1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/nmi.h>
47
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58
59 /*
60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
62 * from different domains).
63 *
64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 * and mark_oom_victim
66 */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70
is_memcg_oom(struct oom_control * oc)71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 return oc->memcg != NULL;
74 }
75
76 #ifdef CONFIG_NUMA
77 /**
78 * oom_cpuset_eligible() - check task eligiblity for kill
79 * @start: task struct of which task to consider
80 * @oc: pointer to struct oom_control
81 *
82 * Task eligibility is determined by whether or not a candidate task, @tsk,
83 * shares the same mempolicy nodes as current if it is bound by such a policy
84 * and whether or not it has the same set of allowed cpuset nodes.
85 *
86 * This function is assuming oom-killer context and 'current' has triggered
87 * the oom-killer.
88 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)89 static bool oom_cpuset_eligible(struct task_struct *start,
90 struct oom_control *oc)
91 {
92 struct task_struct *tsk;
93 bool ret = false;
94 const nodemask_t *mask = oc->nodemask;
95
96 if (is_memcg_oom(oc))
97 return true;
98
99 rcu_read_lock();
100 for_each_thread(start, tsk) {
101 if (mask) {
102 /*
103 * If this is a mempolicy constrained oom, tsk's
104 * cpuset is irrelevant. Only return true if its
105 * mempolicy intersects current, otherwise it may be
106 * needlessly killed.
107 */
108 ret = mempolicy_nodemask_intersects(tsk, mask);
109 } else {
110 /*
111 * This is not a mempolicy constrained oom, so only
112 * check the mems of tsk's cpuset.
113 */
114 ret = cpuset_mems_allowed_intersects(current, tsk);
115 }
116 if (ret)
117 break;
118 }
119 rcu_read_unlock();
120
121 return ret;
122 }
123 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)124 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 {
126 return true;
127 }
128 #endif /* CONFIG_NUMA */
129
130 /*
131 * The process p may have detached its own ->mm while exiting or through
132 * kthread_use_mm(), but one or more of its subthreads may still have a valid
133 * pointer. Return p, or any of its subthreads with a valid ->mm, with
134 * task_lock() held.
135 */
find_lock_task_mm(struct task_struct * p)136 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 {
138 struct task_struct *t;
139
140 rcu_read_lock();
141
142 for_each_thread(p, t) {
143 task_lock(t);
144 if (likely(t->mm))
145 goto found;
146 task_unlock(t);
147 }
148 t = NULL;
149 found:
150 rcu_read_unlock();
151
152 return t;
153 }
154
155 /*
156 * order == -1 means the oom kill is required by sysrq, otherwise only
157 * for display purposes.
158 */
is_sysrq_oom(struct oom_control * oc)159 static inline bool is_sysrq_oom(struct oom_control *oc)
160 {
161 return oc->order == -1;
162 }
163
164 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)165 static bool oom_unkillable_task(struct task_struct *p)
166 {
167 if (is_global_init(p))
168 return true;
169 if (p->flags & PF_KTHREAD)
170 return true;
171 return false;
172 }
173
174 /*
175 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
176 * than all user memory (LRU pages)
177 */
is_dump_unreclaim_slabs(void)178 static bool is_dump_unreclaim_slabs(void)
179 {
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192
193 /**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
oom_badness(struct task_struct * p,unsigned long totalpages)202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240 }
241
242 static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248
249 /*
250 * Determine the type of allocation constraint.
251 */
constrained_alloc(struct oom_control * oc)252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307 }
308
oom_evaluate_task(struct task_struct * task,void * arg)309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346 select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352 next:
353 return 0;
354 abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359 }
360
361 /*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
select_bad_process(struct oom_control * oc)365 static void select_bad_process(struct oom_control *oc)
366 {
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380 }
381
dump_task(struct task_struct * p,void * arg)382 static int dump_task(struct task_struct *p, void *arg)
383 {
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * This is a kthread or all of p's threads have already
398 * detached their mm's. There's no need to report
399 * them; they can't be oom killed anyway.
400 */
401 return 0;
402 }
403
404 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
405 task->pid, from_kuid(&init_user_ns, task_uid(task)),
406 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
407 mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413 }
414
415 /**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
dump_tasks(struct oom_control * oc)425 static void dump_tasks(struct oom_control *oc)
426 {
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445 }
446
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)447 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
448 {
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457 }
458
dump_header(struct oom_control * oc,struct task_struct * p)459 static void dump_header(struct oom_control *oc, struct task_struct *p)
460 {
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
472 if (is_dump_unreclaim_slabs())
473 dump_unreclaimable_slab();
474 }
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
477 if (p)
478 dump_oom_summary(oc, p);
479 }
480
481 /*
482 * Number of OOM victims in flight
483 */
484 static atomic_t oom_victims = ATOMIC_INIT(0);
485 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
486
487 static bool oom_killer_disabled __read_mostly;
488
489 #define K(x) ((x) << (PAGE_SHIFT-10))
490
491 /*
492 * task->mm can be NULL if the task is the exited group leader. So to
493 * determine whether the task is using a particular mm, we examine all the
494 * task's threads: if one of those is using this mm then this task was also
495 * using it.
496 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)497 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
498 {
499 struct task_struct *t;
500
501 for_each_thread(p, t) {
502 struct mm_struct *t_mm = READ_ONCE(t->mm);
503 if (t_mm)
504 return t_mm == mm;
505 }
506 return false;
507 }
508
509 #ifdef CONFIG_MMU
510 /*
511 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
512 * victim (if that is possible) to help the OOM killer to move on.
513 */
514 static struct task_struct *oom_reaper_th;
515 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
516 static struct task_struct *oom_reaper_list;
517 static DEFINE_SPINLOCK(oom_reaper_lock);
518
__oom_reap_task_mm(struct mm_struct * mm)519 bool __oom_reap_task_mm(struct mm_struct *mm)
520 {
521 struct vm_area_struct *vma;
522 bool ret = true;
523
524 /*
525 * Tell all users of get_user/copy_from_user etc... that the content
526 * is no longer stable. No barriers really needed because unmapping
527 * should imply barriers already and the reader would hit a page fault
528 * if it stumbled over a reaped memory.
529 */
530 set_bit(MMF_UNSTABLE, &mm->flags);
531
532 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
533 if (!can_madv_lru_vma(vma))
534 continue;
535
536 /*
537 * Only anonymous pages have a good chance to be dropped
538 * without additional steps which we cannot afford as we
539 * are OOM already.
540 *
541 * We do not even care about fs backed pages because all
542 * which are reclaimable have already been reclaimed and
543 * we do not want to block exit_mmap by keeping mm ref
544 * count elevated without a good reason.
545 */
546 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
547 struct mmu_notifier_range range;
548 struct mmu_gather tlb;
549
550 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
551 vma, mm, vma->vm_start,
552 vma->vm_end);
553 tlb_gather_mmu(&tlb, mm, range.start, range.end);
554 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
555 tlb_finish_mmu(&tlb, range.start, range.end);
556 ret = false;
557 continue;
558 }
559 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
560 mmu_notifier_invalidate_range_end(&range);
561 tlb_finish_mmu(&tlb, range.start, range.end);
562 }
563 }
564
565 return ret;
566 }
567
568 /*
569 * Reaps the address space of the give task.
570 *
571 * Returns true on success and false if none or part of the address space
572 * has been reclaimed and the caller should retry later.
573 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)574 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
575 {
576 bool ret = true;
577
578 if (!mmap_read_trylock(mm)) {
579 trace_skip_task_reaping(tsk->pid);
580 return false;
581 }
582
583 /*
584 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
585 * work on the mm anymore. The check for MMF_OOM_SKIP must run
586 * under mmap_lock for reading because it serializes against the
587 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
588 */
589 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
590 trace_skip_task_reaping(tsk->pid);
591 goto out_unlock;
592 }
593
594 trace_start_task_reaping(tsk->pid);
595
596 /* failed to reap part of the address space. Try again later */
597 ret = __oom_reap_task_mm(mm);
598 if (!ret)
599 goto out_finish;
600
601 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
602 task_pid_nr(tsk), tsk->comm,
603 K(get_mm_counter(mm, MM_ANONPAGES)),
604 K(get_mm_counter(mm, MM_FILEPAGES)),
605 K(get_mm_counter(mm, MM_SHMEMPAGES)));
606 out_finish:
607 trace_finish_task_reaping(tsk->pid);
608 out_unlock:
609 mmap_read_unlock(mm);
610
611 return ret;
612 }
613
614 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)615 static void oom_reap_task(struct task_struct *tsk)
616 {
617 int attempts = 0;
618 struct mm_struct *mm = tsk->signal->oom_mm;
619
620 /* Retry the mmap_read_trylock(mm) a few times */
621 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
622 schedule_timeout_idle(HZ/10);
623
624 if (attempts <= MAX_OOM_REAP_RETRIES ||
625 test_bit(MMF_OOM_SKIP, &mm->flags))
626 goto done;
627
628 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
629 task_pid_nr(tsk), tsk->comm);
630 sched_show_task(tsk);
631 debug_show_all_locks();
632
633 done:
634 tsk->oom_reaper_list = NULL;
635
636 /*
637 * Hide this mm from OOM killer because it has been either reaped or
638 * somebody can't call mmap_write_unlock(mm).
639 */
640 set_bit(MMF_OOM_SKIP, &mm->flags);
641
642 /* Drop a reference taken by queue_oom_reaper */
643 put_task_struct(tsk);
644 }
645
oom_reaper(void * unused)646 static int oom_reaper(void *unused)
647 {
648 while (true) {
649 struct task_struct *tsk = NULL;
650
651 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
652 spin_lock_irq(&oom_reaper_lock);
653 if (oom_reaper_list != NULL) {
654 tsk = oom_reaper_list;
655 oom_reaper_list = tsk->oom_reaper_list;
656 }
657 spin_unlock_irq(&oom_reaper_lock);
658
659 if (tsk)
660 oom_reap_task(tsk);
661 }
662
663 return 0;
664 }
665
wake_oom_reaper(struct timer_list * timer)666 static void wake_oom_reaper(struct timer_list *timer)
667 {
668 struct task_struct *tsk = container_of(timer, struct task_struct,
669 oom_reaper_timer);
670 struct mm_struct *mm = tsk->signal->oom_mm;
671 unsigned long flags;
672
673 /* The victim managed to terminate on its own - see exit_mmap */
674 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
675 put_task_struct(tsk);
676 return;
677 }
678
679 spin_lock_irqsave(&oom_reaper_lock, flags);
680 tsk->oom_reaper_list = oom_reaper_list;
681 oom_reaper_list = tsk;
682 spin_unlock_irqrestore(&oom_reaper_lock, flags);
683 trace_wake_reaper(tsk->pid);
684 wake_up(&oom_reaper_wait);
685 }
686
687 /*
688 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
689 * The timers timeout is arbitrary... the longer it is, the longer the worst
690 * case scenario for the OOM can take. If it is too small, the oom_reaper can
691 * get in the way and release resources needed by the process exit path.
692 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
693 * before the exit path is able to wake the futex waiters.
694 */
695 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)696 static void queue_oom_reaper(struct task_struct *tsk)
697 {
698 /* mm is already queued? */
699 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
700 return;
701
702 get_task_struct(tsk);
703 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
704 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
705 add_timer(&tsk->oom_reaper_timer);
706 }
707
oom_init(void)708 static int __init oom_init(void)
709 {
710 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
711 return 0;
712 }
subsys_initcall(oom_init)713 subsys_initcall(oom_init)
714 #else
715 static inline void queue_oom_reaper(struct task_struct *tsk)
716 {
717 }
718 #endif /* CONFIG_MMU */
719
720 /**
721 * mark_oom_victim - mark the given task as OOM victim
722 * @tsk: task to mark
723 *
724 * Has to be called with oom_lock held and never after
725 * oom has been disabled already.
726 *
727 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
728 * under task_lock or operate on the current).
729 */
730 static void mark_oom_victim(struct task_struct *tsk)
731 {
732 struct mm_struct *mm = tsk->mm;
733
734 WARN_ON(oom_killer_disabled);
735 /* OOM killer might race with memcg OOM */
736 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
737 return;
738
739 /* oom_mm is bound to the signal struct life time. */
740 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
741 mmgrab(tsk->signal->oom_mm);
742 set_bit(MMF_OOM_VICTIM, &mm->flags);
743 }
744
745 /*
746 * Make sure that the task is woken up from uninterruptible sleep
747 * if it is frozen because OOM killer wouldn't be able to free
748 * any memory and livelock. freezing_slow_path will tell the freezer
749 * that TIF_MEMDIE tasks should be ignored.
750 */
751 __thaw_task(tsk);
752 atomic_inc(&oom_victims);
753 trace_mark_victim(tsk->pid);
754 }
755
756 /**
757 * exit_oom_victim - note the exit of an OOM victim
758 */
exit_oom_victim(void)759 void exit_oom_victim(void)
760 {
761 clear_thread_flag(TIF_MEMDIE);
762
763 if (!atomic_dec_return(&oom_victims))
764 wake_up_all(&oom_victims_wait);
765 }
766
767 /**
768 * oom_killer_enable - enable OOM killer
769 */
oom_killer_enable(void)770 void oom_killer_enable(void)
771 {
772 oom_killer_disabled = false;
773 pr_info("OOM killer enabled.\n");
774 }
775
776 /**
777 * oom_killer_disable - disable OOM killer
778 * @timeout: maximum timeout to wait for oom victims in jiffies
779 *
780 * Forces all page allocations to fail rather than trigger OOM killer.
781 * Will block and wait until all OOM victims are killed or the given
782 * timeout expires.
783 *
784 * The function cannot be called when there are runnable user tasks because
785 * the userspace would see unexpected allocation failures as a result. Any
786 * new usage of this function should be consulted with MM people.
787 *
788 * Returns true if successful and false if the OOM killer cannot be
789 * disabled.
790 */
oom_killer_disable(signed long timeout)791 bool oom_killer_disable(signed long timeout)
792 {
793 signed long ret;
794
795 /*
796 * Make sure to not race with an ongoing OOM killer. Check that the
797 * current is not killed (possibly due to sharing the victim's memory).
798 */
799 if (mutex_lock_killable(&oom_lock))
800 return false;
801 oom_killer_disabled = true;
802 mutex_unlock(&oom_lock);
803
804 ret = wait_event_interruptible_timeout(oom_victims_wait,
805 !atomic_read(&oom_victims), timeout);
806 if (ret <= 0) {
807 oom_killer_enable();
808 return false;
809 }
810 pr_info("OOM killer disabled.\n");
811
812 return true;
813 }
814
__task_will_free_mem(struct task_struct * task)815 static inline bool __task_will_free_mem(struct task_struct *task)
816 {
817 struct signal_struct *sig = task->signal;
818
819 /*
820 * A coredumping process may sleep for an extended period in exit_mm(),
821 * so the oom killer cannot assume that the process will promptly exit
822 * and release memory.
823 */
824 if (sig->flags & SIGNAL_GROUP_COREDUMP)
825 return false;
826
827 if (sig->flags & SIGNAL_GROUP_EXIT)
828 return true;
829
830 if (thread_group_empty(task) && (task->flags & PF_EXITING))
831 return true;
832
833 return false;
834 }
835
836 /*
837 * Checks whether the given task is dying or exiting and likely to
838 * release its address space. This means that all threads and processes
839 * sharing the same mm have to be killed or exiting.
840 * Caller has to make sure that task->mm is stable (hold task_lock or
841 * it operates on the current).
842 */
task_will_free_mem(struct task_struct * task)843 static bool task_will_free_mem(struct task_struct *task)
844 {
845 struct mm_struct *mm = task->mm;
846 struct task_struct *p;
847 bool ret = true;
848
849 /*
850 * Skip tasks without mm because it might have passed its exit_mm and
851 * exit_oom_victim. oom_reaper could have rescued that but do not rely
852 * on that for now. We can consider find_lock_task_mm in future.
853 */
854 if (!mm)
855 return false;
856
857 if (!__task_will_free_mem(task))
858 return false;
859
860 /*
861 * This task has already been drained by the oom reaper so there are
862 * only small chances it will free some more
863 */
864 if (test_bit(MMF_OOM_SKIP, &mm->flags))
865 return false;
866
867 if (atomic_read(&mm->mm_users) <= 1)
868 return true;
869
870 /*
871 * Make sure that all tasks which share the mm with the given tasks
872 * are dying as well to make sure that a) nobody pins its mm and
873 * b) the task is also reapable by the oom reaper.
874 */
875 rcu_read_lock();
876 for_each_process(p) {
877 if (!process_shares_mm(p, mm))
878 continue;
879 if (same_thread_group(task, p))
880 continue;
881 ret = __task_will_free_mem(p);
882 if (!ret)
883 break;
884 }
885 rcu_read_unlock();
886
887 return ret;
888 }
889
__oom_kill_process(struct task_struct * victim,const char * message)890 static void __oom_kill_process(struct task_struct *victim, const char *message)
891 {
892 struct task_struct *p;
893 struct mm_struct *mm;
894 bool can_oom_reap = true;
895
896 p = find_lock_task_mm(victim);
897 if (!p) {
898 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
899 message, task_pid_nr(victim), victim->comm);
900 put_task_struct(victim);
901 return;
902 } else if (victim != p) {
903 get_task_struct(p);
904 put_task_struct(victim);
905 victim = p;
906 }
907
908 /* Get a reference to safely compare mm after task_unlock(victim) */
909 mm = victim->mm;
910 mmgrab(mm);
911
912 /* Raise event before sending signal: task reaper must see this */
913 count_vm_event(OOM_KILL);
914 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
915
916 /*
917 * We should send SIGKILL before granting access to memory reserves
918 * in order to prevent the OOM victim from depleting the memory
919 * reserves from the user space under its control.
920 */
921 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
922 mark_oom_victim(victim);
923 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
924 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
925 K(get_mm_counter(mm, MM_ANONPAGES)),
926 K(get_mm_counter(mm, MM_FILEPAGES)),
927 K(get_mm_counter(mm, MM_SHMEMPAGES)),
928 from_kuid(&init_user_ns, task_uid(victim)),
929 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
930 task_unlock(victim);
931
932 /*
933 * Kill all user processes sharing victim->mm in other thread groups, if
934 * any. They don't get access to memory reserves, though, to avoid
935 * depletion of all memory. This prevents mm->mmap_lock livelock when an
936 * oom killed thread cannot exit because it requires the semaphore and
937 * its contended by another thread trying to allocate memory itself.
938 * That thread will now get access to memory reserves since it has a
939 * pending fatal signal.
940 */
941 rcu_read_lock();
942 for_each_process(p) {
943 if (!process_shares_mm(p, mm))
944 continue;
945 if (same_thread_group(p, victim))
946 continue;
947 if (is_global_init(p)) {
948 can_oom_reap = false;
949 set_bit(MMF_OOM_SKIP, &mm->flags);
950 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
951 task_pid_nr(victim), victim->comm,
952 task_pid_nr(p), p->comm);
953 continue;
954 }
955 /*
956 * No kthead_use_mm() user needs to read from the userspace so
957 * we are ok to reap it.
958 */
959 if (unlikely(p->flags & PF_KTHREAD))
960 continue;
961 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
962 }
963 rcu_read_unlock();
964
965 if (can_oom_reap)
966 queue_oom_reaper(victim);
967
968 mmdrop(mm);
969 put_task_struct(victim);
970 }
971 #undef K
972
973 /*
974 * Kill provided task unless it's secured by setting
975 * oom_score_adj to OOM_SCORE_ADJ_MIN.
976 */
oom_kill_memcg_member(struct task_struct * task,void * message)977 static int oom_kill_memcg_member(struct task_struct *task, void *message)
978 {
979 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
980 !is_global_init(task)) {
981 get_task_struct(task);
982 __oom_kill_process(task, message);
983 }
984 return 0;
985 }
986
oom_kill_process(struct oom_control * oc,const char * message)987 static void oom_kill_process(struct oom_control *oc, const char *message)
988 {
989 struct task_struct *victim = oc->chosen;
990 struct mem_cgroup *oom_group;
991 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
992 DEFAULT_RATELIMIT_BURST);
993
994 /*
995 * If the task is already exiting, don't alarm the sysadmin or kill
996 * its children or threads, just give it access to memory reserves
997 * so it can die quickly
998 */
999 task_lock(victim);
1000 if (task_will_free_mem(victim)) {
1001 mark_oom_victim(victim);
1002 queue_oom_reaper(victim);
1003 task_unlock(victim);
1004 put_task_struct(victim);
1005 return;
1006 }
1007 task_unlock(victim);
1008
1009 if (__ratelimit(&oom_rs))
1010 dump_header(oc, victim);
1011
1012 /*
1013 * Do we need to kill the entire memory cgroup?
1014 * Or even one of the ancestor memory cgroups?
1015 * Check this out before killing the victim task.
1016 */
1017 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1018
1019 __oom_kill_process(victim, message);
1020
1021 /*
1022 * If necessary, kill all tasks in the selected memory cgroup.
1023 */
1024 if (oom_group) {
1025 mem_cgroup_print_oom_group(oom_group);
1026 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1027 (void*)message);
1028 mem_cgroup_put(oom_group);
1029 }
1030 }
1031
1032 /*
1033 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1034 */
check_panic_on_oom(struct oom_control * oc)1035 static void check_panic_on_oom(struct oom_control *oc)
1036 {
1037 if (likely(!sysctl_panic_on_oom))
1038 return;
1039 if (sysctl_panic_on_oom != 2) {
1040 /*
1041 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1042 * does not panic for cpuset, mempolicy, or memcg allocation
1043 * failures.
1044 */
1045 if (oc->constraint != CONSTRAINT_NONE)
1046 return;
1047 }
1048 /* Do not panic for oom kills triggered by sysrq */
1049 if (is_sysrq_oom(oc))
1050 return;
1051 dump_header(oc, NULL);
1052 panic("Out of memory: %s panic_on_oom is enabled\n",
1053 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1054 }
1055
1056 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1057
register_oom_notifier(struct notifier_block * nb)1058 int register_oom_notifier(struct notifier_block *nb)
1059 {
1060 return blocking_notifier_chain_register(&oom_notify_list, nb);
1061 }
1062 EXPORT_SYMBOL_GPL(register_oom_notifier);
1063
unregister_oom_notifier(struct notifier_block * nb)1064 int unregister_oom_notifier(struct notifier_block *nb)
1065 {
1066 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1067 }
1068 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1069
1070 /**
1071 * out_of_memory - kill the "best" process when we run out of memory
1072 * @oc: pointer to struct oom_control
1073 *
1074 * If we run out of memory, we have the choice between either
1075 * killing a random task (bad), letting the system crash (worse)
1076 * OR try to be smart about which process to kill. Note that we
1077 * don't have to be perfect here, we just have to be good.
1078 */
out_of_memory(struct oom_control * oc)1079 bool out_of_memory(struct oom_control *oc)
1080 {
1081 unsigned long freed = 0;
1082
1083 if (oom_killer_disabled)
1084 return false;
1085
1086 if (!is_memcg_oom(oc)) {
1087 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1088 if (freed > 0)
1089 /* Got some memory back in the last second. */
1090 return true;
1091 }
1092
1093 /*
1094 * If current has a pending SIGKILL or is exiting, then automatically
1095 * select it. The goal is to allow it to allocate so that it may
1096 * quickly exit and free its memory.
1097 */
1098 if (task_will_free_mem(current)) {
1099 mark_oom_victim(current);
1100 queue_oom_reaper(current);
1101 return true;
1102 }
1103
1104 /*
1105 * The OOM killer does not compensate for IO-less reclaim.
1106 * pagefault_out_of_memory lost its gfp context so we have to
1107 * make sure exclude 0 mask - all other users should have at least
1108 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1109 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1110 */
1111 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1112 return true;
1113
1114 /*
1115 * Check if there were limitations on the allocation (only relevant for
1116 * NUMA and memcg) that may require different handling.
1117 */
1118 oc->constraint = constrained_alloc(oc);
1119 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1120 oc->nodemask = NULL;
1121 check_panic_on_oom(oc);
1122
1123 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1124 current->mm && !oom_unkillable_task(current) &&
1125 oom_cpuset_eligible(current, oc) &&
1126 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1127 get_task_struct(current);
1128 oc->chosen = current;
1129 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1130 return true;
1131 }
1132
1133 select_bad_process(oc);
1134 /* Found nothing?!?! */
1135 if (!oc->chosen) {
1136 dump_header(oc, NULL);
1137 pr_warn("Out of memory and no killable processes...\n");
1138 /*
1139 * If we got here due to an actual allocation at the
1140 * system level, we cannot survive this and will enter
1141 * an endless loop in the allocator. Bail out now.
1142 */
1143 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1144 panic("System is deadlocked on memory\n");
1145 }
1146 if (oc->chosen && oc->chosen != (void *)-1UL)
1147 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1148 "Memory cgroup out of memory");
1149 return !!oc->chosen;
1150 }
1151
1152 /*
1153 * The pagefault handler calls here because some allocation has failed. We have
1154 * to take care of the memcg OOM here because this is the only safe context without
1155 * any locks held but let the oom killer triggered from the allocation context care
1156 * about the global OOM.
1157 */
pagefault_out_of_memory(void)1158 void pagefault_out_of_memory(void)
1159 {
1160 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1161 DEFAULT_RATELIMIT_BURST);
1162
1163 if (mem_cgroup_oom_synchronize(true))
1164 return;
1165
1166 if (fatal_signal_pending(current))
1167 return;
1168
1169 if (__ratelimit(&pfoom_rs))
1170 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1171 }
1172