• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/nmi.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58 
59 /*
60  * Serializes oom killer invocations (out_of_memory()) from all contexts to
61  * prevent from over eager oom killing (e.g. when the oom killer is invoked
62  * from different domains).
63  *
64  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65  * and mark_oom_victim
66  */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70 
is_memcg_oom(struct oom_control * oc)71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 	return oc->memcg != NULL;
74 }
75 
76 #ifdef CONFIG_NUMA
77 /**
78  * oom_cpuset_eligible() - check task eligiblity for kill
79  * @start: task struct of which task to consider
80  * @oc: pointer to struct oom_control
81  *
82  * Task eligibility is determined by whether or not a candidate task, @tsk,
83  * shares the same mempolicy nodes as current if it is bound by such a policy
84  * and whether or not it has the same set of allowed cpuset nodes.
85  *
86  * This function is assuming oom-killer context and 'current' has triggered
87  * the oom-killer.
88  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)89 static bool oom_cpuset_eligible(struct task_struct *start,
90 				struct oom_control *oc)
91 {
92 	struct task_struct *tsk;
93 	bool ret = false;
94 	const nodemask_t *mask = oc->nodemask;
95 
96 	if (is_memcg_oom(oc))
97 		return true;
98 
99 	rcu_read_lock();
100 	for_each_thread(start, tsk) {
101 		if (mask) {
102 			/*
103 			 * If this is a mempolicy constrained oom, tsk's
104 			 * cpuset is irrelevant.  Only return true if its
105 			 * mempolicy intersects current, otherwise it may be
106 			 * needlessly killed.
107 			 */
108 			ret = mempolicy_nodemask_intersects(tsk, mask);
109 		} else {
110 			/*
111 			 * This is not a mempolicy constrained oom, so only
112 			 * check the mems of tsk's cpuset.
113 			 */
114 			ret = cpuset_mems_allowed_intersects(current, tsk);
115 		}
116 		if (ret)
117 			break;
118 	}
119 	rcu_read_unlock();
120 
121 	return ret;
122 }
123 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)124 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 {
126 	return true;
127 }
128 #endif /* CONFIG_NUMA */
129 
130 /*
131  * The process p may have detached its own ->mm while exiting or through
132  * kthread_use_mm(), but one or more of its subthreads may still have a valid
133  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
134  * task_lock() held.
135  */
find_lock_task_mm(struct task_struct * p)136 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 {
138 	struct task_struct *t;
139 
140 	rcu_read_lock();
141 
142 	for_each_thread(p, t) {
143 		task_lock(t);
144 		if (likely(t->mm))
145 			goto found;
146 		task_unlock(t);
147 	}
148 	t = NULL;
149 found:
150 	rcu_read_unlock();
151 
152 	return t;
153 }
154 
155 /*
156  * order == -1 means the oom kill is required by sysrq, otherwise only
157  * for display purposes.
158  */
is_sysrq_oom(struct oom_control * oc)159 static inline bool is_sysrq_oom(struct oom_control *oc)
160 {
161 	return oc->order == -1;
162 }
163 
164 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)165 static bool oom_unkillable_task(struct task_struct *p)
166 {
167 	if (is_global_init(p))
168 		return true;
169 	if (p->flags & PF_KTHREAD)
170 		return true;
171 	return false;
172 }
173 
174 /*
175  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
176  * than all user memory (LRU pages)
177  */
is_dump_unreclaim_slabs(void)178 static bool is_dump_unreclaim_slabs(void)
179 {
180 	unsigned long nr_lru;
181 
182 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 		 global_node_page_state(NR_INACTIVE_ANON) +
184 		 global_node_page_state(NR_ACTIVE_FILE) +
185 		 global_node_page_state(NR_INACTIVE_FILE) +
186 		 global_node_page_state(NR_ISOLATED_ANON) +
187 		 global_node_page_state(NR_ISOLATED_FILE) +
188 		 global_node_page_state(NR_UNEVICTABLE);
189 
190 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192 
193 /**
194  * oom_badness - heuristic function to determine which candidate task to kill
195  * @p: task struct of which task we should calculate
196  * @totalpages: total present RAM allowed for page allocation
197  *
198  * The heuristic for determining which task to kill is made to be as simple and
199  * predictable as possible.  The goal is to return the highest value for the
200  * task consuming the most memory to avoid subsequent oom failures.
201  */
oom_badness(struct task_struct * p,unsigned long totalpages)202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204 	long points;
205 	long adj;
206 
207 	if (oom_unkillable_task(p))
208 		return LONG_MIN;
209 
210 	p = find_lock_task_mm(p);
211 	if (!p)
212 		return LONG_MIN;
213 
214 	/*
215 	 * Do not even consider tasks which are explicitly marked oom
216 	 * unkillable or have been already oom reaped or the are in
217 	 * the middle of vfork
218 	 */
219 	adj = (long)p->signal->oom_score_adj;
220 	if (adj == OOM_SCORE_ADJ_MIN ||
221 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 			in_vfork(p)) {
223 		task_unlock(p);
224 		return LONG_MIN;
225 	}
226 
227 	/*
228 	 * The baseline for the badness score is the proportion of RAM that each
229 	 * task's rss, pagetable and swap space use.
230 	 */
231 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 	task_unlock(p);
234 
235 	/* Normalize to oom_score_adj units */
236 	adj *= totalpages / 1000;
237 	points += adj;
238 
239 	return points;
240 }
241 
242 static const char * const oom_constraint_text[] = {
243 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248 
249 /*
250  * Determine the type of allocation constraint.
251  */
constrained_alloc(struct oom_control * oc)252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 	struct zone *zone;
255 	struct zoneref *z;
256 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 	bool cpuset_limited = false;
258 	int nid;
259 
260 	if (is_memcg_oom(oc)) {
261 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 		return CONSTRAINT_MEMCG;
263 	}
264 
265 	/* Default to all available memory */
266 	oc->totalpages = totalram_pages() + total_swap_pages;
267 
268 	if (!IS_ENABLED(CONFIG_NUMA))
269 		return CONSTRAINT_NONE;
270 
271 	if (!oc->zonelist)
272 		return CONSTRAINT_NONE;
273 	/*
274 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 	 * to kill current.We have to random task kill in this case.
276 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 	 */
278 	if (oc->gfp_mask & __GFP_THISNODE)
279 		return CONSTRAINT_NONE;
280 
281 	/*
282 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
284 	 * is enforced in get_page_from_freelist().
285 	 */
286 	if (oc->nodemask &&
287 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 		oc->totalpages = total_swap_pages;
289 		for_each_node_mask(nid, *oc->nodemask)
290 			oc->totalpages += node_present_pages(nid);
291 		return CONSTRAINT_MEMORY_POLICY;
292 	}
293 
294 	/* Check this allocation failure is caused by cpuset's wall function */
295 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 			highest_zoneidx, oc->nodemask)
297 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 			cpuset_limited = true;
299 
300 	if (cpuset_limited) {
301 		oc->totalpages = total_swap_pages;
302 		for_each_node_mask(nid, cpuset_current_mems_allowed)
303 			oc->totalpages += node_present_pages(nid);
304 		return CONSTRAINT_CPUSET;
305 	}
306 	return CONSTRAINT_NONE;
307 }
308 
oom_evaluate_task(struct task_struct * task,void * arg)309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 	struct oom_control *oc = arg;
312 	long points;
313 
314 	if (oom_unkillable_task(task))
315 		goto next;
316 
317 	/* p may not have freeable memory in nodemask */
318 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 		goto next;
320 
321 	/*
322 	 * This task already has access to memory reserves and is being killed.
323 	 * Don't allow any other task to have access to the reserves unless
324 	 * the task has MMF_OOM_SKIP because chances that it would release
325 	 * any memory is quite low.
326 	 */
327 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 			goto next;
330 		goto abort;
331 	}
332 
333 	/*
334 	 * If task is allocating a lot of memory and has been marked to be
335 	 * killed first if it triggers an oom, then select it.
336 	 */
337 	if (oom_task_origin(task)) {
338 		points = LONG_MAX;
339 		goto select;
340 	}
341 
342 	points = oom_badness(task, oc->totalpages);
343 	if (points == LONG_MIN || points < oc->chosen_points)
344 		goto next;
345 
346 select:
347 	if (oc->chosen)
348 		put_task_struct(oc->chosen);
349 	get_task_struct(task);
350 	oc->chosen = task;
351 	oc->chosen_points = points;
352 next:
353 	return 0;
354 abort:
355 	if (oc->chosen)
356 		put_task_struct(oc->chosen);
357 	oc->chosen = (void *)-1UL;
358 	return 1;
359 }
360 
361 /*
362  * Simple selection loop. We choose the process with the highest number of
363  * 'points'. In case scan was aborted, oc->chosen is set to -1.
364  */
select_bad_process(struct oom_control * oc)365 static void select_bad_process(struct oom_control *oc)
366 {
367 	oc->chosen_points = LONG_MIN;
368 
369 	if (is_memcg_oom(oc))
370 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 	else {
372 		struct task_struct *p;
373 
374 		rcu_read_lock();
375 		for_each_process(p)
376 			if (oom_evaluate_task(p, oc))
377 				break;
378 		rcu_read_unlock();
379 	}
380 }
381 
dump_task(struct task_struct * p,void * arg)382 static int dump_task(struct task_struct *p, void *arg)
383 {
384 	struct oom_control *oc = arg;
385 	struct task_struct *task;
386 
387 	if (oom_unkillable_task(p))
388 		return 0;
389 
390 	/* p may not have freeable memory in nodemask */
391 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 		return 0;
393 
394 	task = find_lock_task_mm(p);
395 	if (!task) {
396 		/*
397 		 * This is a kthread or all of p's threads have already
398 		 * detached their mm's.  There's no need to report
399 		 * them; they can't be oom killed anyway.
400 		 */
401 		return 0;
402 	}
403 
404 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
405 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
406 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
407 		mm_pgtables_bytes(task->mm),
408 		get_mm_counter(task->mm, MM_SWAPENTS),
409 		task->signal->oom_score_adj, task->comm);
410 	task_unlock(task);
411 
412 	return 0;
413 }
414 
415 /**
416  * dump_tasks - dump current memory state of all system tasks
417  * @oc: pointer to struct oom_control
418  *
419  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
420  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421  * are not shown.
422  * State information includes task's pid, uid, tgid, vm size, rss,
423  * pgtables_bytes, swapents, oom_score_adj value, and name.
424  */
dump_tasks(struct oom_control * oc)425 static void dump_tasks(struct oom_control *oc)
426 {
427 	pr_info("Tasks state (memory values in pages):\n");
428 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
429 
430 	if (is_memcg_oom(oc))
431 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 	else {
433 		struct task_struct *p;
434 		int i = 0;
435 
436 		rcu_read_lock();
437 		for_each_process(p) {
438 			/* Avoid potential softlockup warning */
439 			if ((++i & 1023) == 0)
440 				touch_softlockup_watchdog();
441 			dump_task(p, oc);
442 		}
443 		rcu_read_unlock();
444 	}
445 }
446 
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)447 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
448 {
449 	/* one line summary of the oom killer context. */
450 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 			oom_constraint_text[oc->constraint],
452 			nodemask_pr_args(oc->nodemask));
453 	cpuset_print_current_mems_allowed();
454 	mem_cgroup_print_oom_context(oc->memcg, victim);
455 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 		from_kuid(&init_user_ns, task_uid(victim)));
457 }
458 
dump_header(struct oom_control * oc,struct task_struct * p)459 static void dump_header(struct oom_control *oc, struct task_struct *p)
460 {
461 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 			current->signal->oom_score_adj);
464 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 		pr_warn("COMPACTION is disabled!!!\n");
466 
467 	dump_stack();
468 	if (is_memcg_oom(oc))
469 		mem_cgroup_print_oom_meminfo(oc->memcg);
470 	else {
471 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
472 		if (is_dump_unreclaim_slabs())
473 			dump_unreclaimable_slab();
474 	}
475 	if (sysctl_oom_dump_tasks)
476 		dump_tasks(oc);
477 	if (p)
478 		dump_oom_summary(oc, p);
479 }
480 
481 /*
482  * Number of OOM victims in flight
483  */
484 static atomic_t oom_victims = ATOMIC_INIT(0);
485 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
486 
487 static bool oom_killer_disabled __read_mostly;
488 
489 #define K(x) ((x) << (PAGE_SHIFT-10))
490 
491 /*
492  * task->mm can be NULL if the task is the exited group leader.  So to
493  * determine whether the task is using a particular mm, we examine all the
494  * task's threads: if one of those is using this mm then this task was also
495  * using it.
496  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)497 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
498 {
499 	struct task_struct *t;
500 
501 	for_each_thread(p, t) {
502 		struct mm_struct *t_mm = READ_ONCE(t->mm);
503 		if (t_mm)
504 			return t_mm == mm;
505 	}
506 	return false;
507 }
508 
509 #ifdef CONFIG_MMU
510 /*
511  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
512  * victim (if that is possible) to help the OOM killer to move on.
513  */
514 static struct task_struct *oom_reaper_th;
515 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
516 static struct task_struct *oom_reaper_list;
517 static DEFINE_SPINLOCK(oom_reaper_lock);
518 
__oom_reap_task_mm(struct mm_struct * mm)519 bool __oom_reap_task_mm(struct mm_struct *mm)
520 {
521 	struct vm_area_struct *vma;
522 	bool ret = true;
523 
524 	/*
525 	 * Tell all users of get_user/copy_from_user etc... that the content
526 	 * is no longer stable. No barriers really needed because unmapping
527 	 * should imply barriers already and the reader would hit a page fault
528 	 * if it stumbled over a reaped memory.
529 	 */
530 	set_bit(MMF_UNSTABLE, &mm->flags);
531 
532 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
533 		if (!can_madv_lru_vma(vma))
534 			continue;
535 
536 		/*
537 		 * Only anonymous pages have a good chance to be dropped
538 		 * without additional steps which we cannot afford as we
539 		 * are OOM already.
540 		 *
541 		 * We do not even care about fs backed pages because all
542 		 * which are reclaimable have already been reclaimed and
543 		 * we do not want to block exit_mmap by keeping mm ref
544 		 * count elevated without a good reason.
545 		 */
546 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
547 			struct mmu_notifier_range range;
548 			struct mmu_gather tlb;
549 
550 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
551 						vma, mm, vma->vm_start,
552 						vma->vm_end);
553 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
554 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
555 				tlb_finish_mmu(&tlb, range.start, range.end);
556 				ret = false;
557 				continue;
558 			}
559 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
560 			mmu_notifier_invalidate_range_end(&range);
561 			tlb_finish_mmu(&tlb, range.start, range.end);
562 		}
563 	}
564 
565 	return ret;
566 }
567 
568 /*
569  * Reaps the address space of the give task.
570  *
571  * Returns true on success and false if none or part of the address space
572  * has been reclaimed and the caller should retry later.
573  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)574 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
575 {
576 	bool ret = true;
577 
578 	if (!mmap_read_trylock(mm)) {
579 		trace_skip_task_reaping(tsk->pid);
580 		return false;
581 	}
582 
583 	/*
584 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
585 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
586 	 * under mmap_lock for reading because it serializes against the
587 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
588 	 */
589 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
590 		trace_skip_task_reaping(tsk->pid);
591 		goto out_unlock;
592 	}
593 
594 	trace_start_task_reaping(tsk->pid);
595 
596 	/* failed to reap part of the address space. Try again later */
597 	ret = __oom_reap_task_mm(mm);
598 	if (!ret)
599 		goto out_finish;
600 
601 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
602 			task_pid_nr(tsk), tsk->comm,
603 			K(get_mm_counter(mm, MM_ANONPAGES)),
604 			K(get_mm_counter(mm, MM_FILEPAGES)),
605 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
606 out_finish:
607 	trace_finish_task_reaping(tsk->pid);
608 out_unlock:
609 	mmap_read_unlock(mm);
610 
611 	return ret;
612 }
613 
614 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)615 static void oom_reap_task(struct task_struct *tsk)
616 {
617 	int attempts = 0;
618 	struct mm_struct *mm = tsk->signal->oom_mm;
619 
620 	/* Retry the mmap_read_trylock(mm) a few times */
621 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
622 		schedule_timeout_idle(HZ/10);
623 
624 	if (attempts <= MAX_OOM_REAP_RETRIES ||
625 	    test_bit(MMF_OOM_SKIP, &mm->flags))
626 		goto done;
627 
628 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
629 		task_pid_nr(tsk), tsk->comm);
630 	sched_show_task(tsk);
631 	debug_show_all_locks();
632 
633 done:
634 	tsk->oom_reaper_list = NULL;
635 
636 	/*
637 	 * Hide this mm from OOM killer because it has been either reaped or
638 	 * somebody can't call mmap_write_unlock(mm).
639 	 */
640 	set_bit(MMF_OOM_SKIP, &mm->flags);
641 
642 	/* Drop a reference taken by queue_oom_reaper */
643 	put_task_struct(tsk);
644 }
645 
oom_reaper(void * unused)646 static int oom_reaper(void *unused)
647 {
648 	while (true) {
649 		struct task_struct *tsk = NULL;
650 
651 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
652 		spin_lock_irq(&oom_reaper_lock);
653 		if (oom_reaper_list != NULL) {
654 			tsk = oom_reaper_list;
655 			oom_reaper_list = tsk->oom_reaper_list;
656 		}
657 		spin_unlock_irq(&oom_reaper_lock);
658 
659 		if (tsk)
660 			oom_reap_task(tsk);
661 	}
662 
663 	return 0;
664 }
665 
wake_oom_reaper(struct timer_list * timer)666 static void wake_oom_reaper(struct timer_list *timer)
667 {
668 	struct task_struct *tsk = container_of(timer, struct task_struct,
669 			oom_reaper_timer);
670 	struct mm_struct *mm = tsk->signal->oom_mm;
671 	unsigned long flags;
672 
673 	/* The victim managed to terminate on its own - see exit_mmap */
674 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
675 		put_task_struct(tsk);
676 		return;
677 	}
678 
679 	spin_lock_irqsave(&oom_reaper_lock, flags);
680 	tsk->oom_reaper_list = oom_reaper_list;
681 	oom_reaper_list = tsk;
682 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
683 	trace_wake_reaper(tsk->pid);
684 	wake_up(&oom_reaper_wait);
685 }
686 
687 /*
688  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
689  * The timers timeout is arbitrary... the longer it is, the longer the worst
690  * case scenario for the OOM can take. If it is too small, the oom_reaper can
691  * get in the way and release resources needed by the process exit path.
692  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
693  * before the exit path is able to wake the futex waiters.
694  */
695 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)696 static void queue_oom_reaper(struct task_struct *tsk)
697 {
698 	/* mm is already queued? */
699 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
700 		return;
701 
702 	get_task_struct(tsk);
703 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
704 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
705 	add_timer(&tsk->oom_reaper_timer);
706 }
707 
oom_init(void)708 static int __init oom_init(void)
709 {
710 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
711 	return 0;
712 }
subsys_initcall(oom_init)713 subsys_initcall(oom_init)
714 #else
715 static inline void queue_oom_reaper(struct task_struct *tsk)
716 {
717 }
718 #endif /* CONFIG_MMU */
719 
720 /**
721  * mark_oom_victim - mark the given task as OOM victim
722  * @tsk: task to mark
723  *
724  * Has to be called with oom_lock held and never after
725  * oom has been disabled already.
726  *
727  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
728  * under task_lock or operate on the current).
729  */
730 static void mark_oom_victim(struct task_struct *tsk)
731 {
732 	struct mm_struct *mm = tsk->mm;
733 
734 	WARN_ON(oom_killer_disabled);
735 	/* OOM killer might race with memcg OOM */
736 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
737 		return;
738 
739 	/* oom_mm is bound to the signal struct life time. */
740 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
741 		mmgrab(tsk->signal->oom_mm);
742 		set_bit(MMF_OOM_VICTIM, &mm->flags);
743 	}
744 
745 	/*
746 	 * Make sure that the task is woken up from uninterruptible sleep
747 	 * if it is frozen because OOM killer wouldn't be able to free
748 	 * any memory and livelock. freezing_slow_path will tell the freezer
749 	 * that TIF_MEMDIE tasks should be ignored.
750 	 */
751 	__thaw_task(tsk);
752 	atomic_inc(&oom_victims);
753 	trace_mark_victim(tsk->pid);
754 }
755 
756 /**
757  * exit_oom_victim - note the exit of an OOM victim
758  */
exit_oom_victim(void)759 void exit_oom_victim(void)
760 {
761 	clear_thread_flag(TIF_MEMDIE);
762 
763 	if (!atomic_dec_return(&oom_victims))
764 		wake_up_all(&oom_victims_wait);
765 }
766 
767 /**
768  * oom_killer_enable - enable OOM killer
769  */
oom_killer_enable(void)770 void oom_killer_enable(void)
771 {
772 	oom_killer_disabled = false;
773 	pr_info("OOM killer enabled.\n");
774 }
775 
776 /**
777  * oom_killer_disable - disable OOM killer
778  * @timeout: maximum timeout to wait for oom victims in jiffies
779  *
780  * Forces all page allocations to fail rather than trigger OOM killer.
781  * Will block and wait until all OOM victims are killed or the given
782  * timeout expires.
783  *
784  * The function cannot be called when there are runnable user tasks because
785  * the userspace would see unexpected allocation failures as a result. Any
786  * new usage of this function should be consulted with MM people.
787  *
788  * Returns true if successful and false if the OOM killer cannot be
789  * disabled.
790  */
oom_killer_disable(signed long timeout)791 bool oom_killer_disable(signed long timeout)
792 {
793 	signed long ret;
794 
795 	/*
796 	 * Make sure to not race with an ongoing OOM killer. Check that the
797 	 * current is not killed (possibly due to sharing the victim's memory).
798 	 */
799 	if (mutex_lock_killable(&oom_lock))
800 		return false;
801 	oom_killer_disabled = true;
802 	mutex_unlock(&oom_lock);
803 
804 	ret = wait_event_interruptible_timeout(oom_victims_wait,
805 			!atomic_read(&oom_victims), timeout);
806 	if (ret <= 0) {
807 		oom_killer_enable();
808 		return false;
809 	}
810 	pr_info("OOM killer disabled.\n");
811 
812 	return true;
813 }
814 
__task_will_free_mem(struct task_struct * task)815 static inline bool __task_will_free_mem(struct task_struct *task)
816 {
817 	struct signal_struct *sig = task->signal;
818 
819 	/*
820 	 * A coredumping process may sleep for an extended period in exit_mm(),
821 	 * so the oom killer cannot assume that the process will promptly exit
822 	 * and release memory.
823 	 */
824 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
825 		return false;
826 
827 	if (sig->flags & SIGNAL_GROUP_EXIT)
828 		return true;
829 
830 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
831 		return true;
832 
833 	return false;
834 }
835 
836 /*
837  * Checks whether the given task is dying or exiting and likely to
838  * release its address space. This means that all threads and processes
839  * sharing the same mm have to be killed or exiting.
840  * Caller has to make sure that task->mm is stable (hold task_lock or
841  * it operates on the current).
842  */
task_will_free_mem(struct task_struct * task)843 static bool task_will_free_mem(struct task_struct *task)
844 {
845 	struct mm_struct *mm = task->mm;
846 	struct task_struct *p;
847 	bool ret = true;
848 
849 	/*
850 	 * Skip tasks without mm because it might have passed its exit_mm and
851 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
852 	 * on that for now. We can consider find_lock_task_mm in future.
853 	 */
854 	if (!mm)
855 		return false;
856 
857 	if (!__task_will_free_mem(task))
858 		return false;
859 
860 	/*
861 	 * This task has already been drained by the oom reaper so there are
862 	 * only small chances it will free some more
863 	 */
864 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
865 		return false;
866 
867 	if (atomic_read(&mm->mm_users) <= 1)
868 		return true;
869 
870 	/*
871 	 * Make sure that all tasks which share the mm with the given tasks
872 	 * are dying as well to make sure that a) nobody pins its mm and
873 	 * b) the task is also reapable by the oom reaper.
874 	 */
875 	rcu_read_lock();
876 	for_each_process(p) {
877 		if (!process_shares_mm(p, mm))
878 			continue;
879 		if (same_thread_group(task, p))
880 			continue;
881 		ret = __task_will_free_mem(p);
882 		if (!ret)
883 			break;
884 	}
885 	rcu_read_unlock();
886 
887 	return ret;
888 }
889 
__oom_kill_process(struct task_struct * victim,const char * message)890 static void __oom_kill_process(struct task_struct *victim, const char *message)
891 {
892 	struct task_struct *p;
893 	struct mm_struct *mm;
894 	bool can_oom_reap = true;
895 
896 	p = find_lock_task_mm(victim);
897 	if (!p) {
898 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
899 			message, task_pid_nr(victim), victim->comm);
900 		put_task_struct(victim);
901 		return;
902 	} else if (victim != p) {
903 		get_task_struct(p);
904 		put_task_struct(victim);
905 		victim = p;
906 	}
907 
908 	/* Get a reference to safely compare mm after task_unlock(victim) */
909 	mm = victim->mm;
910 	mmgrab(mm);
911 
912 	/* Raise event before sending signal: task reaper must see this */
913 	count_vm_event(OOM_KILL);
914 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
915 
916 	/*
917 	 * We should send SIGKILL before granting access to memory reserves
918 	 * in order to prevent the OOM victim from depleting the memory
919 	 * reserves from the user space under its control.
920 	 */
921 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
922 	mark_oom_victim(victim);
923 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
924 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
925 		K(get_mm_counter(mm, MM_ANONPAGES)),
926 		K(get_mm_counter(mm, MM_FILEPAGES)),
927 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
928 		from_kuid(&init_user_ns, task_uid(victim)),
929 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
930 	task_unlock(victim);
931 
932 	/*
933 	 * Kill all user processes sharing victim->mm in other thread groups, if
934 	 * any.  They don't get access to memory reserves, though, to avoid
935 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
936 	 * oom killed thread cannot exit because it requires the semaphore and
937 	 * its contended by another thread trying to allocate memory itself.
938 	 * That thread will now get access to memory reserves since it has a
939 	 * pending fatal signal.
940 	 */
941 	rcu_read_lock();
942 	for_each_process(p) {
943 		if (!process_shares_mm(p, mm))
944 			continue;
945 		if (same_thread_group(p, victim))
946 			continue;
947 		if (is_global_init(p)) {
948 			can_oom_reap = false;
949 			set_bit(MMF_OOM_SKIP, &mm->flags);
950 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
951 					task_pid_nr(victim), victim->comm,
952 					task_pid_nr(p), p->comm);
953 			continue;
954 		}
955 		/*
956 		 * No kthead_use_mm() user needs to read from the userspace so
957 		 * we are ok to reap it.
958 		 */
959 		if (unlikely(p->flags & PF_KTHREAD))
960 			continue;
961 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
962 	}
963 	rcu_read_unlock();
964 
965 	if (can_oom_reap)
966 		queue_oom_reaper(victim);
967 
968 	mmdrop(mm);
969 	put_task_struct(victim);
970 }
971 #undef K
972 
973 /*
974  * Kill provided task unless it's secured by setting
975  * oom_score_adj to OOM_SCORE_ADJ_MIN.
976  */
oom_kill_memcg_member(struct task_struct * task,void * message)977 static int oom_kill_memcg_member(struct task_struct *task, void *message)
978 {
979 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
980 	    !is_global_init(task)) {
981 		get_task_struct(task);
982 		__oom_kill_process(task, message);
983 	}
984 	return 0;
985 }
986 
oom_kill_process(struct oom_control * oc,const char * message)987 static void oom_kill_process(struct oom_control *oc, const char *message)
988 {
989 	struct task_struct *victim = oc->chosen;
990 	struct mem_cgroup *oom_group;
991 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
992 					      DEFAULT_RATELIMIT_BURST);
993 
994 	/*
995 	 * If the task is already exiting, don't alarm the sysadmin or kill
996 	 * its children or threads, just give it access to memory reserves
997 	 * so it can die quickly
998 	 */
999 	task_lock(victim);
1000 	if (task_will_free_mem(victim)) {
1001 		mark_oom_victim(victim);
1002 		queue_oom_reaper(victim);
1003 		task_unlock(victim);
1004 		put_task_struct(victim);
1005 		return;
1006 	}
1007 	task_unlock(victim);
1008 
1009 	if (__ratelimit(&oom_rs))
1010 		dump_header(oc, victim);
1011 
1012 	/*
1013 	 * Do we need to kill the entire memory cgroup?
1014 	 * Or even one of the ancestor memory cgroups?
1015 	 * Check this out before killing the victim task.
1016 	 */
1017 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1018 
1019 	__oom_kill_process(victim, message);
1020 
1021 	/*
1022 	 * If necessary, kill all tasks in the selected memory cgroup.
1023 	 */
1024 	if (oom_group) {
1025 		mem_cgroup_print_oom_group(oom_group);
1026 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1027 				      (void*)message);
1028 		mem_cgroup_put(oom_group);
1029 	}
1030 }
1031 
1032 /*
1033  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1034  */
check_panic_on_oom(struct oom_control * oc)1035 static void check_panic_on_oom(struct oom_control *oc)
1036 {
1037 	if (likely(!sysctl_panic_on_oom))
1038 		return;
1039 	if (sysctl_panic_on_oom != 2) {
1040 		/*
1041 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1042 		 * does not panic for cpuset, mempolicy, or memcg allocation
1043 		 * failures.
1044 		 */
1045 		if (oc->constraint != CONSTRAINT_NONE)
1046 			return;
1047 	}
1048 	/* Do not panic for oom kills triggered by sysrq */
1049 	if (is_sysrq_oom(oc))
1050 		return;
1051 	dump_header(oc, NULL);
1052 	panic("Out of memory: %s panic_on_oom is enabled\n",
1053 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1054 }
1055 
1056 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1057 
register_oom_notifier(struct notifier_block * nb)1058 int register_oom_notifier(struct notifier_block *nb)
1059 {
1060 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1061 }
1062 EXPORT_SYMBOL_GPL(register_oom_notifier);
1063 
unregister_oom_notifier(struct notifier_block * nb)1064 int unregister_oom_notifier(struct notifier_block *nb)
1065 {
1066 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1067 }
1068 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1069 
1070 /**
1071  * out_of_memory - kill the "best" process when we run out of memory
1072  * @oc: pointer to struct oom_control
1073  *
1074  * If we run out of memory, we have the choice between either
1075  * killing a random task (bad), letting the system crash (worse)
1076  * OR try to be smart about which process to kill. Note that we
1077  * don't have to be perfect here, we just have to be good.
1078  */
out_of_memory(struct oom_control * oc)1079 bool out_of_memory(struct oom_control *oc)
1080 {
1081 	unsigned long freed = 0;
1082 
1083 	if (oom_killer_disabled)
1084 		return false;
1085 
1086 	if (!is_memcg_oom(oc)) {
1087 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1088 		if (freed > 0)
1089 			/* Got some memory back in the last second. */
1090 			return true;
1091 	}
1092 
1093 	/*
1094 	 * If current has a pending SIGKILL or is exiting, then automatically
1095 	 * select it.  The goal is to allow it to allocate so that it may
1096 	 * quickly exit and free its memory.
1097 	 */
1098 	if (task_will_free_mem(current)) {
1099 		mark_oom_victim(current);
1100 		queue_oom_reaper(current);
1101 		return true;
1102 	}
1103 
1104 	/*
1105 	 * The OOM killer does not compensate for IO-less reclaim.
1106 	 * pagefault_out_of_memory lost its gfp context so we have to
1107 	 * make sure exclude 0 mask - all other users should have at least
1108 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1109 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1110 	 */
1111 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1112 		return true;
1113 
1114 	/*
1115 	 * Check if there were limitations on the allocation (only relevant for
1116 	 * NUMA and memcg) that may require different handling.
1117 	 */
1118 	oc->constraint = constrained_alloc(oc);
1119 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1120 		oc->nodemask = NULL;
1121 	check_panic_on_oom(oc);
1122 
1123 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1124 	    current->mm && !oom_unkillable_task(current) &&
1125 	    oom_cpuset_eligible(current, oc) &&
1126 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1127 		get_task_struct(current);
1128 		oc->chosen = current;
1129 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1130 		return true;
1131 	}
1132 
1133 	select_bad_process(oc);
1134 	/* Found nothing?!?! */
1135 	if (!oc->chosen) {
1136 		dump_header(oc, NULL);
1137 		pr_warn("Out of memory and no killable processes...\n");
1138 		/*
1139 		 * If we got here due to an actual allocation at the
1140 		 * system level, we cannot survive this and will enter
1141 		 * an endless loop in the allocator. Bail out now.
1142 		 */
1143 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1144 			panic("System is deadlocked on memory\n");
1145 	}
1146 	if (oc->chosen && oc->chosen != (void *)-1UL)
1147 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1148 				 "Memory cgroup out of memory");
1149 	return !!oc->chosen;
1150 }
1151 
1152 /*
1153  * The pagefault handler calls here because some allocation has failed. We have
1154  * to take care of the memcg OOM here because this is the only safe context without
1155  * any locks held but let the oom killer triggered from the allocation context care
1156  * about the global OOM.
1157  */
pagefault_out_of_memory(void)1158 void pagefault_out_of_memory(void)
1159 {
1160 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1161 				      DEFAULT_RATELIMIT_BURST);
1162 
1163 	if (mem_cgroup_oom_synchronize(true))
1164 		return;
1165 
1166 	if (fatal_signal_pending(current))
1167 		return;
1168 
1169 	if (__ratelimit(&pfoom_rs))
1170 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1171 }
1172