• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			struct netdev_name_node *name_node;
1199 			list_for_each_entry(name_node, &d->name_node->list, list) {
1200 				if (!sscanf(name_node->name, name, &i))
1201 					continue;
1202 				if (i < 0 || i >= max_netdevices)
1203 					continue;
1204 
1205 				/*  avoid cases where sscanf is not exact inverse of printf */
1206 				snprintf(buf, IFNAMSIZ, name, i);
1207 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 					set_bit(i, inuse);
1209 			}
1210 			if (!sscanf(d->name, name, &i))
1211 				continue;
1212 			if (i < 0 || i >= max_netdevices)
1213 				continue;
1214 
1215 			/*  avoid cases where sscanf is not exact inverse of printf */
1216 			snprintf(buf, IFNAMSIZ, name, i);
1217 			if (!strncmp(buf, d->name, IFNAMSIZ))
1218 				set_bit(i, inuse);
1219 		}
1220 
1221 		i = find_first_zero_bit(inuse, max_netdevices);
1222 		free_page((unsigned long) inuse);
1223 	}
1224 
1225 	snprintf(buf, IFNAMSIZ, name, i);
1226 	if (!__dev_get_by_name(net, buf))
1227 		return i;
1228 
1229 	/* It is possible to run out of possible slots
1230 	 * when the name is long and there isn't enough space left
1231 	 * for the digits, or if all bits are used.
1232 	 */
1233 	return -ENFILE;
1234 }
1235 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 			     struct net_device *dev,
1238 			     const char *name)
1239 {
1240 	char buf[IFNAMSIZ];
1241 	int ret;
1242 
1243 	BUG_ON(!net);
1244 	ret = __dev_alloc_name(net, name, buf);
1245 	if (ret >= 0)
1246 		strlcpy(dev->name, buf, IFNAMSIZ);
1247 	return ret;
1248 }
1249 
1250 /**
1251  *	dev_alloc_name - allocate a name for a device
1252  *	@dev: device
1253  *	@name: name format string
1254  *
1255  *	Passed a format string - eg "lt%d" it will try and find a suitable
1256  *	id. It scans list of devices to build up a free map, then chooses
1257  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *	while allocating the name and adding the device in order to avoid
1259  *	duplicates.
1260  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *	Returns the number of the unit assigned or a negative errno code.
1262  */
1263 
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 			      const char *name)
1272 {
1273 	BUG_ON(!net);
1274 
1275 	if (!dev_valid_name(name))
1276 		return -EINVAL;
1277 
1278 	if (strchr(name, '%'))
1279 		return dev_alloc_name_ns(net, dev, name);
1280 	else if (__dev_get_by_name(net, name))
1281 		return -EEXIST;
1282 	else if (dev->name != name)
1283 		strlcpy(dev->name, name, IFNAMSIZ);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  *	dev_change_name - change name of a device
1290  *	@dev: device
1291  *	@newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *	Change name of a device, can pass format strings "eth%d".
1294  *	for wildcarding.
1295  */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 	unsigned char old_assign_type;
1299 	char oldname[IFNAMSIZ];
1300 	int err = 0;
1301 	int ret;
1302 	struct net *net;
1303 
1304 	ASSERT_RTNL();
1305 	BUG_ON(!dev_net(dev));
1306 
1307 	net = dev_net(dev);
1308 
1309 	/* Some auto-enslaved devices e.g. failover slaves are
1310 	 * special, as userspace might rename the device after
1311 	 * the interface had been brought up and running since
1312 	 * the point kernel initiated auto-enslavement. Allow
1313 	 * live name change even when these slave devices are
1314 	 * up and running.
1315 	 *
1316 	 * Typically, users of these auto-enslaving devices
1317 	 * don't actually care about slave name change, as
1318 	 * they are supposed to operate on master interface
1319 	 * directly.
1320 	 */
1321 	if (dev->flags & IFF_UP &&
1322 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 		return -EBUSY;
1324 
1325 	down_write(&devnet_rename_sem);
1326 
1327 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 		up_write(&devnet_rename_sem);
1329 		return 0;
1330 	}
1331 
1332 	memcpy(oldname, dev->name, IFNAMSIZ);
1333 
1334 	err = dev_get_valid_name(net, dev, newname);
1335 	if (err < 0) {
1336 		up_write(&devnet_rename_sem);
1337 		return err;
1338 	}
1339 
1340 	if (oldname[0] && !strchr(oldname, '%'))
1341 		netdev_info(dev, "renamed from %s\n", oldname);
1342 
1343 	old_assign_type = dev->name_assign_type;
1344 	dev->name_assign_type = NET_NAME_RENAMED;
1345 
1346 rollback:
1347 	ret = device_rename(&dev->dev, dev->name);
1348 	if (ret) {
1349 		memcpy(dev->name, oldname, IFNAMSIZ);
1350 		dev->name_assign_type = old_assign_type;
1351 		up_write(&devnet_rename_sem);
1352 		return ret;
1353 	}
1354 
1355 	up_write(&devnet_rename_sem);
1356 
1357 	netdev_adjacent_rename_links(dev, oldname);
1358 
1359 	write_lock_bh(&dev_base_lock);
1360 	netdev_name_node_del(dev->name_node);
1361 	write_unlock_bh(&dev_base_lock);
1362 
1363 	synchronize_rcu();
1364 
1365 	write_lock_bh(&dev_base_lock);
1366 	netdev_name_node_add(net, dev->name_node);
1367 	write_unlock_bh(&dev_base_lock);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 	ret = notifier_to_errno(ret);
1371 
1372 	if (ret) {
1373 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1374 		if (err >= 0) {
1375 			err = ret;
1376 			down_write(&devnet_rename_sem);
1377 			memcpy(dev->name, oldname, IFNAMSIZ);
1378 			memcpy(oldname, newname, IFNAMSIZ);
1379 			dev->name_assign_type = old_assign_type;
1380 			old_assign_type = NET_NAME_RENAMED;
1381 			goto rollback;
1382 		} else {
1383 			pr_err("%s: name change rollback failed: %d\n",
1384 			       dev->name, ret);
1385 		}
1386 	}
1387 
1388 	return err;
1389 }
1390 
1391 /**
1392  *	dev_set_alias - change ifalias of a device
1393  *	@dev: device
1394  *	@alias: name up to IFALIASZ
1395  *	@len: limit of bytes to copy from info
1396  *
1397  *	Set ifalias for a device,
1398  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 	struct dev_ifalias *new_alias = NULL;
1402 
1403 	if (len >= IFALIASZ)
1404 		return -EINVAL;
1405 
1406 	if (len) {
1407 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 		if (!new_alias)
1409 			return -ENOMEM;
1410 
1411 		memcpy(new_alias->ifalias, alias, len);
1412 		new_alias->ifalias[len] = 0;
1413 	}
1414 
1415 	mutex_lock(&ifalias_mutex);
1416 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 					mutex_is_locked(&ifalias_mutex));
1418 	mutex_unlock(&ifalias_mutex);
1419 
1420 	if (new_alias)
1421 		kfree_rcu(new_alias, rcuhead);
1422 
1423 	return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426 
1427 /**
1428  *	dev_get_alias - get ifalias of a device
1429  *	@dev: device
1430  *	@name: buffer to store name of ifalias
1431  *	@len: size of buffer
1432  *
1433  *	get ifalias for a device.  Caller must make sure dev cannot go
1434  *	away,  e.g. rcu read lock or own a reference count to device.
1435  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 	const struct dev_ifalias *alias;
1439 	int ret = 0;
1440 
1441 	rcu_read_lock();
1442 	alias = rcu_dereference(dev->ifalias);
1443 	if (alias)
1444 		ret = snprintf(name, len, "%s", alias->ifalias);
1445 	rcu_read_unlock();
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  *	netdev_features_change - device changes features
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed features.
1455  */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461 
1462 /**
1463  *	netdev_state_change - device changes state
1464  *	@dev: device to cause notification
1465  *
1466  *	Called to indicate a device has changed state. This function calls
1467  *	the notifier chains for netdev_chain and sends a NEWLINK message
1468  *	to the routing socket.
1469  */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		struct netdev_notifier_change_info change_info = {
1474 			.info.dev = dev,
1475 		};
1476 
1477 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 					      &change_info.info);
1479 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 	}
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483 
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 	rtnl_lock();
1497 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 	rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 	const struct net_device_ops *ops = dev->netdev_ops;
1506 	int ret;
1507 
1508 	ASSERT_RTNL();
1509 
1510 	if (!netif_device_present(dev)) {
1511 		/* may be detached because parent is runtime-suspended */
1512 		if (dev->dev.parent)
1513 			pm_runtime_resume(dev->dev.parent);
1514 		if (!netif_device_present(dev))
1515 			return -ENODEV;
1516 	}
1517 
1518 	/* Block netpoll from trying to do any rx path servicing.
1519 	 * If we don't do this there is a chance ndo_poll_controller
1520 	 * or ndo_poll may be running while we open the device
1521 	 */
1522 	netpoll_poll_disable(dev);
1523 
1524 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 	ret = notifier_to_errno(ret);
1526 	if (ret)
1527 		return ret;
1528 
1529 	set_bit(__LINK_STATE_START, &dev->state);
1530 
1531 	if (ops->ndo_validate_addr)
1532 		ret = ops->ndo_validate_addr(dev);
1533 
1534 	if (!ret && ops->ndo_open)
1535 		ret = ops->ndo_open(dev);
1536 
1537 	netpoll_poll_enable(dev);
1538 
1539 	if (ret)
1540 		clear_bit(__LINK_STATE_START, &dev->state);
1541 	else {
1542 		dev->flags |= IFF_UP;
1543 		dev_set_rx_mode(dev);
1544 		dev_activate(dev);
1545 		add_device_randomness(dev->dev_addr, dev->addr_len);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  *	dev_open	- prepare an interface for use.
1553  *	@dev: device to open
1554  *	@extack: netlink extended ack
1555  *
1556  *	Takes a device from down to up state. The device's private open
1557  *	function is invoked and then the multicast lists are loaded. Finally
1558  *	the device is moved into the up state and a %NETDEV_UP message is
1559  *	sent to the netdev notifier chain.
1560  *
1561  *	Calling this function on an active interface is a nop. On a failure
1562  *	a negative errno code is returned.
1563  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 	int ret;
1567 
1568 	if (dev->flags & IFF_UP)
1569 		return 0;
1570 
1571 	ret = __dev_open(dev, extack);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 	call_netdevice_notifiers(NETDEV_UP, dev);
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581 
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 	struct net_device *dev;
1585 
1586 	ASSERT_RTNL();
1587 	might_sleep();
1588 
1589 	list_for_each_entry(dev, head, close_list) {
1590 		/* Temporarily disable netpoll until the interface is down */
1591 		netpoll_poll_disable(dev);
1592 
1593 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594 
1595 		clear_bit(__LINK_STATE_START, &dev->state);
1596 
1597 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1598 		 * can be even on different cpu. So just clear netif_running().
1599 		 *
1600 		 * dev->stop() will invoke napi_disable() on all of it's
1601 		 * napi_struct instances on this device.
1602 		 */
1603 		smp_mb__after_atomic(); /* Commit netif_running(). */
1604 	}
1605 
1606 	dev_deactivate_many(head);
1607 
1608 	list_for_each_entry(dev, head, close_list) {
1609 		const struct net_device_ops *ops = dev->netdev_ops;
1610 
1611 		/*
1612 		 *	Call the device specific close. This cannot fail.
1613 		 *	Only if device is UP
1614 		 *
1615 		 *	We allow it to be called even after a DETACH hot-plug
1616 		 *	event.
1617 		 */
1618 		if (ops->ndo_stop)
1619 			ops->ndo_stop(dev);
1620 
1621 		dev->flags &= ~IFF_UP;
1622 		netpoll_poll_enable(dev);
1623 	}
1624 }
1625 
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 	LIST_HEAD(single);
1629 
1630 	list_add(&dev->close_list, &single);
1631 	__dev_close_many(&single);
1632 	list_del(&single);
1633 }
1634 
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 	struct net_device *dev, *tmp;
1638 
1639 	/* Remove the devices that don't need to be closed */
1640 	list_for_each_entry_safe(dev, tmp, head, close_list)
1641 		if (!(dev->flags & IFF_UP))
1642 			list_del_init(&dev->close_list);
1643 
1644 	__dev_close_many(head);
1645 
1646 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 		if (unlink)
1650 			list_del_init(&dev->close_list);
1651 	}
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654 
1655 /**
1656  *	dev_close - shutdown an interface.
1657  *	@dev: device to shutdown
1658  *
1659  *	This function moves an active device into down state. A
1660  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *	chain.
1663  */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		LIST_HEAD(single);
1668 
1669 		list_add(&dev->close_list, &single);
1670 		dev_close_many(&single, true);
1671 		list_del(&single);
1672 	}
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675 
1676 
1677 /**
1678  *	dev_disable_lro - disable Large Receive Offload on a device
1679  *	@dev: device
1680  *
1681  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *	called under RTNL.  This is needed if received packets may be
1683  *	forwarded to another interface.
1684  */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 	struct net_device *lower_dev;
1688 	struct list_head *iter;
1689 
1690 	dev->wanted_features &= ~NETIF_F_LRO;
1691 	netdev_update_features(dev);
1692 
1693 	if (unlikely(dev->features & NETIF_F_LRO))
1694 		netdev_WARN(dev, "failed to disable LRO!\n");
1695 
1696 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 		dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700 
1701 /**
1702  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *	@dev: device
1704  *
1705  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *	called under RTNL.  This is needed if Generic XDP is installed on
1707  *	the device.
1708  */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 	netdev_update_features(dev);
1713 
1714 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717 
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) 						\
1721 	case NETDEV_##val:				\
1722 		return "NETDEV_" __stringify(val);
1723 	switch (cmd) {
1724 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 	N(PRE_CHANGEADDR)
1734 	}
1735 #undef N
1736 	return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 				   struct net_device *dev)
1742 {
1743 	struct netdev_notifier_info info = {
1744 		.dev = dev,
1745 	};
1746 
1747 	return nb->notifier_call(nb, val, &info);
1748 }
1749 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 					     struct net_device *dev)
1752 {
1753 	int err;
1754 
1755 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 	err = notifier_to_errno(err);
1757 	if (err)
1758 		return err;
1759 
1760 	if (!(dev->flags & IFF_UP))
1761 		return 0;
1762 
1763 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 	return 0;
1765 }
1766 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 						struct net_device *dev)
1769 {
1770 	if (dev->flags & IFF_UP) {
1771 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 					dev);
1773 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 	}
1775 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 						 struct net *net)
1780 {
1781 	struct net_device *dev;
1782 	int err;
1783 
1784 	for_each_netdev(net, dev) {
1785 		err = call_netdevice_register_notifiers(nb, dev);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 	return 0;
1790 
1791 rollback:
1792 	for_each_netdev_continue_reverse(net, dev)
1793 		call_netdevice_unregister_notifiers(nb, dev);
1794 	return err;
1795 }
1796 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 						    struct net *net)
1799 {
1800 	struct net_device *dev;
1801 
1802 	for_each_netdev(net, dev)
1803 		call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805 
1806 static int dev_boot_phase = 1;
1807 
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821 
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 	struct net *net;
1825 	int err;
1826 
1827 	/* Close race with setup_net() and cleanup_net() */
1828 	down_write(&pernet_ops_rwsem);
1829 	rtnl_lock();
1830 	err = raw_notifier_chain_register(&netdev_chain, nb);
1831 	if (err)
1832 		goto unlock;
1833 	if (dev_boot_phase)
1834 		goto unlock;
1835 	for_each_net(net) {
1836 		err = call_netdevice_register_net_notifiers(nb, net);
1837 		if (err)
1838 			goto rollback;
1839 	}
1840 
1841 unlock:
1842 	rtnl_unlock();
1843 	up_write(&pernet_ops_rwsem);
1844 	return err;
1845 
1846 rollback:
1847 	for_each_net_continue_reverse(net)
1848 		call_netdevice_unregister_net_notifiers(nb, net);
1849 
1850 	raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854 
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868 
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 	struct net *net;
1872 	int err;
1873 
1874 	/* Close race with setup_net() and cleanup_net() */
1875 	down_write(&pernet_ops_rwsem);
1876 	rtnl_lock();
1877 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 	if (err)
1879 		goto unlock;
1880 
1881 	for_each_net(net)
1882 		call_netdevice_unregister_net_notifiers(nb, net);
1883 
1884 unlock:
1885 	rtnl_unlock();
1886 	up_write(&pernet_ops_rwsem);
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 					     struct notifier_block *nb,
1893 					     bool ignore_call_fail)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 	if (dev_boot_phase)
1901 		return 0;
1902 
1903 	err = call_netdevice_register_net_notifiers(nb, net);
1904 	if (err && !ignore_call_fail)
1905 		goto chain_unregister;
1906 
1907 	return 0;
1908 
1909 chain_unregister:
1910 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 	return err;
1912 }
1913 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 					       struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 	if (err)
1921 		return err;
1922 
1923 	call_netdevice_unregister_net_notifiers(nb, net);
1924 	return 0;
1925 }
1926 
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 	int err;
1945 
1946 	rtnl_lock();
1947 	err = __register_netdevice_notifier_net(net, nb, false);
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952 
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 				      struct notifier_block *nb)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __unregister_netdevice_notifier_net(net, nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 					struct notifier_block *nb,
1983 					struct netdev_net_notifier *nn)
1984 {
1985 	int err;
1986 
1987 	rtnl_lock();
1988 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 	if (!err) {
1990 		nn->nb = nb;
1991 		list_add(&nn->list, &dev->net_notifier_list);
1992 	}
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 					  struct notifier_block *nb,
2000 					  struct netdev_net_notifier *nn)
2001 {
2002 	int err;
2003 
2004 	rtnl_lock();
2005 	list_del(&nn->list);
2006 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 	rtnl_unlock();
2008 	return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 					     struct net *net)
2014 {
2015 	struct netdev_net_notifier *nn;
2016 
2017 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 		__register_netdevice_notifier_net(net, nn->nb, true);
2020 	}
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers_info - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@info: notifier information data
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 					 struct netdev_notifier_info *info)
2034 {
2035 	struct net *net = dev_net(info->dev);
2036 	int ret;
2037 
2038 	ASSERT_RTNL();
2039 
2040 	/* Run per-netns notifier block chain first, then run the global one.
2041 	 * Hopefully, one day, the global one is going to be removed after
2042 	 * all notifier block registrators get converted to be per-netns.
2043 	 */
2044 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		return ret;
2047 	return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 					   struct net_device *dev,
2052 					   struct netlink_ext_ack *extack)
2053 {
2054 	struct netdev_notifier_info info = {
2055 		.dev = dev,
2056 		.extack = extack,
2057 	};
2058 
2059 	return call_netdevice_notifiers_info(val, &info);
2060 }
2061 
2062 /**
2063  *	call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *	Call all network notifier blocks.  Parameters and return value
2068  *	are as for raw_notifier_call_chain().
2069  */
2070 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 	return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076 
2077 /**
2078  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *	@val: value passed unmodified to notifier function
2080  *	@dev: net_device pointer passed unmodified to notifier function
2081  *	@arg: additional u32 argument passed to the notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 					struct net_device *dev, u32 arg)
2088 {
2089 	struct netdev_notifier_info_ext info = {
2090 		.info.dev = dev,
2091 		.ext.mtu = arg,
2092 	};
2093 
2094 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095 
2096 	return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098 
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101 
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 	static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107 
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 	static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114 
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117 
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 	static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123 
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 	static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130 
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 	int wanted;
2139 
2140 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 	if (wanted > 0)
2142 		static_branch_enable(&netstamp_needed_key);
2143 	else
2144 		static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148 
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 0)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_inc(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168 
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 	int wanted;
2173 
2174 	while (1) {
2175 		wanted = atomic_read(&netstamp_wanted);
2176 		if (wanted <= 1)
2177 			break;
2178 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 			return;
2180 	}
2181 	atomic_dec(&netstamp_needed_deferred);
2182 	schedule_work(&netstamp_work);
2183 #else
2184 	static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188 
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 	skb->tstamp = 0;
2192 	if (static_branch_unlikely(&netstamp_needed_key))
2193 		__net_timestamp(skb);
2194 }
2195 
2196 #define net_timestamp_check(COND, SKB)				\
2197 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2198 		if ((COND) && !(SKB)->tstamp)			\
2199 			__net_timestamp(SKB);			\
2200 	}							\
2201 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 	unsigned int len;
2205 
2206 	if (!(dev->flags & IFF_UP))
2207 		return false;
2208 
2209 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 	if (skb->len <= len)
2211 		return true;
2212 
2213 	/* if TSO is enabled, we don't care about the length as the packet
2214 	 * could be forwarded without being segmented before
2215 	 */
2216 	if (skb_is_gso(skb))
2217 		return true;
2218 
2219 	return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	int ret = ____dev_forward_skb(dev, skb);
2226 
2227 	if (likely(!ret)) {
2228 		skb->protocol = eth_type_trans(skb, dev);
2229 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 	}
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235 
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *	NET_RX_SUCCESS	(no congestion)
2244  *	NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 			      struct packet_type *pt_prev,
2262 			      struct net_device *orig_dev)
2263 {
2264 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 		return -ENOMEM;
2266 	refcount_inc(&skb->users);
2267 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 					  struct packet_type **pt,
2272 					  struct net_device *orig_dev,
2273 					  __be16 type,
2274 					  struct list_head *ptype_list)
2275 {
2276 	struct packet_type *ptype, *pt_prev = *pt;
2277 
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (ptype->type != type)
2280 			continue;
2281 		if (pt_prev)
2282 			deliver_skb(skb, pt_prev, orig_dev);
2283 		pt_prev = ptype;
2284 	}
2285 	*pt = pt_prev;
2286 }
2287 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 	if (!ptype->af_packet_priv || !skb->sk)
2291 		return false;
2292 
2293 	if (ptype->id_match)
2294 		return ptype->id_match(ptype, skb->sk);
2295 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311 
2312 /*
2313  *	Support routine. Sends outgoing frames to any network
2314  *	taps currently in use.
2315  */
2316 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct packet_type *ptype;
2320 	struct sk_buff *skb2 = NULL;
2321 	struct packet_type *pt_prev = NULL;
2322 	struct list_head *ptype_list = &ptype_all;
2323 
2324 	rcu_read_lock();
2325 again:
2326 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 		if (READ_ONCE(ptype->ignore_outgoing))
2328 			continue;
2329 
2330 		/* Never send packets back to the socket
2331 		 * they originated from - MvS (miquels@drinkel.ow.org)
2332 		 */
2333 		if (skb_loop_sk(ptype, skb))
2334 			continue;
2335 
2336 		if (pt_prev) {
2337 			deliver_skb(skb2, pt_prev, skb->dev);
2338 			pt_prev = ptype;
2339 			continue;
2340 		}
2341 
2342 		/* need to clone skb, done only once */
2343 		skb2 = skb_clone(skb, GFP_ATOMIC);
2344 		if (!skb2)
2345 			goto out_unlock;
2346 
2347 		net_timestamp_set(skb2);
2348 
2349 		/* skb->nh should be correctly
2350 		 * set by sender, so that the second statement is
2351 		 * just protection against buggy protocols.
2352 		 */
2353 		skb_reset_mac_header(skb2);
2354 
2355 		if (skb_network_header(skb2) < skb2->data ||
2356 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 					     ntohs(skb2->protocol),
2359 					     dev->name);
2360 			skb_reset_network_header(skb2);
2361 		}
2362 
2363 		skb2->transport_header = skb2->network_header;
2364 		skb2->pkt_type = PACKET_OUTGOING;
2365 		pt_prev = ptype;
2366 	}
2367 
2368 	if (ptype_list == &ptype_all) {
2369 		ptype_list = &dev->ptype_all;
2370 		goto again;
2371 	}
2372 out_unlock:
2373 	if (pt_prev) {
2374 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 		else
2377 			kfree_skb(skb2);
2378 	}
2379 	rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382 
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	int i;
2399 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 
2401 	/* If TC0 is invalidated disable TC mapping */
2402 	if (tc->offset + tc->count > txq) {
2403 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 		dev->num_tc = 0;
2405 		return;
2406 	}
2407 
2408 	/* Invalidated prio to tc mappings set to TC0 */
2409 	for (i = 1; i < TC_BITMASK + 1; i++) {
2410 		int q = netdev_get_prio_tc_map(dev, i);
2411 
2412 		tc = &dev->tc_to_txq[q];
2413 		if (tc->offset + tc->count > txq) {
2414 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 				i, q);
2416 			netdev_set_prio_tc_map(dev, i, 0);
2417 		}
2418 	}
2419 }
2420 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 	if (dev->num_tc) {
2424 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 		int i;
2426 
2427 		/* walk through the TCs and see if it falls into any of them */
2428 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 			if ((txq - tc->offset) < tc->count)
2430 				return i;
2431 		}
2432 
2433 		/* didn't find it, just return -1 to indicate no match */
2434 		return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440 
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	if (dev_maps)
2457 		map = xmap_dereference(dev_maps->attr_map[tci]);
2458 	if (!map)
2459 		return false;
2460 
2461 	for (pos = map->len; pos--;) {
2462 		if (map->queues[pos] != index)
2463 			continue;
2464 
2465 		if (map->len > 1) {
2466 			map->queues[pos] = map->queues[--map->len];
2467 			break;
2468 		}
2469 
2470 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 		kfree_rcu(map, rcu);
2472 		return false;
2473 	}
2474 
2475 	return true;
2476 }
2477 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 				 struct xps_dev_maps *dev_maps,
2480 				 int cpu, u16 offset, u16 count)
2481 {
2482 	int num_tc = dev->num_tc ? : 1;
2483 	bool active = false;
2484 	int tci;
2485 
2486 	for (tci = cpu * num_tc; num_tc--; tci++) {
2487 		int i, j;
2488 
2489 		for (i = count, j = offset; i--; j++) {
2490 			if (!remove_xps_queue(dev_maps, tci, j))
2491 				break;
2492 		}
2493 
2494 		active |= i < 0;
2495 	}
2496 
2497 	return active;
2498 }
2499 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 			   struct xps_dev_maps *dev_maps,
2502 			   bool is_rxqs_map)
2503 {
2504 	if (is_rxqs_map) {
2505 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 	} else {
2508 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 	}
2510 	static_key_slow_dec_cpuslocked(&xps_needed);
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 			   u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 	     j < nr_ids;)
2523 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 					       count);
2525 	if (!active)
2526 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527 
2528 	if (!is_rxqs_map) {
2529 		for (i = offset + (count - 1); count--; i--) {
2530 			netdev_queue_numa_node_write(
2531 				netdev_get_tx_queue(dev, i),
2532 				NUMA_NO_NODE);
2533 		}
2534 	}
2535 }
2536 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	const unsigned long *possible_mask = NULL;
2541 	struct xps_dev_maps *dev_maps;
2542 	unsigned int nr_ids;
2543 
2544 	if (!static_key_false(&xps_needed))
2545 		return;
2546 
2547 	cpus_read_lock();
2548 	mutex_lock(&xps_map_mutex);
2549 
2550 	if (static_key_false(&xps_rxqs_needed)) {
2551 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 		if (dev_maps) {
2553 			nr_ids = dev->num_rx_queues;
2554 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 				       offset, count, true);
2556 		}
2557 	}
2558 
2559 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 	if (!dev_maps)
2561 		goto out_no_maps;
2562 
2563 	if (num_possible_cpus() > 1)
2564 		possible_mask = cpumask_bits(cpu_possible_mask);
2565 	nr_ids = nr_cpu_ids;
2566 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 		       false);
2568 
2569 out_no_maps:
2570 	mutex_unlock(&xps_map_mutex);
2571 	cpus_read_unlock();
2572 }
2573 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 				      u16 index, bool is_rxqs_map)
2581 {
2582 	struct xps_map *new_map;
2583 	int alloc_len = XPS_MIN_MAP_ALLOC;
2584 	int i, pos;
2585 
2586 	for (pos = 0; map && pos < map->len; pos++) {
2587 		if (map->queues[pos] != index)
2588 			continue;
2589 		return map;
2590 	}
2591 
2592 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 	if (map) {
2594 		if (pos < map->alloc_len)
2595 			return map;
2596 
2597 		alloc_len = map->alloc_len * 2;
2598 	}
2599 
2600 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 	 *  map
2602 	 */
2603 	if (is_rxqs_map)
2604 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 	else
2606 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 				       cpu_to_node(attr_index));
2608 	if (!new_map)
2609 		return NULL;
2610 
2611 	for (i = 0; i < pos; i++)
2612 		new_map->queues[i] = map->queues[i];
2613 	new_map->alloc_len = alloc_len;
2614 	new_map->len = pos;
2615 
2616 	return new_map;
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, bool is_rxqs_map)
2622 {
2623 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 	int i, j, tci, numa_node_id = -2;
2626 	int maps_sz, num_tc = 1, tc = 0;
2627 	struct xps_map *map, *new_map;
2628 	bool active = false;
2629 	unsigned int nr_ids;
2630 
2631 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2632 
2633 	if (dev->num_tc) {
2634 		/* Do not allow XPS on subordinate device directly */
2635 		num_tc = dev->num_tc;
2636 		if (num_tc < 0)
2637 			return -EINVAL;
2638 
2639 		/* If queue belongs to subordinate dev use its map */
2640 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2641 
2642 		tc = netdev_txq_to_tc(dev, index);
2643 		if (tc < 0)
2644 			return -EINVAL;
2645 	}
2646 
2647 	mutex_lock(&xps_map_mutex);
2648 	if (is_rxqs_map) {
2649 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2650 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2651 		nr_ids = dev->num_rx_queues;
2652 	} else {
2653 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2654 		if (num_possible_cpus() > 1) {
2655 			online_mask = cpumask_bits(cpu_online_mask);
2656 			possible_mask = cpumask_bits(cpu_possible_mask);
2657 		}
2658 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2659 		nr_ids = nr_cpu_ids;
2660 	}
2661 
2662 	if (maps_sz < L1_CACHE_BYTES)
2663 		maps_sz = L1_CACHE_BYTES;
2664 
2665 	/* allocate memory for queue storage */
2666 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2667 	     j < nr_ids;) {
2668 		if (!new_dev_maps)
2669 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2670 		if (!new_dev_maps) {
2671 			mutex_unlock(&xps_map_mutex);
2672 			return -ENOMEM;
2673 		}
2674 
2675 		tci = j * num_tc + tc;
2676 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2677 				 NULL;
2678 
2679 		map = expand_xps_map(map, j, index, is_rxqs_map);
2680 		if (!map)
2681 			goto error;
2682 
2683 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2684 	}
2685 
2686 	if (!new_dev_maps)
2687 		goto out_no_new_maps;
2688 
2689 	if (!dev_maps) {
2690 		/* Increment static keys at most once per type */
2691 		static_key_slow_inc_cpuslocked(&xps_needed);
2692 		if (is_rxqs_map)
2693 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2694 	}
2695 
2696 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2697 	     j < nr_ids;) {
2698 		/* copy maps belonging to foreign traffic classes */
2699 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2700 			/* fill in the new device map from the old device map */
2701 			map = xmap_dereference(dev_maps->attr_map[tci]);
2702 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2703 		}
2704 
2705 		/* We need to explicitly update tci as prevous loop
2706 		 * could break out early if dev_maps is NULL.
2707 		 */
2708 		tci = j * num_tc + tc;
2709 
2710 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2711 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2712 			/* add tx-queue to CPU/rx-queue maps */
2713 			int pos = 0;
2714 
2715 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 			while ((pos < map->len) && (map->queues[pos] != index))
2717 				pos++;
2718 
2719 			if (pos == map->len)
2720 				map->queues[map->len++] = index;
2721 #ifdef CONFIG_NUMA
2722 			if (!is_rxqs_map) {
2723 				if (numa_node_id == -2)
2724 					numa_node_id = cpu_to_node(j);
2725 				else if (numa_node_id != cpu_to_node(j))
2726 					numa_node_id = -1;
2727 			}
2728 #endif
2729 		} else if (dev_maps) {
2730 			/* fill in the new device map from the old device map */
2731 			map = xmap_dereference(dev_maps->attr_map[tci]);
2732 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2733 		}
2734 
2735 		/* copy maps belonging to foreign traffic classes */
2736 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2737 			/* fill in the new device map from the old device map */
2738 			map = xmap_dereference(dev_maps->attr_map[tci]);
2739 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2740 		}
2741 	}
2742 
2743 	if (is_rxqs_map)
2744 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2745 	else
2746 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2747 
2748 	/* Cleanup old maps */
2749 	if (!dev_maps)
2750 		goto out_no_old_maps;
2751 
2752 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2753 	     j < nr_ids;) {
2754 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2755 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2756 			map = xmap_dereference(dev_maps->attr_map[tci]);
2757 			if (map && map != new_map)
2758 				kfree_rcu(map, rcu);
2759 		}
2760 	}
2761 
2762 	kfree_rcu(dev_maps, rcu);
2763 
2764 out_no_old_maps:
2765 	dev_maps = new_dev_maps;
2766 	active = true;
2767 
2768 out_no_new_maps:
2769 	if (!is_rxqs_map) {
2770 		/* update Tx queue numa node */
2771 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2772 					     (numa_node_id >= 0) ?
2773 					     numa_node_id : NUMA_NO_NODE);
2774 	}
2775 
2776 	if (!dev_maps)
2777 		goto out_no_maps;
2778 
2779 	/* removes tx-queue from unused CPUs/rx-queues */
2780 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2781 	     j < nr_ids;) {
2782 		for (i = tc, tci = j * num_tc; i--; tci++)
2783 			active |= remove_xps_queue(dev_maps, tci, index);
2784 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2785 		    !netif_attr_test_online(j, online_mask, nr_ids))
2786 			active |= remove_xps_queue(dev_maps, tci, index);
2787 		for (i = num_tc - tc, tci++; --i; tci++)
2788 			active |= remove_xps_queue(dev_maps, tci, index);
2789 	}
2790 
2791 	/* free map if not active */
2792 	if (!active)
2793 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2794 
2795 out_no_maps:
2796 	mutex_unlock(&xps_map_mutex);
2797 
2798 	return 0;
2799 error:
2800 	/* remove any maps that we added */
2801 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2802 	     j < nr_ids;) {
2803 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2804 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2805 			map = dev_maps ?
2806 			      xmap_dereference(dev_maps->attr_map[tci]) :
2807 			      NULL;
2808 			if (new_map && new_map != map)
2809 				kfree(new_map);
2810 		}
2811 	}
2812 
2813 	mutex_unlock(&xps_map_mutex);
2814 
2815 	kfree(new_dev_maps);
2816 	return -ENOMEM;
2817 }
2818 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2819 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2820 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2821 			u16 index)
2822 {
2823 	int ret;
2824 
2825 	cpus_read_lock();
2826 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2827 	cpus_read_unlock();
2828 
2829 	return ret;
2830 }
2831 EXPORT_SYMBOL(netif_set_xps_queue);
2832 
2833 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2834 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2835 {
2836 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2837 
2838 	/* Unbind any subordinate channels */
2839 	while (txq-- != &dev->_tx[0]) {
2840 		if (txq->sb_dev)
2841 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2842 	}
2843 }
2844 
netdev_reset_tc(struct net_device * dev)2845 void netdev_reset_tc(struct net_device *dev)
2846 {
2847 #ifdef CONFIG_XPS
2848 	netif_reset_xps_queues_gt(dev, 0);
2849 #endif
2850 	netdev_unbind_all_sb_channels(dev);
2851 
2852 	/* Reset TC configuration of device */
2853 	dev->num_tc = 0;
2854 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2855 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2856 }
2857 EXPORT_SYMBOL(netdev_reset_tc);
2858 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2859 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2860 {
2861 	if (tc >= dev->num_tc)
2862 		return -EINVAL;
2863 
2864 #ifdef CONFIG_XPS
2865 	netif_reset_xps_queues(dev, offset, count);
2866 #endif
2867 	dev->tc_to_txq[tc].count = count;
2868 	dev->tc_to_txq[tc].offset = offset;
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_tc_queue);
2872 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2873 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2874 {
2875 	if (num_tc > TC_MAX_QUEUE)
2876 		return -EINVAL;
2877 
2878 #ifdef CONFIG_XPS
2879 	netif_reset_xps_queues_gt(dev, 0);
2880 #endif
2881 	netdev_unbind_all_sb_channels(dev);
2882 
2883 	dev->num_tc = num_tc;
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_set_num_tc);
2887 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2888 void netdev_unbind_sb_channel(struct net_device *dev,
2889 			      struct net_device *sb_dev)
2890 {
2891 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2892 
2893 #ifdef CONFIG_XPS
2894 	netif_reset_xps_queues_gt(sb_dev, 0);
2895 #endif
2896 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2897 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2898 
2899 	while (txq-- != &dev->_tx[0]) {
2900 		if (txq->sb_dev == sb_dev)
2901 			txq->sb_dev = NULL;
2902 	}
2903 }
2904 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2905 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2906 int netdev_bind_sb_channel_queue(struct net_device *dev,
2907 				 struct net_device *sb_dev,
2908 				 u8 tc, u16 count, u16 offset)
2909 {
2910 	/* Make certain the sb_dev and dev are already configured */
2911 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2912 		return -EINVAL;
2913 
2914 	/* We cannot hand out queues we don't have */
2915 	if ((offset + count) > dev->real_num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	/* Record the mapping */
2919 	sb_dev->tc_to_txq[tc].count = count;
2920 	sb_dev->tc_to_txq[tc].offset = offset;
2921 
2922 	/* Provide a way for Tx queue to find the tc_to_txq map or
2923 	 * XPS map for itself.
2924 	 */
2925 	while (count--)
2926 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2931 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2932 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2933 {
2934 	/* Do not use a multiqueue device to represent a subordinate channel */
2935 	if (netif_is_multiqueue(dev))
2936 		return -ENODEV;
2937 
2938 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2939 	 * Channel 0 is meant to be "native" mode and used only to represent
2940 	 * the main root device. We allow writing 0 to reset the device back
2941 	 * to normal mode after being used as a subordinate channel.
2942 	 */
2943 	if (channel > S16_MAX)
2944 		return -EINVAL;
2945 
2946 	dev->num_tc = -channel;
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netdev_set_sb_channel);
2951 
2952 /*
2953  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2954  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2955  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2956 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2957 {
2958 	bool disabling;
2959 	int rc;
2960 
2961 	disabling = txq < dev->real_num_tx_queues;
2962 
2963 	if (txq < 1 || txq > dev->num_tx_queues)
2964 		return -EINVAL;
2965 
2966 	if (dev->reg_state == NETREG_REGISTERED ||
2967 	    dev->reg_state == NETREG_UNREGISTERING) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2971 						  txq);
2972 		if (rc)
2973 			return rc;
2974 
2975 		if (dev->num_tc)
2976 			netif_setup_tc(dev, txq);
2977 
2978 		dev_qdisc_change_real_num_tx(dev, txq);
2979 
2980 		dev->real_num_tx_queues = txq;
2981 
2982 		if (disabling) {
2983 			synchronize_net();
2984 			qdisc_reset_all_tx_gt(dev, txq);
2985 #ifdef CONFIG_XPS
2986 			netif_reset_xps_queues_gt(dev, txq);
2987 #endif
2988 		}
2989 	} else {
2990 		dev->real_num_tx_queues = txq;
2991 	}
2992 
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2996 
2997 #ifdef CONFIG_SYSFS
2998 /**
2999  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3000  *	@dev: Network device
3001  *	@rxq: Actual number of RX queues
3002  *
3003  *	This must be called either with the rtnl_lock held or before
3004  *	registration of the net device.  Returns 0 on success, or a
3005  *	negative error code.  If called before registration, it always
3006  *	succeeds.
3007  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3008 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3009 {
3010 	int rc;
3011 
3012 	if (rxq < 1 || rxq > dev->num_rx_queues)
3013 		return -EINVAL;
3014 
3015 	if (dev->reg_state == NETREG_REGISTERED) {
3016 		ASSERT_RTNL();
3017 
3018 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3019 						  rxq);
3020 		if (rc)
3021 			return rc;
3022 	}
3023 
3024 	dev->real_num_rx_queues = rxq;
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3028 #endif
3029 
3030 /**
3031  * netif_get_num_default_rss_queues - default number of RSS queues
3032  *
3033  * This routine should set an upper limit on the number of RSS queues
3034  * used by default by multiqueue devices.
3035  */
netif_get_num_default_rss_queues(void)3036 int netif_get_num_default_rss_queues(void)
3037 {
3038 	return is_kdump_kernel() ?
3039 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3040 }
3041 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3042 
__netif_reschedule(struct Qdisc * q)3043 static void __netif_reschedule(struct Qdisc *q)
3044 {
3045 	struct softnet_data *sd;
3046 	unsigned long flags;
3047 
3048 	local_irq_save(flags);
3049 	sd = this_cpu_ptr(&softnet_data);
3050 	q->next_sched = NULL;
3051 	*sd->output_queue_tailp = q;
3052 	sd->output_queue_tailp = &q->next_sched;
3053 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3054 	local_irq_restore(flags);
3055 }
3056 
__netif_schedule(struct Qdisc * q)3057 void __netif_schedule(struct Qdisc *q)
3058 {
3059 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3060 		__netif_reschedule(q);
3061 }
3062 EXPORT_SYMBOL(__netif_schedule);
3063 
3064 struct dev_kfree_skb_cb {
3065 	enum skb_free_reason reason;
3066 };
3067 
get_kfree_skb_cb(const struct sk_buff * skb)3068 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3069 {
3070 	return (struct dev_kfree_skb_cb *)skb->cb;
3071 }
3072 
netif_schedule_queue(struct netdev_queue * txq)3073 void netif_schedule_queue(struct netdev_queue *txq)
3074 {
3075 	rcu_read_lock();
3076 	if (!netif_xmit_stopped(txq)) {
3077 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3078 
3079 		__netif_schedule(q);
3080 	}
3081 	rcu_read_unlock();
3082 }
3083 EXPORT_SYMBOL(netif_schedule_queue);
3084 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3085 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3086 {
3087 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3088 		struct Qdisc *q;
3089 
3090 		rcu_read_lock();
3091 		q = rcu_dereference(dev_queue->qdisc);
3092 		__netif_schedule(q);
3093 		rcu_read_unlock();
3094 	}
3095 }
3096 EXPORT_SYMBOL(netif_tx_wake_queue);
3097 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3098 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3099 {
3100 	unsigned long flags;
3101 
3102 	if (unlikely(!skb))
3103 		return;
3104 
3105 	if (likely(refcount_read(&skb->users) == 1)) {
3106 		smp_rmb();
3107 		refcount_set(&skb->users, 0);
3108 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3109 		return;
3110 	}
3111 	get_kfree_skb_cb(skb)->reason = reason;
3112 	local_irq_save(flags);
3113 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3114 	__this_cpu_write(softnet_data.completion_queue, skb);
3115 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3116 	local_irq_restore(flags);
3117 }
3118 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3119 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3120 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3121 {
3122 	if (in_irq() || irqs_disabled())
3123 		__dev_kfree_skb_irq(skb, reason);
3124 	else if (unlikely(reason == SKB_REASON_DROPPED))
3125 		kfree_skb(skb);
3126 	else
3127 		consume_skb(skb);
3128 }
3129 EXPORT_SYMBOL(__dev_kfree_skb_any);
3130 
3131 
3132 /**
3133  * netif_device_detach - mark device as removed
3134  * @dev: network device
3135  *
3136  * Mark device as removed from system and therefore no longer available.
3137  */
netif_device_detach(struct net_device * dev)3138 void netif_device_detach(struct net_device *dev)
3139 {
3140 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3141 	    netif_running(dev)) {
3142 		netif_tx_stop_all_queues(dev);
3143 	}
3144 }
3145 EXPORT_SYMBOL(netif_device_detach);
3146 
3147 /**
3148  * netif_device_attach - mark device as attached
3149  * @dev: network device
3150  *
3151  * Mark device as attached from system and restart if needed.
3152  */
netif_device_attach(struct net_device * dev)3153 void netif_device_attach(struct net_device *dev)
3154 {
3155 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3156 	    netif_running(dev)) {
3157 		netif_tx_wake_all_queues(dev);
3158 		__netdev_watchdog_up(dev);
3159 	}
3160 }
3161 EXPORT_SYMBOL(netif_device_attach);
3162 
3163 /*
3164  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3165  * to be used as a distribution range.
3166  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3167 static u16 skb_tx_hash(const struct net_device *dev,
3168 		       const struct net_device *sb_dev,
3169 		       struct sk_buff *skb)
3170 {
3171 	u32 hash;
3172 	u16 qoffset = 0;
3173 	u16 qcount = dev->real_num_tx_queues;
3174 
3175 	if (dev->num_tc) {
3176 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3177 
3178 		qoffset = sb_dev->tc_to_txq[tc].offset;
3179 		qcount = sb_dev->tc_to_txq[tc].count;
3180 		if (unlikely(!qcount)) {
3181 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3182 					     sb_dev->name, qoffset, tc);
3183 			qoffset = 0;
3184 			qcount = dev->real_num_tx_queues;
3185 		}
3186 	}
3187 
3188 	if (skb_rx_queue_recorded(skb)) {
3189 		hash = skb_get_rx_queue(skb);
3190 		if (hash >= qoffset)
3191 			hash -= qoffset;
3192 		while (unlikely(hash >= qcount))
3193 			hash -= qcount;
3194 		return hash + qoffset;
3195 	}
3196 
3197 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198 }
3199 
skb_warn_bad_offload(const struct sk_buff * skb)3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3201 {
3202 	static const netdev_features_t null_features;
3203 	struct net_device *dev = skb->dev;
3204 	const char *name = "";
3205 
3206 	if (!net_ratelimit())
3207 		return;
3208 
3209 	if (dev) {
3210 		if (dev->dev.parent)
3211 			name = dev_driver_string(dev->dev.parent);
3212 		else
3213 			name = netdev_name(dev);
3214 	}
3215 	skb_dump(KERN_WARNING, skb, false);
3216 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 	     name, dev ? &dev->features : &null_features,
3218 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219 }
3220 
3221 /*
3222  * Invalidate hardware checksum when packet is to be mangled, and
3223  * complete checksum manually on outgoing path.
3224  */
skb_checksum_help(struct sk_buff * skb)3225 int skb_checksum_help(struct sk_buff *skb)
3226 {
3227 	__wsum csum;
3228 	int ret = 0, offset;
3229 
3230 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 		goto out_set_summed;
3232 
3233 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3234 		skb_warn_bad_offload(skb);
3235 		return -EINVAL;
3236 	}
3237 
3238 	/* Before computing a checksum, we should make sure no frag could
3239 	 * be modified by an external entity : checksum could be wrong.
3240 	 */
3241 	if (skb_has_shared_frag(skb)) {
3242 		ret = __skb_linearize(skb);
3243 		if (ret)
3244 			goto out;
3245 	}
3246 
3247 	offset = skb_checksum_start_offset(skb);
3248 	ret = -EINVAL;
3249 	if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3250 		goto out;
3251 
3252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3253 
3254 	offset += skb->csum_offset;
3255 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3256 		goto out;
3257 
3258 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259 	if (ret)
3260 		goto out;
3261 
3262 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264 	skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269 
skb_crc32c_csum_help(struct sk_buff * skb)3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272 	__le32 crc32c_csum;
3273 	int ret = 0, offset, start;
3274 
3275 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3276 		goto out;
3277 
3278 	if (unlikely(skb_is_gso(skb)))
3279 		goto out;
3280 
3281 	/* Before computing a checksum, we should make sure no frag could
3282 	 * be modified by an external entity : checksum could be wrong.
3283 	 */
3284 	if (unlikely(skb_has_shared_frag(skb))) {
3285 		ret = __skb_linearize(skb);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 	start = skb_checksum_start_offset(skb);
3290 	offset = start + offsetof(struct sctphdr, checksum);
3291 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 		ret = -EINVAL;
3293 		goto out;
3294 	}
3295 
3296 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297 	if (ret)
3298 		goto out;
3299 
3300 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 						  skb->len - start, ~(__u32)0,
3302 						  crc32c_csum_stub));
3303 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3304 	skb->ip_summed = CHECKSUM_NONE;
3305 	skb->csum_not_inet = 0;
3306 out:
3307 	return ret;
3308 }
3309 
skb_network_protocol(struct sk_buff * skb,int * depth)3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312 	__be16 type = skb->protocol;
3313 
3314 	/* Tunnel gso handlers can set protocol to ethernet. */
3315 	if (type == htons(ETH_P_TEB)) {
3316 		struct ethhdr *eth;
3317 
3318 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319 			return 0;
3320 
3321 		eth = (struct ethhdr *)skb->data;
3322 		type = eth->h_proto;
3323 	}
3324 
3325 	return vlan_get_protocol_and_depth(skb, type, depth);
3326 }
3327 
3328 /**
3329  *	skb_mac_gso_segment - mac layer segmentation handler.
3330  *	@skb: buffer to segment
3331  *	@features: features for the output path (see dev->features)
3332  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 				    netdev_features_t features)
3335 {
3336 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 	struct packet_offload *ptype;
3338 	int vlan_depth = skb->mac_len;
3339 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3340 
3341 	if (unlikely(!type))
3342 		return ERR_PTR(-EINVAL);
3343 
3344 	__skb_pull(skb, vlan_depth);
3345 
3346 	rcu_read_lock();
3347 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3348 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3349 			segs = ptype->callbacks.gso_segment(skb, features);
3350 			break;
3351 		}
3352 	}
3353 	rcu_read_unlock();
3354 
3355 	__skb_push(skb, skb->data - skb_mac_header(skb));
3356 
3357 	return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360 
3361 
3362 /* openvswitch calls this on rx path, so we need a different check.
3363  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366 	if (tx_path)
3367 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3369 
3370 	return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372 
3373 /**
3374  *	__skb_gso_segment - Perform segmentation on skb.
3375  *	@skb: buffer to segment
3376  *	@features: features for the output path (see dev->features)
3377  *	@tx_path: whether it is called in TX path
3378  *
3379  *	This function segments the given skb and returns a list of segments.
3380  *
3381  *	It may return NULL if the skb requires no segmentation.  This is
3382  *	only possible when GSO is used for verifying header integrity.
3383  *
3384  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 				  netdev_features_t features, bool tx_path)
3388 {
3389 	struct sk_buff *segs;
3390 
3391 	if (unlikely(skb_needs_check(skb, tx_path))) {
3392 		int err;
3393 
3394 		/* We're going to init ->check field in TCP or UDP header */
3395 		err = skb_cow_head(skb, 0);
3396 		if (err < 0)
3397 			return ERR_PTR(err);
3398 	}
3399 
3400 	/* Only report GSO partial support if it will enable us to
3401 	 * support segmentation on this frame without needing additional
3402 	 * work.
3403 	 */
3404 	if (features & NETIF_F_GSO_PARTIAL) {
3405 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 		struct net_device *dev = skb->dev;
3407 
3408 		partial_features |= dev->features & dev->gso_partial_features;
3409 		if (!skb_gso_ok(skb, features | partial_features))
3410 			features &= ~NETIF_F_GSO_PARTIAL;
3411 	}
3412 
3413 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415 
3416 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417 	SKB_GSO_CB(skb)->encap_level = 0;
3418 
3419 	skb_reset_mac_header(skb);
3420 	skb_reset_mac_len(skb);
3421 
3422 	segs = skb_mac_gso_segment(skb, features);
3423 
3424 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425 		skb_warn_bad_offload(skb);
3426 
3427 	return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430 
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 	if (net_ratelimit()) {
3436 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437 		skb_dump(KERN_ERR, skb, true);
3438 		dump_stack();
3439 	}
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443 
3444 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448 	int i;
3449 
3450 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3451 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453 
3454 			if (PageHighMem(skb_frag_page(frag)))
3455 				return 1;
3456 		}
3457 	}
3458 #endif
3459 	return 0;
3460 }
3461 
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463  * instead of standard features for the netdev.
3464  */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 					   netdev_features_t features,
3468 					   __be16 type)
3469 {
3470 	if (eth_p_mpls(type))
3471 		features &= skb->dev->mpls_features;
3472 
3473 	return features;
3474 }
3475 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 					   netdev_features_t features,
3478 					   __be16 type)
3479 {
3480 	return features;
3481 }
3482 #endif
3483 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485 	netdev_features_t features)
3486 {
3487 	__be16 type;
3488 
3489 	type = skb_network_protocol(skb, NULL);
3490 	features = net_mpls_features(skb, features, type);
3491 
3492 	if (skb->ip_summed != CHECKSUM_NONE &&
3493 	    !can_checksum_protocol(features, type)) {
3494 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495 	}
3496 	if (illegal_highdma(skb->dev, skb))
3497 		features &= ~NETIF_F_SG;
3498 
3499 	return features;
3500 }
3501 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 					  struct net_device *dev,
3504 					  netdev_features_t features)
3505 {
3506 	return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511 					     struct net_device *dev,
3512 					     netdev_features_t features)
3513 {
3514 	return vlan_features_check(skb, features);
3515 }
3516 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 					    struct net_device *dev,
3519 					    netdev_features_t features)
3520 {
3521 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522 
3523 	if (gso_segs > dev->gso_max_segs)
3524 		return features & ~NETIF_F_GSO_MASK;
3525 
3526 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3527 		return features & ~NETIF_F_GSO_MASK;
3528 
3529 	if (!skb_shinfo(skb)->gso_type) {
3530 		skb_warn_bad_offload(skb);
3531 		return features & ~NETIF_F_GSO_MASK;
3532 	}
3533 
3534 	/* Support for GSO partial features requires software
3535 	 * intervention before we can actually process the packets
3536 	 * so we need to strip support for any partial features now
3537 	 * and we can pull them back in after we have partially
3538 	 * segmented the frame.
3539 	 */
3540 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3541 		features &= ~dev->gso_partial_features;
3542 
3543 	/* Make sure to clear the IPv4 ID mangling feature if the
3544 	 * IPv4 header has the potential to be fragmented.
3545 	 */
3546 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3547 		struct iphdr *iph = skb->encapsulation ?
3548 				    inner_ip_hdr(skb) : ip_hdr(skb);
3549 
3550 		if (!(iph->frag_off & htons(IP_DF)))
3551 			features &= ~NETIF_F_TSO_MANGLEID;
3552 	}
3553 
3554 	return features;
3555 }
3556 
netif_skb_features(struct sk_buff * skb)3557 netdev_features_t netif_skb_features(struct sk_buff *skb)
3558 {
3559 	struct net_device *dev = skb->dev;
3560 	netdev_features_t features = dev->features;
3561 
3562 	if (skb_is_gso(skb))
3563 		features = gso_features_check(skb, dev, features);
3564 
3565 	/* If encapsulation offload request, verify we are testing
3566 	 * hardware encapsulation features instead of standard
3567 	 * features for the netdev
3568 	 */
3569 	if (skb->encapsulation)
3570 		features &= dev->hw_enc_features;
3571 
3572 	if (skb_vlan_tagged(skb))
3573 		features = netdev_intersect_features(features,
3574 						     dev->vlan_features |
3575 						     NETIF_F_HW_VLAN_CTAG_TX |
3576 						     NETIF_F_HW_VLAN_STAG_TX);
3577 
3578 	if (dev->netdev_ops->ndo_features_check)
3579 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3580 								features);
3581 	else
3582 		features &= dflt_features_check(skb, dev, features);
3583 
3584 	return harmonize_features(skb, features);
3585 }
3586 EXPORT_SYMBOL(netif_skb_features);
3587 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3588 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3589 		    struct netdev_queue *txq, bool more)
3590 {
3591 	unsigned int len;
3592 	int rc;
3593 
3594 	if (dev_nit_active(dev))
3595 		dev_queue_xmit_nit(skb, dev);
3596 
3597 	len = skb->len;
3598 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3599 	trace_net_dev_start_xmit(skb, dev);
3600 	rc = netdev_start_xmit(skb, dev, txq, more);
3601 	trace_net_dev_xmit(skb, rc, dev, len);
3602 
3603 	return rc;
3604 }
3605 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3606 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3607 				    struct netdev_queue *txq, int *ret)
3608 {
3609 	struct sk_buff *skb = first;
3610 	int rc = NETDEV_TX_OK;
3611 
3612 	while (skb) {
3613 		struct sk_buff *next = skb->next;
3614 
3615 		skb_mark_not_on_list(skb);
3616 		rc = xmit_one(skb, dev, txq, next != NULL);
3617 		if (unlikely(!dev_xmit_complete(rc))) {
3618 			skb->next = next;
3619 			goto out;
3620 		}
3621 
3622 		skb = next;
3623 		if (netif_tx_queue_stopped(txq) && skb) {
3624 			rc = NETDEV_TX_BUSY;
3625 			break;
3626 		}
3627 	}
3628 
3629 out:
3630 	*ret = rc;
3631 	return skb;
3632 }
3633 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3634 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3635 					  netdev_features_t features)
3636 {
3637 	if (skb_vlan_tag_present(skb) &&
3638 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3639 		skb = __vlan_hwaccel_push_inside(skb);
3640 	return skb;
3641 }
3642 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3643 int skb_csum_hwoffload_help(struct sk_buff *skb,
3644 			    const netdev_features_t features)
3645 {
3646 	if (unlikely(skb_csum_is_sctp(skb)))
3647 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3648 			skb_crc32c_csum_help(skb);
3649 
3650 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3651 }
3652 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3653 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3654 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	netdev_features_t features;
3657 
3658 	features = netif_skb_features(skb);
3659 	skb = validate_xmit_vlan(skb, features);
3660 	if (unlikely(!skb))
3661 		goto out_null;
3662 
3663 	skb = sk_validate_xmit_skb(skb, dev);
3664 	if (unlikely(!skb))
3665 		goto out_null;
3666 
3667 	if (netif_needs_gso(skb, features)) {
3668 		struct sk_buff *segs;
3669 
3670 		segs = skb_gso_segment(skb, features);
3671 		if (IS_ERR(segs)) {
3672 			goto out_kfree_skb;
3673 		} else if (segs) {
3674 			consume_skb(skb);
3675 			skb = segs;
3676 		}
3677 	} else {
3678 		if (skb_needs_linearize(skb, features) &&
3679 		    __skb_linearize(skb))
3680 			goto out_kfree_skb;
3681 
3682 		/* If packet is not checksummed and device does not
3683 		 * support checksumming for this protocol, complete
3684 		 * checksumming here.
3685 		 */
3686 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3687 			if (skb->encapsulation)
3688 				skb_set_inner_transport_header(skb,
3689 							       skb_checksum_start_offset(skb));
3690 			else
3691 				skb_set_transport_header(skb,
3692 							 skb_checksum_start_offset(skb));
3693 			if (skb_csum_hwoffload_help(skb, features))
3694 				goto out_kfree_skb;
3695 		}
3696 	}
3697 
3698 	skb = validate_xmit_xfrm(skb, features, again);
3699 
3700 	return skb;
3701 
3702 out_kfree_skb:
3703 	kfree_skb(skb);
3704 out_null:
3705 	atomic_long_inc(&dev->tx_dropped);
3706 	return NULL;
3707 }
3708 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3709 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3710 {
3711 	struct sk_buff *next, *head = NULL, *tail;
3712 
3713 	for (; skb != NULL; skb = next) {
3714 		next = skb->next;
3715 		skb_mark_not_on_list(skb);
3716 
3717 		/* in case skb wont be segmented, point to itself */
3718 		skb->prev = skb;
3719 
3720 		skb = validate_xmit_skb(skb, dev, again);
3721 		if (!skb)
3722 			continue;
3723 
3724 		if (!head)
3725 			head = skb;
3726 		else
3727 			tail->next = skb;
3728 		/* If skb was segmented, skb->prev points to
3729 		 * the last segment. If not, it still contains skb.
3730 		 */
3731 		tail = skb->prev;
3732 	}
3733 	return head;
3734 }
3735 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3736 
qdisc_pkt_len_init(struct sk_buff * skb)3737 static void qdisc_pkt_len_init(struct sk_buff *skb)
3738 {
3739 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3740 
3741 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3742 
3743 	/* To get more precise estimation of bytes sent on wire,
3744 	 * we add to pkt_len the headers size of all segments
3745 	 */
3746 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3747 		unsigned int hdr_len;
3748 		u16 gso_segs = shinfo->gso_segs;
3749 
3750 		/* mac layer + network layer */
3751 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3752 
3753 		/* + transport layer */
3754 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3755 			const struct tcphdr *th;
3756 			struct tcphdr _tcphdr;
3757 
3758 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3759 						sizeof(_tcphdr), &_tcphdr);
3760 			if (likely(th))
3761 				hdr_len += __tcp_hdrlen(th);
3762 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3763 			struct udphdr _udphdr;
3764 
3765 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3766 					       sizeof(_udphdr), &_udphdr))
3767 				hdr_len += sizeof(struct udphdr);
3768 		}
3769 
3770 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3771 			int payload = skb->len - hdr_len;
3772 
3773 			/* Malicious packet. */
3774 			if (payload <= 0)
3775 				return;
3776 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3777 		}
3778 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3779 	}
3780 }
3781 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 				 struct net_device *dev,
3784 				 struct netdev_queue *txq)
3785 {
3786 	spinlock_t *root_lock = qdisc_lock(q);
3787 	struct sk_buff *to_free = NULL;
3788 	bool contended;
3789 	int rc;
3790 
3791 	qdisc_calculate_pkt_len(skb, q);
3792 
3793 	if (q->flags & TCQ_F_NOLOCK) {
3794 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3796 			qdisc_run(q);
3797 
3798 		if (unlikely(to_free))
3799 			kfree_skb_list(to_free);
3800 		return rc;
3801 	}
3802 
3803 	/*
3804 	 * Heuristic to force contended enqueues to serialize on a
3805 	 * separate lock before trying to get qdisc main lock.
3806 	 * This permits qdisc->running owner to get the lock more
3807 	 * often and dequeue packets faster.
3808 	 */
3809 	contended = qdisc_is_running(q);
3810 	if (unlikely(contended))
3811 		spin_lock(&q->busylock);
3812 
3813 	spin_lock(root_lock);
3814 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3815 		__qdisc_drop(skb, &to_free);
3816 		rc = NET_XMIT_DROP;
3817 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3818 		   qdisc_run_begin(q)) {
3819 		/*
3820 		 * This is a work-conserving queue; there are no old skbs
3821 		 * waiting to be sent out; and the qdisc is not running -
3822 		 * xmit the skb directly.
3823 		 */
3824 
3825 		qdisc_bstats_update(q, skb);
3826 
3827 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3828 			if (unlikely(contended)) {
3829 				spin_unlock(&q->busylock);
3830 				contended = false;
3831 			}
3832 			__qdisc_run(q);
3833 		}
3834 
3835 		qdisc_run_end(q);
3836 		rc = NET_XMIT_SUCCESS;
3837 	} else {
3838 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3839 		if (qdisc_run_begin(q)) {
3840 			if (unlikely(contended)) {
3841 				spin_unlock(&q->busylock);
3842 				contended = false;
3843 			}
3844 			__qdisc_run(q);
3845 			qdisc_run_end(q);
3846 		}
3847 	}
3848 	spin_unlock(root_lock);
3849 	if (unlikely(to_free))
3850 		kfree_skb_list(to_free);
3851 	if (unlikely(contended))
3852 		spin_unlock(&q->busylock);
3853 	return rc;
3854 }
3855 
3856 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3857 static void skb_update_prio(struct sk_buff *skb)
3858 {
3859 	const struct netprio_map *map;
3860 	const struct sock *sk;
3861 	unsigned int prioidx;
3862 
3863 	if (skb->priority)
3864 		return;
3865 	map = rcu_dereference_bh(skb->dev->priomap);
3866 	if (!map)
3867 		return;
3868 	sk = skb_to_full_sk(skb);
3869 	if (!sk)
3870 		return;
3871 
3872 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3873 
3874 	if (prioidx < map->priomap_len)
3875 		skb->priority = map->priomap[prioidx];
3876 }
3877 #else
3878 #define skb_update_prio(skb)
3879 #endif
3880 
3881 /**
3882  *	dev_loopback_xmit - loop back @skb
3883  *	@net: network namespace this loopback is happening in
3884  *	@sk:  sk needed to be a netfilter okfn
3885  *	@skb: buffer to transmit
3886  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3887 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3888 {
3889 	skb_reset_mac_header(skb);
3890 	__skb_pull(skb, skb_network_offset(skb));
3891 	skb->pkt_type = PACKET_LOOPBACK;
3892 	if (skb->ip_summed == CHECKSUM_NONE)
3893 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3894 	WARN_ON(!skb_dst(skb));
3895 	skb_dst_force(skb);
3896 	netif_rx_ni(skb);
3897 	return 0;
3898 }
3899 EXPORT_SYMBOL(dev_loopback_xmit);
3900 
3901 #ifdef CONFIG_NET_EGRESS
3902 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3903 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3904 {
3905 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3906 	struct tcf_result cl_res;
3907 
3908 	if (!miniq)
3909 		return skb;
3910 
3911 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3912 	qdisc_skb_cb(skb)->mru = 0;
3913 	mini_qdisc_bstats_cpu_update(miniq, skb);
3914 
3915 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3916 	case TC_ACT_OK:
3917 	case TC_ACT_RECLASSIFY:
3918 		skb->tc_index = TC_H_MIN(cl_res.classid);
3919 		break;
3920 	case TC_ACT_SHOT:
3921 		mini_qdisc_qstats_cpu_drop(miniq);
3922 		*ret = NET_XMIT_DROP;
3923 		kfree_skb(skb);
3924 		return NULL;
3925 	case TC_ACT_STOLEN:
3926 	case TC_ACT_QUEUED:
3927 	case TC_ACT_TRAP:
3928 		*ret = NET_XMIT_SUCCESS;
3929 		consume_skb(skb);
3930 		return NULL;
3931 	case TC_ACT_REDIRECT:
3932 		/* No need to push/pop skb's mac_header here on egress! */
3933 		skb_do_redirect(skb);
3934 		*ret = NET_XMIT_SUCCESS;
3935 		return NULL;
3936 	default:
3937 		break;
3938 	}
3939 
3940 	return skb;
3941 }
3942 #endif /* CONFIG_NET_EGRESS */
3943 
3944 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3945 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3946 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3947 {
3948 	struct xps_map *map;
3949 	int queue_index = -1;
3950 
3951 	if (dev->num_tc) {
3952 		tci *= dev->num_tc;
3953 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3954 	}
3955 
3956 	map = rcu_dereference(dev_maps->attr_map[tci]);
3957 	if (map) {
3958 		if (map->len == 1)
3959 			queue_index = map->queues[0];
3960 		else
3961 			queue_index = map->queues[reciprocal_scale(
3962 						skb_get_hash(skb), map->len)];
3963 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3964 			queue_index = -1;
3965 	}
3966 	return queue_index;
3967 }
3968 #endif
3969 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3970 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3971 			 struct sk_buff *skb)
3972 {
3973 #ifdef CONFIG_XPS
3974 	struct xps_dev_maps *dev_maps;
3975 	struct sock *sk = skb->sk;
3976 	int queue_index = -1;
3977 
3978 	if (!static_key_false(&xps_needed))
3979 		return -1;
3980 
3981 	rcu_read_lock();
3982 	if (!static_key_false(&xps_rxqs_needed))
3983 		goto get_cpus_map;
3984 
3985 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3986 	if (dev_maps) {
3987 		int tci = sk_rx_queue_get(sk);
3988 
3989 		if (tci >= 0 && tci < dev->num_rx_queues)
3990 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3991 							  tci);
3992 	}
3993 
3994 get_cpus_map:
3995 	if (queue_index < 0) {
3996 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3997 		if (dev_maps) {
3998 			unsigned int tci = skb->sender_cpu - 1;
3999 
4000 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4001 							  tci);
4002 		}
4003 	}
4004 	rcu_read_unlock();
4005 
4006 	return queue_index;
4007 #else
4008 	return -1;
4009 #endif
4010 }
4011 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4012 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4013 		     struct net_device *sb_dev)
4014 {
4015 	return 0;
4016 }
4017 EXPORT_SYMBOL(dev_pick_tx_zero);
4018 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4019 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4020 		       struct net_device *sb_dev)
4021 {
4022 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4023 }
4024 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4025 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4026 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4027 		     struct net_device *sb_dev)
4028 {
4029 	struct sock *sk = skb->sk;
4030 	int queue_index = sk_tx_queue_get(sk);
4031 
4032 	sb_dev = sb_dev ? : dev;
4033 
4034 	if (queue_index < 0 || skb->ooo_okay ||
4035 	    queue_index >= dev->real_num_tx_queues) {
4036 		int new_index = get_xps_queue(dev, sb_dev, skb);
4037 
4038 		if (new_index < 0)
4039 			new_index = skb_tx_hash(dev, sb_dev, skb);
4040 
4041 		if (queue_index != new_index && sk &&
4042 		    sk_fullsock(sk) &&
4043 		    rcu_access_pointer(sk->sk_dst_cache))
4044 			sk_tx_queue_set(sk, new_index);
4045 
4046 		queue_index = new_index;
4047 	}
4048 
4049 	return queue_index;
4050 }
4051 EXPORT_SYMBOL(netdev_pick_tx);
4052 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4053 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4054 					 struct sk_buff *skb,
4055 					 struct net_device *sb_dev)
4056 {
4057 	int queue_index = 0;
4058 
4059 #ifdef CONFIG_XPS
4060 	u32 sender_cpu = skb->sender_cpu - 1;
4061 
4062 	if (sender_cpu >= (u32)NR_CPUS)
4063 		skb->sender_cpu = raw_smp_processor_id() + 1;
4064 #endif
4065 
4066 	if (dev->real_num_tx_queues != 1) {
4067 		const struct net_device_ops *ops = dev->netdev_ops;
4068 
4069 		if (ops->ndo_select_queue)
4070 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4071 		else
4072 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4073 
4074 		queue_index = netdev_cap_txqueue(dev, queue_index);
4075 	}
4076 
4077 	skb_set_queue_mapping(skb, queue_index);
4078 	return netdev_get_tx_queue(dev, queue_index);
4079 }
4080 
4081 /**
4082  *	__dev_queue_xmit - transmit a buffer
4083  *	@skb: buffer to transmit
4084  *	@sb_dev: suboordinate device used for L2 forwarding offload
4085  *
4086  *	Queue a buffer for transmission to a network device. The caller must
4087  *	have set the device and priority and built the buffer before calling
4088  *	this function. The function can be called from an interrupt.
4089  *
4090  *	A negative errno code is returned on a failure. A success does not
4091  *	guarantee the frame will be transmitted as it may be dropped due
4092  *	to congestion or traffic shaping.
4093  *
4094  * -----------------------------------------------------------------------------------
4095  *      I notice this method can also return errors from the queue disciplines,
4096  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4097  *      be positive.
4098  *
4099  *      Regardless of the return value, the skb is consumed, so it is currently
4100  *      difficult to retry a send to this method.  (You can bump the ref count
4101  *      before sending to hold a reference for retry if you are careful.)
4102  *
4103  *      When calling this method, interrupts MUST be enabled.  This is because
4104  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4105  *          --BLG
4106  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4107 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4108 {
4109 	struct net_device *dev = skb->dev;
4110 	struct netdev_queue *txq;
4111 	struct Qdisc *q;
4112 	int rc = -ENOMEM;
4113 	bool again = false;
4114 
4115 	skb_reset_mac_header(skb);
4116 	skb_assert_len(skb);
4117 
4118 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4119 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4120 
4121 	/* Disable soft irqs for various locks below. Also
4122 	 * stops preemption for RCU.
4123 	 */
4124 	rcu_read_lock_bh();
4125 
4126 	skb_update_prio(skb);
4127 
4128 	qdisc_pkt_len_init(skb);
4129 #ifdef CONFIG_NET_CLS_ACT
4130 	skb->tc_at_ingress = 0;
4131 # ifdef CONFIG_NET_EGRESS
4132 	if (static_branch_unlikely(&egress_needed_key)) {
4133 		skb = sch_handle_egress(skb, &rc, dev);
4134 		if (!skb)
4135 			goto out;
4136 	}
4137 # endif
4138 #endif
4139 	/* If device/qdisc don't need skb->dst, release it right now while
4140 	 * its hot in this cpu cache.
4141 	 */
4142 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4143 		skb_dst_drop(skb);
4144 	else
4145 		skb_dst_force(skb);
4146 
4147 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4148 	q = rcu_dereference_bh(txq->qdisc);
4149 
4150 	trace_net_dev_queue(skb);
4151 	if (q->enqueue) {
4152 		rc = __dev_xmit_skb(skb, q, dev, txq);
4153 		goto out;
4154 	}
4155 
4156 	/* The device has no queue. Common case for software devices:
4157 	 * loopback, all the sorts of tunnels...
4158 
4159 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4160 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4161 	 * counters.)
4162 	 * However, it is possible, that they rely on protection
4163 	 * made by us here.
4164 
4165 	 * Check this and shot the lock. It is not prone from deadlocks.
4166 	 *Either shot noqueue qdisc, it is even simpler 8)
4167 	 */
4168 	if (dev->flags & IFF_UP) {
4169 		int cpu = smp_processor_id(); /* ok because BHs are off */
4170 
4171 		/* Other cpus might concurrently change txq->xmit_lock_owner
4172 		 * to -1 or to their cpu id, but not to our id.
4173 		 */
4174 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4175 			if (dev_xmit_recursion())
4176 				goto recursion_alert;
4177 
4178 			skb = validate_xmit_skb(skb, dev, &again);
4179 			if (!skb)
4180 				goto out;
4181 
4182 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4183 			HARD_TX_LOCK(dev, txq, cpu);
4184 
4185 			if (!netif_xmit_stopped(txq)) {
4186 				dev_xmit_recursion_inc();
4187 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4188 				dev_xmit_recursion_dec();
4189 				if (dev_xmit_complete(rc)) {
4190 					HARD_TX_UNLOCK(dev, txq);
4191 					goto out;
4192 				}
4193 			}
4194 			HARD_TX_UNLOCK(dev, txq);
4195 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4196 					     dev->name);
4197 		} else {
4198 			/* Recursion is detected! It is possible,
4199 			 * unfortunately
4200 			 */
4201 recursion_alert:
4202 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4203 					     dev->name);
4204 		}
4205 	}
4206 
4207 	rc = -ENETDOWN;
4208 	rcu_read_unlock_bh();
4209 
4210 	atomic_long_inc(&dev->tx_dropped);
4211 	kfree_skb_list(skb);
4212 	return rc;
4213 out:
4214 	rcu_read_unlock_bh();
4215 	return rc;
4216 }
4217 
dev_queue_xmit(struct sk_buff * skb)4218 int dev_queue_xmit(struct sk_buff *skb)
4219 {
4220 	return __dev_queue_xmit(skb, NULL);
4221 }
4222 EXPORT_SYMBOL(dev_queue_xmit);
4223 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4224 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4225 {
4226 	return __dev_queue_xmit(skb, sb_dev);
4227 }
4228 EXPORT_SYMBOL(dev_queue_xmit_accel);
4229 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4230 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4231 {
4232 	struct net_device *dev = skb->dev;
4233 	struct sk_buff *orig_skb = skb;
4234 	struct netdev_queue *txq;
4235 	int ret = NETDEV_TX_BUSY;
4236 	bool again = false;
4237 
4238 	if (unlikely(!netif_running(dev) ||
4239 		     !netif_carrier_ok(dev)))
4240 		goto drop;
4241 
4242 	skb = validate_xmit_skb_list(skb, dev, &again);
4243 	if (skb != orig_skb)
4244 		goto drop;
4245 
4246 	skb_set_queue_mapping(skb, queue_id);
4247 	txq = skb_get_tx_queue(dev, skb);
4248 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4249 
4250 	local_bh_disable();
4251 
4252 	dev_xmit_recursion_inc();
4253 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4254 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4255 		ret = netdev_start_xmit(skb, dev, txq, false);
4256 	HARD_TX_UNLOCK(dev, txq);
4257 	dev_xmit_recursion_dec();
4258 
4259 	local_bh_enable();
4260 	return ret;
4261 drop:
4262 	atomic_long_inc(&dev->tx_dropped);
4263 	kfree_skb_list(skb);
4264 	return NET_XMIT_DROP;
4265 }
4266 EXPORT_SYMBOL(__dev_direct_xmit);
4267 
4268 /*************************************************************************
4269  *			Receiver routines
4270  *************************************************************************/
4271 
4272 int netdev_max_backlog __read_mostly = 1000;
4273 EXPORT_SYMBOL(netdev_max_backlog);
4274 
4275 int netdev_tstamp_prequeue __read_mostly = 1;
4276 int netdev_budget __read_mostly = 300;
4277 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4278 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4279 int weight_p __read_mostly = 64;           /* old backlog weight */
4280 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4281 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4282 int dev_rx_weight __read_mostly = 64;
4283 int dev_tx_weight __read_mostly = 64;
4284 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4285 int gro_normal_batch __read_mostly = 8;
4286 
4287 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4288 static inline void ____napi_schedule(struct softnet_data *sd,
4289 				     struct napi_struct *napi)
4290 {
4291 	list_add_tail(&napi->poll_list, &sd->poll_list);
4292 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4293 }
4294 
4295 #ifdef CONFIG_RPS
4296 
4297 /* One global table that all flow-based protocols share. */
4298 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4299 EXPORT_SYMBOL(rps_sock_flow_table);
4300 u32 rps_cpu_mask __read_mostly;
4301 EXPORT_SYMBOL(rps_cpu_mask);
4302 
4303 struct static_key_false rps_needed __read_mostly;
4304 EXPORT_SYMBOL(rps_needed);
4305 struct static_key_false rfs_needed __read_mostly;
4306 EXPORT_SYMBOL(rfs_needed);
4307 
4308 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4309 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4310 	    struct rps_dev_flow *rflow, u16 next_cpu)
4311 {
4312 	if (next_cpu < nr_cpu_ids) {
4313 #ifdef CONFIG_RFS_ACCEL
4314 		struct netdev_rx_queue *rxqueue;
4315 		struct rps_dev_flow_table *flow_table;
4316 		struct rps_dev_flow *old_rflow;
4317 		u32 flow_id;
4318 		u16 rxq_index;
4319 		int rc;
4320 
4321 		/* Should we steer this flow to a different hardware queue? */
4322 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4323 		    !(dev->features & NETIF_F_NTUPLE))
4324 			goto out;
4325 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4326 		if (rxq_index == skb_get_rx_queue(skb))
4327 			goto out;
4328 
4329 		rxqueue = dev->_rx + rxq_index;
4330 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331 		if (!flow_table)
4332 			goto out;
4333 		flow_id = skb_get_hash(skb) & flow_table->mask;
4334 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4335 							rxq_index, flow_id);
4336 		if (rc < 0)
4337 			goto out;
4338 		old_rflow = rflow;
4339 		rflow = &flow_table->flows[flow_id];
4340 		rflow->filter = rc;
4341 		if (old_rflow->filter == rflow->filter)
4342 			old_rflow->filter = RPS_NO_FILTER;
4343 	out:
4344 #endif
4345 		rflow->last_qtail =
4346 			per_cpu(softnet_data, next_cpu).input_queue_head;
4347 	}
4348 
4349 	rflow->cpu = next_cpu;
4350 	return rflow;
4351 }
4352 
4353 /*
4354  * get_rps_cpu is called from netif_receive_skb and returns the target
4355  * CPU from the RPS map of the receiving queue for a given skb.
4356  * rcu_read_lock must be held on entry.
4357  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4358 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4359 		       struct rps_dev_flow **rflowp)
4360 {
4361 	const struct rps_sock_flow_table *sock_flow_table;
4362 	struct netdev_rx_queue *rxqueue = dev->_rx;
4363 	struct rps_dev_flow_table *flow_table;
4364 	struct rps_map *map;
4365 	int cpu = -1;
4366 	u32 tcpu;
4367 	u32 hash;
4368 
4369 	if (skb_rx_queue_recorded(skb)) {
4370 		u16 index = skb_get_rx_queue(skb);
4371 
4372 		if (unlikely(index >= dev->real_num_rx_queues)) {
4373 			WARN_ONCE(dev->real_num_rx_queues > 1,
4374 				  "%s received packet on queue %u, but number "
4375 				  "of RX queues is %u\n",
4376 				  dev->name, index, dev->real_num_rx_queues);
4377 			goto done;
4378 		}
4379 		rxqueue += index;
4380 	}
4381 
4382 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4383 
4384 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4385 	map = rcu_dereference(rxqueue->rps_map);
4386 	if (!flow_table && !map)
4387 		goto done;
4388 
4389 	skb_reset_network_header(skb);
4390 	hash = skb_get_hash(skb);
4391 	if (!hash)
4392 		goto done;
4393 
4394 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4395 	if (flow_table && sock_flow_table) {
4396 		struct rps_dev_flow *rflow;
4397 		u32 next_cpu;
4398 		u32 ident;
4399 
4400 		/* First check into global flow table if there is a match.
4401 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4402 		 */
4403 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4404 		if ((ident ^ hash) & ~rps_cpu_mask)
4405 			goto try_rps;
4406 
4407 		next_cpu = ident & rps_cpu_mask;
4408 
4409 		/* OK, now we know there is a match,
4410 		 * we can look at the local (per receive queue) flow table
4411 		 */
4412 		rflow = &flow_table->flows[hash & flow_table->mask];
4413 		tcpu = rflow->cpu;
4414 
4415 		/*
4416 		 * If the desired CPU (where last recvmsg was done) is
4417 		 * different from current CPU (one in the rx-queue flow
4418 		 * table entry), switch if one of the following holds:
4419 		 *   - Current CPU is unset (>= nr_cpu_ids).
4420 		 *   - Current CPU is offline.
4421 		 *   - The current CPU's queue tail has advanced beyond the
4422 		 *     last packet that was enqueued using this table entry.
4423 		 *     This guarantees that all previous packets for the flow
4424 		 *     have been dequeued, thus preserving in order delivery.
4425 		 */
4426 		if (unlikely(tcpu != next_cpu) &&
4427 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4428 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4429 		      rflow->last_qtail)) >= 0)) {
4430 			tcpu = next_cpu;
4431 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4432 		}
4433 
4434 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4435 			*rflowp = rflow;
4436 			cpu = tcpu;
4437 			goto done;
4438 		}
4439 	}
4440 
4441 try_rps:
4442 
4443 	if (map) {
4444 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4445 		if (cpu_online(tcpu)) {
4446 			cpu = tcpu;
4447 			goto done;
4448 		}
4449 	}
4450 
4451 done:
4452 	return cpu;
4453 }
4454 
4455 #ifdef CONFIG_RFS_ACCEL
4456 
4457 /**
4458  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4459  * @dev: Device on which the filter was set
4460  * @rxq_index: RX queue index
4461  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4462  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4463  *
4464  * Drivers that implement ndo_rx_flow_steer() should periodically call
4465  * this function for each installed filter and remove the filters for
4466  * which it returns %true.
4467  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4468 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4469 			 u32 flow_id, u16 filter_id)
4470 {
4471 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4472 	struct rps_dev_flow_table *flow_table;
4473 	struct rps_dev_flow *rflow;
4474 	bool expire = true;
4475 	unsigned int cpu;
4476 
4477 	rcu_read_lock();
4478 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4479 	if (flow_table && flow_id <= flow_table->mask) {
4480 		rflow = &flow_table->flows[flow_id];
4481 		cpu = READ_ONCE(rflow->cpu);
4482 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4483 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4484 			   rflow->last_qtail) <
4485 		     (int)(10 * flow_table->mask)))
4486 			expire = false;
4487 	}
4488 	rcu_read_unlock();
4489 	return expire;
4490 }
4491 EXPORT_SYMBOL(rps_may_expire_flow);
4492 
4493 #endif /* CONFIG_RFS_ACCEL */
4494 
4495 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4496 static void rps_trigger_softirq(void *data)
4497 {
4498 	struct softnet_data *sd = data;
4499 
4500 	____napi_schedule(sd, &sd->backlog);
4501 	sd->received_rps++;
4502 }
4503 
4504 #endif /* CONFIG_RPS */
4505 
4506 /*
4507  * Check if this softnet_data structure is another cpu one
4508  * If yes, queue it to our IPI list and return 1
4509  * If no, return 0
4510  */
rps_ipi_queued(struct softnet_data * sd)4511 static int rps_ipi_queued(struct softnet_data *sd)
4512 {
4513 #ifdef CONFIG_RPS
4514 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4515 
4516 	if (sd != mysd) {
4517 		sd->rps_ipi_next = mysd->rps_ipi_list;
4518 		mysd->rps_ipi_list = sd;
4519 
4520 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4521 		return 1;
4522 	}
4523 #endif /* CONFIG_RPS */
4524 	return 0;
4525 }
4526 
4527 #ifdef CONFIG_NET_FLOW_LIMIT
4528 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4529 #endif
4530 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4531 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4532 {
4533 #ifdef CONFIG_NET_FLOW_LIMIT
4534 	struct sd_flow_limit *fl;
4535 	struct softnet_data *sd;
4536 	unsigned int old_flow, new_flow;
4537 
4538 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4539 		return false;
4540 
4541 	sd = this_cpu_ptr(&softnet_data);
4542 
4543 	rcu_read_lock();
4544 	fl = rcu_dereference(sd->flow_limit);
4545 	if (fl) {
4546 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4547 		old_flow = fl->history[fl->history_head];
4548 		fl->history[fl->history_head] = new_flow;
4549 
4550 		fl->history_head++;
4551 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4552 
4553 		if (likely(fl->buckets[old_flow]))
4554 			fl->buckets[old_flow]--;
4555 
4556 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4557 			fl->count++;
4558 			rcu_read_unlock();
4559 			return true;
4560 		}
4561 	}
4562 	rcu_read_unlock();
4563 #endif
4564 	return false;
4565 }
4566 
4567 /*
4568  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4569  * queue (may be a remote CPU queue).
4570  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4571 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4572 			      unsigned int *qtail)
4573 {
4574 	struct softnet_data *sd;
4575 	unsigned long flags;
4576 	unsigned int qlen;
4577 
4578 	sd = &per_cpu(softnet_data, cpu);
4579 
4580 	local_irq_save(flags);
4581 
4582 	rps_lock(sd);
4583 	if (!netif_running(skb->dev))
4584 		goto drop;
4585 	qlen = skb_queue_len(&sd->input_pkt_queue);
4586 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4587 		if (qlen) {
4588 enqueue:
4589 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4590 			input_queue_tail_incr_save(sd, qtail);
4591 			rps_unlock(sd);
4592 			local_irq_restore(flags);
4593 			return NET_RX_SUCCESS;
4594 		}
4595 
4596 		/* Schedule NAPI for backlog device
4597 		 * We can use non atomic operation since we own the queue lock
4598 		 */
4599 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4600 			if (!rps_ipi_queued(sd))
4601 				____napi_schedule(sd, &sd->backlog);
4602 		}
4603 		goto enqueue;
4604 	}
4605 
4606 drop:
4607 	sd->dropped++;
4608 	rps_unlock(sd);
4609 
4610 	local_irq_restore(flags);
4611 
4612 	atomic_long_inc(&skb->dev->rx_dropped);
4613 	kfree_skb(skb);
4614 	return NET_RX_DROP;
4615 }
4616 
netif_get_rxqueue(struct sk_buff * skb)4617 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4618 {
4619 	struct net_device *dev = skb->dev;
4620 	struct netdev_rx_queue *rxqueue;
4621 
4622 	rxqueue = dev->_rx;
4623 
4624 	if (skb_rx_queue_recorded(skb)) {
4625 		u16 index = skb_get_rx_queue(skb);
4626 
4627 		if (unlikely(index >= dev->real_num_rx_queues)) {
4628 			WARN_ONCE(dev->real_num_rx_queues > 1,
4629 				  "%s received packet on queue %u, but number "
4630 				  "of RX queues is %u\n",
4631 				  dev->name, index, dev->real_num_rx_queues);
4632 
4633 			return rxqueue; /* Return first rxqueue */
4634 		}
4635 		rxqueue += index;
4636 	}
4637 	return rxqueue;
4638 }
4639 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4640 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4641 				     struct xdp_buff *xdp,
4642 				     struct bpf_prog *xdp_prog)
4643 {
4644 	struct netdev_rx_queue *rxqueue;
4645 	void *orig_data, *orig_data_end;
4646 	u32 metalen, act = XDP_DROP;
4647 	__be16 orig_eth_type;
4648 	struct ethhdr *eth;
4649 	bool orig_bcast;
4650 	int hlen, off;
4651 	u32 mac_len;
4652 
4653 	/* Reinjected packets coming from act_mirred or similar should
4654 	 * not get XDP generic processing.
4655 	 */
4656 	if (skb_is_redirected(skb))
4657 		return XDP_PASS;
4658 
4659 	/* XDP packets must be linear and must have sufficient headroom
4660 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4661 	 * native XDP provides, thus we need to do it here as well.
4662 	 */
4663 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4664 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4665 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4666 		int troom = skb->tail + skb->data_len - skb->end;
4667 
4668 		/* In case we have to go down the path and also linearize,
4669 		 * then lets do the pskb_expand_head() work just once here.
4670 		 */
4671 		if (pskb_expand_head(skb,
4672 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4673 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4674 			goto do_drop;
4675 		if (skb_linearize(skb))
4676 			goto do_drop;
4677 	}
4678 
4679 	/* The XDP program wants to see the packet starting at the MAC
4680 	 * header.
4681 	 */
4682 	mac_len = skb->data - skb_mac_header(skb);
4683 	hlen = skb_headlen(skb) + mac_len;
4684 	xdp->data = skb->data - mac_len;
4685 	xdp->data_meta = xdp->data;
4686 	xdp->data_end = xdp->data + hlen;
4687 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4688 
4689 	/* SKB "head" area always have tailroom for skb_shared_info */
4690 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4691 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4692 
4693 	orig_data_end = xdp->data_end;
4694 	orig_data = xdp->data;
4695 	eth = (struct ethhdr *)xdp->data;
4696 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4697 	orig_eth_type = eth->h_proto;
4698 
4699 	rxqueue = netif_get_rxqueue(skb);
4700 	xdp->rxq = &rxqueue->xdp_rxq;
4701 
4702 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4703 
4704 	/* check if bpf_xdp_adjust_head was used */
4705 	off = xdp->data - orig_data;
4706 	if (off) {
4707 		if (off > 0)
4708 			__skb_pull(skb, off);
4709 		else if (off < 0)
4710 			__skb_push(skb, -off);
4711 
4712 		skb->mac_header += off;
4713 		skb_reset_network_header(skb);
4714 	}
4715 
4716 	/* check if bpf_xdp_adjust_tail was used */
4717 	off = xdp->data_end - orig_data_end;
4718 	if (off != 0) {
4719 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4720 		skb->len += off; /* positive on grow, negative on shrink */
4721 	}
4722 
4723 	/* check if XDP changed eth hdr such SKB needs update */
4724 	eth = (struct ethhdr *)xdp->data;
4725 	if ((orig_eth_type != eth->h_proto) ||
4726 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4727 		__skb_push(skb, ETH_HLEN);
4728 		skb->protocol = eth_type_trans(skb, skb->dev);
4729 	}
4730 
4731 	switch (act) {
4732 	case XDP_REDIRECT:
4733 	case XDP_TX:
4734 		__skb_push(skb, mac_len);
4735 		break;
4736 	case XDP_PASS:
4737 		metalen = xdp->data - xdp->data_meta;
4738 		if (metalen)
4739 			skb_metadata_set(skb, metalen);
4740 		break;
4741 	default:
4742 		bpf_warn_invalid_xdp_action(act);
4743 		fallthrough;
4744 	case XDP_ABORTED:
4745 		trace_xdp_exception(skb->dev, xdp_prog, act);
4746 		fallthrough;
4747 	case XDP_DROP:
4748 	do_drop:
4749 		kfree_skb(skb);
4750 		break;
4751 	}
4752 
4753 	return act;
4754 }
4755 
4756 /* When doing generic XDP we have to bypass the qdisc layer and the
4757  * network taps in order to match in-driver-XDP behavior.
4758  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4759 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4760 {
4761 	struct net_device *dev = skb->dev;
4762 	struct netdev_queue *txq;
4763 	bool free_skb = true;
4764 	int cpu, rc;
4765 
4766 	txq = netdev_core_pick_tx(dev, skb, NULL);
4767 	cpu = smp_processor_id();
4768 	HARD_TX_LOCK(dev, txq, cpu);
4769 	if (!netif_xmit_stopped(txq)) {
4770 		rc = netdev_start_xmit(skb, dev, txq, 0);
4771 		if (dev_xmit_complete(rc))
4772 			free_skb = false;
4773 	}
4774 	HARD_TX_UNLOCK(dev, txq);
4775 	if (free_skb) {
4776 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4777 		kfree_skb(skb);
4778 	}
4779 }
4780 
4781 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4782 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4783 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4784 {
4785 	if (xdp_prog) {
4786 		struct xdp_buff xdp;
4787 		u32 act;
4788 		int err;
4789 
4790 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4791 		if (act != XDP_PASS) {
4792 			switch (act) {
4793 			case XDP_REDIRECT:
4794 				err = xdp_do_generic_redirect(skb->dev, skb,
4795 							      &xdp, xdp_prog);
4796 				if (err)
4797 					goto out_redir;
4798 				break;
4799 			case XDP_TX:
4800 				generic_xdp_tx(skb, xdp_prog);
4801 				break;
4802 			}
4803 			return XDP_DROP;
4804 		}
4805 	}
4806 	return XDP_PASS;
4807 out_redir:
4808 	kfree_skb(skb);
4809 	return XDP_DROP;
4810 }
4811 EXPORT_SYMBOL_GPL(do_xdp_generic);
4812 
netif_rx_internal(struct sk_buff * skb)4813 static int netif_rx_internal(struct sk_buff *skb)
4814 {
4815 	int ret;
4816 
4817 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4818 
4819 	trace_netif_rx(skb);
4820 
4821 #ifdef CONFIG_RPS
4822 	if (static_branch_unlikely(&rps_needed)) {
4823 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4824 		int cpu;
4825 
4826 		preempt_disable();
4827 		rcu_read_lock();
4828 
4829 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4830 		if (cpu < 0)
4831 			cpu = smp_processor_id();
4832 
4833 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4834 
4835 		rcu_read_unlock();
4836 		preempt_enable();
4837 	} else
4838 #endif
4839 	{
4840 		unsigned int qtail;
4841 
4842 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4843 		put_cpu();
4844 	}
4845 	return ret;
4846 }
4847 
4848 /**
4849  *	netif_rx	-	post buffer to the network code
4850  *	@skb: buffer to post
4851  *
4852  *	This function receives a packet from a device driver and queues it for
4853  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4854  *	may be dropped during processing for congestion control or by the
4855  *	protocol layers.
4856  *
4857  *	return values:
4858  *	NET_RX_SUCCESS	(no congestion)
4859  *	NET_RX_DROP     (packet was dropped)
4860  *
4861  */
4862 
netif_rx(struct sk_buff * skb)4863 int netif_rx(struct sk_buff *skb)
4864 {
4865 	int ret;
4866 
4867 	trace_netif_rx_entry(skb);
4868 
4869 	ret = netif_rx_internal(skb);
4870 	trace_netif_rx_exit(ret);
4871 
4872 	return ret;
4873 }
4874 EXPORT_SYMBOL(netif_rx);
4875 
netif_rx_ni(struct sk_buff * skb)4876 int netif_rx_ni(struct sk_buff *skb)
4877 {
4878 	int err;
4879 
4880 	trace_netif_rx_ni_entry(skb);
4881 
4882 	preempt_disable();
4883 	err = netif_rx_internal(skb);
4884 	if (local_softirq_pending())
4885 		do_softirq();
4886 	preempt_enable();
4887 	trace_netif_rx_ni_exit(err);
4888 
4889 	return err;
4890 }
4891 EXPORT_SYMBOL(netif_rx_ni);
4892 
netif_rx_any_context(struct sk_buff * skb)4893 int netif_rx_any_context(struct sk_buff *skb)
4894 {
4895 	/*
4896 	 * If invoked from contexts which do not invoke bottom half
4897 	 * processing either at return from interrupt or when softrqs are
4898 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4899 	 * directly.
4900 	 */
4901 	if (in_interrupt())
4902 		return netif_rx(skb);
4903 	else
4904 		return netif_rx_ni(skb);
4905 }
4906 EXPORT_SYMBOL(netif_rx_any_context);
4907 
net_tx_action(struct softirq_action * h)4908 static __latent_entropy void net_tx_action(struct softirq_action *h)
4909 {
4910 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4911 
4912 	if (sd->completion_queue) {
4913 		struct sk_buff *clist;
4914 
4915 		local_irq_disable();
4916 		clist = sd->completion_queue;
4917 		sd->completion_queue = NULL;
4918 		local_irq_enable();
4919 
4920 		while (clist) {
4921 			struct sk_buff *skb = clist;
4922 
4923 			clist = clist->next;
4924 
4925 			WARN_ON(refcount_read(&skb->users));
4926 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4927 				trace_consume_skb(skb);
4928 			else
4929 				trace_kfree_skb(skb, net_tx_action);
4930 
4931 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4932 				__kfree_skb(skb);
4933 			else
4934 				__kfree_skb_defer(skb);
4935 		}
4936 
4937 		__kfree_skb_flush();
4938 	}
4939 
4940 	if (sd->output_queue) {
4941 		struct Qdisc *head;
4942 
4943 		local_irq_disable();
4944 		head = sd->output_queue;
4945 		sd->output_queue = NULL;
4946 		sd->output_queue_tailp = &sd->output_queue;
4947 		local_irq_enable();
4948 
4949 		rcu_read_lock();
4950 
4951 		while (head) {
4952 			struct Qdisc *q = head;
4953 			spinlock_t *root_lock = NULL;
4954 
4955 			head = head->next_sched;
4956 
4957 			/* We need to make sure head->next_sched is read
4958 			 * before clearing __QDISC_STATE_SCHED
4959 			 */
4960 			smp_mb__before_atomic();
4961 
4962 			if (!(q->flags & TCQ_F_NOLOCK)) {
4963 				root_lock = qdisc_lock(q);
4964 				spin_lock(root_lock);
4965 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4966 						     &q->state))) {
4967 				/* There is a synchronize_net() between
4968 				 * STATE_DEACTIVATED flag being set and
4969 				 * qdisc_reset()/some_qdisc_is_busy() in
4970 				 * dev_deactivate(), so we can safely bail out
4971 				 * early here to avoid data race between
4972 				 * qdisc_deactivate() and some_qdisc_is_busy()
4973 				 * for lockless qdisc.
4974 				 */
4975 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4976 				continue;
4977 			}
4978 
4979 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4980 			qdisc_run(q);
4981 			if (root_lock)
4982 				spin_unlock(root_lock);
4983 		}
4984 
4985 		rcu_read_unlock();
4986 	}
4987 
4988 	xfrm_dev_backlog(sd);
4989 }
4990 
4991 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4992 /* This hook is defined here for ATM LANE */
4993 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4994 			     unsigned char *addr) __read_mostly;
4995 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4996 #endif
4997 
4998 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4999 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5000 		   struct net_device *orig_dev, bool *another)
5001 {
5002 #ifdef CONFIG_NET_CLS_ACT
5003 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5004 	struct tcf_result cl_res;
5005 
5006 	/* If there's at least one ingress present somewhere (so
5007 	 * we get here via enabled static key), remaining devices
5008 	 * that are not configured with an ingress qdisc will bail
5009 	 * out here.
5010 	 */
5011 	if (!miniq)
5012 		return skb;
5013 
5014 	if (*pt_prev) {
5015 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5016 		*pt_prev = NULL;
5017 	}
5018 
5019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5020 	qdisc_skb_cb(skb)->mru = 0;
5021 	skb->tc_at_ingress = 1;
5022 	mini_qdisc_bstats_cpu_update(miniq, skb);
5023 
5024 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5025 				     &cl_res, false)) {
5026 	case TC_ACT_OK:
5027 	case TC_ACT_RECLASSIFY:
5028 		skb->tc_index = TC_H_MIN(cl_res.classid);
5029 		break;
5030 	case TC_ACT_SHOT:
5031 		mini_qdisc_qstats_cpu_drop(miniq);
5032 		kfree_skb(skb);
5033 		return NULL;
5034 	case TC_ACT_STOLEN:
5035 	case TC_ACT_QUEUED:
5036 	case TC_ACT_TRAP:
5037 		consume_skb(skb);
5038 		return NULL;
5039 	case TC_ACT_REDIRECT:
5040 		/* skb_mac_header check was done by cls/act_bpf, so
5041 		 * we can safely push the L2 header back before
5042 		 * redirecting to another netdev
5043 		 */
5044 		__skb_push(skb, skb->mac_len);
5045 		if (skb_do_redirect(skb) == -EAGAIN) {
5046 			__skb_pull(skb, skb->mac_len);
5047 			*another = true;
5048 			break;
5049 		}
5050 		return NULL;
5051 	case TC_ACT_CONSUMED:
5052 		return NULL;
5053 	default:
5054 		break;
5055 	}
5056 #endif /* CONFIG_NET_CLS_ACT */
5057 	return skb;
5058 }
5059 
5060 /**
5061  *	netdev_is_rx_handler_busy - check if receive handler is registered
5062  *	@dev: device to check
5063  *
5064  *	Check if a receive handler is already registered for a given device.
5065  *	Return true if there one.
5066  *
5067  *	The caller must hold the rtnl_mutex.
5068  */
netdev_is_rx_handler_busy(struct net_device * dev)5069 bool netdev_is_rx_handler_busy(struct net_device *dev)
5070 {
5071 	ASSERT_RTNL();
5072 	return dev && rtnl_dereference(dev->rx_handler);
5073 }
5074 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5075 
5076 /**
5077  *	netdev_rx_handler_register - register receive handler
5078  *	@dev: device to register a handler for
5079  *	@rx_handler: receive handler to register
5080  *	@rx_handler_data: data pointer that is used by rx handler
5081  *
5082  *	Register a receive handler for a device. This handler will then be
5083  *	called from __netif_receive_skb. A negative errno code is returned
5084  *	on a failure.
5085  *
5086  *	The caller must hold the rtnl_mutex.
5087  *
5088  *	For a general description of rx_handler, see enum rx_handler_result.
5089  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5090 int netdev_rx_handler_register(struct net_device *dev,
5091 			       rx_handler_func_t *rx_handler,
5092 			       void *rx_handler_data)
5093 {
5094 	if (netdev_is_rx_handler_busy(dev))
5095 		return -EBUSY;
5096 
5097 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5098 		return -EINVAL;
5099 
5100 	/* Note: rx_handler_data must be set before rx_handler */
5101 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5102 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5103 
5104 	return 0;
5105 }
5106 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5107 
5108 /**
5109  *	netdev_rx_handler_unregister - unregister receive handler
5110  *	@dev: device to unregister a handler from
5111  *
5112  *	Unregister a receive handler from a device.
5113  *
5114  *	The caller must hold the rtnl_mutex.
5115  */
netdev_rx_handler_unregister(struct net_device * dev)5116 void netdev_rx_handler_unregister(struct net_device *dev)
5117 {
5118 
5119 	ASSERT_RTNL();
5120 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5121 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5122 	 * section has a guarantee to see a non NULL rx_handler_data
5123 	 * as well.
5124 	 */
5125 	synchronize_net();
5126 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5127 }
5128 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5129 
5130 /*
5131  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5132  * the special handling of PFMEMALLOC skbs.
5133  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5134 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5135 {
5136 	switch (skb->protocol) {
5137 	case htons(ETH_P_ARP):
5138 	case htons(ETH_P_IP):
5139 	case htons(ETH_P_IPV6):
5140 	case htons(ETH_P_8021Q):
5141 	case htons(ETH_P_8021AD):
5142 		return true;
5143 	default:
5144 		return false;
5145 	}
5146 }
5147 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5148 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5149 			     int *ret, struct net_device *orig_dev)
5150 {
5151 	if (nf_hook_ingress_active(skb)) {
5152 		int ingress_retval;
5153 
5154 		if (*pt_prev) {
5155 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5156 			*pt_prev = NULL;
5157 		}
5158 
5159 		rcu_read_lock();
5160 		ingress_retval = nf_hook_ingress(skb);
5161 		rcu_read_unlock();
5162 		return ingress_retval;
5163 	}
5164 	return 0;
5165 }
5166 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5167 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5168 				    struct packet_type **ppt_prev)
5169 {
5170 	struct packet_type *ptype, *pt_prev;
5171 	rx_handler_func_t *rx_handler;
5172 	struct sk_buff *skb = *pskb;
5173 	struct net_device *orig_dev;
5174 	bool deliver_exact = false;
5175 	int ret = NET_RX_DROP;
5176 	__be16 type;
5177 
5178 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5179 
5180 	trace_netif_receive_skb(skb);
5181 
5182 	orig_dev = skb->dev;
5183 
5184 	skb_reset_network_header(skb);
5185 	if (!skb_transport_header_was_set(skb))
5186 		skb_reset_transport_header(skb);
5187 	skb_reset_mac_len(skb);
5188 
5189 	pt_prev = NULL;
5190 
5191 another_round:
5192 	skb->skb_iif = skb->dev->ifindex;
5193 
5194 	__this_cpu_inc(softnet_data.processed);
5195 
5196 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5197 		int ret2;
5198 
5199 		preempt_disable();
5200 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5201 		preempt_enable();
5202 
5203 		if (ret2 != XDP_PASS) {
5204 			ret = NET_RX_DROP;
5205 			goto out;
5206 		}
5207 		skb_reset_mac_len(skb);
5208 	}
5209 
5210 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5211 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5212 		skb = skb_vlan_untag(skb);
5213 		if (unlikely(!skb))
5214 			goto out;
5215 	}
5216 
5217 	if (skb_skip_tc_classify(skb))
5218 		goto skip_classify;
5219 
5220 	if (pfmemalloc)
5221 		goto skip_taps;
5222 
5223 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5224 		if (pt_prev)
5225 			ret = deliver_skb(skb, pt_prev, orig_dev);
5226 		pt_prev = ptype;
5227 	}
5228 
5229 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5230 		if (pt_prev)
5231 			ret = deliver_skb(skb, pt_prev, orig_dev);
5232 		pt_prev = ptype;
5233 	}
5234 
5235 skip_taps:
5236 #ifdef CONFIG_NET_INGRESS
5237 	if (static_branch_unlikely(&ingress_needed_key)) {
5238 		bool another = false;
5239 
5240 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5241 					 &another);
5242 		if (another)
5243 			goto another_round;
5244 		if (!skb)
5245 			goto out;
5246 
5247 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5248 			goto out;
5249 	}
5250 #endif
5251 	skb_reset_redirect(skb);
5252 skip_classify:
5253 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5254 		goto drop;
5255 
5256 	if (skb_vlan_tag_present(skb)) {
5257 		if (pt_prev) {
5258 			ret = deliver_skb(skb, pt_prev, orig_dev);
5259 			pt_prev = NULL;
5260 		}
5261 		if (vlan_do_receive(&skb))
5262 			goto another_round;
5263 		else if (unlikely(!skb))
5264 			goto out;
5265 	}
5266 
5267 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5268 	if (rx_handler) {
5269 		if (pt_prev) {
5270 			ret = deliver_skb(skb, pt_prev, orig_dev);
5271 			pt_prev = NULL;
5272 		}
5273 		switch (rx_handler(&skb)) {
5274 		case RX_HANDLER_CONSUMED:
5275 			ret = NET_RX_SUCCESS;
5276 			goto out;
5277 		case RX_HANDLER_ANOTHER:
5278 			goto another_round;
5279 		case RX_HANDLER_EXACT:
5280 			deliver_exact = true;
5281 		case RX_HANDLER_PASS:
5282 			break;
5283 		default:
5284 			BUG();
5285 		}
5286 	}
5287 
5288 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5289 check_vlan_id:
5290 		if (skb_vlan_tag_get_id(skb)) {
5291 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5292 			 * find vlan device.
5293 			 */
5294 			skb->pkt_type = PACKET_OTHERHOST;
5295 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5296 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5297 			/* Outer header is 802.1P with vlan 0, inner header is
5298 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5299 			 * not find vlan dev for vlan id 0.
5300 			 */
5301 			__vlan_hwaccel_clear_tag(skb);
5302 			skb = skb_vlan_untag(skb);
5303 			if (unlikely(!skb))
5304 				goto out;
5305 			if (vlan_do_receive(&skb))
5306 				/* After stripping off 802.1P header with vlan 0
5307 				 * vlan dev is found for inner header.
5308 				 */
5309 				goto another_round;
5310 			else if (unlikely(!skb))
5311 				goto out;
5312 			else
5313 				/* We have stripped outer 802.1P vlan 0 header.
5314 				 * But could not find vlan dev.
5315 				 * check again for vlan id to set OTHERHOST.
5316 				 */
5317 				goto check_vlan_id;
5318 		}
5319 		/* Note: we might in the future use prio bits
5320 		 * and set skb->priority like in vlan_do_receive()
5321 		 * For the time being, just ignore Priority Code Point
5322 		 */
5323 		__vlan_hwaccel_clear_tag(skb);
5324 	}
5325 
5326 	type = skb->protocol;
5327 
5328 	/* deliver only exact match when indicated */
5329 	if (likely(!deliver_exact)) {
5330 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5331 				       &ptype_base[ntohs(type) &
5332 						   PTYPE_HASH_MASK]);
5333 	}
5334 
5335 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336 			       &orig_dev->ptype_specific);
5337 
5338 	if (unlikely(skb->dev != orig_dev)) {
5339 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5340 				       &skb->dev->ptype_specific);
5341 	}
5342 
5343 	if (pt_prev) {
5344 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5345 			goto drop;
5346 		*ppt_prev = pt_prev;
5347 	} else {
5348 drop:
5349 		if (!deliver_exact)
5350 			atomic_long_inc(&skb->dev->rx_dropped);
5351 		else
5352 			atomic_long_inc(&skb->dev->rx_nohandler);
5353 		kfree_skb(skb);
5354 		/* Jamal, now you will not able to escape explaining
5355 		 * me how you were going to use this. :-)
5356 		 */
5357 		ret = NET_RX_DROP;
5358 	}
5359 
5360 out:
5361 	/* The invariant here is that if *ppt_prev is not NULL
5362 	 * then skb should also be non-NULL.
5363 	 *
5364 	 * Apparently *ppt_prev assignment above holds this invariant due to
5365 	 * skb dereferencing near it.
5366 	 */
5367 	*pskb = skb;
5368 	return ret;
5369 }
5370 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5371 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5372 {
5373 	struct net_device *orig_dev = skb->dev;
5374 	struct packet_type *pt_prev = NULL;
5375 	int ret;
5376 
5377 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5378 	if (pt_prev)
5379 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5380 					 skb->dev, pt_prev, orig_dev);
5381 	return ret;
5382 }
5383 
5384 /**
5385  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5386  *	@skb: buffer to process
5387  *
5388  *	More direct receive version of netif_receive_skb().  It should
5389  *	only be used by callers that have a need to skip RPS and Generic XDP.
5390  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5391  *
5392  *	This function may only be called from softirq context and interrupts
5393  *	should be enabled.
5394  *
5395  *	Return values (usually ignored):
5396  *	NET_RX_SUCCESS: no congestion
5397  *	NET_RX_DROP: packet was dropped
5398  */
netif_receive_skb_core(struct sk_buff * skb)5399 int netif_receive_skb_core(struct sk_buff *skb)
5400 {
5401 	int ret;
5402 
5403 	rcu_read_lock();
5404 	ret = __netif_receive_skb_one_core(skb, false);
5405 	rcu_read_unlock();
5406 
5407 	return ret;
5408 }
5409 EXPORT_SYMBOL(netif_receive_skb_core);
5410 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5411 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5412 						  struct packet_type *pt_prev,
5413 						  struct net_device *orig_dev)
5414 {
5415 	struct sk_buff *skb, *next;
5416 
5417 	if (!pt_prev)
5418 		return;
5419 	if (list_empty(head))
5420 		return;
5421 	if (pt_prev->list_func != NULL)
5422 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5423 				   ip_list_rcv, head, pt_prev, orig_dev);
5424 	else
5425 		list_for_each_entry_safe(skb, next, head, list) {
5426 			skb_list_del_init(skb);
5427 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5428 		}
5429 }
5430 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5431 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5432 {
5433 	/* Fast-path assumptions:
5434 	 * - There is no RX handler.
5435 	 * - Only one packet_type matches.
5436 	 * If either of these fails, we will end up doing some per-packet
5437 	 * processing in-line, then handling the 'last ptype' for the whole
5438 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5439 	 * because the 'last ptype' must be constant across the sublist, and all
5440 	 * other ptypes are handled per-packet.
5441 	 */
5442 	/* Current (common) ptype of sublist */
5443 	struct packet_type *pt_curr = NULL;
5444 	/* Current (common) orig_dev of sublist */
5445 	struct net_device *od_curr = NULL;
5446 	struct list_head sublist;
5447 	struct sk_buff *skb, *next;
5448 
5449 	INIT_LIST_HEAD(&sublist);
5450 	list_for_each_entry_safe(skb, next, head, list) {
5451 		struct net_device *orig_dev = skb->dev;
5452 		struct packet_type *pt_prev = NULL;
5453 
5454 		skb_list_del_init(skb);
5455 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5456 		if (!pt_prev)
5457 			continue;
5458 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5459 			/* dispatch old sublist */
5460 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5461 			/* start new sublist */
5462 			INIT_LIST_HEAD(&sublist);
5463 			pt_curr = pt_prev;
5464 			od_curr = orig_dev;
5465 		}
5466 		list_add_tail(&skb->list, &sublist);
5467 	}
5468 
5469 	/* dispatch final sublist */
5470 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5471 }
5472 
__netif_receive_skb(struct sk_buff * skb)5473 static int __netif_receive_skb(struct sk_buff *skb)
5474 {
5475 	int ret;
5476 
5477 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5478 		unsigned int noreclaim_flag;
5479 
5480 		/*
5481 		 * PFMEMALLOC skbs are special, they should
5482 		 * - be delivered to SOCK_MEMALLOC sockets only
5483 		 * - stay away from userspace
5484 		 * - have bounded memory usage
5485 		 *
5486 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5487 		 * context down to all allocation sites.
5488 		 */
5489 		noreclaim_flag = memalloc_noreclaim_save();
5490 		ret = __netif_receive_skb_one_core(skb, true);
5491 		memalloc_noreclaim_restore(noreclaim_flag);
5492 	} else
5493 		ret = __netif_receive_skb_one_core(skb, false);
5494 
5495 	return ret;
5496 }
5497 
__netif_receive_skb_list(struct list_head * head)5498 static void __netif_receive_skb_list(struct list_head *head)
5499 {
5500 	unsigned long noreclaim_flag = 0;
5501 	struct sk_buff *skb, *next;
5502 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5503 
5504 	list_for_each_entry_safe(skb, next, head, list) {
5505 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5506 			struct list_head sublist;
5507 
5508 			/* Handle the previous sublist */
5509 			list_cut_before(&sublist, head, &skb->list);
5510 			if (!list_empty(&sublist))
5511 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5512 			pfmemalloc = !pfmemalloc;
5513 			/* See comments in __netif_receive_skb */
5514 			if (pfmemalloc)
5515 				noreclaim_flag = memalloc_noreclaim_save();
5516 			else
5517 				memalloc_noreclaim_restore(noreclaim_flag);
5518 		}
5519 	}
5520 	/* Handle the remaining sublist */
5521 	if (!list_empty(head))
5522 		__netif_receive_skb_list_core(head, pfmemalloc);
5523 	/* Restore pflags */
5524 	if (pfmemalloc)
5525 		memalloc_noreclaim_restore(noreclaim_flag);
5526 }
5527 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5528 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5529 {
5530 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5531 	struct bpf_prog *new = xdp->prog;
5532 	int ret = 0;
5533 
5534 	if (new) {
5535 		u32 i;
5536 
5537 		mutex_lock(&new->aux->used_maps_mutex);
5538 
5539 		/* generic XDP does not work with DEVMAPs that can
5540 		 * have a bpf_prog installed on an entry
5541 		 */
5542 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5543 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5544 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5545 				mutex_unlock(&new->aux->used_maps_mutex);
5546 				return -EINVAL;
5547 			}
5548 		}
5549 
5550 		mutex_unlock(&new->aux->used_maps_mutex);
5551 	}
5552 
5553 	switch (xdp->command) {
5554 	case XDP_SETUP_PROG:
5555 		rcu_assign_pointer(dev->xdp_prog, new);
5556 		if (old)
5557 			bpf_prog_put(old);
5558 
5559 		if (old && !new) {
5560 			static_branch_dec(&generic_xdp_needed_key);
5561 		} else if (new && !old) {
5562 			static_branch_inc(&generic_xdp_needed_key);
5563 			dev_disable_lro(dev);
5564 			dev_disable_gro_hw(dev);
5565 		}
5566 		break;
5567 
5568 	default:
5569 		ret = -EINVAL;
5570 		break;
5571 	}
5572 
5573 	return ret;
5574 }
5575 
netif_receive_skb_internal(struct sk_buff * skb)5576 static int netif_receive_skb_internal(struct sk_buff *skb)
5577 {
5578 	int ret;
5579 
5580 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5581 
5582 	if (skb_defer_rx_timestamp(skb))
5583 		return NET_RX_SUCCESS;
5584 
5585 	rcu_read_lock();
5586 #ifdef CONFIG_RPS
5587 	if (static_branch_unlikely(&rps_needed)) {
5588 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5589 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5590 
5591 		if (cpu >= 0) {
5592 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5593 			rcu_read_unlock();
5594 			return ret;
5595 		}
5596 	}
5597 #endif
5598 	ret = __netif_receive_skb(skb);
5599 	rcu_read_unlock();
5600 	return ret;
5601 }
5602 
netif_receive_skb_list_internal(struct list_head * head)5603 static void netif_receive_skb_list_internal(struct list_head *head)
5604 {
5605 	struct sk_buff *skb, *next;
5606 	struct list_head sublist;
5607 
5608 	INIT_LIST_HEAD(&sublist);
5609 	list_for_each_entry_safe(skb, next, head, list) {
5610 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5611 		skb_list_del_init(skb);
5612 		if (!skb_defer_rx_timestamp(skb))
5613 			list_add_tail(&skb->list, &sublist);
5614 	}
5615 	list_splice_init(&sublist, head);
5616 
5617 	rcu_read_lock();
5618 #ifdef CONFIG_RPS
5619 	if (static_branch_unlikely(&rps_needed)) {
5620 		list_for_each_entry_safe(skb, next, head, list) {
5621 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5622 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5623 
5624 			if (cpu >= 0) {
5625 				/* Will be handled, remove from list */
5626 				skb_list_del_init(skb);
5627 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5628 			}
5629 		}
5630 	}
5631 #endif
5632 	__netif_receive_skb_list(head);
5633 	rcu_read_unlock();
5634 }
5635 
5636 /**
5637  *	netif_receive_skb - process receive buffer from network
5638  *	@skb: buffer to process
5639  *
5640  *	netif_receive_skb() is the main receive data processing function.
5641  *	It always succeeds. The buffer may be dropped during processing
5642  *	for congestion control or by the protocol layers.
5643  *
5644  *	This function may only be called from softirq context and interrupts
5645  *	should be enabled.
5646  *
5647  *	Return values (usually ignored):
5648  *	NET_RX_SUCCESS: no congestion
5649  *	NET_RX_DROP: packet was dropped
5650  */
netif_receive_skb(struct sk_buff * skb)5651 int netif_receive_skb(struct sk_buff *skb)
5652 {
5653 	int ret;
5654 
5655 	trace_netif_receive_skb_entry(skb);
5656 
5657 	ret = netif_receive_skb_internal(skb);
5658 	trace_netif_receive_skb_exit(ret);
5659 
5660 	return ret;
5661 }
5662 EXPORT_SYMBOL(netif_receive_skb);
5663 
5664 /**
5665  *	netif_receive_skb_list - process many receive buffers from network
5666  *	@head: list of skbs to process.
5667  *
5668  *	Since return value of netif_receive_skb() is normally ignored, and
5669  *	wouldn't be meaningful for a list, this function returns void.
5670  *
5671  *	This function may only be called from softirq context and interrupts
5672  *	should be enabled.
5673  */
netif_receive_skb_list(struct list_head * head)5674 void netif_receive_skb_list(struct list_head *head)
5675 {
5676 	struct sk_buff *skb;
5677 
5678 	if (list_empty(head))
5679 		return;
5680 	if (trace_netif_receive_skb_list_entry_enabled()) {
5681 		list_for_each_entry(skb, head, list)
5682 			trace_netif_receive_skb_list_entry(skb);
5683 	}
5684 	netif_receive_skb_list_internal(head);
5685 	trace_netif_receive_skb_list_exit(0);
5686 }
5687 EXPORT_SYMBOL(netif_receive_skb_list);
5688 
5689 static DEFINE_PER_CPU(struct work_struct, flush_works);
5690 
5691 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5692 static void flush_backlog(struct work_struct *work)
5693 {
5694 	struct sk_buff *skb, *tmp;
5695 	struct softnet_data *sd;
5696 
5697 	local_bh_disable();
5698 	sd = this_cpu_ptr(&softnet_data);
5699 
5700 	local_irq_disable();
5701 	rps_lock(sd);
5702 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5703 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5704 			__skb_unlink(skb, &sd->input_pkt_queue);
5705 			dev_kfree_skb_irq(skb);
5706 			input_queue_head_incr(sd);
5707 		}
5708 	}
5709 	rps_unlock(sd);
5710 	local_irq_enable();
5711 
5712 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5713 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5714 			__skb_unlink(skb, &sd->process_queue);
5715 			kfree_skb(skb);
5716 			input_queue_head_incr(sd);
5717 		}
5718 	}
5719 	local_bh_enable();
5720 }
5721 
flush_required(int cpu)5722 static bool flush_required(int cpu)
5723 {
5724 #if IS_ENABLED(CONFIG_RPS)
5725 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5726 	bool do_flush;
5727 
5728 	local_irq_disable();
5729 	rps_lock(sd);
5730 
5731 	/* as insertion into process_queue happens with the rps lock held,
5732 	 * process_queue access may race only with dequeue
5733 	 */
5734 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5735 		   !skb_queue_empty_lockless(&sd->process_queue);
5736 	rps_unlock(sd);
5737 	local_irq_enable();
5738 
5739 	return do_flush;
5740 #endif
5741 	/* without RPS we can't safely check input_pkt_queue: during a
5742 	 * concurrent remote skb_queue_splice() we can detect as empty both
5743 	 * input_pkt_queue and process_queue even if the latter could end-up
5744 	 * containing a lot of packets.
5745 	 */
5746 	return true;
5747 }
5748 
flush_all_backlogs(void)5749 static void flush_all_backlogs(void)
5750 {
5751 	static cpumask_t flush_cpus;
5752 	unsigned int cpu;
5753 
5754 	/* since we are under rtnl lock protection we can use static data
5755 	 * for the cpumask and avoid allocating on stack the possibly
5756 	 * large mask
5757 	 */
5758 	ASSERT_RTNL();
5759 
5760 	get_online_cpus();
5761 
5762 	cpumask_clear(&flush_cpus);
5763 	for_each_online_cpu(cpu) {
5764 		if (flush_required(cpu)) {
5765 			queue_work_on(cpu, system_highpri_wq,
5766 				      per_cpu_ptr(&flush_works, cpu));
5767 			cpumask_set_cpu(cpu, &flush_cpus);
5768 		}
5769 	}
5770 
5771 	/* we can have in flight packet[s] on the cpus we are not flushing,
5772 	 * synchronize_net() in unregister_netdevice_many() will take care of
5773 	 * them
5774 	 */
5775 	for_each_cpu(cpu, &flush_cpus)
5776 		flush_work(per_cpu_ptr(&flush_works, cpu));
5777 
5778 	put_online_cpus();
5779 }
5780 
5781 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5782 static void gro_normal_list(struct napi_struct *napi)
5783 {
5784 	if (!napi->rx_count)
5785 		return;
5786 	netif_receive_skb_list_internal(&napi->rx_list);
5787 	INIT_LIST_HEAD(&napi->rx_list);
5788 	napi->rx_count = 0;
5789 }
5790 
5791 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5792  * pass the whole batch up to the stack.
5793  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5794 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5795 {
5796 	list_add_tail(&skb->list, &napi->rx_list);
5797 	napi->rx_count += segs;
5798 	if (napi->rx_count >= gro_normal_batch)
5799 		gro_normal_list(napi);
5800 }
5801 
5802 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5803 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5804 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5805 {
5806 	struct packet_offload *ptype;
5807 	__be16 type = skb->protocol;
5808 	struct list_head *head = &offload_base;
5809 	int err = -ENOENT;
5810 
5811 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5812 
5813 	if (NAPI_GRO_CB(skb)->count == 1) {
5814 		skb_shinfo(skb)->gso_size = 0;
5815 		goto out;
5816 	}
5817 
5818 	rcu_read_lock();
5819 	list_for_each_entry_rcu(ptype, head, list) {
5820 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5821 			continue;
5822 
5823 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5824 					 ipv6_gro_complete, inet_gro_complete,
5825 					 skb, 0);
5826 		break;
5827 	}
5828 	rcu_read_unlock();
5829 
5830 	if (err) {
5831 		WARN_ON(&ptype->list == head);
5832 		kfree_skb(skb);
5833 		return NET_RX_SUCCESS;
5834 	}
5835 
5836 out:
5837 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5838 	return NET_RX_SUCCESS;
5839 }
5840 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5841 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5842 				   bool flush_old)
5843 {
5844 	struct list_head *head = &napi->gro_hash[index].list;
5845 	struct sk_buff *skb, *p;
5846 
5847 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5848 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5849 			return;
5850 		skb_list_del_init(skb);
5851 		napi_gro_complete(napi, skb);
5852 		napi->gro_hash[index].count--;
5853 	}
5854 
5855 	if (!napi->gro_hash[index].count)
5856 		__clear_bit(index, &napi->gro_bitmask);
5857 }
5858 
5859 /* napi->gro_hash[].list contains packets ordered by age.
5860  * youngest packets at the head of it.
5861  * Complete skbs in reverse order to reduce latencies.
5862  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5863 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5864 {
5865 	unsigned long bitmask = napi->gro_bitmask;
5866 	unsigned int i, base = ~0U;
5867 
5868 	while ((i = ffs(bitmask)) != 0) {
5869 		bitmask >>= i;
5870 		base += i;
5871 		__napi_gro_flush_chain(napi, base, flush_old);
5872 	}
5873 }
5874 EXPORT_SYMBOL(napi_gro_flush);
5875 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5876 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5877 					  struct sk_buff *skb)
5878 {
5879 	unsigned int maclen = skb->dev->hard_header_len;
5880 	u32 hash = skb_get_hash_raw(skb);
5881 	struct list_head *head;
5882 	struct sk_buff *p;
5883 
5884 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5885 	list_for_each_entry(p, head, list) {
5886 		unsigned long diffs;
5887 
5888 		NAPI_GRO_CB(p)->flush = 0;
5889 
5890 		if (hash != skb_get_hash_raw(p)) {
5891 			NAPI_GRO_CB(p)->same_flow = 0;
5892 			continue;
5893 		}
5894 
5895 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5896 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5897 		if (skb_vlan_tag_present(p))
5898 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5899 		diffs |= skb_metadata_dst_cmp(p, skb);
5900 		diffs |= skb_metadata_differs(p, skb);
5901 		if (maclen == ETH_HLEN)
5902 			diffs |= compare_ether_header(skb_mac_header(p),
5903 						      skb_mac_header(skb));
5904 		else if (!diffs)
5905 			diffs = memcmp(skb_mac_header(p),
5906 				       skb_mac_header(skb),
5907 				       maclen);
5908 
5909 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5910 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5911 		if (!diffs) {
5912 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5913 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5914 
5915 			diffs |= (!!p_ext) ^ (!!skb_ext);
5916 			if (!diffs && unlikely(skb_ext))
5917 				diffs |= p_ext->chain ^ skb_ext->chain;
5918 		}
5919 #endif
5920 
5921 		NAPI_GRO_CB(p)->same_flow = !diffs;
5922 	}
5923 
5924 	return head;
5925 }
5926 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5927 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5928 {
5929 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5930 	const skb_frag_t *frag0 = &pinfo->frags[0];
5931 
5932 	NAPI_GRO_CB(skb)->data_offset = 0;
5933 	NAPI_GRO_CB(skb)->frag0 = NULL;
5934 	NAPI_GRO_CB(skb)->frag0_len = 0;
5935 
5936 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5937 	    !PageHighMem(skb_frag_page(frag0)) &&
5938 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5939 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5940 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5941 						    skb_frag_size(frag0),
5942 						    skb->end - skb->tail);
5943 	}
5944 }
5945 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5946 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5947 {
5948 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5949 
5950 	BUG_ON(skb->end - skb->tail < grow);
5951 
5952 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5953 
5954 	skb->data_len -= grow;
5955 	skb->tail += grow;
5956 
5957 	skb_frag_off_add(&pinfo->frags[0], grow);
5958 	skb_frag_size_sub(&pinfo->frags[0], grow);
5959 
5960 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5961 		skb_frag_unref(skb, 0);
5962 		memmove(pinfo->frags, pinfo->frags + 1,
5963 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5964 	}
5965 }
5966 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5967 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5968 {
5969 	struct sk_buff *oldest;
5970 
5971 	oldest = list_last_entry(head, struct sk_buff, list);
5972 
5973 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5974 	 * impossible.
5975 	 */
5976 	if (WARN_ON_ONCE(!oldest))
5977 		return;
5978 
5979 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5980 	 * SKB to the chain.
5981 	 */
5982 	skb_list_del_init(oldest);
5983 	napi_gro_complete(napi, oldest);
5984 }
5985 
5986 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5987 							   struct sk_buff *));
5988 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5989 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5990 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5991 {
5992 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5993 	struct list_head *head = &offload_base;
5994 	struct packet_offload *ptype;
5995 	__be16 type = skb->protocol;
5996 	struct list_head *gro_head;
5997 	struct sk_buff *pp = NULL;
5998 	enum gro_result ret;
5999 	int same_flow;
6000 	int grow;
6001 
6002 	if (netif_elide_gro(skb->dev))
6003 		goto normal;
6004 
6005 	gro_head = gro_list_prepare(napi, skb);
6006 
6007 	rcu_read_lock();
6008 	list_for_each_entry_rcu(ptype, head, list) {
6009 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6010 			continue;
6011 
6012 		skb_set_network_header(skb, skb_gro_offset(skb));
6013 		skb_reset_mac_len(skb);
6014 		NAPI_GRO_CB(skb)->same_flow = 0;
6015 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6016 		NAPI_GRO_CB(skb)->free = 0;
6017 		NAPI_GRO_CB(skb)->encap_mark = 0;
6018 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6019 		NAPI_GRO_CB(skb)->is_fou = 0;
6020 		NAPI_GRO_CB(skb)->is_atomic = 1;
6021 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6022 
6023 		/* Setup for GRO checksum validation */
6024 		switch (skb->ip_summed) {
6025 		case CHECKSUM_COMPLETE:
6026 			NAPI_GRO_CB(skb)->csum = skb->csum;
6027 			NAPI_GRO_CB(skb)->csum_valid = 1;
6028 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6029 			break;
6030 		case CHECKSUM_UNNECESSARY:
6031 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6032 			NAPI_GRO_CB(skb)->csum_valid = 0;
6033 			break;
6034 		default:
6035 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6036 			NAPI_GRO_CB(skb)->csum_valid = 0;
6037 		}
6038 
6039 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6040 					ipv6_gro_receive, inet_gro_receive,
6041 					gro_head, skb);
6042 		break;
6043 	}
6044 	rcu_read_unlock();
6045 
6046 	if (&ptype->list == head)
6047 		goto normal;
6048 
6049 	if (PTR_ERR(pp) == -EINPROGRESS) {
6050 		ret = GRO_CONSUMED;
6051 		goto ok;
6052 	}
6053 
6054 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6055 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6056 
6057 	if (pp) {
6058 		skb_list_del_init(pp);
6059 		napi_gro_complete(napi, pp);
6060 		napi->gro_hash[hash].count--;
6061 	}
6062 
6063 	if (same_flow)
6064 		goto ok;
6065 
6066 	if (NAPI_GRO_CB(skb)->flush)
6067 		goto normal;
6068 
6069 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6070 		gro_flush_oldest(napi, gro_head);
6071 	} else {
6072 		napi->gro_hash[hash].count++;
6073 	}
6074 	NAPI_GRO_CB(skb)->count = 1;
6075 	NAPI_GRO_CB(skb)->age = jiffies;
6076 	NAPI_GRO_CB(skb)->last = skb;
6077 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6078 	list_add(&skb->list, gro_head);
6079 	ret = GRO_HELD;
6080 
6081 pull:
6082 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6083 	if (grow > 0)
6084 		gro_pull_from_frag0(skb, grow);
6085 ok:
6086 	if (napi->gro_hash[hash].count) {
6087 		if (!test_bit(hash, &napi->gro_bitmask))
6088 			__set_bit(hash, &napi->gro_bitmask);
6089 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6090 		__clear_bit(hash, &napi->gro_bitmask);
6091 	}
6092 
6093 	return ret;
6094 
6095 normal:
6096 	ret = GRO_NORMAL;
6097 	goto pull;
6098 }
6099 
gro_find_receive_by_type(__be16 type)6100 struct packet_offload *gro_find_receive_by_type(__be16 type)
6101 {
6102 	struct list_head *offload_head = &offload_base;
6103 	struct packet_offload *ptype;
6104 
6105 	list_for_each_entry_rcu(ptype, offload_head, list) {
6106 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6107 			continue;
6108 		return ptype;
6109 	}
6110 	return NULL;
6111 }
6112 EXPORT_SYMBOL(gro_find_receive_by_type);
6113 
gro_find_complete_by_type(__be16 type)6114 struct packet_offload *gro_find_complete_by_type(__be16 type)
6115 {
6116 	struct list_head *offload_head = &offload_base;
6117 	struct packet_offload *ptype;
6118 
6119 	list_for_each_entry_rcu(ptype, offload_head, list) {
6120 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6121 			continue;
6122 		return ptype;
6123 	}
6124 	return NULL;
6125 }
6126 EXPORT_SYMBOL(gro_find_complete_by_type);
6127 
napi_skb_free_stolen_head(struct sk_buff * skb)6128 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6129 {
6130 	nf_reset_ct(skb);
6131 	skb_dst_drop(skb);
6132 	skb_ext_put(skb);
6133 	kmem_cache_free(skbuff_head_cache, skb);
6134 }
6135 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6136 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6137 				    struct sk_buff *skb,
6138 				    gro_result_t ret)
6139 {
6140 	switch (ret) {
6141 	case GRO_NORMAL:
6142 		gro_normal_one(napi, skb, 1);
6143 		break;
6144 
6145 	case GRO_DROP:
6146 		kfree_skb(skb);
6147 		break;
6148 
6149 	case GRO_MERGED_FREE:
6150 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6151 			napi_skb_free_stolen_head(skb);
6152 		else
6153 			__kfree_skb(skb);
6154 		break;
6155 
6156 	case GRO_HELD:
6157 	case GRO_MERGED:
6158 	case GRO_CONSUMED:
6159 		break;
6160 	}
6161 
6162 	return ret;
6163 }
6164 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6165 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6166 {
6167 	gro_result_t ret;
6168 
6169 	skb_mark_napi_id(skb, napi);
6170 	trace_napi_gro_receive_entry(skb);
6171 
6172 	skb_gro_reset_offset(skb, 0);
6173 
6174 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6175 	trace_napi_gro_receive_exit(ret);
6176 
6177 	return ret;
6178 }
6179 EXPORT_SYMBOL(napi_gro_receive);
6180 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6181 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6182 {
6183 	if (unlikely(skb->pfmemalloc)) {
6184 		consume_skb(skb);
6185 		return;
6186 	}
6187 	__skb_pull(skb, skb_headlen(skb));
6188 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6189 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6190 	__vlan_hwaccel_clear_tag(skb);
6191 	skb->dev = napi->dev;
6192 	skb->skb_iif = 0;
6193 
6194 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6195 	skb->pkt_type = PACKET_HOST;
6196 
6197 	skb->encapsulation = 0;
6198 	skb_shinfo(skb)->gso_type = 0;
6199 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6200 	skb_ext_reset(skb);
6201 	nf_reset_ct(skb);
6202 
6203 	napi->skb = skb;
6204 }
6205 
napi_get_frags(struct napi_struct * napi)6206 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6207 {
6208 	struct sk_buff *skb = napi->skb;
6209 
6210 	if (!skb) {
6211 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6212 		if (skb) {
6213 			napi->skb = skb;
6214 			skb_mark_napi_id(skb, napi);
6215 		}
6216 	}
6217 	return skb;
6218 }
6219 EXPORT_SYMBOL(napi_get_frags);
6220 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6221 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6222 				      struct sk_buff *skb,
6223 				      gro_result_t ret)
6224 {
6225 	switch (ret) {
6226 	case GRO_NORMAL:
6227 	case GRO_HELD:
6228 		__skb_push(skb, ETH_HLEN);
6229 		skb->protocol = eth_type_trans(skb, skb->dev);
6230 		if (ret == GRO_NORMAL)
6231 			gro_normal_one(napi, skb, 1);
6232 		break;
6233 
6234 	case GRO_DROP:
6235 		napi_reuse_skb(napi, skb);
6236 		break;
6237 
6238 	case GRO_MERGED_FREE:
6239 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6240 			napi_skb_free_stolen_head(skb);
6241 		else
6242 			napi_reuse_skb(napi, skb);
6243 		break;
6244 
6245 	case GRO_MERGED:
6246 	case GRO_CONSUMED:
6247 		break;
6248 	}
6249 
6250 	return ret;
6251 }
6252 
6253 /* Upper GRO stack assumes network header starts at gro_offset=0
6254  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6255  * We copy ethernet header into skb->data to have a common layout.
6256  */
napi_frags_skb(struct napi_struct * napi)6257 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6258 {
6259 	struct sk_buff *skb = napi->skb;
6260 	const struct ethhdr *eth;
6261 	unsigned int hlen = sizeof(*eth);
6262 
6263 	napi->skb = NULL;
6264 
6265 	skb_reset_mac_header(skb);
6266 	skb_gro_reset_offset(skb, hlen);
6267 
6268 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6269 		eth = skb_gro_header_slow(skb, hlen, 0);
6270 		if (unlikely(!eth)) {
6271 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6272 					     __func__, napi->dev->name);
6273 			napi_reuse_skb(napi, skb);
6274 			return NULL;
6275 		}
6276 	} else {
6277 		eth = (const struct ethhdr *)skb->data;
6278 		gro_pull_from_frag0(skb, hlen);
6279 		NAPI_GRO_CB(skb)->frag0 += hlen;
6280 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6281 	}
6282 	__skb_pull(skb, hlen);
6283 
6284 	/*
6285 	 * This works because the only protocols we care about don't require
6286 	 * special handling.
6287 	 * We'll fix it up properly in napi_frags_finish()
6288 	 */
6289 	skb->protocol = eth->h_proto;
6290 
6291 	return skb;
6292 }
6293 
napi_gro_frags(struct napi_struct * napi)6294 gro_result_t napi_gro_frags(struct napi_struct *napi)
6295 {
6296 	gro_result_t ret;
6297 	struct sk_buff *skb = napi_frags_skb(napi);
6298 
6299 	if (!skb)
6300 		return GRO_DROP;
6301 
6302 	trace_napi_gro_frags_entry(skb);
6303 
6304 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6305 	trace_napi_gro_frags_exit(ret);
6306 
6307 	return ret;
6308 }
6309 EXPORT_SYMBOL(napi_gro_frags);
6310 
6311 /* Compute the checksum from gro_offset and return the folded value
6312  * after adding in any pseudo checksum.
6313  */
__skb_gro_checksum_complete(struct sk_buff * skb)6314 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6315 {
6316 	__wsum wsum;
6317 	__sum16 sum;
6318 
6319 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6320 
6321 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6322 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6323 	/* See comments in __skb_checksum_complete(). */
6324 	if (likely(!sum)) {
6325 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6326 		    !skb->csum_complete_sw)
6327 			netdev_rx_csum_fault(skb->dev, skb);
6328 	}
6329 
6330 	NAPI_GRO_CB(skb)->csum = wsum;
6331 	NAPI_GRO_CB(skb)->csum_valid = 1;
6332 
6333 	return sum;
6334 }
6335 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6336 
net_rps_send_ipi(struct softnet_data * remsd)6337 static void net_rps_send_ipi(struct softnet_data *remsd)
6338 {
6339 #ifdef CONFIG_RPS
6340 	while (remsd) {
6341 		struct softnet_data *next = remsd->rps_ipi_next;
6342 
6343 		if (cpu_online(remsd->cpu))
6344 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6345 		remsd = next;
6346 	}
6347 #endif
6348 }
6349 
6350 /*
6351  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6352  * Note: called with local irq disabled, but exits with local irq enabled.
6353  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6354 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6355 {
6356 #ifdef CONFIG_RPS
6357 	struct softnet_data *remsd = sd->rps_ipi_list;
6358 
6359 	if (remsd) {
6360 		sd->rps_ipi_list = NULL;
6361 
6362 		local_irq_enable();
6363 
6364 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6365 		net_rps_send_ipi(remsd);
6366 	} else
6367 #endif
6368 		local_irq_enable();
6369 }
6370 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6371 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6372 {
6373 #ifdef CONFIG_RPS
6374 	return sd->rps_ipi_list != NULL;
6375 #else
6376 	return false;
6377 #endif
6378 }
6379 
process_backlog(struct napi_struct * napi,int quota)6380 static int process_backlog(struct napi_struct *napi, int quota)
6381 {
6382 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6383 	bool again = true;
6384 	int work = 0;
6385 
6386 	/* Check if we have pending ipi, its better to send them now,
6387 	 * not waiting net_rx_action() end.
6388 	 */
6389 	if (sd_has_rps_ipi_waiting(sd)) {
6390 		local_irq_disable();
6391 		net_rps_action_and_irq_enable(sd);
6392 	}
6393 
6394 	napi->weight = READ_ONCE(dev_rx_weight);
6395 	while (again) {
6396 		struct sk_buff *skb;
6397 
6398 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6399 			rcu_read_lock();
6400 			__netif_receive_skb(skb);
6401 			rcu_read_unlock();
6402 			input_queue_head_incr(sd);
6403 			if (++work >= quota)
6404 				return work;
6405 
6406 		}
6407 
6408 		local_irq_disable();
6409 		rps_lock(sd);
6410 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6411 			/*
6412 			 * Inline a custom version of __napi_complete().
6413 			 * only current cpu owns and manipulates this napi,
6414 			 * and NAPI_STATE_SCHED is the only possible flag set
6415 			 * on backlog.
6416 			 * We can use a plain write instead of clear_bit(),
6417 			 * and we dont need an smp_mb() memory barrier.
6418 			 */
6419 			napi->state = 0;
6420 			again = false;
6421 		} else {
6422 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6423 						   &sd->process_queue);
6424 		}
6425 		rps_unlock(sd);
6426 		local_irq_enable();
6427 	}
6428 
6429 	return work;
6430 }
6431 
6432 /**
6433  * __napi_schedule - schedule for receive
6434  * @n: entry to schedule
6435  *
6436  * The entry's receive function will be scheduled to run.
6437  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6438  */
__napi_schedule(struct napi_struct * n)6439 void __napi_schedule(struct napi_struct *n)
6440 {
6441 	unsigned long flags;
6442 
6443 	local_irq_save(flags);
6444 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6445 	local_irq_restore(flags);
6446 }
6447 EXPORT_SYMBOL(__napi_schedule);
6448 
6449 /**
6450  *	napi_schedule_prep - check if napi can be scheduled
6451  *	@n: napi context
6452  *
6453  * Test if NAPI routine is already running, and if not mark
6454  * it as running.  This is used as a condition variable to
6455  * insure only one NAPI poll instance runs.  We also make
6456  * sure there is no pending NAPI disable.
6457  */
napi_schedule_prep(struct napi_struct * n)6458 bool napi_schedule_prep(struct napi_struct *n)
6459 {
6460 	unsigned long val, new;
6461 
6462 	do {
6463 		val = READ_ONCE(n->state);
6464 		if (unlikely(val & NAPIF_STATE_DISABLE))
6465 			return false;
6466 		new = val | NAPIF_STATE_SCHED;
6467 
6468 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6469 		 * This was suggested by Alexander Duyck, as compiler
6470 		 * emits better code than :
6471 		 * if (val & NAPIF_STATE_SCHED)
6472 		 *     new |= NAPIF_STATE_MISSED;
6473 		 */
6474 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6475 						   NAPIF_STATE_MISSED;
6476 	} while (cmpxchg(&n->state, val, new) != val);
6477 
6478 	return !(val & NAPIF_STATE_SCHED);
6479 }
6480 EXPORT_SYMBOL(napi_schedule_prep);
6481 
6482 /**
6483  * __napi_schedule_irqoff - schedule for receive
6484  * @n: entry to schedule
6485  *
6486  * Variant of __napi_schedule() assuming hard irqs are masked.
6487  *
6488  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6489  * because the interrupt disabled assumption might not be true
6490  * due to force-threaded interrupts and spinlock substitution.
6491  */
__napi_schedule_irqoff(struct napi_struct * n)6492 void __napi_schedule_irqoff(struct napi_struct *n)
6493 {
6494 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6495 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6496 	else
6497 		__napi_schedule(n);
6498 }
6499 EXPORT_SYMBOL(__napi_schedule_irqoff);
6500 
napi_complete_done(struct napi_struct * n,int work_done)6501 bool napi_complete_done(struct napi_struct *n, int work_done)
6502 {
6503 	unsigned long flags, val, new, timeout = 0;
6504 	bool ret = true;
6505 
6506 	/*
6507 	 * 1) Don't let napi dequeue from the cpu poll list
6508 	 *    just in case its running on a different cpu.
6509 	 * 2) If we are busy polling, do nothing here, we have
6510 	 *    the guarantee we will be called later.
6511 	 */
6512 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6513 				 NAPIF_STATE_IN_BUSY_POLL)))
6514 		return false;
6515 
6516 	if (work_done) {
6517 		if (n->gro_bitmask)
6518 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6519 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6520 	}
6521 	if (n->defer_hard_irqs_count > 0) {
6522 		n->defer_hard_irqs_count--;
6523 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6524 		if (timeout)
6525 			ret = false;
6526 	}
6527 	if (n->gro_bitmask) {
6528 		/* When the NAPI instance uses a timeout and keeps postponing
6529 		 * it, we need to bound somehow the time packets are kept in
6530 		 * the GRO layer
6531 		 */
6532 		napi_gro_flush(n, !!timeout);
6533 	}
6534 
6535 	gro_normal_list(n);
6536 
6537 	if (unlikely(!list_empty(&n->poll_list))) {
6538 		/* If n->poll_list is not empty, we need to mask irqs */
6539 		local_irq_save(flags);
6540 		list_del_init(&n->poll_list);
6541 		local_irq_restore(flags);
6542 	}
6543 
6544 	do {
6545 		val = READ_ONCE(n->state);
6546 
6547 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6548 
6549 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6550 
6551 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6552 		 * because we will call napi->poll() one more time.
6553 		 * This C code was suggested by Alexander Duyck to help gcc.
6554 		 */
6555 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6556 						    NAPIF_STATE_SCHED;
6557 	} while (cmpxchg(&n->state, val, new) != val);
6558 
6559 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6560 		__napi_schedule(n);
6561 		return false;
6562 	}
6563 
6564 	if (timeout)
6565 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6566 			      HRTIMER_MODE_REL_PINNED);
6567 	return ret;
6568 }
6569 EXPORT_SYMBOL(napi_complete_done);
6570 
6571 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6572 static struct napi_struct *napi_by_id(unsigned int napi_id)
6573 {
6574 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6575 	struct napi_struct *napi;
6576 
6577 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6578 		if (napi->napi_id == napi_id)
6579 			return napi;
6580 
6581 	return NULL;
6582 }
6583 
6584 #if defined(CONFIG_NET_RX_BUSY_POLL)
6585 
6586 #define BUSY_POLL_BUDGET 8
6587 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6588 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6589 {
6590 	int rc;
6591 
6592 	/* Busy polling means there is a high chance device driver hard irq
6593 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6594 	 * set in napi_schedule_prep().
6595 	 * Since we are about to call napi->poll() once more, we can safely
6596 	 * clear NAPI_STATE_MISSED.
6597 	 *
6598 	 * Note: x86 could use a single "lock and ..." instruction
6599 	 * to perform these two clear_bit()
6600 	 */
6601 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6602 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6603 
6604 	local_bh_disable();
6605 
6606 	/* All we really want here is to re-enable device interrupts.
6607 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6608 	 */
6609 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6610 	/* We can't gro_normal_list() here, because napi->poll() might have
6611 	 * rearmed the napi (napi_complete_done()) in which case it could
6612 	 * already be running on another CPU.
6613 	 */
6614 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6615 	netpoll_poll_unlock(have_poll_lock);
6616 	if (rc == BUSY_POLL_BUDGET) {
6617 		/* As the whole budget was spent, we still own the napi so can
6618 		 * safely handle the rx_list.
6619 		 */
6620 		gro_normal_list(napi);
6621 		__napi_schedule(napi);
6622 	}
6623 	local_bh_enable();
6624 }
6625 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6626 void napi_busy_loop(unsigned int napi_id,
6627 		    bool (*loop_end)(void *, unsigned long),
6628 		    void *loop_end_arg)
6629 {
6630 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6631 	int (*napi_poll)(struct napi_struct *napi, int budget);
6632 	void *have_poll_lock = NULL;
6633 	struct napi_struct *napi;
6634 
6635 restart:
6636 	napi_poll = NULL;
6637 
6638 	rcu_read_lock();
6639 
6640 	napi = napi_by_id(napi_id);
6641 	if (!napi)
6642 		goto out;
6643 
6644 	preempt_disable();
6645 	for (;;) {
6646 		int work = 0;
6647 
6648 		local_bh_disable();
6649 		if (!napi_poll) {
6650 			unsigned long val = READ_ONCE(napi->state);
6651 
6652 			/* If multiple threads are competing for this napi,
6653 			 * we avoid dirtying napi->state as much as we can.
6654 			 */
6655 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6656 				   NAPIF_STATE_IN_BUSY_POLL))
6657 				goto count;
6658 			if (cmpxchg(&napi->state, val,
6659 				    val | NAPIF_STATE_IN_BUSY_POLL |
6660 					  NAPIF_STATE_SCHED) != val)
6661 				goto count;
6662 			have_poll_lock = netpoll_poll_lock(napi);
6663 			napi_poll = napi->poll;
6664 		}
6665 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6666 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6667 		gro_normal_list(napi);
6668 count:
6669 		if (work > 0)
6670 			__NET_ADD_STATS(dev_net(napi->dev),
6671 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6672 		local_bh_enable();
6673 
6674 		if (!loop_end || loop_end(loop_end_arg, start_time))
6675 			break;
6676 
6677 		if (unlikely(need_resched())) {
6678 			if (napi_poll)
6679 				busy_poll_stop(napi, have_poll_lock);
6680 			preempt_enable();
6681 			rcu_read_unlock();
6682 			cond_resched();
6683 			if (loop_end(loop_end_arg, start_time))
6684 				return;
6685 			goto restart;
6686 		}
6687 		cpu_relax();
6688 	}
6689 	if (napi_poll)
6690 		busy_poll_stop(napi, have_poll_lock);
6691 	preempt_enable();
6692 out:
6693 	rcu_read_unlock();
6694 }
6695 EXPORT_SYMBOL(napi_busy_loop);
6696 
6697 #endif /* CONFIG_NET_RX_BUSY_POLL */
6698 
napi_hash_add(struct napi_struct * napi)6699 static void napi_hash_add(struct napi_struct *napi)
6700 {
6701 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6702 		return;
6703 
6704 	spin_lock(&napi_hash_lock);
6705 
6706 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6707 	do {
6708 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6709 			napi_gen_id = MIN_NAPI_ID;
6710 	} while (napi_by_id(napi_gen_id));
6711 	napi->napi_id = napi_gen_id;
6712 
6713 	hlist_add_head_rcu(&napi->napi_hash_node,
6714 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6715 
6716 	spin_unlock(&napi_hash_lock);
6717 }
6718 
6719 /* Warning : caller is responsible to make sure rcu grace period
6720  * is respected before freeing memory containing @napi
6721  */
napi_hash_del(struct napi_struct * napi)6722 static void napi_hash_del(struct napi_struct *napi)
6723 {
6724 	spin_lock(&napi_hash_lock);
6725 
6726 	hlist_del_init_rcu(&napi->napi_hash_node);
6727 
6728 	spin_unlock(&napi_hash_lock);
6729 }
6730 
napi_watchdog(struct hrtimer * timer)6731 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6732 {
6733 	struct napi_struct *napi;
6734 
6735 	napi = container_of(timer, struct napi_struct, timer);
6736 
6737 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6738 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6739 	 */
6740 	if (!napi_disable_pending(napi) &&
6741 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6742 		__napi_schedule_irqoff(napi);
6743 
6744 	return HRTIMER_NORESTART;
6745 }
6746 
init_gro_hash(struct napi_struct * napi)6747 static void init_gro_hash(struct napi_struct *napi)
6748 {
6749 	int i;
6750 
6751 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6752 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6753 		napi->gro_hash[i].count = 0;
6754 	}
6755 	napi->gro_bitmask = 0;
6756 }
6757 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6758 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6759 		    int (*poll)(struct napi_struct *, int), int weight)
6760 {
6761 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6762 		return;
6763 
6764 	INIT_LIST_HEAD(&napi->poll_list);
6765 	INIT_HLIST_NODE(&napi->napi_hash_node);
6766 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6767 	napi->timer.function = napi_watchdog;
6768 	init_gro_hash(napi);
6769 	napi->skb = NULL;
6770 	INIT_LIST_HEAD(&napi->rx_list);
6771 	napi->rx_count = 0;
6772 	napi->poll = poll;
6773 	if (weight > NAPI_POLL_WEIGHT)
6774 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6775 				weight);
6776 	napi->weight = weight;
6777 	napi->dev = dev;
6778 #ifdef CONFIG_NETPOLL
6779 	napi->poll_owner = -1;
6780 #endif
6781 	set_bit(NAPI_STATE_SCHED, &napi->state);
6782 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6783 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6784 	napi_hash_add(napi);
6785 }
6786 EXPORT_SYMBOL(netif_napi_add);
6787 
napi_disable(struct napi_struct * n)6788 void napi_disable(struct napi_struct *n)
6789 {
6790 	might_sleep();
6791 	set_bit(NAPI_STATE_DISABLE, &n->state);
6792 
6793 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6794 		msleep(1);
6795 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6796 		msleep(1);
6797 
6798 	hrtimer_cancel(&n->timer);
6799 
6800 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6801 }
6802 EXPORT_SYMBOL(napi_disable);
6803 
flush_gro_hash(struct napi_struct * napi)6804 static void flush_gro_hash(struct napi_struct *napi)
6805 {
6806 	int i;
6807 
6808 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6809 		struct sk_buff *skb, *n;
6810 
6811 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6812 			kfree_skb(skb);
6813 		napi->gro_hash[i].count = 0;
6814 	}
6815 }
6816 
6817 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6818 void __netif_napi_del(struct napi_struct *napi)
6819 {
6820 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6821 		return;
6822 
6823 	napi_hash_del(napi);
6824 	list_del_rcu(&napi->dev_list);
6825 	napi_free_frags(napi);
6826 
6827 	flush_gro_hash(napi);
6828 	napi->gro_bitmask = 0;
6829 }
6830 EXPORT_SYMBOL(__netif_napi_del);
6831 
napi_poll(struct napi_struct * n,struct list_head * repoll)6832 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6833 {
6834 	void *have;
6835 	int work, weight;
6836 
6837 	list_del_init(&n->poll_list);
6838 
6839 	have = netpoll_poll_lock(n);
6840 
6841 	weight = n->weight;
6842 
6843 	/* This NAPI_STATE_SCHED test is for avoiding a race
6844 	 * with netpoll's poll_napi().  Only the entity which
6845 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6846 	 * actually make the ->poll() call.  Therefore we avoid
6847 	 * accidentally calling ->poll() when NAPI is not scheduled.
6848 	 */
6849 	work = 0;
6850 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6851 		work = n->poll(n, weight);
6852 		trace_napi_poll(n, work, weight);
6853 	}
6854 
6855 	if (unlikely(work > weight))
6856 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6857 			    n->poll, work, weight);
6858 
6859 	if (likely(work < weight))
6860 		goto out_unlock;
6861 
6862 	/* Drivers must not modify the NAPI state if they
6863 	 * consume the entire weight.  In such cases this code
6864 	 * still "owns" the NAPI instance and therefore can
6865 	 * move the instance around on the list at-will.
6866 	 */
6867 	if (unlikely(napi_disable_pending(n))) {
6868 		napi_complete(n);
6869 		goto out_unlock;
6870 	}
6871 
6872 	if (n->gro_bitmask) {
6873 		/* flush too old packets
6874 		 * If HZ < 1000, flush all packets.
6875 		 */
6876 		napi_gro_flush(n, HZ >= 1000);
6877 	}
6878 
6879 	gro_normal_list(n);
6880 
6881 	/* Some drivers may have called napi_schedule
6882 	 * prior to exhausting their budget.
6883 	 */
6884 	if (unlikely(!list_empty(&n->poll_list))) {
6885 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6886 			     n->dev ? n->dev->name : "backlog");
6887 		goto out_unlock;
6888 	}
6889 
6890 	list_add_tail(&n->poll_list, repoll);
6891 
6892 out_unlock:
6893 	netpoll_poll_unlock(have);
6894 
6895 	return work;
6896 }
6897 
net_rx_action(struct softirq_action * h)6898 static __latent_entropy void net_rx_action(struct softirq_action *h)
6899 {
6900 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6901 	unsigned long time_limit = jiffies +
6902 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6903 	int budget = READ_ONCE(netdev_budget);
6904 	LIST_HEAD(list);
6905 	LIST_HEAD(repoll);
6906 
6907 	local_irq_disable();
6908 	list_splice_init(&sd->poll_list, &list);
6909 	local_irq_enable();
6910 
6911 	for (;;) {
6912 		struct napi_struct *n;
6913 
6914 		if (list_empty(&list)) {
6915 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6916 				goto out;
6917 			break;
6918 		}
6919 
6920 		n = list_first_entry(&list, struct napi_struct, poll_list);
6921 		budget -= napi_poll(n, &repoll);
6922 
6923 		/* If softirq window is exhausted then punt.
6924 		 * Allow this to run for 2 jiffies since which will allow
6925 		 * an average latency of 1.5/HZ.
6926 		 */
6927 		if (unlikely(budget <= 0 ||
6928 			     time_after_eq(jiffies, time_limit))) {
6929 			sd->time_squeeze++;
6930 			break;
6931 		}
6932 	}
6933 
6934 	local_irq_disable();
6935 
6936 	list_splice_tail_init(&sd->poll_list, &list);
6937 	list_splice_tail(&repoll, &list);
6938 	list_splice(&list, &sd->poll_list);
6939 	if (!list_empty(&sd->poll_list))
6940 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6941 
6942 	net_rps_action_and_irq_enable(sd);
6943 out:
6944 	__kfree_skb_flush();
6945 }
6946 
6947 struct netdev_adjacent {
6948 	struct net_device *dev;
6949 
6950 	/* upper master flag, there can only be one master device per list */
6951 	bool master;
6952 
6953 	/* lookup ignore flag */
6954 	bool ignore;
6955 
6956 	/* counter for the number of times this device was added to us */
6957 	u16 ref_nr;
6958 
6959 	/* private field for the users */
6960 	void *private;
6961 
6962 	struct list_head list;
6963 	struct rcu_head rcu;
6964 };
6965 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6966 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6967 						 struct list_head *adj_list)
6968 {
6969 	struct netdev_adjacent *adj;
6970 
6971 	list_for_each_entry(adj, adj_list, list) {
6972 		if (adj->dev == adj_dev)
6973 			return adj;
6974 	}
6975 	return NULL;
6976 }
6977 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6978 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6979 				    struct netdev_nested_priv *priv)
6980 {
6981 	struct net_device *dev = (struct net_device *)priv->data;
6982 
6983 	return upper_dev == dev;
6984 }
6985 
6986 /**
6987  * netdev_has_upper_dev - Check if device is linked to an upper device
6988  * @dev: device
6989  * @upper_dev: upper device to check
6990  *
6991  * Find out if a device is linked to specified upper device and return true
6992  * in case it is. Note that this checks only immediate upper device,
6993  * not through a complete stack of devices. The caller must hold the RTNL lock.
6994  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6995 bool netdev_has_upper_dev(struct net_device *dev,
6996 			  struct net_device *upper_dev)
6997 {
6998 	struct netdev_nested_priv priv = {
6999 		.data = (void *)upper_dev,
7000 	};
7001 
7002 	ASSERT_RTNL();
7003 
7004 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7005 					     &priv);
7006 }
7007 EXPORT_SYMBOL(netdev_has_upper_dev);
7008 
7009 /**
7010  * netdev_has_upper_dev_all - Check if device is linked to an upper device
7011  * @dev: device
7012  * @upper_dev: upper device to check
7013  *
7014  * Find out if a device is linked to specified upper device and return true
7015  * in case it is. Note that this checks the entire upper device chain.
7016  * The caller must hold rcu lock.
7017  */
7018 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7019 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7020 				  struct net_device *upper_dev)
7021 {
7022 	struct netdev_nested_priv priv = {
7023 		.data = (void *)upper_dev,
7024 	};
7025 
7026 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7027 					       &priv);
7028 }
7029 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7030 
7031 /**
7032  * netdev_has_any_upper_dev - Check if device is linked to some device
7033  * @dev: device
7034  *
7035  * Find out if a device is linked to an upper device and return true in case
7036  * it is. The caller must hold the RTNL lock.
7037  */
netdev_has_any_upper_dev(struct net_device * dev)7038 bool netdev_has_any_upper_dev(struct net_device *dev)
7039 {
7040 	ASSERT_RTNL();
7041 
7042 	return !list_empty(&dev->adj_list.upper);
7043 }
7044 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7045 
7046 /**
7047  * netdev_master_upper_dev_get - Get master upper device
7048  * @dev: device
7049  *
7050  * Find a master upper device and return pointer to it or NULL in case
7051  * it's not there. The caller must hold the RTNL lock.
7052  */
netdev_master_upper_dev_get(struct net_device * dev)7053 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7054 {
7055 	struct netdev_adjacent *upper;
7056 
7057 	ASSERT_RTNL();
7058 
7059 	if (list_empty(&dev->adj_list.upper))
7060 		return NULL;
7061 
7062 	upper = list_first_entry(&dev->adj_list.upper,
7063 				 struct netdev_adjacent, list);
7064 	if (likely(upper->master))
7065 		return upper->dev;
7066 	return NULL;
7067 }
7068 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7069 
__netdev_master_upper_dev_get(struct net_device * dev)7070 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7071 {
7072 	struct netdev_adjacent *upper;
7073 
7074 	ASSERT_RTNL();
7075 
7076 	if (list_empty(&dev->adj_list.upper))
7077 		return NULL;
7078 
7079 	upper = list_first_entry(&dev->adj_list.upper,
7080 				 struct netdev_adjacent, list);
7081 	if (likely(upper->master) && !upper->ignore)
7082 		return upper->dev;
7083 	return NULL;
7084 }
7085 
7086 /**
7087  * netdev_has_any_lower_dev - Check if device is linked to some device
7088  * @dev: device
7089  *
7090  * Find out if a device is linked to a lower device and return true in case
7091  * it is. The caller must hold the RTNL lock.
7092  */
netdev_has_any_lower_dev(struct net_device * dev)7093 static bool netdev_has_any_lower_dev(struct net_device *dev)
7094 {
7095 	ASSERT_RTNL();
7096 
7097 	return !list_empty(&dev->adj_list.lower);
7098 }
7099 
netdev_adjacent_get_private(struct list_head * adj_list)7100 void *netdev_adjacent_get_private(struct list_head *adj_list)
7101 {
7102 	struct netdev_adjacent *adj;
7103 
7104 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7105 
7106 	return adj->private;
7107 }
7108 EXPORT_SYMBOL(netdev_adjacent_get_private);
7109 
7110 /**
7111  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7112  * @dev: device
7113  * @iter: list_head ** of the current position
7114  *
7115  * Gets the next device from the dev's upper list, starting from iter
7116  * position. The caller must hold RCU read lock.
7117  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7118 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7119 						 struct list_head **iter)
7120 {
7121 	struct netdev_adjacent *upper;
7122 
7123 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7124 
7125 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7126 
7127 	if (&upper->list == &dev->adj_list.upper)
7128 		return NULL;
7129 
7130 	*iter = &upper->list;
7131 
7132 	return upper->dev;
7133 }
7134 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7135 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7136 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7137 						  struct list_head **iter,
7138 						  bool *ignore)
7139 {
7140 	struct netdev_adjacent *upper;
7141 
7142 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7143 
7144 	if (&upper->list == &dev->adj_list.upper)
7145 		return NULL;
7146 
7147 	*iter = &upper->list;
7148 	*ignore = upper->ignore;
7149 
7150 	return upper->dev;
7151 }
7152 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7153 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7154 						    struct list_head **iter)
7155 {
7156 	struct netdev_adjacent *upper;
7157 
7158 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7159 
7160 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7161 
7162 	if (&upper->list == &dev->adj_list.upper)
7163 		return NULL;
7164 
7165 	*iter = &upper->list;
7166 
7167 	return upper->dev;
7168 }
7169 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7170 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7171 				       int (*fn)(struct net_device *dev,
7172 					 struct netdev_nested_priv *priv),
7173 				       struct netdev_nested_priv *priv)
7174 {
7175 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7176 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7177 	int ret, cur = 0;
7178 	bool ignore;
7179 
7180 	now = dev;
7181 	iter = &dev->adj_list.upper;
7182 
7183 	while (1) {
7184 		if (now != dev) {
7185 			ret = fn(now, priv);
7186 			if (ret)
7187 				return ret;
7188 		}
7189 
7190 		next = NULL;
7191 		while (1) {
7192 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7193 			if (!udev)
7194 				break;
7195 			if (ignore)
7196 				continue;
7197 
7198 			next = udev;
7199 			niter = &udev->adj_list.upper;
7200 			dev_stack[cur] = now;
7201 			iter_stack[cur++] = iter;
7202 			break;
7203 		}
7204 
7205 		if (!next) {
7206 			if (!cur)
7207 				return 0;
7208 			next = dev_stack[--cur];
7209 			niter = iter_stack[cur];
7210 		}
7211 
7212 		now = next;
7213 		iter = niter;
7214 	}
7215 
7216 	return 0;
7217 }
7218 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7219 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7220 				  int (*fn)(struct net_device *dev,
7221 					    struct netdev_nested_priv *priv),
7222 				  struct netdev_nested_priv *priv)
7223 {
7224 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7225 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7226 	int ret, cur = 0;
7227 
7228 	now = dev;
7229 	iter = &dev->adj_list.upper;
7230 
7231 	while (1) {
7232 		if (now != dev) {
7233 			ret = fn(now, priv);
7234 			if (ret)
7235 				return ret;
7236 		}
7237 
7238 		next = NULL;
7239 		while (1) {
7240 			udev = netdev_next_upper_dev_rcu(now, &iter);
7241 			if (!udev)
7242 				break;
7243 
7244 			next = udev;
7245 			niter = &udev->adj_list.upper;
7246 			dev_stack[cur] = now;
7247 			iter_stack[cur++] = iter;
7248 			break;
7249 		}
7250 
7251 		if (!next) {
7252 			if (!cur)
7253 				return 0;
7254 			next = dev_stack[--cur];
7255 			niter = iter_stack[cur];
7256 		}
7257 
7258 		now = next;
7259 		iter = niter;
7260 	}
7261 
7262 	return 0;
7263 }
7264 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7265 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7266 static bool __netdev_has_upper_dev(struct net_device *dev,
7267 				   struct net_device *upper_dev)
7268 {
7269 	struct netdev_nested_priv priv = {
7270 		.flags = 0,
7271 		.data = (void *)upper_dev,
7272 	};
7273 
7274 	ASSERT_RTNL();
7275 
7276 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7277 					   &priv);
7278 }
7279 
7280 /**
7281  * netdev_lower_get_next_private - Get the next ->private from the
7282  *				   lower neighbour list
7283  * @dev: device
7284  * @iter: list_head ** of the current position
7285  *
7286  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7287  * list, starting from iter position. The caller must hold either hold the
7288  * RTNL lock or its own locking that guarantees that the neighbour lower
7289  * list will remain unchanged.
7290  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7291 void *netdev_lower_get_next_private(struct net_device *dev,
7292 				    struct list_head **iter)
7293 {
7294 	struct netdev_adjacent *lower;
7295 
7296 	lower = list_entry(*iter, struct netdev_adjacent, list);
7297 
7298 	if (&lower->list == &dev->adj_list.lower)
7299 		return NULL;
7300 
7301 	*iter = lower->list.next;
7302 
7303 	return lower->private;
7304 }
7305 EXPORT_SYMBOL(netdev_lower_get_next_private);
7306 
7307 /**
7308  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7309  *				       lower neighbour list, RCU
7310  *				       variant
7311  * @dev: device
7312  * @iter: list_head ** of the current position
7313  *
7314  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7315  * list, starting from iter position. The caller must hold RCU read lock.
7316  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7317 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7318 					struct list_head **iter)
7319 {
7320 	struct netdev_adjacent *lower;
7321 
7322 	WARN_ON_ONCE(!rcu_read_lock_held());
7323 
7324 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7325 
7326 	if (&lower->list == &dev->adj_list.lower)
7327 		return NULL;
7328 
7329 	*iter = &lower->list;
7330 
7331 	return lower->private;
7332 }
7333 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7334 
7335 /**
7336  * netdev_lower_get_next - Get the next device from the lower neighbour
7337  *                         list
7338  * @dev: device
7339  * @iter: list_head ** of the current position
7340  *
7341  * Gets the next netdev_adjacent from the dev's lower neighbour
7342  * list, starting from iter position. The caller must hold RTNL lock or
7343  * its own locking that guarantees that the neighbour lower
7344  * list will remain unchanged.
7345  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7346 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7347 {
7348 	struct netdev_adjacent *lower;
7349 
7350 	lower = list_entry(*iter, struct netdev_adjacent, list);
7351 
7352 	if (&lower->list == &dev->adj_list.lower)
7353 		return NULL;
7354 
7355 	*iter = lower->list.next;
7356 
7357 	return lower->dev;
7358 }
7359 EXPORT_SYMBOL(netdev_lower_get_next);
7360 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7361 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7362 						struct list_head **iter)
7363 {
7364 	struct netdev_adjacent *lower;
7365 
7366 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7367 
7368 	if (&lower->list == &dev->adj_list.lower)
7369 		return NULL;
7370 
7371 	*iter = &lower->list;
7372 
7373 	return lower->dev;
7374 }
7375 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7376 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7377 						  struct list_head **iter,
7378 						  bool *ignore)
7379 {
7380 	struct netdev_adjacent *lower;
7381 
7382 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7383 
7384 	if (&lower->list == &dev->adj_list.lower)
7385 		return NULL;
7386 
7387 	*iter = &lower->list;
7388 	*ignore = lower->ignore;
7389 
7390 	return lower->dev;
7391 }
7392 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7393 int netdev_walk_all_lower_dev(struct net_device *dev,
7394 			      int (*fn)(struct net_device *dev,
7395 					struct netdev_nested_priv *priv),
7396 			      struct netdev_nested_priv *priv)
7397 {
7398 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7399 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7400 	int ret, cur = 0;
7401 
7402 	now = dev;
7403 	iter = &dev->adj_list.lower;
7404 
7405 	while (1) {
7406 		if (now != dev) {
7407 			ret = fn(now, priv);
7408 			if (ret)
7409 				return ret;
7410 		}
7411 
7412 		next = NULL;
7413 		while (1) {
7414 			ldev = netdev_next_lower_dev(now, &iter);
7415 			if (!ldev)
7416 				break;
7417 
7418 			next = ldev;
7419 			niter = &ldev->adj_list.lower;
7420 			dev_stack[cur] = now;
7421 			iter_stack[cur++] = iter;
7422 			break;
7423 		}
7424 
7425 		if (!next) {
7426 			if (!cur)
7427 				return 0;
7428 			next = dev_stack[--cur];
7429 			niter = iter_stack[cur];
7430 		}
7431 
7432 		now = next;
7433 		iter = niter;
7434 	}
7435 
7436 	return 0;
7437 }
7438 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7439 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7440 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7441 				       int (*fn)(struct net_device *dev,
7442 					 struct netdev_nested_priv *priv),
7443 				       struct netdev_nested_priv *priv)
7444 {
7445 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7446 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7447 	int ret, cur = 0;
7448 	bool ignore;
7449 
7450 	now = dev;
7451 	iter = &dev->adj_list.lower;
7452 
7453 	while (1) {
7454 		if (now != dev) {
7455 			ret = fn(now, priv);
7456 			if (ret)
7457 				return ret;
7458 		}
7459 
7460 		next = NULL;
7461 		while (1) {
7462 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7463 			if (!ldev)
7464 				break;
7465 			if (ignore)
7466 				continue;
7467 
7468 			next = ldev;
7469 			niter = &ldev->adj_list.lower;
7470 			dev_stack[cur] = now;
7471 			iter_stack[cur++] = iter;
7472 			break;
7473 		}
7474 
7475 		if (!next) {
7476 			if (!cur)
7477 				return 0;
7478 			next = dev_stack[--cur];
7479 			niter = iter_stack[cur];
7480 		}
7481 
7482 		now = next;
7483 		iter = niter;
7484 	}
7485 
7486 	return 0;
7487 }
7488 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7489 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7490 					     struct list_head **iter)
7491 {
7492 	struct netdev_adjacent *lower;
7493 
7494 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7495 	if (&lower->list == &dev->adj_list.lower)
7496 		return NULL;
7497 
7498 	*iter = &lower->list;
7499 
7500 	return lower->dev;
7501 }
7502 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7503 
__netdev_upper_depth(struct net_device * dev)7504 static u8 __netdev_upper_depth(struct net_device *dev)
7505 {
7506 	struct net_device *udev;
7507 	struct list_head *iter;
7508 	u8 max_depth = 0;
7509 	bool ignore;
7510 
7511 	for (iter = &dev->adj_list.upper,
7512 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7513 	     udev;
7514 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7515 		if (ignore)
7516 			continue;
7517 		if (max_depth < udev->upper_level)
7518 			max_depth = udev->upper_level;
7519 	}
7520 
7521 	return max_depth;
7522 }
7523 
__netdev_lower_depth(struct net_device * dev)7524 static u8 __netdev_lower_depth(struct net_device *dev)
7525 {
7526 	struct net_device *ldev;
7527 	struct list_head *iter;
7528 	u8 max_depth = 0;
7529 	bool ignore;
7530 
7531 	for (iter = &dev->adj_list.lower,
7532 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7533 	     ldev;
7534 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7535 		if (ignore)
7536 			continue;
7537 		if (max_depth < ldev->lower_level)
7538 			max_depth = ldev->lower_level;
7539 	}
7540 
7541 	return max_depth;
7542 }
7543 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7544 static int __netdev_update_upper_level(struct net_device *dev,
7545 				       struct netdev_nested_priv *__unused)
7546 {
7547 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7548 	return 0;
7549 }
7550 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7551 static int __netdev_update_lower_level(struct net_device *dev,
7552 				       struct netdev_nested_priv *priv)
7553 {
7554 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7555 
7556 #ifdef CONFIG_LOCKDEP
7557 	if (!priv)
7558 		return 0;
7559 
7560 	if (priv->flags & NESTED_SYNC_IMM)
7561 		dev->nested_level = dev->lower_level - 1;
7562 	if (priv->flags & NESTED_SYNC_TODO)
7563 		net_unlink_todo(dev);
7564 #endif
7565 	return 0;
7566 }
7567 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7568 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7569 				  int (*fn)(struct net_device *dev,
7570 					    struct netdev_nested_priv *priv),
7571 				  struct netdev_nested_priv *priv)
7572 {
7573 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7574 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7575 	int ret, cur = 0;
7576 
7577 	now = dev;
7578 	iter = &dev->adj_list.lower;
7579 
7580 	while (1) {
7581 		if (now != dev) {
7582 			ret = fn(now, priv);
7583 			if (ret)
7584 				return ret;
7585 		}
7586 
7587 		next = NULL;
7588 		while (1) {
7589 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7590 			if (!ldev)
7591 				break;
7592 
7593 			next = ldev;
7594 			niter = &ldev->adj_list.lower;
7595 			dev_stack[cur] = now;
7596 			iter_stack[cur++] = iter;
7597 			break;
7598 		}
7599 
7600 		if (!next) {
7601 			if (!cur)
7602 				return 0;
7603 			next = dev_stack[--cur];
7604 			niter = iter_stack[cur];
7605 		}
7606 
7607 		now = next;
7608 		iter = niter;
7609 	}
7610 
7611 	return 0;
7612 }
7613 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7614 
7615 /**
7616  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7617  *				       lower neighbour list, RCU
7618  *				       variant
7619  * @dev: device
7620  *
7621  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7622  * list. The caller must hold RCU read lock.
7623  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7624 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7625 {
7626 	struct netdev_adjacent *lower;
7627 
7628 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7629 			struct netdev_adjacent, list);
7630 	if (lower)
7631 		return lower->private;
7632 	return NULL;
7633 }
7634 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7635 
7636 /**
7637  * netdev_master_upper_dev_get_rcu - Get master upper device
7638  * @dev: device
7639  *
7640  * Find a master upper device and return pointer to it or NULL in case
7641  * it's not there. The caller must hold the RCU read lock.
7642  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7643 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7644 {
7645 	struct netdev_adjacent *upper;
7646 
7647 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7648 				       struct netdev_adjacent, list);
7649 	if (upper && likely(upper->master))
7650 		return upper->dev;
7651 	return NULL;
7652 }
7653 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7654 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7655 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7656 			      struct net_device *adj_dev,
7657 			      struct list_head *dev_list)
7658 {
7659 	char linkname[IFNAMSIZ+7];
7660 
7661 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7662 		"upper_%s" : "lower_%s", adj_dev->name);
7663 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7664 				 linkname);
7665 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7666 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7667 			       char *name,
7668 			       struct list_head *dev_list)
7669 {
7670 	char linkname[IFNAMSIZ+7];
7671 
7672 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7673 		"upper_%s" : "lower_%s", name);
7674 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7675 }
7676 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7677 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7678 						 struct net_device *adj_dev,
7679 						 struct list_head *dev_list)
7680 {
7681 	return (dev_list == &dev->adj_list.upper ||
7682 		dev_list == &dev->adj_list.lower) &&
7683 		net_eq(dev_net(dev), dev_net(adj_dev));
7684 }
7685 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7686 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7687 					struct net_device *adj_dev,
7688 					struct list_head *dev_list,
7689 					void *private, bool master)
7690 {
7691 	struct netdev_adjacent *adj;
7692 	int ret;
7693 
7694 	adj = __netdev_find_adj(adj_dev, dev_list);
7695 
7696 	if (adj) {
7697 		adj->ref_nr += 1;
7698 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7699 			 dev->name, adj_dev->name, adj->ref_nr);
7700 
7701 		return 0;
7702 	}
7703 
7704 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7705 	if (!adj)
7706 		return -ENOMEM;
7707 
7708 	adj->dev = adj_dev;
7709 	adj->master = master;
7710 	adj->ref_nr = 1;
7711 	adj->private = private;
7712 	adj->ignore = false;
7713 	dev_hold(adj_dev);
7714 
7715 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7716 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7717 
7718 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7719 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7720 		if (ret)
7721 			goto free_adj;
7722 	}
7723 
7724 	/* Ensure that master link is always the first item in list. */
7725 	if (master) {
7726 		ret = sysfs_create_link(&(dev->dev.kobj),
7727 					&(adj_dev->dev.kobj), "master");
7728 		if (ret)
7729 			goto remove_symlinks;
7730 
7731 		list_add_rcu(&adj->list, dev_list);
7732 	} else {
7733 		list_add_tail_rcu(&adj->list, dev_list);
7734 	}
7735 
7736 	return 0;
7737 
7738 remove_symlinks:
7739 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7740 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7741 free_adj:
7742 	kfree(adj);
7743 	dev_put(adj_dev);
7744 
7745 	return ret;
7746 }
7747 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7748 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7749 					 struct net_device *adj_dev,
7750 					 u16 ref_nr,
7751 					 struct list_head *dev_list)
7752 {
7753 	struct netdev_adjacent *adj;
7754 
7755 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7756 		 dev->name, adj_dev->name, ref_nr);
7757 
7758 	adj = __netdev_find_adj(adj_dev, dev_list);
7759 
7760 	if (!adj) {
7761 		pr_err("Adjacency does not exist for device %s from %s\n",
7762 		       dev->name, adj_dev->name);
7763 		WARN_ON(1);
7764 		return;
7765 	}
7766 
7767 	if (adj->ref_nr > ref_nr) {
7768 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7769 			 dev->name, adj_dev->name, ref_nr,
7770 			 adj->ref_nr - ref_nr);
7771 		adj->ref_nr -= ref_nr;
7772 		return;
7773 	}
7774 
7775 	if (adj->master)
7776 		sysfs_remove_link(&(dev->dev.kobj), "master");
7777 
7778 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7779 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7780 
7781 	list_del_rcu(&adj->list);
7782 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7783 		 adj_dev->name, dev->name, adj_dev->name);
7784 	dev_put(adj_dev);
7785 	kfree_rcu(adj, rcu);
7786 }
7787 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7788 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7789 					    struct net_device *upper_dev,
7790 					    struct list_head *up_list,
7791 					    struct list_head *down_list,
7792 					    void *private, bool master)
7793 {
7794 	int ret;
7795 
7796 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7797 					   private, master);
7798 	if (ret)
7799 		return ret;
7800 
7801 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7802 					   private, false);
7803 	if (ret) {
7804 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7805 		return ret;
7806 	}
7807 
7808 	return 0;
7809 }
7810 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7811 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7812 					       struct net_device *upper_dev,
7813 					       u16 ref_nr,
7814 					       struct list_head *up_list,
7815 					       struct list_head *down_list)
7816 {
7817 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7818 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7819 }
7820 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7821 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7822 						struct net_device *upper_dev,
7823 						void *private, bool master)
7824 {
7825 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7826 						&dev->adj_list.upper,
7827 						&upper_dev->adj_list.lower,
7828 						private, master);
7829 }
7830 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7831 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7832 						   struct net_device *upper_dev)
7833 {
7834 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7835 					   &dev->adj_list.upper,
7836 					   &upper_dev->adj_list.lower);
7837 }
7838 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7839 static int __netdev_upper_dev_link(struct net_device *dev,
7840 				   struct net_device *upper_dev, bool master,
7841 				   void *upper_priv, void *upper_info,
7842 				   struct netdev_nested_priv *priv,
7843 				   struct netlink_ext_ack *extack)
7844 {
7845 	struct netdev_notifier_changeupper_info changeupper_info = {
7846 		.info = {
7847 			.dev = dev,
7848 			.extack = extack,
7849 		},
7850 		.upper_dev = upper_dev,
7851 		.master = master,
7852 		.linking = true,
7853 		.upper_info = upper_info,
7854 	};
7855 	struct net_device *master_dev;
7856 	int ret = 0;
7857 
7858 	ASSERT_RTNL();
7859 
7860 	if (dev == upper_dev)
7861 		return -EBUSY;
7862 
7863 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7864 	if (__netdev_has_upper_dev(upper_dev, dev))
7865 		return -EBUSY;
7866 
7867 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7868 		return -EMLINK;
7869 
7870 	if (!master) {
7871 		if (__netdev_has_upper_dev(dev, upper_dev))
7872 			return -EEXIST;
7873 	} else {
7874 		master_dev = __netdev_master_upper_dev_get(dev);
7875 		if (master_dev)
7876 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7877 	}
7878 
7879 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7880 					    &changeupper_info.info);
7881 	ret = notifier_to_errno(ret);
7882 	if (ret)
7883 		return ret;
7884 
7885 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7886 						   master);
7887 	if (ret)
7888 		return ret;
7889 
7890 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7891 					    &changeupper_info.info);
7892 	ret = notifier_to_errno(ret);
7893 	if (ret)
7894 		goto rollback;
7895 
7896 	__netdev_update_upper_level(dev, NULL);
7897 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7898 
7899 	__netdev_update_lower_level(upper_dev, priv);
7900 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7901 				    priv);
7902 
7903 	return 0;
7904 
7905 rollback:
7906 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7907 
7908 	return ret;
7909 }
7910 
7911 /**
7912  * netdev_upper_dev_link - Add a link to the upper device
7913  * @dev: device
7914  * @upper_dev: new upper device
7915  * @extack: netlink extended ack
7916  *
7917  * Adds a link to device which is upper to this one. The caller must hold
7918  * the RTNL lock. On a failure a negative errno code is returned.
7919  * On success the reference counts are adjusted and the function
7920  * returns zero.
7921  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7922 int netdev_upper_dev_link(struct net_device *dev,
7923 			  struct net_device *upper_dev,
7924 			  struct netlink_ext_ack *extack)
7925 {
7926 	struct netdev_nested_priv priv = {
7927 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7928 		.data = NULL,
7929 	};
7930 
7931 	return __netdev_upper_dev_link(dev, upper_dev, false,
7932 				       NULL, NULL, &priv, extack);
7933 }
7934 EXPORT_SYMBOL(netdev_upper_dev_link);
7935 
7936 /**
7937  * netdev_master_upper_dev_link - Add a master link to the upper device
7938  * @dev: device
7939  * @upper_dev: new upper device
7940  * @upper_priv: upper device private
7941  * @upper_info: upper info to be passed down via notifier
7942  * @extack: netlink extended ack
7943  *
7944  * Adds a link to device which is upper to this one. In this case, only
7945  * one master upper device can be linked, although other non-master devices
7946  * might be linked as well. The caller must hold the RTNL lock.
7947  * On a failure a negative errno code is returned. On success the reference
7948  * counts are adjusted and the function returns zero.
7949  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7950 int netdev_master_upper_dev_link(struct net_device *dev,
7951 				 struct net_device *upper_dev,
7952 				 void *upper_priv, void *upper_info,
7953 				 struct netlink_ext_ack *extack)
7954 {
7955 	struct netdev_nested_priv priv = {
7956 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7957 		.data = NULL,
7958 	};
7959 
7960 	return __netdev_upper_dev_link(dev, upper_dev, true,
7961 				       upper_priv, upper_info, &priv, extack);
7962 }
7963 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7964 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7965 static void __netdev_upper_dev_unlink(struct net_device *dev,
7966 				      struct net_device *upper_dev,
7967 				      struct netdev_nested_priv *priv)
7968 {
7969 	struct netdev_notifier_changeupper_info changeupper_info = {
7970 		.info = {
7971 			.dev = dev,
7972 		},
7973 		.upper_dev = upper_dev,
7974 		.linking = false,
7975 	};
7976 
7977 	ASSERT_RTNL();
7978 
7979 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7980 
7981 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7982 				      &changeupper_info.info);
7983 
7984 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7985 
7986 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7987 				      &changeupper_info.info);
7988 
7989 	__netdev_update_upper_level(dev, NULL);
7990 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7991 
7992 	__netdev_update_lower_level(upper_dev, priv);
7993 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7994 				    priv);
7995 }
7996 
7997 /**
7998  * netdev_upper_dev_unlink - Removes a link to upper device
7999  * @dev: device
8000  * @upper_dev: new upper device
8001  *
8002  * Removes a link to device which is upper to this one. The caller must hold
8003  * the RTNL lock.
8004  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8005 void netdev_upper_dev_unlink(struct net_device *dev,
8006 			     struct net_device *upper_dev)
8007 {
8008 	struct netdev_nested_priv priv = {
8009 		.flags = NESTED_SYNC_TODO,
8010 		.data = NULL,
8011 	};
8012 
8013 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8014 }
8015 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8016 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8017 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8018 				      struct net_device *lower_dev,
8019 				      bool val)
8020 {
8021 	struct netdev_adjacent *adj;
8022 
8023 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8024 	if (adj)
8025 		adj->ignore = val;
8026 
8027 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8028 	if (adj)
8029 		adj->ignore = val;
8030 }
8031 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8032 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8033 					struct net_device *lower_dev)
8034 {
8035 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8036 }
8037 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8038 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8039 				       struct net_device *lower_dev)
8040 {
8041 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8042 }
8043 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8044 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8045 				   struct net_device *new_dev,
8046 				   struct net_device *dev,
8047 				   struct netlink_ext_ack *extack)
8048 {
8049 	struct netdev_nested_priv priv = {
8050 		.flags = 0,
8051 		.data = NULL,
8052 	};
8053 	int err;
8054 
8055 	if (!new_dev)
8056 		return 0;
8057 
8058 	if (old_dev && new_dev != old_dev)
8059 		netdev_adjacent_dev_disable(dev, old_dev);
8060 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8061 				      extack);
8062 	if (err) {
8063 		if (old_dev && new_dev != old_dev)
8064 			netdev_adjacent_dev_enable(dev, old_dev);
8065 		return err;
8066 	}
8067 
8068 	return 0;
8069 }
8070 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8071 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8072 void netdev_adjacent_change_commit(struct net_device *old_dev,
8073 				   struct net_device *new_dev,
8074 				   struct net_device *dev)
8075 {
8076 	struct netdev_nested_priv priv = {
8077 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8078 		.data = NULL,
8079 	};
8080 
8081 	if (!new_dev || !old_dev)
8082 		return;
8083 
8084 	if (new_dev == old_dev)
8085 		return;
8086 
8087 	netdev_adjacent_dev_enable(dev, old_dev);
8088 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8089 }
8090 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8091 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8092 void netdev_adjacent_change_abort(struct net_device *old_dev,
8093 				  struct net_device *new_dev,
8094 				  struct net_device *dev)
8095 {
8096 	struct netdev_nested_priv priv = {
8097 		.flags = 0,
8098 		.data = NULL,
8099 	};
8100 
8101 	if (!new_dev)
8102 		return;
8103 
8104 	if (old_dev && new_dev != old_dev)
8105 		netdev_adjacent_dev_enable(dev, old_dev);
8106 
8107 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8108 }
8109 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8110 
8111 /**
8112  * netdev_bonding_info_change - Dispatch event about slave change
8113  * @dev: device
8114  * @bonding_info: info to dispatch
8115  *
8116  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8117  * The caller must hold the RTNL lock.
8118  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8119 void netdev_bonding_info_change(struct net_device *dev,
8120 				struct netdev_bonding_info *bonding_info)
8121 {
8122 	struct netdev_notifier_bonding_info info = {
8123 		.info.dev = dev,
8124 	};
8125 
8126 	memcpy(&info.bonding_info, bonding_info,
8127 	       sizeof(struct netdev_bonding_info));
8128 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8129 				      &info.info);
8130 }
8131 EXPORT_SYMBOL(netdev_bonding_info_change);
8132 
8133 /**
8134  * netdev_get_xmit_slave - Get the xmit slave of master device
8135  * @dev: device
8136  * @skb: The packet
8137  * @all_slaves: assume all the slaves are active
8138  *
8139  * The reference counters are not incremented so the caller must be
8140  * careful with locks. The caller must hold RCU lock.
8141  * %NULL is returned if no slave is found.
8142  */
8143 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8144 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8145 					 struct sk_buff *skb,
8146 					 bool all_slaves)
8147 {
8148 	const struct net_device_ops *ops = dev->netdev_ops;
8149 
8150 	if (!ops->ndo_get_xmit_slave)
8151 		return NULL;
8152 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8153 }
8154 EXPORT_SYMBOL(netdev_get_xmit_slave);
8155 
netdev_adjacent_add_links(struct net_device * dev)8156 static void netdev_adjacent_add_links(struct net_device *dev)
8157 {
8158 	struct netdev_adjacent *iter;
8159 
8160 	struct net *net = dev_net(dev);
8161 
8162 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8163 		if (!net_eq(net, dev_net(iter->dev)))
8164 			continue;
8165 		netdev_adjacent_sysfs_add(iter->dev, dev,
8166 					  &iter->dev->adj_list.lower);
8167 		netdev_adjacent_sysfs_add(dev, iter->dev,
8168 					  &dev->adj_list.upper);
8169 	}
8170 
8171 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8172 		if (!net_eq(net, dev_net(iter->dev)))
8173 			continue;
8174 		netdev_adjacent_sysfs_add(iter->dev, dev,
8175 					  &iter->dev->adj_list.upper);
8176 		netdev_adjacent_sysfs_add(dev, iter->dev,
8177 					  &dev->adj_list.lower);
8178 	}
8179 }
8180 
netdev_adjacent_del_links(struct net_device * dev)8181 static void netdev_adjacent_del_links(struct net_device *dev)
8182 {
8183 	struct netdev_adjacent *iter;
8184 
8185 	struct net *net = dev_net(dev);
8186 
8187 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8188 		if (!net_eq(net, dev_net(iter->dev)))
8189 			continue;
8190 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8191 					  &iter->dev->adj_list.lower);
8192 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8193 					  &dev->adj_list.upper);
8194 	}
8195 
8196 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8197 		if (!net_eq(net, dev_net(iter->dev)))
8198 			continue;
8199 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8200 					  &iter->dev->adj_list.upper);
8201 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8202 					  &dev->adj_list.lower);
8203 	}
8204 }
8205 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8206 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8207 {
8208 	struct netdev_adjacent *iter;
8209 
8210 	struct net *net = dev_net(dev);
8211 
8212 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8213 		if (!net_eq(net, dev_net(iter->dev)))
8214 			continue;
8215 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8216 					  &iter->dev->adj_list.lower);
8217 		netdev_adjacent_sysfs_add(iter->dev, dev,
8218 					  &iter->dev->adj_list.lower);
8219 	}
8220 
8221 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8222 		if (!net_eq(net, dev_net(iter->dev)))
8223 			continue;
8224 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8225 					  &iter->dev->adj_list.upper);
8226 		netdev_adjacent_sysfs_add(iter->dev, dev,
8227 					  &iter->dev->adj_list.upper);
8228 	}
8229 }
8230 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8231 void *netdev_lower_dev_get_private(struct net_device *dev,
8232 				   struct net_device *lower_dev)
8233 {
8234 	struct netdev_adjacent *lower;
8235 
8236 	if (!lower_dev)
8237 		return NULL;
8238 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8239 	if (!lower)
8240 		return NULL;
8241 
8242 	return lower->private;
8243 }
8244 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8245 
8246 
8247 /**
8248  * netdev_lower_change - Dispatch event about lower device state change
8249  * @lower_dev: device
8250  * @lower_state_info: state to dispatch
8251  *
8252  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8253  * The caller must hold the RTNL lock.
8254  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8255 void netdev_lower_state_changed(struct net_device *lower_dev,
8256 				void *lower_state_info)
8257 {
8258 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8259 		.info.dev = lower_dev,
8260 	};
8261 
8262 	ASSERT_RTNL();
8263 	changelowerstate_info.lower_state_info = lower_state_info;
8264 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8265 				      &changelowerstate_info.info);
8266 }
8267 EXPORT_SYMBOL(netdev_lower_state_changed);
8268 
dev_change_rx_flags(struct net_device * dev,int flags)8269 static void dev_change_rx_flags(struct net_device *dev, int flags)
8270 {
8271 	const struct net_device_ops *ops = dev->netdev_ops;
8272 
8273 	if (ops->ndo_change_rx_flags)
8274 		ops->ndo_change_rx_flags(dev, flags);
8275 }
8276 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8277 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8278 {
8279 	unsigned int old_flags = dev->flags;
8280 	kuid_t uid;
8281 	kgid_t gid;
8282 
8283 	ASSERT_RTNL();
8284 
8285 	dev->flags |= IFF_PROMISC;
8286 	dev->promiscuity += inc;
8287 	if (dev->promiscuity == 0) {
8288 		/*
8289 		 * Avoid overflow.
8290 		 * If inc causes overflow, untouch promisc and return error.
8291 		 */
8292 		if (inc < 0)
8293 			dev->flags &= ~IFF_PROMISC;
8294 		else {
8295 			dev->promiscuity -= inc;
8296 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8297 				dev->name);
8298 			return -EOVERFLOW;
8299 		}
8300 	}
8301 	if (dev->flags != old_flags) {
8302 		pr_info("device %s %s promiscuous mode\n",
8303 			dev->name,
8304 			dev->flags & IFF_PROMISC ? "entered" : "left");
8305 		if (audit_enabled) {
8306 			current_uid_gid(&uid, &gid);
8307 			audit_log(audit_context(), GFP_ATOMIC,
8308 				  AUDIT_ANOM_PROMISCUOUS,
8309 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8310 				  dev->name, (dev->flags & IFF_PROMISC),
8311 				  (old_flags & IFF_PROMISC),
8312 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8313 				  from_kuid(&init_user_ns, uid),
8314 				  from_kgid(&init_user_ns, gid),
8315 				  audit_get_sessionid(current));
8316 		}
8317 
8318 		dev_change_rx_flags(dev, IFF_PROMISC);
8319 	}
8320 	if (notify)
8321 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8322 	return 0;
8323 }
8324 
8325 /**
8326  *	dev_set_promiscuity	- update promiscuity count on a device
8327  *	@dev: device
8328  *	@inc: modifier
8329  *
8330  *	Add or remove promiscuity from a device. While the count in the device
8331  *	remains above zero the interface remains promiscuous. Once it hits zero
8332  *	the device reverts back to normal filtering operation. A negative inc
8333  *	value is used to drop promiscuity on the device.
8334  *	Return 0 if successful or a negative errno code on error.
8335  */
dev_set_promiscuity(struct net_device * dev,int inc)8336 int dev_set_promiscuity(struct net_device *dev, int inc)
8337 {
8338 	unsigned int old_flags = dev->flags;
8339 	int err;
8340 
8341 	err = __dev_set_promiscuity(dev, inc, true);
8342 	if (err < 0)
8343 		return err;
8344 	if (dev->flags != old_flags)
8345 		dev_set_rx_mode(dev);
8346 	return err;
8347 }
8348 EXPORT_SYMBOL(dev_set_promiscuity);
8349 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8350 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8351 {
8352 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8353 
8354 	ASSERT_RTNL();
8355 
8356 	dev->flags |= IFF_ALLMULTI;
8357 	dev->allmulti += inc;
8358 	if (dev->allmulti == 0) {
8359 		/*
8360 		 * Avoid overflow.
8361 		 * If inc causes overflow, untouch allmulti and return error.
8362 		 */
8363 		if (inc < 0)
8364 			dev->flags &= ~IFF_ALLMULTI;
8365 		else {
8366 			dev->allmulti -= inc;
8367 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8368 				dev->name);
8369 			return -EOVERFLOW;
8370 		}
8371 	}
8372 	if (dev->flags ^ old_flags) {
8373 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8374 		dev_set_rx_mode(dev);
8375 		if (notify)
8376 			__dev_notify_flags(dev, old_flags,
8377 					   dev->gflags ^ old_gflags);
8378 	}
8379 	return 0;
8380 }
8381 
8382 /**
8383  *	dev_set_allmulti	- update allmulti count on a device
8384  *	@dev: device
8385  *	@inc: modifier
8386  *
8387  *	Add or remove reception of all multicast frames to a device. While the
8388  *	count in the device remains above zero the interface remains listening
8389  *	to all interfaces. Once it hits zero the device reverts back to normal
8390  *	filtering operation. A negative @inc value is used to drop the counter
8391  *	when releasing a resource needing all multicasts.
8392  *	Return 0 if successful or a negative errno code on error.
8393  */
8394 
dev_set_allmulti(struct net_device * dev,int inc)8395 int dev_set_allmulti(struct net_device *dev, int inc)
8396 {
8397 	return __dev_set_allmulti(dev, inc, true);
8398 }
8399 EXPORT_SYMBOL(dev_set_allmulti);
8400 
8401 /*
8402  *	Upload unicast and multicast address lists to device and
8403  *	configure RX filtering. When the device doesn't support unicast
8404  *	filtering it is put in promiscuous mode while unicast addresses
8405  *	are present.
8406  */
__dev_set_rx_mode(struct net_device * dev)8407 void __dev_set_rx_mode(struct net_device *dev)
8408 {
8409 	const struct net_device_ops *ops = dev->netdev_ops;
8410 
8411 	/* dev_open will call this function so the list will stay sane. */
8412 	if (!(dev->flags&IFF_UP))
8413 		return;
8414 
8415 	if (!netif_device_present(dev))
8416 		return;
8417 
8418 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8419 		/* Unicast addresses changes may only happen under the rtnl,
8420 		 * therefore calling __dev_set_promiscuity here is safe.
8421 		 */
8422 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8423 			__dev_set_promiscuity(dev, 1, false);
8424 			dev->uc_promisc = true;
8425 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8426 			__dev_set_promiscuity(dev, -1, false);
8427 			dev->uc_promisc = false;
8428 		}
8429 	}
8430 
8431 	if (ops->ndo_set_rx_mode)
8432 		ops->ndo_set_rx_mode(dev);
8433 }
8434 
dev_set_rx_mode(struct net_device * dev)8435 void dev_set_rx_mode(struct net_device *dev)
8436 {
8437 	netif_addr_lock_bh(dev);
8438 	__dev_set_rx_mode(dev);
8439 	netif_addr_unlock_bh(dev);
8440 }
8441 
8442 /**
8443  *	dev_get_flags - get flags reported to userspace
8444  *	@dev: device
8445  *
8446  *	Get the combination of flag bits exported through APIs to userspace.
8447  */
dev_get_flags(const struct net_device * dev)8448 unsigned int dev_get_flags(const struct net_device *dev)
8449 {
8450 	unsigned int flags;
8451 
8452 	flags = (dev->flags & ~(IFF_PROMISC |
8453 				IFF_ALLMULTI |
8454 				IFF_RUNNING |
8455 				IFF_LOWER_UP |
8456 				IFF_DORMANT)) |
8457 		(dev->gflags & (IFF_PROMISC |
8458 				IFF_ALLMULTI));
8459 
8460 	if (netif_running(dev)) {
8461 		if (netif_oper_up(dev))
8462 			flags |= IFF_RUNNING;
8463 		if (netif_carrier_ok(dev))
8464 			flags |= IFF_LOWER_UP;
8465 		if (netif_dormant(dev))
8466 			flags |= IFF_DORMANT;
8467 	}
8468 
8469 	return flags;
8470 }
8471 EXPORT_SYMBOL(dev_get_flags);
8472 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8473 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8474 		       struct netlink_ext_ack *extack)
8475 {
8476 	unsigned int old_flags = dev->flags;
8477 	int ret;
8478 
8479 	ASSERT_RTNL();
8480 
8481 	/*
8482 	 *	Set the flags on our device.
8483 	 */
8484 
8485 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8486 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8487 			       IFF_AUTOMEDIA)) |
8488 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8489 				    IFF_ALLMULTI));
8490 
8491 	/*
8492 	 *	Load in the correct multicast list now the flags have changed.
8493 	 */
8494 
8495 	if ((old_flags ^ flags) & IFF_MULTICAST)
8496 		dev_change_rx_flags(dev, IFF_MULTICAST);
8497 
8498 	dev_set_rx_mode(dev);
8499 
8500 	/*
8501 	 *	Have we downed the interface. We handle IFF_UP ourselves
8502 	 *	according to user attempts to set it, rather than blindly
8503 	 *	setting it.
8504 	 */
8505 
8506 	ret = 0;
8507 	if ((old_flags ^ flags) & IFF_UP) {
8508 		if (old_flags & IFF_UP)
8509 			__dev_close(dev);
8510 		else
8511 			ret = __dev_open(dev, extack);
8512 	}
8513 
8514 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8515 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8516 		unsigned int old_flags = dev->flags;
8517 
8518 		dev->gflags ^= IFF_PROMISC;
8519 
8520 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8521 			if (dev->flags != old_flags)
8522 				dev_set_rx_mode(dev);
8523 	}
8524 
8525 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8526 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8527 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8528 	 */
8529 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8530 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8531 
8532 		dev->gflags ^= IFF_ALLMULTI;
8533 		__dev_set_allmulti(dev, inc, false);
8534 	}
8535 
8536 	return ret;
8537 }
8538 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8539 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8540 			unsigned int gchanges)
8541 {
8542 	unsigned int changes = dev->flags ^ old_flags;
8543 
8544 	if (gchanges)
8545 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8546 
8547 	if (changes & IFF_UP) {
8548 		if (dev->flags & IFF_UP)
8549 			call_netdevice_notifiers(NETDEV_UP, dev);
8550 		else
8551 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8552 	}
8553 
8554 	if (dev->flags & IFF_UP &&
8555 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8556 		struct netdev_notifier_change_info change_info = {
8557 			.info = {
8558 				.dev = dev,
8559 			},
8560 			.flags_changed = changes,
8561 		};
8562 
8563 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8564 	}
8565 }
8566 
8567 /**
8568  *	dev_change_flags - change device settings
8569  *	@dev: device
8570  *	@flags: device state flags
8571  *	@extack: netlink extended ack
8572  *
8573  *	Change settings on device based state flags. The flags are
8574  *	in the userspace exported format.
8575  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8576 int dev_change_flags(struct net_device *dev, unsigned int flags,
8577 		     struct netlink_ext_ack *extack)
8578 {
8579 	int ret;
8580 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8581 
8582 	ret = __dev_change_flags(dev, flags, extack);
8583 	if (ret < 0)
8584 		return ret;
8585 
8586 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8587 	__dev_notify_flags(dev, old_flags, changes);
8588 	return ret;
8589 }
8590 EXPORT_SYMBOL(dev_change_flags);
8591 
__dev_set_mtu(struct net_device * dev,int new_mtu)8592 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8593 {
8594 	const struct net_device_ops *ops = dev->netdev_ops;
8595 
8596 	if (ops->ndo_change_mtu)
8597 		return ops->ndo_change_mtu(dev, new_mtu);
8598 
8599 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8600 	WRITE_ONCE(dev->mtu, new_mtu);
8601 	return 0;
8602 }
8603 EXPORT_SYMBOL(__dev_set_mtu);
8604 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8605 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8606 		     struct netlink_ext_ack *extack)
8607 {
8608 	/* MTU must be positive, and in range */
8609 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8610 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8611 		return -EINVAL;
8612 	}
8613 
8614 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8615 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8616 		return -EINVAL;
8617 	}
8618 	return 0;
8619 }
8620 
8621 /**
8622  *	dev_set_mtu_ext - Change maximum transfer unit
8623  *	@dev: device
8624  *	@new_mtu: new transfer unit
8625  *	@extack: netlink extended ack
8626  *
8627  *	Change the maximum transfer size of the network device.
8628  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8629 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8630 		    struct netlink_ext_ack *extack)
8631 {
8632 	int err, orig_mtu;
8633 
8634 	if (new_mtu == dev->mtu)
8635 		return 0;
8636 
8637 	err = dev_validate_mtu(dev, new_mtu, extack);
8638 	if (err)
8639 		return err;
8640 
8641 	if (!netif_device_present(dev))
8642 		return -ENODEV;
8643 
8644 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8645 	err = notifier_to_errno(err);
8646 	if (err)
8647 		return err;
8648 
8649 	orig_mtu = dev->mtu;
8650 	err = __dev_set_mtu(dev, new_mtu);
8651 
8652 	if (!err) {
8653 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8654 						   orig_mtu);
8655 		err = notifier_to_errno(err);
8656 		if (err) {
8657 			/* setting mtu back and notifying everyone again,
8658 			 * so that they have a chance to revert changes.
8659 			 */
8660 			__dev_set_mtu(dev, orig_mtu);
8661 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8662 						     new_mtu);
8663 		}
8664 	}
8665 	return err;
8666 }
8667 
dev_set_mtu(struct net_device * dev,int new_mtu)8668 int dev_set_mtu(struct net_device *dev, int new_mtu)
8669 {
8670 	struct netlink_ext_ack extack;
8671 	int err;
8672 
8673 	memset(&extack, 0, sizeof(extack));
8674 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8675 	if (err && extack._msg)
8676 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8677 	return err;
8678 }
8679 EXPORT_SYMBOL(dev_set_mtu);
8680 
8681 /**
8682  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8683  *	@dev: device
8684  *	@new_len: new tx queue length
8685  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8686 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8687 {
8688 	unsigned int orig_len = dev->tx_queue_len;
8689 	int res;
8690 
8691 	if (new_len != (unsigned int)new_len)
8692 		return -ERANGE;
8693 
8694 	if (new_len != orig_len) {
8695 		dev->tx_queue_len = new_len;
8696 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8697 		res = notifier_to_errno(res);
8698 		if (res)
8699 			goto err_rollback;
8700 		res = dev_qdisc_change_tx_queue_len(dev);
8701 		if (res)
8702 			goto err_rollback;
8703 	}
8704 
8705 	return 0;
8706 
8707 err_rollback:
8708 	netdev_err(dev, "refused to change device tx_queue_len\n");
8709 	dev->tx_queue_len = orig_len;
8710 	return res;
8711 }
8712 
8713 /**
8714  *	dev_set_group - Change group this device belongs to
8715  *	@dev: device
8716  *	@new_group: group this device should belong to
8717  */
dev_set_group(struct net_device * dev,int new_group)8718 void dev_set_group(struct net_device *dev, int new_group)
8719 {
8720 	dev->group = new_group;
8721 }
8722 EXPORT_SYMBOL(dev_set_group);
8723 
8724 /**
8725  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8726  *	@dev: device
8727  *	@addr: new address
8728  *	@extack: netlink extended ack
8729  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8730 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8731 			      struct netlink_ext_ack *extack)
8732 {
8733 	struct netdev_notifier_pre_changeaddr_info info = {
8734 		.info.dev = dev,
8735 		.info.extack = extack,
8736 		.dev_addr = addr,
8737 	};
8738 	int rc;
8739 
8740 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8741 	return notifier_to_errno(rc);
8742 }
8743 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8744 
8745 /**
8746  *	dev_set_mac_address - Change Media Access Control Address
8747  *	@dev: device
8748  *	@sa: new address
8749  *	@extack: netlink extended ack
8750  *
8751  *	Change the hardware (MAC) address of the device
8752  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8753 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8754 			struct netlink_ext_ack *extack)
8755 {
8756 	const struct net_device_ops *ops = dev->netdev_ops;
8757 	int err;
8758 
8759 	if (!ops->ndo_set_mac_address)
8760 		return -EOPNOTSUPP;
8761 	if (sa->sa_family != dev->type)
8762 		return -EINVAL;
8763 	if (!netif_device_present(dev))
8764 		return -ENODEV;
8765 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8766 	if (err)
8767 		return err;
8768 	err = ops->ndo_set_mac_address(dev, sa);
8769 	if (err)
8770 		return err;
8771 	dev->addr_assign_type = NET_ADDR_SET;
8772 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8773 	add_device_randomness(dev->dev_addr, dev->addr_len);
8774 	return 0;
8775 }
8776 EXPORT_SYMBOL(dev_set_mac_address);
8777 
8778 static DECLARE_RWSEM(dev_addr_sem);
8779 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8780 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8781 			     struct netlink_ext_ack *extack)
8782 {
8783 	int ret;
8784 
8785 	down_write(&dev_addr_sem);
8786 	ret = dev_set_mac_address(dev, sa, extack);
8787 	up_write(&dev_addr_sem);
8788 	return ret;
8789 }
8790 EXPORT_SYMBOL(dev_set_mac_address_user);
8791 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8792 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8793 {
8794 	size_t size = sizeof(sa->sa_data_min);
8795 	struct net_device *dev;
8796 	int ret = 0;
8797 
8798 	down_read(&dev_addr_sem);
8799 	rcu_read_lock();
8800 
8801 	dev = dev_get_by_name_rcu(net, dev_name);
8802 	if (!dev) {
8803 		ret = -ENODEV;
8804 		goto unlock;
8805 	}
8806 	if (!dev->addr_len)
8807 		memset(sa->sa_data, 0, size);
8808 	else
8809 		memcpy(sa->sa_data, dev->dev_addr,
8810 		       min_t(size_t, size, dev->addr_len));
8811 	sa->sa_family = dev->type;
8812 
8813 unlock:
8814 	rcu_read_unlock();
8815 	up_read(&dev_addr_sem);
8816 	return ret;
8817 }
8818 EXPORT_SYMBOL(dev_get_mac_address);
8819 
8820 /**
8821  *	dev_change_carrier - Change device carrier
8822  *	@dev: device
8823  *	@new_carrier: new value
8824  *
8825  *	Change device carrier
8826  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8827 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8828 {
8829 	const struct net_device_ops *ops = dev->netdev_ops;
8830 
8831 	if (!ops->ndo_change_carrier)
8832 		return -EOPNOTSUPP;
8833 	if (!netif_device_present(dev))
8834 		return -ENODEV;
8835 	return ops->ndo_change_carrier(dev, new_carrier);
8836 }
8837 EXPORT_SYMBOL(dev_change_carrier);
8838 
8839 /**
8840  *	dev_get_phys_port_id - Get device physical port ID
8841  *	@dev: device
8842  *	@ppid: port ID
8843  *
8844  *	Get device physical port ID
8845  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8846 int dev_get_phys_port_id(struct net_device *dev,
8847 			 struct netdev_phys_item_id *ppid)
8848 {
8849 	const struct net_device_ops *ops = dev->netdev_ops;
8850 
8851 	if (!ops->ndo_get_phys_port_id)
8852 		return -EOPNOTSUPP;
8853 	return ops->ndo_get_phys_port_id(dev, ppid);
8854 }
8855 EXPORT_SYMBOL(dev_get_phys_port_id);
8856 
8857 /**
8858  *	dev_get_phys_port_name - Get device physical port name
8859  *	@dev: device
8860  *	@name: port name
8861  *	@len: limit of bytes to copy to name
8862  *
8863  *	Get device physical port name
8864  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8865 int dev_get_phys_port_name(struct net_device *dev,
8866 			   char *name, size_t len)
8867 {
8868 	const struct net_device_ops *ops = dev->netdev_ops;
8869 	int err;
8870 
8871 	if (ops->ndo_get_phys_port_name) {
8872 		err = ops->ndo_get_phys_port_name(dev, name, len);
8873 		if (err != -EOPNOTSUPP)
8874 			return err;
8875 	}
8876 	return devlink_compat_phys_port_name_get(dev, name, len);
8877 }
8878 EXPORT_SYMBOL(dev_get_phys_port_name);
8879 
8880 /**
8881  *	dev_get_port_parent_id - Get the device's port parent identifier
8882  *	@dev: network device
8883  *	@ppid: pointer to a storage for the port's parent identifier
8884  *	@recurse: allow/disallow recursion to lower devices
8885  *
8886  *	Get the devices's port parent identifier
8887  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8888 int dev_get_port_parent_id(struct net_device *dev,
8889 			   struct netdev_phys_item_id *ppid,
8890 			   bool recurse)
8891 {
8892 	const struct net_device_ops *ops = dev->netdev_ops;
8893 	struct netdev_phys_item_id first = { };
8894 	struct net_device *lower_dev;
8895 	struct list_head *iter;
8896 	int err;
8897 
8898 	if (ops->ndo_get_port_parent_id) {
8899 		err = ops->ndo_get_port_parent_id(dev, ppid);
8900 		if (err != -EOPNOTSUPP)
8901 			return err;
8902 	}
8903 
8904 	err = devlink_compat_switch_id_get(dev, ppid);
8905 	if (!err || err != -EOPNOTSUPP)
8906 		return err;
8907 
8908 	if (!recurse)
8909 		return -EOPNOTSUPP;
8910 
8911 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8912 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8913 		if (err)
8914 			break;
8915 		if (!first.id_len)
8916 			first = *ppid;
8917 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8918 			return -EOPNOTSUPP;
8919 	}
8920 
8921 	return err;
8922 }
8923 EXPORT_SYMBOL(dev_get_port_parent_id);
8924 
8925 /**
8926  *	netdev_port_same_parent_id - Indicate if two network devices have
8927  *	the same port parent identifier
8928  *	@a: first network device
8929  *	@b: second network device
8930  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8931 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8932 {
8933 	struct netdev_phys_item_id a_id = { };
8934 	struct netdev_phys_item_id b_id = { };
8935 
8936 	if (dev_get_port_parent_id(a, &a_id, true) ||
8937 	    dev_get_port_parent_id(b, &b_id, true))
8938 		return false;
8939 
8940 	return netdev_phys_item_id_same(&a_id, &b_id);
8941 }
8942 EXPORT_SYMBOL(netdev_port_same_parent_id);
8943 
8944 /**
8945  *	dev_change_proto_down - update protocol port state information
8946  *	@dev: device
8947  *	@proto_down: new value
8948  *
8949  *	This info can be used by switch drivers to set the phys state of the
8950  *	port.
8951  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8952 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8953 {
8954 	const struct net_device_ops *ops = dev->netdev_ops;
8955 
8956 	if (!ops->ndo_change_proto_down)
8957 		return -EOPNOTSUPP;
8958 	if (!netif_device_present(dev))
8959 		return -ENODEV;
8960 	return ops->ndo_change_proto_down(dev, proto_down);
8961 }
8962 EXPORT_SYMBOL(dev_change_proto_down);
8963 
8964 /**
8965  *	dev_change_proto_down_generic - generic implementation for
8966  * 	ndo_change_proto_down that sets carrier according to
8967  * 	proto_down.
8968  *
8969  *	@dev: device
8970  *	@proto_down: new value
8971  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8972 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8973 {
8974 	if (proto_down)
8975 		netif_carrier_off(dev);
8976 	else
8977 		netif_carrier_on(dev);
8978 	dev->proto_down = proto_down;
8979 	return 0;
8980 }
8981 EXPORT_SYMBOL(dev_change_proto_down_generic);
8982 
8983 /**
8984  *	dev_change_proto_down_reason - proto down reason
8985  *
8986  *	@dev: device
8987  *	@mask: proto down mask
8988  *	@value: proto down value
8989  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8990 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8991 				  u32 value)
8992 {
8993 	int b;
8994 
8995 	if (!mask) {
8996 		dev->proto_down_reason = value;
8997 	} else {
8998 		for_each_set_bit(b, &mask, 32) {
8999 			if (value & (1 << b))
9000 				dev->proto_down_reason |= BIT(b);
9001 			else
9002 				dev->proto_down_reason &= ~BIT(b);
9003 		}
9004 	}
9005 }
9006 EXPORT_SYMBOL(dev_change_proto_down_reason);
9007 
9008 struct bpf_xdp_link {
9009 	struct bpf_link link;
9010 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9011 	int flags;
9012 };
9013 
dev_xdp_mode(struct net_device * dev,u32 flags)9014 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9015 {
9016 	if (flags & XDP_FLAGS_HW_MODE)
9017 		return XDP_MODE_HW;
9018 	if (flags & XDP_FLAGS_DRV_MODE)
9019 		return XDP_MODE_DRV;
9020 	if (flags & XDP_FLAGS_SKB_MODE)
9021 		return XDP_MODE_SKB;
9022 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9023 }
9024 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9025 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9026 {
9027 	switch (mode) {
9028 	case XDP_MODE_SKB:
9029 		return generic_xdp_install;
9030 	case XDP_MODE_DRV:
9031 	case XDP_MODE_HW:
9032 		return dev->netdev_ops->ndo_bpf;
9033 	default:
9034 		return NULL;
9035 	};
9036 }
9037 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9038 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9039 					 enum bpf_xdp_mode mode)
9040 {
9041 	return dev->xdp_state[mode].link;
9042 }
9043 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9044 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9045 				     enum bpf_xdp_mode mode)
9046 {
9047 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9048 
9049 	if (link)
9050 		return link->link.prog;
9051 	return dev->xdp_state[mode].prog;
9052 }
9053 
dev_xdp_prog_count(struct net_device * dev)9054 static u8 dev_xdp_prog_count(struct net_device *dev)
9055 {
9056 	u8 count = 0;
9057 	int i;
9058 
9059 	for (i = 0; i < __MAX_XDP_MODE; i++)
9060 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9061 			count++;
9062 	return count;
9063 }
9064 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9065 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9066 {
9067 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9068 
9069 	return prog ? prog->aux->id : 0;
9070 }
9071 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9072 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9073 			     struct bpf_xdp_link *link)
9074 {
9075 	dev->xdp_state[mode].link = link;
9076 	dev->xdp_state[mode].prog = NULL;
9077 }
9078 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9079 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9080 			     struct bpf_prog *prog)
9081 {
9082 	dev->xdp_state[mode].link = NULL;
9083 	dev->xdp_state[mode].prog = prog;
9084 }
9085 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9086 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9087 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9088 			   u32 flags, struct bpf_prog *prog)
9089 {
9090 	struct netdev_bpf xdp;
9091 	int err;
9092 
9093 	memset(&xdp, 0, sizeof(xdp));
9094 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9095 	xdp.extack = extack;
9096 	xdp.flags = flags;
9097 	xdp.prog = prog;
9098 
9099 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9100 	 * "moved" into driver), so they don't increment it on their own, but
9101 	 * they do decrement refcnt when program is detached or replaced.
9102 	 * Given net_device also owns link/prog, we need to bump refcnt here
9103 	 * to prevent drivers from underflowing it.
9104 	 */
9105 	if (prog)
9106 		bpf_prog_inc(prog);
9107 	err = bpf_op(dev, &xdp);
9108 	if (err) {
9109 		if (prog)
9110 			bpf_prog_put(prog);
9111 		return err;
9112 	}
9113 
9114 	if (mode != XDP_MODE_HW)
9115 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9116 
9117 	return 0;
9118 }
9119 
dev_xdp_uninstall(struct net_device * dev)9120 static void dev_xdp_uninstall(struct net_device *dev)
9121 {
9122 	struct bpf_xdp_link *link;
9123 	struct bpf_prog *prog;
9124 	enum bpf_xdp_mode mode;
9125 	bpf_op_t bpf_op;
9126 
9127 	ASSERT_RTNL();
9128 
9129 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9130 		prog = dev_xdp_prog(dev, mode);
9131 		if (!prog)
9132 			continue;
9133 
9134 		bpf_op = dev_xdp_bpf_op(dev, mode);
9135 		if (!bpf_op)
9136 			continue;
9137 
9138 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9139 
9140 		/* auto-detach link from net device */
9141 		link = dev_xdp_link(dev, mode);
9142 		if (link)
9143 			link->dev = NULL;
9144 		else
9145 			bpf_prog_put(prog);
9146 
9147 		dev_xdp_set_link(dev, mode, NULL);
9148 	}
9149 }
9150 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9151 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9152 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9153 			  struct bpf_prog *old_prog, u32 flags)
9154 {
9155 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9156 	struct bpf_prog *cur_prog;
9157 	enum bpf_xdp_mode mode;
9158 	bpf_op_t bpf_op;
9159 	int err;
9160 
9161 	ASSERT_RTNL();
9162 
9163 	/* either link or prog attachment, never both */
9164 	if (link && (new_prog || old_prog))
9165 		return -EINVAL;
9166 	/* link supports only XDP mode flags */
9167 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9168 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9169 		return -EINVAL;
9170 	}
9171 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9172 	if (num_modes > 1) {
9173 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9174 		return -EINVAL;
9175 	}
9176 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9177 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9178 		NL_SET_ERR_MSG(extack,
9179 			       "More than one program loaded, unset mode is ambiguous");
9180 		return -EINVAL;
9181 	}
9182 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9183 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9184 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9185 		return -EINVAL;
9186 	}
9187 
9188 	mode = dev_xdp_mode(dev, flags);
9189 	/* can't replace attached link */
9190 	if (dev_xdp_link(dev, mode)) {
9191 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9192 		return -EBUSY;
9193 	}
9194 
9195 	cur_prog = dev_xdp_prog(dev, mode);
9196 	/* can't replace attached prog with link */
9197 	if (link && cur_prog) {
9198 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9199 		return -EBUSY;
9200 	}
9201 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9202 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9203 		return -EEXIST;
9204 	}
9205 
9206 	/* put effective new program into new_prog */
9207 	if (link)
9208 		new_prog = link->link.prog;
9209 
9210 	if (new_prog) {
9211 		bool offload = mode == XDP_MODE_HW;
9212 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9213 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9214 
9215 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9216 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9217 			return -EBUSY;
9218 		}
9219 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9220 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9221 			return -EEXIST;
9222 		}
9223 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9224 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9225 			return -EINVAL;
9226 		}
9227 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9228 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9229 			return -EINVAL;
9230 		}
9231 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9232 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9233 			return -EINVAL;
9234 		}
9235 	}
9236 
9237 	/* don't call drivers if the effective program didn't change */
9238 	if (new_prog != cur_prog) {
9239 		bpf_op = dev_xdp_bpf_op(dev, mode);
9240 		if (!bpf_op) {
9241 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9242 			return -EOPNOTSUPP;
9243 		}
9244 
9245 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9246 		if (err)
9247 			return err;
9248 	}
9249 
9250 	if (link)
9251 		dev_xdp_set_link(dev, mode, link);
9252 	else
9253 		dev_xdp_set_prog(dev, mode, new_prog);
9254 	if (cur_prog)
9255 		bpf_prog_put(cur_prog);
9256 
9257 	return 0;
9258 }
9259 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9260 static int dev_xdp_attach_link(struct net_device *dev,
9261 			       struct netlink_ext_ack *extack,
9262 			       struct bpf_xdp_link *link)
9263 {
9264 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9265 }
9266 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9267 static int dev_xdp_detach_link(struct net_device *dev,
9268 			       struct netlink_ext_ack *extack,
9269 			       struct bpf_xdp_link *link)
9270 {
9271 	enum bpf_xdp_mode mode;
9272 	bpf_op_t bpf_op;
9273 
9274 	ASSERT_RTNL();
9275 
9276 	mode = dev_xdp_mode(dev, link->flags);
9277 	if (dev_xdp_link(dev, mode) != link)
9278 		return -EINVAL;
9279 
9280 	bpf_op = dev_xdp_bpf_op(dev, mode);
9281 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9282 	dev_xdp_set_link(dev, mode, NULL);
9283 	return 0;
9284 }
9285 
bpf_xdp_link_release(struct bpf_link * link)9286 static void bpf_xdp_link_release(struct bpf_link *link)
9287 {
9288 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9289 
9290 	rtnl_lock();
9291 
9292 	/* if racing with net_device's tear down, xdp_link->dev might be
9293 	 * already NULL, in which case link was already auto-detached
9294 	 */
9295 	if (xdp_link->dev) {
9296 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9297 		xdp_link->dev = NULL;
9298 	}
9299 
9300 	rtnl_unlock();
9301 }
9302 
bpf_xdp_link_detach(struct bpf_link * link)9303 static int bpf_xdp_link_detach(struct bpf_link *link)
9304 {
9305 	bpf_xdp_link_release(link);
9306 	return 0;
9307 }
9308 
bpf_xdp_link_dealloc(struct bpf_link * link)9309 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9310 {
9311 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9312 
9313 	kfree(xdp_link);
9314 }
9315 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9316 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9317 				     struct seq_file *seq)
9318 {
9319 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9320 	u32 ifindex = 0;
9321 
9322 	rtnl_lock();
9323 	if (xdp_link->dev)
9324 		ifindex = xdp_link->dev->ifindex;
9325 	rtnl_unlock();
9326 
9327 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9328 }
9329 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9330 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9331 				       struct bpf_link_info *info)
9332 {
9333 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9334 	u32 ifindex = 0;
9335 
9336 	rtnl_lock();
9337 	if (xdp_link->dev)
9338 		ifindex = xdp_link->dev->ifindex;
9339 	rtnl_unlock();
9340 
9341 	info->xdp.ifindex = ifindex;
9342 	return 0;
9343 }
9344 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9345 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9346 			       struct bpf_prog *old_prog)
9347 {
9348 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9349 	enum bpf_xdp_mode mode;
9350 	bpf_op_t bpf_op;
9351 	int err = 0;
9352 
9353 	rtnl_lock();
9354 
9355 	/* link might have been auto-released already, so fail */
9356 	if (!xdp_link->dev) {
9357 		err = -ENOLINK;
9358 		goto out_unlock;
9359 	}
9360 
9361 	if (old_prog && link->prog != old_prog) {
9362 		err = -EPERM;
9363 		goto out_unlock;
9364 	}
9365 	old_prog = link->prog;
9366 	if (old_prog->type != new_prog->type ||
9367 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9368 		err = -EINVAL;
9369 		goto out_unlock;
9370 	}
9371 
9372 	if (old_prog == new_prog) {
9373 		/* no-op, don't disturb drivers */
9374 		bpf_prog_put(new_prog);
9375 		goto out_unlock;
9376 	}
9377 
9378 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9379 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9380 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9381 			      xdp_link->flags, new_prog);
9382 	if (err)
9383 		goto out_unlock;
9384 
9385 	old_prog = xchg(&link->prog, new_prog);
9386 	bpf_prog_put(old_prog);
9387 
9388 out_unlock:
9389 	rtnl_unlock();
9390 	return err;
9391 }
9392 
9393 static const struct bpf_link_ops bpf_xdp_link_lops = {
9394 	.release = bpf_xdp_link_release,
9395 	.dealloc = bpf_xdp_link_dealloc,
9396 	.detach = bpf_xdp_link_detach,
9397 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9398 	.fill_link_info = bpf_xdp_link_fill_link_info,
9399 	.update_prog = bpf_xdp_link_update,
9400 };
9401 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9402 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9403 {
9404 	struct net *net = current->nsproxy->net_ns;
9405 	struct bpf_link_primer link_primer;
9406 	struct bpf_xdp_link *link;
9407 	struct net_device *dev;
9408 	int err, fd;
9409 
9410 	rtnl_lock();
9411 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9412 	if (!dev) {
9413 		rtnl_unlock();
9414 		return -EINVAL;
9415 	}
9416 
9417 	link = kzalloc(sizeof(*link), GFP_USER);
9418 	if (!link) {
9419 		err = -ENOMEM;
9420 		goto unlock;
9421 	}
9422 
9423 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9424 	link->dev = dev;
9425 	link->flags = attr->link_create.flags;
9426 
9427 	err = bpf_link_prime(&link->link, &link_primer);
9428 	if (err) {
9429 		kfree(link);
9430 		goto unlock;
9431 	}
9432 
9433 	err = dev_xdp_attach_link(dev, NULL, link);
9434 	rtnl_unlock();
9435 
9436 	if (err) {
9437 		link->dev = NULL;
9438 		bpf_link_cleanup(&link_primer);
9439 		goto out_put_dev;
9440 	}
9441 
9442 	fd = bpf_link_settle(&link_primer);
9443 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9444 	dev_put(dev);
9445 	return fd;
9446 
9447 unlock:
9448 	rtnl_unlock();
9449 
9450 out_put_dev:
9451 	dev_put(dev);
9452 	return err;
9453 }
9454 
9455 /**
9456  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9457  *	@dev: device
9458  *	@extack: netlink extended ack
9459  *	@fd: new program fd or negative value to clear
9460  *	@expected_fd: old program fd that userspace expects to replace or clear
9461  *	@flags: xdp-related flags
9462  *
9463  *	Set or clear a bpf program for a device
9464  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9465 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9466 		      int fd, int expected_fd, u32 flags)
9467 {
9468 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9469 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9470 	int err;
9471 
9472 	ASSERT_RTNL();
9473 
9474 	if (fd >= 0) {
9475 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9476 						 mode != XDP_MODE_SKB);
9477 		if (IS_ERR(new_prog))
9478 			return PTR_ERR(new_prog);
9479 	}
9480 
9481 	if (expected_fd >= 0) {
9482 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9483 						 mode != XDP_MODE_SKB);
9484 		if (IS_ERR(old_prog)) {
9485 			err = PTR_ERR(old_prog);
9486 			old_prog = NULL;
9487 			goto err_out;
9488 		}
9489 	}
9490 
9491 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9492 
9493 err_out:
9494 	if (err && new_prog)
9495 		bpf_prog_put(new_prog);
9496 	if (old_prog)
9497 		bpf_prog_put(old_prog);
9498 	return err;
9499 }
9500 
9501 /**
9502  *	dev_new_index	-	allocate an ifindex
9503  *	@net: the applicable net namespace
9504  *
9505  *	Returns a suitable unique value for a new device interface
9506  *	number.  The caller must hold the rtnl semaphore or the
9507  *	dev_base_lock to be sure it remains unique.
9508  */
dev_new_index(struct net * net)9509 static int dev_new_index(struct net *net)
9510 {
9511 	int ifindex = net->ifindex;
9512 
9513 	for (;;) {
9514 		if (++ifindex <= 0)
9515 			ifindex = 1;
9516 		if (!__dev_get_by_index(net, ifindex))
9517 			return net->ifindex = ifindex;
9518 	}
9519 }
9520 
9521 /* Delayed registration/unregisteration */
9522 static LIST_HEAD(net_todo_list);
9523 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9524 
net_set_todo(struct net_device * dev)9525 static void net_set_todo(struct net_device *dev)
9526 {
9527 	list_add_tail(&dev->todo_list, &net_todo_list);
9528 	dev_net(dev)->dev_unreg_count++;
9529 }
9530 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9531 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9532 	struct net_device *upper, netdev_features_t features)
9533 {
9534 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9535 	netdev_features_t feature;
9536 	int feature_bit;
9537 
9538 	for_each_netdev_feature(upper_disables, feature_bit) {
9539 		feature = __NETIF_F_BIT(feature_bit);
9540 		if (!(upper->wanted_features & feature)
9541 		    && (features & feature)) {
9542 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9543 				   &feature, upper->name);
9544 			features &= ~feature;
9545 		}
9546 	}
9547 
9548 	return features;
9549 }
9550 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9551 static void netdev_sync_lower_features(struct net_device *upper,
9552 	struct net_device *lower, netdev_features_t features)
9553 {
9554 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9555 	netdev_features_t feature;
9556 	int feature_bit;
9557 
9558 	for_each_netdev_feature(upper_disables, feature_bit) {
9559 		feature = __NETIF_F_BIT(feature_bit);
9560 		if (!(features & feature) && (lower->features & feature)) {
9561 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9562 				   &feature, lower->name);
9563 			lower->wanted_features &= ~feature;
9564 			__netdev_update_features(lower);
9565 
9566 			if (unlikely(lower->features & feature))
9567 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9568 					    &feature, lower->name);
9569 			else
9570 				netdev_features_change(lower);
9571 		}
9572 	}
9573 }
9574 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9575 static netdev_features_t netdev_fix_features(struct net_device *dev,
9576 	netdev_features_t features)
9577 {
9578 	/* Fix illegal checksum combinations */
9579 	if ((features & NETIF_F_HW_CSUM) &&
9580 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9581 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9582 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9583 	}
9584 
9585 	/* TSO requires that SG is present as well. */
9586 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9587 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9588 		features &= ~NETIF_F_ALL_TSO;
9589 	}
9590 
9591 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9592 					!(features & NETIF_F_IP_CSUM)) {
9593 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9594 		features &= ~NETIF_F_TSO;
9595 		features &= ~NETIF_F_TSO_ECN;
9596 	}
9597 
9598 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9599 					 !(features & NETIF_F_IPV6_CSUM)) {
9600 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9601 		features &= ~NETIF_F_TSO6;
9602 	}
9603 
9604 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9605 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9606 		features &= ~NETIF_F_TSO_MANGLEID;
9607 
9608 	/* TSO ECN requires that TSO is present as well. */
9609 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9610 		features &= ~NETIF_F_TSO_ECN;
9611 
9612 	/* Software GSO depends on SG. */
9613 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9614 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9615 		features &= ~NETIF_F_GSO;
9616 	}
9617 
9618 	/* GSO partial features require GSO partial be set */
9619 	if ((features & dev->gso_partial_features) &&
9620 	    !(features & NETIF_F_GSO_PARTIAL)) {
9621 		netdev_dbg(dev,
9622 			   "Dropping partially supported GSO features since no GSO partial.\n");
9623 		features &= ~dev->gso_partial_features;
9624 	}
9625 
9626 	if (!(features & NETIF_F_RXCSUM)) {
9627 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9628 		 * successfully merged by hardware must also have the
9629 		 * checksum verified by hardware.  If the user does not
9630 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9631 		 */
9632 		if (features & NETIF_F_GRO_HW) {
9633 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9634 			features &= ~NETIF_F_GRO_HW;
9635 		}
9636 	}
9637 
9638 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9639 	if (features & NETIF_F_RXFCS) {
9640 		if (features & NETIF_F_LRO) {
9641 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9642 			features &= ~NETIF_F_LRO;
9643 		}
9644 
9645 		if (features & NETIF_F_GRO_HW) {
9646 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9647 			features &= ~NETIF_F_GRO_HW;
9648 		}
9649 	}
9650 
9651 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9652 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9653 		features &= ~NETIF_F_HW_TLS_RX;
9654 	}
9655 
9656 	return features;
9657 }
9658 
__netdev_update_features(struct net_device * dev)9659 int __netdev_update_features(struct net_device *dev)
9660 {
9661 	struct net_device *upper, *lower;
9662 	netdev_features_t features;
9663 	struct list_head *iter;
9664 	int err = -1;
9665 
9666 	ASSERT_RTNL();
9667 
9668 	features = netdev_get_wanted_features(dev);
9669 
9670 	if (dev->netdev_ops->ndo_fix_features)
9671 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9672 
9673 	/* driver might be less strict about feature dependencies */
9674 	features = netdev_fix_features(dev, features);
9675 
9676 	/* some features can't be enabled if they're off on an upper device */
9677 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9678 		features = netdev_sync_upper_features(dev, upper, features);
9679 
9680 	if (dev->features == features)
9681 		goto sync_lower;
9682 
9683 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9684 		&dev->features, &features);
9685 
9686 	if (dev->netdev_ops->ndo_set_features)
9687 		err = dev->netdev_ops->ndo_set_features(dev, features);
9688 	else
9689 		err = 0;
9690 
9691 	if (unlikely(err < 0)) {
9692 		netdev_err(dev,
9693 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9694 			err, &features, &dev->features);
9695 		/* return non-0 since some features might have changed and
9696 		 * it's better to fire a spurious notification than miss it
9697 		 */
9698 		return -1;
9699 	}
9700 
9701 sync_lower:
9702 	/* some features must be disabled on lower devices when disabled
9703 	 * on an upper device (think: bonding master or bridge)
9704 	 */
9705 	netdev_for_each_lower_dev(dev, lower, iter)
9706 		netdev_sync_lower_features(dev, lower, features);
9707 
9708 	if (!err) {
9709 		netdev_features_t diff = features ^ dev->features;
9710 
9711 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9712 			/* udp_tunnel_{get,drop}_rx_info both need
9713 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9714 			 * device, or they won't do anything.
9715 			 * Thus we need to update dev->features
9716 			 * *before* calling udp_tunnel_get_rx_info,
9717 			 * but *after* calling udp_tunnel_drop_rx_info.
9718 			 */
9719 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9720 				dev->features = features;
9721 				udp_tunnel_get_rx_info(dev);
9722 			} else {
9723 				udp_tunnel_drop_rx_info(dev);
9724 			}
9725 		}
9726 
9727 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9728 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9729 				dev->features = features;
9730 				err |= vlan_get_rx_ctag_filter_info(dev);
9731 			} else {
9732 				vlan_drop_rx_ctag_filter_info(dev);
9733 			}
9734 		}
9735 
9736 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9737 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9738 				dev->features = features;
9739 				err |= vlan_get_rx_stag_filter_info(dev);
9740 			} else {
9741 				vlan_drop_rx_stag_filter_info(dev);
9742 			}
9743 		}
9744 
9745 		dev->features = features;
9746 	}
9747 
9748 	return err < 0 ? 0 : 1;
9749 }
9750 
9751 /**
9752  *	netdev_update_features - recalculate device features
9753  *	@dev: the device to check
9754  *
9755  *	Recalculate dev->features set and send notifications if it
9756  *	has changed. Should be called after driver or hardware dependent
9757  *	conditions might have changed that influence the features.
9758  */
netdev_update_features(struct net_device * dev)9759 void netdev_update_features(struct net_device *dev)
9760 {
9761 	if (__netdev_update_features(dev))
9762 		netdev_features_change(dev);
9763 }
9764 EXPORT_SYMBOL(netdev_update_features);
9765 
9766 /**
9767  *	netdev_change_features - recalculate device features
9768  *	@dev: the device to check
9769  *
9770  *	Recalculate dev->features set and send notifications even
9771  *	if they have not changed. Should be called instead of
9772  *	netdev_update_features() if also dev->vlan_features might
9773  *	have changed to allow the changes to be propagated to stacked
9774  *	VLAN devices.
9775  */
netdev_change_features(struct net_device * dev)9776 void netdev_change_features(struct net_device *dev)
9777 {
9778 	__netdev_update_features(dev);
9779 	netdev_features_change(dev);
9780 }
9781 EXPORT_SYMBOL(netdev_change_features);
9782 
9783 /**
9784  *	netif_stacked_transfer_operstate -	transfer operstate
9785  *	@rootdev: the root or lower level device to transfer state from
9786  *	@dev: the device to transfer operstate to
9787  *
9788  *	Transfer operational state from root to device. This is normally
9789  *	called when a stacking relationship exists between the root
9790  *	device and the device(a leaf device).
9791  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9792 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9793 					struct net_device *dev)
9794 {
9795 	if (rootdev->operstate == IF_OPER_DORMANT)
9796 		netif_dormant_on(dev);
9797 	else
9798 		netif_dormant_off(dev);
9799 
9800 	if (rootdev->operstate == IF_OPER_TESTING)
9801 		netif_testing_on(dev);
9802 	else
9803 		netif_testing_off(dev);
9804 
9805 	if (netif_carrier_ok(rootdev))
9806 		netif_carrier_on(dev);
9807 	else
9808 		netif_carrier_off(dev);
9809 }
9810 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9811 
netif_alloc_rx_queues(struct net_device * dev)9812 static int netif_alloc_rx_queues(struct net_device *dev)
9813 {
9814 	unsigned int i, count = dev->num_rx_queues;
9815 	struct netdev_rx_queue *rx;
9816 	size_t sz = count * sizeof(*rx);
9817 	int err = 0;
9818 
9819 	BUG_ON(count < 1);
9820 
9821 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9822 	if (!rx)
9823 		return -ENOMEM;
9824 
9825 	dev->_rx = rx;
9826 
9827 	for (i = 0; i < count; i++) {
9828 		rx[i].dev = dev;
9829 
9830 		/* XDP RX-queue setup */
9831 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9832 		if (err < 0)
9833 			goto err_rxq_info;
9834 	}
9835 	return 0;
9836 
9837 err_rxq_info:
9838 	/* Rollback successful reg's and free other resources */
9839 	while (i--)
9840 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9841 	kvfree(dev->_rx);
9842 	dev->_rx = NULL;
9843 	return err;
9844 }
9845 
netif_free_rx_queues(struct net_device * dev)9846 static void netif_free_rx_queues(struct net_device *dev)
9847 {
9848 	unsigned int i, count = dev->num_rx_queues;
9849 
9850 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9851 	if (!dev->_rx)
9852 		return;
9853 
9854 	for (i = 0; i < count; i++)
9855 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9856 
9857 	kvfree(dev->_rx);
9858 }
9859 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9860 static void netdev_init_one_queue(struct net_device *dev,
9861 				  struct netdev_queue *queue, void *_unused)
9862 {
9863 	/* Initialize queue lock */
9864 	spin_lock_init(&queue->_xmit_lock);
9865 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9866 	queue->xmit_lock_owner = -1;
9867 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9868 	queue->dev = dev;
9869 #ifdef CONFIG_BQL
9870 	dql_init(&queue->dql, HZ);
9871 #endif
9872 }
9873 
netif_free_tx_queues(struct net_device * dev)9874 static void netif_free_tx_queues(struct net_device *dev)
9875 {
9876 	kvfree(dev->_tx);
9877 }
9878 
netif_alloc_netdev_queues(struct net_device * dev)9879 static int netif_alloc_netdev_queues(struct net_device *dev)
9880 {
9881 	unsigned int count = dev->num_tx_queues;
9882 	struct netdev_queue *tx;
9883 	size_t sz = count * sizeof(*tx);
9884 
9885 	if (count < 1 || count > 0xffff)
9886 		return -EINVAL;
9887 
9888 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9889 	if (!tx)
9890 		return -ENOMEM;
9891 
9892 	dev->_tx = tx;
9893 
9894 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9895 	spin_lock_init(&dev->tx_global_lock);
9896 
9897 	return 0;
9898 }
9899 
netif_tx_stop_all_queues(struct net_device * dev)9900 void netif_tx_stop_all_queues(struct net_device *dev)
9901 {
9902 	unsigned int i;
9903 
9904 	for (i = 0; i < dev->num_tx_queues; i++) {
9905 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9906 
9907 		netif_tx_stop_queue(txq);
9908 	}
9909 }
9910 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9911 
9912 /**
9913  *	register_netdevice	- register a network device
9914  *	@dev: device to register
9915  *
9916  *	Take a completed network device structure and add it to the kernel
9917  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9918  *	chain. 0 is returned on success. A negative errno code is returned
9919  *	on a failure to set up the device, or if the name is a duplicate.
9920  *
9921  *	Callers must hold the rtnl semaphore. You may want
9922  *	register_netdev() instead of this.
9923  *
9924  *	BUGS:
9925  *	The locking appears insufficient to guarantee two parallel registers
9926  *	will not get the same name.
9927  */
9928 
register_netdevice(struct net_device * dev)9929 int register_netdevice(struct net_device *dev)
9930 {
9931 	int ret;
9932 	struct net *net = dev_net(dev);
9933 
9934 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9935 		     NETDEV_FEATURE_COUNT);
9936 	BUG_ON(dev_boot_phase);
9937 	ASSERT_RTNL();
9938 
9939 	might_sleep();
9940 
9941 	/* When net_device's are persistent, this will be fatal. */
9942 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9943 	BUG_ON(!net);
9944 
9945 	ret = ethtool_check_ops(dev->ethtool_ops);
9946 	if (ret)
9947 		return ret;
9948 
9949 	spin_lock_init(&dev->addr_list_lock);
9950 	netdev_set_addr_lockdep_class(dev);
9951 
9952 	ret = dev_get_valid_name(net, dev, dev->name);
9953 	if (ret < 0)
9954 		goto out;
9955 
9956 	ret = -ENOMEM;
9957 	dev->name_node = netdev_name_node_head_alloc(dev);
9958 	if (!dev->name_node)
9959 		goto out;
9960 
9961 	/* Init, if this function is available */
9962 	if (dev->netdev_ops->ndo_init) {
9963 		ret = dev->netdev_ops->ndo_init(dev);
9964 		if (ret) {
9965 			if (ret > 0)
9966 				ret = -EIO;
9967 			goto err_free_name;
9968 		}
9969 	}
9970 
9971 	if (((dev->hw_features | dev->features) &
9972 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9973 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9974 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9975 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9976 		ret = -EINVAL;
9977 		goto err_uninit;
9978 	}
9979 
9980 	ret = -EBUSY;
9981 	if (!dev->ifindex)
9982 		dev->ifindex = dev_new_index(net);
9983 	else if (__dev_get_by_index(net, dev->ifindex))
9984 		goto err_uninit;
9985 
9986 	/* Transfer changeable features to wanted_features and enable
9987 	 * software offloads (GSO and GRO).
9988 	 */
9989 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9990 	dev->features |= NETIF_F_SOFT_FEATURES;
9991 
9992 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9993 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9994 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9995 	}
9996 
9997 	dev->wanted_features = dev->features & dev->hw_features;
9998 
9999 	if (!(dev->flags & IFF_LOOPBACK))
10000 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10001 
10002 	/* If IPv4 TCP segmentation offload is supported we should also
10003 	 * allow the device to enable segmenting the frame with the option
10004 	 * of ignoring a static IP ID value.  This doesn't enable the
10005 	 * feature itself but allows the user to enable it later.
10006 	 */
10007 	if (dev->hw_features & NETIF_F_TSO)
10008 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10009 	if (dev->vlan_features & NETIF_F_TSO)
10010 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10011 	if (dev->mpls_features & NETIF_F_TSO)
10012 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10013 	if (dev->hw_enc_features & NETIF_F_TSO)
10014 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10015 
10016 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10017 	 */
10018 	dev->vlan_features |= NETIF_F_HIGHDMA;
10019 
10020 	/* Make NETIF_F_SG inheritable to tunnel devices.
10021 	 */
10022 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10023 
10024 	/* Make NETIF_F_SG inheritable to MPLS.
10025 	 */
10026 	dev->mpls_features |= NETIF_F_SG;
10027 
10028 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10029 	ret = notifier_to_errno(ret);
10030 	if (ret)
10031 		goto err_uninit;
10032 
10033 	ret = netdev_register_kobject(dev);
10034 	if (ret) {
10035 		dev->reg_state = NETREG_UNREGISTERED;
10036 		goto err_uninit;
10037 	}
10038 	dev->reg_state = NETREG_REGISTERED;
10039 
10040 	__netdev_update_features(dev);
10041 
10042 	/*
10043 	 *	Default initial state at registry is that the
10044 	 *	device is present.
10045 	 */
10046 
10047 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10048 
10049 	linkwatch_init_dev(dev);
10050 
10051 	dev_init_scheduler(dev);
10052 	dev_hold(dev);
10053 	list_netdevice(dev);
10054 	add_device_randomness(dev->dev_addr, dev->addr_len);
10055 
10056 	/* If the device has permanent device address, driver should
10057 	 * set dev_addr and also addr_assign_type should be set to
10058 	 * NET_ADDR_PERM (default value).
10059 	 */
10060 	if (dev->addr_assign_type == NET_ADDR_PERM)
10061 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10062 
10063 	/* Notify protocols, that a new device appeared. */
10064 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10065 	ret = notifier_to_errno(ret);
10066 	if (ret) {
10067 		/* Expect explicit free_netdev() on failure */
10068 		dev->needs_free_netdev = false;
10069 		unregister_netdevice_queue(dev, NULL);
10070 		goto out;
10071 	}
10072 	/*
10073 	 *	Prevent userspace races by waiting until the network
10074 	 *	device is fully setup before sending notifications.
10075 	 */
10076 	if (!dev->rtnl_link_ops ||
10077 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10078 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10079 
10080 out:
10081 	return ret;
10082 
10083 err_uninit:
10084 	if (dev->netdev_ops->ndo_uninit)
10085 		dev->netdev_ops->ndo_uninit(dev);
10086 	if (dev->priv_destructor)
10087 		dev->priv_destructor(dev);
10088 err_free_name:
10089 	netdev_name_node_free(dev->name_node);
10090 	goto out;
10091 }
10092 EXPORT_SYMBOL(register_netdevice);
10093 
10094 /**
10095  *	init_dummy_netdev	- init a dummy network device for NAPI
10096  *	@dev: device to init
10097  *
10098  *	This takes a network device structure and initialize the minimum
10099  *	amount of fields so it can be used to schedule NAPI polls without
10100  *	registering a full blown interface. This is to be used by drivers
10101  *	that need to tie several hardware interfaces to a single NAPI
10102  *	poll scheduler due to HW limitations.
10103  */
init_dummy_netdev(struct net_device * dev)10104 int init_dummy_netdev(struct net_device *dev)
10105 {
10106 	/* Clear everything. Note we don't initialize spinlocks
10107 	 * are they aren't supposed to be taken by any of the
10108 	 * NAPI code and this dummy netdev is supposed to be
10109 	 * only ever used for NAPI polls
10110 	 */
10111 	memset(dev, 0, sizeof(struct net_device));
10112 
10113 	/* make sure we BUG if trying to hit standard
10114 	 * register/unregister code path
10115 	 */
10116 	dev->reg_state = NETREG_DUMMY;
10117 
10118 	/* NAPI wants this */
10119 	INIT_LIST_HEAD(&dev->napi_list);
10120 
10121 	/* a dummy interface is started by default */
10122 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10123 	set_bit(__LINK_STATE_START, &dev->state);
10124 
10125 	/* napi_busy_loop stats accounting wants this */
10126 	dev_net_set(dev, &init_net);
10127 
10128 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10129 	 * because users of this 'device' dont need to change
10130 	 * its refcount.
10131 	 */
10132 
10133 	return 0;
10134 }
10135 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10136 
10137 
10138 /**
10139  *	register_netdev	- register a network device
10140  *	@dev: device to register
10141  *
10142  *	Take a completed network device structure and add it to the kernel
10143  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10144  *	chain. 0 is returned on success. A negative errno code is returned
10145  *	on a failure to set up the device, or if the name is a duplicate.
10146  *
10147  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10148  *	and expands the device name if you passed a format string to
10149  *	alloc_netdev.
10150  */
register_netdev(struct net_device * dev)10151 int register_netdev(struct net_device *dev)
10152 {
10153 	int err;
10154 
10155 	if (rtnl_lock_killable())
10156 		return -EINTR;
10157 	err = register_netdevice(dev);
10158 	rtnl_unlock();
10159 	return err;
10160 }
10161 EXPORT_SYMBOL(register_netdev);
10162 
netdev_refcnt_read(const struct net_device * dev)10163 int netdev_refcnt_read(const struct net_device *dev)
10164 {
10165 	int i, refcnt = 0;
10166 
10167 	for_each_possible_cpu(i)
10168 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10169 	return refcnt;
10170 }
10171 EXPORT_SYMBOL(netdev_refcnt_read);
10172 
10173 #define WAIT_REFS_MIN_MSECS 1
10174 #define WAIT_REFS_MAX_MSECS 250
10175 /**
10176  * netdev_wait_allrefs - wait until all references are gone.
10177  * @dev: target net_device
10178  *
10179  * This is called when unregistering network devices.
10180  *
10181  * Any protocol or device that holds a reference should register
10182  * for netdevice notification, and cleanup and put back the
10183  * reference if they receive an UNREGISTER event.
10184  * We can get stuck here if buggy protocols don't correctly
10185  * call dev_put.
10186  */
netdev_wait_allrefs(struct net_device * dev)10187 static void netdev_wait_allrefs(struct net_device *dev)
10188 {
10189 	unsigned long rebroadcast_time, warning_time;
10190 	int wait = 0, refcnt;
10191 
10192 	linkwatch_forget_dev(dev);
10193 
10194 	rebroadcast_time = warning_time = jiffies;
10195 	refcnt = netdev_refcnt_read(dev);
10196 
10197 	while (refcnt != 0) {
10198 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10199 			rtnl_lock();
10200 
10201 			/* Rebroadcast unregister notification */
10202 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10203 
10204 			__rtnl_unlock();
10205 			rcu_barrier();
10206 			rtnl_lock();
10207 
10208 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10209 				     &dev->state)) {
10210 				/* We must not have linkwatch events
10211 				 * pending on unregister. If this
10212 				 * happens, we simply run the queue
10213 				 * unscheduled, resulting in a noop
10214 				 * for this device.
10215 				 */
10216 				linkwatch_run_queue();
10217 			}
10218 
10219 			__rtnl_unlock();
10220 
10221 			rebroadcast_time = jiffies;
10222 		}
10223 
10224 		if (!wait) {
10225 			rcu_barrier();
10226 			wait = WAIT_REFS_MIN_MSECS;
10227 		} else {
10228 			msleep(wait);
10229 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10230 		}
10231 
10232 		refcnt = netdev_refcnt_read(dev);
10233 
10234 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10235 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10236 				 dev->name, refcnt);
10237 			warning_time = jiffies;
10238 		}
10239 	}
10240 }
10241 
10242 /* The sequence is:
10243  *
10244  *	rtnl_lock();
10245  *	...
10246  *	register_netdevice(x1);
10247  *	register_netdevice(x2);
10248  *	...
10249  *	unregister_netdevice(y1);
10250  *	unregister_netdevice(y2);
10251  *      ...
10252  *	rtnl_unlock();
10253  *	free_netdev(y1);
10254  *	free_netdev(y2);
10255  *
10256  * We are invoked by rtnl_unlock().
10257  * This allows us to deal with problems:
10258  * 1) We can delete sysfs objects which invoke hotplug
10259  *    without deadlocking with linkwatch via keventd.
10260  * 2) Since we run with the RTNL semaphore not held, we can sleep
10261  *    safely in order to wait for the netdev refcnt to drop to zero.
10262  *
10263  * We must not return until all unregister events added during
10264  * the interval the lock was held have been completed.
10265  */
netdev_run_todo(void)10266 void netdev_run_todo(void)
10267 {
10268 	struct list_head list;
10269 #ifdef CONFIG_LOCKDEP
10270 	struct list_head unlink_list;
10271 
10272 	list_replace_init(&net_unlink_list, &unlink_list);
10273 
10274 	while (!list_empty(&unlink_list)) {
10275 		struct net_device *dev = list_first_entry(&unlink_list,
10276 							  struct net_device,
10277 							  unlink_list);
10278 		list_del_init(&dev->unlink_list);
10279 		dev->nested_level = dev->lower_level - 1;
10280 	}
10281 #endif
10282 
10283 	/* Snapshot list, allow later requests */
10284 	list_replace_init(&net_todo_list, &list);
10285 
10286 	__rtnl_unlock();
10287 
10288 
10289 	/* Wait for rcu callbacks to finish before next phase */
10290 	if (!list_empty(&list))
10291 		rcu_barrier();
10292 
10293 	while (!list_empty(&list)) {
10294 		struct net_device *dev
10295 			= list_first_entry(&list, struct net_device, todo_list);
10296 		list_del(&dev->todo_list);
10297 
10298 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10299 			pr_err("network todo '%s' but state %d\n",
10300 			       dev->name, dev->reg_state);
10301 			dump_stack();
10302 			continue;
10303 		}
10304 
10305 		dev->reg_state = NETREG_UNREGISTERED;
10306 
10307 		netdev_wait_allrefs(dev);
10308 
10309 		/* paranoia */
10310 		BUG_ON(netdev_refcnt_read(dev));
10311 		BUG_ON(!list_empty(&dev->ptype_all));
10312 		BUG_ON(!list_empty(&dev->ptype_specific));
10313 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10314 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10315 
10316 		if (dev->priv_destructor)
10317 			dev->priv_destructor(dev);
10318 		if (dev->needs_free_netdev)
10319 			free_netdev(dev);
10320 
10321 		/* Report a network device has been unregistered */
10322 		rtnl_lock();
10323 		dev_net(dev)->dev_unreg_count--;
10324 		__rtnl_unlock();
10325 		wake_up(&netdev_unregistering_wq);
10326 
10327 		/* Free network device */
10328 		kobject_put(&dev->dev.kobj);
10329 	}
10330 }
10331 
10332 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10333  * all the same fields in the same order as net_device_stats, with only
10334  * the type differing, but rtnl_link_stats64 may have additional fields
10335  * at the end for newer counters.
10336  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10337 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10338 			     const struct net_device_stats *netdev_stats)
10339 {
10340 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10341 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10342 	u64 *dst = (u64 *)stats64;
10343 
10344 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10345 	for (i = 0; i < n; i++)
10346 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10347 	/* zero out counters that only exist in rtnl_link_stats64 */
10348 	memset((char *)stats64 + n * sizeof(u64), 0,
10349 	       sizeof(*stats64) - n * sizeof(u64));
10350 }
10351 EXPORT_SYMBOL(netdev_stats_to_stats64);
10352 
10353 /**
10354  *	dev_get_stats	- get network device statistics
10355  *	@dev: device to get statistics from
10356  *	@storage: place to store stats
10357  *
10358  *	Get network statistics from device. Return @storage.
10359  *	The device driver may provide its own method by setting
10360  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10361  *	otherwise the internal statistics structure is used.
10362  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10363 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10364 					struct rtnl_link_stats64 *storage)
10365 {
10366 	const struct net_device_ops *ops = dev->netdev_ops;
10367 
10368 	if (ops->ndo_get_stats64) {
10369 		memset(storage, 0, sizeof(*storage));
10370 		ops->ndo_get_stats64(dev, storage);
10371 	} else if (ops->ndo_get_stats) {
10372 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10373 	} else {
10374 		netdev_stats_to_stats64(storage, &dev->stats);
10375 	}
10376 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10377 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10378 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10379 	return storage;
10380 }
10381 EXPORT_SYMBOL(dev_get_stats);
10382 
10383 /**
10384  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10385  *	@s: place to store stats
10386  *	@netstats: per-cpu network stats to read from
10387  *
10388  *	Read per-cpu network statistics and populate the related fields in @s.
10389  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10390 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10391 			   const struct pcpu_sw_netstats __percpu *netstats)
10392 {
10393 	int cpu;
10394 
10395 	for_each_possible_cpu(cpu) {
10396 		const struct pcpu_sw_netstats *stats;
10397 		struct pcpu_sw_netstats tmp;
10398 		unsigned int start;
10399 
10400 		stats = per_cpu_ptr(netstats, cpu);
10401 		do {
10402 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10403 			tmp.rx_packets = stats->rx_packets;
10404 			tmp.rx_bytes   = stats->rx_bytes;
10405 			tmp.tx_packets = stats->tx_packets;
10406 			tmp.tx_bytes   = stats->tx_bytes;
10407 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10408 
10409 		s->rx_packets += tmp.rx_packets;
10410 		s->rx_bytes   += tmp.rx_bytes;
10411 		s->tx_packets += tmp.tx_packets;
10412 		s->tx_bytes   += tmp.tx_bytes;
10413 	}
10414 }
10415 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10416 
dev_ingress_queue_create(struct net_device * dev)10417 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10418 {
10419 	struct netdev_queue *queue = dev_ingress_queue(dev);
10420 
10421 #ifdef CONFIG_NET_CLS_ACT
10422 	if (queue)
10423 		return queue;
10424 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10425 	if (!queue)
10426 		return NULL;
10427 	netdev_init_one_queue(dev, queue, NULL);
10428 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10429 	queue->qdisc_sleeping = &noop_qdisc;
10430 	rcu_assign_pointer(dev->ingress_queue, queue);
10431 #endif
10432 	return queue;
10433 }
10434 
10435 static const struct ethtool_ops default_ethtool_ops;
10436 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10437 void netdev_set_default_ethtool_ops(struct net_device *dev,
10438 				    const struct ethtool_ops *ops)
10439 {
10440 	if (dev->ethtool_ops == &default_ethtool_ops)
10441 		dev->ethtool_ops = ops;
10442 }
10443 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10444 
netdev_freemem(struct net_device * dev)10445 void netdev_freemem(struct net_device *dev)
10446 {
10447 	char *addr = (char *)dev - dev->padded;
10448 
10449 	kvfree(addr);
10450 }
10451 
10452 /**
10453  * alloc_netdev_mqs - allocate network device
10454  * @sizeof_priv: size of private data to allocate space for
10455  * @name: device name format string
10456  * @name_assign_type: origin of device name
10457  * @setup: callback to initialize device
10458  * @txqs: the number of TX subqueues to allocate
10459  * @rxqs: the number of RX subqueues to allocate
10460  *
10461  * Allocates a struct net_device with private data area for driver use
10462  * and performs basic initialization.  Also allocates subqueue structs
10463  * for each queue on the device.
10464  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10465 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10466 		unsigned char name_assign_type,
10467 		void (*setup)(struct net_device *),
10468 		unsigned int txqs, unsigned int rxqs)
10469 {
10470 	struct net_device *dev;
10471 	unsigned int alloc_size;
10472 	struct net_device *p;
10473 
10474 	BUG_ON(strlen(name) >= sizeof(dev->name));
10475 
10476 	if (txqs < 1) {
10477 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10478 		return NULL;
10479 	}
10480 
10481 	if (rxqs < 1) {
10482 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10483 		return NULL;
10484 	}
10485 
10486 	alloc_size = sizeof(struct net_device);
10487 	if (sizeof_priv) {
10488 		/* ensure 32-byte alignment of private area */
10489 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10490 		alloc_size += sizeof_priv;
10491 	}
10492 	/* ensure 32-byte alignment of whole construct */
10493 	alloc_size += NETDEV_ALIGN - 1;
10494 
10495 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10496 	if (!p)
10497 		return NULL;
10498 
10499 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10500 	dev->padded = (char *)dev - (char *)p;
10501 
10502 	dev->pcpu_refcnt = alloc_percpu(int);
10503 	if (!dev->pcpu_refcnt)
10504 		goto free_dev;
10505 
10506 	if (dev_addr_init(dev))
10507 		goto free_pcpu;
10508 
10509 	dev_mc_init(dev);
10510 	dev_uc_init(dev);
10511 
10512 	dev_net_set(dev, &init_net);
10513 
10514 	dev->gso_max_size = GSO_MAX_SIZE;
10515 	dev->gso_max_segs = GSO_MAX_SEGS;
10516 	dev->upper_level = 1;
10517 	dev->lower_level = 1;
10518 #ifdef CONFIG_LOCKDEP
10519 	dev->nested_level = 0;
10520 	INIT_LIST_HEAD(&dev->unlink_list);
10521 #endif
10522 
10523 	INIT_LIST_HEAD(&dev->napi_list);
10524 	INIT_LIST_HEAD(&dev->unreg_list);
10525 	INIT_LIST_HEAD(&dev->close_list);
10526 	INIT_LIST_HEAD(&dev->link_watch_list);
10527 	INIT_LIST_HEAD(&dev->adj_list.upper);
10528 	INIT_LIST_HEAD(&dev->adj_list.lower);
10529 	INIT_LIST_HEAD(&dev->ptype_all);
10530 	INIT_LIST_HEAD(&dev->ptype_specific);
10531 	INIT_LIST_HEAD(&dev->net_notifier_list);
10532 #ifdef CONFIG_NET_SCHED
10533 	hash_init(dev->qdisc_hash);
10534 #endif
10535 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10536 	setup(dev);
10537 
10538 	if (!dev->tx_queue_len) {
10539 		dev->priv_flags |= IFF_NO_QUEUE;
10540 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10541 	}
10542 
10543 	dev->num_tx_queues = txqs;
10544 	dev->real_num_tx_queues = txqs;
10545 	if (netif_alloc_netdev_queues(dev))
10546 		goto free_all;
10547 
10548 	dev->num_rx_queues = rxqs;
10549 	dev->real_num_rx_queues = rxqs;
10550 	if (netif_alloc_rx_queues(dev))
10551 		goto free_all;
10552 
10553 	strcpy(dev->name, name);
10554 	dev->name_assign_type = name_assign_type;
10555 	dev->group = INIT_NETDEV_GROUP;
10556 	if (!dev->ethtool_ops)
10557 		dev->ethtool_ops = &default_ethtool_ops;
10558 
10559 	nf_hook_ingress_init(dev);
10560 
10561 	return dev;
10562 
10563 free_all:
10564 	free_netdev(dev);
10565 	return NULL;
10566 
10567 free_pcpu:
10568 	free_percpu(dev->pcpu_refcnt);
10569 free_dev:
10570 	netdev_freemem(dev);
10571 	return NULL;
10572 }
10573 EXPORT_SYMBOL(alloc_netdev_mqs);
10574 
10575 /**
10576  * free_netdev - free network device
10577  * @dev: device
10578  *
10579  * This function does the last stage of destroying an allocated device
10580  * interface. The reference to the device object is released. If this
10581  * is the last reference then it will be freed.Must be called in process
10582  * context.
10583  */
free_netdev(struct net_device * dev)10584 void free_netdev(struct net_device *dev)
10585 {
10586 	struct napi_struct *p, *n;
10587 
10588 	might_sleep();
10589 
10590 	/* When called immediately after register_netdevice() failed the unwind
10591 	 * handling may still be dismantling the device. Handle that case by
10592 	 * deferring the free.
10593 	 */
10594 	if (dev->reg_state == NETREG_UNREGISTERING) {
10595 		ASSERT_RTNL();
10596 		dev->needs_free_netdev = true;
10597 		return;
10598 	}
10599 
10600 	netif_free_tx_queues(dev);
10601 	netif_free_rx_queues(dev);
10602 
10603 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10604 
10605 	/* Flush device addresses */
10606 	dev_addr_flush(dev);
10607 
10608 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10609 		netif_napi_del(p);
10610 
10611 	free_percpu(dev->pcpu_refcnt);
10612 	dev->pcpu_refcnt = NULL;
10613 	free_percpu(dev->xdp_bulkq);
10614 	dev->xdp_bulkq = NULL;
10615 
10616 	/*  Compatibility with error handling in drivers */
10617 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10618 		netdev_freemem(dev);
10619 		return;
10620 	}
10621 
10622 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10623 	dev->reg_state = NETREG_RELEASED;
10624 
10625 	/* will free via device release */
10626 	put_device(&dev->dev);
10627 }
10628 EXPORT_SYMBOL(free_netdev);
10629 
10630 /**
10631  *	synchronize_net -  Synchronize with packet receive processing
10632  *
10633  *	Wait for packets currently being received to be done.
10634  *	Does not block later packets from starting.
10635  */
synchronize_net(void)10636 void synchronize_net(void)
10637 {
10638 	might_sleep();
10639 	if (rtnl_is_locked())
10640 		synchronize_rcu_expedited();
10641 	else
10642 		synchronize_rcu();
10643 }
10644 EXPORT_SYMBOL(synchronize_net);
10645 
10646 /**
10647  *	unregister_netdevice_queue - remove device from the kernel
10648  *	@dev: device
10649  *	@head: list
10650  *
10651  *	This function shuts down a device interface and removes it
10652  *	from the kernel tables.
10653  *	If head not NULL, device is queued to be unregistered later.
10654  *
10655  *	Callers must hold the rtnl semaphore.  You may want
10656  *	unregister_netdev() instead of this.
10657  */
10658 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10659 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10660 {
10661 	ASSERT_RTNL();
10662 
10663 	if (head) {
10664 		list_move_tail(&dev->unreg_list, head);
10665 	} else {
10666 		LIST_HEAD(single);
10667 
10668 		list_add(&dev->unreg_list, &single);
10669 		unregister_netdevice_many(&single);
10670 	}
10671 }
10672 EXPORT_SYMBOL(unregister_netdevice_queue);
10673 
10674 /**
10675  *	unregister_netdevice_many - unregister many devices
10676  *	@head: list of devices
10677  *
10678  *  Note: As most callers use a stack allocated list_head,
10679  *  we force a list_del() to make sure stack wont be corrupted later.
10680  */
unregister_netdevice_many(struct list_head * head)10681 void unregister_netdevice_many(struct list_head *head)
10682 {
10683 	struct net_device *dev, *tmp;
10684 	LIST_HEAD(close_head);
10685 
10686 	BUG_ON(dev_boot_phase);
10687 	ASSERT_RTNL();
10688 
10689 	if (list_empty(head))
10690 		return;
10691 
10692 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10693 		/* Some devices call without registering
10694 		 * for initialization unwind. Remove those
10695 		 * devices and proceed with the remaining.
10696 		 */
10697 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10698 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10699 				 dev->name, dev);
10700 
10701 			WARN_ON(1);
10702 			list_del(&dev->unreg_list);
10703 			continue;
10704 		}
10705 		dev->dismantle = true;
10706 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10707 	}
10708 
10709 	/* If device is running, close it first. */
10710 	list_for_each_entry(dev, head, unreg_list)
10711 		list_add_tail(&dev->close_list, &close_head);
10712 	dev_close_many(&close_head, true);
10713 
10714 	list_for_each_entry(dev, head, unreg_list) {
10715 		/* And unlink it from device chain. */
10716 		unlist_netdevice(dev);
10717 
10718 		dev->reg_state = NETREG_UNREGISTERING;
10719 	}
10720 	flush_all_backlogs();
10721 
10722 	synchronize_net();
10723 
10724 	list_for_each_entry(dev, head, unreg_list) {
10725 		struct sk_buff *skb = NULL;
10726 
10727 		/* Shutdown queueing discipline. */
10728 		dev_shutdown(dev);
10729 
10730 		dev_xdp_uninstall(dev);
10731 
10732 		/* Notify protocols, that we are about to destroy
10733 		 * this device. They should clean all the things.
10734 		 */
10735 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10736 
10737 		if (!dev->rtnl_link_ops ||
10738 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10739 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10740 						     GFP_KERNEL, NULL, 0);
10741 
10742 		/*
10743 		 *	Flush the unicast and multicast chains
10744 		 */
10745 		dev_uc_flush(dev);
10746 		dev_mc_flush(dev);
10747 
10748 		netdev_name_node_alt_flush(dev);
10749 		netdev_name_node_free(dev->name_node);
10750 
10751 		if (dev->netdev_ops->ndo_uninit)
10752 			dev->netdev_ops->ndo_uninit(dev);
10753 
10754 		if (skb)
10755 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10756 
10757 		/* Notifier chain MUST detach us all upper devices. */
10758 		WARN_ON(netdev_has_any_upper_dev(dev));
10759 		WARN_ON(netdev_has_any_lower_dev(dev));
10760 
10761 		/* Remove entries from kobject tree */
10762 		netdev_unregister_kobject(dev);
10763 #ifdef CONFIG_XPS
10764 		/* Remove XPS queueing entries */
10765 		netif_reset_xps_queues_gt(dev, 0);
10766 #endif
10767 	}
10768 
10769 	synchronize_net();
10770 
10771 	list_for_each_entry(dev, head, unreg_list) {
10772 		dev_put(dev);
10773 		net_set_todo(dev);
10774 	}
10775 
10776 	list_del(head);
10777 }
10778 EXPORT_SYMBOL(unregister_netdevice_many);
10779 
10780 /**
10781  *	unregister_netdev - remove device from the kernel
10782  *	@dev: device
10783  *
10784  *	This function shuts down a device interface and removes it
10785  *	from the kernel tables.
10786  *
10787  *	This is just a wrapper for unregister_netdevice that takes
10788  *	the rtnl semaphore.  In general you want to use this and not
10789  *	unregister_netdevice.
10790  */
unregister_netdev(struct net_device * dev)10791 void unregister_netdev(struct net_device *dev)
10792 {
10793 	rtnl_lock();
10794 	unregister_netdevice(dev);
10795 	rtnl_unlock();
10796 }
10797 EXPORT_SYMBOL(unregister_netdev);
10798 
10799 /**
10800  *	dev_change_net_namespace - move device to different nethost namespace
10801  *	@dev: device
10802  *	@net: network namespace
10803  *	@pat: If not NULL name pattern to try if the current device name
10804  *	      is already taken in the destination network namespace.
10805  *
10806  *	This function shuts down a device interface and moves it
10807  *	to a new network namespace. On success 0 is returned, on
10808  *	a failure a netagive errno code is returned.
10809  *
10810  *	Callers must hold the rtnl semaphore.
10811  */
10812 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10813 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10814 {
10815 	struct net *net_old = dev_net(dev);
10816 	int err, new_nsid, new_ifindex;
10817 
10818 	ASSERT_RTNL();
10819 
10820 	/* Don't allow namespace local devices to be moved. */
10821 	err = -EINVAL;
10822 	if (dev->features & NETIF_F_NETNS_LOCAL)
10823 		goto out;
10824 
10825 	/* Ensure the device has been registrered */
10826 	if (dev->reg_state != NETREG_REGISTERED)
10827 		goto out;
10828 
10829 	/* Get out if there is nothing todo */
10830 	err = 0;
10831 	if (net_eq(net_old, net))
10832 		goto out;
10833 
10834 	/* Pick the destination device name, and ensure
10835 	 * we can use it in the destination network namespace.
10836 	 */
10837 	err = -EEXIST;
10838 	if (__dev_get_by_name(net, dev->name)) {
10839 		/* We get here if we can't use the current device name */
10840 		if (!pat)
10841 			goto out;
10842 		err = dev_get_valid_name(net, dev, pat);
10843 		if (err < 0)
10844 			goto out;
10845 	}
10846 
10847 	/*
10848 	 * And now a mini version of register_netdevice unregister_netdevice.
10849 	 */
10850 
10851 	/* If device is running close it first. */
10852 	dev_close(dev);
10853 
10854 	/* And unlink it from device chain */
10855 	unlist_netdevice(dev);
10856 
10857 	synchronize_net();
10858 
10859 	/* Shutdown queueing discipline. */
10860 	dev_shutdown(dev);
10861 
10862 	/* Notify protocols, that we are about to destroy
10863 	 * this device. They should clean all the things.
10864 	 *
10865 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10866 	 * This is wanted because this way 8021q and macvlan know
10867 	 * the device is just moving and can keep their slaves up.
10868 	 */
10869 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10870 	rcu_barrier();
10871 
10872 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10873 	/* If there is an ifindex conflict assign a new one */
10874 	if (__dev_get_by_index(net, dev->ifindex))
10875 		new_ifindex = dev_new_index(net);
10876 	else
10877 		new_ifindex = dev->ifindex;
10878 
10879 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10880 			    new_ifindex);
10881 
10882 	/*
10883 	 *	Flush the unicast and multicast chains
10884 	 */
10885 	dev_uc_flush(dev);
10886 	dev_mc_flush(dev);
10887 
10888 	/* Send a netdev-removed uevent to the old namespace */
10889 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10890 	netdev_adjacent_del_links(dev);
10891 
10892 	/* Move per-net netdevice notifiers that are following the netdevice */
10893 	move_netdevice_notifiers_dev_net(dev, net);
10894 
10895 	/* Actually switch the network namespace */
10896 	dev_net_set(dev, net);
10897 	dev->ifindex = new_ifindex;
10898 
10899 	/* Send a netdev-add uevent to the new namespace */
10900 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10901 	netdev_adjacent_add_links(dev);
10902 
10903 	/* Fixup kobjects */
10904 	err = device_rename(&dev->dev, dev->name);
10905 	WARN_ON(err);
10906 
10907 	/* Adapt owner in case owning user namespace of target network
10908 	 * namespace is different from the original one.
10909 	 */
10910 	err = netdev_change_owner(dev, net_old, net);
10911 	WARN_ON(err);
10912 
10913 	/* Add the device back in the hashes */
10914 	list_netdevice(dev);
10915 
10916 	/* Notify protocols, that a new device appeared. */
10917 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10918 
10919 	/*
10920 	 *	Prevent userspace races by waiting until the network
10921 	 *	device is fully setup before sending notifications.
10922 	 */
10923 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10924 
10925 	synchronize_net();
10926 	err = 0;
10927 out:
10928 	return err;
10929 }
10930 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10931 
dev_cpu_dead(unsigned int oldcpu)10932 static int dev_cpu_dead(unsigned int oldcpu)
10933 {
10934 	struct sk_buff **list_skb;
10935 	struct sk_buff *skb;
10936 	unsigned int cpu;
10937 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10938 
10939 	local_irq_disable();
10940 	cpu = smp_processor_id();
10941 	sd = &per_cpu(softnet_data, cpu);
10942 	oldsd = &per_cpu(softnet_data, oldcpu);
10943 
10944 	/* Find end of our completion_queue. */
10945 	list_skb = &sd->completion_queue;
10946 	while (*list_skb)
10947 		list_skb = &(*list_skb)->next;
10948 	/* Append completion queue from offline CPU. */
10949 	*list_skb = oldsd->completion_queue;
10950 	oldsd->completion_queue = NULL;
10951 
10952 	/* Append output queue from offline CPU. */
10953 	if (oldsd->output_queue) {
10954 		*sd->output_queue_tailp = oldsd->output_queue;
10955 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10956 		oldsd->output_queue = NULL;
10957 		oldsd->output_queue_tailp = &oldsd->output_queue;
10958 	}
10959 	/* Append NAPI poll list from offline CPU, with one exception :
10960 	 * process_backlog() must be called by cpu owning percpu backlog.
10961 	 * We properly handle process_queue & input_pkt_queue later.
10962 	 */
10963 	while (!list_empty(&oldsd->poll_list)) {
10964 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10965 							    struct napi_struct,
10966 							    poll_list);
10967 
10968 		list_del_init(&napi->poll_list);
10969 		if (napi->poll == process_backlog)
10970 			napi->state = 0;
10971 		else
10972 			____napi_schedule(sd, napi);
10973 	}
10974 
10975 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10976 	local_irq_enable();
10977 
10978 #ifdef CONFIG_RPS
10979 	remsd = oldsd->rps_ipi_list;
10980 	oldsd->rps_ipi_list = NULL;
10981 #endif
10982 	/* send out pending IPI's on offline CPU */
10983 	net_rps_send_ipi(remsd);
10984 
10985 	/* Process offline CPU's input_pkt_queue */
10986 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10987 		netif_rx_ni(skb);
10988 		input_queue_head_incr(oldsd);
10989 	}
10990 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10991 		netif_rx_ni(skb);
10992 		input_queue_head_incr(oldsd);
10993 	}
10994 
10995 	return 0;
10996 }
10997 
10998 /**
10999  *	netdev_increment_features - increment feature set by one
11000  *	@all: current feature set
11001  *	@one: new feature set
11002  *	@mask: mask feature set
11003  *
11004  *	Computes a new feature set after adding a device with feature set
11005  *	@one to the master device with current feature set @all.  Will not
11006  *	enable anything that is off in @mask. Returns the new feature set.
11007  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11008 netdev_features_t netdev_increment_features(netdev_features_t all,
11009 	netdev_features_t one, netdev_features_t mask)
11010 {
11011 	if (mask & NETIF_F_HW_CSUM)
11012 		mask |= NETIF_F_CSUM_MASK;
11013 	mask |= NETIF_F_VLAN_CHALLENGED;
11014 
11015 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11016 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11017 
11018 	/* If one device supports hw checksumming, set for all. */
11019 	if (all & NETIF_F_HW_CSUM)
11020 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11021 
11022 	return all;
11023 }
11024 EXPORT_SYMBOL(netdev_increment_features);
11025 
netdev_create_hash(void)11026 static struct hlist_head * __net_init netdev_create_hash(void)
11027 {
11028 	int i;
11029 	struct hlist_head *hash;
11030 
11031 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11032 	if (hash != NULL)
11033 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11034 			INIT_HLIST_HEAD(&hash[i]);
11035 
11036 	return hash;
11037 }
11038 
11039 /* Initialize per network namespace state */
netdev_init(struct net * net)11040 static int __net_init netdev_init(struct net *net)
11041 {
11042 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11043 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11044 
11045 	if (net != &init_net)
11046 		INIT_LIST_HEAD(&net->dev_base_head);
11047 
11048 	net->dev_name_head = netdev_create_hash();
11049 	if (net->dev_name_head == NULL)
11050 		goto err_name;
11051 
11052 	net->dev_index_head = netdev_create_hash();
11053 	if (net->dev_index_head == NULL)
11054 		goto err_idx;
11055 
11056 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11057 
11058 	return 0;
11059 
11060 err_idx:
11061 	kfree(net->dev_name_head);
11062 err_name:
11063 	return -ENOMEM;
11064 }
11065 
11066 /**
11067  *	netdev_drivername - network driver for the device
11068  *	@dev: network device
11069  *
11070  *	Determine network driver for device.
11071  */
netdev_drivername(const struct net_device * dev)11072 const char *netdev_drivername(const struct net_device *dev)
11073 {
11074 	const struct device_driver *driver;
11075 	const struct device *parent;
11076 	const char *empty = "";
11077 
11078 	parent = dev->dev.parent;
11079 	if (!parent)
11080 		return empty;
11081 
11082 	driver = parent->driver;
11083 	if (driver && driver->name)
11084 		return driver->name;
11085 	return empty;
11086 }
11087 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11088 static void __netdev_printk(const char *level, const struct net_device *dev,
11089 			    struct va_format *vaf)
11090 {
11091 	if (dev && dev->dev.parent) {
11092 		dev_printk_emit(level[1] - '0',
11093 				dev->dev.parent,
11094 				"%s %s %s%s: %pV",
11095 				dev_driver_string(dev->dev.parent),
11096 				dev_name(dev->dev.parent),
11097 				netdev_name(dev), netdev_reg_state(dev),
11098 				vaf);
11099 	} else if (dev) {
11100 		printk("%s%s%s: %pV",
11101 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11102 	} else {
11103 		printk("%s(NULL net_device): %pV", level, vaf);
11104 	}
11105 }
11106 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11107 void netdev_printk(const char *level, const struct net_device *dev,
11108 		   const char *format, ...)
11109 {
11110 	struct va_format vaf;
11111 	va_list args;
11112 
11113 	va_start(args, format);
11114 
11115 	vaf.fmt = format;
11116 	vaf.va = &args;
11117 
11118 	__netdev_printk(level, dev, &vaf);
11119 
11120 	va_end(args);
11121 }
11122 EXPORT_SYMBOL(netdev_printk);
11123 
11124 #define define_netdev_printk_level(func, level)			\
11125 void func(const struct net_device *dev, const char *fmt, ...)	\
11126 {								\
11127 	struct va_format vaf;					\
11128 	va_list args;						\
11129 								\
11130 	va_start(args, fmt);					\
11131 								\
11132 	vaf.fmt = fmt;						\
11133 	vaf.va = &args;						\
11134 								\
11135 	__netdev_printk(level, dev, &vaf);			\
11136 								\
11137 	va_end(args);						\
11138 }								\
11139 EXPORT_SYMBOL(func);
11140 
11141 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11142 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11143 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11144 define_netdev_printk_level(netdev_err, KERN_ERR);
11145 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11146 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11147 define_netdev_printk_level(netdev_info, KERN_INFO);
11148 
netdev_exit(struct net * net)11149 static void __net_exit netdev_exit(struct net *net)
11150 {
11151 	kfree(net->dev_name_head);
11152 	kfree(net->dev_index_head);
11153 	if (net != &init_net)
11154 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11155 }
11156 
11157 static struct pernet_operations __net_initdata netdev_net_ops = {
11158 	.init = netdev_init,
11159 	.exit = netdev_exit,
11160 };
11161 
default_device_exit(struct net * net)11162 static void __net_exit default_device_exit(struct net *net)
11163 {
11164 	struct net_device *dev, *aux;
11165 	/*
11166 	 * Push all migratable network devices back to the
11167 	 * initial network namespace
11168 	 */
11169 	rtnl_lock();
11170 	for_each_netdev_safe(net, dev, aux) {
11171 		int err;
11172 		char fb_name[IFNAMSIZ];
11173 
11174 		/* Ignore unmoveable devices (i.e. loopback) */
11175 		if (dev->features & NETIF_F_NETNS_LOCAL)
11176 			continue;
11177 
11178 		/* Leave virtual devices for the generic cleanup */
11179 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11180 			continue;
11181 
11182 		/* Push remaining network devices to init_net */
11183 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11184 		if (__dev_get_by_name(&init_net, fb_name))
11185 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11186 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11187 		if (err) {
11188 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11189 				 __func__, dev->name, err);
11190 			BUG();
11191 		}
11192 	}
11193 	rtnl_unlock();
11194 }
11195 
rtnl_lock_unregistering(struct list_head * net_list)11196 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11197 {
11198 	/* Return with the rtnl_lock held when there are no network
11199 	 * devices unregistering in any network namespace in net_list.
11200 	 */
11201 	struct net *net;
11202 	bool unregistering;
11203 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11204 
11205 	add_wait_queue(&netdev_unregistering_wq, &wait);
11206 	for (;;) {
11207 		unregistering = false;
11208 		rtnl_lock();
11209 		list_for_each_entry(net, net_list, exit_list) {
11210 			if (net->dev_unreg_count > 0) {
11211 				unregistering = true;
11212 				break;
11213 			}
11214 		}
11215 		if (!unregistering)
11216 			break;
11217 		__rtnl_unlock();
11218 
11219 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11220 	}
11221 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11222 }
11223 
default_device_exit_batch(struct list_head * net_list)11224 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11225 {
11226 	/* At exit all network devices most be removed from a network
11227 	 * namespace.  Do this in the reverse order of registration.
11228 	 * Do this across as many network namespaces as possible to
11229 	 * improve batching efficiency.
11230 	 */
11231 	struct net_device *dev;
11232 	struct net *net;
11233 	LIST_HEAD(dev_kill_list);
11234 
11235 	/* To prevent network device cleanup code from dereferencing
11236 	 * loopback devices or network devices that have been freed
11237 	 * wait here for all pending unregistrations to complete,
11238 	 * before unregistring the loopback device and allowing the
11239 	 * network namespace be freed.
11240 	 *
11241 	 * The netdev todo list containing all network devices
11242 	 * unregistrations that happen in default_device_exit_batch
11243 	 * will run in the rtnl_unlock() at the end of
11244 	 * default_device_exit_batch.
11245 	 */
11246 	rtnl_lock_unregistering(net_list);
11247 	list_for_each_entry(net, net_list, exit_list) {
11248 		for_each_netdev_reverse(net, dev) {
11249 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11250 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11251 			else
11252 				unregister_netdevice_queue(dev, &dev_kill_list);
11253 		}
11254 	}
11255 	unregister_netdevice_many(&dev_kill_list);
11256 	rtnl_unlock();
11257 }
11258 
11259 static struct pernet_operations __net_initdata default_device_ops = {
11260 	.exit = default_device_exit,
11261 	.exit_batch = default_device_exit_batch,
11262 };
11263 
11264 /*
11265  *	Initialize the DEV module. At boot time this walks the device list and
11266  *	unhooks any devices that fail to initialise (normally hardware not
11267  *	present) and leaves us with a valid list of present and active devices.
11268  *
11269  */
11270 
11271 /*
11272  *       This is called single threaded during boot, so no need
11273  *       to take the rtnl semaphore.
11274  */
net_dev_init(void)11275 static int __init net_dev_init(void)
11276 {
11277 	int i, rc = -ENOMEM;
11278 
11279 	BUG_ON(!dev_boot_phase);
11280 
11281 	if (dev_proc_init())
11282 		goto out;
11283 
11284 	if (netdev_kobject_init())
11285 		goto out;
11286 
11287 	INIT_LIST_HEAD(&ptype_all);
11288 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11289 		INIT_LIST_HEAD(&ptype_base[i]);
11290 
11291 	INIT_LIST_HEAD(&offload_base);
11292 
11293 	if (register_pernet_subsys(&netdev_net_ops))
11294 		goto out;
11295 
11296 	/*
11297 	 *	Initialise the packet receive queues.
11298 	 */
11299 
11300 	for_each_possible_cpu(i) {
11301 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11302 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11303 
11304 		INIT_WORK(flush, flush_backlog);
11305 
11306 		skb_queue_head_init(&sd->input_pkt_queue);
11307 		skb_queue_head_init(&sd->process_queue);
11308 #ifdef CONFIG_XFRM_OFFLOAD
11309 		skb_queue_head_init(&sd->xfrm_backlog);
11310 #endif
11311 		INIT_LIST_HEAD(&sd->poll_list);
11312 		sd->output_queue_tailp = &sd->output_queue;
11313 #ifdef CONFIG_RPS
11314 		sd->csd.func = rps_trigger_softirq;
11315 		sd->csd.info = sd;
11316 		sd->cpu = i;
11317 #endif
11318 
11319 		init_gro_hash(&sd->backlog);
11320 		sd->backlog.poll = process_backlog;
11321 		sd->backlog.weight = weight_p;
11322 	}
11323 
11324 	dev_boot_phase = 0;
11325 
11326 	/* The loopback device is special if any other network devices
11327 	 * is present in a network namespace the loopback device must
11328 	 * be present. Since we now dynamically allocate and free the
11329 	 * loopback device ensure this invariant is maintained by
11330 	 * keeping the loopback device as the first device on the
11331 	 * list of network devices.  Ensuring the loopback devices
11332 	 * is the first device that appears and the last network device
11333 	 * that disappears.
11334 	 */
11335 	if (register_pernet_device(&loopback_net_ops))
11336 		goto out;
11337 
11338 	if (register_pernet_device(&default_device_ops))
11339 		goto out;
11340 
11341 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11342 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11343 
11344 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11345 				       NULL, dev_cpu_dead);
11346 	WARN_ON(rc < 0);
11347 	rc = 0;
11348 out:
11349 	return rc;
11350 }
11351 
11352 subsys_initcall(net_dev_init);
11353