017 out:
2018 VM_BUG_ON(!list_empty(&pagelist));
2019 if (!IS_ERR_OR_NULL(*hpage))
2020 mem_cgroup_uncharge(*hpage);
2021 /* TODO: tracepoints */
2022 }
2023
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2024 static void khugepaged_scan_file(struct mm_struct *mm,
2025 struct file *file, pgoff_t start, struct page **hpage)
2026 {
2027 struct page *page = NULL;
2028 struct address_space *mapping = file->f_mapping;
2029 XA_STATE(xas, &mapping->i_pages, start);
2030 int present, swap;
2031 int node = NUMA_NO_NODE;
2032 int result = SCAN_SUCCEED;
2033
2034 present = 0;
2035 swap = 0;
2036 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2037 rcu_read_lock();
2038 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2039 if (xas_retry(&xas, page))
2040 continue;
2041
2042 if (xa_is_value(page)) {
2043 if (++swap > khugepaged_max_ptes_swap) {
2044 result = SCAN_EXCEED_SWAP_PTE;
2045 break;
2046 }
2047 continue;
2048 }
2049
2050 if (PageTransCompound(page)) {
2051 result = SCAN_PAGE_COMPOUND;
2052 break;
2053 }
2054
2055 node = page_to_nid(page);
2056 if (khugepaged_scan_abort(node)) {
2057 result = SCAN_SCAN_ABORT;
2058 break;
2059 }
2060 khugepaged_node_load[node]++;
2061
2062 if (!PageLRU(page)) {
2063 result = SCAN_PAGE_LRU;
2064 break;
2065 }
2066
2067 if (page_count(page) !=
2068 1 + page_mapcount(page) + page_has_private(page)) {
2069 result = SCAN_PAGE_COUNT;
2070 break;
2071 }
2072
2073 /*
2074 * We probably should check if the page is referenced here, but
2075 * nobody would transfer pte_young() to PageReferenced() for us.
2076 * And rmap walk here is just too costly...
2077 */
2078
2079 present++;
2080
2081 if (need_resched()) {
2082 xas_pause(&xas);
2083 cond_resched_rcu();
2084 }
2085 }
2086 rcu_read_unlock();
2087
2088 if (result == SCAN_SUCCEED) {
2089 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2090 result = SCAN_EXCEED_NONE_PTE;
2091 } else {
2092 node = khugepaged_find_target_node();
2093 collapse_file(mm, file, start, hpage, node);
2094 }
2095 }
2096
2097 /* TODO: tracepoints */
2098 }
2099 #else
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2100 static void khugepaged_scan_file(struct mm_struct *mm,
2101 struct file *file, pgoff_t start, struct page **hpage)
2102 {
2103 BUILD_BUG();
2104 }
2105
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)2106 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2107 {
2108 return 0;
2109 }
2110 #endif
2111
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2112 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2113 struct page **hpage)
2114 __releases(&khugepaged_mm_lock)
2115 __acquires(&khugepaged_mm_lock)
2116 {
2117 struct mm_slot *mm_slot;
2118 struct mm_struct *mm;
2119 struct vm_area_struct *vma;
2120 int progress = 0;
2121
2122 VM_BUG_ON(!pages);
2123 lockdep_assert_held(&khugepaged_mm_lock);
2124
2125 if (khugepaged_scan.mm_slot)
2126 mm_slot = khugepaged_scan.mm_slot;
2127 else {
2128 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2129 struct mm_slot, mm_node);
2130 khugepaged_scan.address = 0;
2131 khugepaged_scan.mm_slot = mm_slot;
2132 }
2133 spin_unlock(&khugepaged_mm_lock);
2134 khugepaged_collapse_pte_mapped_thps(mm_slot);
2135
2136 mm = mm_slot->mm;
2137 /*
2138 * Don't wait for semaphore (to avoid long wait times). Just move to
2139 * the next mm on the list.
2140 */
2141 vma = NULL;
2142 if (unlikely(!mmap_read_trylock(mm)))
2143 goto breakouterloop_mmap_lock;
2144 if (likely(!khugepaged_test_exit(mm)))
2145 vma = find_vma(mm, khugepaged_scan.address);
2146
2147 progress++;
2148 for (; vma; vma = vma->vm_next) {
2149 unsigned long hstart, hend;
2150
2151 cond_resched();
2152 if (unlikely(khugepaged_test_exit(mm))) {
2153 progress++;
2154 break;
2155 }
2156 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2157 skip:
2158 progress++;
2159 continue;
2160 }
2161 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2162 hend = vma->vm_end & HPAGE_PMD_MASK;
2163 if (hstart >= hend)
2164 goto skip;
2165 if (khugepaged_scan.address > hend)
2166 goto skip;
2167 if (khugepaged_scan.address < hstart)
2168 khugepaged_scan.address = hstart;
2169 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2170 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2171 goto skip;
2172
2173 while (khugepaged_scan.address < hend) {
2174 int ret;
2175 cond_resched();
2176 if (unlikely(khugepaged_test_exit(mm)))
2177 goto breakouterloop;
2178
2179 VM_BUG_ON(khugepaged_scan.address < hstart ||
2180 khugepaged_scan.address + HPAGE_PMD_SIZE >
2181 hend);
2182 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2183 struct file *file = get_file(vma->vm_file);
2184 pgoff_t pgoff = linear_page_index(vma,
2185 khugepaged_scan.address);
2186
2187 mmap_read_unlock(mm);
2188 ret = 1;
2189 khugepaged_scan_file(mm, file, pgoff, hpage);
2190 fput(file);
2191 } else {
2192 ret = khugepaged_scan_pmd(mm, vma,
2193 khugepaged_scan.address,
2194 hpage);
2195 }
2196 /* move to next address */
2197 khugepaged_scan.address += HPAGE_PMD_SIZE;
2198 progress += HPAGE_PMD_NR;
2199 if (ret)
2200 /* we released mmap_lock so break loop */
2201 goto breakouterloop_mmap_lock;
2202 if (progress >= pages)
2203 goto breakouterloop;
2204 }
2205 }
2206 breakouterloop:
2207 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2208 breakouterloop_mmap_lock:
2209
2210 spin_lock(&khugepaged_mm_lock);
2211 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2212 /*
2213 * Release the current mm_slot if this mm is about to die, or
2214 * if we scanned all vmas of this mm.
2215 */
2216 if (khugepaged_test_exit(mm) || !vma) {
2217 /*
2218 * Make sure that if mm_users is reaching zero while
2219 * khugepaged runs here, khugepaged_exit will find
2220 * mm_slot not pointing to the exiting mm.
2221 */
2222 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2223 khugepaged_scan.mm_slot = list_entry(
2224 mm_slot->mm_node.next,
2225 struct mm_slot, mm_node);
2226 khugepaged_scan.address = 0;
2227 } else {
2228 khugepaged_scan.mm_slot = NULL;
2229 khugepaged_full_scans++;
2230 }
2231
2232 collect_mm_slot(mm_slot);
2233 }
2234
2235 return progress;
2236 }
2237
khugepaged_has_work(void)2238 static int khugepaged_has_work(void)
2239 {
2240 return !list_empty(&khugepaged_scan.mm_head) &&
2241 khugepaged_enabled();
2242 }
2243
khugepaged_wait_event(void)2244 static int khugepaged_wait_event(void)
2245 {
2246 return !list_empty(&khugepaged_scan.mm_head) ||
2247 kthread_should_stop();
2248 }
2249
khugepaged_do_scan(void)2250 static void khugepaged_do_scan(void)
2251 {
2252 struct page *hpage = NULL;
2253 unsigned int progress = 0, pass_through_head = 0;
2254 unsigned int pages = khugepaged_pages_to_scan;
2255 bool wait = true;
2256
2257 barrier(); /* write khugepaged_pages_to_scan to local stack */
2258
2259 lru_add_drain_all();
2260
2261 while (progress < pages) {
2262 if (!khugepaged_prealloc_page(&hpage, &wait))
2263 break;
2264
2265 cond_resched();
2266
2267 if (unlikely(kthread_should_stop() || try_to_freeze()))
2268 break;
2269
2270 spin_lock(&khugepaged_mm_lock);
2271 if (!khugepaged_scan.mm_slot)
2272 pass_through_head++;
2273 if (khugepaged_has_work() &&
2274 pass_through_head < 2)
2275 progress += khugepaged_scan_mm_slot(pages - progress,
2276 &hpage);
2277 else
2278 progress = pages;
2279 spin_unlock(&khugepaged_mm_lock);
2280 }
2281
2282 if (!IS_ERR_OR_NULL(hpage))
2283 put_page(hpage);
2284 }
2285
khugepaged_should_wakeup(void)2286 static bool khugepaged_should_wakeup(void)
2287 {
2288 return kthread_should_stop() ||
2289 time_after_eq(jiffies, khugepaged_sleep_expire);
2290 }
2291
khugepaged_wait_work(void)2292 static void khugepaged_wait_work(void)
2293 {
2294 if (khugepaged_has_work()) {
2295 const unsigned long scan_sleep_jiffies =
2296 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2297
2298 if (!scan_sleep_jiffies)
2299 return;
2300
2301 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2302 wait_event_freezable_timeout(khugepaged_wait,
2303 khugepaged_should_wakeup(),
2304 scan_sleep_jiffies);
2305 return;
2306 }
2307
2308 if (khugepaged_enabled())
2309 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2310 }
2311
khugepaged(void * none)2312 static int khugepaged(void *none)
2313 {
2314 struct mm_slot *mm_slot;
2315
2316 set_freezable();
2317 set_user_nice(current, MAX_NICE);
2318
2319 while (!kthread_should_stop()) {
2320 khugepaged_do_scan();
2321 khugepaged_wait_work();
2322 }
2323
2324 spin_lock(&khugepaged_mm_lock);
2325 mm_slot = khugepaged_scan.mm_slot;
2326 khugepaged_scan.mm_slot = NULL;
2327 if (mm_slot)
2328 collect_mm_slot(mm_slot);
2329 spin_unlock(&khugepaged_mm_lock);
2330 return 0;
2331 }
2332
set_recommended_min_free_kbytes(void)2333 static void set_recommended_min_free_kbytes(void)
2334 {
2335 struct zone *zone;
2336 int nr_zones = 0;
2337 unsigned long recommended_min;
2338
2339 for_each_populated_zone(zone) {
2340 /*
2341 * We don't need to worry about fragmentation of
2342 * ZONE_MOVABLE since it only has movable pages.
2343 */
2344 if (zone_idx(zone) > gfp_zone(GFP_USER))
2345 continue;
2346
2347 nr_zones++;
2348 }
2349
2350 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2351 recommended_min = pageblock_nr_pages * nr_zones * 2;
2352
2353 /*
2354 * Make sure that on average at least two pageblocks are almost free
2355 * of another type, one for a migratetype to fall back to and a
2356 * second to avoid subsequent fallbacks of other types There are 3
2357 * MIGRATE_TYPES we care about.
2358 */
2359 recommended_min += pageblock_nr_pages * nr_zones *
2360 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2361
2362 /* don't ever allow to reserve more than 5% of the lowmem */
2363 recommended_min = min(recommended_min,
2364 (unsigned long) nr_free_buffer_pages() / 20);
2365 recommended_min <<= (PAGE_SHIFT-10);
2366
2367 if (recommended_min > min_free_kbytes) {
2368 if (user_min_free_kbytes >= 0)
2369 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2370 min_free_kbytes, recommended_min);
2371
2372 min_free_kbytes = recommended_min;
2373 }
2374 setup_per_zone_wmarks();
2375 }
2376
start_stop_khugepaged(void)2377 int start_stop_khugepaged(void)
2378 {
2379 int err = 0;
2380
2381 mutex_lock(&khugepaged_mutex);
2382 if (khugepaged_enabled()) {
2383 if (!khugepaged_thread)
2384 khugepaged_thread = kthread_run(khugepaged, NULL,
2385 "khugepaged");
2386 if (IS_ERR(khugepaged_thread)) {
2387 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2388 err = PTR_ERR(khugepaged_thread);
2389 khugepaged_thread = NULL;
2390 goto fail;
2391 }
2392
2393 if (!list_empty(&khugepaged_scan.mm_head))
2394 wake_up_interruptible(&khugepaged_wait);
2395
2396 set_recommended_min_free_kbytes();
2397 } else if (khugepaged_thread) {
2398 kthread_stop(khugepaged_thread);
2399 khugepaged_thread = NULL;
2400 }
2401 fail:
2402 mutex_unlock(&khugepaged_mutex);
2403 return err;
2404 }
2405
khugepaged_min_free_kbytes_update(void)2406 void khugepaged_min_free_kbytes_update(void)
2407 {
2408 mutex_lock(&khugepaged_mutex);
2409 if (khugepaged_enabled() && khugepaged_thread)
2410 set_recommended_min_free_kbytes();
2411 mutex_unlock(&khugepaged_mutex);
2412 }
2413