• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
__build_skb(void * data,unsigned int frag_size)312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
build_skb(void * data,unsigned int frag_size)330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
napi_alloc_frag(unsigned int fragsz)384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
netdev_alloc_frag(unsigned int fragsz)399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	/* If requested length is either too small or too big,
441 	 * we use kmalloc() for skb->head allocation.
442 	 */
443 	if (len <= SKB_WITH_OVERHEAD(1024) ||
444 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 		if (!skb)
448 			goto skb_fail;
449 		goto skb_success;
450 	}
451 
452 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 	len = SKB_DATA_ALIGN(len);
454 
455 	if (sk_memalloc_socks())
456 		gfp_mask |= __GFP_MEMALLOC;
457 
458 	if (in_irq() || irqs_disabled()) {
459 		nc = this_cpu_ptr(&netdev_alloc_cache);
460 		data = page_frag_alloc(nc, len, gfp_mask);
461 		pfmemalloc = nc->pfmemalloc;
462 	} else {
463 		local_bh_disable();
464 		nc = this_cpu_ptr(&napi_alloc_cache.page);
465 		data = page_frag_alloc(nc, len, gfp_mask);
466 		pfmemalloc = nc->pfmemalloc;
467 		local_bh_enable();
468 	}
469 
470 	if (unlikely(!data))
471 		return NULL;
472 
473 	skb = __build_skb(data, len);
474 	if (unlikely(!skb)) {
475 		skb_free_frag(data);
476 		return NULL;
477 	}
478 
479 	if (pfmemalloc)
480 		skb->pfmemalloc = 1;
481 	skb->head_frag = 1;
482 
483 skb_success:
484 	skb_reserve(skb, NET_SKB_PAD);
485 	skb->dev = dev;
486 
487 skb_fail:
488 	return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491 
492 /**
493  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494  *	@napi: napi instance this buffer was allocated for
495  *	@len: length to allocate
496  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497  *
498  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
499  *	attempt to allocate the head from a special reserved region used
500  *	only for NAPI Rx allocation.  By doing this we can save several
501  *	CPU cycles by avoiding having to disable and re-enable IRQs.
502  *
503  *	%NULL is returned if there is no free memory.
504  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 				 gfp_t gfp_mask)
507 {
508 	struct napi_alloc_cache *nc;
509 	struct sk_buff *skb;
510 	void *data;
511 
512 	len += NET_SKB_PAD + NET_IP_ALIGN;
513 
514 	/* If requested length is either too small or too big,
515 	 * we use kmalloc() for skb->head allocation.
516 	 */
517 	if (len <= SKB_WITH_OVERHEAD(1024) ||
518 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 		if (!skb)
522 			goto skb_fail;
523 		goto skb_success;
524 	}
525 
526 	nc = this_cpu_ptr(&napi_alloc_cache);
527 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 	len = SKB_DATA_ALIGN(len);
529 
530 	if (sk_memalloc_socks())
531 		gfp_mask |= __GFP_MEMALLOC;
532 
533 	data = page_frag_alloc(&nc->page, len, gfp_mask);
534 	if (unlikely(!data))
535 		return NULL;
536 
537 	skb = __build_skb(data, len);
538 	if (unlikely(!skb)) {
539 		skb_free_frag(data);
540 		return NULL;
541 	}
542 
543 	if (nc->page.pfmemalloc)
544 		skb->pfmemalloc = 1;
545 	skb->head_frag = 1;
546 
547 skb_success:
548 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 	skb->dev = napi->dev;
550 
551 skb_fail:
552 	return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 		     int size, unsigned int truesize)
558 {
559 	skb_fill_page_desc(skb, i, page, off, size);
560 	skb->len += size;
561 	skb->data_len += size;
562 	skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 			  unsigned int truesize)
568 {
569 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570 
571 	skb_frag_size_add(frag, size);
572 	skb->len += size;
573 	skb->data_len += size;
574 	skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577 
skb_drop_list(struct sk_buff ** listp)578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 	kfree_skb_list(*listp);
581 	*listp = NULL;
582 }
583 
skb_drop_fraglist(struct sk_buff * skb)584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 	skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588 
skb_clone_fraglist(struct sk_buff * skb)589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 	struct sk_buff *list;
592 
593 	skb_walk_frags(skb, list)
594 		skb_get(list);
595 }
596 
skb_free_head(struct sk_buff * skb)597 static void skb_free_head(struct sk_buff *skb)
598 {
599 	unsigned char *head = skb->head;
600 
601 	if (skb->head_frag)
602 		skb_free_frag(head);
603 	else
604 		kfree(head);
605 }
606 
skb_release_data(struct sk_buff * skb)607 static void skb_release_data(struct sk_buff *skb)
608 {
609 	struct skb_shared_info *shinfo = skb_shinfo(skb);
610 	int i;
611 
612 	if (skb->cloned &&
613 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 			      &shinfo->dataref))
615 		return;
616 
617 	for (i = 0; i < shinfo->nr_frags; i++)
618 		__skb_frag_unref(&shinfo->frags[i]);
619 
620 	if (shinfo->frag_list)
621 		kfree_skb_list(shinfo->frag_list);
622 
623 	skb_zcopy_clear(skb, true);
624 	skb_free_head(skb);
625 }
626 
627 /*
628  *	Free an skbuff by memory without cleaning the state.
629  */
kfree_skbmem(struct sk_buff * skb)630 static void kfree_skbmem(struct sk_buff *skb)
631 {
632 	struct sk_buff_fclones *fclones;
633 
634 	switch (skb->fclone) {
635 	case SKB_FCLONE_UNAVAILABLE:
636 		kmem_cache_free(skbuff_head_cache, skb);
637 		return;
638 
639 	case SKB_FCLONE_ORIG:
640 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
641 
642 		/* We usually free the clone (TX completion) before original skb
643 		 * This test would have no chance to be true for the clone,
644 		 * while here, branch prediction will be good.
645 		 */
646 		if (refcount_read(&fclones->fclone_ref) == 1)
647 			goto fastpath;
648 		break;
649 
650 	default: /* SKB_FCLONE_CLONE */
651 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
652 		break;
653 	}
654 	if (!refcount_dec_and_test(&fclones->fclone_ref))
655 		return;
656 fastpath:
657 	kmem_cache_free(skbuff_fclone_cache, fclones);
658 }
659 
skb_release_head_state(struct sk_buff * skb)660 void skb_release_head_state(struct sk_buff *skb)
661 {
662 	skb_dst_drop(skb);
663 	if (skb->destructor) {
664 		WARN_ON(in_irq());
665 		skb->destructor(skb);
666 	}
667 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
668 	nf_conntrack_put(skb_nfct(skb));
669 #endif
670 	skb_ext_put(skb);
671 }
672 
673 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)674 static void skb_release_all(struct sk_buff *skb)
675 {
676 	skb_release_head_state(skb);
677 	if (likely(skb->head))
678 		skb_release_data(skb);
679 }
680 
681 /**
682  *	__kfree_skb - private function
683  *	@skb: buffer
684  *
685  *	Free an sk_buff. Release anything attached to the buffer.
686  *	Clean the state. This is an internal helper function. Users should
687  *	always call kfree_skb
688  */
689 
__kfree_skb(struct sk_buff * skb)690 void __kfree_skb(struct sk_buff *skb)
691 {
692 	skb_release_all(skb);
693 	kfree_skbmem(skb);
694 }
695 EXPORT_SYMBOL(__kfree_skb);
696 
697 /**
698  *	kfree_skb - free an sk_buff
699  *	@skb: buffer to free
700  *
701  *	Drop a reference to the buffer and free it if the usage count has
702  *	hit zero.
703  */
kfree_skb(struct sk_buff * skb)704 void kfree_skb(struct sk_buff *skb)
705 {
706 	if (!skb_unref(skb))
707 		return;
708 
709 	trace_kfree_skb(skb, __builtin_return_address(0));
710 	__kfree_skb(skb);
711 }
712 EXPORT_SYMBOL(kfree_skb);
713 
kfree_skb_list(struct sk_buff * segs)714 void kfree_skb_list(struct sk_buff *segs)
715 {
716 	while (segs) {
717 		struct sk_buff *next = segs->next;
718 
719 		kfree_skb(segs);
720 		segs = next;
721 	}
722 }
723 EXPORT_SYMBOL(kfree_skb_list);
724 
725 /* Dump skb information and contents.
726  *
727  * Must only be called from net_ratelimit()-ed paths.
728  *
729  * Dumps whole packets if full_pkt, only headers otherwise.
730  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)731 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
732 {
733 	struct skb_shared_info *sh = skb_shinfo(skb);
734 	struct net_device *dev = skb->dev;
735 	struct sock *sk = skb->sk;
736 	struct sk_buff *list_skb;
737 	bool has_mac, has_trans;
738 	int headroom, tailroom;
739 	int i, len, seg_len;
740 
741 	if (full_pkt)
742 		len = skb->len;
743 	else
744 		len = min_t(int, skb->len, MAX_HEADER + 128);
745 
746 	headroom = skb_headroom(skb);
747 	tailroom = skb_tailroom(skb);
748 
749 	has_mac = skb_mac_header_was_set(skb);
750 	has_trans = skb_transport_header_was_set(skb);
751 
752 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
753 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
754 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
755 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
756 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
757 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
758 	       has_mac ? skb->mac_header : -1,
759 	       has_mac ? skb_mac_header_len(skb) : -1,
760 	       skb->network_header,
761 	       has_trans ? skb_network_header_len(skb) : -1,
762 	       has_trans ? skb->transport_header : -1,
763 	       sh->tx_flags, sh->nr_frags,
764 	       sh->gso_size, sh->gso_type, sh->gso_segs,
765 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
766 	       skb->csum_valid, skb->csum_level,
767 	       skb->hash, skb->sw_hash, skb->l4_hash,
768 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
769 
770 	if (dev)
771 		printk("%sdev name=%s feat=%pNF\n",
772 		       level, dev->name, &dev->features);
773 	if (sk)
774 		printk("%ssk family=%hu type=%u proto=%u\n",
775 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
776 
777 	if (full_pkt && headroom)
778 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
779 			       16, 1, skb->head, headroom, false);
780 
781 	seg_len = min_t(int, skb_headlen(skb), len);
782 	if (seg_len)
783 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
784 			       16, 1, skb->data, seg_len, false);
785 	len -= seg_len;
786 
787 	if (full_pkt && tailroom)
788 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
789 			       16, 1, skb_tail_pointer(skb), tailroom, false);
790 
791 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
792 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
793 		u32 p_off, p_len, copied;
794 		struct page *p;
795 		u8 *vaddr;
796 
797 		skb_frag_foreach_page(frag, skb_frag_off(frag),
798 				      skb_frag_size(frag), p, p_off, p_len,
799 				      copied) {
800 			seg_len = min_t(int, p_len, len);
801 			vaddr = kmap_atomic(p);
802 			print_hex_dump(level, "skb frag:     ",
803 				       DUMP_PREFIX_OFFSET,
804 				       16, 1, vaddr + p_off, seg_len, false);
805 			kunmap_atomic(vaddr);
806 			len -= seg_len;
807 			if (!len)
808 				break;
809 		}
810 	}
811 
812 	if (full_pkt && skb_has_frag_list(skb)) {
813 		printk("skb fraglist:\n");
814 		skb_walk_frags(skb, list_skb)
815 			skb_dump(level, list_skb, true);
816 	}
817 }
818 EXPORT_SYMBOL(skb_dump);
819 
820 /**
821  *	skb_tx_error - report an sk_buff xmit error
822  *	@skb: buffer that triggered an error
823  *
824  *	Report xmit error if a device callback is tracking this skb.
825  *	skb must be freed afterwards.
826  */
skb_tx_error(struct sk_buff * skb)827 void skb_tx_error(struct sk_buff *skb)
828 {
829 	skb_zcopy_clear(skb, true);
830 }
831 EXPORT_SYMBOL(skb_tx_error);
832 
833 #ifdef CONFIG_TRACEPOINTS
834 /**
835  *	consume_skb - free an skbuff
836  *	@skb: buffer to free
837  *
838  *	Drop a ref to the buffer and free it if the usage count has hit zero
839  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
840  *	is being dropped after a failure and notes that
841  */
consume_skb(struct sk_buff * skb)842 void consume_skb(struct sk_buff *skb)
843 {
844 	if (!skb_unref(skb))
845 		return;
846 
847 	trace_consume_skb(skb);
848 	__kfree_skb(skb);
849 }
850 EXPORT_SYMBOL(consume_skb);
851 #endif
852 
853 /**
854  *	consume_stateless_skb - free an skbuff, assuming it is stateless
855  *	@skb: buffer to free
856  *
857  *	Alike consume_skb(), but this variant assumes that this is the last
858  *	skb reference and all the head states have been already dropped
859  */
__consume_stateless_skb(struct sk_buff * skb)860 void __consume_stateless_skb(struct sk_buff *skb)
861 {
862 	trace_consume_skb(skb);
863 	skb_release_data(skb);
864 	kfree_skbmem(skb);
865 }
866 
__kfree_skb_flush(void)867 void __kfree_skb_flush(void)
868 {
869 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
870 
871 	/* flush skb_cache if containing objects */
872 	if (nc->skb_count) {
873 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
874 				     nc->skb_cache);
875 		nc->skb_count = 0;
876 	}
877 }
878 
_kfree_skb_defer(struct sk_buff * skb)879 static inline void _kfree_skb_defer(struct sk_buff *skb)
880 {
881 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
882 
883 	/* drop skb->head and call any destructors for packet */
884 	skb_release_all(skb);
885 
886 	/* record skb to CPU local list */
887 	nc->skb_cache[nc->skb_count++] = skb;
888 
889 #ifdef CONFIG_SLUB
890 	/* SLUB writes into objects when freeing */
891 	prefetchw(skb);
892 #endif
893 
894 	/* flush skb_cache if it is filled */
895 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
896 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
897 				     nc->skb_cache);
898 		nc->skb_count = 0;
899 	}
900 }
__kfree_skb_defer(struct sk_buff * skb)901 void __kfree_skb_defer(struct sk_buff *skb)
902 {
903 	_kfree_skb_defer(skb);
904 }
905 
napi_consume_skb(struct sk_buff * skb,int budget)906 void napi_consume_skb(struct sk_buff *skb, int budget)
907 {
908 	/* Zero budget indicate non-NAPI context called us, like netpoll */
909 	if (unlikely(!budget)) {
910 		dev_consume_skb_any(skb);
911 		return;
912 	}
913 
914 	if (!skb_unref(skb))
915 		return;
916 
917 	/* if reaching here SKB is ready to free */
918 	trace_consume_skb(skb);
919 
920 	/* if SKB is a clone, don't handle this case */
921 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
922 		__kfree_skb(skb);
923 		return;
924 	}
925 
926 	_kfree_skb_defer(skb);
927 }
928 EXPORT_SYMBOL(napi_consume_skb);
929 
930 /* Make sure a field is enclosed inside headers_start/headers_end section */
931 #define CHECK_SKB_FIELD(field) \
932 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
933 		     offsetof(struct sk_buff, headers_start));	\
934 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
935 		     offsetof(struct sk_buff, headers_end));	\
936 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)937 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
938 {
939 	new->tstamp		= old->tstamp;
940 	/* We do not copy old->sk */
941 	new->dev		= old->dev;
942 	memcpy(new->cb, old->cb, sizeof(old->cb));
943 	skb_dst_copy(new, old);
944 	__skb_ext_copy(new, old);
945 	__nf_copy(new, old, false);
946 
947 	/* Note : this field could be in headers_start/headers_end section
948 	 * It is not yet because we do not want to have a 16 bit hole
949 	 */
950 	new->queue_mapping = old->queue_mapping;
951 
952 	memcpy(&new->headers_start, &old->headers_start,
953 	       offsetof(struct sk_buff, headers_end) -
954 	       offsetof(struct sk_buff, headers_start));
955 	CHECK_SKB_FIELD(protocol);
956 	CHECK_SKB_FIELD(csum);
957 	CHECK_SKB_FIELD(hash);
958 	CHECK_SKB_FIELD(priority);
959 	CHECK_SKB_FIELD(skb_iif);
960 	CHECK_SKB_FIELD(vlan_proto);
961 	CHECK_SKB_FIELD(vlan_tci);
962 	CHECK_SKB_FIELD(transport_header);
963 	CHECK_SKB_FIELD(network_header);
964 	CHECK_SKB_FIELD(mac_header);
965 	CHECK_SKB_FIELD(inner_protocol);
966 	CHECK_SKB_FIELD(inner_transport_header);
967 	CHECK_SKB_FIELD(inner_network_header);
968 	CHECK_SKB_FIELD(inner_mac_header);
969 	CHECK_SKB_FIELD(mark);
970 #ifdef CONFIG_NETWORK_SECMARK
971 	CHECK_SKB_FIELD(secmark);
972 #endif
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 	CHECK_SKB_FIELD(napi_id);
975 #endif
976 #ifdef CONFIG_XPS
977 	CHECK_SKB_FIELD(sender_cpu);
978 #endif
979 #ifdef CONFIG_NET_SCHED
980 	CHECK_SKB_FIELD(tc_index);
981 #endif
982 
983 }
984 
985 /*
986  * You should not add any new code to this function.  Add it to
987  * __copy_skb_header above instead.
988  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)989 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
990 {
991 #define C(x) n->x = skb->x
992 
993 	n->next = n->prev = NULL;
994 	n->sk = NULL;
995 	__copy_skb_header(n, skb);
996 
997 	C(len);
998 	C(data_len);
999 	C(mac_len);
1000 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1001 	n->cloned = 1;
1002 	n->nohdr = 0;
1003 	n->peeked = 0;
1004 	C(pfmemalloc);
1005 	n->destructor = NULL;
1006 	C(tail);
1007 	C(end);
1008 	C(head);
1009 	C(head_frag);
1010 	C(data);
1011 	C(truesize);
1012 	refcount_set(&n->users, 1);
1013 
1014 	atomic_inc(&(skb_shinfo(skb)->dataref));
1015 	skb->cloned = 1;
1016 
1017 	return n;
1018 #undef C
1019 }
1020 
1021 /**
1022  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1023  * @first: first sk_buff of the msg
1024  */
alloc_skb_for_msg(struct sk_buff * first)1025 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1026 {
1027 	struct sk_buff *n;
1028 
1029 	n = alloc_skb(0, GFP_ATOMIC);
1030 	if (!n)
1031 		return NULL;
1032 
1033 	n->len = first->len;
1034 	n->data_len = first->len;
1035 	n->truesize = first->truesize;
1036 
1037 	skb_shinfo(n)->frag_list = first;
1038 
1039 	__copy_skb_header(n, first);
1040 	n->destructor = NULL;
1041 
1042 	return n;
1043 }
1044 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1045 
1046 /**
1047  *	skb_morph	-	morph one skb into another
1048  *	@dst: the skb to receive the contents
1049  *	@src: the skb to supply the contents
1050  *
1051  *	This is identical to skb_clone except that the target skb is
1052  *	supplied by the user.
1053  *
1054  *	The target skb is returned upon exit.
1055  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1057 {
1058 	skb_release_all(dst);
1059 	return __skb_clone(dst, src);
1060 }
1061 EXPORT_SYMBOL_GPL(skb_morph);
1062 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1063 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1064 {
1065 	unsigned long max_pg, num_pg, new_pg, old_pg;
1066 	struct user_struct *user;
1067 
1068 	if (capable(CAP_IPC_LOCK) || !size)
1069 		return 0;
1070 
1071 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1072 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1073 	user = mmp->user ? : current_user();
1074 
1075 	do {
1076 		old_pg = atomic_long_read(&user->locked_vm);
1077 		new_pg = old_pg + num_pg;
1078 		if (new_pg > max_pg)
1079 			return -ENOBUFS;
1080 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1081 		 old_pg);
1082 
1083 	if (!mmp->user) {
1084 		mmp->user = get_uid(user);
1085 		mmp->num_pg = num_pg;
1086 	} else {
1087 		mmp->num_pg += num_pg;
1088 	}
1089 
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1093 
mm_unaccount_pinned_pages(struct mmpin * mmp)1094 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1095 {
1096 	if (mmp->user) {
1097 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1098 		free_uid(mmp->user);
1099 	}
1100 }
1101 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1102 
sock_zerocopy_alloc(struct sock * sk,size_t size)1103 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1104 {
1105 	struct ubuf_info *uarg;
1106 	struct sk_buff *skb;
1107 
1108 	WARN_ON_ONCE(!in_task());
1109 
1110 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1111 	if (!skb)
1112 		return NULL;
1113 
1114 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1115 	uarg = (void *)skb->cb;
1116 	uarg->mmp.user = NULL;
1117 
1118 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1119 		kfree_skb(skb);
1120 		return NULL;
1121 	}
1122 
1123 	uarg->callback = sock_zerocopy_callback;
1124 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1125 	uarg->len = 1;
1126 	uarg->bytelen = size;
1127 	uarg->zerocopy = 1;
1128 	refcount_set(&uarg->refcnt, 1);
1129 	sock_hold(sk);
1130 
1131 	return uarg;
1132 }
1133 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1134 
skb_from_uarg(struct ubuf_info * uarg)1135 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1136 {
1137 	return container_of((void *)uarg, struct sk_buff, cb);
1138 }
1139 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1140 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1141 					struct ubuf_info *uarg)
1142 {
1143 	if (uarg) {
1144 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1145 		u32 bytelen, next;
1146 
1147 		/* realloc only when socket is locked (TCP, UDP cork),
1148 		 * so uarg->len and sk_zckey access is serialized
1149 		 */
1150 		if (!sock_owned_by_user(sk)) {
1151 			WARN_ON_ONCE(1);
1152 			return NULL;
1153 		}
1154 
1155 		bytelen = uarg->bytelen + size;
1156 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1157 			/* TCP can create new skb to attach new uarg */
1158 			if (sk->sk_type == SOCK_STREAM)
1159 				goto new_alloc;
1160 			return NULL;
1161 		}
1162 
1163 		next = (u32)atomic_read(&sk->sk_zckey);
1164 		if ((u32)(uarg->id + uarg->len) == next) {
1165 			if (mm_account_pinned_pages(&uarg->mmp, size))
1166 				return NULL;
1167 			uarg->len++;
1168 			uarg->bytelen = bytelen;
1169 			atomic_set(&sk->sk_zckey, ++next);
1170 
1171 			/* no extra ref when appending to datagram (MSG_MORE) */
1172 			if (sk->sk_type == SOCK_STREAM)
1173 				sock_zerocopy_get(uarg);
1174 
1175 			return uarg;
1176 		}
1177 	}
1178 
1179 new_alloc:
1180 	return sock_zerocopy_alloc(sk, size);
1181 }
1182 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1183 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1184 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1185 {
1186 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1187 	u32 old_lo, old_hi;
1188 	u64 sum_len;
1189 
1190 	old_lo = serr->ee.ee_info;
1191 	old_hi = serr->ee.ee_data;
1192 	sum_len = old_hi - old_lo + 1ULL + len;
1193 
1194 	if (sum_len >= (1ULL << 32))
1195 		return false;
1196 
1197 	if (lo != old_hi + 1)
1198 		return false;
1199 
1200 	serr->ee.ee_data += len;
1201 	return true;
1202 }
1203 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1204 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1205 {
1206 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1207 	struct sock_exterr_skb *serr;
1208 	struct sock *sk = skb->sk;
1209 	struct sk_buff_head *q;
1210 	unsigned long flags;
1211 	u32 lo, hi;
1212 	u16 len;
1213 
1214 	mm_unaccount_pinned_pages(&uarg->mmp);
1215 
1216 	/* if !len, there was only 1 call, and it was aborted
1217 	 * so do not queue a completion notification
1218 	 */
1219 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1220 		goto release;
1221 
1222 	len = uarg->len;
1223 	lo = uarg->id;
1224 	hi = uarg->id + len - 1;
1225 
1226 	serr = SKB_EXT_ERR(skb);
1227 	memset(serr, 0, sizeof(*serr));
1228 	serr->ee.ee_errno = 0;
1229 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1230 	serr->ee.ee_data = hi;
1231 	serr->ee.ee_info = lo;
1232 	if (!success)
1233 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1234 
1235 	q = &sk->sk_error_queue;
1236 	spin_lock_irqsave(&q->lock, flags);
1237 	tail = skb_peek_tail(q);
1238 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1239 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1240 		__skb_queue_tail(q, skb);
1241 		skb = NULL;
1242 	}
1243 	spin_unlock_irqrestore(&q->lock, flags);
1244 
1245 	sk->sk_error_report(sk);
1246 
1247 release:
1248 	consume_skb(skb);
1249 	sock_put(sk);
1250 }
1251 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1252 
sock_zerocopy_put(struct ubuf_info * uarg)1253 void sock_zerocopy_put(struct ubuf_info *uarg)
1254 {
1255 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1256 		if (uarg->callback)
1257 			uarg->callback(uarg, uarg->zerocopy);
1258 		else
1259 			consume_skb(skb_from_uarg(uarg));
1260 	}
1261 }
1262 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1263 
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1264 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1265 {
1266 	if (uarg) {
1267 		struct sock *sk = skb_from_uarg(uarg)->sk;
1268 
1269 		atomic_dec(&sk->sk_zckey);
1270 		uarg->len--;
1271 
1272 		if (have_uref)
1273 			sock_zerocopy_put(uarg);
1274 	}
1275 }
1276 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1277 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1278 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1279 {
1280 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1281 }
1282 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1283 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1284 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1285 			     struct msghdr *msg, int len,
1286 			     struct ubuf_info *uarg)
1287 {
1288 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1289 	struct iov_iter orig_iter = msg->msg_iter;
1290 	int err, orig_len = skb->len;
1291 
1292 	/* An skb can only point to one uarg. This edge case happens when
1293 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1294 	 */
1295 	if (orig_uarg && uarg != orig_uarg)
1296 		return -EEXIST;
1297 
1298 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1299 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1300 		struct sock *save_sk = skb->sk;
1301 
1302 		/* Streams do not free skb on error. Reset to prev state. */
1303 		msg->msg_iter = orig_iter;
1304 		skb->sk = sk;
1305 		___pskb_trim(skb, orig_len);
1306 		skb->sk = save_sk;
1307 		return err;
1308 	}
1309 
1310 	skb_zcopy_set(skb, uarg, NULL);
1311 	return skb->len - orig_len;
1312 }
1313 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1314 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1315 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1316 			      gfp_t gfp_mask)
1317 {
1318 	if (skb_zcopy(orig)) {
1319 		if (skb_zcopy(nskb)) {
1320 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1321 			if (!gfp_mask) {
1322 				WARN_ON_ONCE(1);
1323 				return -ENOMEM;
1324 			}
1325 			if (skb_uarg(nskb) == skb_uarg(orig))
1326 				return 0;
1327 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1328 				return -EIO;
1329 		}
1330 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1331 	}
1332 	return 0;
1333 }
1334 
1335 /**
1336  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1337  *	@skb: the skb to modify
1338  *	@gfp_mask: allocation priority
1339  *
1340  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1341  *	It will copy all frags into kernel and drop the reference
1342  *	to userspace pages.
1343  *
1344  *	If this function is called from an interrupt gfp_mask() must be
1345  *	%GFP_ATOMIC.
1346  *
1347  *	Returns 0 on success or a negative error code on failure
1348  *	to allocate kernel memory to copy to.
1349  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1350 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1351 {
1352 	int num_frags = skb_shinfo(skb)->nr_frags;
1353 	struct page *page, *head = NULL;
1354 	int i, new_frags;
1355 	u32 d_off;
1356 
1357 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1358 		return -EINVAL;
1359 
1360 	if (!num_frags)
1361 		goto release;
1362 
1363 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 	for (i = 0; i < new_frags; i++) {
1365 		page = alloc_page(gfp_mask);
1366 		if (!page) {
1367 			while (head) {
1368 				struct page *next = (struct page *)page_private(head);
1369 				put_page(head);
1370 				head = next;
1371 			}
1372 			return -ENOMEM;
1373 		}
1374 		set_page_private(page, (unsigned long)head);
1375 		head = page;
1376 	}
1377 
1378 	page = head;
1379 	d_off = 0;
1380 	for (i = 0; i < num_frags; i++) {
1381 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1382 		u32 p_off, p_len, copied;
1383 		struct page *p;
1384 		u8 *vaddr;
1385 
1386 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1387 				      p, p_off, p_len, copied) {
1388 			u32 copy, done = 0;
1389 			vaddr = kmap_atomic(p);
1390 
1391 			while (done < p_len) {
1392 				if (d_off == PAGE_SIZE) {
1393 					d_off = 0;
1394 					page = (struct page *)page_private(page);
1395 				}
1396 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1397 				memcpy(page_address(page) + d_off,
1398 				       vaddr + p_off + done, copy);
1399 				done += copy;
1400 				d_off += copy;
1401 			}
1402 			kunmap_atomic(vaddr);
1403 		}
1404 	}
1405 
1406 	/* skb frags release userspace buffers */
1407 	for (i = 0; i < num_frags; i++)
1408 		skb_frag_unref(skb, i);
1409 
1410 	/* skb frags point to kernel buffers */
1411 	for (i = 0; i < new_frags - 1; i++) {
1412 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1413 		head = (struct page *)page_private(head);
1414 	}
1415 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1416 	skb_shinfo(skb)->nr_frags = new_frags;
1417 
1418 release:
1419 	skb_zcopy_clear(skb, false);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1423 
1424 /**
1425  *	skb_clone	-	duplicate an sk_buff
1426  *	@skb: buffer to clone
1427  *	@gfp_mask: allocation priority
1428  *
1429  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1430  *	copies share the same packet data but not structure. The new
1431  *	buffer has a reference count of 1. If the allocation fails the
1432  *	function returns %NULL otherwise the new buffer is returned.
1433  *
1434  *	If this function is called from an interrupt gfp_mask() must be
1435  *	%GFP_ATOMIC.
1436  */
1437 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1438 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1439 {
1440 	struct sk_buff_fclones *fclones = container_of(skb,
1441 						       struct sk_buff_fclones,
1442 						       skb1);
1443 	struct sk_buff *n;
1444 
1445 	if (skb_orphan_frags(skb, gfp_mask))
1446 		return NULL;
1447 
1448 	if (skb->fclone == SKB_FCLONE_ORIG &&
1449 	    refcount_read(&fclones->fclone_ref) == 1) {
1450 		n = &fclones->skb2;
1451 		refcount_set(&fclones->fclone_ref, 2);
1452 	} else {
1453 		if (skb_pfmemalloc(skb))
1454 			gfp_mask |= __GFP_MEMALLOC;
1455 
1456 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1457 		if (!n)
1458 			return NULL;
1459 
1460 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1461 	}
1462 
1463 	return __skb_clone(n, skb);
1464 }
1465 EXPORT_SYMBOL(skb_clone);
1466 
skb_headers_offset_update(struct sk_buff * skb,int off)1467 void skb_headers_offset_update(struct sk_buff *skb, int off)
1468 {
1469 	/* Only adjust this if it actually is csum_start rather than csum */
1470 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1471 		skb->csum_start += off;
1472 	/* {transport,network,mac}_header and tail are relative to skb->head */
1473 	skb->transport_header += off;
1474 	skb->network_header   += off;
1475 	if (skb_mac_header_was_set(skb))
1476 		skb->mac_header += off;
1477 	skb->inner_transport_header += off;
1478 	skb->inner_network_header += off;
1479 	skb->inner_mac_header += off;
1480 }
1481 EXPORT_SYMBOL(skb_headers_offset_update);
1482 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1484 {
1485 	__copy_skb_header(new, old);
1486 
1487 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1488 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1489 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1490 }
1491 EXPORT_SYMBOL(skb_copy_header);
1492 
skb_alloc_rx_flag(const struct sk_buff * skb)1493 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1494 {
1495 	if (skb_pfmemalloc(skb))
1496 		return SKB_ALLOC_RX;
1497 	return 0;
1498 }
1499 
1500 /**
1501  *	skb_copy	-	create private copy of an sk_buff
1502  *	@skb: buffer to copy
1503  *	@gfp_mask: allocation priority
1504  *
1505  *	Make a copy of both an &sk_buff and its data. This is used when the
1506  *	caller wishes to modify the data and needs a private copy of the
1507  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1508  *	on success. The returned buffer has a reference count of 1.
1509  *
1510  *	As by-product this function converts non-linear &sk_buff to linear
1511  *	one, so that &sk_buff becomes completely private and caller is allowed
1512  *	to modify all the data of returned buffer. This means that this
1513  *	function is not recommended for use in circumstances when only
1514  *	header is going to be modified. Use pskb_copy() instead.
1515  */
1516 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1517 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1518 {
1519 	struct sk_buff *n;
1520 	unsigned int size;
1521 	int headerlen;
1522 
1523 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1524 		return NULL;
1525 
1526 	headerlen = skb_headroom(skb);
1527 	size = skb_end_offset(skb) + skb->data_len;
1528 	n = __alloc_skb(size, gfp_mask,
1529 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1530 	if (!n)
1531 		return NULL;
1532 
1533 	/* Set the data pointer */
1534 	skb_reserve(n, headerlen);
1535 	/* Set the tail pointer and length */
1536 	skb_put(n, skb->len);
1537 
1538 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1539 
1540 	skb_copy_header(n, skb);
1541 	return n;
1542 }
1543 EXPORT_SYMBOL(skb_copy);
1544 
1545 /**
1546  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1547  *	@skb: buffer to copy
1548  *	@headroom: headroom of new skb
1549  *	@gfp_mask: allocation priority
1550  *	@fclone: if true allocate the copy of the skb from the fclone
1551  *	cache instead of the head cache; it is recommended to set this
1552  *	to true for the cases where the copy will likely be cloned
1553  *
1554  *	Make a copy of both an &sk_buff and part of its data, located
1555  *	in header. Fragmented data remain shared. This is used when
1556  *	the caller wishes to modify only header of &sk_buff and needs
1557  *	private copy of the header to alter. Returns %NULL on failure
1558  *	or the pointer to the buffer on success.
1559  *	The returned buffer has a reference count of 1.
1560  */
1561 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1562 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1563 				   gfp_t gfp_mask, bool fclone)
1564 {
1565 	unsigned int size = skb_headlen(skb) + headroom;
1566 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1567 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1568 
1569 	if (!n)
1570 		goto out;
1571 
1572 	/* Set the data pointer */
1573 	skb_reserve(n, headroom);
1574 	/* Set the tail pointer and length */
1575 	skb_put(n, skb_headlen(skb));
1576 	/* Copy the bytes */
1577 	skb_copy_from_linear_data(skb, n->data, n->len);
1578 
1579 	n->truesize += skb->data_len;
1580 	n->data_len  = skb->data_len;
1581 	n->len	     = skb->len;
1582 
1583 	if (skb_shinfo(skb)->nr_frags) {
1584 		int i;
1585 
1586 		if (skb_orphan_frags(skb, gfp_mask) ||
1587 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1588 			kfree_skb(n);
1589 			n = NULL;
1590 			goto out;
1591 		}
1592 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1593 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1594 			skb_frag_ref(skb, i);
1595 		}
1596 		skb_shinfo(n)->nr_frags = i;
1597 	}
1598 
1599 	if (skb_has_frag_list(skb)) {
1600 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1601 		skb_clone_fraglist(n);
1602 	}
1603 
1604 	skb_copy_header(n, skb);
1605 out:
1606 	return n;
1607 }
1608 EXPORT_SYMBOL(__pskb_copy_fclone);
1609 
1610 /**
1611  *	pskb_expand_head - reallocate header of &sk_buff
1612  *	@skb: buffer to reallocate
1613  *	@nhead: room to add at head
1614  *	@ntail: room to add at tail
1615  *	@gfp_mask: allocation priority
1616  *
1617  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1618  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1619  *	reference count of 1. Returns zero in the case of success or error,
1620  *	if expansion failed. In the last case, &sk_buff is not changed.
1621  *
1622  *	All the pointers pointing into skb header may change and must be
1623  *	reloaded after call to this function.
1624  */
1625 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1626 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1627 		     gfp_t gfp_mask)
1628 {
1629 	int i, osize = skb_end_offset(skb);
1630 	int size = osize + nhead + ntail;
1631 	long off;
1632 	u8 *data;
1633 
1634 	BUG_ON(nhead < 0);
1635 
1636 	BUG_ON(skb_shared(skb));
1637 
1638 	size = SKB_DATA_ALIGN(size);
1639 
1640 	if (skb_pfmemalloc(skb))
1641 		gfp_mask |= __GFP_MEMALLOC;
1642 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1643 			       gfp_mask, NUMA_NO_NODE, NULL);
1644 	if (!data)
1645 		goto nodata;
1646 	size = SKB_WITH_OVERHEAD(ksize(data));
1647 
1648 	/* Copy only real data... and, alas, header. This should be
1649 	 * optimized for the cases when header is void.
1650 	 */
1651 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1652 
1653 	memcpy((struct skb_shared_info *)(data + size),
1654 	       skb_shinfo(skb),
1655 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1656 
1657 	/*
1658 	 * if shinfo is shared we must drop the old head gracefully, but if it
1659 	 * is not we can just drop the old head and let the existing refcount
1660 	 * be since all we did is relocate the values
1661 	 */
1662 	if (skb_cloned(skb)) {
1663 		if (skb_orphan_frags(skb, gfp_mask))
1664 			goto nofrags;
1665 		if (skb_zcopy(skb))
1666 			refcount_inc(&skb_uarg(skb)->refcnt);
1667 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1668 			skb_frag_ref(skb, i);
1669 
1670 		if (skb_has_frag_list(skb))
1671 			skb_clone_fraglist(skb);
1672 
1673 		skb_release_data(skb);
1674 	} else {
1675 		skb_free_head(skb);
1676 	}
1677 	off = (data + nhead) - skb->head;
1678 
1679 	skb->head     = data;
1680 	skb->head_frag = 0;
1681 	skb->data    += off;
1682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1683 	skb->end      = size;
1684 	off           = nhead;
1685 #else
1686 	skb->end      = skb->head + size;
1687 #endif
1688 	skb->tail	      += off;
1689 	skb_headers_offset_update(skb, nhead);
1690 	skb->cloned   = 0;
1691 	skb->hdr_len  = 0;
1692 	skb->nohdr    = 0;
1693 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1694 
1695 	skb_metadata_clear(skb);
1696 
1697 	/* It is not generally safe to change skb->truesize.
1698 	 * For the moment, we really care of rx path, or
1699 	 * when skb is orphaned (not attached to a socket).
1700 	 */
1701 	if (!skb->sk || skb->destructor == sock_edemux)
1702 		skb->truesize += size - osize;
1703 
1704 	return 0;
1705 
1706 nofrags:
1707 	kfree(data);
1708 nodata:
1709 	return -ENOMEM;
1710 }
1711 EXPORT_SYMBOL(pskb_expand_head);
1712 
1713 /* Make private copy of skb with writable head and some headroom */
1714 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1715 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1716 {
1717 	struct sk_buff *skb2;
1718 	int delta = headroom - skb_headroom(skb);
1719 
1720 	if (delta <= 0)
1721 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1722 	else {
1723 		skb2 = skb_clone(skb, GFP_ATOMIC);
1724 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1725 					     GFP_ATOMIC)) {
1726 			kfree_skb(skb2);
1727 			skb2 = NULL;
1728 		}
1729 	}
1730 	return skb2;
1731 }
1732 EXPORT_SYMBOL(skb_realloc_headroom);
1733 
1734 /**
1735  *	skb_copy_expand	-	copy and expand sk_buff
1736  *	@skb: buffer to copy
1737  *	@newheadroom: new free bytes at head
1738  *	@newtailroom: new free bytes at tail
1739  *	@gfp_mask: allocation priority
1740  *
1741  *	Make a copy of both an &sk_buff and its data and while doing so
1742  *	allocate additional space.
1743  *
1744  *	This is used when the caller wishes to modify the data and needs a
1745  *	private copy of the data to alter as well as more space for new fields.
1746  *	Returns %NULL on failure or the pointer to the buffer
1747  *	on success. The returned buffer has a reference count of 1.
1748  *
1749  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1750  *	is called from an interrupt.
1751  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1752 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1753 				int newheadroom, int newtailroom,
1754 				gfp_t gfp_mask)
1755 {
1756 	/*
1757 	 *	Allocate the copy buffer
1758 	 */
1759 	int head_copy_len, head_copy_off;
1760 	struct sk_buff *n;
1761 	int oldheadroom;
1762 
1763 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1764 		return NULL;
1765 
1766 	oldheadroom = skb_headroom(skb);
1767 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
1768 			gfp_mask, skb_alloc_rx_flag(skb),
1769 			NUMA_NO_NODE);
1770 	if (!n)
1771 		return NULL;
1772 
1773 	skb_reserve(n, newheadroom);
1774 
1775 	/* Set the tail pointer and length */
1776 	skb_put(n, skb->len);
1777 
1778 	head_copy_len = oldheadroom;
1779 	head_copy_off = 0;
1780 	if (newheadroom <= head_copy_len)
1781 		head_copy_len = newheadroom;
1782 	else
1783 		head_copy_off = newheadroom - head_copy_len;
1784 
1785 	/* Copy the linear header and data. */
1786 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1787 			     skb->len + head_copy_len));
1788 
1789 	skb_copy_header(n, skb);
1790 
1791 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1792 
1793 	return n;
1794 }
1795 EXPORT_SYMBOL(skb_copy_expand);
1796 
1797 /**
1798  *	__skb_pad		-	zero pad the tail of an skb
1799  *	@skb: buffer to pad
1800  *	@pad: space to pad
1801  *	@free_on_error: free buffer on error
1802  *
1803  *	Ensure that a buffer is followed by a padding area that is zero
1804  *	filled. Used by network drivers which may DMA or transfer data
1805  *	beyond the buffer end onto the wire.
1806  *
1807  *	May return error in out of memory cases. The skb is freed on error
1808  *	if @free_on_error is true.
1809  */
1810 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1811 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1812 {
1813 	int err;
1814 	int ntail;
1815 
1816 	/* If the skbuff is non linear tailroom is always zero.. */
1817 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1818 		memset(skb->data+skb->len, 0, pad);
1819 		return 0;
1820 	}
1821 
1822 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1823 	if (likely(skb_cloned(skb) || ntail > 0)) {
1824 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1825 		if (unlikely(err))
1826 			goto free_skb;
1827 	}
1828 
1829 	/* FIXME: The use of this function with non-linear skb's really needs
1830 	 * to be audited.
1831 	 */
1832 	err = skb_linearize(skb);
1833 	if (unlikely(err))
1834 		goto free_skb;
1835 
1836 	memset(skb->data + skb->len, 0, pad);
1837 	return 0;
1838 
1839 free_skb:
1840 	if (free_on_error)
1841 		kfree_skb(skb);
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(__skb_pad);
1845 
1846 /**
1847  *	pskb_put - add data to the tail of a potentially fragmented buffer
1848  *	@skb: start of the buffer to use
1849  *	@tail: tail fragment of the buffer to use
1850  *	@len: amount of data to add
1851  *
1852  *	This function extends the used data area of the potentially
1853  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1854  *	@skb itself. If this would exceed the total buffer size the kernel
1855  *	will panic. A pointer to the first byte of the extra data is
1856  *	returned.
1857  */
1858 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1859 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1860 {
1861 	if (tail != skb) {
1862 		skb->data_len += len;
1863 		skb->len += len;
1864 	}
1865 	return skb_put(tail, len);
1866 }
1867 EXPORT_SYMBOL_GPL(pskb_put);
1868 
1869 /**
1870  *	skb_put - add data to a buffer
1871  *	@skb: buffer to use
1872  *	@len: amount of data to add
1873  *
1874  *	This function extends the used data area of the buffer. If this would
1875  *	exceed the total buffer size the kernel will panic. A pointer to the
1876  *	first byte of the extra data is returned.
1877  */
skb_put(struct sk_buff * skb,unsigned int len)1878 void *skb_put(struct sk_buff *skb, unsigned int len)
1879 {
1880 	void *tmp = skb_tail_pointer(skb);
1881 	SKB_LINEAR_ASSERT(skb);
1882 	skb->tail += len;
1883 	skb->len  += len;
1884 	if (unlikely(skb->tail > skb->end))
1885 		skb_over_panic(skb, len, __builtin_return_address(0));
1886 	return tmp;
1887 }
1888 EXPORT_SYMBOL(skb_put);
1889 
1890 /**
1891  *	skb_push - add data to the start of a buffer
1892  *	@skb: buffer to use
1893  *	@len: amount of data to add
1894  *
1895  *	This function extends the used data area of the buffer at the buffer
1896  *	start. If this would exceed the total buffer headroom the kernel will
1897  *	panic. A pointer to the first byte of the extra data is returned.
1898  */
skb_push(struct sk_buff * skb,unsigned int len)1899 void *skb_push(struct sk_buff *skb, unsigned int len)
1900 {
1901 	skb->data -= len;
1902 	skb->len  += len;
1903 	if (unlikely(skb->data < skb->head))
1904 		skb_under_panic(skb, len, __builtin_return_address(0));
1905 	return skb->data;
1906 }
1907 EXPORT_SYMBOL(skb_push);
1908 
1909 /**
1910  *	skb_pull - remove data from the start of a buffer
1911  *	@skb: buffer to use
1912  *	@len: amount of data to remove
1913  *
1914  *	This function removes data from the start of a buffer, returning
1915  *	the memory to the headroom. A pointer to the next data in the buffer
1916  *	is returned. Once the data has been pulled future pushes will overwrite
1917  *	the old data.
1918  */
skb_pull(struct sk_buff * skb,unsigned int len)1919 void *skb_pull(struct sk_buff *skb, unsigned int len)
1920 {
1921 	return skb_pull_inline(skb, len);
1922 }
1923 EXPORT_SYMBOL(skb_pull);
1924 
1925 /**
1926  *	skb_pull_data - remove data from the start of a buffer returning its
1927  *	original position.
1928  *	@skb: buffer to use
1929  *	@len: amount of data to remove
1930  *
1931  *	This function removes data from the start of a buffer, returning
1932  *	the memory to the headroom. A pointer to the original data in the buffer
1933  *	is returned after checking if there is enough data to pull. Once the
1934  *	data has been pulled future pushes will overwrite the old data.
1935  */
skb_pull_data(struct sk_buff * skb,size_t len)1936 void *skb_pull_data(struct sk_buff *skb, size_t len)
1937 {
1938 	void *data = skb->data;
1939 
1940 	if (skb->len < len)
1941 		return NULL;
1942 
1943 	skb_pull(skb, len);
1944 
1945 	return data;
1946 }
1947 EXPORT_SYMBOL(skb_pull_data);
1948 
1949 /**
1950  *	skb_trim - remove end from a buffer
1951  *	@skb: buffer to alter
1952  *	@len: new length
1953  *
1954  *	Cut the length of a buffer down by removing data from the tail. If
1955  *	the buffer is already under the length specified it is not modified.
1956  *	The skb must be linear.
1957  */
skb_trim(struct sk_buff * skb,unsigned int len)1958 void skb_trim(struct sk_buff *skb, unsigned int len)
1959 {
1960 	if (skb->len > len)
1961 		__skb_trim(skb, len);
1962 }
1963 EXPORT_SYMBOL(skb_trim);
1964 
1965 /* Trims skb to length len. It can change skb pointers.
1966  */
1967 
___pskb_trim(struct sk_buff * skb,unsigned int len)1968 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1969 {
1970 	struct sk_buff **fragp;
1971 	struct sk_buff *frag;
1972 	int offset = skb_headlen(skb);
1973 	int nfrags = skb_shinfo(skb)->nr_frags;
1974 	int i;
1975 	int err;
1976 
1977 	if (skb_cloned(skb) &&
1978 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1979 		return err;
1980 
1981 	i = 0;
1982 	if (offset >= len)
1983 		goto drop_pages;
1984 
1985 	for (; i < nfrags; i++) {
1986 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1987 
1988 		if (end < len) {
1989 			offset = end;
1990 			continue;
1991 		}
1992 
1993 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1994 
1995 drop_pages:
1996 		skb_shinfo(skb)->nr_frags = i;
1997 
1998 		for (; i < nfrags; i++)
1999 			skb_frag_unref(skb, i);
2000 
2001 		if (skb_has_frag_list(skb))
2002 			skb_drop_fraglist(skb);
2003 		goto done;
2004 	}
2005 
2006 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2007 	     fragp = &frag->next) {
2008 		int end = offset + frag->len;
2009 
2010 		if (skb_shared(frag)) {
2011 			struct sk_buff *nfrag;
2012 
2013 			nfrag = skb_clone(frag, GFP_ATOMIC);
2014 			if (unlikely(!nfrag))
2015 				return -ENOMEM;
2016 
2017 			nfrag->next = frag->next;
2018 			consume_skb(frag);
2019 			frag = nfrag;
2020 			*fragp = frag;
2021 		}
2022 
2023 		if (end < len) {
2024 			offset = end;
2025 			continue;
2026 		}
2027 
2028 		if (end > len &&
2029 		    unlikely((err = pskb_trim(frag, len - offset))))
2030 			return err;
2031 
2032 		if (frag->next)
2033 			skb_drop_list(&frag->next);
2034 		break;
2035 	}
2036 
2037 done:
2038 	if (len > skb_headlen(skb)) {
2039 		skb->data_len -= skb->len - len;
2040 		skb->len       = len;
2041 	} else {
2042 		skb->len       = len;
2043 		skb->data_len  = 0;
2044 		skb_set_tail_pointer(skb, len);
2045 	}
2046 
2047 	if (!skb->sk || skb->destructor == sock_edemux)
2048 		skb_condense(skb);
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL(___pskb_trim);
2052 
2053 /* Note : use pskb_trim_rcsum() instead of calling this directly
2054  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2055 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2056 {
2057 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2058 		int delta = skb->len - len;
2059 
2060 		skb->csum = csum_block_sub(skb->csum,
2061 					   skb_checksum(skb, len, delta, 0),
2062 					   len);
2063 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2064 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2065 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2066 
2067 		if (offset + sizeof(__sum16) > hdlen)
2068 			return -EINVAL;
2069 	}
2070 	return __pskb_trim(skb, len);
2071 }
2072 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2073 
2074 /**
2075  *	__pskb_pull_tail - advance tail of skb header
2076  *	@skb: buffer to reallocate
2077  *	@delta: number of bytes to advance tail
2078  *
2079  *	The function makes a sense only on a fragmented &sk_buff,
2080  *	it expands header moving its tail forward and copying necessary
2081  *	data from fragmented part.
2082  *
2083  *	&sk_buff MUST have reference count of 1.
2084  *
2085  *	Returns %NULL (and &sk_buff does not change) if pull failed
2086  *	or value of new tail of skb in the case of success.
2087  *
2088  *	All the pointers pointing into skb header may change and must be
2089  *	reloaded after call to this function.
2090  */
2091 
2092 /* Moves tail of skb head forward, copying data from fragmented part,
2093  * when it is necessary.
2094  * 1. It may fail due to malloc failure.
2095  * 2. It may change skb pointers.
2096  *
2097  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2098  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2099 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2100 {
2101 	/* If skb has not enough free space at tail, get new one
2102 	 * plus 128 bytes for future expansions. If we have enough
2103 	 * room at tail, reallocate without expansion only if skb is cloned.
2104 	 */
2105 	int i, k, eat = (skb->tail + delta) - skb->end;
2106 
2107 	if (eat > 0 || skb_cloned(skb)) {
2108 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2109 				     GFP_ATOMIC))
2110 			return NULL;
2111 	}
2112 
2113 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2114 			     skb_tail_pointer(skb), delta));
2115 
2116 	/* Optimization: no fragments, no reasons to preestimate
2117 	 * size of pulled pages. Superb.
2118 	 */
2119 	if (!skb_has_frag_list(skb))
2120 		goto pull_pages;
2121 
2122 	/* Estimate size of pulled pages. */
2123 	eat = delta;
2124 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2125 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2126 
2127 		if (size >= eat)
2128 			goto pull_pages;
2129 		eat -= size;
2130 	}
2131 
2132 	/* If we need update frag list, we are in troubles.
2133 	 * Certainly, it is possible to add an offset to skb data,
2134 	 * but taking into account that pulling is expected to
2135 	 * be very rare operation, it is worth to fight against
2136 	 * further bloating skb head and crucify ourselves here instead.
2137 	 * Pure masohism, indeed. 8)8)
2138 	 */
2139 	if (eat) {
2140 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2141 		struct sk_buff *clone = NULL;
2142 		struct sk_buff *insp = NULL;
2143 
2144 		do {
2145 			if (list->len <= eat) {
2146 				/* Eaten as whole. */
2147 				eat -= list->len;
2148 				list = list->next;
2149 				insp = list;
2150 			} else {
2151 				/* Eaten partially. */
2152 				if (skb_is_gso(skb) && !list->head_frag &&
2153 				    skb_headlen(list))
2154 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2155 
2156 				if (skb_shared(list)) {
2157 					/* Sucks! We need to fork list. :-( */
2158 					clone = skb_clone(list, GFP_ATOMIC);
2159 					if (!clone)
2160 						return NULL;
2161 					insp = list->next;
2162 					list = clone;
2163 				} else {
2164 					/* This may be pulled without
2165 					 * problems. */
2166 					insp = list;
2167 				}
2168 				if (!pskb_pull(list, eat)) {
2169 					kfree_skb(clone);
2170 					return NULL;
2171 				}
2172 				break;
2173 			}
2174 		} while (eat);
2175 
2176 		/* Free pulled out fragments. */
2177 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2178 			skb_shinfo(skb)->frag_list = list->next;
2179 			consume_skb(list);
2180 		}
2181 		/* And insert new clone at head. */
2182 		if (clone) {
2183 			clone->next = list;
2184 			skb_shinfo(skb)->frag_list = clone;
2185 		}
2186 	}
2187 	/* Success! Now we may commit changes to skb data. */
2188 
2189 pull_pages:
2190 	eat = delta;
2191 	k = 0;
2192 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2193 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2194 
2195 		if (size <= eat) {
2196 			skb_frag_unref(skb, i);
2197 			eat -= size;
2198 		} else {
2199 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2200 
2201 			*frag = skb_shinfo(skb)->frags[i];
2202 			if (eat) {
2203 				skb_frag_off_add(frag, eat);
2204 				skb_frag_size_sub(frag, eat);
2205 				if (!i)
2206 					goto end;
2207 				eat = 0;
2208 			}
2209 			k++;
2210 		}
2211 	}
2212 	skb_shinfo(skb)->nr_frags = k;
2213 
2214 end:
2215 	skb->tail     += delta;
2216 	skb->data_len -= delta;
2217 
2218 	if (!skb->data_len)
2219 		skb_zcopy_clear(skb, false);
2220 
2221 	return skb_tail_pointer(skb);
2222 }
2223 EXPORT_SYMBOL(__pskb_pull_tail);
2224 
2225 /**
2226  *	skb_copy_bits - copy bits from skb to kernel buffer
2227  *	@skb: source skb
2228  *	@offset: offset in source
2229  *	@to: destination buffer
2230  *	@len: number of bytes to copy
2231  *
2232  *	Copy the specified number of bytes from the source skb to the
2233  *	destination buffer.
2234  *
2235  *	CAUTION ! :
2236  *		If its prototype is ever changed,
2237  *		check arch/{*}/net/{*}.S files,
2238  *		since it is called from BPF assembly code.
2239  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2240 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2241 {
2242 	int start = skb_headlen(skb);
2243 	struct sk_buff *frag_iter;
2244 	int i, copy;
2245 
2246 	if (offset > (int)skb->len - len)
2247 		goto fault;
2248 
2249 	/* Copy header. */
2250 	if ((copy = start - offset) > 0) {
2251 		if (copy > len)
2252 			copy = len;
2253 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2254 		if ((len -= copy) == 0)
2255 			return 0;
2256 		offset += copy;
2257 		to     += copy;
2258 	}
2259 
2260 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2261 		int end;
2262 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2263 
2264 		WARN_ON(start > offset + len);
2265 
2266 		end = start + skb_frag_size(f);
2267 		if ((copy = end - offset) > 0) {
2268 			u32 p_off, p_len, copied;
2269 			struct page *p;
2270 			u8 *vaddr;
2271 
2272 			if (copy > len)
2273 				copy = len;
2274 
2275 			skb_frag_foreach_page(f,
2276 					      skb_frag_off(f) + offset - start,
2277 					      copy, p, p_off, p_len, copied) {
2278 				vaddr = kmap_atomic(p);
2279 				memcpy(to + copied, vaddr + p_off, p_len);
2280 				kunmap_atomic(vaddr);
2281 			}
2282 
2283 			if ((len -= copy) == 0)
2284 				return 0;
2285 			offset += copy;
2286 			to     += copy;
2287 		}
2288 		start = end;
2289 	}
2290 
2291 	skb_walk_frags(skb, frag_iter) {
2292 		int end;
2293 
2294 		WARN_ON(start > offset + len);
2295 
2296 		end = start + frag_iter->len;
2297 		if ((copy = end - offset) > 0) {
2298 			if (copy > len)
2299 				copy = len;
2300 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2301 				goto fault;
2302 			if ((len -= copy) == 0)
2303 				return 0;
2304 			offset += copy;
2305 			to     += copy;
2306 		}
2307 		start = end;
2308 	}
2309 
2310 	if (!len)
2311 		return 0;
2312 
2313 fault:
2314 	return -EFAULT;
2315 }
2316 EXPORT_SYMBOL(skb_copy_bits);
2317 
2318 /*
2319  * Callback from splice_to_pipe(), if we need to release some pages
2320  * at the end of the spd in case we error'ed out in filling the pipe.
2321  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2322 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2323 {
2324 	put_page(spd->pages[i]);
2325 }
2326 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2327 static struct page *linear_to_page(struct page *page, unsigned int *len,
2328 				   unsigned int *offset,
2329 				   struct sock *sk)
2330 {
2331 	struct page_frag *pfrag = sk_page_frag(sk);
2332 
2333 	if (!sk_page_frag_refill(sk, pfrag))
2334 		return NULL;
2335 
2336 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2337 
2338 	memcpy(page_address(pfrag->page) + pfrag->offset,
2339 	       page_address(page) + *offset, *len);
2340 	*offset = pfrag->offset;
2341 	pfrag->offset += *len;
2342 
2343 	return pfrag->page;
2344 }
2345 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2346 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2347 			     struct page *page,
2348 			     unsigned int offset)
2349 {
2350 	return	spd->nr_pages &&
2351 		spd->pages[spd->nr_pages - 1] == page &&
2352 		(spd->partial[spd->nr_pages - 1].offset +
2353 		 spd->partial[spd->nr_pages - 1].len == offset);
2354 }
2355 
2356 /*
2357  * Fill page/offset/length into spd, if it can hold more pages.
2358  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2359 static bool spd_fill_page(struct splice_pipe_desc *spd,
2360 			  struct pipe_inode_info *pipe, struct page *page,
2361 			  unsigned int *len, unsigned int offset,
2362 			  bool linear,
2363 			  struct sock *sk)
2364 {
2365 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2366 		return true;
2367 
2368 	if (linear) {
2369 		page = linear_to_page(page, len, &offset, sk);
2370 		if (!page)
2371 			return true;
2372 	}
2373 	if (spd_can_coalesce(spd, page, offset)) {
2374 		spd->partial[spd->nr_pages - 1].len += *len;
2375 		return false;
2376 	}
2377 	get_page(page);
2378 	spd->pages[spd->nr_pages] = page;
2379 	spd->partial[spd->nr_pages].len = *len;
2380 	spd->partial[spd->nr_pages].offset = offset;
2381 	spd->nr_pages++;
2382 
2383 	return false;
2384 }
2385 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2386 static bool __splice_segment(struct page *page, unsigned int poff,
2387 			     unsigned int plen, unsigned int *off,
2388 			     unsigned int *len,
2389 			     struct splice_pipe_desc *spd, bool linear,
2390 			     struct sock *sk,
2391 			     struct pipe_inode_info *pipe)
2392 {
2393 	if (!*len)
2394 		return true;
2395 
2396 	/* skip this segment if already processed */
2397 	if (*off >= plen) {
2398 		*off -= plen;
2399 		return false;
2400 	}
2401 
2402 	/* ignore any bits we already processed */
2403 	poff += *off;
2404 	plen -= *off;
2405 	*off = 0;
2406 
2407 	do {
2408 		unsigned int flen = min(*len, plen);
2409 
2410 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2411 				  linear, sk))
2412 			return true;
2413 		poff += flen;
2414 		plen -= flen;
2415 		*len -= flen;
2416 	} while (*len && plen);
2417 
2418 	return false;
2419 }
2420 
2421 /*
2422  * Map linear and fragment data from the skb to spd. It reports true if the
2423  * pipe is full or if we already spliced the requested length.
2424  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2425 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2426 			      unsigned int *offset, unsigned int *len,
2427 			      struct splice_pipe_desc *spd, struct sock *sk)
2428 {
2429 	int seg;
2430 	struct sk_buff *iter;
2431 
2432 	/* map the linear part :
2433 	 * If skb->head_frag is set, this 'linear' part is backed by a
2434 	 * fragment, and if the head is not shared with any clones then
2435 	 * we can avoid a copy since we own the head portion of this page.
2436 	 */
2437 	if (__splice_segment(virt_to_page(skb->data),
2438 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2439 			     skb_headlen(skb),
2440 			     offset, len, spd,
2441 			     skb_head_is_locked(skb),
2442 			     sk, pipe))
2443 		return true;
2444 
2445 	/*
2446 	 * then map the fragments
2447 	 */
2448 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2449 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2450 
2451 		if (__splice_segment(skb_frag_page(f),
2452 				     skb_frag_off(f), skb_frag_size(f),
2453 				     offset, len, spd, false, sk, pipe))
2454 			return true;
2455 	}
2456 
2457 	skb_walk_frags(skb, iter) {
2458 		if (*offset >= iter->len) {
2459 			*offset -= iter->len;
2460 			continue;
2461 		}
2462 		/* __skb_splice_bits() only fails if the output has no room
2463 		 * left, so no point in going over the frag_list for the error
2464 		 * case.
2465 		 */
2466 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2467 			return true;
2468 	}
2469 
2470 	return false;
2471 }
2472 
2473 /*
2474  * Map data from the skb to a pipe. Should handle both the linear part,
2475  * the fragments, and the frag list.
2476  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2477 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2478 		    struct pipe_inode_info *pipe, unsigned int tlen,
2479 		    unsigned int flags)
2480 {
2481 	struct partial_page partial[MAX_SKB_FRAGS];
2482 	struct page *pages[MAX_SKB_FRAGS];
2483 	struct splice_pipe_desc spd = {
2484 		.pages = pages,
2485 		.partial = partial,
2486 		.nr_pages_max = MAX_SKB_FRAGS,
2487 		.ops = &nosteal_pipe_buf_ops,
2488 		.spd_release = sock_spd_release,
2489 	};
2490 	int ret = 0;
2491 
2492 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2493 
2494 	if (spd.nr_pages)
2495 		ret = splice_to_pipe(pipe, &spd);
2496 
2497 	return ret;
2498 }
2499 EXPORT_SYMBOL_GPL(skb_splice_bits);
2500 
2501 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2502 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2503 			 int len)
2504 {
2505 	unsigned int orig_len = len;
2506 	struct sk_buff *head = skb;
2507 	unsigned short fragidx;
2508 	int slen, ret;
2509 
2510 do_frag_list:
2511 
2512 	/* Deal with head data */
2513 	while (offset < skb_headlen(skb) && len) {
2514 		struct kvec kv;
2515 		struct msghdr msg;
2516 
2517 		slen = min_t(int, len, skb_headlen(skb) - offset);
2518 		kv.iov_base = skb->data + offset;
2519 		kv.iov_len = slen;
2520 		memset(&msg, 0, sizeof(msg));
2521 		msg.msg_flags = MSG_DONTWAIT;
2522 
2523 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2524 		if (ret <= 0)
2525 			goto error;
2526 
2527 		offset += ret;
2528 		len -= ret;
2529 	}
2530 
2531 	/* All the data was skb head? */
2532 	if (!len)
2533 		goto out;
2534 
2535 	/* Make offset relative to start of frags */
2536 	offset -= skb_headlen(skb);
2537 
2538 	/* Find where we are in frag list */
2539 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2540 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2541 
2542 		if (offset < skb_frag_size(frag))
2543 			break;
2544 
2545 		offset -= skb_frag_size(frag);
2546 	}
2547 
2548 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2549 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2550 
2551 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2552 
2553 		while (slen) {
2554 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2555 						     skb_frag_off(frag) + offset,
2556 						     slen, MSG_DONTWAIT);
2557 			if (ret <= 0)
2558 				goto error;
2559 
2560 			len -= ret;
2561 			offset += ret;
2562 			slen -= ret;
2563 		}
2564 
2565 		offset = 0;
2566 	}
2567 
2568 	if (len) {
2569 		/* Process any frag lists */
2570 
2571 		if (skb == head) {
2572 			if (skb_has_frag_list(skb)) {
2573 				skb = skb_shinfo(skb)->frag_list;
2574 				goto do_frag_list;
2575 			}
2576 		} else if (skb->next) {
2577 			skb = skb->next;
2578 			goto do_frag_list;
2579 		}
2580 	}
2581 
2582 out:
2583 	return orig_len - len;
2584 
2585 error:
2586 	return orig_len == len ? ret : orig_len - len;
2587 }
2588 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2589 
2590 /**
2591  *	skb_store_bits - store bits from kernel buffer to skb
2592  *	@skb: destination buffer
2593  *	@offset: offset in destination
2594  *	@from: source buffer
2595  *	@len: number of bytes to copy
2596  *
2597  *	Copy the specified number of bytes from the source buffer to the
2598  *	destination skb.  This function handles all the messy bits of
2599  *	traversing fragment lists and such.
2600  */
2601 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2602 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2603 {
2604 	int start = skb_headlen(skb);
2605 	struct sk_buff *frag_iter;
2606 	int i, copy;
2607 
2608 	if (offset > (int)skb->len - len)
2609 		goto fault;
2610 
2611 	if ((copy = start - offset) > 0) {
2612 		if (copy > len)
2613 			copy = len;
2614 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2615 		if ((len -= copy) == 0)
2616 			return 0;
2617 		offset += copy;
2618 		from += copy;
2619 	}
2620 
2621 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2622 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2623 		int end;
2624 
2625 		WARN_ON(start > offset + len);
2626 
2627 		end = start + skb_frag_size(frag);
2628 		if ((copy = end - offset) > 0) {
2629 			u32 p_off, p_len, copied;
2630 			struct page *p;
2631 			u8 *vaddr;
2632 
2633 			if (copy > len)
2634 				copy = len;
2635 
2636 			skb_frag_foreach_page(frag,
2637 					      skb_frag_off(frag) + offset - start,
2638 					      copy, p, p_off, p_len, copied) {
2639 				vaddr = kmap_atomic(p);
2640 				memcpy(vaddr + p_off, from + copied, p_len);
2641 				kunmap_atomic(vaddr);
2642 			}
2643 
2644 			if ((len -= copy) == 0)
2645 				return 0;
2646 			offset += copy;
2647 			from += copy;
2648 		}
2649 		start = end;
2650 	}
2651 
2652 	skb_walk_frags(skb, frag_iter) {
2653 		int end;
2654 
2655 		WARN_ON(start > offset + len);
2656 
2657 		end = start + frag_iter->len;
2658 		if ((copy = end - offset) > 0) {
2659 			if (copy > len)
2660 				copy = len;
2661 			if (skb_store_bits(frag_iter, offset - start,
2662 					   from, copy))
2663 				goto fault;
2664 			if ((len -= copy) == 0)
2665 				return 0;
2666 			offset += copy;
2667 			from += copy;
2668 		}
2669 		start = end;
2670 	}
2671 	if (!len)
2672 		return 0;
2673 
2674 fault:
2675 	return -EFAULT;
2676 }
2677 EXPORT_SYMBOL(skb_store_bits);
2678 
2679 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2680 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2681 		      __wsum csum, const struct skb_checksum_ops *ops)
2682 {
2683 	int start = skb_headlen(skb);
2684 	int i, copy = start - offset;
2685 	struct sk_buff *frag_iter;
2686 	int pos = 0;
2687 
2688 	/* Checksum header. */
2689 	if (copy > 0) {
2690 		if (copy > len)
2691 			copy = len;
2692 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2693 				       skb->data + offset, copy, csum);
2694 		if ((len -= copy) == 0)
2695 			return csum;
2696 		offset += copy;
2697 		pos	= copy;
2698 	}
2699 
2700 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2701 		int end;
2702 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2703 
2704 		WARN_ON(start > offset + len);
2705 
2706 		end = start + skb_frag_size(frag);
2707 		if ((copy = end - offset) > 0) {
2708 			u32 p_off, p_len, copied;
2709 			struct page *p;
2710 			__wsum csum2;
2711 			u8 *vaddr;
2712 
2713 			if (copy > len)
2714 				copy = len;
2715 
2716 			skb_frag_foreach_page(frag,
2717 					      skb_frag_off(frag) + offset - start,
2718 					      copy, p, p_off, p_len, copied) {
2719 				vaddr = kmap_atomic(p);
2720 				csum2 = INDIRECT_CALL_1(ops->update,
2721 							csum_partial_ext,
2722 							vaddr + p_off, p_len, 0);
2723 				kunmap_atomic(vaddr);
2724 				csum = INDIRECT_CALL_1(ops->combine,
2725 						       csum_block_add_ext, csum,
2726 						       csum2, pos, p_len);
2727 				pos += p_len;
2728 			}
2729 
2730 			if (!(len -= copy))
2731 				return csum;
2732 			offset += copy;
2733 		}
2734 		start = end;
2735 	}
2736 
2737 	skb_walk_frags(skb, frag_iter) {
2738 		int end;
2739 
2740 		WARN_ON(start > offset + len);
2741 
2742 		end = start + frag_iter->len;
2743 		if ((copy = end - offset) > 0) {
2744 			__wsum csum2;
2745 			if (copy > len)
2746 				copy = len;
2747 			csum2 = __skb_checksum(frag_iter, offset - start,
2748 					       copy, 0, ops);
2749 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2750 					       csum, csum2, pos, copy);
2751 			if ((len -= copy) == 0)
2752 				return csum;
2753 			offset += copy;
2754 			pos    += copy;
2755 		}
2756 		start = end;
2757 	}
2758 	BUG_ON(len);
2759 
2760 	return csum;
2761 }
2762 EXPORT_SYMBOL(__skb_checksum);
2763 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2764 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2765 		    int len, __wsum csum)
2766 {
2767 	const struct skb_checksum_ops ops = {
2768 		.update  = csum_partial_ext,
2769 		.combine = csum_block_add_ext,
2770 	};
2771 
2772 	return __skb_checksum(skb, offset, len, csum, &ops);
2773 }
2774 EXPORT_SYMBOL(skb_checksum);
2775 
2776 /* Both of above in one bottle. */
2777 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2778 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2779 				    u8 *to, int len)
2780 {
2781 	int start = skb_headlen(skb);
2782 	int i, copy = start - offset;
2783 	struct sk_buff *frag_iter;
2784 	int pos = 0;
2785 	__wsum csum = 0;
2786 
2787 	/* Copy header. */
2788 	if (copy > 0) {
2789 		if (copy > len)
2790 			copy = len;
2791 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2792 						 copy);
2793 		if ((len -= copy) == 0)
2794 			return csum;
2795 		offset += copy;
2796 		to     += copy;
2797 		pos	= copy;
2798 	}
2799 
2800 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2801 		int end;
2802 
2803 		WARN_ON(start > offset + len);
2804 
2805 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2806 		if ((copy = end - offset) > 0) {
2807 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2808 			u32 p_off, p_len, copied;
2809 			struct page *p;
2810 			__wsum csum2;
2811 			u8 *vaddr;
2812 
2813 			if (copy > len)
2814 				copy = len;
2815 
2816 			skb_frag_foreach_page(frag,
2817 					      skb_frag_off(frag) + offset - start,
2818 					      copy, p, p_off, p_len, copied) {
2819 				vaddr = kmap_atomic(p);
2820 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2821 								  to + copied,
2822 								  p_len);
2823 				kunmap_atomic(vaddr);
2824 				csum = csum_block_add(csum, csum2, pos);
2825 				pos += p_len;
2826 			}
2827 
2828 			if (!(len -= copy))
2829 				return csum;
2830 			offset += copy;
2831 			to     += copy;
2832 		}
2833 		start = end;
2834 	}
2835 
2836 	skb_walk_frags(skb, frag_iter) {
2837 		__wsum csum2;
2838 		int end;
2839 
2840 		WARN_ON(start > offset + len);
2841 
2842 		end = start + frag_iter->len;
2843 		if ((copy = end - offset) > 0) {
2844 			if (copy > len)
2845 				copy = len;
2846 			csum2 = skb_copy_and_csum_bits(frag_iter,
2847 						       offset - start,
2848 						       to, copy);
2849 			csum = csum_block_add(csum, csum2, pos);
2850 			if ((len -= copy) == 0)
2851 				return csum;
2852 			offset += copy;
2853 			to     += copy;
2854 			pos    += copy;
2855 		}
2856 		start = end;
2857 	}
2858 	BUG_ON(len);
2859 	return csum;
2860 }
2861 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2862 
__skb_checksum_complete_head(struct sk_buff * skb,int len)2863 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2864 {
2865 	__sum16 sum;
2866 
2867 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2868 	/* See comments in __skb_checksum_complete(). */
2869 	if (likely(!sum)) {
2870 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2871 		    !skb->csum_complete_sw)
2872 			netdev_rx_csum_fault(skb->dev, skb);
2873 	}
2874 	if (!skb_shared(skb))
2875 		skb->csum_valid = !sum;
2876 	return sum;
2877 }
2878 EXPORT_SYMBOL(__skb_checksum_complete_head);
2879 
2880 /* This function assumes skb->csum already holds pseudo header's checksum,
2881  * which has been changed from the hardware checksum, for example, by
2882  * __skb_checksum_validate_complete(). And, the original skb->csum must
2883  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2884  *
2885  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2886  * zero. The new checksum is stored back into skb->csum unless the skb is
2887  * shared.
2888  */
__skb_checksum_complete(struct sk_buff * skb)2889 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2890 {
2891 	__wsum csum;
2892 	__sum16 sum;
2893 
2894 	csum = skb_checksum(skb, 0, skb->len, 0);
2895 
2896 	sum = csum_fold(csum_add(skb->csum, csum));
2897 	/* This check is inverted, because we already knew the hardware
2898 	 * checksum is invalid before calling this function. So, if the
2899 	 * re-computed checksum is valid instead, then we have a mismatch
2900 	 * between the original skb->csum and skb_checksum(). This means either
2901 	 * the original hardware checksum is incorrect or we screw up skb->csum
2902 	 * when moving skb->data around.
2903 	 */
2904 	if (likely(!sum)) {
2905 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2906 		    !skb->csum_complete_sw)
2907 			netdev_rx_csum_fault(skb->dev, skb);
2908 	}
2909 
2910 	if (!skb_shared(skb)) {
2911 		/* Save full packet checksum */
2912 		skb->csum = csum;
2913 		skb->ip_summed = CHECKSUM_COMPLETE;
2914 		skb->csum_complete_sw = 1;
2915 		skb->csum_valid = !sum;
2916 	}
2917 
2918 	return sum;
2919 }
2920 EXPORT_SYMBOL(__skb_checksum_complete);
2921 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2922 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2923 {
2924 	net_warn_ratelimited(
2925 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2926 		__func__);
2927 	return 0;
2928 }
2929 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2930 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2931 				       int offset, int len)
2932 {
2933 	net_warn_ratelimited(
2934 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2935 		__func__);
2936 	return 0;
2937 }
2938 
2939 static const struct skb_checksum_ops default_crc32c_ops = {
2940 	.update  = warn_crc32c_csum_update,
2941 	.combine = warn_crc32c_csum_combine,
2942 };
2943 
2944 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2945 	&default_crc32c_ops;
2946 EXPORT_SYMBOL(crc32c_csum_stub);
2947 
2948  /**
2949  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2950  *	@from: source buffer
2951  *
2952  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2953  *	into skb_zerocopy().
2954  */
2955 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2956 skb_zerocopy_headlen(const struct sk_buff *from)
2957 {
2958 	unsigned int hlen = 0;
2959 
2960 	if (!from->head_frag ||
2961 	    skb_headlen(from) < L1_CACHE_BYTES ||
2962 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2963 		hlen = skb_headlen(from);
2964 		if (!hlen)
2965 			hlen = from->len;
2966 	}
2967 
2968 	if (skb_has_frag_list(from))
2969 		hlen = from->len;
2970 
2971 	return hlen;
2972 }
2973 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2974 
2975 /**
2976  *	skb_zerocopy - Zero copy skb to skb
2977  *	@to: destination buffer
2978  *	@from: source buffer
2979  *	@len: number of bytes to copy from source buffer
2980  *	@hlen: size of linear headroom in destination buffer
2981  *
2982  *	Copies up to `len` bytes from `from` to `to` by creating references
2983  *	to the frags in the source buffer.
2984  *
2985  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2986  *	headroom in the `to` buffer.
2987  *
2988  *	Return value:
2989  *	0: everything is OK
2990  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2991  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2992  */
2993 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2994 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2995 {
2996 	int i, j = 0;
2997 	int plen = 0; /* length of skb->head fragment */
2998 	int ret;
2999 	struct page *page;
3000 	unsigned int offset;
3001 
3002 	BUG_ON(!from->head_frag && !hlen);
3003 
3004 	/* dont bother with small payloads */
3005 	if (len <= skb_tailroom(to))
3006 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3007 
3008 	if (hlen) {
3009 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3010 		if (unlikely(ret))
3011 			return ret;
3012 		len -= hlen;
3013 	} else {
3014 		plen = min_t(int, skb_headlen(from), len);
3015 		if (plen) {
3016 			page = virt_to_head_page(from->head);
3017 			offset = from->data - (unsigned char *)page_address(page);
3018 			__skb_fill_page_desc(to, 0, page, offset, plen);
3019 			get_page(page);
3020 			j = 1;
3021 			len -= plen;
3022 		}
3023 	}
3024 
3025 	to->truesize += len + plen;
3026 	to->len += len + plen;
3027 	to->data_len += len + plen;
3028 
3029 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3030 		skb_tx_error(from);
3031 		return -ENOMEM;
3032 	}
3033 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3034 
3035 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3036 		int size;
3037 
3038 		if (!len)
3039 			break;
3040 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3041 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3042 					len);
3043 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3044 		len -= size;
3045 		skb_frag_ref(to, j);
3046 		j++;
3047 	}
3048 	skb_shinfo(to)->nr_frags = j;
3049 
3050 	return 0;
3051 }
3052 EXPORT_SYMBOL_GPL(skb_zerocopy);
3053 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3054 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3055 {
3056 	__wsum csum;
3057 	long csstart;
3058 
3059 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3060 		csstart = skb_checksum_start_offset(skb);
3061 	else
3062 		csstart = skb_headlen(skb);
3063 
3064 	BUG_ON(csstart > skb_headlen(skb));
3065 
3066 	skb_copy_from_linear_data(skb, to, csstart);
3067 
3068 	csum = 0;
3069 	if (csstart != skb->len)
3070 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3071 					      skb->len - csstart);
3072 
3073 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3074 		long csstuff = csstart + skb->csum_offset;
3075 
3076 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3077 	}
3078 }
3079 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3080 
3081 /**
3082  *	skb_dequeue - remove from the head of the queue
3083  *	@list: list to dequeue from
3084  *
3085  *	Remove the head of the list. The list lock is taken so the function
3086  *	may be used safely with other locking list functions. The head item is
3087  *	returned or %NULL if the list is empty.
3088  */
3089 
skb_dequeue(struct sk_buff_head * list)3090 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3091 {
3092 	unsigned long flags;
3093 	struct sk_buff *result;
3094 
3095 	spin_lock_irqsave(&list->lock, flags);
3096 	result = __skb_dequeue(list);
3097 	spin_unlock_irqrestore(&list->lock, flags);
3098 	return result;
3099 }
3100 EXPORT_SYMBOL(skb_dequeue);
3101 
3102 /**
3103  *	skb_dequeue_tail - remove from the tail of the queue
3104  *	@list: list to dequeue from
3105  *
3106  *	Remove the tail of the list. The list lock is taken so the function
3107  *	may be used safely with other locking list functions. The tail item is
3108  *	returned or %NULL if the list is empty.
3109  */
skb_dequeue_tail(struct sk_buff_head * list)3110 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3111 {
3112 	unsigned long flags;
3113 	struct sk_buff *result;
3114 
3115 	spin_lock_irqsave(&list->lock, flags);
3116 	result = __skb_dequeue_tail(list);
3117 	spin_unlock_irqrestore(&list->lock, flags);
3118 	return result;
3119 }
3120 EXPORT_SYMBOL(skb_dequeue_tail);
3121 
3122 /**
3123  *	skb_queue_purge - empty a list
3124  *	@list: list to empty
3125  *
3126  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3127  *	the list and one reference dropped. This function takes the list
3128  *	lock and is atomic with respect to other list locking functions.
3129  */
skb_queue_purge(struct sk_buff_head * list)3130 void skb_queue_purge(struct sk_buff_head *list)
3131 {
3132 	struct sk_buff *skb;
3133 	while ((skb = skb_dequeue(list)) != NULL)
3134 		kfree_skb(skb);
3135 }
3136 EXPORT_SYMBOL(skb_queue_purge);
3137 
3138 /**
3139  *	skb_rbtree_purge - empty a skb rbtree
3140  *	@root: root of the rbtree to empty
3141  *	Return value: the sum of truesizes of all purged skbs.
3142  *
3143  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3144  *	the list and one reference dropped. This function does not take
3145  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3146  *	out-of-order queue is protected by the socket lock).
3147  */
skb_rbtree_purge(struct rb_root * root)3148 unsigned int skb_rbtree_purge(struct rb_root *root)
3149 {
3150 	struct rb_node *p = rb_first(root);
3151 	unsigned int sum = 0;
3152 
3153 	while (p) {
3154 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3155 
3156 		p = rb_next(p);
3157 		rb_erase(&skb->rbnode, root);
3158 		sum += skb->truesize;
3159 		kfree_skb(skb);
3160 	}
3161 	return sum;
3162 }
3163 
3164 /**
3165  *	skb_queue_head - queue a buffer at the list head
3166  *	@list: list to use
3167  *	@newsk: buffer to queue
3168  *
3169  *	Queue a buffer at the start of the list. This function takes the
3170  *	list lock and can be used safely with other locking &sk_buff functions
3171  *	safely.
3172  *
3173  *	A buffer cannot be placed on two lists at the same time.
3174  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3175 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3176 {
3177 	unsigned long flags;
3178 
3179 	spin_lock_irqsave(&list->lock, flags);
3180 	__skb_queue_head(list, newsk);
3181 	spin_unlock_irqrestore(&list->lock, flags);
3182 }
3183 EXPORT_SYMBOL(skb_queue_head);
3184 
3185 /**
3186  *	skb_queue_tail - queue a buffer at the list tail
3187  *	@list: list to use
3188  *	@newsk: buffer to queue
3189  *
3190  *	Queue a buffer at the tail of the list. This function takes the
3191  *	list lock and can be used safely with other locking &sk_buff functions
3192  *	safely.
3193  *
3194  *	A buffer cannot be placed on two lists at the same time.
3195  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3196 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3197 {
3198 	unsigned long flags;
3199 
3200 	spin_lock_irqsave(&list->lock, flags);
3201 	__skb_queue_tail(list, newsk);
3202 	spin_unlock_irqrestore(&list->lock, flags);
3203 }
3204 EXPORT_SYMBOL(skb_queue_tail);
3205 
3206 /**
3207  *	skb_unlink	-	remove a buffer from a list
3208  *	@skb: buffer to remove
3209  *	@list: list to use
3210  *
3211  *	Remove a packet from a list. The list locks are taken and this
3212  *	function is atomic with respect to other list locked calls
3213  *
3214  *	You must know what list the SKB is on.
3215  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3216 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3217 {
3218 	unsigned long flags;
3219 
3220 	spin_lock_irqsave(&list->lock, flags);
3221 	__skb_unlink(skb, list);
3222 	spin_unlock_irqrestore(&list->lock, flags);
3223 }
3224 EXPORT_SYMBOL(skb_unlink);
3225 
3226 /**
3227  *	skb_append	-	append a buffer
3228  *	@old: buffer to insert after
3229  *	@newsk: buffer to insert
3230  *	@list: list to use
3231  *
3232  *	Place a packet after a given packet in a list. The list locks are taken
3233  *	and this function is atomic with respect to other list locked calls.
3234  *	A buffer cannot be placed on two lists at the same time.
3235  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3236 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3237 {
3238 	unsigned long flags;
3239 
3240 	spin_lock_irqsave(&list->lock, flags);
3241 	__skb_queue_after(list, old, newsk);
3242 	spin_unlock_irqrestore(&list->lock, flags);
3243 }
3244 EXPORT_SYMBOL(skb_append);
3245 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3246 static inline void skb_split_inside_header(struct sk_buff *skb,
3247 					   struct sk_buff* skb1,
3248 					   const u32 len, const int pos)
3249 {
3250 	int i;
3251 
3252 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3253 					 pos - len);
3254 	/* And move data appendix as is. */
3255 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3256 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3257 
3258 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3259 	skb_shinfo(skb)->nr_frags  = 0;
3260 	skb1->data_len		   = skb->data_len;
3261 	skb1->len		   += skb1->data_len;
3262 	skb->data_len		   = 0;
3263 	skb->len		   = len;
3264 	skb_set_tail_pointer(skb, len);
3265 }
3266 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3267 static inline void skb_split_no_header(struct sk_buff *skb,
3268 				       struct sk_buff* skb1,
3269 				       const u32 len, int pos)
3270 {
3271 	int i, k = 0;
3272 	const int nfrags = skb_shinfo(skb)->nr_frags;
3273 
3274 	skb_shinfo(skb)->nr_frags = 0;
3275 	skb1->len		  = skb1->data_len = skb->len - len;
3276 	skb->len		  = len;
3277 	skb->data_len		  = len - pos;
3278 
3279 	for (i = 0; i < nfrags; i++) {
3280 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3281 
3282 		if (pos + size > len) {
3283 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3284 
3285 			if (pos < len) {
3286 				/* Split frag.
3287 				 * We have two variants in this case:
3288 				 * 1. Move all the frag to the second
3289 				 *    part, if it is possible. F.e.
3290 				 *    this approach is mandatory for TUX,
3291 				 *    where splitting is expensive.
3292 				 * 2. Split is accurately. We make this.
3293 				 */
3294 				skb_frag_ref(skb, i);
3295 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3296 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3297 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3298 				skb_shinfo(skb)->nr_frags++;
3299 			}
3300 			k++;
3301 		} else
3302 			skb_shinfo(skb)->nr_frags++;
3303 		pos += size;
3304 	}
3305 	skb_shinfo(skb1)->nr_frags = k;
3306 }
3307 
3308 /**
3309  * skb_split - Split fragmented skb to two parts at length len.
3310  * @skb: the buffer to split
3311  * @skb1: the buffer to receive the second part
3312  * @len: new length for skb
3313  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3314 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3315 {
3316 	int pos = skb_headlen(skb);
3317 
3318 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3319 				      SKBTX_SHARED_FRAG;
3320 	skb_zerocopy_clone(skb1, skb, 0);
3321 	if (len < pos)	/* Split line is inside header. */
3322 		skb_split_inside_header(skb, skb1, len, pos);
3323 	else		/* Second chunk has no header, nothing to copy. */
3324 		skb_split_no_header(skb, skb1, len, pos);
3325 }
3326 EXPORT_SYMBOL(skb_split);
3327 
3328 /* Shifting from/to a cloned skb is a no-go.
3329  *
3330  * Caller cannot keep skb_shinfo related pointers past calling here!
3331  */
skb_prepare_for_shift(struct sk_buff * skb)3332 static int skb_prepare_for_shift(struct sk_buff *skb)
3333 {
3334 	int ret = 0;
3335 
3336 	if (skb_cloned(skb)) {
3337 		/* Save and restore truesize: pskb_expand_head() may reallocate
3338 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3339 		 * cannot change truesize at this point.
3340 		 */
3341 		unsigned int save_truesize = skb->truesize;
3342 
3343 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3344 		skb->truesize = save_truesize;
3345 	}
3346 	return ret;
3347 }
3348 
3349 /**
3350  * skb_shift - Shifts paged data partially from skb to another
3351  * @tgt: buffer into which tail data gets added
3352  * @skb: buffer from which the paged data comes from
3353  * @shiftlen: shift up to this many bytes
3354  *
3355  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3356  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3357  * It's up to caller to free skb if everything was shifted.
3358  *
3359  * If @tgt runs out of frags, the whole operation is aborted.
3360  *
3361  * Skb cannot include anything else but paged data while tgt is allowed
3362  * to have non-paged data as well.
3363  *
3364  * TODO: full sized shift could be optimized but that would need
3365  * specialized skb free'er to handle frags without up-to-date nr_frags.
3366  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3367 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3368 {
3369 	int from, to, merge, todo;
3370 	skb_frag_t *fragfrom, *fragto;
3371 
3372 	BUG_ON(shiftlen > skb->len);
3373 
3374 	if (skb_headlen(skb))
3375 		return 0;
3376 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3377 		return 0;
3378 
3379 	todo = shiftlen;
3380 	from = 0;
3381 	to = skb_shinfo(tgt)->nr_frags;
3382 	fragfrom = &skb_shinfo(skb)->frags[from];
3383 
3384 	/* Actual merge is delayed until the point when we know we can
3385 	 * commit all, so that we don't have to undo partial changes
3386 	 */
3387 	if (!to ||
3388 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3389 			      skb_frag_off(fragfrom))) {
3390 		merge = -1;
3391 	} else {
3392 		merge = to - 1;
3393 
3394 		todo -= skb_frag_size(fragfrom);
3395 		if (todo < 0) {
3396 			if (skb_prepare_for_shift(skb) ||
3397 			    skb_prepare_for_shift(tgt))
3398 				return 0;
3399 
3400 			/* All previous frag pointers might be stale! */
3401 			fragfrom = &skb_shinfo(skb)->frags[from];
3402 			fragto = &skb_shinfo(tgt)->frags[merge];
3403 
3404 			skb_frag_size_add(fragto, shiftlen);
3405 			skb_frag_size_sub(fragfrom, shiftlen);
3406 			skb_frag_off_add(fragfrom, shiftlen);
3407 
3408 			goto onlymerged;
3409 		}
3410 
3411 		from++;
3412 	}
3413 
3414 	/* Skip full, not-fitting skb to avoid expensive operations */
3415 	if ((shiftlen == skb->len) &&
3416 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3417 		return 0;
3418 
3419 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3420 		return 0;
3421 
3422 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3423 		if (to == MAX_SKB_FRAGS)
3424 			return 0;
3425 
3426 		fragfrom = &skb_shinfo(skb)->frags[from];
3427 		fragto = &skb_shinfo(tgt)->frags[to];
3428 
3429 		if (todo >= skb_frag_size(fragfrom)) {
3430 			*fragto = *fragfrom;
3431 			todo -= skb_frag_size(fragfrom);
3432 			from++;
3433 			to++;
3434 
3435 		} else {
3436 			__skb_frag_ref(fragfrom);
3437 			skb_frag_page_copy(fragto, fragfrom);
3438 			skb_frag_off_copy(fragto, fragfrom);
3439 			skb_frag_size_set(fragto, todo);
3440 
3441 			skb_frag_off_add(fragfrom, todo);
3442 			skb_frag_size_sub(fragfrom, todo);
3443 			todo = 0;
3444 
3445 			to++;
3446 			break;
3447 		}
3448 	}
3449 
3450 	/* Ready to "commit" this state change to tgt */
3451 	skb_shinfo(tgt)->nr_frags = to;
3452 
3453 	if (merge >= 0) {
3454 		fragfrom = &skb_shinfo(skb)->frags[0];
3455 		fragto = &skb_shinfo(tgt)->frags[merge];
3456 
3457 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3458 		__skb_frag_unref(fragfrom);
3459 	}
3460 
3461 	/* Reposition in the original skb */
3462 	to = 0;
3463 	while (from < skb_shinfo(skb)->nr_frags)
3464 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3465 	skb_shinfo(skb)->nr_frags = to;
3466 
3467 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3468 
3469 onlymerged:
3470 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3471 	 * the other hand might need it if it needs to be resent
3472 	 */
3473 	tgt->ip_summed = CHECKSUM_PARTIAL;
3474 	skb->ip_summed = CHECKSUM_PARTIAL;
3475 
3476 	/* Yak, is it really working this way? Some helper please? */
3477 	skb->len -= shiftlen;
3478 	skb->data_len -= shiftlen;
3479 	skb->truesize -= shiftlen;
3480 	tgt->len += shiftlen;
3481 	tgt->data_len += shiftlen;
3482 	tgt->truesize += shiftlen;
3483 
3484 	return shiftlen;
3485 }
3486 
3487 /**
3488  * skb_prepare_seq_read - Prepare a sequential read of skb data
3489  * @skb: the buffer to read
3490  * @from: lower offset of data to be read
3491  * @to: upper offset of data to be read
3492  * @st: state variable
3493  *
3494  * Initializes the specified state variable. Must be called before
3495  * invoking skb_seq_read() for the first time.
3496  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3497 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3498 			  unsigned int to, struct skb_seq_state *st)
3499 {
3500 	st->lower_offset = from;
3501 	st->upper_offset = to;
3502 	st->root_skb = st->cur_skb = skb;
3503 	st->frag_idx = st->stepped_offset = 0;
3504 	st->frag_data = NULL;
3505 }
3506 EXPORT_SYMBOL(skb_prepare_seq_read);
3507 
3508 /**
3509  * skb_seq_read - Sequentially read skb data
3510  * @consumed: number of bytes consumed by the caller so far
3511  * @data: destination pointer for data to be returned
3512  * @st: state variable
3513  *
3514  * Reads a block of skb data at @consumed relative to the
3515  * lower offset specified to skb_prepare_seq_read(). Assigns
3516  * the head of the data block to @data and returns the length
3517  * of the block or 0 if the end of the skb data or the upper
3518  * offset has been reached.
3519  *
3520  * The caller is not required to consume all of the data
3521  * returned, i.e. @consumed is typically set to the number
3522  * of bytes already consumed and the next call to
3523  * skb_seq_read() will return the remaining part of the block.
3524  *
3525  * Note 1: The size of each block of data returned can be arbitrary,
3526  *       this limitation is the cost for zerocopy sequential
3527  *       reads of potentially non linear data.
3528  *
3529  * Note 2: Fragment lists within fragments are not implemented
3530  *       at the moment, state->root_skb could be replaced with
3531  *       a stack for this purpose.
3532  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3533 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3534 			  struct skb_seq_state *st)
3535 {
3536 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3537 	skb_frag_t *frag;
3538 
3539 	if (unlikely(abs_offset >= st->upper_offset)) {
3540 		if (st->frag_data) {
3541 			kunmap_atomic(st->frag_data);
3542 			st->frag_data = NULL;
3543 		}
3544 		return 0;
3545 	}
3546 
3547 next_skb:
3548 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3549 
3550 	if (abs_offset < block_limit && !st->frag_data) {
3551 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3552 		return block_limit - abs_offset;
3553 	}
3554 
3555 	if (st->frag_idx == 0 && !st->frag_data)
3556 		st->stepped_offset += skb_headlen(st->cur_skb);
3557 
3558 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3559 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3560 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3561 
3562 		if (abs_offset < block_limit) {
3563 			if (!st->frag_data)
3564 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3565 
3566 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3567 				(abs_offset - st->stepped_offset);
3568 
3569 			return block_limit - abs_offset;
3570 		}
3571 
3572 		if (st->frag_data) {
3573 			kunmap_atomic(st->frag_data);
3574 			st->frag_data = NULL;
3575 		}
3576 
3577 		st->frag_idx++;
3578 		st->stepped_offset += skb_frag_size(frag);
3579 	}
3580 
3581 	if (st->frag_data) {
3582 		kunmap_atomic(st->frag_data);
3583 		st->frag_data = NULL;
3584 	}
3585 
3586 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3587 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3588 		st->frag_idx = 0;
3589 		goto next_skb;
3590 	} else if (st->cur_skb->next) {
3591 		st->cur_skb = st->cur_skb->next;
3592 		st->frag_idx = 0;
3593 		goto next_skb;
3594 	}
3595 
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL(skb_seq_read);
3599 
3600 /**
3601  * skb_abort_seq_read - Abort a sequential read of skb data
3602  * @st: state variable
3603  *
3604  * Must be called if skb_seq_read() was not called until it
3605  * returned 0.
3606  */
skb_abort_seq_read(struct skb_seq_state * st)3607 void skb_abort_seq_read(struct skb_seq_state *st)
3608 {
3609 	if (st->frag_data)
3610 		kunmap_atomic(st->frag_data);
3611 }
3612 EXPORT_SYMBOL(skb_abort_seq_read);
3613 
3614 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3615 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3616 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3617 					  struct ts_config *conf,
3618 					  struct ts_state *state)
3619 {
3620 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3621 }
3622 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3623 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3624 {
3625 	skb_abort_seq_read(TS_SKB_CB(state));
3626 }
3627 
3628 /**
3629  * skb_find_text - Find a text pattern in skb data
3630  * @skb: the buffer to look in
3631  * @from: search offset
3632  * @to: search limit
3633  * @config: textsearch configuration
3634  *
3635  * Finds a pattern in the skb data according to the specified
3636  * textsearch configuration. Use textsearch_next() to retrieve
3637  * subsequent occurrences of the pattern. Returns the offset
3638  * to the first occurrence or UINT_MAX if no match was found.
3639  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3640 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3641 			   unsigned int to, struct ts_config *config)
3642 {
3643 	struct ts_state state;
3644 	unsigned int ret;
3645 
3646 	config->get_next_block = skb_ts_get_next_block;
3647 	config->finish = skb_ts_finish;
3648 
3649 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3650 
3651 	ret = textsearch_find(config, &state);
3652 	return (ret <= to - from ? ret : UINT_MAX);
3653 }
3654 EXPORT_SYMBOL(skb_find_text);
3655 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3656 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3657 			 int offset, size_t size)
3658 {
3659 	int i = skb_shinfo(skb)->nr_frags;
3660 
3661 	if (skb_can_coalesce(skb, i, page, offset)) {
3662 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3663 	} else if (i < MAX_SKB_FRAGS) {
3664 		get_page(page);
3665 		skb_fill_page_desc(skb, i, page, offset, size);
3666 	} else {
3667 		return -EMSGSIZE;
3668 	}
3669 
3670 	return 0;
3671 }
3672 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3673 
3674 /**
3675  *	skb_pull_rcsum - pull skb and update receive checksum
3676  *	@skb: buffer to update
3677  *	@len: length of data pulled
3678  *
3679  *	This function performs an skb_pull on the packet and updates
3680  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3681  *	receive path processing instead of skb_pull unless you know
3682  *	that the checksum difference is zero (e.g., a valid IP header)
3683  *	or you are setting ip_summed to CHECKSUM_NONE.
3684  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3685 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3686 {
3687 	unsigned char *data = skb->data;
3688 
3689 	BUG_ON(len > skb->len);
3690 	__skb_pull(skb, len);
3691 	skb_postpull_rcsum(skb, data, len);
3692 	return skb->data;
3693 }
3694 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3695 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3696 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3697 {
3698 	skb_frag_t head_frag;
3699 	struct page *page;
3700 
3701 	page = virt_to_head_page(frag_skb->head);
3702 	__skb_frag_set_page(&head_frag, page);
3703 	skb_frag_off_set(&head_frag, frag_skb->data -
3704 			 (unsigned char *)page_address(page));
3705 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3706 	return head_frag;
3707 }
3708 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3709 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3710 				 netdev_features_t features,
3711 				 unsigned int offset)
3712 {
3713 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3714 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3715 	unsigned int delta_truesize = 0;
3716 	unsigned int delta_len = 0;
3717 	struct sk_buff *tail = NULL;
3718 	struct sk_buff *nskb, *tmp;
3719 	int err;
3720 
3721 	skb_push(skb, -skb_network_offset(skb) + offset);
3722 
3723 	/* Ensure the head is writeable before touching the shared info */
3724 	err = skb_unclone(skb, GFP_ATOMIC);
3725 	if (err)
3726 		goto err_linearize;
3727 
3728 	skb_shinfo(skb)->frag_list = NULL;
3729 
3730 	while (list_skb) {
3731 		nskb = list_skb;
3732 		list_skb = list_skb->next;
3733 
3734 		err = 0;
3735 		delta_truesize += nskb->truesize;
3736 		if (skb_shared(nskb)) {
3737 			tmp = skb_clone(nskb, GFP_ATOMIC);
3738 			if (tmp) {
3739 				consume_skb(nskb);
3740 				nskb = tmp;
3741 				err = skb_unclone(nskb, GFP_ATOMIC);
3742 			} else {
3743 				err = -ENOMEM;
3744 			}
3745 		}
3746 
3747 		if (!tail)
3748 			skb->next = nskb;
3749 		else
3750 			tail->next = nskb;
3751 
3752 		if (unlikely(err)) {
3753 			nskb->next = list_skb;
3754 			goto err_linearize;
3755 		}
3756 
3757 		tail = nskb;
3758 
3759 		delta_len += nskb->len;
3760 
3761 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3762 
3763 		skb_release_head_state(nskb);
3764 		 __copy_skb_header(nskb, skb);
3765 
3766 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3767 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3768 						 nskb->data - tnl_hlen,
3769 						 offset + tnl_hlen);
3770 
3771 		if (skb_needs_linearize(nskb, features) &&
3772 		    __skb_linearize(nskb))
3773 			goto err_linearize;
3774 	}
3775 
3776 	skb->truesize = skb->truesize - delta_truesize;
3777 	skb->data_len = skb->data_len - delta_len;
3778 	skb->len = skb->len - delta_len;
3779 
3780 	skb_gso_reset(skb);
3781 
3782 	skb->prev = tail;
3783 
3784 	if (skb_needs_linearize(skb, features) &&
3785 	    __skb_linearize(skb))
3786 		goto err_linearize;
3787 
3788 	skb_get(skb);
3789 
3790 	return skb;
3791 
3792 err_linearize:
3793 	kfree_skb_list(skb->next);
3794 	skb->next = NULL;
3795 	return ERR_PTR(-ENOMEM);
3796 }
3797 EXPORT_SYMBOL_GPL(skb_segment_list);
3798 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3799 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3800 {
3801 	if (unlikely(p->len + skb->len >= 65536))
3802 		return -E2BIG;
3803 
3804 	if (NAPI_GRO_CB(p)->last == p)
3805 		skb_shinfo(p)->frag_list = skb;
3806 	else
3807 		NAPI_GRO_CB(p)->last->next = skb;
3808 
3809 	skb_pull(skb, skb_gro_offset(skb));
3810 
3811 	NAPI_GRO_CB(p)->last = skb;
3812 	NAPI_GRO_CB(p)->count++;
3813 	p->data_len += skb->len;
3814 	p->truesize += skb->truesize;
3815 	p->len += skb->len;
3816 
3817 	NAPI_GRO_CB(skb)->same_flow = 1;
3818 
3819 	return 0;
3820 }
3821 
3822 /**
3823  *	skb_segment - Perform protocol segmentation on skb.
3824  *	@head_skb: buffer to segment
3825  *	@features: features for the output path (see dev->features)
3826  *
3827  *	This function performs segmentation on the given skb.  It returns
3828  *	a pointer to the first in a list of new skbs for the segments.
3829  *	In case of error it returns ERR_PTR(err).
3830  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3831 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3832 			    netdev_features_t features)
3833 {
3834 	struct sk_buff *segs = NULL;
3835 	struct sk_buff *tail = NULL;
3836 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3837 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3838 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3839 	unsigned int offset = doffset;
3840 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3841 	unsigned int partial_segs = 0;
3842 	unsigned int headroom;
3843 	unsigned int len = head_skb->len;
3844 	struct sk_buff *frag_skb;
3845 	skb_frag_t *frag;
3846 	__be16 proto;
3847 	bool csum, sg;
3848 	int err = -ENOMEM;
3849 	int i = 0;
3850 	int nfrags, pos;
3851 
3852 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3853 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3854 		struct sk_buff *check_skb;
3855 
3856 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3857 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
3858 				/* gso_size is untrusted, and we have a frag_list with
3859 				 * a linear non head_frag item.
3860 				 *
3861 				 * If head_skb's headlen does not fit requested gso_size,
3862 				 * it means that the frag_list members do NOT terminate
3863 				 * on exact gso_size boundaries. Hence we cannot perform
3864 				 * skb_frag_t page sharing. Therefore we must fallback to
3865 				 * copying the frag_list skbs; we do so by disabling SG.
3866 				 */
3867 				features &= ~NETIF_F_SG;
3868 				break;
3869 			}
3870 		}
3871 	}
3872 
3873 	__skb_push(head_skb, doffset);
3874 	proto = skb_network_protocol(head_skb, NULL);
3875 	if (unlikely(!proto))
3876 		return ERR_PTR(-EINVAL);
3877 
3878 	sg = !!(features & NETIF_F_SG);
3879 	csum = !!can_checksum_protocol(features, proto);
3880 
3881 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3882 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3883 			struct sk_buff *iter;
3884 			unsigned int frag_len;
3885 
3886 			if (!list_skb ||
3887 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3888 				goto normal;
3889 
3890 			/* If we get here then all the required
3891 			 * GSO features except frag_list are supported.
3892 			 * Try to split the SKB to multiple GSO SKBs
3893 			 * with no frag_list.
3894 			 * Currently we can do that only when the buffers don't
3895 			 * have a linear part and all the buffers except
3896 			 * the last are of the same length.
3897 			 */
3898 			frag_len = list_skb->len;
3899 			skb_walk_frags(head_skb, iter) {
3900 				if (frag_len != iter->len && iter->next)
3901 					goto normal;
3902 				if (skb_headlen(iter) && !iter->head_frag)
3903 					goto normal;
3904 
3905 				len -= iter->len;
3906 			}
3907 
3908 			if (len != frag_len)
3909 				goto normal;
3910 		}
3911 
3912 		/* GSO partial only requires that we trim off any excess that
3913 		 * doesn't fit into an MSS sized block, so take care of that
3914 		 * now.
3915 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
3916 		 */
3917 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
3918 		if (partial_segs > 1)
3919 			mss *= partial_segs;
3920 		else
3921 			partial_segs = 0;
3922 	}
3923 
3924 normal:
3925 	headroom = skb_headroom(head_skb);
3926 	pos = skb_headlen(head_skb);
3927 
3928 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
3929 		return ERR_PTR(-ENOMEM);
3930 
3931 	nfrags = skb_shinfo(head_skb)->nr_frags;
3932 	frag = skb_shinfo(head_skb)->frags;
3933 	frag_skb = head_skb;
3934 
3935 	do {
3936 		struct sk_buff *nskb;
3937 		skb_frag_t *nskb_frag;
3938 		int hsize;
3939 		int size;
3940 
3941 		if (unlikely(mss == GSO_BY_FRAGS)) {
3942 			len = list_skb->len;
3943 		} else {
3944 			len = head_skb->len - offset;
3945 			if (len > mss)
3946 				len = mss;
3947 		}
3948 
3949 		hsize = skb_headlen(head_skb) - offset;
3950 		if (hsize < 0)
3951 			hsize = 0;
3952 		if (hsize > len || !sg)
3953 			hsize = len;
3954 
3955 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3956 		    (skb_headlen(list_skb) == len || sg)) {
3957 			BUG_ON(skb_headlen(list_skb) > len);
3958 
3959 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3960 			if (unlikely(!nskb))
3961 				goto err;
3962 
3963 			i = 0;
3964 			nfrags = skb_shinfo(list_skb)->nr_frags;
3965 			frag = skb_shinfo(list_skb)->frags;
3966 			frag_skb = list_skb;
3967 			pos += skb_headlen(list_skb);
3968 
3969 			while (pos < offset + len) {
3970 				BUG_ON(i >= nfrags);
3971 
3972 				size = skb_frag_size(frag);
3973 				if (pos + size > offset + len)
3974 					break;
3975 
3976 				i++;
3977 				pos += size;
3978 				frag++;
3979 			}
3980 
3981 			list_skb = list_skb->next;
3982 
3983 			if (unlikely(pskb_trim(nskb, len))) {
3984 				kfree_skb(nskb);
3985 				goto err;
3986 			}
3987 
3988 			hsize = skb_end_offset(nskb);
3989 			if (skb_cow_head(nskb, doffset + headroom)) {
3990 				kfree_skb(nskb);
3991 				goto err;
3992 			}
3993 
3994 			nskb->truesize += skb_end_offset(nskb) - hsize;
3995 			skb_release_head_state(nskb);
3996 			__skb_push(nskb, doffset);
3997 		} else {
3998 			nskb = __alloc_skb(hsize + doffset + headroom,
3999 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4000 					   NUMA_NO_NODE);
4001 
4002 			if (unlikely(!nskb))
4003 				goto err;
4004 
4005 			skb_reserve(nskb, headroom);
4006 			__skb_put(nskb, doffset);
4007 		}
4008 
4009 		if (segs)
4010 			tail->next = nskb;
4011 		else
4012 			segs = nskb;
4013 		tail = nskb;
4014 
4015 		__copy_skb_header(nskb, head_skb);
4016 
4017 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4018 		skb_reset_mac_len(nskb);
4019 
4020 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4021 						 nskb->data - tnl_hlen,
4022 						 doffset + tnl_hlen);
4023 
4024 		if (nskb->len == len + doffset)
4025 			goto perform_csum_check;
4026 
4027 		if (!sg) {
4028 			if (!csum) {
4029 				if (!nskb->remcsum_offload)
4030 					nskb->ip_summed = CHECKSUM_NONE;
4031 				SKB_GSO_CB(nskb)->csum =
4032 					skb_copy_and_csum_bits(head_skb, offset,
4033 							       skb_put(nskb,
4034 								       len),
4035 							       len);
4036 				SKB_GSO_CB(nskb)->csum_start =
4037 					skb_headroom(nskb) + doffset;
4038 			} else {
4039 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4040 					goto err;
4041 			}
4042 			continue;
4043 		}
4044 
4045 		nskb_frag = skb_shinfo(nskb)->frags;
4046 
4047 		skb_copy_from_linear_data_offset(head_skb, offset,
4048 						 skb_put(nskb, hsize), hsize);
4049 
4050 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4051 					      SKBTX_SHARED_FRAG;
4052 
4053 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4054 			goto err;
4055 
4056 		while (pos < offset + len) {
4057 			if (i >= nfrags) {
4058 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4059 				    skb_zerocopy_clone(nskb, list_skb,
4060 						       GFP_ATOMIC))
4061 					goto err;
4062 
4063 				i = 0;
4064 				nfrags = skb_shinfo(list_skb)->nr_frags;
4065 				frag = skb_shinfo(list_skb)->frags;
4066 				frag_skb = list_skb;
4067 				if (!skb_headlen(list_skb)) {
4068 					BUG_ON(!nfrags);
4069 				} else {
4070 					BUG_ON(!list_skb->head_frag);
4071 
4072 					/* to make room for head_frag. */
4073 					i--;
4074 					frag--;
4075 				}
4076 
4077 				list_skb = list_skb->next;
4078 			}
4079 
4080 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4081 				     MAX_SKB_FRAGS)) {
4082 				net_warn_ratelimited(
4083 					"skb_segment: too many frags: %u %u\n",
4084 					pos, mss);
4085 				err = -EINVAL;
4086 				goto err;
4087 			}
4088 
4089 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4090 			__skb_frag_ref(nskb_frag);
4091 			size = skb_frag_size(nskb_frag);
4092 
4093 			if (pos < offset) {
4094 				skb_frag_off_add(nskb_frag, offset - pos);
4095 				skb_frag_size_sub(nskb_frag, offset - pos);
4096 			}
4097 
4098 			skb_shinfo(nskb)->nr_frags++;
4099 
4100 			if (pos + size <= offset + len) {
4101 				i++;
4102 				frag++;
4103 				pos += size;
4104 			} else {
4105 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4106 				goto skip_fraglist;
4107 			}
4108 
4109 			nskb_frag++;
4110 		}
4111 
4112 skip_fraglist:
4113 		nskb->data_len = len - hsize;
4114 		nskb->len += nskb->data_len;
4115 		nskb->truesize += nskb->data_len;
4116 
4117 perform_csum_check:
4118 		if (!csum) {
4119 			if (skb_has_shared_frag(nskb) &&
4120 			    __skb_linearize(nskb))
4121 				goto err;
4122 
4123 			if (!nskb->remcsum_offload)
4124 				nskb->ip_summed = CHECKSUM_NONE;
4125 			SKB_GSO_CB(nskb)->csum =
4126 				skb_checksum(nskb, doffset,
4127 					     nskb->len - doffset, 0);
4128 			SKB_GSO_CB(nskb)->csum_start =
4129 				skb_headroom(nskb) + doffset;
4130 		}
4131 	} while ((offset += len) < head_skb->len);
4132 
4133 	/* Some callers want to get the end of the list.
4134 	 * Put it in segs->prev to avoid walking the list.
4135 	 * (see validate_xmit_skb_list() for example)
4136 	 */
4137 	segs->prev = tail;
4138 
4139 	if (partial_segs) {
4140 		struct sk_buff *iter;
4141 		int type = skb_shinfo(head_skb)->gso_type;
4142 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4143 
4144 		/* Update type to add partial and then remove dodgy if set */
4145 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4146 		type &= ~SKB_GSO_DODGY;
4147 
4148 		/* Update GSO info and prepare to start updating headers on
4149 		 * our way back down the stack of protocols.
4150 		 */
4151 		for (iter = segs; iter; iter = iter->next) {
4152 			skb_shinfo(iter)->gso_size = gso_size;
4153 			skb_shinfo(iter)->gso_segs = partial_segs;
4154 			skb_shinfo(iter)->gso_type = type;
4155 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4156 		}
4157 
4158 		if (tail->len - doffset <= gso_size)
4159 			skb_shinfo(tail)->gso_size = 0;
4160 		else if (tail != segs)
4161 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4162 	}
4163 
4164 	/* Following permits correct backpressure, for protocols
4165 	 * using skb_set_owner_w().
4166 	 * Idea is to tranfert ownership from head_skb to last segment.
4167 	 */
4168 	if (head_skb->destructor == sock_wfree) {
4169 		swap(tail->truesize, head_skb->truesize);
4170 		swap(tail->destructor, head_skb->destructor);
4171 		swap(tail->sk, head_skb->sk);
4172 	}
4173 	return segs;
4174 
4175 err:
4176 	kfree_skb_list(segs);
4177 	return ERR_PTR(err);
4178 }
4179 EXPORT_SYMBOL_GPL(skb_segment);
4180 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4181 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4182 {
4183 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4184 	unsigned int offset = skb_gro_offset(skb);
4185 	unsigned int headlen = skb_headlen(skb);
4186 	unsigned int len = skb_gro_len(skb);
4187 	unsigned int delta_truesize;
4188 	struct sk_buff *lp;
4189 
4190 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4191 		return -E2BIG;
4192 
4193 	lp = NAPI_GRO_CB(p)->last;
4194 	pinfo = skb_shinfo(lp);
4195 
4196 	if (headlen <= offset) {
4197 		skb_frag_t *frag;
4198 		skb_frag_t *frag2;
4199 		int i = skbinfo->nr_frags;
4200 		int nr_frags = pinfo->nr_frags + i;
4201 
4202 		if (nr_frags > MAX_SKB_FRAGS)
4203 			goto merge;
4204 
4205 		offset -= headlen;
4206 		pinfo->nr_frags = nr_frags;
4207 		skbinfo->nr_frags = 0;
4208 
4209 		frag = pinfo->frags + nr_frags;
4210 		frag2 = skbinfo->frags + i;
4211 		do {
4212 			*--frag = *--frag2;
4213 		} while (--i);
4214 
4215 		skb_frag_off_add(frag, offset);
4216 		skb_frag_size_sub(frag, offset);
4217 
4218 		/* all fragments truesize : remove (head size + sk_buff) */
4219 		delta_truesize = skb->truesize -
4220 				 SKB_TRUESIZE(skb_end_offset(skb));
4221 
4222 		skb->truesize -= skb->data_len;
4223 		skb->len -= skb->data_len;
4224 		skb->data_len = 0;
4225 
4226 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4227 		goto done;
4228 	} else if (skb->head_frag) {
4229 		int nr_frags = pinfo->nr_frags;
4230 		skb_frag_t *frag = pinfo->frags + nr_frags;
4231 		struct page *page = virt_to_head_page(skb->head);
4232 		unsigned int first_size = headlen - offset;
4233 		unsigned int first_offset;
4234 
4235 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4236 			goto merge;
4237 
4238 		first_offset = skb->data -
4239 			       (unsigned char *)page_address(page) +
4240 			       offset;
4241 
4242 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4243 
4244 		__skb_frag_set_page(frag, page);
4245 		skb_frag_off_set(frag, first_offset);
4246 		skb_frag_size_set(frag, first_size);
4247 
4248 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4249 		/* We dont need to clear skbinfo->nr_frags here */
4250 
4251 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4252 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4253 		goto done;
4254 	}
4255 
4256 merge:
4257 	delta_truesize = skb->truesize;
4258 	if (offset > headlen) {
4259 		unsigned int eat = offset - headlen;
4260 
4261 		skb_frag_off_add(&skbinfo->frags[0], eat);
4262 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4263 		skb->data_len -= eat;
4264 		skb->len -= eat;
4265 		offset = headlen;
4266 	}
4267 
4268 	__skb_pull(skb, offset);
4269 
4270 	if (NAPI_GRO_CB(p)->last == p)
4271 		skb_shinfo(p)->frag_list = skb;
4272 	else
4273 		NAPI_GRO_CB(p)->last->next = skb;
4274 	NAPI_GRO_CB(p)->last = skb;
4275 	__skb_header_release(skb);
4276 	lp = p;
4277 
4278 done:
4279 	NAPI_GRO_CB(p)->count++;
4280 	p->data_len += len;
4281 	p->truesize += delta_truesize;
4282 	p->len += len;
4283 	if (lp != p) {
4284 		lp->data_len += len;
4285 		lp->truesize += delta_truesize;
4286 		lp->len += len;
4287 	}
4288 	NAPI_GRO_CB(skb)->same_flow = 1;
4289 	return 0;
4290 }
4291 
4292 #ifdef CONFIG_SKB_EXTENSIONS
4293 #define SKB_EXT_ALIGN_VALUE	8
4294 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4295 
4296 static const u8 skb_ext_type_len[] = {
4297 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4298 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4299 #endif
4300 #ifdef CONFIG_XFRM
4301 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4302 #endif
4303 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4304 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4305 #endif
4306 #if IS_ENABLED(CONFIG_MPTCP)
4307 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4308 #endif
4309 };
4310 
skb_ext_total_length(void)4311 static __always_inline unsigned int skb_ext_total_length(void)
4312 {
4313 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4314 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4315 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4316 #endif
4317 #ifdef CONFIG_XFRM
4318 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4319 #endif
4320 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4321 		skb_ext_type_len[TC_SKB_EXT] +
4322 #endif
4323 #if IS_ENABLED(CONFIG_MPTCP)
4324 		skb_ext_type_len[SKB_EXT_MPTCP] +
4325 #endif
4326 		0;
4327 }
4328 
skb_extensions_init(void)4329 static void skb_extensions_init(void)
4330 {
4331 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4332 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4333 
4334 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4335 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4336 					     0,
4337 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4338 					     NULL);
4339 }
4340 #else
skb_extensions_init(void)4341 static void skb_extensions_init(void) {}
4342 #endif
4343 
skb_init(void)4344 void __init skb_init(void)
4345 {
4346 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4347 					      sizeof(struct sk_buff),
4348 					      0,
4349 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4350 					      offsetof(struct sk_buff, cb),
4351 					      sizeof_field(struct sk_buff, cb),
4352 					      NULL);
4353 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4354 						sizeof(struct sk_buff_fclones),
4355 						0,
4356 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4357 						NULL);
4358 	skb_extensions_init();
4359 }
4360 
4361 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4362 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4363 	       unsigned int recursion_level)
4364 {
4365 	int start = skb_headlen(skb);
4366 	int i, copy = start - offset;
4367 	struct sk_buff *frag_iter;
4368 	int elt = 0;
4369 
4370 	if (unlikely(recursion_level >= 24))
4371 		return -EMSGSIZE;
4372 
4373 	if (copy > 0) {
4374 		if (copy > len)
4375 			copy = len;
4376 		sg_set_buf(sg, skb->data + offset, copy);
4377 		elt++;
4378 		if ((len -= copy) == 0)
4379 			return elt;
4380 		offset += copy;
4381 	}
4382 
4383 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4384 		int end;
4385 
4386 		WARN_ON(start > offset + len);
4387 
4388 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4389 		if ((copy = end - offset) > 0) {
4390 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4391 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4392 				return -EMSGSIZE;
4393 
4394 			if (copy > len)
4395 				copy = len;
4396 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4397 				    skb_frag_off(frag) + offset - start);
4398 			elt++;
4399 			if (!(len -= copy))
4400 				return elt;
4401 			offset += copy;
4402 		}
4403 		start = end;
4404 	}
4405 
4406 	skb_walk_frags(skb, frag_iter) {
4407 		int end, ret;
4408 
4409 		WARN_ON(start > offset + len);
4410 
4411 		end = start + frag_iter->len;
4412 		if ((copy = end - offset) > 0) {
4413 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4414 				return -EMSGSIZE;
4415 
4416 			if (copy > len)
4417 				copy = len;
4418 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4419 					      copy, recursion_level + 1);
4420 			if (unlikely(ret < 0))
4421 				return ret;
4422 			elt += ret;
4423 			if ((len -= copy) == 0)
4424 				return elt;
4425 			offset += copy;
4426 		}
4427 		start = end;
4428 	}
4429 	BUG_ON(len);
4430 	return elt;
4431 }
4432 
4433 /**
4434  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4435  *	@skb: Socket buffer containing the buffers to be mapped
4436  *	@sg: The scatter-gather list to map into
4437  *	@offset: The offset into the buffer's contents to start mapping
4438  *	@len: Length of buffer space to be mapped
4439  *
4440  *	Fill the specified scatter-gather list with mappings/pointers into a
4441  *	region of the buffer space attached to a socket buffer. Returns either
4442  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4443  *	could not fit.
4444  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4445 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4446 {
4447 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4448 
4449 	if (nsg <= 0)
4450 		return nsg;
4451 
4452 	sg_mark_end(&sg[nsg - 1]);
4453 
4454 	return nsg;
4455 }
4456 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4457 
4458 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4459  * sglist without mark the sg which contain last skb data as the end.
4460  * So the caller can mannipulate sg list as will when padding new data after
4461  * the first call without calling sg_unmark_end to expend sg list.
4462  *
4463  * Scenario to use skb_to_sgvec_nomark:
4464  * 1. sg_init_table
4465  * 2. skb_to_sgvec_nomark(payload1)
4466  * 3. skb_to_sgvec_nomark(payload2)
4467  *
4468  * This is equivalent to:
4469  * 1. sg_init_table
4470  * 2. skb_to_sgvec(payload1)
4471  * 3. sg_unmark_end
4472  * 4. skb_to_sgvec(payload2)
4473  *
4474  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4475  * is more preferable.
4476  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4477 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4478 			int offset, int len)
4479 {
4480 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4481 }
4482 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4483 
4484 
4485 
4486 /**
4487  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4488  *	@skb: The socket buffer to check.
4489  *	@tailbits: Amount of trailing space to be added
4490  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4491  *
4492  *	Make sure that the data buffers attached to a socket buffer are
4493  *	writable. If they are not, private copies are made of the data buffers
4494  *	and the socket buffer is set to use these instead.
4495  *
4496  *	If @tailbits is given, make sure that there is space to write @tailbits
4497  *	bytes of data beyond current end of socket buffer.  @trailer will be
4498  *	set to point to the skb in which this space begins.
4499  *
4500  *	The number of scatterlist elements required to completely map the
4501  *	COW'd and extended socket buffer will be returned.
4502  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4503 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4504 {
4505 	int copyflag;
4506 	int elt;
4507 	struct sk_buff *skb1, **skb_p;
4508 
4509 	/* If skb is cloned or its head is paged, reallocate
4510 	 * head pulling out all the pages (pages are considered not writable
4511 	 * at the moment even if they are anonymous).
4512 	 */
4513 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4514 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4515 		return -ENOMEM;
4516 
4517 	/* Easy case. Most of packets will go this way. */
4518 	if (!skb_has_frag_list(skb)) {
4519 		/* A little of trouble, not enough of space for trailer.
4520 		 * This should not happen, when stack is tuned to generate
4521 		 * good frames. OK, on miss we reallocate and reserve even more
4522 		 * space, 128 bytes is fair. */
4523 
4524 		if (skb_tailroom(skb) < tailbits &&
4525 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4526 			return -ENOMEM;
4527 
4528 		/* Voila! */
4529 		*trailer = skb;
4530 		return 1;
4531 	}
4532 
4533 	/* Misery. We are in troubles, going to mincer fragments... */
4534 
4535 	elt = 1;
4536 	skb_p = &skb_shinfo(skb)->frag_list;
4537 	copyflag = 0;
4538 
4539 	while ((skb1 = *skb_p) != NULL) {
4540 		int ntail = 0;
4541 
4542 		/* The fragment is partially pulled by someone,
4543 		 * this can happen on input. Copy it and everything
4544 		 * after it. */
4545 
4546 		if (skb_shared(skb1))
4547 			copyflag = 1;
4548 
4549 		/* If the skb is the last, worry about trailer. */
4550 
4551 		if (skb1->next == NULL && tailbits) {
4552 			if (skb_shinfo(skb1)->nr_frags ||
4553 			    skb_has_frag_list(skb1) ||
4554 			    skb_tailroom(skb1) < tailbits)
4555 				ntail = tailbits + 128;
4556 		}
4557 
4558 		if (copyflag ||
4559 		    skb_cloned(skb1) ||
4560 		    ntail ||
4561 		    skb_shinfo(skb1)->nr_frags ||
4562 		    skb_has_frag_list(skb1)) {
4563 			struct sk_buff *skb2;
4564 
4565 			/* Fuck, we are miserable poor guys... */
4566 			if (ntail == 0)
4567 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4568 			else
4569 				skb2 = skb_copy_expand(skb1,
4570 						       skb_headroom(skb1),
4571 						       ntail,
4572 						       GFP_ATOMIC);
4573 			if (unlikely(skb2 == NULL))
4574 				return -ENOMEM;
4575 
4576 			if (skb1->sk)
4577 				skb_set_owner_w(skb2, skb1->sk);
4578 
4579 			/* Looking around. Are we still alive?
4580 			 * OK, link new skb, drop old one */
4581 
4582 			skb2->next = skb1->next;
4583 			*skb_p = skb2;
4584 			kfree_skb(skb1);
4585 			skb1 = skb2;
4586 		}
4587 		elt++;
4588 		*trailer = skb1;
4589 		skb_p = &skb1->next;
4590 	}
4591 
4592 	return elt;
4593 }
4594 EXPORT_SYMBOL_GPL(skb_cow_data);
4595 
sock_rmem_free(struct sk_buff * skb)4596 static void sock_rmem_free(struct sk_buff *skb)
4597 {
4598 	struct sock *sk = skb->sk;
4599 
4600 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4601 }
4602 
skb_set_err_queue(struct sk_buff * skb)4603 static void skb_set_err_queue(struct sk_buff *skb)
4604 {
4605 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4606 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4607 	 */
4608 	skb->pkt_type = PACKET_OUTGOING;
4609 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4610 }
4611 
4612 /*
4613  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4614  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4615 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4616 {
4617 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4618 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4619 		return -ENOMEM;
4620 
4621 	skb_orphan(skb);
4622 	skb->sk = sk;
4623 	skb->destructor = sock_rmem_free;
4624 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4625 	skb_set_err_queue(skb);
4626 
4627 	/* before exiting rcu section, make sure dst is refcounted */
4628 	skb_dst_force(skb);
4629 
4630 	skb_queue_tail(&sk->sk_error_queue, skb);
4631 	if (!sock_flag(sk, SOCK_DEAD))
4632 		sk->sk_error_report(sk);
4633 	return 0;
4634 }
4635 EXPORT_SYMBOL(sock_queue_err_skb);
4636 
is_icmp_err_skb(const struct sk_buff * skb)4637 static bool is_icmp_err_skb(const struct sk_buff *skb)
4638 {
4639 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4640 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4641 }
4642 
sock_dequeue_err_skb(struct sock * sk)4643 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4644 {
4645 	struct sk_buff_head *q = &sk->sk_error_queue;
4646 	struct sk_buff *skb, *skb_next = NULL;
4647 	bool icmp_next = false;
4648 	unsigned long flags;
4649 
4650 	spin_lock_irqsave(&q->lock, flags);
4651 	skb = __skb_dequeue(q);
4652 	if (skb && (skb_next = skb_peek(q))) {
4653 		icmp_next = is_icmp_err_skb(skb_next);
4654 		if (icmp_next)
4655 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4656 	}
4657 	spin_unlock_irqrestore(&q->lock, flags);
4658 
4659 	if (is_icmp_err_skb(skb) && !icmp_next)
4660 		sk->sk_err = 0;
4661 
4662 	if (skb_next)
4663 		sk->sk_error_report(sk);
4664 
4665 	return skb;
4666 }
4667 EXPORT_SYMBOL(sock_dequeue_err_skb);
4668 
4669 /**
4670  * skb_clone_sk - create clone of skb, and take reference to socket
4671  * @skb: the skb to clone
4672  *
4673  * This function creates a clone of a buffer that holds a reference on
4674  * sk_refcnt.  Buffers created via this function are meant to be
4675  * returned using sock_queue_err_skb, or free via kfree_skb.
4676  *
4677  * When passing buffers allocated with this function to sock_queue_err_skb
4678  * it is necessary to wrap the call with sock_hold/sock_put in order to
4679  * prevent the socket from being released prior to being enqueued on
4680  * the sk_error_queue.
4681  */
skb_clone_sk(struct sk_buff * skb)4682 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4683 {
4684 	struct sock *sk = skb->sk;
4685 	struct sk_buff *clone;
4686 
4687 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4688 		return NULL;
4689 
4690 	clone = skb_clone(skb, GFP_ATOMIC);
4691 	if (!clone) {
4692 		sock_put(sk);
4693 		return NULL;
4694 	}
4695 
4696 	clone->sk = sk;
4697 	clone->destructor = sock_efree;
4698 
4699 	return clone;
4700 }
4701 EXPORT_SYMBOL(skb_clone_sk);
4702 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4703 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4704 					struct sock *sk,
4705 					int tstype,
4706 					bool opt_stats)
4707 {
4708 	struct sock_exterr_skb *serr;
4709 	int err;
4710 
4711 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4712 
4713 	serr = SKB_EXT_ERR(skb);
4714 	memset(serr, 0, sizeof(*serr));
4715 	serr->ee.ee_errno = ENOMSG;
4716 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4717 	serr->ee.ee_info = tstype;
4718 	serr->opt_stats = opt_stats;
4719 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4720 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4721 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4722 		if (sk->sk_protocol == IPPROTO_TCP &&
4723 		    sk->sk_type == SOCK_STREAM)
4724 			serr->ee.ee_data -= sk->sk_tskey;
4725 	}
4726 
4727 	err = sock_queue_err_skb(sk, skb);
4728 
4729 	if (err)
4730 		kfree_skb(skb);
4731 }
4732 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4733 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4734 {
4735 	bool ret;
4736 
4737 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4738 		return true;
4739 
4740 	read_lock_bh(&sk->sk_callback_lock);
4741 	ret = sk->sk_socket && sk->sk_socket->file &&
4742 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4743 	read_unlock_bh(&sk->sk_callback_lock);
4744 	return ret;
4745 }
4746 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4747 void skb_complete_tx_timestamp(struct sk_buff *skb,
4748 			       struct skb_shared_hwtstamps *hwtstamps)
4749 {
4750 	struct sock *sk = skb->sk;
4751 
4752 	if (!skb_may_tx_timestamp(sk, false))
4753 		goto err;
4754 
4755 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4756 	 * but only if the socket refcount is not zero.
4757 	 */
4758 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4759 		*skb_hwtstamps(skb) = *hwtstamps;
4760 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4761 		sock_put(sk);
4762 		return;
4763 	}
4764 
4765 err:
4766 	kfree_skb(skb);
4767 }
4768 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4769 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4770 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4771 		     struct skb_shared_hwtstamps *hwtstamps,
4772 		     struct sock *sk, int tstype)
4773 {
4774 	struct sk_buff *skb;
4775 	bool tsonly, opt_stats = false;
4776 
4777 	if (!sk)
4778 		return;
4779 
4780 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4781 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4782 		return;
4783 
4784 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4785 	if (!skb_may_tx_timestamp(sk, tsonly))
4786 		return;
4787 
4788 	if (tsonly) {
4789 #ifdef CONFIG_INET
4790 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4791 		    sk->sk_protocol == IPPROTO_TCP &&
4792 		    sk->sk_type == SOCK_STREAM) {
4793 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4794 			opt_stats = true;
4795 		} else
4796 #endif
4797 			skb = alloc_skb(0, GFP_ATOMIC);
4798 	} else {
4799 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4800 
4801 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
4802 			kfree_skb(skb);
4803 			return;
4804 		}
4805 	}
4806 	if (!skb)
4807 		return;
4808 
4809 	if (tsonly) {
4810 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4811 					     SKBTX_ANY_TSTAMP;
4812 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4813 	}
4814 
4815 	if (hwtstamps)
4816 		*skb_hwtstamps(skb) = *hwtstamps;
4817 	else
4818 		skb->tstamp = ktime_get_real();
4819 
4820 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4821 }
4822 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4823 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4824 void skb_tstamp_tx(struct sk_buff *orig_skb,
4825 		   struct skb_shared_hwtstamps *hwtstamps)
4826 {
4827 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4828 			       SCM_TSTAMP_SND);
4829 }
4830 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4831 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4832 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4833 {
4834 	struct sock *sk = skb->sk;
4835 	struct sock_exterr_skb *serr;
4836 	int err = 1;
4837 
4838 	skb->wifi_acked_valid = 1;
4839 	skb->wifi_acked = acked;
4840 
4841 	serr = SKB_EXT_ERR(skb);
4842 	memset(serr, 0, sizeof(*serr));
4843 	serr->ee.ee_errno = ENOMSG;
4844 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4845 
4846 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4847 	 * but only if the socket refcount is not zero.
4848 	 */
4849 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4850 		err = sock_queue_err_skb(sk, skb);
4851 		sock_put(sk);
4852 	}
4853 	if (err)
4854 		kfree_skb(skb);
4855 }
4856 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4857 
4858 /**
4859  * skb_partial_csum_set - set up and verify partial csum values for packet
4860  * @skb: the skb to set
4861  * @start: the number of bytes after skb->data to start checksumming.
4862  * @off: the offset from start to place the checksum.
4863  *
4864  * For untrusted partially-checksummed packets, we need to make sure the values
4865  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4866  *
4867  * This function checks and sets those values and skb->ip_summed: if this
4868  * returns false you should drop the packet.
4869  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4870 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4871 {
4872 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4873 	u32 csum_start = skb_headroom(skb) + (u32)start;
4874 
4875 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4876 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4877 				     start, off, skb_headroom(skb), skb_headlen(skb));
4878 		return false;
4879 	}
4880 	skb->ip_summed = CHECKSUM_PARTIAL;
4881 	skb->csum_start = csum_start;
4882 	skb->csum_offset = off;
4883 	skb_set_transport_header(skb, start);
4884 	return true;
4885 }
4886 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4887 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4888 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4889 			       unsigned int max)
4890 {
4891 	if (skb_headlen(skb) >= len)
4892 		return 0;
4893 
4894 	/* If we need to pullup then pullup to the max, so we
4895 	 * won't need to do it again.
4896 	 */
4897 	if (max > skb->len)
4898 		max = skb->len;
4899 
4900 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4901 		return -ENOMEM;
4902 
4903 	if (skb_headlen(skb) < len)
4904 		return -EPROTO;
4905 
4906 	return 0;
4907 }
4908 
4909 #define MAX_TCP_HDR_LEN (15 * 4)
4910 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4911 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4912 				      typeof(IPPROTO_IP) proto,
4913 				      unsigned int off)
4914 {
4915 	int err;
4916 
4917 	switch (proto) {
4918 	case IPPROTO_TCP:
4919 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4920 					  off + MAX_TCP_HDR_LEN);
4921 		if (!err && !skb_partial_csum_set(skb, off,
4922 						  offsetof(struct tcphdr,
4923 							   check)))
4924 			err = -EPROTO;
4925 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4926 
4927 	case IPPROTO_UDP:
4928 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4929 					  off + sizeof(struct udphdr));
4930 		if (!err && !skb_partial_csum_set(skb, off,
4931 						  offsetof(struct udphdr,
4932 							   check)))
4933 			err = -EPROTO;
4934 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4935 	}
4936 
4937 	return ERR_PTR(-EPROTO);
4938 }
4939 
4940 /* This value should be large enough to cover a tagged ethernet header plus
4941  * maximally sized IP and TCP or UDP headers.
4942  */
4943 #define MAX_IP_HDR_LEN 128
4944 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4945 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4946 {
4947 	unsigned int off;
4948 	bool fragment;
4949 	__sum16 *csum;
4950 	int err;
4951 
4952 	fragment = false;
4953 
4954 	err = skb_maybe_pull_tail(skb,
4955 				  sizeof(struct iphdr),
4956 				  MAX_IP_HDR_LEN);
4957 	if (err < 0)
4958 		goto out;
4959 
4960 	if (ip_is_fragment(ip_hdr(skb)))
4961 		fragment = true;
4962 
4963 	off = ip_hdrlen(skb);
4964 
4965 	err = -EPROTO;
4966 
4967 	if (fragment)
4968 		goto out;
4969 
4970 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4971 	if (IS_ERR(csum))
4972 		return PTR_ERR(csum);
4973 
4974 	if (recalculate)
4975 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4976 					   ip_hdr(skb)->daddr,
4977 					   skb->len - off,
4978 					   ip_hdr(skb)->protocol, 0);
4979 	err = 0;
4980 
4981 out:
4982 	return err;
4983 }
4984 
4985 /* This value should be large enough to cover a tagged ethernet header plus
4986  * an IPv6 header, all options, and a maximal TCP or UDP header.
4987  */
4988 #define MAX_IPV6_HDR_LEN 256
4989 
4990 #define OPT_HDR(type, skb, off) \
4991 	(type *)(skb_network_header(skb) + (off))
4992 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4993 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4994 {
4995 	int err;
4996 	u8 nexthdr;
4997 	unsigned int off;
4998 	unsigned int len;
4999 	bool fragment;
5000 	bool done;
5001 	__sum16 *csum;
5002 
5003 	fragment = false;
5004 	done = false;
5005 
5006 	off = sizeof(struct ipv6hdr);
5007 
5008 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5009 	if (err < 0)
5010 		goto out;
5011 
5012 	nexthdr = ipv6_hdr(skb)->nexthdr;
5013 
5014 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5015 	while (off <= len && !done) {
5016 		switch (nexthdr) {
5017 		case IPPROTO_DSTOPTS:
5018 		case IPPROTO_HOPOPTS:
5019 		case IPPROTO_ROUTING: {
5020 			struct ipv6_opt_hdr *hp;
5021 
5022 			err = skb_maybe_pull_tail(skb,
5023 						  off +
5024 						  sizeof(struct ipv6_opt_hdr),
5025 						  MAX_IPV6_HDR_LEN);
5026 			if (err < 0)
5027 				goto out;
5028 
5029 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5030 			nexthdr = hp->nexthdr;
5031 			off += ipv6_optlen(hp);
5032 			break;
5033 		}
5034 		case IPPROTO_AH: {
5035 			struct ip_auth_hdr *hp;
5036 
5037 			err = skb_maybe_pull_tail(skb,
5038 						  off +
5039 						  sizeof(struct ip_auth_hdr),
5040 						  MAX_IPV6_HDR_LEN);
5041 			if (err < 0)
5042 				goto out;
5043 
5044 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5045 			nexthdr = hp->nexthdr;
5046 			off += ipv6_authlen(hp);
5047 			break;
5048 		}
5049 		case IPPROTO_FRAGMENT: {
5050 			struct frag_hdr *hp;
5051 
5052 			err = skb_maybe_pull_tail(skb,
5053 						  off +
5054 						  sizeof(struct frag_hdr),
5055 						  MAX_IPV6_HDR_LEN);
5056 			if (err < 0)
5057 				goto out;
5058 
5059 			hp = OPT_HDR(struct frag_hdr, skb, off);
5060 
5061 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5062 				fragment = true;
5063 
5064 			nexthdr = hp->nexthdr;
5065 			off += sizeof(struct frag_hdr);
5066 			break;
5067 		}
5068 		default:
5069 			done = true;
5070 			break;
5071 		}
5072 	}
5073 
5074 	err = -EPROTO;
5075 
5076 	if (!done || fragment)
5077 		goto out;
5078 
5079 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5080 	if (IS_ERR(csum))
5081 		return PTR_ERR(csum);
5082 
5083 	if (recalculate)
5084 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5085 					 &ipv6_hdr(skb)->daddr,
5086 					 skb->len - off, nexthdr, 0);
5087 	err = 0;
5088 
5089 out:
5090 	return err;
5091 }
5092 
5093 /**
5094  * skb_checksum_setup - set up partial checksum offset
5095  * @skb: the skb to set up
5096  * @recalculate: if true the pseudo-header checksum will be recalculated
5097  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5098 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5099 {
5100 	int err;
5101 
5102 	switch (skb->protocol) {
5103 	case htons(ETH_P_IP):
5104 		err = skb_checksum_setup_ipv4(skb, recalculate);
5105 		break;
5106 
5107 	case htons(ETH_P_IPV6):
5108 		err = skb_checksum_setup_ipv6(skb, recalculate);
5109 		break;
5110 
5111 	default:
5112 		err = -EPROTO;
5113 		break;
5114 	}
5115 
5116 	return err;
5117 }
5118 EXPORT_SYMBOL(skb_checksum_setup);
5119 
5120 /**
5121  * skb_checksum_maybe_trim - maybe trims the given skb
5122  * @skb: the skb to check
5123  * @transport_len: the data length beyond the network header
5124  *
5125  * Checks whether the given skb has data beyond the given transport length.
5126  * If so, returns a cloned skb trimmed to this transport length.
5127  * Otherwise returns the provided skb. Returns NULL in error cases
5128  * (e.g. transport_len exceeds skb length or out-of-memory).
5129  *
5130  * Caller needs to set the skb transport header and free any returned skb if it
5131  * differs from the provided skb.
5132  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5133 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5134 					       unsigned int transport_len)
5135 {
5136 	struct sk_buff *skb_chk;
5137 	unsigned int len = skb_transport_offset(skb) + transport_len;
5138 	int ret;
5139 
5140 	if (skb->len < len)
5141 		return NULL;
5142 	else if (skb->len == len)
5143 		return skb;
5144 
5145 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5146 	if (!skb_chk)
5147 		return NULL;
5148 
5149 	ret = pskb_trim_rcsum(skb_chk, len);
5150 	if (ret) {
5151 		kfree_skb(skb_chk);
5152 		return NULL;
5153 	}
5154 
5155 	return skb_chk;
5156 }
5157 
5158 /**
5159  * skb_checksum_trimmed - validate checksum of an skb
5160  * @skb: the skb to check
5161  * @transport_len: the data length beyond the network header
5162  * @skb_chkf: checksum function to use
5163  *
5164  * Applies the given checksum function skb_chkf to the provided skb.
5165  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5166  *
5167  * If the skb has data beyond the given transport length, then a
5168  * trimmed & cloned skb is checked and returned.
5169  *
5170  * Caller needs to set the skb transport header and free any returned skb if it
5171  * differs from the provided skb.
5172  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5173 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5174 				     unsigned int transport_len,
5175 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5176 {
5177 	struct sk_buff *skb_chk;
5178 	unsigned int offset = skb_transport_offset(skb);
5179 	__sum16 ret;
5180 
5181 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5182 	if (!skb_chk)
5183 		goto err;
5184 
5185 	if (!pskb_may_pull(skb_chk, offset))
5186 		goto err;
5187 
5188 	skb_pull_rcsum(skb_chk, offset);
5189 	ret = skb_chkf(skb_chk);
5190 	skb_push_rcsum(skb_chk, offset);
5191 
5192 	if (ret)
5193 		goto err;
5194 
5195 	return skb_chk;
5196 
5197 err:
5198 	if (skb_chk && skb_chk != skb)
5199 		kfree_skb(skb_chk);
5200 
5201 	return NULL;
5202 
5203 }
5204 EXPORT_SYMBOL(skb_checksum_trimmed);
5205 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5206 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5207 {
5208 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5209 			     skb->dev->name);
5210 }
5211 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5212 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5213 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5214 {
5215 	if (head_stolen) {
5216 		skb_release_head_state(skb);
5217 		kmem_cache_free(skbuff_head_cache, skb);
5218 	} else {
5219 		__kfree_skb(skb);
5220 	}
5221 }
5222 EXPORT_SYMBOL(kfree_skb_partial);
5223 
5224 /**
5225  * skb_try_coalesce - try to merge skb to prior one
5226  * @to: prior buffer
5227  * @from: buffer to add
5228  * @fragstolen: pointer to boolean
5229  * @delta_truesize: how much more was allocated than was requested
5230  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5231 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5232 		      bool *fragstolen, int *delta_truesize)
5233 {
5234 	struct skb_shared_info *to_shinfo, *from_shinfo;
5235 	int i, delta, len = from->len;
5236 
5237 	*fragstolen = false;
5238 
5239 	if (skb_cloned(to))
5240 		return false;
5241 
5242 	if (len <= skb_tailroom(to)) {
5243 		if (len)
5244 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5245 		*delta_truesize = 0;
5246 		return true;
5247 	}
5248 
5249 	to_shinfo = skb_shinfo(to);
5250 	from_shinfo = skb_shinfo(from);
5251 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5252 		return false;
5253 	if (skb_zcopy(to) || skb_zcopy(from))
5254 		return false;
5255 
5256 	if (skb_headlen(from) != 0) {
5257 		struct page *page;
5258 		unsigned int offset;
5259 
5260 		if (to_shinfo->nr_frags +
5261 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5262 			return false;
5263 
5264 		if (skb_head_is_locked(from))
5265 			return false;
5266 
5267 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5268 
5269 		page = virt_to_head_page(from->head);
5270 		offset = from->data - (unsigned char *)page_address(page);
5271 
5272 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5273 				   page, offset, skb_headlen(from));
5274 		*fragstolen = true;
5275 	} else {
5276 		if (to_shinfo->nr_frags +
5277 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5278 			return false;
5279 
5280 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5281 	}
5282 
5283 	WARN_ON_ONCE(delta < len);
5284 
5285 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5286 	       from_shinfo->frags,
5287 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5288 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5289 
5290 	if (!skb_cloned(from))
5291 		from_shinfo->nr_frags = 0;
5292 
5293 	/* if the skb is not cloned this does nothing
5294 	 * since we set nr_frags to 0.
5295 	 */
5296 	for (i = 0; i < from_shinfo->nr_frags; i++)
5297 		__skb_frag_ref(&from_shinfo->frags[i]);
5298 
5299 	to->truesize += delta;
5300 	to->len += len;
5301 	to->data_len += len;
5302 
5303 	*delta_truesize = delta;
5304 	return true;
5305 }
5306 EXPORT_SYMBOL(skb_try_coalesce);
5307 
5308 /**
5309  * skb_scrub_packet - scrub an skb
5310  *
5311  * @skb: buffer to clean
5312  * @xnet: packet is crossing netns
5313  *
5314  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5315  * into/from a tunnel. Some information have to be cleared during these
5316  * operations.
5317  * skb_scrub_packet can also be used to clean a skb before injecting it in
5318  * another namespace (@xnet == true). We have to clear all information in the
5319  * skb that could impact namespace isolation.
5320  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5321 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5322 {
5323 	skb->pkt_type = PACKET_HOST;
5324 	skb->skb_iif = 0;
5325 	skb->ignore_df = 0;
5326 	skb_dst_drop(skb);
5327 	skb_ext_reset(skb);
5328 	nf_reset_ct(skb);
5329 	nf_reset_trace(skb);
5330 
5331 #ifdef CONFIG_NET_SWITCHDEV
5332 	skb->offload_fwd_mark = 0;
5333 	skb->offload_l3_fwd_mark = 0;
5334 #endif
5335 
5336 	if (!xnet)
5337 		return;
5338 
5339 	ipvs_reset(skb);
5340 	skb->mark = 0;
5341 	skb->tstamp = 0;
5342 }
5343 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5344 
5345 /**
5346  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5347  *
5348  * @skb: GSO skb
5349  *
5350  * skb_gso_transport_seglen is used to determine the real size of the
5351  * individual segments, including Layer4 headers (TCP/UDP).
5352  *
5353  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5354  */
skb_gso_transport_seglen(const struct sk_buff * skb)5355 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5356 {
5357 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5358 	unsigned int thlen = 0;
5359 
5360 	if (skb->encapsulation) {
5361 		thlen = skb_inner_transport_header(skb) -
5362 			skb_transport_header(skb);
5363 
5364 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5365 			thlen += inner_tcp_hdrlen(skb);
5366 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5367 		thlen = tcp_hdrlen(skb);
5368 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5369 		thlen = sizeof(struct sctphdr);
5370 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5371 		thlen = sizeof(struct udphdr);
5372 	}
5373 	/* UFO sets gso_size to the size of the fragmentation
5374 	 * payload, i.e. the size of the L4 (UDP) header is already
5375 	 * accounted for.
5376 	 */
5377 	return thlen + shinfo->gso_size;
5378 }
5379 
5380 /**
5381  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5382  *
5383  * @skb: GSO skb
5384  *
5385  * skb_gso_network_seglen is used to determine the real size of the
5386  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5387  *
5388  * The MAC/L2 header is not accounted for.
5389  */
skb_gso_network_seglen(const struct sk_buff * skb)5390 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5391 {
5392 	unsigned int hdr_len = skb_transport_header(skb) -
5393 			       skb_network_header(skb);
5394 
5395 	return hdr_len + skb_gso_transport_seglen(skb);
5396 }
5397 
5398 /**
5399  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5400  *
5401  * @skb: GSO skb
5402  *
5403  * skb_gso_mac_seglen is used to determine the real size of the
5404  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5405  * headers (TCP/UDP).
5406  */
skb_gso_mac_seglen(const struct sk_buff * skb)5407 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5408 {
5409 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5410 
5411 	return hdr_len + skb_gso_transport_seglen(skb);
5412 }
5413 
5414 /**
5415  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5416  *
5417  * There are a couple of instances where we have a GSO skb, and we
5418  * want to determine what size it would be after it is segmented.
5419  *
5420  * We might want to check:
5421  * -    L3+L4+payload size (e.g. IP forwarding)
5422  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5423  *
5424  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5425  *
5426  * @skb: GSO skb
5427  *
5428  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5429  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5430  *
5431  * @max_len: The maximum permissible length.
5432  *
5433  * Returns true if the segmented length <= max length.
5434  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5435 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5436 				      unsigned int seg_len,
5437 				      unsigned int max_len) {
5438 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5439 	const struct sk_buff *iter;
5440 
5441 	if (shinfo->gso_size != GSO_BY_FRAGS)
5442 		return seg_len <= max_len;
5443 
5444 	/* Undo this so we can re-use header sizes */
5445 	seg_len -= GSO_BY_FRAGS;
5446 
5447 	skb_walk_frags(skb, iter) {
5448 		if (seg_len + skb_headlen(iter) > max_len)
5449 			return false;
5450 	}
5451 
5452 	return true;
5453 }
5454 
5455 /**
5456  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5457  *
5458  * @skb: GSO skb
5459  * @mtu: MTU to validate against
5460  *
5461  * skb_gso_validate_network_len validates if a given skb will fit a
5462  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5463  * payload.
5464  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5465 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5466 {
5467 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5468 }
5469 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5470 
5471 /**
5472  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5473  *
5474  * @skb: GSO skb
5475  * @len: length to validate against
5476  *
5477  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5478  * length once split, including L2, L3 and L4 headers and the payload.
5479  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5480 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5481 {
5482 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5483 }
5484 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5485 
skb_reorder_vlan_header(struct sk_buff * skb)5486 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5487 {
5488 	int mac_len, meta_len;
5489 	void *meta;
5490 
5491 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5492 		kfree_skb(skb);
5493 		return NULL;
5494 	}
5495 
5496 	mac_len = skb->data - skb_mac_header(skb);
5497 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5498 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5499 			mac_len - VLAN_HLEN - ETH_TLEN);
5500 	}
5501 
5502 	meta_len = skb_metadata_len(skb);
5503 	if (meta_len) {
5504 		meta = skb_metadata_end(skb) - meta_len;
5505 		memmove(meta + VLAN_HLEN, meta, meta_len);
5506 	}
5507 
5508 	skb->mac_header += VLAN_HLEN;
5509 	return skb;
5510 }
5511 
skb_vlan_untag(struct sk_buff * skb)5512 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5513 {
5514 	struct vlan_hdr *vhdr;
5515 	u16 vlan_tci;
5516 
5517 	if (unlikely(skb_vlan_tag_present(skb))) {
5518 		/* vlan_tci is already set-up so leave this for another time */
5519 		return skb;
5520 	}
5521 
5522 	skb = skb_share_check(skb, GFP_ATOMIC);
5523 	if (unlikely(!skb))
5524 		goto err_free;
5525 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5526 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5527 		goto err_free;
5528 
5529 	vhdr = (struct vlan_hdr *)skb->data;
5530 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5531 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5532 
5533 	skb_pull_rcsum(skb, VLAN_HLEN);
5534 	vlan_set_encap_proto(skb, vhdr);
5535 
5536 	skb = skb_reorder_vlan_header(skb);
5537 	if (unlikely(!skb))
5538 		goto err_free;
5539 
5540 	skb_reset_network_header(skb);
5541 	skb_reset_transport_header(skb);
5542 	skb_reset_mac_len(skb);
5543 
5544 	return skb;
5545 
5546 err_free:
5547 	kfree_skb(skb);
5548 	return NULL;
5549 }
5550 EXPORT_SYMBOL(skb_vlan_untag);
5551 
skb_ensure_writable(struct sk_buff * skb,int write_len)5552 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5553 {
5554 	if (!pskb_may_pull(skb, write_len))
5555 		return -ENOMEM;
5556 
5557 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5558 		return 0;
5559 
5560 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5561 }
5562 EXPORT_SYMBOL(skb_ensure_writable);
5563 
5564 /* remove VLAN header from packet and update csum accordingly.
5565  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5566  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5567 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5568 {
5569 	struct vlan_hdr *vhdr;
5570 	int offset = skb->data - skb_mac_header(skb);
5571 	int err;
5572 
5573 	if (WARN_ONCE(offset,
5574 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5575 		      offset)) {
5576 		return -EINVAL;
5577 	}
5578 
5579 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5580 	if (unlikely(err))
5581 		return err;
5582 
5583 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5584 
5585 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5586 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5587 
5588 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5589 	__skb_pull(skb, VLAN_HLEN);
5590 
5591 	vlan_set_encap_proto(skb, vhdr);
5592 	skb->mac_header += VLAN_HLEN;
5593 
5594 	if (skb_network_offset(skb) < ETH_HLEN)
5595 		skb_set_network_header(skb, ETH_HLEN);
5596 
5597 	skb_reset_mac_len(skb);
5598 
5599 	return err;
5600 }
5601 EXPORT_SYMBOL(__skb_vlan_pop);
5602 
5603 /* Pop a vlan tag either from hwaccel or from payload.
5604  * Expects skb->data at mac header.
5605  */
skb_vlan_pop(struct sk_buff * skb)5606 int skb_vlan_pop(struct sk_buff *skb)
5607 {
5608 	u16 vlan_tci;
5609 	__be16 vlan_proto;
5610 	int err;
5611 
5612 	if (likely(skb_vlan_tag_present(skb))) {
5613 		__vlan_hwaccel_clear_tag(skb);
5614 	} else {
5615 		if (unlikely(!eth_type_vlan(skb->protocol)))
5616 			return 0;
5617 
5618 		err = __skb_vlan_pop(skb, &vlan_tci);
5619 		if (err)
5620 			return err;
5621 	}
5622 	/* move next vlan tag to hw accel tag */
5623 	if (likely(!eth_type_vlan(skb->protocol)))
5624 		return 0;
5625 
5626 	vlan_proto = skb->protocol;
5627 	err = __skb_vlan_pop(skb, &vlan_tci);
5628 	if (unlikely(err))
5629 		return err;
5630 
5631 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5632 	return 0;
5633 }
5634 EXPORT_SYMBOL(skb_vlan_pop);
5635 
5636 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5637  * Expects skb->data at mac header.
5638  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5639 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5640 {
5641 	if (skb_vlan_tag_present(skb)) {
5642 		int offset = skb->data - skb_mac_header(skb);
5643 		int err;
5644 
5645 		if (WARN_ONCE(offset,
5646 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5647 			      offset)) {
5648 			return -EINVAL;
5649 		}
5650 
5651 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5652 					skb_vlan_tag_get(skb));
5653 		if (err)
5654 			return err;
5655 
5656 		skb->protocol = skb->vlan_proto;
5657 		skb->mac_len += VLAN_HLEN;
5658 
5659 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5660 	}
5661 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5662 	return 0;
5663 }
5664 EXPORT_SYMBOL(skb_vlan_push);
5665 
5666 /**
5667  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5668  *
5669  * @skb: Socket buffer to modify
5670  *
5671  * Drop the Ethernet header of @skb.
5672  *
5673  * Expects that skb->data points to the mac header and that no VLAN tags are
5674  * present.
5675  *
5676  * Returns 0 on success, -errno otherwise.
5677  */
skb_eth_pop(struct sk_buff * skb)5678 int skb_eth_pop(struct sk_buff *skb)
5679 {
5680 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5681 	    skb_network_offset(skb) < ETH_HLEN)
5682 		return -EPROTO;
5683 
5684 	skb_pull_rcsum(skb, ETH_HLEN);
5685 	skb_reset_mac_header(skb);
5686 	skb_reset_mac_len(skb);
5687 
5688 	return 0;
5689 }
5690 EXPORT_SYMBOL(skb_eth_pop);
5691 
5692 /**
5693  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5694  *
5695  * @skb: Socket buffer to modify
5696  * @dst: Destination MAC address of the new header
5697  * @src: Source MAC address of the new header
5698  *
5699  * Prepend @skb with a new Ethernet header.
5700  *
5701  * Expects that skb->data points to the mac header, which must be empty.
5702  *
5703  * Returns 0 on success, -errno otherwise.
5704  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5705 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5706 		 const unsigned char *src)
5707 {
5708 	struct ethhdr *eth;
5709 	int err;
5710 
5711 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5712 		return -EPROTO;
5713 
5714 	err = skb_cow_head(skb, sizeof(*eth));
5715 	if (err < 0)
5716 		return err;
5717 
5718 	skb_push(skb, sizeof(*eth));
5719 	skb_reset_mac_header(skb);
5720 	skb_reset_mac_len(skb);
5721 
5722 	eth = eth_hdr(skb);
5723 	ether_addr_copy(eth->h_dest, dst);
5724 	ether_addr_copy(eth->h_source, src);
5725 	eth->h_proto = skb->protocol;
5726 
5727 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5728 
5729 	return 0;
5730 }
5731 EXPORT_SYMBOL(skb_eth_push);
5732 
5733 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5734 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5735 			     __be16 ethertype)
5736 {
5737 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5738 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5739 
5740 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5741 	}
5742 
5743 	hdr->h_proto = ethertype;
5744 }
5745 
5746 /**
5747  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5748  *                   the packet
5749  *
5750  * @skb: buffer
5751  * @mpls_lse: MPLS label stack entry to push
5752  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5753  * @mac_len: length of the MAC header
5754  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5755  *            ethernet
5756  *
5757  * Expects skb->data at mac header.
5758  *
5759  * Returns 0 on success, -errno otherwise.
5760  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5761 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5762 		  int mac_len, bool ethernet)
5763 {
5764 	struct mpls_shim_hdr *lse;
5765 	int err;
5766 
5767 	if (unlikely(!eth_p_mpls(mpls_proto)))
5768 		return -EINVAL;
5769 
5770 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5771 	if (skb->encapsulation)
5772 		return -EINVAL;
5773 
5774 	err = skb_cow_head(skb, MPLS_HLEN);
5775 	if (unlikely(err))
5776 		return err;
5777 
5778 	if (!skb->inner_protocol) {
5779 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5780 		skb_set_inner_protocol(skb, skb->protocol);
5781 	}
5782 
5783 	skb_push(skb, MPLS_HLEN);
5784 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5785 		mac_len);
5786 	skb_reset_mac_header(skb);
5787 	skb_set_network_header(skb, mac_len);
5788 	skb_reset_mac_len(skb);
5789 
5790 	lse = mpls_hdr(skb);
5791 	lse->label_stack_entry = mpls_lse;
5792 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5793 
5794 	if (ethernet && mac_len >= ETH_HLEN)
5795 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5796 	skb->protocol = mpls_proto;
5797 
5798 	return 0;
5799 }
5800 EXPORT_SYMBOL_GPL(skb_mpls_push);
5801 
5802 /**
5803  * skb_mpls_pop() - pop the outermost MPLS header
5804  *
5805  * @skb: buffer
5806  * @next_proto: ethertype of header after popped MPLS header
5807  * @mac_len: length of the MAC header
5808  * @ethernet: flag to indicate if the packet is ethernet
5809  *
5810  * Expects skb->data at mac header.
5811  *
5812  * Returns 0 on success, -errno otherwise.
5813  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5814 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5815 		 bool ethernet)
5816 {
5817 	int err;
5818 
5819 	if (unlikely(!eth_p_mpls(skb->protocol)))
5820 		return 0;
5821 
5822 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5823 	if (unlikely(err))
5824 		return err;
5825 
5826 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5827 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5828 		mac_len);
5829 
5830 	__skb_pull(skb, MPLS_HLEN);
5831 	skb_reset_mac_header(skb);
5832 	skb_set_network_header(skb, mac_len);
5833 
5834 	if (ethernet && mac_len >= ETH_HLEN) {
5835 		struct ethhdr *hdr;
5836 
5837 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5838 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5839 		skb_mod_eth_type(skb, hdr, next_proto);
5840 	}
5841 	skb->protocol = next_proto;
5842 
5843 	return 0;
5844 }
5845 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5846 
5847 /**
5848  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5849  *
5850  * @skb: buffer
5851  * @mpls_lse: new MPLS label stack entry to update to
5852  *
5853  * Expects skb->data at mac header.
5854  *
5855  * Returns 0 on success, -errno otherwise.
5856  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5857 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5858 {
5859 	int err;
5860 
5861 	if (unlikely(!eth_p_mpls(skb->protocol)))
5862 		return -EINVAL;
5863 
5864 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5865 	if (unlikely(err))
5866 		return err;
5867 
5868 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5869 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5870 
5871 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5872 	}
5873 
5874 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5875 
5876 	return 0;
5877 }
5878 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5879 
5880 /**
5881  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5882  *
5883  * @skb: buffer
5884  *
5885  * Expects skb->data at mac header.
5886  *
5887  * Returns 0 on success, -errno otherwise.
5888  */
skb_mpls_dec_ttl(struct sk_buff * skb)5889 int skb_mpls_dec_ttl(struct sk_buff *skb)
5890 {
5891 	u32 lse;
5892 	u8 ttl;
5893 
5894 	if (unlikely(!eth_p_mpls(skb->protocol)))
5895 		return -EINVAL;
5896 
5897 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5898 		return -ENOMEM;
5899 
5900 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5901 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5902 	if (!--ttl)
5903 		return -EINVAL;
5904 
5905 	lse &= ~MPLS_LS_TTL_MASK;
5906 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5907 
5908 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5909 }
5910 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5911 
5912 /**
5913  * alloc_skb_with_frags - allocate skb with page frags
5914  *
5915  * @header_len: size of linear part
5916  * @data_len: needed length in frags
5917  * @max_page_order: max page order desired.
5918  * @errcode: pointer to error code if any
5919  * @gfp_mask: allocation mask
5920  *
5921  * This can be used to allocate a paged skb, given a maximal order for frags.
5922  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5923 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5924 				     unsigned long data_len,
5925 				     int max_page_order,
5926 				     int *errcode,
5927 				     gfp_t gfp_mask)
5928 {
5929 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5930 	unsigned long chunk;
5931 	struct sk_buff *skb;
5932 	struct page *page;
5933 	int i;
5934 
5935 	*errcode = -EMSGSIZE;
5936 	/* Note this test could be relaxed, if we succeed to allocate
5937 	 * high order pages...
5938 	 */
5939 	if (npages > MAX_SKB_FRAGS)
5940 		return NULL;
5941 
5942 	*errcode = -ENOBUFS;
5943 	skb = alloc_skb(header_len, gfp_mask);
5944 	if (!skb)
5945 		return NULL;
5946 
5947 	skb->truesize += npages << PAGE_SHIFT;
5948 
5949 	for (i = 0; npages > 0; i++) {
5950 		int order = max_page_order;
5951 
5952 		while (order) {
5953 			if (npages >= 1 << order) {
5954 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5955 						   __GFP_COMP |
5956 						   __GFP_NOWARN,
5957 						   order);
5958 				if (page)
5959 					goto fill_page;
5960 				/* Do not retry other high order allocations */
5961 				order = 1;
5962 				max_page_order = 0;
5963 			}
5964 			order--;
5965 		}
5966 		page = alloc_page(gfp_mask);
5967 		if (!page)
5968 			goto failure;
5969 fill_page:
5970 		chunk = min_t(unsigned long, data_len,
5971 			      PAGE_SIZE << order);
5972 		skb_fill_page_desc(skb, i, page, 0, chunk);
5973 		data_len -= chunk;
5974 		npages -= 1 << order;
5975 	}
5976 	return skb;
5977 
5978 failure:
5979 	kfree_skb(skb);
5980 	return NULL;
5981 }
5982 EXPORT_SYMBOL(alloc_skb_with_frags);
5983 
5984 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5985 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5986 				    const int headlen, gfp_t gfp_mask)
5987 {
5988 	int i;
5989 	int size = skb_end_offset(skb);
5990 	int new_hlen = headlen - off;
5991 	u8 *data;
5992 
5993 	size = SKB_DATA_ALIGN(size);
5994 
5995 	if (skb_pfmemalloc(skb))
5996 		gfp_mask |= __GFP_MEMALLOC;
5997 	data = kmalloc_reserve(size +
5998 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5999 			       gfp_mask, NUMA_NO_NODE, NULL);
6000 	if (!data)
6001 		return -ENOMEM;
6002 
6003 	size = SKB_WITH_OVERHEAD(ksize(data));
6004 
6005 	/* Copy real data, and all frags */
6006 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6007 	skb->len -= off;
6008 
6009 	memcpy((struct skb_shared_info *)(data + size),
6010 	       skb_shinfo(skb),
6011 	       offsetof(struct skb_shared_info,
6012 			frags[skb_shinfo(skb)->nr_frags]));
6013 	if (skb_cloned(skb)) {
6014 		/* drop the old head gracefully */
6015 		if (skb_orphan_frags(skb, gfp_mask)) {
6016 			kfree(data);
6017 			return -ENOMEM;
6018 		}
6019 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6020 			skb_frag_ref(skb, i);
6021 		if (skb_has_frag_list(skb))
6022 			skb_clone_fraglist(skb);
6023 		skb_release_data(skb);
6024 	} else {
6025 		/* we can reuse existing recount- all we did was
6026 		 * relocate values
6027 		 */
6028 		skb_free_head(skb);
6029 	}
6030 
6031 	skb->head = data;
6032 	skb->data = data;
6033 	skb->head_frag = 0;
6034 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6035 	skb->end = size;
6036 #else
6037 	skb->end = skb->head + size;
6038 #endif
6039 	skb_set_tail_pointer(skb, skb_headlen(skb));
6040 	skb_headers_offset_update(skb, 0);
6041 	skb->cloned = 0;
6042 	skb->hdr_len = 0;
6043 	skb->nohdr = 0;
6044 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6045 
6046 	return 0;
6047 }
6048 
6049 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6050 
6051 /* carve out the first eat bytes from skb's frag_list. May recurse into
6052  * pskb_carve()
6053  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6054 static int pskb_carve_frag_list(struct sk_buff *skb,
6055 				struct skb_shared_info *shinfo, int eat,
6056 				gfp_t gfp_mask)
6057 {
6058 	struct sk_buff *list = shinfo->frag_list;
6059 	struct sk_buff *clone = NULL;
6060 	struct sk_buff *insp = NULL;
6061 
6062 	do {
6063 		if (!list) {
6064 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6065 			return -EFAULT;
6066 		}
6067 		if (list->len <= eat) {
6068 			/* Eaten as whole. */
6069 			eat -= list->len;
6070 			list = list->next;
6071 			insp = list;
6072 		} else {
6073 			/* Eaten partially. */
6074 			if (skb_shared(list)) {
6075 				clone = skb_clone(list, gfp_mask);
6076 				if (!clone)
6077 					return -ENOMEM;
6078 				insp = list->next;
6079 				list = clone;
6080 			} else {
6081 				/* This may be pulled without problems. */
6082 				insp = list;
6083 			}
6084 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6085 				kfree_skb(clone);
6086 				return -ENOMEM;
6087 			}
6088 			break;
6089 		}
6090 	} while (eat);
6091 
6092 	/* Free pulled out fragments. */
6093 	while ((list = shinfo->frag_list) != insp) {
6094 		shinfo->frag_list = list->next;
6095 		consume_skb(list);
6096 	}
6097 	/* And insert new clone at head. */
6098 	if (clone) {
6099 		clone->next = list;
6100 		shinfo->frag_list = clone;
6101 	}
6102 	return 0;
6103 }
6104 
6105 /* carve off first len bytes from skb. Split line (off) is in the
6106  * non-linear part of skb
6107  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6108 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6109 				       int pos, gfp_t gfp_mask)
6110 {
6111 	int i, k = 0;
6112 	int size = skb_end_offset(skb);
6113 	u8 *data;
6114 	const int nfrags = skb_shinfo(skb)->nr_frags;
6115 	struct skb_shared_info *shinfo;
6116 
6117 	size = SKB_DATA_ALIGN(size);
6118 
6119 	if (skb_pfmemalloc(skb))
6120 		gfp_mask |= __GFP_MEMALLOC;
6121 	data = kmalloc_reserve(size +
6122 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6123 			       gfp_mask, NUMA_NO_NODE, NULL);
6124 	if (!data)
6125 		return -ENOMEM;
6126 
6127 	size = SKB_WITH_OVERHEAD(ksize(data));
6128 
6129 	memcpy((struct skb_shared_info *)(data + size),
6130 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6131 	if (skb_orphan_frags(skb, gfp_mask)) {
6132 		kfree(data);
6133 		return -ENOMEM;
6134 	}
6135 	shinfo = (struct skb_shared_info *)(data + size);
6136 	for (i = 0; i < nfrags; i++) {
6137 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6138 
6139 		if (pos + fsize > off) {
6140 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6141 
6142 			if (pos < off) {
6143 				/* Split frag.
6144 				 * We have two variants in this case:
6145 				 * 1. Move all the frag to the second
6146 				 *    part, if it is possible. F.e.
6147 				 *    this approach is mandatory for TUX,
6148 				 *    where splitting is expensive.
6149 				 * 2. Split is accurately. We make this.
6150 				 */
6151 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6152 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6153 			}
6154 			skb_frag_ref(skb, i);
6155 			k++;
6156 		}
6157 		pos += fsize;
6158 	}
6159 	shinfo->nr_frags = k;
6160 	if (skb_has_frag_list(skb))
6161 		skb_clone_fraglist(skb);
6162 
6163 	/* split line is in frag list */
6164 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6165 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6166 		if (skb_has_frag_list(skb))
6167 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6168 		kfree(data);
6169 		return -ENOMEM;
6170 	}
6171 	skb_release_data(skb);
6172 
6173 	skb->head = data;
6174 	skb->head_frag = 0;
6175 	skb->data = data;
6176 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6177 	skb->end = size;
6178 #else
6179 	skb->end = skb->head + size;
6180 #endif
6181 	skb_reset_tail_pointer(skb);
6182 	skb_headers_offset_update(skb, 0);
6183 	skb->cloned   = 0;
6184 	skb->hdr_len  = 0;
6185 	skb->nohdr    = 0;
6186 	skb->len -= off;
6187 	skb->data_len = skb->len;
6188 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6189 	return 0;
6190 }
6191 
6192 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6193 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6194 {
6195 	int headlen = skb_headlen(skb);
6196 
6197 	if (len < headlen)
6198 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6199 	else
6200 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6201 }
6202 
6203 /* Extract to_copy bytes starting at off from skb, and return this in
6204  * a new skb
6205  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6206 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6207 			     int to_copy, gfp_t gfp)
6208 {
6209 	struct sk_buff  *clone = skb_clone(skb, gfp);
6210 
6211 	if (!clone)
6212 		return NULL;
6213 
6214 	if (pskb_carve(clone, off, gfp) < 0 ||
6215 	    pskb_trim(clone, to_copy)) {
6216 		kfree_skb(clone);
6217 		return NULL;
6218 	}
6219 	return clone;
6220 }
6221 EXPORT_SYMBOL(pskb_extract);
6222 
6223 /**
6224  * skb_condense - try to get rid of fragments/frag_list if possible
6225  * @skb: buffer
6226  *
6227  * Can be used to save memory before skb is added to a busy queue.
6228  * If packet has bytes in frags and enough tail room in skb->head,
6229  * pull all of them, so that we can free the frags right now and adjust
6230  * truesize.
6231  * Notes:
6232  *	We do not reallocate skb->head thus can not fail.
6233  *	Caller must re-evaluate skb->truesize if needed.
6234  */
skb_condense(struct sk_buff * skb)6235 void skb_condense(struct sk_buff *skb)
6236 {
6237 	if (skb->data_len) {
6238 		if (skb->data_len > skb->end - skb->tail ||
6239 		    skb_cloned(skb))
6240 			return;
6241 
6242 		/* Nice, we can free page frag(s) right now */
6243 		__pskb_pull_tail(skb, skb->data_len);
6244 	}
6245 	/* At this point, skb->truesize might be over estimated,
6246 	 * because skb had a fragment, and fragments do not tell
6247 	 * their truesize.
6248 	 * When we pulled its content into skb->head, fragment
6249 	 * was freed, but __pskb_pull_tail() could not possibly
6250 	 * adjust skb->truesize, not knowing the frag truesize.
6251 	 */
6252 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6253 }
6254 
6255 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6256 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6257 {
6258 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6259 }
6260 
6261 /**
6262  * __skb_ext_alloc - allocate a new skb extensions storage
6263  *
6264  * @flags: See kmalloc().
6265  *
6266  * Returns the newly allocated pointer. The pointer can later attached to a
6267  * skb via __skb_ext_set().
6268  * Note: caller must handle the skb_ext as an opaque data.
6269  */
__skb_ext_alloc(gfp_t flags)6270 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6271 {
6272 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6273 
6274 	if (new) {
6275 		memset(new->offset, 0, sizeof(new->offset));
6276 		refcount_set(&new->refcnt, 1);
6277 	}
6278 
6279 	return new;
6280 }
6281 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6282 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6283 					 unsigned int old_active)
6284 {
6285 	struct skb_ext *new;
6286 
6287 	if (refcount_read(&old->refcnt) == 1)
6288 		return old;
6289 
6290 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6291 	if (!new)
6292 		return NULL;
6293 
6294 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6295 	refcount_set(&new->refcnt, 1);
6296 
6297 #ifdef CONFIG_XFRM
6298 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6299 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6300 		unsigned int i;
6301 
6302 		for (i = 0; i < sp->len; i++)
6303 			xfrm_state_hold(sp->xvec[i]);
6304 	}
6305 #endif
6306 	__skb_ext_put(old);
6307 	return new;
6308 }
6309 
6310 /**
6311  * __skb_ext_set - attach the specified extension storage to this skb
6312  * @skb: buffer
6313  * @id: extension id
6314  * @ext: extension storage previously allocated via __skb_ext_alloc()
6315  *
6316  * Existing extensions, if any, are cleared.
6317  *
6318  * Returns the pointer to the extension.
6319  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6320 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6321 		    struct skb_ext *ext)
6322 {
6323 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6324 
6325 	skb_ext_put(skb);
6326 	newlen = newoff + skb_ext_type_len[id];
6327 	ext->chunks = newlen;
6328 	ext->offset[id] = newoff;
6329 	skb->extensions = ext;
6330 	skb->active_extensions = 1 << id;
6331 	return skb_ext_get_ptr(ext, id);
6332 }
6333 
6334 /**
6335  * skb_ext_add - allocate space for given extension, COW if needed
6336  * @skb: buffer
6337  * @id: extension to allocate space for
6338  *
6339  * Allocates enough space for the given extension.
6340  * If the extension is already present, a pointer to that extension
6341  * is returned.
6342  *
6343  * If the skb was cloned, COW applies and the returned memory can be
6344  * modified without changing the extension space of clones buffers.
6345  *
6346  * Returns pointer to the extension or NULL on allocation failure.
6347  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6348 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6349 {
6350 	struct skb_ext *new, *old = NULL;
6351 	unsigned int newlen, newoff;
6352 
6353 	if (skb->active_extensions) {
6354 		old = skb->extensions;
6355 
6356 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6357 		if (!new)
6358 			return NULL;
6359 
6360 		if (__skb_ext_exist(new, id))
6361 			goto set_active;
6362 
6363 		newoff = new->chunks;
6364 	} else {
6365 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6366 
6367 		new = __skb_ext_alloc(GFP_ATOMIC);
6368 		if (!new)
6369 			return NULL;
6370 	}
6371 
6372 	newlen = newoff + skb_ext_type_len[id];
6373 	new->chunks = newlen;
6374 	new->offset[id] = newoff;
6375 set_active:
6376 	skb->extensions = new;
6377 	skb->active_extensions |= 1 << id;
6378 	return skb_ext_get_ptr(new, id);
6379 }
6380 EXPORT_SYMBOL(skb_ext_add);
6381 
6382 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6383 static void skb_ext_put_sp(struct sec_path *sp)
6384 {
6385 	unsigned int i;
6386 
6387 	for (i = 0; i < sp->len; i++)
6388 		xfrm_state_put(sp->xvec[i]);
6389 }
6390 #endif
6391 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6392 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6393 {
6394 	struct skb_ext *ext = skb->extensions;
6395 
6396 	skb->active_extensions &= ~(1 << id);
6397 	if (skb->active_extensions == 0) {
6398 		skb->extensions = NULL;
6399 		__skb_ext_put(ext);
6400 #ifdef CONFIG_XFRM
6401 	} else if (id == SKB_EXT_SEC_PATH &&
6402 		   refcount_read(&ext->refcnt) == 1) {
6403 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6404 
6405 		skb_ext_put_sp(sp);
6406 		sp->len = 0;
6407 #endif
6408 	}
6409 }
6410 EXPORT_SYMBOL(__skb_ext_del);
6411 
__skb_ext_put(struct skb_ext * ext)6412 void __skb_ext_put(struct skb_ext *ext)
6413 {
6414 	/* If this is last clone, nothing can increment
6415 	 * it after check passes.  Avoids one atomic op.
6416 	 */
6417 	if (refcount_read(&ext->refcnt) == 1)
6418 		goto free_now;
6419 
6420 	if (!refcount_dec_and_test(&ext->refcnt))
6421 		return;
6422 free_now:
6423 #ifdef CONFIG_XFRM
6424 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6425 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6426 #endif
6427 
6428 	kmem_cache_free(skbuff_ext_cache, ext);
6429 }
6430 EXPORT_SYMBOL(__skb_ext_put);
6431 #endif /* CONFIG_SKB_EXTENSIONS */
6432