• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 #include <linux/zswapd.h>
69 
70 #include <trace/events/vmscan.h>
71 
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74 
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 
77 /* Active memory cgroup to use from an interrupt context */
78 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79 
80 /* Socket memory accounting disabled? */
81 static bool cgroup_memory_nosocket;
82 
83 /* Kernel memory accounting disabled */
84 static bool cgroup_memory_nokmem = true;
85 
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 bool cgroup_memory_noswap __read_mostly;
89 #else
90 #define cgroup_memory_noswap		1
91 #endif
92 
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101 }
102 
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 
106 /*
107  * Cgroups above their limits are maintained in a RB-Tree, independent of
108  * their hierarchy representation
109  */
110 
111 struct mem_cgroup_tree_per_node {
112 	struct rb_root rb_root;
113 	struct rb_node *rb_rightmost;
114 	spinlock_t lock;
115 };
116 
117 struct mem_cgroup_tree {
118 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 };
120 
121 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122 
123 /* for OOM */
124 struct mem_cgroup_eventfd_list {
125 	struct list_head list;
126 	struct eventfd_ctx *eventfd;
127 };
128 
129 /*
130  * cgroup_event represents events which userspace want to receive.
131  */
132 struct mem_cgroup_event {
133 	/*
134 	 * memcg which the event belongs to.
135 	 */
136 	struct mem_cgroup *memcg;
137 	/*
138 	 * eventfd to signal userspace about the event.
139 	 */
140 	struct eventfd_ctx *eventfd;
141 	/*
142 	 * Each of these stored in a list by the cgroup.
143 	 */
144 	struct list_head list;
145 	/*
146 	 * register_event() callback will be used to add new userspace
147 	 * waiter for changes related to this event.  Use eventfd_signal()
148 	 * on eventfd to send notification to userspace.
149 	 */
150 	int (*register_event)(struct mem_cgroup *memcg,
151 			      struct eventfd_ctx *eventfd, const char *args);
152 	/*
153 	 * unregister_event() callback will be called when userspace closes
154 	 * the eventfd or on cgroup removing.  This callback must be set,
155 	 * if you want provide notification functionality.
156 	 */
157 	void (*unregister_event)(struct mem_cgroup *memcg,
158 				 struct eventfd_ctx *eventfd);
159 	/*
160 	 * All fields below needed to unregister event when
161 	 * userspace closes eventfd.
162 	 */
163 	poll_table pt;
164 	wait_queue_head_t *wqh;
165 	wait_queue_entry_t wait;
166 	struct work_struct remove;
167 };
168 
169 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171 
172 /* Stuffs for move charges at task migration. */
173 /*
174  * Types of charges to be moved.
175  */
176 #define MOVE_ANON	0x1U
177 #define MOVE_FILE	0x2U
178 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
179 
180 /* "mc" and its members are protected by cgroup_mutex */
181 static struct move_charge_struct {
182 	spinlock_t	  lock; /* for from, to */
183 	struct mm_struct  *mm;
184 	struct mem_cgroup *from;
185 	struct mem_cgroup *to;
186 	unsigned long flags;
187 	unsigned long precharge;
188 	unsigned long moved_charge;
189 	unsigned long moved_swap;
190 	struct task_struct *moving_task;	/* a task moving charges */
191 	wait_queue_head_t waitq;		/* a waitq for other context */
192 } mc = {
193 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195 };
196 
197 /*
198  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199  * limit reclaim to prevent infinite loops, if they ever occur.
200  */
201 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
202 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
203 
204 /* for encoding cft->private value on file */
205 enum res_type {
206 	_MEM,
207 	_MEMSWAP,
208 	_OOM_TYPE,
209 	_KMEM,
210 	_TCP,
211 };
212 
213 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
214 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val)	((val) & 0xffff)
216 /* Used for OOM nofiier */
217 #define OOM_CONTROL		(0)
218 
219 /*
220  * Iteration constructs for visiting all cgroups (under a tree).  If
221  * loops are exited prematurely (break), mem_cgroup_iter_break() must
222  * be used for reference counting.
223  */
224 #define for_each_mem_cgroup_tree(iter, root)		\
225 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
226 	     iter != NULL;				\
227 	     iter = mem_cgroup_iter(root, iter, NULL))
228 
229 #define for_each_mem_cgroup(iter)			\
230 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
231 	     iter != NULL;				\
232 	     iter = mem_cgroup_iter(NULL, iter, NULL))
233 
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 		(current->flags & PF_EXITING);
238 }
239 
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 	if (!memcg)
244 		memcg = root_mem_cgroup;
245 	return &memcg->vmpressure;
246 }
247 
vmpressure_to_css(struct vmpressure * vmpr)248 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249 {
250 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251 }
252 
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255 
obj_cgroup_release(struct percpu_ref * ref)256 static void obj_cgroup_release(struct percpu_ref *ref)
257 {
258 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259 	struct mem_cgroup *memcg;
260 	unsigned int nr_bytes;
261 	unsigned int nr_pages;
262 	unsigned long flags;
263 
264 	/*
265 	 * At this point all allocated objects are freed, and
266 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268 	 *
269 	 * The following sequence can lead to it:
270 	 * 1) CPU0: objcg == stock->cached_objcg
271 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272 	 *          PAGE_SIZE bytes are charged
273 	 * 3) CPU1: a process from another memcg is allocating something,
274 	 *          the stock if flushed,
275 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
276 	 * 5) CPU0: we do release this object,
277 	 *          92 bytes are added to stock->nr_bytes
278 	 * 6) CPU0: stock is flushed,
279 	 *          92 bytes are added to objcg->nr_charged_bytes
280 	 *
281 	 * In the result, nr_charged_bytes == PAGE_SIZE.
282 	 * This page will be uncharged in obj_cgroup_release().
283 	 */
284 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286 	nr_pages = nr_bytes >> PAGE_SHIFT;
287 
288 	spin_lock_irqsave(&objcg_lock, flags);
289 	memcg = obj_cgroup_memcg(objcg);
290 	if (nr_pages)
291 		__memcg_kmem_uncharge(memcg, nr_pages);
292 	list_del(&objcg->list);
293 	mem_cgroup_put(memcg);
294 	spin_unlock_irqrestore(&objcg_lock, flags);
295 
296 	percpu_ref_exit(ref);
297 	kfree_rcu(objcg, rcu);
298 }
299 
obj_cgroup_alloc(void)300 static struct obj_cgroup *obj_cgroup_alloc(void)
301 {
302 	struct obj_cgroup *objcg;
303 	int ret;
304 
305 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306 	if (!objcg)
307 		return NULL;
308 
309 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310 			      GFP_KERNEL);
311 	if (ret) {
312 		kfree(objcg);
313 		return NULL;
314 	}
315 	INIT_LIST_HEAD(&objcg->list);
316 	return objcg;
317 }
318 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)319 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320 				  struct mem_cgroup *parent)
321 {
322 	struct obj_cgroup *objcg, *iter;
323 
324 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325 
326 	spin_lock_irq(&objcg_lock);
327 
328 	/* Move active objcg to the parent's list */
329 	xchg(&objcg->memcg, parent);
330 	css_get(&parent->css);
331 	list_add(&objcg->list, &parent->objcg_list);
332 
333 	/* Move already reparented objcgs to the parent's list */
334 	list_for_each_entry(iter, &memcg->objcg_list, list) {
335 		css_get(&parent->css);
336 		xchg(&iter->memcg, parent);
337 		css_put(&memcg->css);
338 	}
339 	list_splice(&memcg->objcg_list, &parent->objcg_list);
340 
341 	spin_unlock_irq(&objcg_lock);
342 
343 	percpu_ref_kill(&objcg->refcnt);
344 }
345 
346 /*
347  * This will be used as a shrinker list's index.
348  * The main reason for not using cgroup id for this:
349  *  this works better in sparse environments, where we have a lot of memcgs,
350  *  but only a few kmem-limited. Or also, if we have, for instance, 200
351  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
352  *  200 entry array for that.
353  *
354  * The current size of the caches array is stored in memcg_nr_cache_ids. It
355  * will double each time we have to increase it.
356  */
357 static DEFINE_IDA(memcg_cache_ida);
358 int memcg_nr_cache_ids;
359 
360 /* Protects memcg_nr_cache_ids */
361 static DECLARE_RWSEM(memcg_cache_ids_sem);
362 
memcg_get_cache_ids(void)363 void memcg_get_cache_ids(void)
364 {
365 	down_read(&memcg_cache_ids_sem);
366 }
367 
memcg_put_cache_ids(void)368 void memcg_put_cache_ids(void)
369 {
370 	up_read(&memcg_cache_ids_sem);
371 }
372 
373 /*
374  * MIN_SIZE is different than 1, because we would like to avoid going through
375  * the alloc/free process all the time. In a small machine, 4 kmem-limited
376  * cgroups is a reasonable guess. In the future, it could be a parameter or
377  * tunable, but that is strictly not necessary.
378  *
379  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380  * this constant directly from cgroup, but it is understandable that this is
381  * better kept as an internal representation in cgroup.c. In any case, the
382  * cgrp_id space is not getting any smaller, and we don't have to necessarily
383  * increase ours as well if it increases.
384  */
385 #define MEMCG_CACHES_MIN_SIZE 4
386 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387 
388 /*
389  * A lot of the calls to the cache allocation functions are expected to be
390  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391  * conditional to this static branch, we'll have to allow modules that does
392  * kmem_cache_alloc and the such to see this symbol as well
393  */
394 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395 EXPORT_SYMBOL(memcg_kmem_enabled_key);
396 #endif
397 
398 static int memcg_shrinker_map_size;
399 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400 
memcg_free_shrinker_map_rcu(struct rcu_head * head)401 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402 {
403 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404 }
405 
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)406 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407 					 int size, int old_size)
408 {
409 	struct memcg_shrinker_map *new, *old;
410 	int nid;
411 
412 	lockdep_assert_held(&memcg_shrinker_map_mutex);
413 
414 	for_each_node(nid) {
415 		old = rcu_dereference_protected(
416 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417 		/* Not yet online memcg */
418 		if (!old)
419 			return 0;
420 
421 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422 		if (!new)
423 			return -ENOMEM;
424 
425 		/* Set all old bits, clear all new bits */
426 		memset(new->map, (int)0xff, old_size);
427 		memset((void *)new->map + old_size, 0, size - old_size);
428 
429 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431 	}
432 
433 	return 0;
434 }
435 
memcg_free_shrinker_maps(struct mem_cgroup * memcg)436 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437 {
438 	struct mem_cgroup_per_node *pn;
439 	struct memcg_shrinker_map *map;
440 	int nid;
441 
442 	if (mem_cgroup_is_root(memcg))
443 		return;
444 
445 	for_each_node(nid) {
446 		pn = mem_cgroup_nodeinfo(memcg, nid);
447 		map = rcu_dereference_protected(pn->shrinker_map, true);
448 		if (map)
449 			kvfree(map);
450 		rcu_assign_pointer(pn->shrinker_map, NULL);
451 	}
452 }
453 
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)454 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455 {
456 	struct memcg_shrinker_map *map;
457 	int nid, size, ret = 0;
458 
459 	if (mem_cgroup_is_root(memcg))
460 		return 0;
461 
462 	mutex_lock(&memcg_shrinker_map_mutex);
463 	size = memcg_shrinker_map_size;
464 	for_each_node(nid) {
465 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466 		if (!map) {
467 			memcg_free_shrinker_maps(memcg);
468 			ret = -ENOMEM;
469 			break;
470 		}
471 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472 	}
473 	mutex_unlock(&memcg_shrinker_map_mutex);
474 
475 	return ret;
476 }
477 
memcg_expand_shrinker_maps(int new_id)478 int memcg_expand_shrinker_maps(int new_id)
479 {
480 	int size, old_size, ret = 0;
481 	struct mem_cgroup *memcg;
482 
483 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484 	old_size = memcg_shrinker_map_size;
485 	if (size <= old_size)
486 		return 0;
487 
488 	mutex_lock(&memcg_shrinker_map_mutex);
489 	if (!root_mem_cgroup)
490 		goto unlock;
491 
492 	for_each_mem_cgroup(memcg) {
493 		if (mem_cgroup_is_root(memcg))
494 			continue;
495 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496 		if (ret) {
497 			mem_cgroup_iter_break(NULL, memcg);
498 			goto unlock;
499 		}
500 	}
501 unlock:
502 	if (!ret)
503 		memcg_shrinker_map_size = size;
504 	mutex_unlock(&memcg_shrinker_map_mutex);
505 	return ret;
506 }
507 
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)508 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509 {
510 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511 		struct memcg_shrinker_map *map;
512 
513 		rcu_read_lock();
514 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515 		/* Pairs with smp mb in shrink_slab() */
516 		smp_mb__before_atomic();
517 		set_bit(shrinker_id, map->map);
518 		rcu_read_unlock();
519 	}
520 }
521 
522 /**
523  * mem_cgroup_css_from_page - css of the memcg associated with a page
524  * @page: page of interest
525  *
526  * If memcg is bound to the default hierarchy, css of the memcg associated
527  * with @page is returned.  The returned css remains associated with @page
528  * until it is released.
529  *
530  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531  * is returned.
532  */
mem_cgroup_css_from_page(struct page * page)533 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534 {
535 	struct mem_cgroup *memcg;
536 
537 	memcg = page->mem_cgroup;
538 
539 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540 		memcg = root_mem_cgroup;
541 
542 	return &memcg->css;
543 }
544 
545 /**
546  * page_cgroup_ino - return inode number of the memcg a page is charged to
547  * @page: the page
548  *
549  * Look up the closest online ancestor of the memory cgroup @page is charged to
550  * and return its inode number or 0 if @page is not charged to any cgroup. It
551  * is safe to call this function without holding a reference to @page.
552  *
553  * Note, this function is inherently racy, because there is nothing to prevent
554  * the cgroup inode from getting torn down and potentially reallocated a moment
555  * after page_cgroup_ino() returns, so it only should be used by callers that
556  * do not care (such as procfs interfaces).
557  */
page_cgroup_ino(struct page * page)558 ino_t page_cgroup_ino(struct page *page)
559 {
560 	struct mem_cgroup *memcg;
561 	unsigned long ino = 0;
562 
563 	rcu_read_lock();
564 	memcg = page->mem_cgroup;
565 
566 	/*
567 	 * The lowest bit set means that memcg isn't a valid
568 	 * memcg pointer, but a obj_cgroups pointer.
569 	 * In this case the page is shared and doesn't belong
570 	 * to any specific memory cgroup.
571 	 */
572 	if ((unsigned long) memcg & 0x1UL)
573 		memcg = NULL;
574 
575 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
576 		memcg = parent_mem_cgroup(memcg);
577 	if (memcg)
578 		ino = cgroup_ino(memcg->css.cgroup);
579 	rcu_read_unlock();
580 	return ino;
581 }
582 
583 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)584 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585 {
586 	int nid = page_to_nid(page);
587 
588 	return memcg->nodeinfo[nid];
589 }
590 
591 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)592 soft_limit_tree_node(int nid)
593 {
594 	return soft_limit_tree.rb_tree_per_node[nid];
595 }
596 
597 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)598 soft_limit_tree_from_page(struct page *page)
599 {
600 	int nid = page_to_nid(page);
601 
602 	return soft_limit_tree.rb_tree_per_node[nid];
603 }
604 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)605 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606 					 struct mem_cgroup_tree_per_node *mctz,
607 					 unsigned long new_usage_in_excess)
608 {
609 	struct rb_node **p = &mctz->rb_root.rb_node;
610 	struct rb_node *parent = NULL;
611 	struct mem_cgroup_per_node *mz_node;
612 	bool rightmost = true;
613 
614 	if (mz->on_tree)
615 		return;
616 
617 	mz->usage_in_excess = new_usage_in_excess;
618 	if (!mz->usage_in_excess)
619 		return;
620 	while (*p) {
621 		parent = *p;
622 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623 					tree_node);
624 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
625 			p = &(*p)->rb_left;
626 			rightmost = false;
627 		}
628 
629 		/*
630 		 * We can't avoid mem cgroups that are over their soft
631 		 * limit by the same amount
632 		 */
633 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634 			p = &(*p)->rb_right;
635 	}
636 
637 	if (rightmost)
638 		mctz->rb_rightmost = &mz->tree_node;
639 
640 	rb_link_node(&mz->tree_node, parent, p);
641 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
642 	mz->on_tree = true;
643 }
644 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)645 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646 					 struct mem_cgroup_tree_per_node *mctz)
647 {
648 	if (!mz->on_tree)
649 		return;
650 
651 	if (&mz->tree_node == mctz->rb_rightmost)
652 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
653 
654 	rb_erase(&mz->tree_node, &mctz->rb_root);
655 	mz->on_tree = false;
656 }
657 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)658 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659 				       struct mem_cgroup_tree_per_node *mctz)
660 {
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&mctz->lock, flags);
664 	__mem_cgroup_remove_exceeded(mz, mctz);
665 	spin_unlock_irqrestore(&mctz->lock, flags);
666 }
667 
soft_limit_excess(struct mem_cgroup * memcg)668 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669 {
670 #ifdef CONFIG_HYPERHOLD_FILE_LRU
671 	struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
672 	struct lruvec *lruvec = &mz->lruvec;
673 	unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
674 			MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
675 			MAX_NR_ZONES);
676 #else
677 	unsigned long nr_pages = page_counter_read(&memcg->memory);
678 #endif
679 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
680 	unsigned long excess = 0;
681 
682 	if (nr_pages > soft_limit)
683 		excess = nr_pages - soft_limit;
684 
685 	return excess;
686 }
687 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)688 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
689 {
690 	unsigned long excess;
691 	struct mem_cgroup_per_node *mz;
692 	struct mem_cgroup_tree_per_node *mctz;
693 
694 	mctz = soft_limit_tree_from_page(page);
695 	if (!mctz)
696 		return;
697 	/*
698 	 * Necessary to update all ancestors when hierarchy is used.
699 	 * because their event counter is not touched.
700 	 */
701 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
702 		mz = mem_cgroup_page_nodeinfo(memcg, page);
703 		excess = soft_limit_excess(memcg);
704 		/*
705 		 * We have to update the tree if mz is on RB-tree or
706 		 * mem is over its softlimit.
707 		 */
708 		if (excess || mz->on_tree) {
709 			unsigned long flags;
710 
711 			spin_lock_irqsave(&mctz->lock, flags);
712 			/* if on-tree, remove it */
713 			if (mz->on_tree)
714 				__mem_cgroup_remove_exceeded(mz, mctz);
715 			/*
716 			 * Insert again. mz->usage_in_excess will be updated.
717 			 * If excess is 0, no tree ops.
718 			 */
719 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
720 			spin_unlock_irqrestore(&mctz->lock, flags);
721 		}
722 	}
723 }
724 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)725 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
726 {
727 	struct mem_cgroup_tree_per_node *mctz;
728 	struct mem_cgroup_per_node *mz;
729 	int nid;
730 
731 	for_each_node(nid) {
732 		mz = mem_cgroup_nodeinfo(memcg, nid);
733 		mctz = soft_limit_tree_node(nid);
734 		if (mctz)
735 			mem_cgroup_remove_exceeded(mz, mctz);
736 	}
737 }
738 
739 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)740 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
741 {
742 	struct mem_cgroup_per_node *mz;
743 
744 retry:
745 	mz = NULL;
746 	if (!mctz->rb_rightmost)
747 		goto done;		/* Nothing to reclaim from */
748 
749 	mz = rb_entry(mctz->rb_rightmost,
750 		      struct mem_cgroup_per_node, tree_node);
751 	/*
752 	 * Remove the node now but someone else can add it back,
753 	 * we will to add it back at the end of reclaim to its correct
754 	 * position in the tree.
755 	 */
756 	__mem_cgroup_remove_exceeded(mz, mctz);
757 	if (!soft_limit_excess(mz->memcg) ||
758 	    !css_tryget(&mz->memcg->css))
759 		goto retry;
760 done:
761 	return mz;
762 }
763 
764 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)765 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
766 {
767 	struct mem_cgroup_per_node *mz;
768 
769 	spin_lock_irq(&mctz->lock);
770 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
771 	spin_unlock_irq(&mctz->lock);
772 	return mz;
773 }
774 
775 /**
776  * __mod_memcg_state - update cgroup memory statistics
777  * @memcg: the memory cgroup
778  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
779  * @val: delta to add to the counter, can be negative
780  */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)781 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
782 {
783 	long x, threshold = MEMCG_CHARGE_BATCH;
784 
785 	if (mem_cgroup_disabled())
786 		return;
787 
788 	if (memcg_stat_item_in_bytes(idx))
789 		threshold <<= PAGE_SHIFT;
790 
791 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
792 	if (unlikely(abs(x) > threshold)) {
793 		struct mem_cgroup *mi;
794 
795 		/*
796 		 * Batch local counters to keep them in sync with
797 		 * the hierarchical ones.
798 		 */
799 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
800 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
801 			atomic_long_add(x, &mi->vmstats[idx]);
802 		x = 0;
803 	}
804 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
805 }
806 
807 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)808 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
809 {
810 	struct mem_cgroup *parent;
811 
812 	parent = parent_mem_cgroup(pn->memcg);
813 	if (!parent)
814 		return NULL;
815 	return mem_cgroup_nodeinfo(parent, nid);
816 }
817 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)818 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
819 			      int val)
820 {
821 	struct mem_cgroup_per_node *pn;
822 	struct mem_cgroup *memcg;
823 	long x, threshold = MEMCG_CHARGE_BATCH;
824 
825 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
826 	memcg = pn->memcg;
827 
828 	/* Update memcg */
829 	__mod_memcg_state(memcg, idx, val);
830 
831 	/* Update lruvec */
832 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
833 
834 	if (vmstat_item_in_bytes(idx))
835 		threshold <<= PAGE_SHIFT;
836 
837 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
838 	if (unlikely(abs(x) > threshold)) {
839 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
840 		struct mem_cgroup_per_node *pi;
841 
842 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
843 			atomic_long_add(x, &pi->lruvec_stat[idx]);
844 		x = 0;
845 	}
846 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
847 }
848 
849 /**
850  * __mod_lruvec_state - update lruvec memory statistics
851  * @lruvec: the lruvec
852  * @idx: the stat item
853  * @val: delta to add to the counter, can be negative
854  *
855  * The lruvec is the intersection of the NUMA node and a cgroup. This
856  * function updates the all three counters that are affected by a
857  * change of state at this level: per-node, per-cgroup, per-lruvec.
858  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)859 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
860 			int val)
861 {
862 	/* Update node */
863 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
864 
865 	/* Update memcg and lruvec */
866 	if (!mem_cgroup_disabled()) {
867 #ifdef CONFIG_HYPERHOLD_FILE_LRU
868 		if (is_node_lruvec(lruvec))
869 			return;
870 #endif
871 		__mod_memcg_lruvec_state(lruvec, idx, val);
872 	}
873 }
874 
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
876 {
877 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 	struct mem_cgroup *memcg;
879 	struct lruvec *lruvec;
880 
881 	rcu_read_lock();
882 	memcg = mem_cgroup_from_obj(p);
883 
884 	/*
885 	 * Untracked pages have no memcg, no lruvec. Update only the
886 	 * node. If we reparent the slab objects to the root memcg,
887 	 * when we free the slab object, we need to update the per-memcg
888 	 * vmstats to keep it correct for the root memcg.
889 	 */
890 	if (!memcg) {
891 		__mod_node_page_state(pgdat, idx, val);
892 	} else {
893 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 		__mod_lruvec_state(lruvec, idx, val);
895 	}
896 	rcu_read_unlock();
897 }
898 
mod_memcg_obj_state(void * p,int idx,int val)899 void mod_memcg_obj_state(void *p, int idx, int val)
900 {
901 	struct mem_cgroup *memcg;
902 
903 	rcu_read_lock();
904 	memcg = mem_cgroup_from_obj(p);
905 	if (memcg)
906 		mod_memcg_state(memcg, idx, val);
907 	rcu_read_unlock();
908 }
909 
910 /**
911  * __count_memcg_events - account VM events in a cgroup
912  * @memcg: the memory cgroup
913  * @idx: the event item
914  * @count: the number of events that occured
915  */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)916 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
917 			  unsigned long count)
918 {
919 	unsigned long x;
920 
921 	if (mem_cgroup_disabled())
922 		return;
923 #ifdef CONFIG_HYPERHOLD_FILE_LRU
924 	if (!memcg)
925 		return;
926 #endif
927 
928 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
929 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
930 		struct mem_cgroup *mi;
931 
932 		/*
933 		 * Batch local counters to keep them in sync with
934 		 * the hierarchical ones.
935 		 */
936 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
937 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
938 			atomic_long_add(x, &mi->vmevents[idx]);
939 		x = 0;
940 	}
941 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
942 }
943 
memcg_events(struct mem_cgroup * memcg,int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 	return atomic_long_read(&memcg->vmevents[event]);
947 }
948 
memcg_events_local(struct mem_cgroup * memcg,int event)949 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950 {
951 	long x = 0;
952 	int cpu;
953 
954 	for_each_possible_cpu(cpu)
955 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
956 	return x;
957 }
958 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)959 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960 					 struct page *page,
961 					 int nr_pages)
962 {
963 	/* pagein of a big page is an event. So, ignore page size */
964 	if (nr_pages > 0)
965 		__count_memcg_events(memcg, PGPGIN, 1);
966 	else {
967 		__count_memcg_events(memcg, PGPGOUT, 1);
968 		nr_pages = -nr_pages; /* for event */
969 	}
970 
971 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
972 }
973 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)974 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
975 				       enum mem_cgroup_events_target target)
976 {
977 	unsigned long val, next;
978 
979 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
980 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
981 	/* from time_after() in jiffies.h */
982 	if ((long)(next - val) < 0) {
983 		switch (target) {
984 		case MEM_CGROUP_TARGET_THRESH:
985 			next = val + THRESHOLDS_EVENTS_TARGET;
986 			break;
987 		case MEM_CGROUP_TARGET_SOFTLIMIT:
988 			next = val + SOFTLIMIT_EVENTS_TARGET;
989 			break;
990 		default:
991 			break;
992 		}
993 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
994 		return true;
995 	}
996 	return false;
997 }
998 
999 /*
1000  * Check events in order.
1001  *
1002  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)1003 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 {
1005 	/* threshold event is triggered in finer grain than soft limit */
1006 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 						MEM_CGROUP_TARGET_THRESH))) {
1008 		bool do_softlimit;
1009 
1010 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1011 						MEM_CGROUP_TARGET_SOFTLIMIT);
1012 		mem_cgroup_threshold(memcg);
1013 		if (unlikely(do_softlimit))
1014 			mem_cgroup_update_tree(memcg, page);
1015 	}
1016 }
1017 
mem_cgroup_from_task(struct task_struct * p)1018 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1019 {
1020 	/*
1021 	 * mm_update_next_owner() may clear mm->owner to NULL
1022 	 * if it races with swapoff, page migration, etc.
1023 	 * So this can be called with p == NULL.
1024 	 */
1025 	if (unlikely(!p))
1026 		return NULL;
1027 
1028 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1029 }
1030 EXPORT_SYMBOL(mem_cgroup_from_task);
1031 
1032 /**
1033  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1034  * @mm: mm from which memcg should be extracted. It can be NULL.
1035  *
1036  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1037  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1038  * returned.
1039  */
get_mem_cgroup_from_mm(struct mm_struct * mm)1040 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 	struct mem_cgroup *memcg;
1043 
1044 	if (mem_cgroup_disabled())
1045 		return NULL;
1046 
1047 	rcu_read_lock();
1048 	do {
1049 		/*
1050 		 * Page cache insertions can happen withou an
1051 		 * actual mm context, e.g. during disk probing
1052 		 * on boot, loopback IO, acct() writes etc.
1053 		 */
1054 		if (unlikely(!mm))
1055 			memcg = root_mem_cgroup;
1056 		else {
1057 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1058 			if (unlikely(!memcg))
1059 				memcg = root_mem_cgroup;
1060 		}
1061 	} while (!css_tryget(&memcg->css));
1062 	rcu_read_unlock();
1063 	return memcg;
1064 }
1065 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1066 
1067 /**
1068  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1069  * @page: page from which memcg should be extracted.
1070  *
1071  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1072  * root_mem_cgroup is returned.
1073  */
get_mem_cgroup_from_page(struct page * page)1074 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1075 {
1076 	struct mem_cgroup *memcg = page->mem_cgroup;
1077 
1078 	if (mem_cgroup_disabled())
1079 		return NULL;
1080 
1081 	rcu_read_lock();
1082 	/* Page should not get uncharged and freed memcg under us. */
1083 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084 		memcg = root_mem_cgroup;
1085 	rcu_read_unlock();
1086 	return memcg;
1087 }
1088 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1089 
active_memcg(void)1090 static __always_inline struct mem_cgroup *active_memcg(void)
1091 {
1092 	if (in_interrupt())
1093 		return this_cpu_read(int_active_memcg);
1094 	else
1095 		return current->active_memcg;
1096 }
1097 
get_active_memcg(void)1098 static __always_inline struct mem_cgroup *get_active_memcg(void)
1099 {
1100 	struct mem_cgroup *memcg;
1101 
1102 	rcu_read_lock();
1103 	memcg = active_memcg();
1104 	/* remote memcg must hold a ref. */
1105 	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1106 		memcg = root_mem_cgroup;
1107 	rcu_read_unlock();
1108 
1109 	return memcg;
1110 }
1111 
memcg_kmem_bypass(void)1112 static __always_inline bool memcg_kmem_bypass(void)
1113 {
1114 	/* Allow remote memcg charging from any context. */
1115 	if (unlikely(active_memcg()))
1116 		return false;
1117 
1118 	/* Memcg to charge can't be determined. */
1119 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1120 		return true;
1121 
1122 	return false;
1123 }
1124 
1125 /**
1126  * If active memcg is set, do not fallback to current->mm->memcg.
1127  */
get_mem_cgroup_from_current(void)1128 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1129 {
1130 	if (memcg_kmem_bypass())
1131 		return NULL;
1132 
1133 	if (unlikely(active_memcg()))
1134 		return get_active_memcg();
1135 
1136 	return get_mem_cgroup_from_mm(current->mm);
1137 }
1138 
1139 /**
1140  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141  * @root: hierarchy root
1142  * @prev: previously returned memcg, NULL on first invocation
1143  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144  *
1145  * Returns references to children of the hierarchy below @root, or
1146  * @root itself, or %NULL after a full round-trip.
1147  *
1148  * Caller must pass the return value in @prev on subsequent
1149  * invocations for reference counting, or use mem_cgroup_iter_break()
1150  * to cancel a hierarchy walk before the round-trip is complete.
1151  *
1152  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153  * in the hierarchy among all concurrent reclaimers operating on the
1154  * same node.
1155  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1156 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 				   struct mem_cgroup *prev,
1158 				   struct mem_cgroup_reclaim_cookie *reclaim)
1159 {
1160 	struct mem_cgroup_reclaim_iter *iter;
1161 	struct cgroup_subsys_state *css = NULL;
1162 	struct mem_cgroup *memcg = NULL;
1163 	struct mem_cgroup *pos = NULL;
1164 
1165 	if (mem_cgroup_disabled())
1166 		return NULL;
1167 
1168 	if (!root)
1169 		root = root_mem_cgroup;
1170 
1171 	if (prev && !reclaim)
1172 		pos = prev;
1173 
1174 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1175 		if (prev)
1176 			goto out;
1177 		return root;
1178 	}
1179 
1180 	rcu_read_lock();
1181 
1182 	if (reclaim) {
1183 		struct mem_cgroup_per_node *mz;
1184 
1185 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1186 		iter = &mz->iter;
1187 
1188 		if (prev && reclaim->generation != iter->generation)
1189 			goto out_unlock;
1190 
1191 		while (1) {
1192 			pos = READ_ONCE(iter->position);
1193 			if (!pos || css_tryget(&pos->css))
1194 				break;
1195 			/*
1196 			 * css reference reached zero, so iter->position will
1197 			 * be cleared by ->css_released. However, we should not
1198 			 * rely on this happening soon, because ->css_released
1199 			 * is called from a work queue, and by busy-waiting we
1200 			 * might block it. So we clear iter->position right
1201 			 * away.
1202 			 */
1203 			(void)cmpxchg(&iter->position, pos, NULL);
1204 		}
1205 	}
1206 
1207 	if (pos)
1208 		css = &pos->css;
1209 
1210 	for (;;) {
1211 		css = css_next_descendant_pre(css, &root->css);
1212 		if (!css) {
1213 			/*
1214 			 * Reclaimers share the hierarchy walk, and a
1215 			 * new one might jump in right at the end of
1216 			 * the hierarchy - make sure they see at least
1217 			 * one group and restart from the beginning.
1218 			 */
1219 			if (!prev)
1220 				continue;
1221 			break;
1222 		}
1223 
1224 		/*
1225 		 * Verify the css and acquire a reference.  The root
1226 		 * is provided by the caller, so we know it's alive
1227 		 * and kicking, and don't take an extra reference.
1228 		 */
1229 		memcg = mem_cgroup_from_css(css);
1230 
1231 		if (css == &root->css)
1232 			break;
1233 
1234 		if (css_tryget(css))
1235 			break;
1236 
1237 		memcg = NULL;
1238 	}
1239 
1240 	if (reclaim) {
1241 		/*
1242 		 * The position could have already been updated by a competing
1243 		 * thread, so check that the value hasn't changed since we read
1244 		 * it to avoid reclaiming from the same cgroup twice.
1245 		 */
1246 		(void)cmpxchg(&iter->position, pos, memcg);
1247 
1248 		if (pos)
1249 			css_put(&pos->css);
1250 
1251 		if (!memcg)
1252 			iter->generation++;
1253 		else if (!prev)
1254 			reclaim->generation = iter->generation;
1255 	}
1256 
1257 out_unlock:
1258 	rcu_read_unlock();
1259 out:
1260 	if (prev && prev != root)
1261 		css_put(&prev->css);
1262 
1263 	return memcg;
1264 }
1265 
1266 /**
1267  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1268  * @root: hierarchy root
1269  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1271 void mem_cgroup_iter_break(struct mem_cgroup *root,
1272 			   struct mem_cgroup *prev)
1273 {
1274 	if (!root)
1275 		root = root_mem_cgroup;
1276 	if (prev && prev != root)
1277 		css_put(&prev->css);
1278 }
1279 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1280 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1281 					struct mem_cgroup *dead_memcg)
1282 {
1283 	struct mem_cgroup_reclaim_iter *iter;
1284 	struct mem_cgroup_per_node *mz;
1285 	int nid;
1286 
1287 	for_each_node(nid) {
1288 		mz = mem_cgroup_nodeinfo(from, nid);
1289 		iter = &mz->iter;
1290 		cmpxchg(&iter->position, dead_memcg, NULL);
1291 	}
1292 }
1293 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1294 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1295 {
1296 	struct mem_cgroup *memcg = dead_memcg;
1297 	struct mem_cgroup *last;
1298 
1299 	do {
1300 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1301 		last = memcg;
1302 	} while ((memcg = parent_mem_cgroup(memcg)));
1303 
1304 	/*
1305 	 * When cgruop1 non-hierarchy mode is used,
1306 	 * parent_mem_cgroup() does not walk all the way up to the
1307 	 * cgroup root (root_mem_cgroup). So we have to handle
1308 	 * dead_memcg from cgroup root separately.
1309 	 */
1310 	if (last != root_mem_cgroup)
1311 		__invalidate_reclaim_iterators(root_mem_cgroup,
1312 						dead_memcg);
1313 }
1314 
1315 /**
1316  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1317  * @memcg: hierarchy root
1318  * @fn: function to call for each task
1319  * @arg: argument passed to @fn
1320  *
1321  * This function iterates over tasks attached to @memcg or to any of its
1322  * descendants and calls @fn for each task. If @fn returns a non-zero
1323  * value, the function breaks the iteration loop and returns the value.
1324  * Otherwise, it will iterate over all tasks and return 0.
1325  *
1326  * This function must not be called for the root memory cgroup.
1327  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1328 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329 			  int (*fn)(struct task_struct *, void *), void *arg)
1330 {
1331 	struct mem_cgroup *iter;
1332 	int ret = 0;
1333 	int i = 0;
1334 
1335 	BUG_ON(memcg == root_mem_cgroup);
1336 
1337 	for_each_mem_cgroup_tree(iter, memcg) {
1338 		struct css_task_iter it;
1339 		struct task_struct *task;
1340 
1341 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1342 		while (!ret && (task = css_task_iter_next(&it))) {
1343 			/* Avoid potential softlockup warning */
1344 			if ((++i & 1023) == 0)
1345 				cond_resched();
1346 			ret = fn(task, arg);
1347 		}
1348 		css_task_iter_end(&it);
1349 		if (ret) {
1350 			mem_cgroup_iter_break(memcg, iter);
1351 			break;
1352 		}
1353 	}
1354 	return ret;
1355 }
1356 
1357 /**
1358  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1359  * @page: the page
1360  * @pgdat: pgdat of the page
1361  *
1362  * This function relies on page->mem_cgroup being stable - see the
1363  * access rules in commit_charge().
1364  */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1365 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1366 {
1367 	struct mem_cgroup_per_node *mz;
1368 	struct mem_cgroup *memcg;
1369 	struct lruvec *lruvec;
1370 
1371 	if (mem_cgroup_disabled()) {
1372 		lruvec = &pgdat->__lruvec;
1373 		goto out;
1374 	}
1375 
1376 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1377 	if (page_is_file_lru(page) &&
1378 	    !is_prot_page(page)) {
1379 		lruvec = node_lruvec(pgdat);
1380 		goto out;
1381 	}
1382 #endif
1383 	memcg = page->mem_cgroup;
1384 	/*
1385 	 * Swapcache readahead pages are added to the LRU - and
1386 	 * possibly migrated - before they are charged.
1387 	 */
1388 	if (!memcg)
1389 		memcg = root_mem_cgroup;
1390 
1391 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1392 	lruvec = &mz->lruvec;
1393 out:
1394 	/*
1395 	 * Since a node can be onlined after the mem_cgroup was created,
1396 	 * we have to be prepared to initialize lruvec->zone here;
1397 	 * and if offlined then reonlined, we need to reinitialize it.
1398 	 */
1399 	if (unlikely(lruvec->pgdat != pgdat))
1400 		lruvec->pgdat = pgdat;
1401 	return lruvec;
1402 }
1403 
1404 /**
1405  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1406  * @lruvec: mem_cgroup per zone lru vector
1407  * @lru: index of lru list the page is sitting on
1408  * @zid: zone id of the accounted pages
1409  * @nr_pages: positive when adding or negative when removing
1410  *
1411  * This function must be called under lru_lock, just before a page is added
1412  * to or just after a page is removed from an lru list (that ordering being
1413  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1414  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1415 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1416 				int zid, int nr_pages)
1417 {
1418 	struct mem_cgroup_per_node *mz;
1419 	unsigned long *lru_size;
1420 	long size;
1421 
1422 	if (mem_cgroup_disabled())
1423 		return;
1424 
1425 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1426 	if (is_node_lruvec(lruvec))
1427 		return;
1428 #endif
1429 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1430 	lru_size = &mz->lru_zone_size[zid][lru];
1431 
1432 	if (nr_pages < 0)
1433 		*lru_size += nr_pages;
1434 
1435 	size = *lru_size;
1436 	if (WARN_ONCE(size < 0,
1437 		"%s(%p, %d, %d): lru_size %ld\n",
1438 		__func__, lruvec, lru, nr_pages, size)) {
1439 		VM_BUG_ON(1);
1440 		*lru_size = 0;
1441 	}
1442 
1443 	if (nr_pages > 0)
1444 		*lru_size += nr_pages;
1445 }
1446 
1447 /**
1448  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1449  * @memcg: the memory cgroup
1450  *
1451  * Returns the maximum amount of memory @mem can be charged with, in
1452  * pages.
1453  */
mem_cgroup_margin(struct mem_cgroup * memcg)1454 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1455 {
1456 	unsigned long margin = 0;
1457 	unsigned long count;
1458 	unsigned long limit;
1459 
1460 	count = page_counter_read(&memcg->memory);
1461 	limit = READ_ONCE(memcg->memory.max);
1462 	if (count < limit)
1463 		margin = limit - count;
1464 
1465 	if (do_memsw_account()) {
1466 		count = page_counter_read(&memcg->memsw);
1467 		limit = READ_ONCE(memcg->memsw.max);
1468 		if (count < limit)
1469 			margin = min(margin, limit - count);
1470 		else
1471 			margin = 0;
1472 	}
1473 
1474 	return margin;
1475 }
1476 
1477 /*
1478  * A routine for checking "mem" is under move_account() or not.
1479  *
1480  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1481  * moving cgroups. This is for waiting at high-memory pressure
1482  * caused by "move".
1483  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1484 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1485 {
1486 	struct mem_cgroup *from;
1487 	struct mem_cgroup *to;
1488 	bool ret = false;
1489 	/*
1490 	 * Unlike task_move routines, we access mc.to, mc.from not under
1491 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1492 	 */
1493 	spin_lock(&mc.lock);
1494 	from = mc.from;
1495 	to = mc.to;
1496 	if (!from)
1497 		goto unlock;
1498 
1499 	ret = mem_cgroup_is_descendant(from, memcg) ||
1500 		mem_cgroup_is_descendant(to, memcg);
1501 unlock:
1502 	spin_unlock(&mc.lock);
1503 	return ret;
1504 }
1505 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1506 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1507 {
1508 	if (mc.moving_task && current != mc.moving_task) {
1509 		if (mem_cgroup_under_move(memcg)) {
1510 			DEFINE_WAIT(wait);
1511 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1512 			/* moving charge context might have finished. */
1513 			if (mc.moving_task)
1514 				schedule();
1515 			finish_wait(&mc.waitq, &wait);
1516 			return true;
1517 		}
1518 	}
1519 	return false;
1520 }
1521 
1522 struct memory_stat {
1523 	const char *name;
1524 	unsigned int ratio;
1525 	unsigned int idx;
1526 };
1527 
1528 static struct memory_stat memory_stats[] = {
1529 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1530 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1531 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1532 	{ "percpu", 1, MEMCG_PERCPU_B },
1533 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1534 	{ "shmem", PAGE_SIZE, NR_SHMEM },
1535 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1536 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1537 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1539 	/*
1540 	 * The ratio will be initialized in memory_stats_init(). Because
1541 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1542 	 * constant(e.g. powerpc).
1543 	 */
1544 	{ "anon_thp", 0, NR_ANON_THPS },
1545 #endif
1546 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1547 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1548 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1549 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1550 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1551 
1552 	/*
1553 	 * Note: The slab_reclaimable and slab_unreclaimable must be
1554 	 * together and slab_reclaimable must be in front.
1555 	 */
1556 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1557 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1558 
1559 	/* The memory events */
1560 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1561 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1562 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1563 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1564 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1565 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1566 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1567 };
1568 
memory_stats_init(void)1569 static int __init memory_stats_init(void)
1570 {
1571 	int i;
1572 
1573 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1575 		if (memory_stats[i].idx == NR_ANON_THPS)
1576 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1577 #endif
1578 		VM_BUG_ON(!memory_stats[i].ratio);
1579 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1580 	}
1581 
1582 	return 0;
1583 }
1584 pure_initcall(memory_stats_init);
1585 
memory_stat_format(struct mem_cgroup * memcg)1586 static char *memory_stat_format(struct mem_cgroup *memcg)
1587 {
1588 	struct seq_buf s;
1589 	int i;
1590 
1591 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1592 	if (!s.buffer)
1593 		return NULL;
1594 
1595 	/*
1596 	 * Provide statistics on the state of the memory subsystem as
1597 	 * well as cumulative event counters that show past behavior.
1598 	 *
1599 	 * This list is ordered following a combination of these gradients:
1600 	 * 1) generic big picture -> specifics and details
1601 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1602 	 *
1603 	 * Current memory state:
1604 	 */
1605 
1606 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1607 		u64 size;
1608 
1609 		size = memcg_page_state(memcg, memory_stats[i].idx);
1610 		size *= memory_stats[i].ratio;
1611 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1612 
1613 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1614 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1615 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1616 			seq_buf_printf(&s, "slab %llu\n", size);
1617 		}
1618 	}
1619 
1620 	/* Accumulated memory events */
1621 
1622 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1623 		       memcg_events(memcg, PGFAULT));
1624 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1625 		       memcg_events(memcg, PGMAJFAULT));
1626 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1627 		       memcg_events(memcg, PGREFILL));
1628 	seq_buf_printf(&s, "pgscan %lu\n",
1629 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1630 		       memcg_events(memcg, PGSCAN_DIRECT));
1631 	seq_buf_printf(&s, "pgsteal %lu\n",
1632 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1633 		       memcg_events(memcg, PGSTEAL_DIRECT));
1634 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1635 		       memcg_events(memcg, PGACTIVATE));
1636 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1637 		       memcg_events(memcg, PGDEACTIVATE));
1638 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1639 		       memcg_events(memcg, PGLAZYFREE));
1640 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1641 		       memcg_events(memcg, PGLAZYFREED));
1642 
1643 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1644 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1645 		       memcg_events(memcg, THP_FAULT_ALLOC));
1646 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1647 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1649 
1650 	/* The above should easily fit into one page */
1651 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1652 
1653 	return s.buffer;
1654 }
1655 
1656 #define K(x) ((x) << (PAGE_SHIFT-10))
1657 /**
1658  * mem_cgroup_print_oom_context: Print OOM information relevant to
1659  * memory controller.
1660  * @memcg: The memory cgroup that went over limit
1661  * @p: Task that is going to be killed
1662  *
1663  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1664  * enabled
1665  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1666 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1667 {
1668 	rcu_read_lock();
1669 
1670 	if (memcg) {
1671 		pr_cont(",oom_memcg=");
1672 		pr_cont_cgroup_path(memcg->css.cgroup);
1673 	} else
1674 		pr_cont(",global_oom");
1675 	if (p) {
1676 		pr_cont(",task_memcg=");
1677 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1678 	}
1679 	rcu_read_unlock();
1680 }
1681 
1682 /**
1683  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1684  * memory controller.
1685  * @memcg: The memory cgroup that went over limit
1686  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1687 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1688 {
1689 	char *buf;
1690 
1691 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1692 		K((u64)page_counter_read(&memcg->memory)),
1693 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1694 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1695 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1696 			K((u64)page_counter_read(&memcg->swap)),
1697 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1698 	else {
1699 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1700 			K((u64)page_counter_read(&memcg->memsw)),
1701 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1702 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1703 			K((u64)page_counter_read(&memcg->kmem)),
1704 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1705 	}
1706 
1707 	pr_info("Memory cgroup stats for ");
1708 	pr_cont_cgroup_path(memcg->css.cgroup);
1709 	pr_cont(":");
1710 	buf = memory_stat_format(memcg);
1711 	if (!buf)
1712 		return;
1713 	pr_info("%s", buf);
1714 	kfree(buf);
1715 }
1716 
1717 /*
1718  * Return the memory (and swap, if configured) limit for a memcg.
1719  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1720 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1721 {
1722 	unsigned long max = READ_ONCE(memcg->memory.max);
1723 
1724 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1725 		if (mem_cgroup_swappiness(memcg))
1726 			max += min(READ_ONCE(memcg->swap.max),
1727 				   (unsigned long)total_swap_pages);
1728 	} else { /* v1 */
1729 		if (mem_cgroup_swappiness(memcg)) {
1730 			/* Calculate swap excess capacity from memsw limit */
1731 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1732 
1733 			max += min(swap, (unsigned long)total_swap_pages);
1734 		}
1735 	}
1736 	return max;
1737 }
1738 
mem_cgroup_size(struct mem_cgroup * memcg)1739 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1740 {
1741 	return page_counter_read(&memcg->memory);
1742 }
1743 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1744 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1745 				     int order)
1746 {
1747 	struct oom_control oc = {
1748 		.zonelist = NULL,
1749 		.nodemask = NULL,
1750 		.memcg = memcg,
1751 		.gfp_mask = gfp_mask,
1752 		.order = order,
1753 	};
1754 	bool ret = true;
1755 
1756 	if (mutex_lock_killable(&oom_lock))
1757 		return true;
1758 
1759 	if (mem_cgroup_margin(memcg) >= (1 << order))
1760 		goto unlock;
1761 
1762 	/*
1763 	 * A few threads which were not waiting at mutex_lock_killable() can
1764 	 * fail to bail out. Therefore, check again after holding oom_lock.
1765 	 */
1766 	ret = task_is_dying() || out_of_memory(&oc);
1767 
1768 unlock:
1769 	mutex_unlock(&oom_lock);
1770 	return ret;
1771 }
1772 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1773 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1774 				   pg_data_t *pgdat,
1775 				   gfp_t gfp_mask,
1776 				   unsigned long *total_scanned)
1777 {
1778 	struct mem_cgroup *victim = NULL;
1779 	int total = 0;
1780 	int loop = 0;
1781 	unsigned long excess;
1782 	unsigned long nr_scanned;
1783 	struct mem_cgroup_reclaim_cookie reclaim = {
1784 		.pgdat = pgdat,
1785 	};
1786 
1787 	excess = soft_limit_excess(root_memcg);
1788 
1789 	while (1) {
1790 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1791 		if (!victim) {
1792 			loop++;
1793 			if (loop >= 2) {
1794 				/*
1795 				 * If we have not been able to reclaim
1796 				 * anything, it might because there are
1797 				 * no reclaimable pages under this hierarchy
1798 				 */
1799 				if (!total)
1800 					break;
1801 				/*
1802 				 * We want to do more targeted reclaim.
1803 				 * excess >> 2 is not to excessive so as to
1804 				 * reclaim too much, nor too less that we keep
1805 				 * coming back to reclaim from this cgroup
1806 				 */
1807 				if (total >= (excess >> 2) ||
1808 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1809 					break;
1810 			}
1811 			continue;
1812 		}
1813 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1814 					pgdat, &nr_scanned);
1815 		*total_scanned += nr_scanned;
1816 		if (!soft_limit_excess(root_memcg))
1817 			break;
1818 	}
1819 	mem_cgroup_iter_break(root_memcg, victim);
1820 	return total;
1821 }
1822 
1823 #ifdef CONFIG_LOCKDEP
1824 static struct lockdep_map memcg_oom_lock_dep_map = {
1825 	.name = "memcg_oom_lock",
1826 };
1827 #endif
1828 
1829 static DEFINE_SPINLOCK(memcg_oom_lock);
1830 
1831 /*
1832  * Check OOM-Killer is already running under our hierarchy.
1833  * If someone is running, return false.
1834  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1835 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1836 {
1837 	struct mem_cgroup *iter, *failed = NULL;
1838 
1839 	spin_lock(&memcg_oom_lock);
1840 
1841 	for_each_mem_cgroup_tree(iter, memcg) {
1842 		if (iter->oom_lock) {
1843 			/*
1844 			 * this subtree of our hierarchy is already locked
1845 			 * so we cannot give a lock.
1846 			 */
1847 			failed = iter;
1848 			mem_cgroup_iter_break(memcg, iter);
1849 			break;
1850 		} else
1851 			iter->oom_lock = true;
1852 	}
1853 
1854 	if (failed) {
1855 		/*
1856 		 * OK, we failed to lock the whole subtree so we have
1857 		 * to clean up what we set up to the failing subtree
1858 		 */
1859 		for_each_mem_cgroup_tree(iter, memcg) {
1860 			if (iter == failed) {
1861 				mem_cgroup_iter_break(memcg, iter);
1862 				break;
1863 			}
1864 			iter->oom_lock = false;
1865 		}
1866 	} else
1867 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1868 
1869 	spin_unlock(&memcg_oom_lock);
1870 
1871 	return !failed;
1872 }
1873 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1874 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1875 {
1876 	struct mem_cgroup *iter;
1877 
1878 	spin_lock(&memcg_oom_lock);
1879 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1880 	for_each_mem_cgroup_tree(iter, memcg)
1881 		iter->oom_lock = false;
1882 	spin_unlock(&memcg_oom_lock);
1883 }
1884 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1885 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1886 {
1887 	struct mem_cgroup *iter;
1888 
1889 	spin_lock(&memcg_oom_lock);
1890 	for_each_mem_cgroup_tree(iter, memcg)
1891 		iter->under_oom++;
1892 	spin_unlock(&memcg_oom_lock);
1893 }
1894 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1895 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1896 {
1897 	struct mem_cgroup *iter;
1898 
1899 	/*
1900 	 * Be careful about under_oom underflows becase a child memcg
1901 	 * could have been added after mem_cgroup_mark_under_oom.
1902 	 */
1903 	spin_lock(&memcg_oom_lock);
1904 	for_each_mem_cgroup_tree(iter, memcg)
1905 		if (iter->under_oom > 0)
1906 			iter->under_oom--;
1907 	spin_unlock(&memcg_oom_lock);
1908 }
1909 
1910 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1911 
1912 struct oom_wait_info {
1913 	struct mem_cgroup *memcg;
1914 	wait_queue_entry_t	wait;
1915 };
1916 
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1917 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1918 	unsigned mode, int sync, void *arg)
1919 {
1920 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1921 	struct mem_cgroup *oom_wait_memcg;
1922 	struct oom_wait_info *oom_wait_info;
1923 
1924 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1925 	oom_wait_memcg = oom_wait_info->memcg;
1926 
1927 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1928 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1929 		return 0;
1930 	return autoremove_wake_function(wait, mode, sync, arg);
1931 }
1932 
memcg_oom_recover(struct mem_cgroup * memcg)1933 static void memcg_oom_recover(struct mem_cgroup *memcg)
1934 {
1935 	/*
1936 	 * For the following lockless ->under_oom test, the only required
1937 	 * guarantee is that it must see the state asserted by an OOM when
1938 	 * this function is called as a result of userland actions
1939 	 * triggered by the notification of the OOM.  This is trivially
1940 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1941 	 * triggering notification.
1942 	 */
1943 	if (memcg && memcg->under_oom)
1944 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1945 }
1946 
1947 enum oom_status {
1948 	OOM_SUCCESS,
1949 	OOM_FAILED,
1950 	OOM_ASYNC,
1951 	OOM_SKIPPED
1952 };
1953 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1954 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1955 {
1956 	enum oom_status ret;
1957 	bool locked;
1958 
1959 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1960 		return OOM_SKIPPED;
1961 
1962 	memcg_memory_event(memcg, MEMCG_OOM);
1963 
1964 	/*
1965 	 * We are in the middle of the charge context here, so we
1966 	 * don't want to block when potentially sitting on a callstack
1967 	 * that holds all kinds of filesystem and mm locks.
1968 	 *
1969 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1970 	 * handling until the charge can succeed; remember the context and put
1971 	 * the task to sleep at the end of the page fault when all locks are
1972 	 * released.
1973 	 *
1974 	 * On the other hand, in-kernel OOM killer allows for an async victim
1975 	 * memory reclaim (oom_reaper) and that means that we are not solely
1976 	 * relying on the oom victim to make a forward progress and we can
1977 	 * invoke the oom killer here.
1978 	 *
1979 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1980 	 * victim and then we have to bail out from the charge path.
1981 	 */
1982 	if (memcg->oom_kill_disable) {
1983 		if (!current->in_user_fault)
1984 			return OOM_SKIPPED;
1985 		css_get(&memcg->css);
1986 		current->memcg_in_oom = memcg;
1987 		current->memcg_oom_gfp_mask = mask;
1988 		current->memcg_oom_order = order;
1989 
1990 		return OOM_ASYNC;
1991 	}
1992 
1993 	mem_cgroup_mark_under_oom(memcg);
1994 
1995 	locked = mem_cgroup_oom_trylock(memcg);
1996 
1997 	if (locked)
1998 		mem_cgroup_oom_notify(memcg);
1999 
2000 	mem_cgroup_unmark_under_oom(memcg);
2001 	if (mem_cgroup_out_of_memory(memcg, mask, order))
2002 		ret = OOM_SUCCESS;
2003 	else
2004 		ret = OOM_FAILED;
2005 
2006 	if (locked)
2007 		mem_cgroup_oom_unlock(memcg);
2008 
2009 	return ret;
2010 }
2011 
2012 /**
2013  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2014  * @handle: actually kill/wait or just clean up the OOM state
2015  *
2016  * This has to be called at the end of a page fault if the memcg OOM
2017  * handler was enabled.
2018  *
2019  * Memcg supports userspace OOM handling where failed allocations must
2020  * sleep on a waitqueue until the userspace task resolves the
2021  * situation.  Sleeping directly in the charge context with all kinds
2022  * of locks held is not a good idea, instead we remember an OOM state
2023  * in the task and mem_cgroup_oom_synchronize() has to be called at
2024  * the end of the page fault to complete the OOM handling.
2025  *
2026  * Returns %true if an ongoing memcg OOM situation was detected and
2027  * completed, %false otherwise.
2028  */
mem_cgroup_oom_synchronize(bool handle)2029 bool mem_cgroup_oom_synchronize(bool handle)
2030 {
2031 	struct mem_cgroup *memcg = current->memcg_in_oom;
2032 	struct oom_wait_info owait;
2033 	bool locked;
2034 
2035 	/* OOM is global, do not handle */
2036 	if (!memcg)
2037 		return false;
2038 
2039 	if (!handle)
2040 		goto cleanup;
2041 
2042 	owait.memcg = memcg;
2043 	owait.wait.flags = 0;
2044 	owait.wait.func = memcg_oom_wake_function;
2045 	owait.wait.private = current;
2046 	INIT_LIST_HEAD(&owait.wait.entry);
2047 
2048 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2049 	mem_cgroup_mark_under_oom(memcg);
2050 
2051 	locked = mem_cgroup_oom_trylock(memcg);
2052 
2053 	if (locked)
2054 		mem_cgroup_oom_notify(memcg);
2055 
2056 	if (locked && !memcg->oom_kill_disable) {
2057 		mem_cgroup_unmark_under_oom(memcg);
2058 		finish_wait(&memcg_oom_waitq, &owait.wait);
2059 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2060 					 current->memcg_oom_order);
2061 	} else {
2062 		schedule();
2063 		mem_cgroup_unmark_under_oom(memcg);
2064 		finish_wait(&memcg_oom_waitq, &owait.wait);
2065 	}
2066 
2067 	if (locked) {
2068 		mem_cgroup_oom_unlock(memcg);
2069 		/*
2070 		 * There is no guarantee that an OOM-lock contender
2071 		 * sees the wakeups triggered by the OOM kill
2072 		 * uncharges.  Wake any sleepers explicitely.
2073 		 */
2074 		memcg_oom_recover(memcg);
2075 	}
2076 cleanup:
2077 	current->memcg_in_oom = NULL;
2078 	css_put(&memcg->css);
2079 	return true;
2080 }
2081 
2082 /**
2083  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2084  * @victim: task to be killed by the OOM killer
2085  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2086  *
2087  * Returns a pointer to a memory cgroup, which has to be cleaned up
2088  * by killing all belonging OOM-killable tasks.
2089  *
2090  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2091  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2092 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2093 					    struct mem_cgroup *oom_domain)
2094 {
2095 	struct mem_cgroup *oom_group = NULL;
2096 	struct mem_cgroup *memcg;
2097 
2098 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2099 		return NULL;
2100 
2101 	if (!oom_domain)
2102 		oom_domain = root_mem_cgroup;
2103 
2104 	rcu_read_lock();
2105 
2106 	memcg = mem_cgroup_from_task(victim);
2107 	if (memcg == root_mem_cgroup)
2108 		goto out;
2109 
2110 	/*
2111 	 * If the victim task has been asynchronously moved to a different
2112 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2113 	 * In this case it's better to ignore memory.group.oom.
2114 	 */
2115 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2116 		goto out;
2117 
2118 	/*
2119 	 * Traverse the memory cgroup hierarchy from the victim task's
2120 	 * cgroup up to the OOMing cgroup (or root) to find the
2121 	 * highest-level memory cgroup with oom.group set.
2122 	 */
2123 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2124 		if (memcg->oom_group)
2125 			oom_group = memcg;
2126 
2127 		if (memcg == oom_domain)
2128 			break;
2129 	}
2130 
2131 	if (oom_group)
2132 		css_get(&oom_group->css);
2133 out:
2134 	rcu_read_unlock();
2135 
2136 	return oom_group;
2137 }
2138 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2139 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2140 {
2141 	pr_info("Tasks in ");
2142 	pr_cont_cgroup_path(memcg->css.cgroup);
2143 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2144 }
2145 
2146 /**
2147  * lock_page_memcg - lock a page->mem_cgroup binding
2148  * @page: the page
2149  *
2150  * This function protects unlocked LRU pages from being moved to
2151  * another cgroup.
2152  *
2153  * It ensures lifetime of the returned memcg. Caller is responsible
2154  * for the lifetime of the page; __unlock_page_memcg() is available
2155  * when @page might get freed inside the locked section.
2156  */
lock_page_memcg(struct page * page)2157 struct mem_cgroup *lock_page_memcg(struct page *page)
2158 {
2159 	struct page *head = compound_head(page); /* rmap on tail pages */
2160 	struct mem_cgroup *memcg;
2161 	unsigned long flags;
2162 
2163 	/*
2164 	 * The RCU lock is held throughout the transaction.  The fast
2165 	 * path can get away without acquiring the memcg->move_lock
2166 	 * because page moving starts with an RCU grace period.
2167 	 *
2168 	 * The RCU lock also protects the memcg from being freed when
2169 	 * the page state that is going to change is the only thing
2170 	 * preventing the page itself from being freed. E.g. writeback
2171 	 * doesn't hold a page reference and relies on PG_writeback to
2172 	 * keep off truncation, migration and so forth.
2173          */
2174 	rcu_read_lock();
2175 
2176 	if (mem_cgroup_disabled())
2177 		return NULL;
2178 again:
2179 	memcg = head->mem_cgroup;
2180 	if (unlikely(!memcg))
2181 		return NULL;
2182 
2183 	if (atomic_read(&memcg->moving_account) <= 0)
2184 		return memcg;
2185 
2186 	spin_lock_irqsave(&memcg->move_lock, flags);
2187 	if (memcg != head->mem_cgroup) {
2188 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 		goto again;
2190 	}
2191 
2192 	/*
2193 	 * When charge migration first begins, we can have locked and
2194 	 * unlocked page stat updates happening concurrently.  Track
2195 	 * the task who has the lock for unlock_page_memcg().
2196 	 */
2197 	memcg->move_lock_task = current;
2198 	memcg->move_lock_flags = flags;
2199 
2200 	return memcg;
2201 }
2202 EXPORT_SYMBOL(lock_page_memcg);
2203 
2204 /**
2205  * __unlock_page_memcg - unlock and unpin a memcg
2206  * @memcg: the memcg
2207  *
2208  * Unlock and unpin a memcg returned by lock_page_memcg().
2209  */
__unlock_page_memcg(struct mem_cgroup * memcg)2210 void __unlock_page_memcg(struct mem_cgroup *memcg)
2211 {
2212 	if (memcg && memcg->move_lock_task == current) {
2213 		unsigned long flags = memcg->move_lock_flags;
2214 
2215 		memcg->move_lock_task = NULL;
2216 		memcg->move_lock_flags = 0;
2217 
2218 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2219 	}
2220 
2221 	rcu_read_unlock();
2222 }
2223 
2224 /**
2225  * unlock_page_memcg - unlock a page->mem_cgroup binding
2226  * @page: the page
2227  */
unlock_page_memcg(struct page * page)2228 void unlock_page_memcg(struct page *page)
2229 {
2230 	struct page *head = compound_head(page);
2231 
2232 	__unlock_page_memcg(head->mem_cgroup);
2233 }
2234 EXPORT_SYMBOL(unlock_page_memcg);
2235 
2236 struct memcg_stock_pcp {
2237 	struct mem_cgroup *cached; /* this never be root cgroup */
2238 	unsigned int nr_pages;
2239 
2240 #ifdef CONFIG_MEMCG_KMEM
2241 	struct obj_cgroup *cached_objcg;
2242 	unsigned int nr_bytes;
2243 #endif
2244 
2245 	struct work_struct work;
2246 	unsigned long flags;
2247 #define FLUSHING_CACHED_CHARGE	0
2248 };
2249 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2250 static DEFINE_MUTEX(percpu_charge_mutex);
2251 
2252 #ifdef CONFIG_MEMCG_KMEM
2253 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2254 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 				     struct mem_cgroup *root_memcg);
2256 
2257 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2258 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2259 {
2260 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2261 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2262 				     struct mem_cgroup *root_memcg)
2263 {
2264 	return false;
2265 }
2266 #endif
2267 
2268 /**
2269  * consume_stock: Try to consume stocked charge on this cpu.
2270  * @memcg: memcg to consume from.
2271  * @nr_pages: how many pages to charge.
2272  *
2273  * The charges will only happen if @memcg matches the current cpu's memcg
2274  * stock, and at least @nr_pages are available in that stock.  Failure to
2275  * service an allocation will refill the stock.
2276  *
2277  * returns true if successful, false otherwise.
2278  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2279 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2280 {
2281 	struct memcg_stock_pcp *stock;
2282 	unsigned long flags;
2283 	bool ret = false;
2284 
2285 	if (nr_pages > MEMCG_CHARGE_BATCH)
2286 		return ret;
2287 
2288 	local_irq_save(flags);
2289 
2290 	stock = this_cpu_ptr(&memcg_stock);
2291 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2292 		stock->nr_pages -= nr_pages;
2293 		ret = true;
2294 	}
2295 
2296 	local_irq_restore(flags);
2297 
2298 	return ret;
2299 }
2300 
2301 /*
2302  * Returns stocks cached in percpu and reset cached information.
2303  */
drain_stock(struct memcg_stock_pcp * stock)2304 static void drain_stock(struct memcg_stock_pcp *stock)
2305 {
2306 	struct mem_cgroup *old = stock->cached;
2307 
2308 	if (!old)
2309 		return;
2310 
2311 	if (stock->nr_pages) {
2312 		page_counter_uncharge(&old->memory, stock->nr_pages);
2313 		if (do_memsw_account())
2314 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2315 		stock->nr_pages = 0;
2316 	}
2317 
2318 	css_put(&old->css);
2319 	stock->cached = NULL;
2320 }
2321 
drain_local_stock(struct work_struct * dummy)2322 static void drain_local_stock(struct work_struct *dummy)
2323 {
2324 	struct memcg_stock_pcp *stock;
2325 	unsigned long flags;
2326 
2327 	/*
2328 	 * The only protection from memory hotplug vs. drain_stock races is
2329 	 * that we always operate on local CPU stock here with IRQ disabled
2330 	 */
2331 	local_irq_save(flags);
2332 
2333 	stock = this_cpu_ptr(&memcg_stock);
2334 	drain_obj_stock(stock);
2335 	drain_stock(stock);
2336 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2337 
2338 	local_irq_restore(flags);
2339 }
2340 
2341 /*
2342  * Cache charges(val) to local per_cpu area.
2343  * This will be consumed by consume_stock() function, later.
2344  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2345 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2346 {
2347 	struct memcg_stock_pcp *stock;
2348 	unsigned long flags;
2349 
2350 	local_irq_save(flags);
2351 
2352 	stock = this_cpu_ptr(&memcg_stock);
2353 	if (stock->cached != memcg) { /* reset if necessary */
2354 		drain_stock(stock);
2355 		css_get(&memcg->css);
2356 		stock->cached = memcg;
2357 	}
2358 	stock->nr_pages += nr_pages;
2359 
2360 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2361 		drain_stock(stock);
2362 
2363 	local_irq_restore(flags);
2364 }
2365 
2366 /*
2367  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2368  * of the hierarchy under it.
2369  */
drain_all_stock(struct mem_cgroup * root_memcg)2370 static void drain_all_stock(struct mem_cgroup *root_memcg)
2371 {
2372 	int cpu, curcpu;
2373 
2374 	/* If someone's already draining, avoid adding running more workers. */
2375 	if (!mutex_trylock(&percpu_charge_mutex))
2376 		return;
2377 	/*
2378 	 * Notify other cpus that system-wide "drain" is running
2379 	 * We do not care about races with the cpu hotplug because cpu down
2380 	 * as well as workers from this path always operate on the local
2381 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2382 	 */
2383 	curcpu = get_cpu();
2384 	for_each_online_cpu(cpu) {
2385 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2386 		struct mem_cgroup *memcg;
2387 		bool flush = false;
2388 
2389 		rcu_read_lock();
2390 		memcg = stock->cached;
2391 		if (memcg && stock->nr_pages &&
2392 		    mem_cgroup_is_descendant(memcg, root_memcg))
2393 			flush = true;
2394 		if (obj_stock_flush_required(stock, root_memcg))
2395 			flush = true;
2396 		rcu_read_unlock();
2397 
2398 		if (flush &&
2399 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2400 			if (cpu == curcpu)
2401 				drain_local_stock(&stock->work);
2402 			else
2403 				schedule_work_on(cpu, &stock->work);
2404 		}
2405 	}
2406 	put_cpu();
2407 	mutex_unlock(&percpu_charge_mutex);
2408 }
2409 
memcg_hotplug_cpu_dead(unsigned int cpu)2410 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2411 {
2412 	struct memcg_stock_pcp *stock;
2413 	struct mem_cgroup *memcg, *mi;
2414 
2415 	stock = &per_cpu(memcg_stock, cpu);
2416 	drain_stock(stock);
2417 
2418 	for_each_mem_cgroup(memcg) {
2419 		int i;
2420 
2421 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2422 			int nid;
2423 			long x;
2424 
2425 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2426 			if (x)
2427 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2428 					atomic_long_add(x, &memcg->vmstats[i]);
2429 
2430 			if (i >= NR_VM_NODE_STAT_ITEMS)
2431 				continue;
2432 
2433 			for_each_node(nid) {
2434 				struct mem_cgroup_per_node *pn;
2435 
2436 				pn = mem_cgroup_nodeinfo(memcg, nid);
2437 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2438 				if (x)
2439 					do {
2440 						atomic_long_add(x, &pn->lruvec_stat[i]);
2441 					} while ((pn = parent_nodeinfo(pn, nid)));
2442 			}
2443 		}
2444 
2445 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2446 			long x;
2447 
2448 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2449 			if (x)
2450 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2451 					atomic_long_add(x, &memcg->vmevents[i]);
2452 		}
2453 	}
2454 
2455 	return 0;
2456 }
2457 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2458 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2459 				  unsigned int nr_pages,
2460 				  gfp_t gfp_mask)
2461 {
2462 	unsigned long nr_reclaimed = 0;
2463 
2464 	do {
2465 		unsigned long pflags;
2466 
2467 		if (page_counter_read(&memcg->memory) <=
2468 		    READ_ONCE(memcg->memory.high))
2469 			continue;
2470 
2471 		memcg_memory_event(memcg, MEMCG_HIGH);
2472 
2473 		psi_memstall_enter(&pflags);
2474 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2475 							     gfp_mask, true);
2476 		psi_memstall_leave(&pflags);
2477 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2478 		 !mem_cgroup_is_root(memcg));
2479 
2480 	return nr_reclaimed;
2481 }
2482 
high_work_func(struct work_struct * work)2483 static void high_work_func(struct work_struct *work)
2484 {
2485 	struct mem_cgroup *memcg;
2486 
2487 	memcg = container_of(work, struct mem_cgroup, high_work);
2488 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2489 }
2490 
2491 /*
2492  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2493  * enough to still cause a significant slowdown in most cases, while still
2494  * allowing diagnostics and tracing to proceed without becoming stuck.
2495  */
2496 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2497 
2498 /*
2499  * When calculating the delay, we use these either side of the exponentiation to
2500  * maintain precision and scale to a reasonable number of jiffies (see the table
2501  * below.
2502  *
2503  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2504  *   overage ratio to a delay.
2505  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2506  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2507  *   to produce a reasonable delay curve.
2508  *
2509  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2510  * reasonable delay curve compared to precision-adjusted overage, not
2511  * penalising heavily at first, but still making sure that growth beyond the
2512  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2513  * example, with a high of 100 megabytes:
2514  *
2515  *  +-------+------------------------+
2516  *  | usage | time to allocate in ms |
2517  *  +-------+------------------------+
2518  *  | 100M  |                      0 |
2519  *  | 101M  |                      6 |
2520  *  | 102M  |                     25 |
2521  *  | 103M  |                     57 |
2522  *  | 104M  |                    102 |
2523  *  | 105M  |                    159 |
2524  *  | 106M  |                    230 |
2525  *  | 107M  |                    313 |
2526  *  | 108M  |                    409 |
2527  *  | 109M  |                    518 |
2528  *  | 110M  |                    639 |
2529  *  | 111M  |                    774 |
2530  *  | 112M  |                    921 |
2531  *  | 113M  |                   1081 |
2532  *  | 114M  |                   1254 |
2533  *  | 115M  |                   1439 |
2534  *  | 116M  |                   1638 |
2535  *  | 117M  |                   1849 |
2536  *  | 118M  |                   2000 |
2537  *  | 119M  |                   2000 |
2538  *  | 120M  |                   2000 |
2539  *  +-------+------------------------+
2540  */
2541  #define MEMCG_DELAY_PRECISION_SHIFT 20
2542  #define MEMCG_DELAY_SCALING_SHIFT 14
2543 
calculate_overage(unsigned long usage,unsigned long high)2544 static u64 calculate_overage(unsigned long usage, unsigned long high)
2545 {
2546 	u64 overage;
2547 
2548 	if (usage <= high)
2549 		return 0;
2550 
2551 	/*
2552 	 * Prevent division by 0 in overage calculation by acting as if
2553 	 * it was a threshold of 1 page
2554 	 */
2555 	high = max(high, 1UL);
2556 
2557 	overage = usage - high;
2558 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2559 	return div64_u64(overage, high);
2560 }
2561 
mem_find_max_overage(struct mem_cgroup * memcg)2562 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2563 {
2564 	u64 overage, max_overage = 0;
2565 
2566 	do {
2567 		overage = calculate_overage(page_counter_read(&memcg->memory),
2568 					    READ_ONCE(memcg->memory.high));
2569 		max_overage = max(overage, max_overage);
2570 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2571 		 !mem_cgroup_is_root(memcg));
2572 
2573 	return max_overage;
2574 }
2575 
swap_find_max_overage(struct mem_cgroup * memcg)2576 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2577 {
2578 	u64 overage, max_overage = 0;
2579 
2580 	do {
2581 		overage = calculate_overage(page_counter_read(&memcg->swap),
2582 					    READ_ONCE(memcg->swap.high));
2583 		if (overage)
2584 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2585 		max_overage = max(overage, max_overage);
2586 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2587 		 !mem_cgroup_is_root(memcg));
2588 
2589 	return max_overage;
2590 }
2591 
2592 /*
2593  * Get the number of jiffies that we should penalise a mischievous cgroup which
2594  * is exceeding its memory.high by checking both it and its ancestors.
2595  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2596 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2597 					  unsigned int nr_pages,
2598 					  u64 max_overage)
2599 {
2600 	unsigned long penalty_jiffies;
2601 
2602 	if (!max_overage)
2603 		return 0;
2604 
2605 	/*
2606 	 * We use overage compared to memory.high to calculate the number of
2607 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2608 	 * fairly lenient on small overages, and increasingly harsh when the
2609 	 * memcg in question makes it clear that it has no intention of stopping
2610 	 * its crazy behaviour, so we exponentially increase the delay based on
2611 	 * overage amount.
2612 	 */
2613 	penalty_jiffies = max_overage * max_overage * HZ;
2614 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2615 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2616 
2617 	/*
2618 	 * Factor in the task's own contribution to the overage, such that four
2619 	 * N-sized allocations are throttled approximately the same as one
2620 	 * 4N-sized allocation.
2621 	 *
2622 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2623 	 * larger the current charge patch is than that.
2624 	 */
2625 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2626 }
2627 
2628 /*
2629  * Scheduled by try_charge() to be executed from the userland return path
2630  * and reclaims memory over the high limit.
2631  */
mem_cgroup_handle_over_high(void)2632 void mem_cgroup_handle_over_high(void)
2633 {
2634 	unsigned long penalty_jiffies;
2635 	unsigned long pflags;
2636 	unsigned long nr_reclaimed;
2637 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2638 	int nr_retries = MAX_RECLAIM_RETRIES;
2639 	struct mem_cgroup *memcg;
2640 	bool in_retry = false;
2641 
2642 	if (likely(!nr_pages))
2643 		return;
2644 
2645 	memcg = get_mem_cgroup_from_mm(current->mm);
2646 	current->memcg_nr_pages_over_high = 0;
2647 
2648 retry_reclaim:
2649 	/*
2650 	 * The allocating task should reclaim at least the batch size, but for
2651 	 * subsequent retries we only want to do what's necessary to prevent oom
2652 	 * or breaching resource isolation.
2653 	 *
2654 	 * This is distinct from memory.max or page allocator behaviour because
2655 	 * memory.high is currently batched, whereas memory.max and the page
2656 	 * allocator run every time an allocation is made.
2657 	 */
2658 	nr_reclaimed = reclaim_high(memcg,
2659 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2660 				    GFP_KERNEL);
2661 
2662 	/*
2663 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2664 	 * allocators proactively to slow down excessive growth.
2665 	 */
2666 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2667 					       mem_find_max_overage(memcg));
2668 
2669 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2670 						swap_find_max_overage(memcg));
2671 
2672 	/*
2673 	 * Clamp the max delay per usermode return so as to still keep the
2674 	 * application moving forwards and also permit diagnostics, albeit
2675 	 * extremely slowly.
2676 	 */
2677 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2678 
2679 	/*
2680 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2681 	 * that it's not even worth doing, in an attempt to be nice to those who
2682 	 * go only a small amount over their memory.high value and maybe haven't
2683 	 * been aggressively reclaimed enough yet.
2684 	 */
2685 	if (penalty_jiffies <= HZ / 100)
2686 		goto out;
2687 
2688 	/*
2689 	 * If reclaim is making forward progress but we're still over
2690 	 * memory.high, we want to encourage that rather than doing allocator
2691 	 * throttling.
2692 	 */
2693 	if (nr_reclaimed || nr_retries--) {
2694 		in_retry = true;
2695 		goto retry_reclaim;
2696 	}
2697 
2698 	/*
2699 	 * If we exit early, we're guaranteed to die (since
2700 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2701 	 * need to account for any ill-begotten jiffies to pay them off later.
2702 	 */
2703 	psi_memstall_enter(&pflags);
2704 	schedule_timeout_killable(penalty_jiffies);
2705 	psi_memstall_leave(&pflags);
2706 
2707 out:
2708 	css_put(&memcg->css);
2709 }
2710 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2711 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 		      unsigned int nr_pages)
2713 {
2714 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2715 	int nr_retries = MAX_RECLAIM_RETRIES;
2716 	struct mem_cgroup *mem_over_limit;
2717 	struct page_counter *counter;
2718 	enum oom_status oom_status;
2719 	unsigned long nr_reclaimed;
2720 	bool passed_oom = false;
2721 	bool may_swap = true;
2722 	bool drained = false;
2723 	unsigned long pflags;
2724 
2725 	if (mem_cgroup_is_root(memcg))
2726 		return 0;
2727 retry:
2728 	if (consume_stock(memcg, nr_pages))
2729 		return 0;
2730 
2731 	if (!do_memsw_account() ||
2732 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2733 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2734 			goto done_restock;
2735 		if (do_memsw_account())
2736 			page_counter_uncharge(&memcg->memsw, batch);
2737 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2738 	} else {
2739 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2740 		may_swap = false;
2741 	}
2742 
2743 	if (batch > nr_pages) {
2744 		batch = nr_pages;
2745 		goto retry;
2746 	}
2747 
2748 	/*
2749 	 * Memcg doesn't have a dedicated reserve for atomic
2750 	 * allocations. But like the global atomic pool, we need to
2751 	 * put the burden of reclaim on regular allocation requests
2752 	 * and let these go through as privileged allocations.
2753 	 */
2754 	if (gfp_mask & __GFP_ATOMIC)
2755 		goto force;
2756 
2757 	/*
2758 	 * Prevent unbounded recursion when reclaim operations need to
2759 	 * allocate memory. This might exceed the limits temporarily,
2760 	 * but we prefer facilitating memory reclaim and getting back
2761 	 * under the limit over triggering OOM kills in these cases.
2762 	 */
2763 	if (unlikely(current->flags & PF_MEMALLOC))
2764 		goto force;
2765 
2766 	if (unlikely(task_in_memcg_oom(current)))
2767 		goto nomem;
2768 
2769 	if (!gfpflags_allow_blocking(gfp_mask))
2770 		goto nomem;
2771 
2772 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2773 
2774 	psi_memstall_enter(&pflags);
2775 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2776 						    gfp_mask, may_swap);
2777 	psi_memstall_leave(&pflags);
2778 
2779 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2780 		goto retry;
2781 
2782 	if (!drained) {
2783 		drain_all_stock(mem_over_limit);
2784 		drained = true;
2785 		goto retry;
2786 	}
2787 
2788 	if (gfp_mask & __GFP_NORETRY)
2789 		goto nomem;
2790 	/*
2791 	 * Even though the limit is exceeded at this point, reclaim
2792 	 * may have been able to free some pages.  Retry the charge
2793 	 * before killing the task.
2794 	 *
2795 	 * Only for regular pages, though: huge pages are rather
2796 	 * unlikely to succeed so close to the limit, and we fall back
2797 	 * to regular pages anyway in case of failure.
2798 	 */
2799 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2800 		goto retry;
2801 	/*
2802 	 * At task move, charge accounts can be doubly counted. So, it's
2803 	 * better to wait until the end of task_move if something is going on.
2804 	 */
2805 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2806 		goto retry;
2807 
2808 	if (nr_retries--)
2809 		goto retry;
2810 
2811 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2812 		goto nomem;
2813 
2814 	if (gfp_mask & __GFP_NOFAIL)
2815 		goto force;
2816 
2817 	/* Avoid endless loop for tasks bypassed by the oom killer */
2818 	if (passed_oom && task_is_dying())
2819 		goto nomem;
2820 
2821 	/*
2822 	 * keep retrying as long as the memcg oom killer is able to make
2823 	 * a forward progress or bypass the charge if the oom killer
2824 	 * couldn't make any progress.
2825 	 */
2826 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2827 		       get_order(nr_pages * PAGE_SIZE));
2828 	if (oom_status == OOM_SUCCESS) {
2829 		passed_oom = true;
2830 		nr_retries = MAX_RECLAIM_RETRIES;
2831 		goto retry;
2832 	}
2833 nomem:
2834 	if (!(gfp_mask & __GFP_NOFAIL))
2835 		return -ENOMEM;
2836 force:
2837 	/*
2838 	 * The allocation either can't fail or will lead to more memory
2839 	 * being freed very soon.  Allow memory usage go over the limit
2840 	 * temporarily by force charging it.
2841 	 */
2842 	page_counter_charge(&memcg->memory, nr_pages);
2843 	if (do_memsw_account())
2844 		page_counter_charge(&memcg->memsw, nr_pages);
2845 
2846 	return 0;
2847 
2848 done_restock:
2849 	if (batch > nr_pages)
2850 		refill_stock(memcg, batch - nr_pages);
2851 
2852 	/*
2853 	 * If the hierarchy is above the normal consumption range, schedule
2854 	 * reclaim on returning to userland.  We can perform reclaim here
2855 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2856 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2857 	 * not recorded as it most likely matches current's and won't
2858 	 * change in the meantime.  As high limit is checked again before
2859 	 * reclaim, the cost of mismatch is negligible.
2860 	 */
2861 	do {
2862 		bool mem_high, swap_high;
2863 
2864 		mem_high = page_counter_read(&memcg->memory) >
2865 			READ_ONCE(memcg->memory.high);
2866 		swap_high = page_counter_read(&memcg->swap) >
2867 			READ_ONCE(memcg->swap.high);
2868 
2869 		/* Don't bother a random interrupted task */
2870 		if (in_interrupt()) {
2871 			if (mem_high) {
2872 				schedule_work(&memcg->high_work);
2873 				break;
2874 			}
2875 			continue;
2876 		}
2877 
2878 		if (mem_high || swap_high) {
2879 			/*
2880 			 * The allocating tasks in this cgroup will need to do
2881 			 * reclaim or be throttled to prevent further growth
2882 			 * of the memory or swap footprints.
2883 			 *
2884 			 * Target some best-effort fairness between the tasks,
2885 			 * and distribute reclaim work and delay penalties
2886 			 * based on how much each task is actually allocating.
2887 			 */
2888 			current->memcg_nr_pages_over_high += batch;
2889 			set_notify_resume(current);
2890 			break;
2891 		}
2892 	} while ((memcg = parent_mem_cgroup(memcg)));
2893 
2894 	return 0;
2895 }
2896 
2897 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2898 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2899 {
2900 	if (mem_cgroup_is_root(memcg))
2901 		return;
2902 
2903 	page_counter_uncharge(&memcg->memory, nr_pages);
2904 	if (do_memsw_account())
2905 		page_counter_uncharge(&memcg->memsw, nr_pages);
2906 }
2907 #endif
2908 
commit_charge(struct page * page,struct mem_cgroup * memcg)2909 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2910 {
2911 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2912 	/*
2913 	 * Any of the following ensures page->mem_cgroup stability:
2914 	 *
2915 	 * - the page lock
2916 	 * - LRU isolation
2917 	 * - lock_page_memcg()
2918 	 * - exclusive reference
2919 	 */
2920 	page->mem_cgroup = memcg;
2921 }
2922 
2923 #ifdef CONFIG_MEMCG_KMEM
2924 /*
2925  * The allocated objcg pointers array is not accounted directly.
2926  * Moreover, it should not come from DMA buffer and is not readily
2927  * reclaimable. So those GFP bits should be masked off.
2928  */
2929 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2930 				 __GFP_ACCOUNT | __GFP_NOFAIL)
2931 
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2932 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2933 				 gfp_t gfp)
2934 {
2935 	unsigned int objects = objs_per_slab_page(s, page);
2936 	void *vec;
2937 
2938 	gfp &= ~OBJCGS_CLEAR_MASK;
2939 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2940 			   page_to_nid(page));
2941 	if (!vec)
2942 		return -ENOMEM;
2943 
2944 	if (cmpxchg(&page->obj_cgroups, NULL,
2945 		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2946 		kfree(vec);
2947 	else
2948 		kmemleak_not_leak(vec);
2949 
2950 	return 0;
2951 }
2952 
2953 /*
2954  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2955  *
2956  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2957  * cgroup_mutex, etc.
2958  */
mem_cgroup_from_obj(void * p)2959 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2960 {
2961 	struct page *page;
2962 
2963 	if (mem_cgroup_disabled())
2964 		return NULL;
2965 
2966 	page = virt_to_head_page(p);
2967 
2968 	/*
2969 	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2970 	 * or a pointer to obj_cgroup vector. In the latter case the lowest
2971 	 * bit of the pointer is set.
2972 	 * The page->mem_cgroup pointer can be asynchronously changed
2973 	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2974 	 * from a valid memcg pointer to objcg vector or back.
2975 	 */
2976 	if (!page->mem_cgroup)
2977 		return NULL;
2978 
2979 	/*
2980 	 * Slab objects are accounted individually, not per-page.
2981 	 * Memcg membership data for each individual object is saved in
2982 	 * the page->obj_cgroups.
2983 	 */
2984 	if (page_has_obj_cgroups(page)) {
2985 		struct obj_cgroup *objcg;
2986 		unsigned int off;
2987 
2988 		off = obj_to_index(page->slab_cache, page, p);
2989 		objcg = page_obj_cgroups(page)[off];
2990 		if (objcg)
2991 			return obj_cgroup_memcg(objcg);
2992 
2993 		return NULL;
2994 	}
2995 
2996 	/* All other pages use page->mem_cgroup */
2997 	return page->mem_cgroup;
2998 }
2999 
get_obj_cgroup_from_current(void)3000 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3001 {
3002 	struct obj_cgroup *objcg = NULL;
3003 	struct mem_cgroup *memcg;
3004 
3005 	if (memcg_kmem_bypass())
3006 		return NULL;
3007 
3008 	rcu_read_lock();
3009 	if (unlikely(active_memcg()))
3010 		memcg = active_memcg();
3011 	else
3012 		memcg = mem_cgroup_from_task(current);
3013 
3014 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3015 		objcg = rcu_dereference(memcg->objcg);
3016 		if (objcg && obj_cgroup_tryget(objcg))
3017 			break;
3018 		objcg = NULL;
3019 	}
3020 	rcu_read_unlock();
3021 
3022 	return objcg;
3023 }
3024 
memcg_alloc_cache_id(void)3025 static int memcg_alloc_cache_id(void)
3026 {
3027 	int id, size;
3028 	int err;
3029 
3030 	id = ida_simple_get(&memcg_cache_ida,
3031 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3032 	if (id < 0)
3033 		return id;
3034 
3035 	if (id < memcg_nr_cache_ids)
3036 		return id;
3037 
3038 	/*
3039 	 * There's no space for the new id in memcg_caches arrays,
3040 	 * so we have to grow them.
3041 	 */
3042 	down_write(&memcg_cache_ids_sem);
3043 
3044 	size = 2 * (id + 1);
3045 	if (size < MEMCG_CACHES_MIN_SIZE)
3046 		size = MEMCG_CACHES_MIN_SIZE;
3047 	else if (size > MEMCG_CACHES_MAX_SIZE)
3048 		size = MEMCG_CACHES_MAX_SIZE;
3049 
3050 	err = memcg_update_all_list_lrus(size);
3051 	if (!err)
3052 		memcg_nr_cache_ids = size;
3053 
3054 	up_write(&memcg_cache_ids_sem);
3055 
3056 	if (err) {
3057 		ida_simple_remove(&memcg_cache_ida, id);
3058 		return err;
3059 	}
3060 	return id;
3061 }
3062 
memcg_free_cache_id(int id)3063 static void memcg_free_cache_id(int id)
3064 {
3065 	ida_simple_remove(&memcg_cache_ida, id);
3066 }
3067 
3068 /**
3069  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3070  * @memcg: memory cgroup to charge
3071  * @gfp: reclaim mode
3072  * @nr_pages: number of pages to charge
3073  *
3074  * Returns 0 on success, an error code on failure.
3075  */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3076 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3077 			unsigned int nr_pages)
3078 {
3079 	struct page_counter *counter;
3080 	int ret;
3081 
3082 	ret = try_charge(memcg, gfp, nr_pages);
3083 	if (ret)
3084 		return ret;
3085 
3086 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3087 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3088 
3089 		/*
3090 		 * Enforce __GFP_NOFAIL allocation because callers are not
3091 		 * prepared to see failures and likely do not have any failure
3092 		 * handling code.
3093 		 */
3094 		if (gfp & __GFP_NOFAIL) {
3095 			page_counter_charge(&memcg->kmem, nr_pages);
3096 			return 0;
3097 		}
3098 		cancel_charge(memcg, nr_pages);
3099 		return -ENOMEM;
3100 	}
3101 	return 0;
3102 }
3103 
3104 /**
3105  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3106  * @memcg: memcg to uncharge
3107  * @nr_pages: number of pages to uncharge
3108  */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3109 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3110 {
3111 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3112 		page_counter_uncharge(&memcg->kmem, nr_pages);
3113 
3114 	refill_stock(memcg, nr_pages);
3115 }
3116 
3117 /**
3118  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3119  * @page: page to charge
3120  * @gfp: reclaim mode
3121  * @order: allocation order
3122  *
3123  * Returns 0 on success, an error code on failure.
3124  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3125 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3126 {
3127 	struct mem_cgroup *memcg;
3128 	int ret = 0;
3129 
3130 	memcg = get_mem_cgroup_from_current();
3131 	if (memcg && !mem_cgroup_is_root(memcg)) {
3132 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3133 		if (!ret) {
3134 			page->mem_cgroup = memcg;
3135 			__SetPageKmemcg(page);
3136 			return 0;
3137 		}
3138 		css_put(&memcg->css);
3139 	}
3140 	return ret;
3141 }
3142 
3143 /**
3144  * __memcg_kmem_uncharge_page: uncharge a kmem page
3145  * @page: page to uncharge
3146  * @order: allocation order
3147  */
__memcg_kmem_uncharge_page(struct page * page,int order)3148 void __memcg_kmem_uncharge_page(struct page *page, int order)
3149 {
3150 	struct mem_cgroup *memcg = page->mem_cgroup;
3151 	unsigned int nr_pages = 1 << order;
3152 
3153 	if (!memcg)
3154 		return;
3155 
3156 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3157 	__memcg_kmem_uncharge(memcg, nr_pages);
3158 	page->mem_cgroup = NULL;
3159 	css_put(&memcg->css);
3160 
3161 	/* slab pages do not have PageKmemcg flag set */
3162 	if (PageKmemcg(page))
3163 		__ClearPageKmemcg(page);
3164 }
3165 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3166 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3167 {
3168 	struct memcg_stock_pcp *stock;
3169 	unsigned long flags;
3170 	bool ret = false;
3171 
3172 	local_irq_save(flags);
3173 
3174 	stock = this_cpu_ptr(&memcg_stock);
3175 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3176 		stock->nr_bytes -= nr_bytes;
3177 		ret = true;
3178 	}
3179 
3180 	local_irq_restore(flags);
3181 
3182 	return ret;
3183 }
3184 
drain_obj_stock(struct memcg_stock_pcp * stock)3185 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3186 {
3187 	struct obj_cgroup *old = stock->cached_objcg;
3188 
3189 	if (!old)
3190 		return;
3191 
3192 	if (stock->nr_bytes) {
3193 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3194 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3195 
3196 		if (nr_pages) {
3197 			struct mem_cgroup *memcg;
3198 
3199 			rcu_read_lock();
3200 retry:
3201 			memcg = obj_cgroup_memcg(old);
3202 			if (unlikely(!css_tryget(&memcg->css)))
3203 				goto retry;
3204 			rcu_read_unlock();
3205 
3206 			__memcg_kmem_uncharge(memcg, nr_pages);
3207 			css_put(&memcg->css);
3208 		}
3209 
3210 		/*
3211 		 * The leftover is flushed to the centralized per-memcg value.
3212 		 * On the next attempt to refill obj stock it will be moved
3213 		 * to a per-cpu stock (probably, on an other CPU), see
3214 		 * refill_obj_stock().
3215 		 *
3216 		 * How often it's flushed is a trade-off between the memory
3217 		 * limit enforcement accuracy and potential CPU contention,
3218 		 * so it might be changed in the future.
3219 		 */
3220 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3221 		stock->nr_bytes = 0;
3222 	}
3223 
3224 	obj_cgroup_put(old);
3225 	stock->cached_objcg = NULL;
3226 }
3227 
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3228 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3229 				     struct mem_cgroup *root_memcg)
3230 {
3231 	struct mem_cgroup *memcg;
3232 
3233 	if (stock->cached_objcg) {
3234 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3235 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3236 			return true;
3237 	}
3238 
3239 	return false;
3240 }
3241 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3242 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3243 {
3244 	struct memcg_stock_pcp *stock;
3245 	unsigned long flags;
3246 
3247 	local_irq_save(flags);
3248 
3249 	stock = this_cpu_ptr(&memcg_stock);
3250 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3251 		drain_obj_stock(stock);
3252 		obj_cgroup_get(objcg);
3253 		stock->cached_objcg = objcg;
3254 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3255 	}
3256 	stock->nr_bytes += nr_bytes;
3257 
3258 	if (stock->nr_bytes > PAGE_SIZE)
3259 		drain_obj_stock(stock);
3260 
3261 	local_irq_restore(flags);
3262 }
3263 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3264 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3265 {
3266 	struct mem_cgroup *memcg;
3267 	unsigned int nr_pages, nr_bytes;
3268 	int ret;
3269 
3270 	if (consume_obj_stock(objcg, size))
3271 		return 0;
3272 
3273 	/*
3274 	 * In theory, memcg->nr_charged_bytes can have enough
3275 	 * pre-charged bytes to satisfy the allocation. However,
3276 	 * flushing memcg->nr_charged_bytes requires two atomic
3277 	 * operations, and memcg->nr_charged_bytes can't be big,
3278 	 * so it's better to ignore it and try grab some new pages.
3279 	 * memcg->nr_charged_bytes will be flushed in
3280 	 * refill_obj_stock(), called from this function or
3281 	 * independently later.
3282 	 */
3283 	rcu_read_lock();
3284 retry:
3285 	memcg = obj_cgroup_memcg(objcg);
3286 	if (unlikely(!css_tryget(&memcg->css)))
3287 		goto retry;
3288 	rcu_read_unlock();
3289 
3290 	nr_pages = size >> PAGE_SHIFT;
3291 	nr_bytes = size & (PAGE_SIZE - 1);
3292 
3293 	if (nr_bytes)
3294 		nr_pages += 1;
3295 
3296 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3297 	if (!ret && nr_bytes)
3298 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3299 
3300 	css_put(&memcg->css);
3301 	return ret;
3302 }
3303 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3304 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3305 {
3306 	refill_obj_stock(objcg, size);
3307 }
3308 
3309 #endif /* CONFIG_MEMCG_KMEM */
3310 
3311 /*
3312  * Because head->mem_cgroup is not set on tails, set it now.
3313  */
split_page_memcg(struct page * head,unsigned int nr)3314 void split_page_memcg(struct page *head, unsigned int nr)
3315 {
3316 	struct mem_cgroup *memcg = head->mem_cgroup;
3317 	int kmemcg = PageKmemcg(head);
3318 	int i;
3319 
3320 	if (mem_cgroup_disabled() || !memcg)
3321 		return;
3322 
3323 	for (i = 1; i < nr; i++) {
3324 		head[i].mem_cgroup = memcg;
3325 		if (kmemcg)
3326 			__SetPageKmemcg(head + i);
3327 	}
3328 	css_get_many(&memcg->css, nr - 1);
3329 }
3330 
3331 #ifdef CONFIG_MEMCG_SWAP
3332 /**
3333  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3334  * @entry: swap entry to be moved
3335  * @from:  mem_cgroup which the entry is moved from
3336  * @to:  mem_cgroup which the entry is moved to
3337  *
3338  * It succeeds only when the swap_cgroup's record for this entry is the same
3339  * as the mem_cgroup's id of @from.
3340  *
3341  * Returns 0 on success, -EINVAL on failure.
3342  *
3343  * The caller must have charged to @to, IOW, called page_counter_charge() about
3344  * both res and memsw, and called css_get().
3345  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3346 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3347 				struct mem_cgroup *from, struct mem_cgroup *to)
3348 {
3349 	unsigned short old_id, new_id;
3350 
3351 	old_id = mem_cgroup_id(from);
3352 	new_id = mem_cgroup_id(to);
3353 
3354 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3355 		mod_memcg_state(from, MEMCG_SWAP, -1);
3356 		mod_memcg_state(to, MEMCG_SWAP, 1);
3357 		return 0;
3358 	}
3359 	return -EINVAL;
3360 }
3361 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3362 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3363 				struct mem_cgroup *from, struct mem_cgroup *to)
3364 {
3365 	return -EINVAL;
3366 }
3367 #endif
3368 
3369 static DEFINE_MUTEX(memcg_max_mutex);
3370 
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3371 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3372 				 unsigned long max, bool memsw)
3373 {
3374 	bool enlarge = false;
3375 	bool drained = false;
3376 	int ret;
3377 	bool limits_invariant;
3378 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3379 
3380 	do {
3381 		if (signal_pending(current)) {
3382 			ret = -EINTR;
3383 			break;
3384 		}
3385 
3386 		mutex_lock(&memcg_max_mutex);
3387 		/*
3388 		 * Make sure that the new limit (memsw or memory limit) doesn't
3389 		 * break our basic invariant rule memory.max <= memsw.max.
3390 		 */
3391 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3392 					   max <= memcg->memsw.max;
3393 		if (!limits_invariant) {
3394 			mutex_unlock(&memcg_max_mutex);
3395 			ret = -EINVAL;
3396 			break;
3397 		}
3398 		if (max > counter->max)
3399 			enlarge = true;
3400 		ret = page_counter_set_max(counter, max);
3401 		mutex_unlock(&memcg_max_mutex);
3402 
3403 		if (!ret)
3404 			break;
3405 
3406 		if (!drained) {
3407 			drain_all_stock(memcg);
3408 			drained = true;
3409 			continue;
3410 		}
3411 
3412 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3413 					GFP_KERNEL, !memsw)) {
3414 			ret = -EBUSY;
3415 			break;
3416 		}
3417 	} while (true);
3418 
3419 	if (!ret && enlarge)
3420 		memcg_oom_recover(memcg);
3421 
3422 	return ret;
3423 }
3424 
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3425 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3426 					    gfp_t gfp_mask,
3427 					    unsigned long *total_scanned)
3428 {
3429 	unsigned long nr_reclaimed = 0;
3430 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3431 	unsigned long reclaimed;
3432 	int loop = 0;
3433 	struct mem_cgroup_tree_per_node *mctz;
3434 	unsigned long excess;
3435 	unsigned long nr_scanned;
3436 
3437 	if (order > 0)
3438 		return 0;
3439 
3440 	mctz = soft_limit_tree_node(pgdat->node_id);
3441 
3442 	/*
3443 	 * Do not even bother to check the largest node if the root
3444 	 * is empty. Do it lockless to prevent lock bouncing. Races
3445 	 * are acceptable as soft limit is best effort anyway.
3446 	 */
3447 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3448 		return 0;
3449 
3450 	/*
3451 	 * This loop can run a while, specially if mem_cgroup's continuously
3452 	 * keep exceeding their soft limit and putting the system under
3453 	 * pressure
3454 	 */
3455 	do {
3456 		if (next_mz)
3457 			mz = next_mz;
3458 		else
3459 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3460 		if (!mz)
3461 			break;
3462 
3463 		nr_scanned = 0;
3464 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3465 						    gfp_mask, &nr_scanned);
3466 		nr_reclaimed += reclaimed;
3467 		*total_scanned += nr_scanned;
3468 		spin_lock_irq(&mctz->lock);
3469 		__mem_cgroup_remove_exceeded(mz, mctz);
3470 
3471 		/*
3472 		 * If we failed to reclaim anything from this memory cgroup
3473 		 * it is time to move on to the next cgroup
3474 		 */
3475 		next_mz = NULL;
3476 		if (!reclaimed)
3477 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3478 
3479 		excess = soft_limit_excess(mz->memcg);
3480 		/*
3481 		 * One school of thought says that we should not add
3482 		 * back the node to the tree if reclaim returns 0.
3483 		 * But our reclaim could return 0, simply because due
3484 		 * to priority we are exposing a smaller subset of
3485 		 * memory to reclaim from. Consider this as a longer
3486 		 * term TODO.
3487 		 */
3488 		/* If excess == 0, no tree ops */
3489 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3490 		spin_unlock_irq(&mctz->lock);
3491 		css_put(&mz->memcg->css);
3492 		loop++;
3493 		/*
3494 		 * Could not reclaim anything and there are no more
3495 		 * mem cgroups to try or we seem to be looping without
3496 		 * reclaiming anything.
3497 		 */
3498 		if (!nr_reclaimed &&
3499 			(next_mz == NULL ||
3500 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3501 			break;
3502 	} while (!nr_reclaimed);
3503 	if (next_mz)
3504 		css_put(&next_mz->memcg->css);
3505 	return nr_reclaimed;
3506 }
3507 
3508 /*
3509  * Test whether @memcg has children, dead or alive.  Note that this
3510  * function doesn't care whether @memcg has use_hierarchy enabled and
3511  * returns %true if there are child csses according to the cgroup
3512  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3513  */
memcg_has_children(struct mem_cgroup * memcg)3514 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3515 {
3516 	bool ret;
3517 
3518 	rcu_read_lock();
3519 	ret = css_next_child(NULL, &memcg->css);
3520 	rcu_read_unlock();
3521 	return ret;
3522 }
3523 
3524 /*
3525  * Reclaims as many pages from the given memcg as possible.
3526  *
3527  * Caller is responsible for holding css reference for memcg.
3528  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3529 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3530 {
3531 	int nr_retries = MAX_RECLAIM_RETRIES;
3532 
3533 	/* we call try-to-free pages for make this cgroup empty */
3534 	lru_add_drain_all();
3535 
3536 	drain_all_stock(memcg);
3537 
3538 	/* try to free all pages in this cgroup */
3539 	while (nr_retries && page_counter_read(&memcg->memory)) {
3540 		int progress;
3541 
3542 		if (signal_pending(current))
3543 			return -EINTR;
3544 
3545 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3546 							GFP_KERNEL, true);
3547 		if (!progress) {
3548 			nr_retries--;
3549 			/* maybe some writeback is necessary */
3550 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3551 		}
3552 
3553 	}
3554 
3555 	return 0;
3556 }
3557 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3559 					    char *buf, size_t nbytes,
3560 					    loff_t off)
3561 {
3562 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3563 
3564 	if (mem_cgroup_is_root(memcg))
3565 		return -EINVAL;
3566 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3567 }
3568 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3569 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3570 				     struct cftype *cft)
3571 {
3572 	return mem_cgroup_from_css(css)->use_hierarchy;
3573 }
3574 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3575 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3576 				      struct cftype *cft, u64 val)
3577 {
3578 	int retval = 0;
3579 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3581 
3582 	if (memcg->use_hierarchy == val)
3583 		return 0;
3584 
3585 	/*
3586 	 * If parent's use_hierarchy is set, we can't make any modifications
3587 	 * in the child subtrees. If it is unset, then the change can
3588 	 * occur, provided the current cgroup has no children.
3589 	 *
3590 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3591 	 * set if there are no children.
3592 	 */
3593 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3594 				(val == 1 || val == 0)) {
3595 		if (!memcg_has_children(memcg))
3596 			memcg->use_hierarchy = val;
3597 		else
3598 			retval = -EBUSY;
3599 	} else
3600 		retval = -EINVAL;
3601 
3602 	return retval;
3603 }
3604 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3605 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3606 {
3607 	unsigned long val;
3608 
3609 	if (mem_cgroup_is_root(memcg)) {
3610 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3611 			memcg_page_state(memcg, NR_ANON_MAPPED);
3612 		if (swap)
3613 			val += memcg_page_state(memcg, MEMCG_SWAP);
3614 	} else {
3615 		if (!swap)
3616 			val = page_counter_read(&memcg->memory);
3617 		else
3618 			val = page_counter_read(&memcg->memsw);
3619 	}
3620 	return val;
3621 }
3622 
3623 enum {
3624 	RES_USAGE,
3625 	RES_LIMIT,
3626 	RES_MAX_USAGE,
3627 	RES_FAILCNT,
3628 	RES_SOFT_LIMIT,
3629 };
3630 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3631 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3632 			       struct cftype *cft)
3633 {
3634 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3635 	struct page_counter *counter;
3636 
3637 	switch (MEMFILE_TYPE(cft->private)) {
3638 	case _MEM:
3639 		counter = &memcg->memory;
3640 		break;
3641 	case _MEMSWAP:
3642 		counter = &memcg->memsw;
3643 		break;
3644 	case _KMEM:
3645 		counter = &memcg->kmem;
3646 		break;
3647 	case _TCP:
3648 		counter = &memcg->tcpmem;
3649 		break;
3650 	default:
3651 		BUG();
3652 	}
3653 
3654 	switch (MEMFILE_ATTR(cft->private)) {
3655 	case RES_USAGE:
3656 		if (counter == &memcg->memory)
3657 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3658 		if (counter == &memcg->memsw)
3659 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3660 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3661 	case RES_LIMIT:
3662 		return (u64)counter->max * PAGE_SIZE;
3663 	case RES_MAX_USAGE:
3664 		return (u64)counter->watermark * PAGE_SIZE;
3665 	case RES_FAILCNT:
3666 		return counter->failcnt;
3667 	case RES_SOFT_LIMIT:
3668 		return (u64)memcg->soft_limit * PAGE_SIZE;
3669 	default:
3670 		BUG();
3671 	}
3672 }
3673 
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3674 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3675 {
3676 	unsigned long stat[MEMCG_NR_STAT] = {0};
3677 	struct mem_cgroup *mi;
3678 	int node, cpu, i;
3679 
3680 	for_each_online_cpu(cpu)
3681 		for (i = 0; i < MEMCG_NR_STAT; i++)
3682 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3683 
3684 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3685 		for (i = 0; i < MEMCG_NR_STAT; i++)
3686 			atomic_long_add(stat[i], &mi->vmstats[i]);
3687 
3688 	for_each_node(node) {
3689 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3690 		struct mem_cgroup_per_node *pi;
3691 
3692 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3693 			stat[i] = 0;
3694 
3695 		for_each_online_cpu(cpu)
3696 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3697 				stat[i] += per_cpu(
3698 					pn->lruvec_stat_cpu->count[i], cpu);
3699 
3700 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3701 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3702 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3703 	}
3704 }
3705 
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3706 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3707 {
3708 	unsigned long events[NR_VM_EVENT_ITEMS];
3709 	struct mem_cgroup *mi;
3710 	int cpu, i;
3711 
3712 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3713 		events[i] = 0;
3714 
3715 	for_each_online_cpu(cpu)
3716 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3717 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3718 					     cpu);
3719 
3720 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3721 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3722 			atomic_long_add(events[i], &mi->vmevents[i]);
3723 }
3724 
3725 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3726 static int memcg_online_kmem(struct mem_cgroup *memcg)
3727 {
3728 	struct obj_cgroup *objcg;
3729 	int memcg_id;
3730 
3731 	if (cgroup_memory_nokmem)
3732 		return 0;
3733 
3734 	BUG_ON(memcg->kmemcg_id >= 0);
3735 	BUG_ON(memcg->kmem_state);
3736 
3737 	memcg_id = memcg_alloc_cache_id();
3738 	if (memcg_id < 0)
3739 		return memcg_id;
3740 
3741 	objcg = obj_cgroup_alloc();
3742 	if (!objcg) {
3743 		memcg_free_cache_id(memcg_id);
3744 		return -ENOMEM;
3745 	}
3746 	objcg->memcg = memcg;
3747 	rcu_assign_pointer(memcg->objcg, objcg);
3748 
3749 	static_branch_enable(&memcg_kmem_enabled_key);
3750 
3751 	/*
3752 	 * A memory cgroup is considered kmem-online as soon as it gets
3753 	 * kmemcg_id. Setting the id after enabling static branching will
3754 	 * guarantee no one starts accounting before all call sites are
3755 	 * patched.
3756 	 */
3757 	memcg->kmemcg_id = memcg_id;
3758 	memcg->kmem_state = KMEM_ONLINE;
3759 
3760 	return 0;
3761 }
3762 
memcg_offline_kmem(struct mem_cgroup * memcg)3763 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3764 {
3765 	struct cgroup_subsys_state *css;
3766 	struct mem_cgroup *parent, *child;
3767 	int kmemcg_id;
3768 
3769 	if (memcg->kmem_state != KMEM_ONLINE)
3770 		return;
3771 
3772 	memcg->kmem_state = KMEM_ALLOCATED;
3773 
3774 	parent = parent_mem_cgroup(memcg);
3775 	if (!parent)
3776 		parent = root_mem_cgroup;
3777 
3778 	memcg_reparent_objcgs(memcg, parent);
3779 
3780 	kmemcg_id = memcg->kmemcg_id;
3781 	BUG_ON(kmemcg_id < 0);
3782 
3783 	/*
3784 	 * Change kmemcg_id of this cgroup and all its descendants to the
3785 	 * parent's id, and then move all entries from this cgroup's list_lrus
3786 	 * to ones of the parent. After we have finished, all list_lrus
3787 	 * corresponding to this cgroup are guaranteed to remain empty. The
3788 	 * ordering is imposed by list_lru_node->lock taken by
3789 	 * memcg_drain_all_list_lrus().
3790 	 */
3791 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3792 	css_for_each_descendant_pre(css, &memcg->css) {
3793 		child = mem_cgroup_from_css(css);
3794 		BUG_ON(child->kmemcg_id != kmemcg_id);
3795 		child->kmemcg_id = parent->kmemcg_id;
3796 		if (!memcg->use_hierarchy)
3797 			break;
3798 	}
3799 	rcu_read_unlock();
3800 
3801 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3802 
3803 	memcg_free_cache_id(kmemcg_id);
3804 }
3805 
memcg_free_kmem(struct mem_cgroup * memcg)3806 static void memcg_free_kmem(struct mem_cgroup *memcg)
3807 {
3808 	/* css_alloc() failed, offlining didn't happen */
3809 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3810 		memcg_offline_kmem(memcg);
3811 }
3812 #else
memcg_online_kmem(struct mem_cgroup * memcg)3813 static int memcg_online_kmem(struct mem_cgroup *memcg)
3814 {
3815 	return 0;
3816 }
memcg_offline_kmem(struct mem_cgroup * memcg)3817 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3818 {
3819 }
memcg_free_kmem(struct mem_cgroup * memcg)3820 static void memcg_free_kmem(struct mem_cgroup *memcg)
3821 {
3822 }
3823 #endif /* CONFIG_MEMCG_KMEM */
3824 
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3825 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3826 				 unsigned long max)
3827 {
3828 	int ret;
3829 
3830 	mutex_lock(&memcg_max_mutex);
3831 	ret = page_counter_set_max(&memcg->kmem, max);
3832 	mutex_unlock(&memcg_max_mutex);
3833 	return ret;
3834 }
3835 
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3836 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3837 {
3838 	int ret;
3839 
3840 	mutex_lock(&memcg_max_mutex);
3841 
3842 	ret = page_counter_set_max(&memcg->tcpmem, max);
3843 	if (ret)
3844 		goto out;
3845 
3846 	if (!memcg->tcpmem_active) {
3847 		/*
3848 		 * The active flag needs to be written after the static_key
3849 		 * update. This is what guarantees that the socket activation
3850 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3851 		 * for details, and note that we don't mark any socket as
3852 		 * belonging to this memcg until that flag is up.
3853 		 *
3854 		 * We need to do this, because static_keys will span multiple
3855 		 * sites, but we can't control their order. If we mark a socket
3856 		 * as accounted, but the accounting functions are not patched in
3857 		 * yet, we'll lose accounting.
3858 		 *
3859 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3860 		 * because when this value change, the code to process it is not
3861 		 * patched in yet.
3862 		 */
3863 		static_branch_inc(&memcg_sockets_enabled_key);
3864 		memcg->tcpmem_active = true;
3865 	}
3866 out:
3867 	mutex_unlock(&memcg_max_mutex);
3868 	return ret;
3869 }
3870 
3871 /*
3872  * The user of this function is...
3873  * RES_LIMIT.
3874  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3875 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3876 				char *buf, size_t nbytes, loff_t off)
3877 {
3878 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3879 	unsigned long nr_pages;
3880 	int ret;
3881 
3882 	buf = strstrip(buf);
3883 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3884 	if (ret)
3885 		return ret;
3886 
3887 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3888 	case RES_LIMIT:
3889 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3890 			ret = -EINVAL;
3891 			break;
3892 		}
3893 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3894 		case _MEM:
3895 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3896 			break;
3897 		case _MEMSWAP:
3898 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3899 			break;
3900 		case _KMEM:
3901 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3902 				     "Please report your usecase to linux-mm@kvack.org if you "
3903 				     "depend on this functionality.\n");
3904 			ret = memcg_update_kmem_max(memcg, nr_pages);
3905 			break;
3906 		case _TCP:
3907 			ret = memcg_update_tcp_max(memcg, nr_pages);
3908 			break;
3909 		}
3910 		break;
3911 	case RES_SOFT_LIMIT:
3912 		memcg->soft_limit = nr_pages;
3913 		ret = 0;
3914 		break;
3915 	}
3916 	return ret ?: nbytes;
3917 }
3918 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3919 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3920 				size_t nbytes, loff_t off)
3921 {
3922 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3923 	struct page_counter *counter;
3924 
3925 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3926 	case _MEM:
3927 		counter = &memcg->memory;
3928 		break;
3929 	case _MEMSWAP:
3930 		counter = &memcg->memsw;
3931 		break;
3932 	case _KMEM:
3933 		counter = &memcg->kmem;
3934 		break;
3935 	case _TCP:
3936 		counter = &memcg->tcpmem;
3937 		break;
3938 	default:
3939 		BUG();
3940 	}
3941 
3942 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3943 	case RES_MAX_USAGE:
3944 		page_counter_reset_watermark(counter);
3945 		break;
3946 	case RES_FAILCNT:
3947 		counter->failcnt = 0;
3948 		break;
3949 	default:
3950 		BUG();
3951 	}
3952 
3953 	return nbytes;
3954 }
3955 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3956 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3957 					struct cftype *cft)
3958 {
3959 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3960 }
3961 
3962 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3963 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3964 					struct cftype *cft, u64 val)
3965 {
3966 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3967 
3968 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3969 		     "Please report your usecase to linux-mm@kvack.org if you "
3970 		     "depend on this functionality.\n");
3971 
3972 	if (val & ~MOVE_MASK)
3973 		return -EINVAL;
3974 
3975 	/*
3976 	 * No kind of locking is needed in here, because ->can_attach() will
3977 	 * check this value once in the beginning of the process, and then carry
3978 	 * on with stale data. This means that changes to this value will only
3979 	 * affect task migrations starting after the change.
3980 	 */
3981 	memcg->move_charge_at_immigrate = val;
3982 	return 0;
3983 }
3984 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3985 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3986 					struct cftype *cft, u64 val)
3987 {
3988 	return -ENOSYS;
3989 }
3990 #endif
3991 
3992 #ifdef CONFIG_NUMA
3993 
3994 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3995 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3996 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3997 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3998 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3999 				int nid, unsigned int lru_mask, bool tree)
4000 {
4001 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4002 	unsigned long nr = 0;
4003 	enum lru_list lru;
4004 
4005 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4006 
4007 	for_each_lru(lru) {
4008 		if (!(BIT(lru) & lru_mask))
4009 			continue;
4010 		if (tree)
4011 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4012 		else
4013 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4014 	}
4015 	return nr;
4016 }
4017 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4018 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4019 					     unsigned int lru_mask,
4020 					     bool tree)
4021 {
4022 	unsigned long nr = 0;
4023 	enum lru_list lru;
4024 
4025 	for_each_lru(lru) {
4026 		if (!(BIT(lru) & lru_mask))
4027 			continue;
4028 		if (tree)
4029 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4030 		else
4031 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4032 	}
4033 	return nr;
4034 }
4035 
memcg_numa_stat_show(struct seq_file * m,void * v)4036 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4037 {
4038 	struct numa_stat {
4039 		const char *name;
4040 		unsigned int lru_mask;
4041 	};
4042 
4043 	static const struct numa_stat stats[] = {
4044 		{ "total", LRU_ALL },
4045 		{ "file", LRU_ALL_FILE },
4046 		{ "anon", LRU_ALL_ANON },
4047 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4048 	};
4049 	const struct numa_stat *stat;
4050 	int nid;
4051 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4052 
4053 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4054 		seq_printf(m, "%s=%lu", stat->name,
4055 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4056 						   false));
4057 		for_each_node_state(nid, N_MEMORY)
4058 			seq_printf(m, " N%d=%lu", nid,
4059 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4060 							stat->lru_mask, false));
4061 		seq_putc(m, '\n');
4062 	}
4063 
4064 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4065 
4066 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4067 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4068 						   true));
4069 		for_each_node_state(nid, N_MEMORY)
4070 			seq_printf(m, " N%d=%lu", nid,
4071 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4072 							stat->lru_mask, true));
4073 		seq_putc(m, '\n');
4074 	}
4075 
4076 	return 0;
4077 }
4078 #endif /* CONFIG_NUMA */
4079 
4080 static const unsigned int memcg1_stats[] = {
4081 	NR_FILE_PAGES,
4082 	NR_ANON_MAPPED,
4083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4084 	NR_ANON_THPS,
4085 #endif
4086 	NR_SHMEM,
4087 	NR_FILE_MAPPED,
4088 	NR_FILE_DIRTY,
4089 	NR_WRITEBACK,
4090 	MEMCG_SWAP,
4091 };
4092 
4093 static const char *const memcg1_stat_names[] = {
4094 	"cache",
4095 	"rss",
4096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4097 	"rss_huge",
4098 #endif
4099 	"shmem",
4100 	"mapped_file",
4101 	"dirty",
4102 	"writeback",
4103 	"swap",
4104 };
4105 
4106 /* Universal VM events cgroup1 shows, original sort order */
4107 static const unsigned int memcg1_events[] = {
4108 	PGPGIN,
4109 	PGPGOUT,
4110 	PGFAULT,
4111 	PGMAJFAULT,
4112 };
4113 
memcg_stat_show(struct seq_file * m,void * v)4114 static int memcg_stat_show(struct seq_file *m, void *v)
4115 {
4116 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4117 	unsigned long memory, memsw;
4118 	struct mem_cgroup *mi;
4119 	unsigned int i;
4120 
4121 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4122 
4123 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4124 		unsigned long nr;
4125 
4126 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4127 			continue;
4128 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4130 		if (memcg1_stats[i] == NR_ANON_THPS)
4131 			nr *= HPAGE_PMD_NR;
4132 #endif
4133 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4134 	}
4135 
4136 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4137 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4138 			   memcg_events_local(memcg, memcg1_events[i]));
4139 
4140 	for (i = 0; i < NR_LRU_LISTS; i++) {
4141 #ifdef CONFIG_MEM_PURGEABLE
4142 		if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4143 			continue;
4144 #endif
4145 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4146 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4147 			   PAGE_SIZE);
4148 	}
4149 
4150 	/* Hierarchical information */
4151 	memory = memsw = PAGE_COUNTER_MAX;
4152 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4153 		memory = min(memory, READ_ONCE(mi->memory.max));
4154 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4155 	}
4156 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4157 		   (u64)memory * PAGE_SIZE);
4158 	if (do_memsw_account())
4159 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4160 			   (u64)memsw * PAGE_SIZE);
4161 
4162 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4163 		unsigned long nr;
4164 
4165 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4166 			continue;
4167 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4169 		if (memcg1_stats[i] == NR_ANON_THPS)
4170 			nr *= HPAGE_PMD_NR;
4171 #endif
4172 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4173 						(u64)nr * PAGE_SIZE);
4174 	}
4175 
4176 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4177 		seq_printf(m, "total_%s %llu\n",
4178 			   vm_event_name(memcg1_events[i]),
4179 			   (u64)memcg_events(memcg, memcg1_events[i]));
4180 
4181 	for (i = 0; i < NR_LRU_LISTS; i++) {
4182 #ifdef CONFIG_MEM_PURGEABLE
4183 		if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4184 			continue;
4185 #endif
4186 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4187 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4188 			   PAGE_SIZE);
4189 	}
4190 
4191 #ifdef CONFIG_DEBUG_VM
4192 	{
4193 		pg_data_t *pgdat;
4194 		struct mem_cgroup_per_node *mz;
4195 		unsigned long anon_cost = 0;
4196 		unsigned long file_cost = 0;
4197 
4198 		for_each_online_pgdat(pgdat) {
4199 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4200 
4201 			anon_cost += mz->lruvec.anon_cost;
4202 			file_cost += mz->lruvec.file_cost;
4203 		}
4204 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4205 		seq_printf(m, "file_cost %lu\n", file_cost);
4206 	}
4207 #endif
4208 
4209 #ifdef CONFIG_HYPERHOLD_DEBUG
4210 	memcg_eswap_info_show(m);
4211 #endif
4212 	return 0;
4213 }
4214 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4215 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4216 				      struct cftype *cft)
4217 {
4218 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4219 
4220 	return mem_cgroup_swappiness(memcg);
4221 }
4222 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4223 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4224 				       struct cftype *cft, u64 val)
4225 {
4226 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227 
4228 	if (val > 200)
4229 		return -EINVAL;
4230 
4231 	if (css->parent)
4232 		memcg->swappiness = val;
4233 	else
4234 		vm_swappiness = val;
4235 
4236 	return 0;
4237 }
4238 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4239 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4240 {
4241 	struct mem_cgroup_threshold_ary *t;
4242 	unsigned long usage;
4243 	int i;
4244 
4245 	rcu_read_lock();
4246 	if (!swap)
4247 		t = rcu_dereference(memcg->thresholds.primary);
4248 	else
4249 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4250 
4251 	if (!t)
4252 		goto unlock;
4253 
4254 	usage = mem_cgroup_usage(memcg, swap);
4255 
4256 	/*
4257 	 * current_threshold points to threshold just below or equal to usage.
4258 	 * If it's not true, a threshold was crossed after last
4259 	 * call of __mem_cgroup_threshold().
4260 	 */
4261 	i = t->current_threshold;
4262 
4263 	/*
4264 	 * Iterate backward over array of thresholds starting from
4265 	 * current_threshold and check if a threshold is crossed.
4266 	 * If none of thresholds below usage is crossed, we read
4267 	 * only one element of the array here.
4268 	 */
4269 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4270 		eventfd_signal(t->entries[i].eventfd, 1);
4271 
4272 	/* i = current_threshold + 1 */
4273 	i++;
4274 
4275 	/*
4276 	 * Iterate forward over array of thresholds starting from
4277 	 * current_threshold+1 and check if a threshold is crossed.
4278 	 * If none of thresholds above usage is crossed, we read
4279 	 * only one element of the array here.
4280 	 */
4281 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4282 		eventfd_signal(t->entries[i].eventfd, 1);
4283 
4284 	/* Update current_threshold */
4285 	t->current_threshold = i - 1;
4286 unlock:
4287 	rcu_read_unlock();
4288 }
4289 
mem_cgroup_threshold(struct mem_cgroup * memcg)4290 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4291 {
4292 	while (memcg) {
4293 		__mem_cgroup_threshold(memcg, false);
4294 		if (do_memsw_account())
4295 			__mem_cgroup_threshold(memcg, true);
4296 
4297 		memcg = parent_mem_cgroup(memcg);
4298 	}
4299 }
4300 
compare_thresholds(const void * a,const void * b)4301 static int compare_thresholds(const void *a, const void *b)
4302 {
4303 	const struct mem_cgroup_threshold *_a = a;
4304 	const struct mem_cgroup_threshold *_b = b;
4305 
4306 	if (_a->threshold > _b->threshold)
4307 		return 1;
4308 
4309 	if (_a->threshold < _b->threshold)
4310 		return -1;
4311 
4312 	return 0;
4313 }
4314 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4315 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4316 {
4317 	struct mem_cgroup_eventfd_list *ev;
4318 
4319 	spin_lock(&memcg_oom_lock);
4320 
4321 	list_for_each_entry(ev, &memcg->oom_notify, list)
4322 		eventfd_signal(ev->eventfd, 1);
4323 
4324 	spin_unlock(&memcg_oom_lock);
4325 	return 0;
4326 }
4327 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4328 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4329 {
4330 	struct mem_cgroup *iter;
4331 
4332 	for_each_mem_cgroup_tree(iter, memcg)
4333 		mem_cgroup_oom_notify_cb(iter);
4334 }
4335 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4336 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4337 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4338 {
4339 	struct mem_cgroup_thresholds *thresholds;
4340 	struct mem_cgroup_threshold_ary *new;
4341 	unsigned long threshold;
4342 	unsigned long usage;
4343 	int i, size, ret;
4344 
4345 	ret = page_counter_memparse(args, "-1", &threshold);
4346 	if (ret)
4347 		return ret;
4348 
4349 	mutex_lock(&memcg->thresholds_lock);
4350 
4351 	if (type == _MEM) {
4352 		thresholds = &memcg->thresholds;
4353 		usage = mem_cgroup_usage(memcg, false);
4354 	} else if (type == _MEMSWAP) {
4355 		thresholds = &memcg->memsw_thresholds;
4356 		usage = mem_cgroup_usage(memcg, true);
4357 	} else
4358 		BUG();
4359 
4360 	/* Check if a threshold crossed before adding a new one */
4361 	if (thresholds->primary)
4362 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4363 
4364 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4365 
4366 	/* Allocate memory for new array of thresholds */
4367 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4368 	if (!new) {
4369 		ret = -ENOMEM;
4370 		goto unlock;
4371 	}
4372 	new->size = size;
4373 
4374 	/* Copy thresholds (if any) to new array */
4375 	if (thresholds->primary)
4376 		memcpy(new->entries, thresholds->primary->entries,
4377 		       flex_array_size(new, entries, size - 1));
4378 
4379 	/* Add new threshold */
4380 	new->entries[size - 1].eventfd = eventfd;
4381 	new->entries[size - 1].threshold = threshold;
4382 
4383 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4384 	sort(new->entries, size, sizeof(*new->entries),
4385 			compare_thresholds, NULL);
4386 
4387 	/* Find current threshold */
4388 	new->current_threshold = -1;
4389 	for (i = 0; i < size; i++) {
4390 		if (new->entries[i].threshold <= usage) {
4391 			/*
4392 			 * new->current_threshold will not be used until
4393 			 * rcu_assign_pointer(), so it's safe to increment
4394 			 * it here.
4395 			 */
4396 			++new->current_threshold;
4397 		} else
4398 			break;
4399 	}
4400 
4401 	/* Free old spare buffer and save old primary buffer as spare */
4402 	kfree(thresholds->spare);
4403 	thresholds->spare = thresholds->primary;
4404 
4405 	rcu_assign_pointer(thresholds->primary, new);
4406 
4407 	/* To be sure that nobody uses thresholds */
4408 	synchronize_rcu();
4409 
4410 unlock:
4411 	mutex_unlock(&memcg->thresholds_lock);
4412 
4413 	return ret;
4414 }
4415 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4416 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4417 	struct eventfd_ctx *eventfd, const char *args)
4418 {
4419 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4420 }
4421 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4422 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4423 	struct eventfd_ctx *eventfd, const char *args)
4424 {
4425 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4426 }
4427 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4428 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4429 	struct eventfd_ctx *eventfd, enum res_type type)
4430 {
4431 	struct mem_cgroup_thresholds *thresholds;
4432 	struct mem_cgroup_threshold_ary *new;
4433 	unsigned long usage;
4434 	int i, j, size, entries;
4435 
4436 	mutex_lock(&memcg->thresholds_lock);
4437 
4438 	if (type == _MEM) {
4439 		thresholds = &memcg->thresholds;
4440 		usage = mem_cgroup_usage(memcg, false);
4441 	} else if (type == _MEMSWAP) {
4442 		thresholds = &memcg->memsw_thresholds;
4443 		usage = mem_cgroup_usage(memcg, true);
4444 	} else
4445 		BUG();
4446 
4447 	if (!thresholds->primary)
4448 		goto unlock;
4449 
4450 	/* Check if a threshold crossed before removing */
4451 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4452 
4453 	/* Calculate new number of threshold */
4454 	size = entries = 0;
4455 	for (i = 0; i < thresholds->primary->size; i++) {
4456 		if (thresholds->primary->entries[i].eventfd != eventfd)
4457 			size++;
4458 		else
4459 			entries++;
4460 	}
4461 
4462 	new = thresholds->spare;
4463 
4464 	/* If no items related to eventfd have been cleared, nothing to do */
4465 	if (!entries)
4466 		goto unlock;
4467 
4468 	/* Set thresholds array to NULL if we don't have thresholds */
4469 	if (!size) {
4470 		kfree(new);
4471 		new = NULL;
4472 		goto swap_buffers;
4473 	}
4474 
4475 	new->size = size;
4476 
4477 	/* Copy thresholds and find current threshold */
4478 	new->current_threshold = -1;
4479 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4480 		if (thresholds->primary->entries[i].eventfd == eventfd)
4481 			continue;
4482 
4483 		new->entries[j] = thresholds->primary->entries[i];
4484 		if (new->entries[j].threshold <= usage) {
4485 			/*
4486 			 * new->current_threshold will not be used
4487 			 * until rcu_assign_pointer(), so it's safe to increment
4488 			 * it here.
4489 			 */
4490 			++new->current_threshold;
4491 		}
4492 		j++;
4493 	}
4494 
4495 swap_buffers:
4496 	/* Swap primary and spare array */
4497 	thresholds->spare = thresholds->primary;
4498 
4499 	rcu_assign_pointer(thresholds->primary, new);
4500 
4501 	/* To be sure that nobody uses thresholds */
4502 	synchronize_rcu();
4503 
4504 	/* If all events are unregistered, free the spare array */
4505 	if (!new) {
4506 		kfree(thresholds->spare);
4507 		thresholds->spare = NULL;
4508 	}
4509 unlock:
4510 	mutex_unlock(&memcg->thresholds_lock);
4511 }
4512 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4513 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4514 	struct eventfd_ctx *eventfd)
4515 {
4516 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4517 }
4518 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4519 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4520 	struct eventfd_ctx *eventfd)
4521 {
4522 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4523 }
4524 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4525 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4526 	struct eventfd_ctx *eventfd, const char *args)
4527 {
4528 	struct mem_cgroup_eventfd_list *event;
4529 
4530 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4531 	if (!event)
4532 		return -ENOMEM;
4533 
4534 	spin_lock(&memcg_oom_lock);
4535 
4536 	event->eventfd = eventfd;
4537 	list_add(&event->list, &memcg->oom_notify);
4538 
4539 	/* already in OOM ? */
4540 	if (memcg->under_oom)
4541 		eventfd_signal(eventfd, 1);
4542 	spin_unlock(&memcg_oom_lock);
4543 
4544 	return 0;
4545 }
4546 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4547 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4548 	struct eventfd_ctx *eventfd)
4549 {
4550 	struct mem_cgroup_eventfd_list *ev, *tmp;
4551 
4552 	spin_lock(&memcg_oom_lock);
4553 
4554 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4555 		if (ev->eventfd == eventfd) {
4556 			list_del(&ev->list);
4557 			kfree(ev);
4558 		}
4559 	}
4560 
4561 	spin_unlock(&memcg_oom_lock);
4562 }
4563 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4564 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4565 {
4566 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4567 
4568 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4569 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4570 	seq_printf(sf, "oom_kill %lu\n",
4571 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4572 	return 0;
4573 }
4574 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4575 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4576 	struct cftype *cft, u64 val)
4577 {
4578 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4579 
4580 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4581 	if (!css->parent || !((val == 0) || (val == 1)))
4582 		return -EINVAL;
4583 
4584 	memcg->oom_kill_disable = val;
4585 	if (!val)
4586 		memcg_oom_recover(memcg);
4587 
4588 	return 0;
4589 }
4590 
4591 #ifdef CONFIG_CGROUP_WRITEBACK
4592 
4593 #include <trace/events/writeback.h>
4594 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4595 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4596 {
4597 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4598 }
4599 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4600 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4601 {
4602 	wb_domain_exit(&memcg->cgwb_domain);
4603 }
4604 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4605 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4606 {
4607 	wb_domain_size_changed(&memcg->cgwb_domain);
4608 }
4609 
mem_cgroup_wb_domain(struct bdi_writeback * wb)4610 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4611 {
4612 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4613 
4614 	if (!memcg->css.parent)
4615 		return NULL;
4616 
4617 	return &memcg->cgwb_domain;
4618 }
4619 
4620 /*
4621  * idx can be of type enum memcg_stat_item or node_stat_item.
4622  * Keep in sync with memcg_exact_page().
4623  */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4624 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4625 {
4626 	long x = atomic_long_read(&memcg->vmstats[idx]);
4627 	int cpu;
4628 
4629 	for_each_online_cpu(cpu)
4630 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4631 	if (x < 0)
4632 		x = 0;
4633 	return x;
4634 }
4635 
4636 /**
4637  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4638  * @wb: bdi_writeback in question
4639  * @pfilepages: out parameter for number of file pages
4640  * @pheadroom: out parameter for number of allocatable pages according to memcg
4641  * @pdirty: out parameter for number of dirty pages
4642  * @pwriteback: out parameter for number of pages under writeback
4643  *
4644  * Determine the numbers of file, headroom, dirty, and writeback pages in
4645  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4646  * is a bit more involved.
4647  *
4648  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4649  * headroom is calculated as the lowest headroom of itself and the
4650  * ancestors.  Note that this doesn't consider the actual amount of
4651  * available memory in the system.  The caller should further cap
4652  * *@pheadroom accordingly.
4653  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4654 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4655 			 unsigned long *pheadroom, unsigned long *pdirty,
4656 			 unsigned long *pwriteback)
4657 {
4658 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4659 	struct mem_cgroup *parent;
4660 
4661 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4662 
4663 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4664 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4665 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4666 	*pheadroom = PAGE_COUNTER_MAX;
4667 
4668 	while ((parent = parent_mem_cgroup(memcg))) {
4669 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4670 					    READ_ONCE(memcg->memory.high));
4671 		unsigned long used = page_counter_read(&memcg->memory);
4672 
4673 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4674 		memcg = parent;
4675 	}
4676 }
4677 
4678 /*
4679  * Foreign dirty flushing
4680  *
4681  * There's an inherent mismatch between memcg and writeback.  The former
4682  * trackes ownership per-page while the latter per-inode.  This was a
4683  * deliberate design decision because honoring per-page ownership in the
4684  * writeback path is complicated, may lead to higher CPU and IO overheads
4685  * and deemed unnecessary given that write-sharing an inode across
4686  * different cgroups isn't a common use-case.
4687  *
4688  * Combined with inode majority-writer ownership switching, this works well
4689  * enough in most cases but there are some pathological cases.  For
4690  * example, let's say there are two cgroups A and B which keep writing to
4691  * different but confined parts of the same inode.  B owns the inode and
4692  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4693  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4694  * triggering background writeback.  A will be slowed down without a way to
4695  * make writeback of the dirty pages happen.
4696  *
4697  * Conditions like the above can lead to a cgroup getting repatedly and
4698  * severely throttled after making some progress after each
4699  * dirty_expire_interval while the underyling IO device is almost
4700  * completely idle.
4701  *
4702  * Solving this problem completely requires matching the ownership tracking
4703  * granularities between memcg and writeback in either direction.  However,
4704  * the more egregious behaviors can be avoided by simply remembering the
4705  * most recent foreign dirtying events and initiating remote flushes on
4706  * them when local writeback isn't enough to keep the memory clean enough.
4707  *
4708  * The following two functions implement such mechanism.  When a foreign
4709  * page - a page whose memcg and writeback ownerships don't match - is
4710  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4711  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4712  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4713  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4714  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4715  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4716  * limited to MEMCG_CGWB_FRN_CNT.
4717  *
4718  * The mechanism only remembers IDs and doesn't hold any object references.
4719  * As being wrong occasionally doesn't matter, updates and accesses to the
4720  * records are lockless and racy.
4721  */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4722 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4723 					     struct bdi_writeback *wb)
4724 {
4725 	struct mem_cgroup *memcg = page->mem_cgroup;
4726 	struct memcg_cgwb_frn *frn;
4727 	u64 now = get_jiffies_64();
4728 	u64 oldest_at = now;
4729 	int oldest = -1;
4730 	int i;
4731 
4732 	trace_track_foreign_dirty(page, wb);
4733 
4734 	/*
4735 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4736 	 * using it.  If not replace the oldest one which isn't being
4737 	 * written out.
4738 	 */
4739 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4740 		frn = &memcg->cgwb_frn[i];
4741 		if (frn->bdi_id == wb->bdi->id &&
4742 		    frn->memcg_id == wb->memcg_css->id)
4743 			break;
4744 		if (time_before64(frn->at, oldest_at) &&
4745 		    atomic_read(&frn->done.cnt) == 1) {
4746 			oldest = i;
4747 			oldest_at = frn->at;
4748 		}
4749 	}
4750 
4751 	if (i < MEMCG_CGWB_FRN_CNT) {
4752 		/*
4753 		 * Re-using an existing one.  Update timestamp lazily to
4754 		 * avoid making the cacheline hot.  We want them to be
4755 		 * reasonably up-to-date and significantly shorter than
4756 		 * dirty_expire_interval as that's what expires the record.
4757 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4758 		 */
4759 		unsigned long update_intv =
4760 			min_t(unsigned long, HZ,
4761 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4762 
4763 		if (time_before64(frn->at, now - update_intv))
4764 			frn->at = now;
4765 	} else if (oldest >= 0) {
4766 		/* replace the oldest free one */
4767 		frn = &memcg->cgwb_frn[oldest];
4768 		frn->bdi_id = wb->bdi->id;
4769 		frn->memcg_id = wb->memcg_css->id;
4770 		frn->at = now;
4771 	}
4772 }
4773 
4774 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4775 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4776 {
4777 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4778 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4779 	u64 now = jiffies_64;
4780 	int i;
4781 
4782 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4783 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4784 
4785 		/*
4786 		 * If the record is older than dirty_expire_interval,
4787 		 * writeback on it has already started.  No need to kick it
4788 		 * off again.  Also, don't start a new one if there's
4789 		 * already one in flight.
4790 		 */
4791 		if (time_after64(frn->at, now - intv) &&
4792 		    atomic_read(&frn->done.cnt) == 1) {
4793 			frn->at = 0;
4794 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4795 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4796 					       WB_REASON_FOREIGN_FLUSH,
4797 					       &frn->done);
4798 		}
4799 	}
4800 }
4801 
4802 #else	/* CONFIG_CGROUP_WRITEBACK */
4803 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4804 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4805 {
4806 	return 0;
4807 }
4808 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4809 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4810 {
4811 }
4812 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4813 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4814 {
4815 }
4816 
4817 #endif	/* CONFIG_CGROUP_WRITEBACK */
4818 
4819 /*
4820  * DO NOT USE IN NEW FILES.
4821  *
4822  * "cgroup.event_control" implementation.
4823  *
4824  * This is way over-engineered.  It tries to support fully configurable
4825  * events for each user.  Such level of flexibility is completely
4826  * unnecessary especially in the light of the planned unified hierarchy.
4827  *
4828  * Please deprecate this and replace with something simpler if at all
4829  * possible.
4830  */
4831 
4832 /*
4833  * Unregister event and free resources.
4834  *
4835  * Gets called from workqueue.
4836  */
memcg_event_remove(struct work_struct * work)4837 static void memcg_event_remove(struct work_struct *work)
4838 {
4839 	struct mem_cgroup_event *event =
4840 		container_of(work, struct mem_cgroup_event, remove);
4841 	struct mem_cgroup *memcg = event->memcg;
4842 
4843 	remove_wait_queue(event->wqh, &event->wait);
4844 
4845 	event->unregister_event(memcg, event->eventfd);
4846 
4847 	/* Notify userspace the event is going away. */
4848 	eventfd_signal(event->eventfd, 1);
4849 
4850 	eventfd_ctx_put(event->eventfd);
4851 	kfree(event);
4852 	css_put(&memcg->css);
4853 }
4854 
4855 /*
4856  * Gets called on EPOLLHUP on eventfd when user closes it.
4857  *
4858  * Called with wqh->lock held and interrupts disabled.
4859  */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4860 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4861 			    int sync, void *key)
4862 {
4863 	struct mem_cgroup_event *event =
4864 		container_of(wait, struct mem_cgroup_event, wait);
4865 	struct mem_cgroup *memcg = event->memcg;
4866 	__poll_t flags = key_to_poll(key);
4867 
4868 	if (flags & EPOLLHUP) {
4869 		/*
4870 		 * If the event has been detached at cgroup removal, we
4871 		 * can simply return knowing the other side will cleanup
4872 		 * for us.
4873 		 *
4874 		 * We can't race against event freeing since the other
4875 		 * side will require wqh->lock via remove_wait_queue(),
4876 		 * which we hold.
4877 		 */
4878 		spin_lock(&memcg->event_list_lock);
4879 		if (!list_empty(&event->list)) {
4880 			list_del_init(&event->list);
4881 			/*
4882 			 * We are in atomic context, but cgroup_event_remove()
4883 			 * may sleep, so we have to call it in workqueue.
4884 			 */
4885 			schedule_work(&event->remove);
4886 		}
4887 		spin_unlock(&memcg->event_list_lock);
4888 	}
4889 
4890 	return 0;
4891 }
4892 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4893 static void memcg_event_ptable_queue_proc(struct file *file,
4894 		wait_queue_head_t *wqh, poll_table *pt)
4895 {
4896 	struct mem_cgroup_event *event =
4897 		container_of(pt, struct mem_cgroup_event, pt);
4898 
4899 	event->wqh = wqh;
4900 	add_wait_queue(wqh, &event->wait);
4901 }
4902 
4903 /*
4904  * DO NOT USE IN NEW FILES.
4905  *
4906  * Parse input and register new cgroup event handler.
4907  *
4908  * Input must be in format '<event_fd> <control_fd> <args>'.
4909  * Interpretation of args is defined by control file implementation.
4910  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4911 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4912 					 char *buf, size_t nbytes, loff_t off)
4913 {
4914 	struct cgroup_subsys_state *css = of_css(of);
4915 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4916 	struct mem_cgroup_event *event;
4917 	struct cgroup_subsys_state *cfile_css;
4918 	unsigned int efd, cfd;
4919 	struct fd efile;
4920 	struct fd cfile;
4921 	struct dentry *cdentry;
4922 	const char *name;
4923 	char *endp;
4924 	int ret;
4925 
4926 	buf = strstrip(buf);
4927 
4928 	efd = simple_strtoul(buf, &endp, 10);
4929 	if (*endp != ' ')
4930 		return -EINVAL;
4931 	buf = endp + 1;
4932 
4933 	cfd = simple_strtoul(buf, &endp, 10);
4934 	if (*endp == '\0')
4935 		buf = endp;
4936 	else if (*endp == ' ')
4937 		buf = endp + 1;
4938 	else
4939 		return -EINVAL;
4940 
4941 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4942 	if (!event)
4943 		return -ENOMEM;
4944 
4945 	event->memcg = memcg;
4946 	INIT_LIST_HEAD(&event->list);
4947 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4948 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4949 	INIT_WORK(&event->remove, memcg_event_remove);
4950 
4951 	efile = fdget(efd);
4952 	if (!efile.file) {
4953 		ret = -EBADF;
4954 		goto out_kfree;
4955 	}
4956 
4957 	event->eventfd = eventfd_ctx_fileget(efile.file);
4958 	if (IS_ERR(event->eventfd)) {
4959 		ret = PTR_ERR(event->eventfd);
4960 		goto out_put_efile;
4961 	}
4962 
4963 	cfile = fdget(cfd);
4964 	if (!cfile.file) {
4965 		ret = -EBADF;
4966 		goto out_put_eventfd;
4967 	}
4968 
4969 	/* the process need read permission on control file */
4970 	/* AV: shouldn't we check that it's been opened for read instead? */
4971 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4972 	if (ret < 0)
4973 		goto out_put_cfile;
4974 
4975 	/*
4976 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4977 	 * file can't be renamed, it's safe to access its name afterwards.
4978 	 */
4979 	cdentry = cfile.file->f_path.dentry;
4980 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4981 		ret = -EINVAL;
4982 		goto out_put_cfile;
4983 	}
4984 
4985 	/*
4986 	 * Determine the event callbacks and set them in @event.  This used
4987 	 * to be done via struct cftype but cgroup core no longer knows
4988 	 * about these events.  The following is crude but the whole thing
4989 	 * is for compatibility anyway.
4990 	 *
4991 	 * DO NOT ADD NEW FILES.
4992 	 */
4993 	name = cdentry->d_name.name;
4994 
4995 	if (!strcmp(name, "memory.usage_in_bytes")) {
4996 		event->register_event = mem_cgroup_usage_register_event;
4997 		event->unregister_event = mem_cgroup_usage_unregister_event;
4998 	} else if (!strcmp(name, "memory.oom_control")) {
4999 		event->register_event = mem_cgroup_oom_register_event;
5000 		event->unregister_event = mem_cgroup_oom_unregister_event;
5001 	} else if (!strcmp(name, "memory.pressure_level")) {
5002 		event->register_event = vmpressure_register_event;
5003 		event->unregister_event = vmpressure_unregister_event;
5004 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5005 		event->register_event = memsw_cgroup_usage_register_event;
5006 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5007 	} else {
5008 		ret = -EINVAL;
5009 		goto out_put_cfile;
5010 	}
5011 
5012 	/*
5013 	 * Verify @cfile should belong to @css.  Also, remaining events are
5014 	 * automatically removed on cgroup destruction but the removal is
5015 	 * asynchronous, so take an extra ref on @css.
5016 	 */
5017 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5018 					       &memory_cgrp_subsys);
5019 	ret = -EINVAL;
5020 	if (IS_ERR(cfile_css))
5021 		goto out_put_cfile;
5022 	if (cfile_css != css) {
5023 		css_put(cfile_css);
5024 		goto out_put_cfile;
5025 	}
5026 
5027 	ret = event->register_event(memcg, event->eventfd, buf);
5028 	if (ret)
5029 		goto out_put_css;
5030 
5031 	vfs_poll(efile.file, &event->pt);
5032 
5033 	spin_lock(&memcg->event_list_lock);
5034 	list_add(&event->list, &memcg->event_list);
5035 	spin_unlock(&memcg->event_list_lock);
5036 
5037 	fdput(cfile);
5038 	fdput(efile);
5039 
5040 	return nbytes;
5041 
5042 out_put_css:
5043 	css_put(css);
5044 out_put_cfile:
5045 	fdput(cfile);
5046 out_put_eventfd:
5047 	eventfd_ctx_put(event->eventfd);
5048 out_put_efile:
5049 	fdput(efile);
5050 out_kfree:
5051 	kfree(event);
5052 
5053 	return ret;
5054 }
5055 
5056 static struct cftype mem_cgroup_legacy_files[] = {
5057 	{
5058 		.name = "usage_in_bytes",
5059 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5060 		.read_u64 = mem_cgroup_read_u64,
5061 	},
5062 	{
5063 		.name = "max_usage_in_bytes",
5064 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5065 		.write = mem_cgroup_reset,
5066 		.read_u64 = mem_cgroup_read_u64,
5067 	},
5068 	{
5069 		.name = "limit_in_bytes",
5070 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5071 		.write = mem_cgroup_write,
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 	{
5075 		.name = "soft_limit_in_bytes",
5076 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5077 		.write = mem_cgroup_write,
5078 		.read_u64 = mem_cgroup_read_u64,
5079 	},
5080 	{
5081 		.name = "failcnt",
5082 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5083 		.write = mem_cgroup_reset,
5084 		.read_u64 = mem_cgroup_read_u64,
5085 	},
5086 	{
5087 		.name = "stat",
5088 		.seq_show = memcg_stat_show,
5089 	},
5090 	{
5091 		.name = "force_empty",
5092 		.write = mem_cgroup_force_empty_write,
5093 	},
5094 	{
5095 		.name = "use_hierarchy",
5096 		.write_u64 = mem_cgroup_hierarchy_write,
5097 		.read_u64 = mem_cgroup_hierarchy_read,
5098 	},
5099 	{
5100 		.name = "cgroup.event_control",		/* XXX: for compat */
5101 		.write = memcg_write_event_control,
5102 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5103 	},
5104 	{
5105 		.name = "swappiness",
5106 		.read_u64 = mem_cgroup_swappiness_read,
5107 		.write_u64 = mem_cgroup_swappiness_write,
5108 	},
5109 	{
5110 		.name = "move_charge_at_immigrate",
5111 		.read_u64 = mem_cgroup_move_charge_read,
5112 		.write_u64 = mem_cgroup_move_charge_write,
5113 	},
5114 	{
5115 		.name = "oom_control",
5116 		.seq_show = mem_cgroup_oom_control_read,
5117 		.write_u64 = mem_cgroup_oom_control_write,
5118 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5119 	},
5120 	{
5121 		.name = "pressure_level",
5122 	},
5123 #ifdef CONFIG_NUMA
5124 	{
5125 		.name = "numa_stat",
5126 		.seq_show = memcg_numa_stat_show,
5127 	},
5128 #endif
5129 	{
5130 		.name = "kmem.limit_in_bytes",
5131 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5132 		.write = mem_cgroup_write,
5133 		.read_u64 = mem_cgroup_read_u64,
5134 	},
5135 	{
5136 		.name = "kmem.usage_in_bytes",
5137 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5138 		.read_u64 = mem_cgroup_read_u64,
5139 	},
5140 	{
5141 		.name = "kmem.failcnt",
5142 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5143 		.write = mem_cgroup_reset,
5144 		.read_u64 = mem_cgroup_read_u64,
5145 	},
5146 	{
5147 		.name = "kmem.max_usage_in_bytes",
5148 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5149 		.write = mem_cgroup_reset,
5150 		.read_u64 = mem_cgroup_read_u64,
5151 	},
5152 #if defined(CONFIG_MEMCG_KMEM) && \
5153 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5154 	{
5155 		.name = "kmem.slabinfo",
5156 		.seq_show = memcg_slab_show,
5157 	},
5158 #endif
5159 	{
5160 		.name = "kmem.tcp.limit_in_bytes",
5161 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5162 		.write = mem_cgroup_write,
5163 		.read_u64 = mem_cgroup_read_u64,
5164 	},
5165 	{
5166 		.name = "kmem.tcp.usage_in_bytes",
5167 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5168 		.read_u64 = mem_cgroup_read_u64,
5169 	},
5170 	{
5171 		.name = "kmem.tcp.failcnt",
5172 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5173 		.write = mem_cgroup_reset,
5174 		.read_u64 = mem_cgroup_read_u64,
5175 	},
5176 	{
5177 		.name = "kmem.tcp.max_usage_in_bytes",
5178 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5179 		.write = mem_cgroup_reset,
5180 		.read_u64 = mem_cgroup_read_u64,
5181 	},
5182 	{ },	/* terminate */
5183 };
5184 
5185 /*
5186  * Private memory cgroup IDR
5187  *
5188  * Swap-out records and page cache shadow entries need to store memcg
5189  * references in constrained space, so we maintain an ID space that is
5190  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5191  * memory-controlled cgroups to 64k.
5192  *
5193  * However, there usually are many references to the offline CSS after
5194  * the cgroup has been destroyed, such as page cache or reclaimable
5195  * slab objects, that don't need to hang on to the ID. We want to keep
5196  * those dead CSS from occupying IDs, or we might quickly exhaust the
5197  * relatively small ID space and prevent the creation of new cgroups
5198  * even when there are much fewer than 64k cgroups - possibly none.
5199  *
5200  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5201  * be freed and recycled when it's no longer needed, which is usually
5202  * when the CSS is offlined.
5203  *
5204  * The only exception to that are records of swapped out tmpfs/shmem
5205  * pages that need to be attributed to live ancestors on swapin. But
5206  * those references are manageable from userspace.
5207  */
5208 
5209 static DEFINE_IDR(mem_cgroup_idr);
5210 static DEFINE_SPINLOCK(memcg_idr_lock);
5211 
mem_cgroup_alloc_id(void)5212 static int mem_cgroup_alloc_id(void)
5213 {
5214 	int ret;
5215 
5216 	idr_preload(GFP_KERNEL);
5217 	spin_lock(&memcg_idr_lock);
5218 	ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX,
5219 			GFP_NOWAIT);
5220 	spin_unlock(&memcg_idr_lock);
5221 	idr_preload_end();
5222 	return ret;
5223 }
5224 
mem_cgroup_id_remove(struct mem_cgroup * memcg)5225 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5226 {
5227 	if (memcg->id.id > 0) {
5228 		spin_lock(&memcg_idr_lock);
5229 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5230 		spin_unlock(&memcg_idr_lock);
5231 
5232 		memcg->id.id = 0;
5233 	}
5234 }
5235 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5236 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5237 						  unsigned int n)
5238 {
5239 	refcount_add(n, &memcg->id.ref);
5240 }
5241 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5242 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5243 {
5244 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5245 		mem_cgroup_id_remove(memcg);
5246 
5247 		/* Memcg ID pins CSS */
5248 		css_put(&memcg->css);
5249 	}
5250 }
5251 
mem_cgroup_id_put(struct mem_cgroup * memcg)5252 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5253 {
5254 	mem_cgroup_id_put_many(memcg, 1);
5255 }
5256 
5257 /**
5258  * mem_cgroup_from_id - look up a memcg from a memcg id
5259  * @id: the memcg id to look up
5260  *
5261  * Caller must hold rcu_read_lock().
5262  */
mem_cgroup_from_id(unsigned short id)5263 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5264 {
5265 	WARN_ON_ONCE(!rcu_read_lock_held());
5266 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5267 	if (id == -1)
5268 		return NULL;
5269 #endif
5270 	return idr_find(&mem_cgroup_idr, id);
5271 }
5272 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5273 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5274 {
5275 	struct mem_cgroup_per_node *pn;
5276 	int tmp = node;
5277 	/*
5278 	 * This routine is called against possible nodes.
5279 	 * But it's BUG to call kmalloc() against offline node.
5280 	 *
5281 	 * TODO: this routine can waste much memory for nodes which will
5282 	 *       never be onlined. It's better to use memory hotplug callback
5283 	 *       function.
5284 	 */
5285 	if (!node_state(node, N_NORMAL_MEMORY))
5286 		tmp = -1;
5287 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5288 	if (!pn)
5289 		return 1;
5290 
5291 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5292 						 GFP_KERNEL_ACCOUNT);
5293 	if (!pn->lruvec_stat_local) {
5294 		kfree(pn);
5295 		return 1;
5296 	}
5297 
5298 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5299 					       GFP_KERNEL_ACCOUNT);
5300 	if (!pn->lruvec_stat_cpu) {
5301 		free_percpu(pn->lruvec_stat_local);
5302 		kfree(pn);
5303 		return 1;
5304 	}
5305 
5306 	lruvec_init(&pn->lruvec);
5307 	pn->usage_in_excess = 0;
5308 	pn->lruvec.pgdat = NODE_DATA(node);
5309 	pn->on_tree = false;
5310 	pn->memcg = memcg;
5311 
5312 	memcg->nodeinfo[node] = pn;
5313 	return 0;
5314 }
5315 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5316 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5317 {
5318 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5319 
5320 	if (!pn)
5321 		return;
5322 
5323 	free_percpu(pn->lruvec_stat_cpu);
5324 	free_percpu(pn->lruvec_stat_local);
5325 	kfree(pn);
5326 }
5327 
__mem_cgroup_free(struct mem_cgroup * memcg)5328 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5329 {
5330 	int node;
5331 
5332 	for_each_node(node)
5333 		free_mem_cgroup_per_node_info(memcg, node);
5334 	free_percpu(memcg->vmstats_percpu);
5335 	free_percpu(memcg->vmstats_local);
5336 	kfree(memcg);
5337 }
5338 
mem_cgroup_free(struct mem_cgroup * memcg)5339 static void mem_cgroup_free(struct mem_cgroup *memcg)
5340 {
5341 	memcg_wb_domain_exit(memcg);
5342 	/*
5343 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5344 	 * on parent's and all ancestor levels.
5345 	 */
5346 	memcg_flush_percpu_vmstats(memcg);
5347 	memcg_flush_percpu_vmevents(memcg);
5348 	__mem_cgroup_free(memcg);
5349 }
5350 
mem_cgroup_alloc(void)5351 static struct mem_cgroup *mem_cgroup_alloc(void)
5352 {
5353 	struct mem_cgroup *memcg;
5354 	unsigned int size;
5355 	int node;
5356 	int __maybe_unused i;
5357 	long error = -ENOMEM;
5358 
5359 	size = sizeof(struct mem_cgroup);
5360 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5361 
5362 	memcg = kzalloc(size, GFP_KERNEL);
5363 	if (!memcg)
5364 		return ERR_PTR(error);
5365 
5366 	memcg->id.id = mem_cgroup_alloc_id();
5367 	if (memcg->id.id < 0) {
5368 		error = memcg->id.id;
5369 		goto fail;
5370 	}
5371 
5372 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5373 						GFP_KERNEL_ACCOUNT);
5374 	if (!memcg->vmstats_local)
5375 		goto fail;
5376 
5377 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5378 						 GFP_KERNEL_ACCOUNT);
5379 	if (!memcg->vmstats_percpu)
5380 		goto fail;
5381 
5382 	for_each_node(node)
5383 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5384 			goto fail;
5385 
5386 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5387 		goto fail;
5388 
5389 	INIT_WORK(&memcg->high_work, high_work_func);
5390 	INIT_LIST_HEAD(&memcg->oom_notify);
5391 	mutex_init(&memcg->thresholds_lock);
5392 	spin_lock_init(&memcg->move_lock);
5393 	vmpressure_init(&memcg->vmpressure);
5394 	INIT_LIST_HEAD(&memcg->event_list);
5395 	spin_lock_init(&memcg->event_list_lock);
5396 	memcg->socket_pressure = jiffies;
5397 #ifdef CONFIG_MEMCG_KMEM
5398 	memcg->kmemcg_id = -1;
5399 	INIT_LIST_HEAD(&memcg->objcg_list);
5400 #endif
5401 #ifdef CONFIG_CGROUP_WRITEBACK
5402 	INIT_LIST_HEAD(&memcg->cgwb_list);
5403 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5404 		memcg->cgwb_frn[i].done =
5405 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5406 #endif
5407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5408 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5409 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5410 	memcg->deferred_split_queue.split_queue_len = 0;
5411 #endif
5412 
5413 #ifdef CONFIG_HYPERHOLD_MEMCG
5414 	if (unlikely(!score_head_inited)) {
5415 		INIT_LIST_HEAD(&score_head);
5416 		score_head_inited = true;
5417 	}
5418 #endif
5419 
5420 #ifdef CONFIG_HYPERHOLD_MEMCG
5421 	INIT_LIST_HEAD(&memcg->score_node);
5422 #endif
5423 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5424 	return memcg;
5425 fail:
5426 	mem_cgroup_id_remove(memcg);
5427 	__mem_cgroup_free(memcg);
5428 	return ERR_PTR(error);
5429 }
5430 
5431 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5432 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5433 {
5434 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5435 	struct mem_cgroup *memcg, *old_memcg;
5436 	long error = -ENOMEM;
5437 
5438 	old_memcg = set_active_memcg(parent);
5439 	memcg = mem_cgroup_alloc();
5440 	set_active_memcg(old_memcg);
5441 	if (IS_ERR(memcg))
5442 		return ERR_CAST(memcg);
5443 
5444 #ifdef CONFIG_HYPERHOLD_MEMCG
5445 	atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5446 #endif
5447 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5448 	atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5449 	atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5450 	atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5451 #endif
5452 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5453 	memcg->soft_limit = PAGE_COUNTER_MAX;
5454 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5455 	if (parent) {
5456 		memcg->swappiness = mem_cgroup_swappiness(parent);
5457 		memcg->oom_kill_disable = parent->oom_kill_disable;
5458 	}
5459 	if (!parent) {
5460 		page_counter_init(&memcg->memory, NULL);
5461 		page_counter_init(&memcg->swap, NULL);
5462 		page_counter_init(&memcg->kmem, NULL);
5463 		page_counter_init(&memcg->tcpmem, NULL);
5464 	} else if (parent->use_hierarchy) {
5465 		memcg->use_hierarchy = true;
5466 		page_counter_init(&memcg->memory, &parent->memory);
5467 		page_counter_init(&memcg->swap, &parent->swap);
5468 		page_counter_init(&memcg->kmem, &parent->kmem);
5469 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5470 	} else {
5471 		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5472 		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5473 		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5474 		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5475 		/*
5476 		 * Deeper hierachy with use_hierarchy == false doesn't make
5477 		 * much sense so let cgroup subsystem know about this
5478 		 * unfortunate state in our controller.
5479 		 */
5480 		if (parent != root_mem_cgroup)
5481 			memory_cgrp_subsys.broken_hierarchy = true;
5482 	}
5483 
5484 	/* The following stuff does not apply to the root */
5485 	if (!parent) {
5486 		root_mem_cgroup = memcg;
5487 		return &memcg->css;
5488 	}
5489 
5490 	error = memcg_online_kmem(memcg);
5491 	if (error)
5492 		goto fail;
5493 
5494 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5495 		static_branch_inc(&memcg_sockets_enabled_key);
5496 
5497 	return &memcg->css;
5498 fail:
5499 	mem_cgroup_id_remove(memcg);
5500 	mem_cgroup_free(memcg);
5501 	return ERR_PTR(error);
5502 }
5503 
mem_cgroup_css_online(struct cgroup_subsys_state * css)5504 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5505 {
5506 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5507 
5508 	/*
5509 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5510 	 * by the time the maps are allocated. So, we allocate maps
5511 	 * here, when for_each_mem_cgroup() can't skip it.
5512 	 */
5513 	if (memcg_alloc_shrinker_maps(memcg)) {
5514 		mem_cgroup_id_remove(memcg);
5515 		return -ENOMEM;
5516 	}
5517 
5518 #ifdef CONFIG_HYPERHOLD_MEMCG
5519 	memcg_app_score_update(memcg);
5520 	css_get(css);
5521 #endif
5522 
5523 	/* Online state pins memcg ID, memcg ID pins CSS */
5524 	refcount_set(&memcg->id.ref, 1);
5525 	css_get(css);
5526 	return 0;
5527 }
5528 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5530 {
5531 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5532 	struct mem_cgroup_event *event, *tmp;
5533 
5534 #ifdef CONFIG_HYPERHOLD_MEMCG
5535 	unsigned long flags;
5536 
5537 	write_lock_irqsave(&score_list_lock, flags);
5538 	list_del_init(&memcg->score_node);
5539 	write_unlock_irqrestore(&score_list_lock, flags);
5540 	css_put(css);
5541 #endif
5542 
5543 	/*
5544 	 * Unregister events and notify userspace.
5545 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5546 	 * directory to avoid race between userspace and kernelspace.
5547 	 */
5548 	spin_lock(&memcg->event_list_lock);
5549 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5550 		list_del_init(&event->list);
5551 		schedule_work(&event->remove);
5552 	}
5553 	spin_unlock(&memcg->event_list_lock);
5554 
5555 	page_counter_set_min(&memcg->memory, 0);
5556 	page_counter_set_low(&memcg->memory, 0);
5557 
5558 	memcg_offline_kmem(memcg);
5559 	wb_memcg_offline(memcg);
5560 
5561 	drain_all_stock(memcg);
5562 
5563 	mem_cgroup_id_put(memcg);
5564 }
5565 
mem_cgroup_css_released(struct cgroup_subsys_state * css)5566 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5567 {
5568 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5569 
5570 	invalidate_reclaim_iterators(memcg);
5571 }
5572 
mem_cgroup_css_free(struct cgroup_subsys_state * css)5573 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5574 {
5575 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5576 	int __maybe_unused i;
5577 
5578 #ifdef CONFIG_CGROUP_WRITEBACK
5579 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5580 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5581 #endif
5582 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5583 		static_branch_dec(&memcg_sockets_enabled_key);
5584 
5585 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5586 		static_branch_dec(&memcg_sockets_enabled_key);
5587 
5588 	vmpressure_cleanup(&memcg->vmpressure);
5589 	cancel_work_sync(&memcg->high_work);
5590 	mem_cgroup_remove_from_trees(memcg);
5591 	memcg_free_shrinker_maps(memcg);
5592 	memcg_free_kmem(memcg);
5593 	mem_cgroup_free(memcg);
5594 }
5595 
5596 /**
5597  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5598  * @css: the target css
5599  *
5600  * Reset the states of the mem_cgroup associated with @css.  This is
5601  * invoked when the userland requests disabling on the default hierarchy
5602  * but the memcg is pinned through dependency.  The memcg should stop
5603  * applying policies and should revert to the vanilla state as it may be
5604  * made visible again.
5605  *
5606  * The current implementation only resets the essential configurations.
5607  * This needs to be expanded to cover all the visible parts.
5608  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5609 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5610 {
5611 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5612 
5613 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5614 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5615 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5616 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5617 	page_counter_set_min(&memcg->memory, 0);
5618 	page_counter_set_low(&memcg->memory, 0);
5619 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5620 	memcg->soft_limit = PAGE_COUNTER_MAX;
5621 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5622 	memcg_wb_domain_size_changed(memcg);
5623 }
5624 
5625 #ifdef CONFIG_MMU
5626 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5627 static int mem_cgroup_do_precharge(unsigned long count)
5628 {
5629 	int ret;
5630 
5631 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5632 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5633 	if (!ret) {
5634 		mc.precharge += count;
5635 		return ret;
5636 	}
5637 
5638 	/* Try charges one by one with reclaim, but do not retry */
5639 	while (count--) {
5640 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5641 		if (ret)
5642 			return ret;
5643 		mc.precharge++;
5644 		cond_resched();
5645 	}
5646 	return 0;
5647 }
5648 
5649 union mc_target {
5650 	struct page	*page;
5651 	swp_entry_t	ent;
5652 };
5653 
5654 enum mc_target_type {
5655 	MC_TARGET_NONE = 0,
5656 	MC_TARGET_PAGE,
5657 	MC_TARGET_SWAP,
5658 	MC_TARGET_DEVICE,
5659 };
5660 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5661 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5662 						unsigned long addr, pte_t ptent)
5663 {
5664 	struct page *page = vm_normal_page(vma, addr, ptent);
5665 
5666 	if (!page || !page_mapped(page))
5667 		return NULL;
5668 	if (PageAnon(page)) {
5669 		if (!(mc.flags & MOVE_ANON))
5670 			return NULL;
5671 	} else {
5672 		if (!(mc.flags & MOVE_FILE))
5673 			return NULL;
5674 	}
5675 	if (!get_page_unless_zero(page))
5676 		return NULL;
5677 
5678 	return page;
5679 }
5680 
5681 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5682 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5683 			pte_t ptent, swp_entry_t *entry)
5684 {
5685 	struct page *page = NULL;
5686 	swp_entry_t ent = pte_to_swp_entry(ptent);
5687 
5688 	if (!(mc.flags & MOVE_ANON))
5689 		return NULL;
5690 
5691 	/*
5692 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5693 	 * a device and because they are not accessible by CPU they are store
5694 	 * as special swap entry in the CPU page table.
5695 	 */
5696 	if (is_device_private_entry(ent)) {
5697 		page = device_private_entry_to_page(ent);
5698 		/*
5699 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5700 		 * a refcount of 1 when free (unlike normal page)
5701 		 */
5702 		if (!page_ref_add_unless(page, 1, 1))
5703 			return NULL;
5704 		return page;
5705 	}
5706 
5707 	if (non_swap_entry(ent))
5708 		return NULL;
5709 
5710 	/*
5711 	 * Because lookup_swap_cache() updates some statistics counter,
5712 	 * we call find_get_page() with swapper_space directly.
5713 	 */
5714 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5715 	entry->val = ent.val;
5716 
5717 	return page;
5718 }
5719 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5720 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5721 			pte_t ptent, swp_entry_t *entry)
5722 {
5723 	return NULL;
5724 }
5725 #endif
5726 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5727 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5728 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5729 {
5730 	if (!vma->vm_file) /* anonymous vma */
5731 		return NULL;
5732 	if (!(mc.flags & MOVE_FILE))
5733 		return NULL;
5734 
5735 	/* page is moved even if it's not RSS of this task(page-faulted). */
5736 	/* shmem/tmpfs may report page out on swap: account for that too. */
5737 	return find_get_incore_page(vma->vm_file->f_mapping,
5738 			linear_page_index(vma, addr));
5739 }
5740 
5741 /**
5742  * mem_cgroup_move_account - move account of the page
5743  * @page: the page
5744  * @compound: charge the page as compound or small page
5745  * @from: mem_cgroup which the page is moved from.
5746  * @to:	mem_cgroup which the page is moved to. @from != @to.
5747  *
5748  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5749  *
5750  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5751  * from old cgroup.
5752  */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5753 static int mem_cgroup_move_account(struct page *page,
5754 				   bool compound,
5755 				   struct mem_cgroup *from,
5756 				   struct mem_cgroup *to)
5757 {
5758 	struct lruvec *from_vec, *to_vec;
5759 	struct pglist_data *pgdat;
5760 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5761 	int ret;
5762 
5763 	VM_BUG_ON(from == to);
5764 	VM_BUG_ON_PAGE(PageLRU(page), page);
5765 	VM_BUG_ON(compound && !PageTransHuge(page));
5766 
5767 	/*
5768 	 * Prevent mem_cgroup_migrate() from looking at
5769 	 * page->mem_cgroup of its source page while we change it.
5770 	 */
5771 	ret = -EBUSY;
5772 	if (!trylock_page(page))
5773 		goto out;
5774 
5775 	ret = -EINVAL;
5776 	if (page->mem_cgroup != from)
5777 		goto out_unlock;
5778 
5779 	pgdat = page_pgdat(page);
5780 	from_vec = mem_cgroup_lruvec(from, pgdat);
5781 	to_vec = mem_cgroup_lruvec(to, pgdat);
5782 
5783 	lock_page_memcg(page);
5784 
5785 	if (PageAnon(page)) {
5786 		if (page_mapped(page)) {
5787 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5788 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5789 			if (PageTransHuge(page)) {
5790 				__dec_lruvec_state(from_vec, NR_ANON_THPS);
5791 				__inc_lruvec_state(to_vec, NR_ANON_THPS);
5792 			}
5793 
5794 		}
5795 	} else {
5796 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5797 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5798 
5799 		if (PageSwapBacked(page)) {
5800 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5801 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5802 		}
5803 
5804 		if (page_mapped(page)) {
5805 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5806 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5807 		}
5808 
5809 		if (PageDirty(page)) {
5810 			struct address_space *mapping = page_mapping(page);
5811 
5812 			if (mapping_can_writeback(mapping)) {
5813 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5814 						   -nr_pages);
5815 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5816 						   nr_pages);
5817 			}
5818 		}
5819 	}
5820 
5821 	if (PageWriteback(page)) {
5822 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5823 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5824 	}
5825 
5826 	/*
5827 	 * All state has been migrated, let's switch to the new memcg.
5828 	 *
5829 	 * It is safe to change page->mem_cgroup here because the page
5830 	 * is referenced, charged, isolated, and locked: we can't race
5831 	 * with (un)charging, migration, LRU putback, or anything else
5832 	 * that would rely on a stable page->mem_cgroup.
5833 	 *
5834 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5835 	 * to save space. As soon as we switch page->mem_cgroup to a
5836 	 * new memcg that isn't locked, the above state can change
5837 	 * concurrently again. Make sure we're truly done with it.
5838 	 */
5839 	smp_mb();
5840 
5841 	css_get(&to->css);
5842 	css_put(&from->css);
5843 
5844 	page->mem_cgroup = to;
5845 
5846 	__unlock_page_memcg(from);
5847 
5848 	ret = 0;
5849 
5850 	local_irq_disable();
5851 	mem_cgroup_charge_statistics(to, page, nr_pages);
5852 	memcg_check_events(to, page);
5853 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5854 	memcg_check_events(from, page);
5855 	local_irq_enable();
5856 out_unlock:
5857 	unlock_page(page);
5858 out:
5859 	return ret;
5860 }
5861 
5862 /**
5863  * get_mctgt_type - get target type of moving charge
5864  * @vma: the vma the pte to be checked belongs
5865  * @addr: the address corresponding to the pte to be checked
5866  * @ptent: the pte to be checked
5867  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5868  *
5869  * Returns
5870  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5871  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5872  *     move charge. if @target is not NULL, the page is stored in target->page
5873  *     with extra refcnt got(Callers should handle it).
5874  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5875  *     target for charge migration. if @target is not NULL, the entry is stored
5876  *     in target->ent.
5877  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5878  *     (so ZONE_DEVICE page and thus not on the lru).
5879  *     For now we such page is charge like a regular page would be as for all
5880  *     intent and purposes it is just special memory taking the place of a
5881  *     regular page.
5882  *
5883  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5884  *
5885  * Called with pte lock held.
5886  */
5887 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5888 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5889 		unsigned long addr, pte_t ptent, union mc_target *target)
5890 {
5891 	struct page *page = NULL;
5892 	enum mc_target_type ret = MC_TARGET_NONE;
5893 	swp_entry_t ent = { .val = 0 };
5894 
5895 	if (pte_present(ptent))
5896 		page = mc_handle_present_pte(vma, addr, ptent);
5897 	else if (is_swap_pte(ptent))
5898 		page = mc_handle_swap_pte(vma, ptent, &ent);
5899 	else if (pte_none(ptent))
5900 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5901 
5902 	if (!page && !ent.val)
5903 		return ret;
5904 	if (page) {
5905 		/*
5906 		 * Do only loose check w/o serialization.
5907 		 * mem_cgroup_move_account() checks the page is valid or
5908 		 * not under LRU exclusion.
5909 		 */
5910 		if (page->mem_cgroup == mc.from) {
5911 			ret = MC_TARGET_PAGE;
5912 			if (is_device_private_page(page))
5913 				ret = MC_TARGET_DEVICE;
5914 			if (target)
5915 				target->page = page;
5916 		}
5917 		if (!ret || !target)
5918 			put_page(page);
5919 	}
5920 	/*
5921 	 * There is a swap entry and a page doesn't exist or isn't charged.
5922 	 * But we cannot move a tail-page in a THP.
5923 	 */
5924 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5925 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5926 		ret = MC_TARGET_SWAP;
5927 		if (target)
5928 			target->ent = ent;
5929 	}
5930 	return ret;
5931 }
5932 
5933 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5934 /*
5935  * We don't consider PMD mapped swapping or file mapped pages because THP does
5936  * not support them for now.
5937  * Caller should make sure that pmd_trans_huge(pmd) is true.
5938  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5939 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5940 		unsigned long addr, pmd_t pmd, union mc_target *target)
5941 {
5942 	struct page *page = NULL;
5943 	enum mc_target_type ret = MC_TARGET_NONE;
5944 
5945 	if (unlikely(is_swap_pmd(pmd))) {
5946 		VM_BUG_ON(thp_migration_supported() &&
5947 				  !is_pmd_migration_entry(pmd));
5948 		return ret;
5949 	}
5950 	page = pmd_page(pmd);
5951 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5952 	if (!(mc.flags & MOVE_ANON))
5953 		return ret;
5954 	if (page->mem_cgroup == mc.from) {
5955 		ret = MC_TARGET_PAGE;
5956 		if (target) {
5957 			get_page(page);
5958 			target->page = page;
5959 		}
5960 	}
5961 	return ret;
5962 }
5963 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5964 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5965 		unsigned long addr, pmd_t pmd, union mc_target *target)
5966 {
5967 	return MC_TARGET_NONE;
5968 }
5969 #endif
5970 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5971 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5972 					unsigned long addr, unsigned long end,
5973 					struct mm_walk *walk)
5974 {
5975 	struct vm_area_struct *vma = walk->vma;
5976 	pte_t *pte;
5977 	spinlock_t *ptl;
5978 
5979 	ptl = pmd_trans_huge_lock(pmd, vma);
5980 	if (ptl) {
5981 		/*
5982 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5983 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5984 		 * this might change.
5985 		 */
5986 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5987 			mc.precharge += HPAGE_PMD_NR;
5988 		spin_unlock(ptl);
5989 		return 0;
5990 	}
5991 
5992 	if (pmd_trans_unstable(pmd))
5993 		return 0;
5994 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5995 	for (; addr != end; pte++, addr += PAGE_SIZE)
5996 		if (get_mctgt_type(vma, addr, *pte, NULL))
5997 			mc.precharge++;	/* increment precharge temporarily */
5998 	pte_unmap_unlock(pte - 1, ptl);
5999 	cond_resched();
6000 
6001 	return 0;
6002 }
6003 
6004 static const struct mm_walk_ops precharge_walk_ops = {
6005 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6006 };
6007 
mem_cgroup_count_precharge(struct mm_struct * mm)6008 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6009 {
6010 	unsigned long precharge;
6011 
6012 	mmap_read_lock(mm);
6013 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
6014 	mmap_read_unlock(mm);
6015 
6016 	precharge = mc.precharge;
6017 	mc.precharge = 0;
6018 
6019 	return precharge;
6020 }
6021 
mem_cgroup_precharge_mc(struct mm_struct * mm)6022 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6023 {
6024 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6025 
6026 	VM_BUG_ON(mc.moving_task);
6027 	mc.moving_task = current;
6028 	return mem_cgroup_do_precharge(precharge);
6029 }
6030 
6031 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6032 static void __mem_cgroup_clear_mc(void)
6033 {
6034 	struct mem_cgroup *from = mc.from;
6035 	struct mem_cgroup *to = mc.to;
6036 
6037 	/* we must uncharge all the leftover precharges from mc.to */
6038 	if (mc.precharge) {
6039 		cancel_charge(mc.to, mc.precharge);
6040 		mc.precharge = 0;
6041 	}
6042 	/*
6043 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6044 	 * we must uncharge here.
6045 	 */
6046 	if (mc.moved_charge) {
6047 		cancel_charge(mc.from, mc.moved_charge);
6048 		mc.moved_charge = 0;
6049 	}
6050 	/* we must fixup refcnts and charges */
6051 	if (mc.moved_swap) {
6052 		/* uncharge swap account from the old cgroup */
6053 		if (!mem_cgroup_is_root(mc.from))
6054 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6055 
6056 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6057 
6058 		/*
6059 		 * we charged both to->memory and to->memsw, so we
6060 		 * should uncharge to->memory.
6061 		 */
6062 		if (!mem_cgroup_is_root(mc.to))
6063 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6064 
6065 		mc.moved_swap = 0;
6066 	}
6067 	memcg_oom_recover(from);
6068 	memcg_oom_recover(to);
6069 	wake_up_all(&mc.waitq);
6070 }
6071 
mem_cgroup_clear_mc(void)6072 static void mem_cgroup_clear_mc(void)
6073 {
6074 	struct mm_struct *mm = mc.mm;
6075 
6076 	/*
6077 	 * we must clear moving_task before waking up waiters at the end of
6078 	 * task migration.
6079 	 */
6080 	mc.moving_task = NULL;
6081 	__mem_cgroup_clear_mc();
6082 	spin_lock(&mc.lock);
6083 	mc.from = NULL;
6084 	mc.to = NULL;
6085 	mc.mm = NULL;
6086 	spin_unlock(&mc.lock);
6087 
6088 	mmput(mm);
6089 }
6090 
mem_cgroup_can_attach(struct cgroup_taskset * tset)6091 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6092 {
6093 	struct cgroup_subsys_state *css;
6094 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6095 	struct mem_cgroup *from;
6096 	struct task_struct *leader, *p;
6097 	struct mm_struct *mm;
6098 	unsigned long move_flags;
6099 	int ret = 0;
6100 
6101 	/* charge immigration isn't supported on the default hierarchy */
6102 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6103 		return 0;
6104 
6105 	/*
6106 	 * Multi-process migrations only happen on the default hierarchy
6107 	 * where charge immigration is not used.  Perform charge
6108 	 * immigration if @tset contains a leader and whine if there are
6109 	 * multiple.
6110 	 */
6111 	p = NULL;
6112 	cgroup_taskset_for_each_leader(leader, css, tset) {
6113 		WARN_ON_ONCE(p);
6114 		p = leader;
6115 		memcg = mem_cgroup_from_css(css);
6116 	}
6117 	if (!p)
6118 		return 0;
6119 
6120 	/*
6121 	 * We are now commited to this value whatever it is. Changes in this
6122 	 * tunable will only affect upcoming migrations, not the current one.
6123 	 * So we need to save it, and keep it going.
6124 	 */
6125 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6126 	if (!move_flags)
6127 		return 0;
6128 
6129 	from = mem_cgroup_from_task(p);
6130 
6131 	VM_BUG_ON(from == memcg);
6132 
6133 	mm = get_task_mm(p);
6134 	if (!mm)
6135 		return 0;
6136 	/* We move charges only when we move a owner of the mm */
6137 	if (mm->owner == p) {
6138 		VM_BUG_ON(mc.from);
6139 		VM_BUG_ON(mc.to);
6140 		VM_BUG_ON(mc.precharge);
6141 		VM_BUG_ON(mc.moved_charge);
6142 		VM_BUG_ON(mc.moved_swap);
6143 
6144 		spin_lock(&mc.lock);
6145 		mc.mm = mm;
6146 		mc.from = from;
6147 		mc.to = memcg;
6148 		mc.flags = move_flags;
6149 		spin_unlock(&mc.lock);
6150 		/* We set mc.moving_task later */
6151 
6152 		ret = mem_cgroup_precharge_mc(mm);
6153 		if (ret)
6154 			mem_cgroup_clear_mc();
6155 	} else {
6156 		mmput(mm);
6157 	}
6158 	return ret;
6159 }
6160 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6161 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6162 {
6163 	if (mc.to)
6164 		mem_cgroup_clear_mc();
6165 }
6166 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6167 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6168 				unsigned long addr, unsigned long end,
6169 				struct mm_walk *walk)
6170 {
6171 	int ret = 0;
6172 	struct vm_area_struct *vma = walk->vma;
6173 	pte_t *pte;
6174 	spinlock_t *ptl;
6175 	enum mc_target_type target_type;
6176 	union mc_target target;
6177 	struct page *page;
6178 
6179 	ptl = pmd_trans_huge_lock(pmd, vma);
6180 	if (ptl) {
6181 		if (mc.precharge < HPAGE_PMD_NR) {
6182 			spin_unlock(ptl);
6183 			return 0;
6184 		}
6185 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6186 		if (target_type == MC_TARGET_PAGE) {
6187 			page = target.page;
6188 			if (!isolate_lru_page(page)) {
6189 				if (!mem_cgroup_move_account(page, true,
6190 							     mc.from, mc.to)) {
6191 					mc.precharge -= HPAGE_PMD_NR;
6192 					mc.moved_charge += HPAGE_PMD_NR;
6193 				}
6194 				putback_lru_page(page);
6195 			}
6196 			put_page(page);
6197 		} else if (target_type == MC_TARGET_DEVICE) {
6198 			page = target.page;
6199 			if (!mem_cgroup_move_account(page, true,
6200 						     mc.from, mc.to)) {
6201 				mc.precharge -= HPAGE_PMD_NR;
6202 				mc.moved_charge += HPAGE_PMD_NR;
6203 			}
6204 			put_page(page);
6205 		}
6206 		spin_unlock(ptl);
6207 		return 0;
6208 	}
6209 
6210 	if (pmd_trans_unstable(pmd))
6211 		return 0;
6212 retry:
6213 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6214 	for (; addr != end; addr += PAGE_SIZE) {
6215 		pte_t ptent = *(pte++);
6216 		bool device = false;
6217 		swp_entry_t ent;
6218 
6219 		if (!mc.precharge)
6220 			break;
6221 
6222 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6223 		case MC_TARGET_DEVICE:
6224 			device = true;
6225 			fallthrough;
6226 		case MC_TARGET_PAGE:
6227 			page = target.page;
6228 			/*
6229 			 * We can have a part of the split pmd here. Moving it
6230 			 * can be done but it would be too convoluted so simply
6231 			 * ignore such a partial THP and keep it in original
6232 			 * memcg. There should be somebody mapping the head.
6233 			 */
6234 			if (PageTransCompound(page))
6235 				goto put;
6236 			if (!device && isolate_lru_page(page))
6237 				goto put;
6238 			if (!mem_cgroup_move_account(page, false,
6239 						mc.from, mc.to)) {
6240 				mc.precharge--;
6241 				/* we uncharge from mc.from later. */
6242 				mc.moved_charge++;
6243 			}
6244 			if (!device)
6245 				putback_lru_page(page);
6246 put:			/* get_mctgt_type() gets the page */
6247 			put_page(page);
6248 			break;
6249 		case MC_TARGET_SWAP:
6250 			ent = target.ent;
6251 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6252 				mc.precharge--;
6253 				mem_cgroup_id_get_many(mc.to, 1);
6254 				/* we fixup other refcnts and charges later. */
6255 				mc.moved_swap++;
6256 			}
6257 			break;
6258 		default:
6259 			break;
6260 		}
6261 	}
6262 	pte_unmap_unlock(pte - 1, ptl);
6263 	cond_resched();
6264 
6265 	if (addr != end) {
6266 		/*
6267 		 * We have consumed all precharges we got in can_attach().
6268 		 * We try charge one by one, but don't do any additional
6269 		 * charges to mc.to if we have failed in charge once in attach()
6270 		 * phase.
6271 		 */
6272 		ret = mem_cgroup_do_precharge(1);
6273 		if (!ret)
6274 			goto retry;
6275 	}
6276 
6277 	return ret;
6278 }
6279 
6280 static const struct mm_walk_ops charge_walk_ops = {
6281 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6282 };
6283 
mem_cgroup_move_charge(void)6284 static void mem_cgroup_move_charge(void)
6285 {
6286 	lru_add_drain_all();
6287 	/*
6288 	 * Signal lock_page_memcg() to take the memcg's move_lock
6289 	 * while we're moving its pages to another memcg. Then wait
6290 	 * for already started RCU-only updates to finish.
6291 	 */
6292 	atomic_inc(&mc.from->moving_account);
6293 	synchronize_rcu();
6294 retry:
6295 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6296 		/*
6297 		 * Someone who are holding the mmap_lock might be waiting in
6298 		 * waitq. So we cancel all extra charges, wake up all waiters,
6299 		 * and retry. Because we cancel precharges, we might not be able
6300 		 * to move enough charges, but moving charge is a best-effort
6301 		 * feature anyway, so it wouldn't be a big problem.
6302 		 */
6303 		__mem_cgroup_clear_mc();
6304 		cond_resched();
6305 		goto retry;
6306 	}
6307 	/*
6308 	 * When we have consumed all precharges and failed in doing
6309 	 * additional charge, the page walk just aborts.
6310 	 */
6311 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6312 			NULL);
6313 
6314 	mmap_read_unlock(mc.mm);
6315 	atomic_dec(&mc.from->moving_account);
6316 }
6317 
mem_cgroup_move_task(void)6318 static void mem_cgroup_move_task(void)
6319 {
6320 	if (mc.to) {
6321 		mem_cgroup_move_charge();
6322 		mem_cgroup_clear_mc();
6323 	}
6324 }
6325 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6326 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6327 {
6328 	return 0;
6329 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6330 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6331 {
6332 }
mem_cgroup_move_task(void)6333 static void mem_cgroup_move_task(void)
6334 {
6335 }
6336 #endif
6337 
6338 /*
6339  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6340  * to verify whether we're attached to the default hierarchy on each mount
6341  * attempt.
6342  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6343 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6344 {
6345 	/*
6346 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6347 	 * guarantees that @root doesn't have any children, so turning it
6348 	 * on for the root memcg is enough.
6349 	 */
6350 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6351 		root_mem_cgroup->use_hierarchy = true;
6352 	else
6353 		root_mem_cgroup->use_hierarchy = false;
6354 }
6355 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6356 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6357 {
6358 	if (value == PAGE_COUNTER_MAX)
6359 		seq_puts(m, "max\n");
6360 	else
6361 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6362 
6363 	return 0;
6364 }
6365 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6366 static u64 memory_current_read(struct cgroup_subsys_state *css,
6367 			       struct cftype *cft)
6368 {
6369 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6370 
6371 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6372 }
6373 
memory_min_show(struct seq_file * m,void * v)6374 static int memory_min_show(struct seq_file *m, void *v)
6375 {
6376 	return seq_puts_memcg_tunable(m,
6377 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6378 }
6379 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6380 static ssize_t memory_min_write(struct kernfs_open_file *of,
6381 				char *buf, size_t nbytes, loff_t off)
6382 {
6383 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6384 	unsigned long min;
6385 	int err;
6386 
6387 	buf = strstrip(buf);
6388 	err = page_counter_memparse(buf, "max", &min);
6389 	if (err)
6390 		return err;
6391 
6392 	page_counter_set_min(&memcg->memory, min);
6393 
6394 	return nbytes;
6395 }
6396 
memory_low_show(struct seq_file * m,void * v)6397 static int memory_low_show(struct seq_file *m, void *v)
6398 {
6399 	return seq_puts_memcg_tunable(m,
6400 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6401 }
6402 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6403 static ssize_t memory_low_write(struct kernfs_open_file *of,
6404 				char *buf, size_t nbytes, loff_t off)
6405 {
6406 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6407 	unsigned long low;
6408 	int err;
6409 
6410 	buf = strstrip(buf);
6411 	err = page_counter_memparse(buf, "max", &low);
6412 	if (err)
6413 		return err;
6414 
6415 	page_counter_set_low(&memcg->memory, low);
6416 
6417 	return nbytes;
6418 }
6419 
memory_high_show(struct seq_file * m,void * v)6420 static int memory_high_show(struct seq_file *m, void *v)
6421 {
6422 	return seq_puts_memcg_tunable(m,
6423 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6424 }
6425 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6426 static ssize_t memory_high_write(struct kernfs_open_file *of,
6427 				 char *buf, size_t nbytes, loff_t off)
6428 {
6429 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6430 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6431 	bool drained = false;
6432 	unsigned long high;
6433 	int err;
6434 
6435 	buf = strstrip(buf);
6436 	err = page_counter_memparse(buf, "max", &high);
6437 	if (err)
6438 		return err;
6439 
6440 	page_counter_set_high(&memcg->memory, high);
6441 
6442 	for (;;) {
6443 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6444 		unsigned long reclaimed;
6445 
6446 		if (nr_pages <= high)
6447 			break;
6448 
6449 		if (signal_pending(current))
6450 			break;
6451 
6452 		if (!drained) {
6453 			drain_all_stock(memcg);
6454 			drained = true;
6455 			continue;
6456 		}
6457 
6458 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6459 							 GFP_KERNEL, true);
6460 
6461 		if (!reclaimed && !nr_retries--)
6462 			break;
6463 	}
6464 
6465 	memcg_wb_domain_size_changed(memcg);
6466 	return nbytes;
6467 }
6468 
memory_max_show(struct seq_file * m,void * v)6469 static int memory_max_show(struct seq_file *m, void *v)
6470 {
6471 	return seq_puts_memcg_tunable(m,
6472 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6473 }
6474 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6475 static ssize_t memory_max_write(struct kernfs_open_file *of,
6476 				char *buf, size_t nbytes, loff_t off)
6477 {
6478 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6479 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6480 	bool drained = false;
6481 	unsigned long max;
6482 	int err;
6483 
6484 	buf = strstrip(buf);
6485 	err = page_counter_memparse(buf, "max", &max);
6486 	if (err)
6487 		return err;
6488 
6489 	xchg(&memcg->memory.max, max);
6490 
6491 	for (;;) {
6492 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6493 
6494 		if (nr_pages <= max)
6495 			break;
6496 
6497 		if (signal_pending(current))
6498 			break;
6499 
6500 		if (!drained) {
6501 			drain_all_stock(memcg);
6502 			drained = true;
6503 			continue;
6504 		}
6505 
6506 		if (nr_reclaims) {
6507 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6508 							  GFP_KERNEL, true))
6509 				nr_reclaims--;
6510 			continue;
6511 		}
6512 
6513 		memcg_memory_event(memcg, MEMCG_OOM);
6514 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6515 			break;
6516 	}
6517 
6518 	memcg_wb_domain_size_changed(memcg);
6519 	return nbytes;
6520 }
6521 
__memory_events_show(struct seq_file * m,atomic_long_t * events)6522 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6523 {
6524 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6525 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6526 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6527 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6528 	seq_printf(m, "oom_kill %lu\n",
6529 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6530 }
6531 
memory_events_show(struct seq_file * m,void * v)6532 static int memory_events_show(struct seq_file *m, void *v)
6533 {
6534 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6535 
6536 	__memory_events_show(m, memcg->memory_events);
6537 	return 0;
6538 }
6539 
memory_events_local_show(struct seq_file * m,void * v)6540 static int memory_events_local_show(struct seq_file *m, void *v)
6541 {
6542 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6543 
6544 	__memory_events_show(m, memcg->memory_events_local);
6545 	return 0;
6546 }
6547 
memory_stat_show(struct seq_file * m,void * v)6548 static int memory_stat_show(struct seq_file *m, void *v)
6549 {
6550 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6551 	char *buf;
6552 
6553 	buf = memory_stat_format(memcg);
6554 	if (!buf)
6555 		return -ENOMEM;
6556 	seq_puts(m, buf);
6557 	kfree(buf);
6558 	return 0;
6559 }
6560 
6561 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6562 static int memory_numa_stat_show(struct seq_file *m, void *v)
6563 {
6564 	int i;
6565 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6566 
6567 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6568 		int nid;
6569 
6570 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6571 			continue;
6572 
6573 		seq_printf(m, "%s", memory_stats[i].name);
6574 		for_each_node_state(nid, N_MEMORY) {
6575 			u64 size;
6576 			struct lruvec *lruvec;
6577 
6578 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6579 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6580 			size *= memory_stats[i].ratio;
6581 			seq_printf(m, " N%d=%llu", nid, size);
6582 		}
6583 		seq_putc(m, '\n');
6584 	}
6585 
6586 	return 0;
6587 }
6588 #endif
6589 
memory_oom_group_show(struct seq_file * m,void * v)6590 static int memory_oom_group_show(struct seq_file *m, void *v)
6591 {
6592 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6593 
6594 	seq_printf(m, "%d\n", memcg->oom_group);
6595 
6596 	return 0;
6597 }
6598 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6599 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6600 				      char *buf, size_t nbytes, loff_t off)
6601 {
6602 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 	int ret, oom_group;
6604 
6605 	buf = strstrip(buf);
6606 	if (!buf)
6607 		return -EINVAL;
6608 
6609 	ret = kstrtoint(buf, 0, &oom_group);
6610 	if (ret)
6611 		return ret;
6612 
6613 	if (oom_group != 0 && oom_group != 1)
6614 		return -EINVAL;
6615 
6616 	memcg->oom_group = oom_group;
6617 
6618 	return nbytes;
6619 }
6620 
6621 static struct cftype memory_files[] = {
6622 	{
6623 		.name = "current",
6624 		.flags = CFTYPE_NOT_ON_ROOT,
6625 		.read_u64 = memory_current_read,
6626 	},
6627 	{
6628 		.name = "min",
6629 		.flags = CFTYPE_NOT_ON_ROOT,
6630 		.seq_show = memory_min_show,
6631 		.write = memory_min_write,
6632 	},
6633 	{
6634 		.name = "low",
6635 		.flags = CFTYPE_NOT_ON_ROOT,
6636 		.seq_show = memory_low_show,
6637 		.write = memory_low_write,
6638 	},
6639 	{
6640 		.name = "high",
6641 		.flags = CFTYPE_NOT_ON_ROOT,
6642 		.seq_show = memory_high_show,
6643 		.write = memory_high_write,
6644 	},
6645 	{
6646 		.name = "max",
6647 		.flags = CFTYPE_NOT_ON_ROOT,
6648 		.seq_show = memory_max_show,
6649 		.write = memory_max_write,
6650 	},
6651 	{
6652 		.name = "events",
6653 		.flags = CFTYPE_NOT_ON_ROOT,
6654 		.file_offset = offsetof(struct mem_cgroup, events_file),
6655 		.seq_show = memory_events_show,
6656 	},
6657 	{
6658 		.name = "events.local",
6659 		.flags = CFTYPE_NOT_ON_ROOT,
6660 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6661 		.seq_show = memory_events_local_show,
6662 	},
6663 	{
6664 		.name = "stat",
6665 		.seq_show = memory_stat_show,
6666 	},
6667 #ifdef CONFIG_NUMA
6668 	{
6669 		.name = "numa_stat",
6670 		.seq_show = memory_numa_stat_show,
6671 	},
6672 #endif
6673 	{
6674 		.name = "oom.group",
6675 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6676 		.seq_show = memory_oom_group_show,
6677 		.write = memory_oom_group_write,
6678 	},
6679 	{ }	/* terminate */
6680 };
6681 
6682 struct cgroup_subsys memory_cgrp_subsys = {
6683 	.css_alloc = mem_cgroup_css_alloc,
6684 	.css_online = mem_cgroup_css_online,
6685 	.css_offline = mem_cgroup_css_offline,
6686 	.css_released = mem_cgroup_css_released,
6687 	.css_free = mem_cgroup_css_free,
6688 	.css_reset = mem_cgroup_css_reset,
6689 	.can_attach = mem_cgroup_can_attach,
6690 	.cancel_attach = mem_cgroup_cancel_attach,
6691 	.post_attach = mem_cgroup_move_task,
6692 	.bind = mem_cgroup_bind,
6693 	.dfl_cftypes = memory_files,
6694 	.legacy_cftypes = mem_cgroup_legacy_files,
6695 	.early_init = 0,
6696 };
6697 
6698 /*
6699  * This function calculates an individual cgroup's effective
6700  * protection which is derived from its own memory.min/low, its
6701  * parent's and siblings' settings, as well as the actual memory
6702  * distribution in the tree.
6703  *
6704  * The following rules apply to the effective protection values:
6705  *
6706  * 1. At the first level of reclaim, effective protection is equal to
6707  *    the declared protection in memory.min and memory.low.
6708  *
6709  * 2. To enable safe delegation of the protection configuration, at
6710  *    subsequent levels the effective protection is capped to the
6711  *    parent's effective protection.
6712  *
6713  * 3. To make complex and dynamic subtrees easier to configure, the
6714  *    user is allowed to overcommit the declared protection at a given
6715  *    level. If that is the case, the parent's effective protection is
6716  *    distributed to the children in proportion to how much protection
6717  *    they have declared and how much of it they are utilizing.
6718  *
6719  *    This makes distribution proportional, but also work-conserving:
6720  *    if one cgroup claims much more protection than it uses memory,
6721  *    the unused remainder is available to its siblings.
6722  *
6723  * 4. Conversely, when the declared protection is undercommitted at a
6724  *    given level, the distribution of the larger parental protection
6725  *    budget is NOT proportional. A cgroup's protection from a sibling
6726  *    is capped to its own memory.min/low setting.
6727  *
6728  * 5. However, to allow protecting recursive subtrees from each other
6729  *    without having to declare each individual cgroup's fixed share
6730  *    of the ancestor's claim to protection, any unutilized -
6731  *    "floating" - protection from up the tree is distributed in
6732  *    proportion to each cgroup's *usage*. This makes the protection
6733  *    neutral wrt sibling cgroups and lets them compete freely over
6734  *    the shared parental protection budget, but it protects the
6735  *    subtree as a whole from neighboring subtrees.
6736  *
6737  * Note that 4. and 5. are not in conflict: 4. is about protecting
6738  * against immediate siblings whereas 5. is about protecting against
6739  * neighboring subtrees.
6740  */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6741 static unsigned long effective_protection(unsigned long usage,
6742 					  unsigned long parent_usage,
6743 					  unsigned long setting,
6744 					  unsigned long parent_effective,
6745 					  unsigned long siblings_protected)
6746 {
6747 	unsigned long protected;
6748 	unsigned long ep;
6749 
6750 	protected = min(usage, setting);
6751 	/*
6752 	 * If all cgroups at this level combined claim and use more
6753 	 * protection then what the parent affords them, distribute
6754 	 * shares in proportion to utilization.
6755 	 *
6756 	 * We are using actual utilization rather than the statically
6757 	 * claimed protection in order to be work-conserving: claimed
6758 	 * but unused protection is available to siblings that would
6759 	 * otherwise get a smaller chunk than what they claimed.
6760 	 */
6761 	if (siblings_protected > parent_effective)
6762 		return protected * parent_effective / siblings_protected;
6763 
6764 	/*
6765 	 * Ok, utilized protection of all children is within what the
6766 	 * parent affords them, so we know whatever this child claims
6767 	 * and utilizes is effectively protected.
6768 	 *
6769 	 * If there is unprotected usage beyond this value, reclaim
6770 	 * will apply pressure in proportion to that amount.
6771 	 *
6772 	 * If there is unutilized protection, the cgroup will be fully
6773 	 * shielded from reclaim, but we do return a smaller value for
6774 	 * protection than what the group could enjoy in theory. This
6775 	 * is okay. With the overcommit distribution above, effective
6776 	 * protection is always dependent on how memory is actually
6777 	 * consumed among the siblings anyway.
6778 	 */
6779 	ep = protected;
6780 
6781 	/*
6782 	 * If the children aren't claiming (all of) the protection
6783 	 * afforded to them by the parent, distribute the remainder in
6784 	 * proportion to the (unprotected) memory of each cgroup. That
6785 	 * way, cgroups that aren't explicitly prioritized wrt each
6786 	 * other compete freely over the allowance, but they are
6787 	 * collectively protected from neighboring trees.
6788 	 *
6789 	 * We're using unprotected memory for the weight so that if
6790 	 * some cgroups DO claim explicit protection, we don't protect
6791 	 * the same bytes twice.
6792 	 *
6793 	 * Check both usage and parent_usage against the respective
6794 	 * protected values. One should imply the other, but they
6795 	 * aren't read atomically - make sure the division is sane.
6796 	 */
6797 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6798 		return ep;
6799 	if (parent_effective > siblings_protected &&
6800 	    parent_usage > siblings_protected &&
6801 	    usage > protected) {
6802 		unsigned long unclaimed;
6803 
6804 		unclaimed = parent_effective - siblings_protected;
6805 		unclaimed *= usage - protected;
6806 		unclaimed /= parent_usage - siblings_protected;
6807 
6808 		ep += unclaimed;
6809 	}
6810 
6811 	return ep;
6812 }
6813 
6814 /**
6815  * mem_cgroup_protected - check if memory consumption is in the normal range
6816  * @root: the top ancestor of the sub-tree being checked
6817  * @memcg: the memory cgroup to check
6818  *
6819  * WARNING: This function is not stateless! It can only be used as part
6820  *          of a top-down tree iteration, not for isolated queries.
6821  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6822 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6823 				     struct mem_cgroup *memcg)
6824 {
6825 	unsigned long usage, parent_usage;
6826 	struct mem_cgroup *parent;
6827 
6828 	if (mem_cgroup_disabled())
6829 		return;
6830 
6831 	if (!root)
6832 		root = root_mem_cgroup;
6833 
6834 	/*
6835 	 * Effective values of the reclaim targets are ignored so they
6836 	 * can be stale. Have a look at mem_cgroup_protection for more
6837 	 * details.
6838 	 * TODO: calculation should be more robust so that we do not need
6839 	 * that special casing.
6840 	 */
6841 	if (memcg == root)
6842 		return;
6843 
6844 	usage = page_counter_read(&memcg->memory);
6845 	if (!usage)
6846 		return;
6847 
6848 	parent = parent_mem_cgroup(memcg);
6849 	/* No parent means a non-hierarchical mode on v1 memcg */
6850 	if (!parent)
6851 		return;
6852 
6853 	if (parent == root) {
6854 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6855 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6856 		return;
6857 	}
6858 
6859 	parent_usage = page_counter_read(&parent->memory);
6860 
6861 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6862 			READ_ONCE(memcg->memory.min),
6863 			READ_ONCE(parent->memory.emin),
6864 			atomic_long_read(&parent->memory.children_min_usage)));
6865 
6866 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6867 			READ_ONCE(memcg->memory.low),
6868 			READ_ONCE(parent->memory.elow),
6869 			atomic_long_read(&parent->memory.children_low_usage)));
6870 }
6871 
6872 /**
6873  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6874  * @page: page to charge
6875  * @mm: mm context of the victim
6876  * @gfp_mask: reclaim mode
6877  *
6878  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6879  * pages according to @gfp_mask if necessary.
6880  *
6881  * Returns 0 on success. Otherwise, an error code is returned.
6882  */
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6883 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6884 {
6885 	unsigned int nr_pages = thp_nr_pages(page);
6886 	struct mem_cgroup *memcg = NULL;
6887 	int ret = 0;
6888 
6889 	if (mem_cgroup_disabled())
6890 		goto out;
6891 
6892 	if (PageSwapCache(page)) {
6893 		swp_entry_t ent = { .val = page_private(page), };
6894 		unsigned short id;
6895 
6896 		/*
6897 		 * Every swap fault against a single page tries to charge the
6898 		 * page, bail as early as possible.  shmem_unuse() encounters
6899 		 * already charged pages, too.  page->mem_cgroup is protected
6900 		 * by the page lock, which serializes swap cache removal, which
6901 		 * in turn serializes uncharging.
6902 		 */
6903 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6904 		if (compound_head(page)->mem_cgroup)
6905 			goto out;
6906 
6907 		id = lookup_swap_cgroup_id(ent);
6908 		rcu_read_lock();
6909 		memcg = mem_cgroup_from_id(id);
6910 		if (memcg && !css_tryget_online(&memcg->css))
6911 			memcg = NULL;
6912 		rcu_read_unlock();
6913 	}
6914 
6915 	if (!memcg)
6916 		memcg = get_mem_cgroup_from_mm(mm);
6917 
6918 	ret = try_charge(memcg, gfp_mask, nr_pages);
6919 	if (ret)
6920 		goto out_put;
6921 
6922 	css_get(&memcg->css);
6923 	commit_charge(page, memcg);
6924 
6925 	local_irq_disable();
6926 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6927 	memcg_check_events(memcg, page);
6928 	local_irq_enable();
6929 
6930 	/*
6931 	 * Cgroup1's unified memory+swap counter has been charged with the
6932 	 * new swapcache page, finish the transfer by uncharging the swap
6933 	 * slot. The swap slot would also get uncharged when it dies, but
6934 	 * it can stick around indefinitely and we'd count the page twice
6935 	 * the entire time.
6936 	 *
6937 	 * Cgroup2 has separate resource counters for memory and swap,
6938 	 * so this is a non-issue here. Memory and swap charge lifetimes
6939 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6940 	 * page to memory here, and uncharge swap when the slot is freed.
6941 	 */
6942 	if (do_memsw_account() && PageSwapCache(page)) {
6943 		swp_entry_t entry = { .val = page_private(page) };
6944 		/*
6945 		 * The swap entry might not get freed for a long time,
6946 		 * let's not wait for it.  The page already received a
6947 		 * memory+swap charge, drop the swap entry duplicate.
6948 		 */
6949 		mem_cgroup_uncharge_swap(entry, nr_pages);
6950 	}
6951 
6952 out_put:
6953 	css_put(&memcg->css);
6954 out:
6955 	return ret;
6956 }
6957 
6958 struct uncharge_gather {
6959 	struct mem_cgroup *memcg;
6960 	unsigned long nr_pages;
6961 	unsigned long pgpgout;
6962 	unsigned long nr_kmem;
6963 	struct page *dummy_page;
6964 };
6965 
uncharge_gather_clear(struct uncharge_gather * ug)6966 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6967 {
6968 	memset(ug, 0, sizeof(*ug));
6969 }
6970 
uncharge_batch(const struct uncharge_gather * ug)6971 static void uncharge_batch(const struct uncharge_gather *ug)
6972 {
6973 	unsigned long flags;
6974 
6975 	if (!mem_cgroup_is_root(ug->memcg)) {
6976 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6977 		if (do_memsw_account())
6978 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6979 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6980 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6981 		memcg_oom_recover(ug->memcg);
6982 	}
6983 
6984 	local_irq_save(flags);
6985 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6986 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6987 	memcg_check_events(ug->memcg, ug->dummy_page);
6988 	local_irq_restore(flags);
6989 
6990 	/* drop reference from uncharge_page */
6991 	css_put(&ug->memcg->css);
6992 }
6993 
uncharge_page(struct page * page,struct uncharge_gather * ug)6994 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6995 {
6996 	unsigned long nr_pages;
6997 
6998 	VM_BUG_ON_PAGE(PageLRU(page), page);
6999 
7000 	if (!page->mem_cgroup)
7001 		return;
7002 
7003 	/*
7004 	 * Nobody should be changing or seriously looking at
7005 	 * page->mem_cgroup at this point, we have fully
7006 	 * exclusive access to the page.
7007 	 */
7008 
7009 	if (ug->memcg != page->mem_cgroup) {
7010 		if (ug->memcg) {
7011 			uncharge_batch(ug);
7012 			uncharge_gather_clear(ug);
7013 		}
7014 		ug->memcg = page->mem_cgroup;
7015 
7016 		/* pairs with css_put in uncharge_batch */
7017 		css_get(&ug->memcg->css);
7018 	}
7019 
7020 	nr_pages = compound_nr(page);
7021 	ug->nr_pages += nr_pages;
7022 
7023 	if (!PageKmemcg(page)) {
7024 		ug->pgpgout++;
7025 	} else {
7026 		ug->nr_kmem += nr_pages;
7027 		__ClearPageKmemcg(page);
7028 	}
7029 
7030 	ug->dummy_page = page;
7031 	page->mem_cgroup = NULL;
7032 	css_put(&ug->memcg->css);
7033 }
7034 
uncharge_list(struct list_head * page_list)7035 static void uncharge_list(struct list_head *page_list)
7036 {
7037 	struct uncharge_gather ug;
7038 	struct list_head *next;
7039 
7040 	uncharge_gather_clear(&ug);
7041 
7042 	/*
7043 	 * Note that the list can be a single page->lru; hence the
7044 	 * do-while loop instead of a simple list_for_each_entry().
7045 	 */
7046 	next = page_list->next;
7047 	do {
7048 		struct page *page;
7049 
7050 		page = list_entry(next, struct page, lru);
7051 		next = page->lru.next;
7052 
7053 		uncharge_page(page, &ug);
7054 	} while (next != page_list);
7055 
7056 	if (ug.memcg)
7057 		uncharge_batch(&ug);
7058 }
7059 
7060 /**
7061  * mem_cgroup_uncharge - uncharge a page
7062  * @page: page to uncharge
7063  *
7064  * Uncharge a page previously charged with mem_cgroup_charge().
7065  */
mem_cgroup_uncharge(struct page * page)7066 void mem_cgroup_uncharge(struct page *page)
7067 {
7068 	struct uncharge_gather ug;
7069 
7070 	if (mem_cgroup_disabled())
7071 		return;
7072 
7073 	/* Don't touch page->lru of any random page, pre-check: */
7074 	if (!page->mem_cgroup)
7075 		return;
7076 
7077 	uncharge_gather_clear(&ug);
7078 	uncharge_page(page, &ug);
7079 	uncharge_batch(&ug);
7080 }
7081 
7082 /**
7083  * mem_cgroup_uncharge_list - uncharge a list of page
7084  * @page_list: list of pages to uncharge
7085  *
7086  * Uncharge a list of pages previously charged with
7087  * mem_cgroup_charge().
7088  */
mem_cgroup_uncharge_list(struct list_head * page_list)7089 void mem_cgroup_uncharge_list(struct list_head *page_list)
7090 {
7091 	if (mem_cgroup_disabled())
7092 		return;
7093 
7094 	if (!list_empty(page_list))
7095 		uncharge_list(page_list);
7096 }
7097 
7098 /**
7099  * mem_cgroup_migrate - charge a page's replacement
7100  * @oldpage: currently circulating page
7101  * @newpage: replacement page
7102  *
7103  * Charge @newpage as a replacement page for @oldpage. @oldpage will
7104  * be uncharged upon free.
7105  *
7106  * Both pages must be locked, @newpage->mapping must be set up.
7107  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7108 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7109 {
7110 	struct mem_cgroup *memcg;
7111 	unsigned int nr_pages;
7112 	unsigned long flags;
7113 
7114 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7115 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7116 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7117 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7118 		       newpage);
7119 
7120 	if (mem_cgroup_disabled())
7121 		return;
7122 
7123 	/* Page cache replacement: new page already charged? */
7124 	if (newpage->mem_cgroup)
7125 		return;
7126 
7127 	/* Swapcache readahead pages can get replaced before being charged */
7128 	memcg = oldpage->mem_cgroup;
7129 	if (!memcg)
7130 		return;
7131 
7132 	/* Force-charge the new page. The old one will be freed soon */
7133 	nr_pages = thp_nr_pages(newpage);
7134 
7135 	page_counter_charge(&memcg->memory, nr_pages);
7136 	if (do_memsw_account())
7137 		page_counter_charge(&memcg->memsw, nr_pages);
7138 
7139 	css_get(&memcg->css);
7140 	commit_charge(newpage, memcg);
7141 
7142 	local_irq_save(flags);
7143 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7144 	memcg_check_events(memcg, newpage);
7145 	local_irq_restore(flags);
7146 }
7147 
7148 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7149 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7150 
mem_cgroup_sk_alloc(struct sock * sk)7151 void mem_cgroup_sk_alloc(struct sock *sk)
7152 {
7153 	struct mem_cgroup *memcg;
7154 
7155 	if (!mem_cgroup_sockets_enabled)
7156 		return;
7157 
7158 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7159 	if (in_interrupt())
7160 		return;
7161 
7162 	rcu_read_lock();
7163 	memcg = mem_cgroup_from_task(current);
7164 	if (memcg == root_mem_cgroup)
7165 		goto out;
7166 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7167 		goto out;
7168 	if (css_tryget(&memcg->css))
7169 		sk->sk_memcg = memcg;
7170 out:
7171 	rcu_read_unlock();
7172 }
7173 
mem_cgroup_sk_free(struct sock * sk)7174 void mem_cgroup_sk_free(struct sock *sk)
7175 {
7176 	if (sk->sk_memcg)
7177 		css_put(&sk->sk_memcg->css);
7178 }
7179 
7180 /**
7181  * mem_cgroup_charge_skmem - charge socket memory
7182  * @memcg: memcg to charge
7183  * @nr_pages: number of pages to charge
7184  *
7185  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7186  * @memcg's configured limit, %false if the charge had to be forced.
7187  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7188 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7189 {
7190 	gfp_t gfp_mask = GFP_KERNEL;
7191 
7192 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7193 		struct page_counter *fail;
7194 
7195 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7196 			memcg->tcpmem_pressure = 0;
7197 			return true;
7198 		}
7199 		page_counter_charge(&memcg->tcpmem, nr_pages);
7200 		memcg->tcpmem_pressure = 1;
7201 		return false;
7202 	}
7203 
7204 	/* Don't block in the packet receive path */
7205 	if (in_softirq())
7206 		gfp_mask = GFP_NOWAIT;
7207 
7208 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7209 
7210 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7211 		return true;
7212 
7213 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7214 	return false;
7215 }
7216 
7217 /**
7218  * mem_cgroup_uncharge_skmem - uncharge socket memory
7219  * @memcg: memcg to uncharge
7220  * @nr_pages: number of pages to uncharge
7221  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7222 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7223 {
7224 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7225 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7226 		return;
7227 	}
7228 
7229 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7230 
7231 	refill_stock(memcg, nr_pages);
7232 }
7233 
cgroup_memory(char * s)7234 static int __init cgroup_memory(char *s)
7235 {
7236 	char *token;
7237 
7238 	while ((token = strsep(&s, ",")) != NULL) {
7239 		if (!*token)
7240 			continue;
7241 		if (!strcmp(token, "nosocket"))
7242 			cgroup_memory_nosocket = true;
7243 		if (!strcmp(token, "nokmem"))
7244 			cgroup_memory_nokmem = true;
7245 		else if (!strcmp(token, "kmem"))
7246 			cgroup_memory_nokmem = false;
7247 	}
7248 	return 1;
7249 }
7250 __setup("cgroup.memory=", cgroup_memory);
7251 
7252 /*
7253  * subsys_initcall() for memory controller.
7254  *
7255  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7256  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7257  * basically everything that doesn't depend on a specific mem_cgroup structure
7258  * should be initialized from here.
7259  */
mem_cgroup_init(void)7260 static int __init mem_cgroup_init(void)
7261 {
7262 	int cpu, node;
7263 
7264 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7265 				  memcg_hotplug_cpu_dead);
7266 
7267 	for_each_possible_cpu(cpu)
7268 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7269 			  drain_local_stock);
7270 
7271 	for_each_node(node) {
7272 		struct mem_cgroup_tree_per_node *rtpn;
7273 
7274 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7275 				    node_online(node) ? node : NUMA_NO_NODE);
7276 
7277 		rtpn->rb_root = RB_ROOT;
7278 		rtpn->rb_rightmost = NULL;
7279 		spin_lock_init(&rtpn->lock);
7280 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7281 	}
7282 
7283 	return 0;
7284 }
7285 subsys_initcall(mem_cgroup_init);
7286 
7287 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7288 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7289 {
7290 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7291 		/*
7292 		 * The root cgroup cannot be destroyed, so it's refcount must
7293 		 * always be >= 1.
7294 		 */
7295 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7296 			VM_BUG_ON(1);
7297 			break;
7298 		}
7299 		memcg = parent_mem_cgroup(memcg);
7300 		if (!memcg)
7301 			memcg = root_mem_cgroup;
7302 	}
7303 	return memcg;
7304 }
7305 
7306 /**
7307  * mem_cgroup_swapout - transfer a memsw charge to swap
7308  * @page: page whose memsw charge to transfer
7309  * @entry: swap entry to move the charge to
7310  *
7311  * Transfer the memsw charge of @page to @entry.
7312  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7313 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7314 {
7315 	struct mem_cgroup *memcg, *swap_memcg;
7316 	unsigned int nr_entries;
7317 	unsigned short oldid;
7318 
7319 	VM_BUG_ON_PAGE(PageLRU(page), page);
7320 	VM_BUG_ON_PAGE(page_count(page), page);
7321 
7322 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7323 		return;
7324 
7325 	memcg = page->mem_cgroup;
7326 
7327 	/* Readahead page, never charged */
7328 	if (!memcg)
7329 		return;
7330 
7331 	/*
7332 	 * In case the memcg owning these pages has been offlined and doesn't
7333 	 * have an ID allocated to it anymore, charge the closest online
7334 	 * ancestor for the swap instead and transfer the memory+swap charge.
7335 	 */
7336 	swap_memcg = mem_cgroup_id_get_online(memcg);
7337 	nr_entries = thp_nr_pages(page);
7338 	/* Get references for the tail pages, too */
7339 	if (nr_entries > 1)
7340 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7341 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7342 				   nr_entries);
7343 	VM_BUG_ON_PAGE(oldid, page);
7344 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7345 
7346 	page_unqueue_deferred_split(page);
7347 	page->mem_cgroup = NULL;
7348 
7349 	if (!mem_cgroup_is_root(memcg))
7350 		page_counter_uncharge(&memcg->memory, nr_entries);
7351 
7352 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7353 		if (!mem_cgroup_is_root(swap_memcg))
7354 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7355 		page_counter_uncharge(&memcg->memsw, nr_entries);
7356 	}
7357 
7358 	/*
7359 	 * Interrupts should be disabled here because the caller holds the
7360 	 * i_pages lock which is taken with interrupts-off. It is
7361 	 * important here to have the interrupts disabled because it is the
7362 	 * only synchronisation we have for updating the per-CPU variables.
7363 	 */
7364 	VM_BUG_ON(!irqs_disabled());
7365 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7366 	memcg_check_events(memcg, page);
7367 
7368 	css_put(&memcg->css);
7369 }
7370 
7371 /**
7372  * mem_cgroup_try_charge_swap - try charging swap space for a page
7373  * @page: page being added to swap
7374  * @entry: swap entry to charge
7375  *
7376  * Try to charge @page's memcg for the swap space at @entry.
7377  *
7378  * Returns 0 on success, -ENOMEM on failure.
7379  */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7380 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7381 {
7382 	unsigned int nr_pages = thp_nr_pages(page);
7383 	struct page_counter *counter;
7384 	struct mem_cgroup *memcg;
7385 	unsigned short oldid;
7386 
7387 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7388 		return 0;
7389 
7390 	memcg = page->mem_cgroup;
7391 
7392 	/* Readahead page, never charged */
7393 	if (!memcg)
7394 		return 0;
7395 
7396 	if (!entry.val) {
7397 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7398 		return 0;
7399 	}
7400 
7401 	memcg = mem_cgroup_id_get_online(memcg);
7402 
7403 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7404 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7405 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7406 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7407 		mem_cgroup_id_put(memcg);
7408 		return -ENOMEM;
7409 	}
7410 
7411 	/* Get references for the tail pages, too */
7412 	if (nr_pages > 1)
7413 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7414 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7415 	VM_BUG_ON_PAGE(oldid, page);
7416 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7417 
7418 	return 0;
7419 }
7420 
7421 /**
7422  * mem_cgroup_uncharge_swap - uncharge swap space
7423  * @entry: swap entry to uncharge
7424  * @nr_pages: the amount of swap space to uncharge
7425  */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7426 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7427 {
7428 	struct mem_cgroup *memcg;
7429 	unsigned short id;
7430 
7431 	id = swap_cgroup_record(entry, 0, nr_pages);
7432 	rcu_read_lock();
7433 	memcg = mem_cgroup_from_id(id);
7434 	if (memcg) {
7435 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7436 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7437 				page_counter_uncharge(&memcg->swap, nr_pages);
7438 			else
7439 				page_counter_uncharge(&memcg->memsw, nr_pages);
7440 		}
7441 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7442 		mem_cgroup_id_put_many(memcg, nr_pages);
7443 	}
7444 	rcu_read_unlock();
7445 }
7446 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7447 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7448 {
7449 	long nr_swap_pages = get_nr_swap_pages();
7450 
7451 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7452 		return nr_swap_pages;
7453 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7454 		nr_swap_pages = min_t(long, nr_swap_pages,
7455 				      READ_ONCE(memcg->swap.max) -
7456 				      page_counter_read(&memcg->swap));
7457 	return nr_swap_pages;
7458 }
7459 
mem_cgroup_swap_full(struct page * page)7460 bool mem_cgroup_swap_full(struct page *page)
7461 {
7462 	struct mem_cgroup *memcg;
7463 
7464 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7465 
7466 	if (vm_swap_full())
7467 		return true;
7468 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7469 		return false;
7470 
7471 	memcg = page->mem_cgroup;
7472 	if (!memcg)
7473 		return false;
7474 
7475 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7476 		unsigned long usage = page_counter_read(&memcg->swap);
7477 
7478 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7479 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7480 			return true;
7481 	}
7482 
7483 	return false;
7484 }
7485 
setup_swap_account(char * s)7486 static int __init setup_swap_account(char *s)
7487 {
7488 	if (!strcmp(s, "1"))
7489 		cgroup_memory_noswap = 0;
7490 	else if (!strcmp(s, "0"))
7491 		cgroup_memory_noswap = 1;
7492 	return 1;
7493 }
7494 __setup("swapaccount=", setup_swap_account);
7495 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7496 static u64 swap_current_read(struct cgroup_subsys_state *css,
7497 			     struct cftype *cft)
7498 {
7499 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7500 
7501 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7502 }
7503 
swap_high_show(struct seq_file * m,void * v)7504 static int swap_high_show(struct seq_file *m, void *v)
7505 {
7506 	return seq_puts_memcg_tunable(m,
7507 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7508 }
7509 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7510 static ssize_t swap_high_write(struct kernfs_open_file *of,
7511 			       char *buf, size_t nbytes, loff_t off)
7512 {
7513 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7514 	unsigned long high;
7515 	int err;
7516 
7517 	buf = strstrip(buf);
7518 	err = page_counter_memparse(buf, "max", &high);
7519 	if (err)
7520 		return err;
7521 
7522 	page_counter_set_high(&memcg->swap, high);
7523 
7524 	return nbytes;
7525 }
7526 
swap_max_show(struct seq_file * m,void * v)7527 static int swap_max_show(struct seq_file *m, void *v)
7528 {
7529 	return seq_puts_memcg_tunable(m,
7530 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7531 }
7532 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7533 static ssize_t swap_max_write(struct kernfs_open_file *of,
7534 			      char *buf, size_t nbytes, loff_t off)
7535 {
7536 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7537 	unsigned long max;
7538 	int err;
7539 
7540 	buf = strstrip(buf);
7541 	err = page_counter_memparse(buf, "max", &max);
7542 	if (err)
7543 		return err;
7544 
7545 	xchg(&memcg->swap.max, max);
7546 
7547 	return nbytes;
7548 }
7549 
swap_events_show(struct seq_file * m,void * v)7550 static int swap_events_show(struct seq_file *m, void *v)
7551 {
7552 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7553 
7554 	seq_printf(m, "high %lu\n",
7555 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7556 	seq_printf(m, "max %lu\n",
7557 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7558 	seq_printf(m, "fail %lu\n",
7559 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7560 
7561 	return 0;
7562 }
7563 
7564 static struct cftype swap_files[] = {
7565 	{
7566 		.name = "swap.current",
7567 		.flags = CFTYPE_NOT_ON_ROOT,
7568 		.read_u64 = swap_current_read,
7569 	},
7570 	{
7571 		.name = "swap.high",
7572 		.flags = CFTYPE_NOT_ON_ROOT,
7573 		.seq_show = swap_high_show,
7574 		.write = swap_high_write,
7575 	},
7576 	{
7577 		.name = "swap.max",
7578 		.flags = CFTYPE_NOT_ON_ROOT,
7579 		.seq_show = swap_max_show,
7580 		.write = swap_max_write,
7581 	},
7582 	{
7583 		.name = "swap.events",
7584 		.flags = CFTYPE_NOT_ON_ROOT,
7585 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7586 		.seq_show = swap_events_show,
7587 	},
7588 	{ }	/* terminate */
7589 };
7590 
7591 static struct cftype memsw_files[] = {
7592 	{
7593 		.name = "memsw.usage_in_bytes",
7594 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7595 		.read_u64 = mem_cgroup_read_u64,
7596 	},
7597 	{
7598 		.name = "memsw.max_usage_in_bytes",
7599 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7600 		.write = mem_cgroup_reset,
7601 		.read_u64 = mem_cgroup_read_u64,
7602 	},
7603 	{
7604 		.name = "memsw.limit_in_bytes",
7605 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7606 		.write = mem_cgroup_write,
7607 		.read_u64 = mem_cgroup_read_u64,
7608 	},
7609 	{
7610 		.name = "memsw.failcnt",
7611 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7612 		.write = mem_cgroup_reset,
7613 		.read_u64 = mem_cgroup_read_u64,
7614 	},
7615 	{ },	/* terminate */
7616 };
7617 
7618 /*
7619  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7620  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7621  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7622  * boot parameter. This may result in premature OOPS inside
7623  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7624  */
mem_cgroup_swap_init(void)7625 static int __init mem_cgroup_swap_init(void)
7626 {
7627 	/* No memory control -> no swap control */
7628 	if (mem_cgroup_disabled())
7629 		cgroup_memory_noswap = true;
7630 
7631 	if (cgroup_memory_noswap)
7632 		return 0;
7633 
7634 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7635 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7636 
7637 	return 0;
7638 }
7639 core_initcall(mem_cgroup_swap_init);
7640 
7641 #endif /* CONFIG_MEMCG_SWAP */
7642