1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28
29 /*
30 * Our network namespace constructor/destructor lists
31 */
32
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46
47 struct net init_net = {
48 .count = REFCOUNT_INIT(1),
49 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
50 #ifdef CONFIG_KEYS
51 .key_domain = &init_net_key_domain,
52 #endif
53 };
54 EXPORT_SYMBOL(init_net);
55
56 static bool init_net_initialized;
57 /*
58 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
59 * init_net_initialized and first_device pointer.
60 * This is internal net namespace object. Please, don't use it
61 * outside.
62 */
63 DECLARE_RWSEM(pernet_ops_rwsem);
64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
65
66 #define MIN_PERNET_OPS_ID \
67 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
68
69 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
70
71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
72
73 DEFINE_COOKIE(net_cookie);
74
__net_gen_cookie(struct net * net)75 u64 __net_gen_cookie(struct net *net)
76 {
77 while (1) {
78 u64 res = atomic64_read(&net->net_cookie);
79
80 if (res)
81 return res;
82 res = gen_cookie_next(&net_cookie);
83 atomic64_cmpxchg(&net->net_cookie, 0, res);
84 }
85 }
86
net_alloc_generic(void)87 static struct net_generic *net_alloc_generic(void)
88 {
89 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
90 unsigned int generic_size;
91 struct net_generic *ng;
92
93 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
94
95 ng = kzalloc(generic_size, GFP_KERNEL);
96 if (ng)
97 ng->s.len = gen_ptrs;
98
99 return ng;
100 }
101
net_assign_generic(struct net * net,unsigned int id,void * data)102 static int net_assign_generic(struct net *net, unsigned int id, void *data)
103 {
104 struct net_generic *ng, *old_ng;
105
106 BUG_ON(id < MIN_PERNET_OPS_ID);
107
108 old_ng = rcu_dereference_protected(net->gen,
109 lockdep_is_held(&pernet_ops_rwsem));
110 if (old_ng->s.len > id) {
111 old_ng->ptr[id] = data;
112 return 0;
113 }
114
115 ng = net_alloc_generic();
116 if (ng == NULL)
117 return -ENOMEM;
118
119 /*
120 * Some synchronisation notes:
121 *
122 * The net_generic explores the net->gen array inside rcu
123 * read section. Besides once set the net->gen->ptr[x]
124 * pointer never changes (see rules in netns/generic.h).
125 *
126 * That said, we simply duplicate this array and schedule
127 * the old copy for kfree after a grace period.
128 */
129
130 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
131 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
132 ng->ptr[id] = data;
133
134 rcu_assign_pointer(net->gen, ng);
135 kfree_rcu(old_ng, s.rcu);
136 return 0;
137 }
138
ops_init(const struct pernet_operations * ops,struct net * net)139 static int ops_init(const struct pernet_operations *ops, struct net *net)
140 {
141 struct net_generic *ng;
142 int err = -ENOMEM;
143 void *data = NULL;
144
145 if (ops->id && ops->size) {
146 data = kzalloc(ops->size, GFP_KERNEL);
147 if (!data)
148 goto out;
149
150 err = net_assign_generic(net, *ops->id, data);
151 if (err)
152 goto cleanup;
153 }
154 err = 0;
155 if (ops->init)
156 err = ops->init(net);
157 if (!err)
158 return 0;
159
160 if (ops->id && ops->size) {
161 ng = rcu_dereference_protected(net->gen,
162 lockdep_is_held(&pernet_ops_rwsem));
163 ng->ptr[*ops->id] = NULL;
164 }
165
166 cleanup:
167 kfree(data);
168
169 out:
170 return err;
171 }
172
ops_free(const struct pernet_operations * ops,struct net * net)173 static void ops_free(const struct pernet_operations *ops, struct net *net)
174 {
175 if (ops->id && ops->size) {
176 kfree(net_generic(net, *ops->id));
177 }
178 }
179
ops_pre_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)180 static void ops_pre_exit_list(const struct pernet_operations *ops,
181 struct list_head *net_exit_list)
182 {
183 struct net *net;
184
185 if (ops->pre_exit) {
186 list_for_each_entry(net, net_exit_list, exit_list)
187 ops->pre_exit(net);
188 }
189 }
190
ops_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)191 static void ops_exit_list(const struct pernet_operations *ops,
192 struct list_head *net_exit_list)
193 {
194 struct net *net;
195 if (ops->exit) {
196 list_for_each_entry(net, net_exit_list, exit_list) {
197 ops->exit(net);
198 cond_resched();
199 }
200 }
201 if (ops->exit_batch)
202 ops->exit_batch(net_exit_list);
203 }
204
ops_free_list(const struct pernet_operations * ops,struct list_head * net_exit_list)205 static void ops_free_list(const struct pernet_operations *ops,
206 struct list_head *net_exit_list)
207 {
208 struct net *net;
209 if (ops->size && ops->id) {
210 list_for_each_entry(net, net_exit_list, exit_list)
211 ops_free(ops, net);
212 }
213 }
214
215 /* should be called with nsid_lock held */
alloc_netid(struct net * net,struct net * peer,int reqid)216 static int alloc_netid(struct net *net, struct net *peer, int reqid)
217 {
218 int min = 0, max = 0;
219
220 if (reqid >= 0) {
221 min = reqid;
222 max = reqid + 1;
223 }
224
225 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
226 }
227
228 /* This function is used by idr_for_each(). If net is equal to peer, the
229 * function returns the id so that idr_for_each() stops. Because we cannot
230 * returns the id 0 (idr_for_each() will not stop), we return the magic value
231 * NET_ID_ZERO (-1) for it.
232 */
233 #define NET_ID_ZERO -1
net_eq_idr(int id,void * net,void * peer)234 static int net_eq_idr(int id, void *net, void *peer)
235 {
236 if (net_eq(net, peer))
237 return id ? : NET_ID_ZERO;
238 return 0;
239 }
240
241 /* Must be called from RCU-critical section or with nsid_lock held */
__peernet2id(const struct net * net,struct net * peer)242 static int __peernet2id(const struct net *net, struct net *peer)
243 {
244 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
245
246 /* Magic value for id 0. */
247 if (id == NET_ID_ZERO)
248 return 0;
249 if (id > 0)
250 return id;
251
252 return NETNSA_NSID_NOT_ASSIGNED;
253 }
254
255 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
256 struct nlmsghdr *nlh, gfp_t gfp);
257 /* This function returns the id of a peer netns. If no id is assigned, one will
258 * be allocated and returned.
259 */
peernet2id_alloc(struct net * net,struct net * peer,gfp_t gfp)260 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
261 {
262 int id;
263
264 if (refcount_read(&net->count) == 0)
265 return NETNSA_NSID_NOT_ASSIGNED;
266
267 spin_lock_bh(&net->nsid_lock);
268 id = __peernet2id(net, peer);
269 if (id >= 0) {
270 spin_unlock_bh(&net->nsid_lock);
271 return id;
272 }
273
274 /* When peer is obtained from RCU lists, we may race with
275 * its cleanup. Check whether it's alive, and this guarantees
276 * we never hash a peer back to net->netns_ids, after it has
277 * just been idr_remove()'d from there in cleanup_net().
278 */
279 if (!maybe_get_net(peer)) {
280 spin_unlock_bh(&net->nsid_lock);
281 return NETNSA_NSID_NOT_ASSIGNED;
282 }
283
284 id = alloc_netid(net, peer, -1);
285 spin_unlock_bh(&net->nsid_lock);
286
287 put_net(peer);
288 if (id < 0)
289 return NETNSA_NSID_NOT_ASSIGNED;
290
291 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
292
293 return id;
294 }
295 EXPORT_SYMBOL_GPL(peernet2id_alloc);
296
297 /* This function returns, if assigned, the id of a peer netns. */
peernet2id(const struct net * net,struct net * peer)298 int peernet2id(const struct net *net, struct net *peer)
299 {
300 int id;
301
302 rcu_read_lock();
303 id = __peernet2id(net, peer);
304 rcu_read_unlock();
305
306 return id;
307 }
308 EXPORT_SYMBOL(peernet2id);
309
310 /* This function returns true is the peer netns has an id assigned into the
311 * current netns.
312 */
peernet_has_id(const struct net * net,struct net * peer)313 bool peernet_has_id(const struct net *net, struct net *peer)
314 {
315 return peernet2id(net, peer) >= 0;
316 }
317
get_net_ns_by_id(const struct net * net,int id)318 struct net *get_net_ns_by_id(const struct net *net, int id)
319 {
320 struct net *peer;
321
322 if (id < 0)
323 return NULL;
324
325 rcu_read_lock();
326 peer = idr_find(&net->netns_ids, id);
327 if (peer)
328 peer = maybe_get_net(peer);
329 rcu_read_unlock();
330
331 return peer;
332 }
333
334 /*
335 * setup_net runs the initializers for the network namespace object.
336 */
setup_net(struct net * net,struct user_namespace * user_ns)337 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
338 {
339 /* Must be called with pernet_ops_rwsem held */
340 const struct pernet_operations *ops, *saved_ops;
341 int error = 0;
342 LIST_HEAD(net_exit_list);
343
344 refcount_set(&net->count, 1);
345 refcount_set(&net->passive, 1);
346 get_random_bytes(&net->hash_mix, sizeof(u32));
347 net->dev_base_seq = 1;
348 net->user_ns = user_ns;
349 idr_init(&net->netns_ids);
350 spin_lock_init(&net->nsid_lock);
351 mutex_init(&net->ipv4.ra_mutex);
352
353 list_for_each_entry(ops, &pernet_list, list) {
354 error = ops_init(ops, net);
355 if (error < 0)
356 goto out_undo;
357 }
358 down_write(&net_rwsem);
359 list_add_tail_rcu(&net->list, &net_namespace_list);
360 up_write(&net_rwsem);
361 out:
362 return error;
363
364 out_undo:
365 /* Walk through the list backwards calling the exit functions
366 * for the pernet modules whose init functions did not fail.
367 */
368 list_add(&net->exit_list, &net_exit_list);
369 saved_ops = ops;
370 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
371 ops_pre_exit_list(ops, &net_exit_list);
372
373 synchronize_rcu();
374
375 ops = saved_ops;
376 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
377 ops_exit_list(ops, &net_exit_list);
378
379 ops = saved_ops;
380 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
381 ops_free_list(ops, &net_exit_list);
382
383 rcu_barrier();
384 goto out;
385 }
386
net_defaults_init_net(struct net * net)387 static int __net_init net_defaults_init_net(struct net *net)
388 {
389 net->core.sysctl_somaxconn = SOMAXCONN;
390 return 0;
391 }
392
393 static struct pernet_operations net_defaults_ops = {
394 .init = net_defaults_init_net,
395 };
396
net_defaults_init(void)397 static __init int net_defaults_init(void)
398 {
399 if (register_pernet_subsys(&net_defaults_ops))
400 panic("Cannot initialize net default settings");
401
402 return 0;
403 }
404
405 core_initcall(net_defaults_init);
406
407 #ifdef CONFIG_NET_NS
inc_net_namespaces(struct user_namespace * ns)408 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
409 {
410 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
411 }
412
dec_net_namespaces(struct ucounts * ucounts)413 static void dec_net_namespaces(struct ucounts *ucounts)
414 {
415 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
416 }
417
418 static struct kmem_cache *net_cachep __ro_after_init;
419 static struct workqueue_struct *netns_wq;
420
net_alloc(void)421 static struct net *net_alloc(void)
422 {
423 struct net *net = NULL;
424 struct net_generic *ng;
425
426 ng = net_alloc_generic();
427 if (!ng)
428 goto out;
429
430 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
431 if (!net)
432 goto out_free;
433
434 #ifdef CONFIG_KEYS
435 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
436 if (!net->key_domain)
437 goto out_free_2;
438 refcount_set(&net->key_domain->usage, 1);
439 #endif
440
441 rcu_assign_pointer(net->gen, ng);
442 out:
443 return net;
444
445 #ifdef CONFIG_KEYS
446 out_free_2:
447 kmem_cache_free(net_cachep, net);
448 net = NULL;
449 #endif
450 out_free:
451 kfree(ng);
452 goto out;
453 }
454
455 static LLIST_HEAD(defer_free_list);
456
net_complete_free(void)457 static void net_complete_free(void)
458 {
459 struct llist_node *kill_list;
460 struct net *net, *next;
461
462 /* Get the list of namespaces to free from last round. */
463 kill_list = llist_del_all(&defer_free_list);
464
465 llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
466 kmem_cache_free(net_cachep, net);
467
468 }
469
net_free(struct net * net)470 static void net_free(struct net *net)
471 {
472 kfree(rcu_access_pointer(net->gen));
473 /* Wait for an extra rcu_barrier() before final free. */
474 llist_add(&net->defer_free_list, &defer_free_list);
475 }
476
net_drop_ns(void * p)477 void net_drop_ns(void *p)
478 {
479 struct net *ns = p;
480 if (ns && refcount_dec_and_test(&ns->passive))
481 net_free(ns);
482 }
483
copy_net_ns(unsigned long flags,struct user_namespace * user_ns,struct net * old_net)484 struct net *copy_net_ns(unsigned long flags,
485 struct user_namespace *user_ns, struct net *old_net)
486 {
487 struct ucounts *ucounts;
488 struct net *net;
489 int rv;
490
491 if (!(flags & CLONE_NEWNET))
492 return get_net(old_net);
493
494 ucounts = inc_net_namespaces(user_ns);
495 if (!ucounts)
496 return ERR_PTR(-ENOSPC);
497
498 net = net_alloc();
499 if (!net) {
500 rv = -ENOMEM;
501 goto dec_ucounts;
502 }
503 refcount_set(&net->passive, 1);
504 net->ucounts = ucounts;
505 get_user_ns(user_ns);
506
507 rv = down_read_killable(&pernet_ops_rwsem);
508 if (rv < 0)
509 goto put_userns;
510
511 rv = setup_net(net, user_ns);
512
513 up_read(&pernet_ops_rwsem);
514
515 if (rv < 0) {
516 put_userns:
517 #ifdef CONFIG_KEYS
518 key_remove_domain(net->key_domain);
519 #endif
520 put_user_ns(user_ns);
521 net_drop_ns(net);
522 dec_ucounts:
523 dec_net_namespaces(ucounts);
524 return ERR_PTR(rv);
525 }
526 return net;
527 }
528
529 /**
530 * net_ns_get_ownership - get sysfs ownership data for @net
531 * @net: network namespace in question (can be NULL)
532 * @uid: kernel user ID for sysfs objects
533 * @gid: kernel group ID for sysfs objects
534 *
535 * Returns the uid/gid pair of root in the user namespace associated with the
536 * given network namespace.
537 */
net_ns_get_ownership(const struct net * net,kuid_t * uid,kgid_t * gid)538 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
539 {
540 if (net) {
541 kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
542 kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
543
544 if (uid_valid(ns_root_uid))
545 *uid = ns_root_uid;
546
547 if (gid_valid(ns_root_gid))
548 *gid = ns_root_gid;
549 } else {
550 *uid = GLOBAL_ROOT_UID;
551 *gid = GLOBAL_ROOT_GID;
552 }
553 }
554 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
555
unhash_nsid(struct net * net,struct net * last)556 static void unhash_nsid(struct net *net, struct net *last)
557 {
558 struct net *tmp;
559 /* This function is only called from cleanup_net() work,
560 * and this work is the only process, that may delete
561 * a net from net_namespace_list. So, when the below
562 * is executing, the list may only grow. Thus, we do not
563 * use for_each_net_rcu() or net_rwsem.
564 */
565 for_each_net(tmp) {
566 int id;
567
568 spin_lock_bh(&tmp->nsid_lock);
569 id = __peernet2id(tmp, net);
570 if (id >= 0)
571 idr_remove(&tmp->netns_ids, id);
572 spin_unlock_bh(&tmp->nsid_lock);
573 if (id >= 0)
574 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
575 GFP_KERNEL);
576 if (tmp == last)
577 break;
578 }
579 spin_lock_bh(&net->nsid_lock);
580 idr_destroy(&net->netns_ids);
581 spin_unlock_bh(&net->nsid_lock);
582 }
583
584 static LLIST_HEAD(cleanup_list);
585
cleanup_net(struct work_struct * work)586 static void cleanup_net(struct work_struct *work)
587 {
588 const struct pernet_operations *ops;
589 struct net *net, *tmp, *last;
590 struct llist_node *net_kill_list;
591 LIST_HEAD(net_exit_list);
592
593 /* Atomically snapshot the list of namespaces to cleanup */
594 net_kill_list = llist_del_all(&cleanup_list);
595
596 down_read(&pernet_ops_rwsem);
597
598 /* Don't let anyone else find us. */
599 down_write(&net_rwsem);
600 llist_for_each_entry(net, net_kill_list, cleanup_list)
601 list_del_rcu(&net->list);
602 /* Cache last net. After we unlock rtnl, no one new net
603 * added to net_namespace_list can assign nsid pointer
604 * to a net from net_kill_list (see peernet2id_alloc()).
605 * So, we skip them in unhash_nsid().
606 *
607 * Note, that unhash_nsid() does not delete nsid links
608 * between net_kill_list's nets, as they've already
609 * deleted from net_namespace_list. But, this would be
610 * useless anyway, as netns_ids are destroyed there.
611 */
612 last = list_last_entry(&net_namespace_list, struct net, list);
613 up_write(&net_rwsem);
614
615 llist_for_each_entry(net, net_kill_list, cleanup_list) {
616 unhash_nsid(net, last);
617 list_add_tail(&net->exit_list, &net_exit_list);
618 }
619
620 /* Run all of the network namespace pre_exit methods */
621 list_for_each_entry_reverse(ops, &pernet_list, list)
622 ops_pre_exit_list(ops, &net_exit_list);
623
624 /*
625 * Another CPU might be rcu-iterating the list, wait for it.
626 * This needs to be before calling the exit() notifiers, so
627 * the rcu_barrier() below isn't sufficient alone.
628 * Also the pre_exit() and exit() methods need this barrier.
629 */
630 synchronize_rcu();
631
632 /* Run all of the network namespace exit methods */
633 list_for_each_entry_reverse(ops, &pernet_list, list)
634 ops_exit_list(ops, &net_exit_list);
635
636 /* Free the net generic variables */
637 list_for_each_entry_reverse(ops, &pernet_list, list)
638 ops_free_list(ops, &net_exit_list);
639
640 up_read(&pernet_ops_rwsem);
641
642 /* Ensure there are no outstanding rcu callbacks using this
643 * network namespace.
644 */
645 rcu_barrier();
646
647 net_complete_free();
648
649 /* Finally it is safe to free my network namespace structure */
650 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
651 list_del_init(&net->exit_list);
652 dec_net_namespaces(net->ucounts);
653 #ifdef CONFIG_KEYS
654 key_remove_domain(net->key_domain);
655 #endif
656 put_user_ns(net->user_ns);
657 net_drop_ns(net);
658 }
659 }
660
661 /**
662 * net_ns_barrier - wait until concurrent net_cleanup_work is done
663 *
664 * cleanup_net runs from work queue and will first remove namespaces
665 * from the global list, then run net exit functions.
666 *
667 * Call this in module exit path to make sure that all netns
668 * ->exit ops have been invoked before the function is removed.
669 */
net_ns_barrier(void)670 void net_ns_barrier(void)
671 {
672 down_write(&pernet_ops_rwsem);
673 up_write(&pernet_ops_rwsem);
674 }
675 EXPORT_SYMBOL(net_ns_barrier);
676
677 static DECLARE_WORK(net_cleanup_work, cleanup_net);
678
__put_net(struct net * net)679 void __put_net(struct net *net)
680 {
681 /* Cleanup the network namespace in process context */
682 if (llist_add(&net->cleanup_list, &cleanup_list))
683 queue_work(netns_wq, &net_cleanup_work);
684 }
685 EXPORT_SYMBOL_GPL(__put_net);
686
687 /**
688 * get_net_ns - increment the refcount of the network namespace
689 * @ns: common namespace (net)
690 *
691 * Returns the net's common namespace.
692 */
get_net_ns(struct ns_common * ns)693 struct ns_common *get_net_ns(struct ns_common *ns)
694 {
695 return &get_net(container_of(ns, struct net, ns))->ns;
696 }
697 EXPORT_SYMBOL_GPL(get_net_ns);
698
get_net_ns_by_fd(int fd)699 struct net *get_net_ns_by_fd(int fd)
700 {
701 struct file *file;
702 struct ns_common *ns;
703 struct net *net;
704
705 file = proc_ns_fget(fd);
706 if (IS_ERR(file))
707 return ERR_CAST(file);
708
709 ns = get_proc_ns(file_inode(file));
710 if (ns->ops == &netns_operations)
711 net = get_net(container_of(ns, struct net, ns));
712 else
713 net = ERR_PTR(-EINVAL);
714
715 fput(file);
716 return net;
717 }
718
719 #else
get_net_ns_by_fd(int fd)720 struct net *get_net_ns_by_fd(int fd)
721 {
722 return ERR_PTR(-EINVAL);
723 }
724 #endif
725 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
726
get_net_ns_by_pid(pid_t pid)727 struct net *get_net_ns_by_pid(pid_t pid)
728 {
729 struct task_struct *tsk;
730 struct net *net;
731
732 /* Lookup the network namespace */
733 net = ERR_PTR(-ESRCH);
734 rcu_read_lock();
735 tsk = find_task_by_vpid(pid);
736 if (tsk) {
737 struct nsproxy *nsproxy;
738 task_lock(tsk);
739 nsproxy = tsk->nsproxy;
740 if (nsproxy)
741 net = get_net(nsproxy->net_ns);
742 task_unlock(tsk);
743 }
744 rcu_read_unlock();
745 return net;
746 }
747 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
748
net_ns_net_init(struct net * net)749 static __net_init int net_ns_net_init(struct net *net)
750 {
751 #ifdef CONFIG_NET_NS
752 net->ns.ops = &netns_operations;
753 #endif
754 return ns_alloc_inum(&net->ns);
755 }
756
net_ns_net_exit(struct net * net)757 static __net_exit void net_ns_net_exit(struct net *net)
758 {
759 ns_free_inum(&net->ns);
760 }
761
762 static struct pernet_operations __net_initdata net_ns_ops = {
763 .init = net_ns_net_init,
764 .exit = net_ns_net_exit,
765 };
766
767 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
768 [NETNSA_NONE] = { .type = NLA_UNSPEC },
769 [NETNSA_NSID] = { .type = NLA_S32 },
770 [NETNSA_PID] = { .type = NLA_U32 },
771 [NETNSA_FD] = { .type = NLA_U32 },
772 [NETNSA_TARGET_NSID] = { .type = NLA_S32 },
773 };
774
rtnl_net_newid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)775 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
776 struct netlink_ext_ack *extack)
777 {
778 struct net *net = sock_net(skb->sk);
779 struct nlattr *tb[NETNSA_MAX + 1];
780 struct nlattr *nla;
781 struct net *peer;
782 int nsid, err;
783
784 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
785 NETNSA_MAX, rtnl_net_policy, extack);
786 if (err < 0)
787 return err;
788 if (!tb[NETNSA_NSID]) {
789 NL_SET_ERR_MSG(extack, "nsid is missing");
790 return -EINVAL;
791 }
792 nsid = nla_get_s32(tb[NETNSA_NSID]);
793
794 if (tb[NETNSA_PID]) {
795 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
796 nla = tb[NETNSA_PID];
797 } else if (tb[NETNSA_FD]) {
798 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
799 nla = tb[NETNSA_FD];
800 } else {
801 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
802 return -EINVAL;
803 }
804 if (IS_ERR(peer)) {
805 NL_SET_BAD_ATTR(extack, nla);
806 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
807 return PTR_ERR(peer);
808 }
809
810 spin_lock_bh(&net->nsid_lock);
811 if (__peernet2id(net, peer) >= 0) {
812 spin_unlock_bh(&net->nsid_lock);
813 err = -EEXIST;
814 NL_SET_BAD_ATTR(extack, nla);
815 NL_SET_ERR_MSG(extack,
816 "Peer netns already has a nsid assigned");
817 goto out;
818 }
819
820 err = alloc_netid(net, peer, nsid);
821 spin_unlock_bh(&net->nsid_lock);
822 if (err >= 0) {
823 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
824 nlh, GFP_KERNEL);
825 err = 0;
826 } else if (err == -ENOSPC && nsid >= 0) {
827 err = -EEXIST;
828 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
829 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
830 }
831 out:
832 put_net(peer);
833 return err;
834 }
835
rtnl_net_get_size(void)836 static int rtnl_net_get_size(void)
837 {
838 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
839 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
840 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
841 ;
842 }
843
844 struct net_fill_args {
845 u32 portid;
846 u32 seq;
847 int flags;
848 int cmd;
849 int nsid;
850 bool add_ref;
851 int ref_nsid;
852 };
853
rtnl_net_fill(struct sk_buff * skb,struct net_fill_args * args)854 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
855 {
856 struct nlmsghdr *nlh;
857 struct rtgenmsg *rth;
858
859 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
860 args->flags);
861 if (!nlh)
862 return -EMSGSIZE;
863
864 rth = nlmsg_data(nlh);
865 rth->rtgen_family = AF_UNSPEC;
866
867 if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
868 goto nla_put_failure;
869
870 if (args->add_ref &&
871 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
872 goto nla_put_failure;
873
874 nlmsg_end(skb, nlh);
875 return 0;
876
877 nla_put_failure:
878 nlmsg_cancel(skb, nlh);
879 return -EMSGSIZE;
880 }
881
rtnl_net_valid_getid_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)882 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
883 const struct nlmsghdr *nlh,
884 struct nlattr **tb,
885 struct netlink_ext_ack *extack)
886 {
887 int i, err;
888
889 if (!netlink_strict_get_check(skb))
890 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
891 tb, NETNSA_MAX, rtnl_net_policy,
892 extack);
893
894 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
895 NETNSA_MAX, rtnl_net_policy,
896 extack);
897 if (err)
898 return err;
899
900 for (i = 0; i <= NETNSA_MAX; i++) {
901 if (!tb[i])
902 continue;
903
904 switch (i) {
905 case NETNSA_PID:
906 case NETNSA_FD:
907 case NETNSA_NSID:
908 case NETNSA_TARGET_NSID:
909 break;
910 default:
911 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
912 return -EINVAL;
913 }
914 }
915
916 return 0;
917 }
918
rtnl_net_getid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)919 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
920 struct netlink_ext_ack *extack)
921 {
922 struct net *net = sock_net(skb->sk);
923 struct nlattr *tb[NETNSA_MAX + 1];
924 struct net_fill_args fillargs = {
925 .portid = NETLINK_CB(skb).portid,
926 .seq = nlh->nlmsg_seq,
927 .cmd = RTM_NEWNSID,
928 };
929 struct net *peer, *target = net;
930 struct nlattr *nla;
931 struct sk_buff *msg;
932 int err;
933
934 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
935 if (err < 0)
936 return err;
937 if (tb[NETNSA_PID]) {
938 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
939 nla = tb[NETNSA_PID];
940 } else if (tb[NETNSA_FD]) {
941 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
942 nla = tb[NETNSA_FD];
943 } else if (tb[NETNSA_NSID]) {
944 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
945 if (!peer)
946 peer = ERR_PTR(-ENOENT);
947 nla = tb[NETNSA_NSID];
948 } else {
949 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
950 return -EINVAL;
951 }
952
953 if (IS_ERR(peer)) {
954 NL_SET_BAD_ATTR(extack, nla);
955 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
956 return PTR_ERR(peer);
957 }
958
959 if (tb[NETNSA_TARGET_NSID]) {
960 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
961
962 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
963 if (IS_ERR(target)) {
964 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
965 NL_SET_ERR_MSG(extack,
966 "Target netns reference is invalid");
967 err = PTR_ERR(target);
968 goto out;
969 }
970 fillargs.add_ref = true;
971 fillargs.ref_nsid = peernet2id(net, peer);
972 }
973
974 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
975 if (!msg) {
976 err = -ENOMEM;
977 goto out;
978 }
979
980 fillargs.nsid = peernet2id(target, peer);
981 err = rtnl_net_fill(msg, &fillargs);
982 if (err < 0)
983 goto err_out;
984
985 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
986 goto out;
987
988 err_out:
989 nlmsg_free(msg);
990 out:
991 if (fillargs.add_ref)
992 put_net(target);
993 put_net(peer);
994 return err;
995 }
996
997 struct rtnl_net_dump_cb {
998 struct net *tgt_net;
999 struct net *ref_net;
1000 struct sk_buff *skb;
1001 struct net_fill_args fillargs;
1002 int idx;
1003 int s_idx;
1004 };
1005
1006 /* Runs in RCU-critical section. */
rtnl_net_dumpid_one(int id,void * peer,void * data)1007 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1008 {
1009 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1010 int ret;
1011
1012 if (net_cb->idx < net_cb->s_idx)
1013 goto cont;
1014
1015 net_cb->fillargs.nsid = id;
1016 if (net_cb->fillargs.add_ref)
1017 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1018 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1019 if (ret < 0)
1020 return ret;
1021
1022 cont:
1023 net_cb->idx++;
1024 return 0;
1025 }
1026
rtnl_valid_dump_net_req(const struct nlmsghdr * nlh,struct sock * sk,struct rtnl_net_dump_cb * net_cb,struct netlink_callback * cb)1027 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1028 struct rtnl_net_dump_cb *net_cb,
1029 struct netlink_callback *cb)
1030 {
1031 struct netlink_ext_ack *extack = cb->extack;
1032 struct nlattr *tb[NETNSA_MAX + 1];
1033 int err, i;
1034
1035 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1036 NETNSA_MAX, rtnl_net_policy,
1037 extack);
1038 if (err < 0)
1039 return err;
1040
1041 for (i = 0; i <= NETNSA_MAX; i++) {
1042 if (!tb[i])
1043 continue;
1044
1045 if (i == NETNSA_TARGET_NSID) {
1046 struct net *net;
1047
1048 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1049 if (IS_ERR(net)) {
1050 NL_SET_BAD_ATTR(extack, tb[i]);
1051 NL_SET_ERR_MSG(extack,
1052 "Invalid target network namespace id");
1053 return PTR_ERR(net);
1054 }
1055 net_cb->fillargs.add_ref = true;
1056 net_cb->ref_net = net_cb->tgt_net;
1057 net_cb->tgt_net = net;
1058 } else {
1059 NL_SET_BAD_ATTR(extack, tb[i]);
1060 NL_SET_ERR_MSG(extack,
1061 "Unsupported attribute in dump request");
1062 return -EINVAL;
1063 }
1064 }
1065
1066 return 0;
1067 }
1068
rtnl_net_dumpid(struct sk_buff * skb,struct netlink_callback * cb)1069 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1070 {
1071 struct rtnl_net_dump_cb net_cb = {
1072 .tgt_net = sock_net(skb->sk),
1073 .skb = skb,
1074 .fillargs = {
1075 .portid = NETLINK_CB(cb->skb).portid,
1076 .seq = cb->nlh->nlmsg_seq,
1077 .flags = NLM_F_MULTI,
1078 .cmd = RTM_NEWNSID,
1079 },
1080 .idx = 0,
1081 .s_idx = cb->args[0],
1082 };
1083 int err = 0;
1084
1085 if (cb->strict_check) {
1086 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1087 if (err < 0)
1088 goto end;
1089 }
1090
1091 rcu_read_lock();
1092 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1093 rcu_read_unlock();
1094
1095 cb->args[0] = net_cb.idx;
1096 end:
1097 if (net_cb.fillargs.add_ref)
1098 put_net(net_cb.tgt_net);
1099 return err < 0 ? err : skb->len;
1100 }
1101
rtnl_net_notifyid(struct net * net,int cmd,int id,u32 portid,struct nlmsghdr * nlh,gfp_t gfp)1102 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1103 struct nlmsghdr *nlh, gfp_t gfp)
1104 {
1105 struct net_fill_args fillargs = {
1106 .portid = portid,
1107 .seq = nlh ? nlh->nlmsg_seq : 0,
1108 .cmd = cmd,
1109 .nsid = id,
1110 };
1111 struct sk_buff *msg;
1112 int err = -ENOMEM;
1113
1114 msg = nlmsg_new(rtnl_net_get_size(), gfp);
1115 if (!msg)
1116 goto out;
1117
1118 err = rtnl_net_fill(msg, &fillargs);
1119 if (err < 0)
1120 goto err_out;
1121
1122 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1123 return;
1124
1125 err_out:
1126 nlmsg_free(msg);
1127 out:
1128 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1129 }
1130
net_ns_init(void)1131 static int __init net_ns_init(void)
1132 {
1133 struct net_generic *ng;
1134
1135 #ifdef CONFIG_NET_NS
1136 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1137 SMP_CACHE_BYTES,
1138 SLAB_PANIC|SLAB_ACCOUNT, NULL);
1139
1140 /* Create workqueue for cleanup */
1141 netns_wq = create_singlethread_workqueue("netns");
1142 if (!netns_wq)
1143 panic("Could not create netns workq");
1144 #endif
1145
1146 ng = net_alloc_generic();
1147 if (!ng)
1148 panic("Could not allocate generic netns");
1149
1150 rcu_assign_pointer(init_net.gen, ng);
1151
1152 preempt_disable();
1153 __net_gen_cookie(&init_net);
1154 preempt_enable();
1155
1156 down_write(&pernet_ops_rwsem);
1157 if (setup_net(&init_net, &init_user_ns))
1158 panic("Could not setup the initial network namespace");
1159
1160 init_net_initialized = true;
1161 up_write(&pernet_ops_rwsem);
1162
1163 if (register_pernet_subsys(&net_ns_ops))
1164 panic("Could not register network namespace subsystems");
1165
1166 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1167 RTNL_FLAG_DOIT_UNLOCKED);
1168 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1169 RTNL_FLAG_DOIT_UNLOCKED);
1170
1171 return 0;
1172 }
1173
1174 pure_initcall(net_ns_init);
1175
1176 #ifdef CONFIG_NET_NS
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1177 static int __register_pernet_operations(struct list_head *list,
1178 struct pernet_operations *ops)
1179 {
1180 struct net *net;
1181 int error;
1182 LIST_HEAD(net_exit_list);
1183
1184 list_add_tail(&ops->list, list);
1185 if (ops->init || (ops->id && ops->size)) {
1186 /* We held write locked pernet_ops_rwsem, and parallel
1187 * setup_net() and cleanup_net() are not possible.
1188 */
1189 for_each_net(net) {
1190 error = ops_init(ops, net);
1191 if (error)
1192 goto out_undo;
1193 list_add_tail(&net->exit_list, &net_exit_list);
1194 }
1195 }
1196 return 0;
1197
1198 out_undo:
1199 /* If I have an error cleanup all namespaces I initialized */
1200 list_del(&ops->list);
1201 ops_pre_exit_list(ops, &net_exit_list);
1202 synchronize_rcu();
1203 ops_exit_list(ops, &net_exit_list);
1204 ops_free_list(ops, &net_exit_list);
1205 return error;
1206 }
1207
__unregister_pernet_operations(struct pernet_operations * ops)1208 static void __unregister_pernet_operations(struct pernet_operations *ops)
1209 {
1210 struct net *net;
1211 LIST_HEAD(net_exit_list);
1212
1213 list_del(&ops->list);
1214 /* See comment in __register_pernet_operations() */
1215 for_each_net(net)
1216 list_add_tail(&net->exit_list, &net_exit_list);
1217 ops_pre_exit_list(ops, &net_exit_list);
1218 synchronize_rcu();
1219 ops_exit_list(ops, &net_exit_list);
1220 ops_free_list(ops, &net_exit_list);
1221 }
1222
1223 #else
1224
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1225 static int __register_pernet_operations(struct list_head *list,
1226 struct pernet_operations *ops)
1227 {
1228 if (!init_net_initialized) {
1229 list_add_tail(&ops->list, list);
1230 return 0;
1231 }
1232
1233 return ops_init(ops, &init_net);
1234 }
1235
__unregister_pernet_operations(struct pernet_operations * ops)1236 static void __unregister_pernet_operations(struct pernet_operations *ops)
1237 {
1238 if (!init_net_initialized) {
1239 list_del(&ops->list);
1240 } else {
1241 LIST_HEAD(net_exit_list);
1242 list_add(&init_net.exit_list, &net_exit_list);
1243 ops_pre_exit_list(ops, &net_exit_list);
1244 synchronize_rcu();
1245 ops_exit_list(ops, &net_exit_list);
1246 ops_free_list(ops, &net_exit_list);
1247 }
1248 }
1249
1250 #endif /* CONFIG_NET_NS */
1251
1252 static DEFINE_IDA(net_generic_ids);
1253
register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1254 static int register_pernet_operations(struct list_head *list,
1255 struct pernet_operations *ops)
1256 {
1257 int error;
1258
1259 if (ops->id) {
1260 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1261 GFP_KERNEL);
1262 if (error < 0)
1263 return error;
1264 *ops->id = error;
1265 /* This does not require READ_ONCE as writers already hold
1266 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1267 * net_alloc_generic.
1268 */
1269 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1270 }
1271 error = __register_pernet_operations(list, ops);
1272 if (error) {
1273 rcu_barrier();
1274 if (ops->id)
1275 ida_free(&net_generic_ids, *ops->id);
1276 }
1277
1278 return error;
1279 }
1280
unregister_pernet_operations(struct pernet_operations * ops)1281 static void unregister_pernet_operations(struct pernet_operations *ops)
1282 {
1283 __unregister_pernet_operations(ops);
1284 rcu_barrier();
1285 if (ops->id)
1286 ida_free(&net_generic_ids, *ops->id);
1287 }
1288
1289 /**
1290 * register_pernet_subsys - register a network namespace subsystem
1291 * @ops: pernet operations structure for the subsystem
1292 *
1293 * Register a subsystem which has init and exit functions
1294 * that are called when network namespaces are created and
1295 * destroyed respectively.
1296 *
1297 * When registered all network namespace init functions are
1298 * called for every existing network namespace. Allowing kernel
1299 * modules to have a race free view of the set of network namespaces.
1300 *
1301 * When a new network namespace is created all of the init
1302 * methods are called in the order in which they were registered.
1303 *
1304 * When a network namespace is destroyed all of the exit methods
1305 * are called in the reverse of the order with which they were
1306 * registered.
1307 */
register_pernet_subsys(struct pernet_operations * ops)1308 int register_pernet_subsys(struct pernet_operations *ops)
1309 {
1310 int error;
1311 down_write(&pernet_ops_rwsem);
1312 error = register_pernet_operations(first_device, ops);
1313 up_write(&pernet_ops_rwsem);
1314 return error;
1315 }
1316 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1317
1318 /**
1319 * unregister_pernet_subsys - unregister a network namespace subsystem
1320 * @ops: pernet operations structure to manipulate
1321 *
1322 * Remove the pernet operations structure from the list to be
1323 * used when network namespaces are created or destroyed. In
1324 * addition run the exit method for all existing network
1325 * namespaces.
1326 */
unregister_pernet_subsys(struct pernet_operations * ops)1327 void unregister_pernet_subsys(struct pernet_operations *ops)
1328 {
1329 down_write(&pernet_ops_rwsem);
1330 unregister_pernet_operations(ops);
1331 up_write(&pernet_ops_rwsem);
1332 }
1333 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1334
1335 /**
1336 * register_pernet_device - register a network namespace device
1337 * @ops: pernet operations structure for the subsystem
1338 *
1339 * Register a device which has init and exit functions
1340 * that are called when network namespaces are created and
1341 * destroyed respectively.
1342 *
1343 * When registered all network namespace init functions are
1344 * called for every existing network namespace. Allowing kernel
1345 * modules to have a race free view of the set of network namespaces.
1346 *
1347 * When a new network namespace is created all of the init
1348 * methods are called in the order in which they were registered.
1349 *
1350 * When a network namespace is destroyed all of the exit methods
1351 * are called in the reverse of the order with which they were
1352 * registered.
1353 */
register_pernet_device(struct pernet_operations * ops)1354 int register_pernet_device(struct pernet_operations *ops)
1355 {
1356 int error;
1357 down_write(&pernet_ops_rwsem);
1358 error = register_pernet_operations(&pernet_list, ops);
1359 if (!error && (first_device == &pernet_list))
1360 first_device = &ops->list;
1361 up_write(&pernet_ops_rwsem);
1362 return error;
1363 }
1364 EXPORT_SYMBOL_GPL(register_pernet_device);
1365
1366 /**
1367 * unregister_pernet_device - unregister a network namespace netdevice
1368 * @ops: pernet operations structure to manipulate
1369 *
1370 * Remove the pernet operations structure from the list to be
1371 * used when network namespaces are created or destroyed. In
1372 * addition run the exit method for all existing network
1373 * namespaces.
1374 */
unregister_pernet_device(struct pernet_operations * ops)1375 void unregister_pernet_device(struct pernet_operations *ops)
1376 {
1377 down_write(&pernet_ops_rwsem);
1378 if (&ops->list == first_device)
1379 first_device = first_device->next;
1380 unregister_pernet_operations(ops);
1381 up_write(&pernet_ops_rwsem);
1382 }
1383 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1384
1385 #ifdef CONFIG_NET_NS
netns_get(struct task_struct * task)1386 static struct ns_common *netns_get(struct task_struct *task)
1387 {
1388 struct net *net = NULL;
1389 struct nsproxy *nsproxy;
1390
1391 task_lock(task);
1392 nsproxy = task->nsproxy;
1393 if (nsproxy)
1394 net = get_net(nsproxy->net_ns);
1395 task_unlock(task);
1396
1397 return net ? &net->ns : NULL;
1398 }
1399
to_net_ns(struct ns_common * ns)1400 static inline struct net *to_net_ns(struct ns_common *ns)
1401 {
1402 return container_of(ns, struct net, ns);
1403 }
1404
netns_put(struct ns_common * ns)1405 static void netns_put(struct ns_common *ns)
1406 {
1407 put_net(to_net_ns(ns));
1408 }
1409
netns_install(struct nsset * nsset,struct ns_common * ns)1410 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1411 {
1412 struct nsproxy *nsproxy = nsset->nsproxy;
1413 struct net *net = to_net_ns(ns);
1414
1415 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1416 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1417 return -EPERM;
1418
1419 put_net(nsproxy->net_ns);
1420 nsproxy->net_ns = get_net(net);
1421 return 0;
1422 }
1423
netns_owner(struct ns_common * ns)1424 static struct user_namespace *netns_owner(struct ns_common *ns)
1425 {
1426 return to_net_ns(ns)->user_ns;
1427 }
1428
1429 const struct proc_ns_operations netns_operations = {
1430 .name = "net",
1431 .type = CLONE_NEWNET,
1432 .get = netns_get,
1433 .put = netns_put,
1434 .install = netns_install,
1435 .owner = netns_owner,
1436 };
1437 #endif
1438