1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3 *
4 * Copyright (C) 1994 by Florian La Roche
5 *
6 * This module implements the Address Resolution Protocol ARP (RFC 826),
7 * which is used to convert IP addresses (or in the future maybe other
8 * high-level addresses) into a low-level hardware address (like an Ethernet
9 * address).
10 *
11 * Fixes:
12 * Alan Cox : Removed the Ethernet assumptions in
13 * Florian's code
14 * Alan Cox : Fixed some small errors in the ARP
15 * logic
16 * Alan Cox : Allow >4K in /proc
17 * Alan Cox : Make ARP add its own protocol entry
18 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
19 * Stephen Henson : Add AX25 support to arp_get_info()
20 * Alan Cox : Drop data when a device is downed.
21 * Alan Cox : Use init_timer().
22 * Alan Cox : Double lock fixes.
23 * Martin Seine : Move the arphdr structure
24 * to if_arp.h for compatibility.
25 * with BSD based programs.
26 * Andrew Tridgell : Added ARP netmask code and
27 * re-arranged proxy handling.
28 * Alan Cox : Changed to use notifiers.
29 * Niibe Yutaka : Reply for this device or proxies only.
30 * Alan Cox : Don't proxy across hardware types!
31 * Jonathan Naylor : Added support for NET/ROM.
32 * Mike Shaver : RFC1122 checks.
33 * Jonathan Naylor : Only lookup the hardware address for
34 * the correct hardware type.
35 * Germano Caronni : Assorted subtle races.
36 * Craig Schlenter : Don't modify permanent entry
37 * during arp_rcv.
38 * Russ Nelson : Tidied up a few bits.
39 * Alexey Kuznetsov: Major changes to caching and behaviour,
40 * eg intelligent arp probing and
41 * generation
42 * of host down events.
43 * Alan Cox : Missing unlock in device events.
44 * Eckes : ARP ioctl control errors.
45 * Alexey Kuznetsov: Arp free fix.
46 * Manuel Rodriguez: Gratuitous ARP.
47 * Jonathan Layes : Added arpd support through kerneld
48 * message queue (960314)
49 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
50 * Mike McLagan : Routing by source
51 * Stuart Cheshire : Metricom and grat arp fixes
52 * *** FOR 2.1 clean this up ***
53 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 * Alan Cox : Took the AP1000 nasty FDDI hack and
55 * folded into the mainstream FDDI code.
56 * Ack spit, Linus how did you allow that
57 * one in...
58 * Jes Sorensen : Make FDDI work again in 2.1.x and
59 * clean up the APFDDI & gen. FDDI bits.
60 * Alexey Kuznetsov: new arp state machine;
61 * now it is in net/core/neighbour.c.
62 * Krzysztof Halasa: Added Frame Relay ARP support.
63 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
64 * Shmulik Hen: Split arp_send to arp_create and
65 * arp_xmit so intermediate drivers like
66 * bonding can change the skb before
67 * sending (e.g. insert 8021q tag).
68 * Harald Welte : convert to make use of jenkins hash
69 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70 */
71
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114
115 #include <linux/uaccess.h>
116
117 #include <linux/netfilter_arp.h>
118
119 /*
120 * Interface to generic neighbour cache.
121 */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129
130 static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136 };
137
138 static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144 };
145
146 static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150 };
151
152 struct neigh_table arp_tbl = {
153 .family = AF_INET,
154 .key_len = 4,
155 .protocol = cpu_to_be16(ETH_P_IP),
156 .hash = arp_hash,
157 .key_eq = arp_key_eq,
158 .constructor = arp_constructor,
159 .proxy_redo = parp_redo,
160 .is_multicast = arp_is_multicast,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185
arp_mc_map(__be32 addr,u8 * haddr,struct net_device * dev,int dir)186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208
209
arp_hash(const void * pkey,const struct net_device * dev,__u32 * hash_rnd)210 static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213 {
214 return arp_hashfn(pkey, dev, hash_rnd);
215 }
216
arp_key_eq(const struct neighbour * neigh,const void * pkey)217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 return neigh_key_eq32(neigh, pkey);
220 }
221
arp_constructor(struct neighbour * neigh)222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228 u32 inaddr_any = INADDR_ANY;
229
230 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232
233 addr = *(__be32 *)neigh->primary_key;
234 rcu_read_lock();
235 in_dev = __in_dev_get_rcu(dev);
236 if (!in_dev) {
237 rcu_read_unlock();
238 return -EINVAL;
239 }
240
241 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242
243 parms = in_dev->arp_parms;
244 __neigh_parms_put(neigh->parms);
245 neigh->parms = neigh_parms_clone(parms);
246 rcu_read_unlock();
247
248 if (!dev->header_ops) {
249 neigh->nud_state = NUD_NOARP;
250 neigh->ops = &arp_direct_ops;
251 neigh->output = neigh_direct_output;
252 } else {
253 /* Good devices (checked by reading texts, but only Ethernet is
254 tested)
255
256 ARPHRD_ETHER: (ethernet, apfddi)
257 ARPHRD_FDDI: (fddi)
258 ARPHRD_IEEE802: (tr)
259 ARPHRD_METRICOM: (strip)
260 ARPHRD_ARCNET:
261 etc. etc. etc.
262
263 ARPHRD_IPDDP will also work, if author repairs it.
264 I did not it, because this driver does not work even
265 in old paradigm.
266 */
267
268 if (neigh->type == RTN_MULTICAST) {
269 neigh->nud_state = NUD_NOARP;
270 arp_mc_map(addr, neigh->ha, dev, 1);
271 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272 neigh->nud_state = NUD_NOARP;
273 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274 } else if (neigh->type == RTN_BROADCAST ||
275 (dev->flags & IFF_POINTOPOINT)) {
276 neigh->nud_state = NUD_NOARP;
277 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278 }
279
280 if (dev->header_ops->cache)
281 neigh->ops = &arp_hh_ops;
282 else
283 neigh->ops = &arp_generic_ops;
284
285 if (neigh->nud_state & NUD_VALID)
286 neigh->output = neigh->ops->connected_output;
287 else
288 neigh->output = neigh->ops->output;
289 }
290 return 0;
291 }
292
arp_error_report(struct neighbour * neigh,struct sk_buff * skb)293 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294 {
295 dst_link_failure(skb);
296 kfree_skb(skb);
297 }
298
299 /* Create and send an arp packet. */
arp_send_dst(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw,struct dst_entry * dst)300 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301 struct net_device *dev, __be32 src_ip,
302 const unsigned char *dest_hw,
303 const unsigned char *src_hw,
304 const unsigned char *target_hw,
305 struct dst_entry *dst)
306 {
307 struct sk_buff *skb;
308
309 /* arp on this interface. */
310 if (dev->flags & IFF_NOARP)
311 return;
312
313 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314 dest_hw, src_hw, target_hw);
315 if (!skb)
316 return;
317
318 skb_dst_set(skb, dst_clone(dst));
319 arp_xmit(skb);
320 }
321
arp_send(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)322 void arp_send(int type, int ptype, __be32 dest_ip,
323 struct net_device *dev, __be32 src_ip,
324 const unsigned char *dest_hw, const unsigned char *src_hw,
325 const unsigned char *target_hw)
326 {
327 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328 target_hw, NULL);
329 }
330 EXPORT_SYMBOL(arp_send);
331
arp_solicit(struct neighbour * neigh,struct sk_buff * skb)332 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 {
334 __be32 saddr = 0;
335 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336 struct net_device *dev = neigh->dev;
337 __be32 target = *(__be32 *)neigh->primary_key;
338 int probes = atomic_read(&neigh->probes);
339 struct in_device *in_dev;
340 struct dst_entry *dst = NULL;
341
342 rcu_read_lock();
343 in_dev = __in_dev_get_rcu(dev);
344 if (!in_dev) {
345 rcu_read_unlock();
346 return;
347 }
348 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349 default:
350 case 0: /* By default announce any local IP */
351 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352 ip_hdr(skb)->saddr) == RTN_LOCAL)
353 saddr = ip_hdr(skb)->saddr;
354 break;
355 case 1: /* Restrict announcements of saddr in same subnet */
356 if (!skb)
357 break;
358 saddr = ip_hdr(skb)->saddr;
359 if (inet_addr_type_dev_table(dev_net(dev), dev,
360 saddr) == RTN_LOCAL) {
361 /* saddr should be known to target */
362 if (inet_addr_onlink(in_dev, target, saddr))
363 break;
364 }
365 saddr = 0;
366 break;
367 case 2: /* Avoid secondary IPs, get a primary/preferred one */
368 break;
369 }
370 rcu_read_unlock();
371
372 if (!saddr)
373 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374
375 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376 if (probes < 0) {
377 if (!(neigh->nud_state & NUD_VALID))
378 pr_debug("trying to ucast probe in NUD_INVALID\n");
379 neigh_ha_snapshot(dst_ha, neigh, dev);
380 dst_hw = dst_ha;
381 } else {
382 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383 if (probes < 0) {
384 neigh_app_ns(neigh);
385 return;
386 }
387 }
388
389 if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390 dst = skb_dst(skb);
391 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392 dst_hw, dev->dev_addr, NULL, dst);
393 }
394
arp_ignore(struct in_device * in_dev,__be32 sip,__be32 tip)395 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396 {
397 struct net *net = dev_net(in_dev->dev);
398 int scope;
399
400 switch (IN_DEV_ARP_IGNORE(in_dev)) {
401 case 0: /* Reply, the tip is already validated */
402 return 0;
403 case 1: /* Reply only if tip is configured on the incoming interface */
404 sip = 0;
405 scope = RT_SCOPE_HOST;
406 break;
407 case 2: /*
408 * Reply only if tip is configured on the incoming interface
409 * and is in same subnet as sip
410 */
411 scope = RT_SCOPE_HOST;
412 break;
413 case 3: /* Do not reply for scope host addresses */
414 sip = 0;
415 scope = RT_SCOPE_LINK;
416 in_dev = NULL;
417 break;
418 case 4: /* Reserved */
419 case 5:
420 case 6:
421 case 7:
422 return 0;
423 case 8: /* Do not reply */
424 return 1;
425 default:
426 return 0;
427 }
428 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429 }
430
arp_filter(__be32 sip,__be32 tip,struct net_device * dev)431 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432 {
433 struct rtable *rt;
434 int flag = 0;
435 /*unsigned long now; */
436 struct net *net = dev_net(dev);
437
438 rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439 if (IS_ERR(rt))
440 return 1;
441 if (rt->dst.dev != dev) {
442 __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443 flag = 1;
444 }
445 ip_rt_put(rt);
446 return flag;
447 }
448
449 /*
450 * Check if we can use proxy ARP for this path
451 */
arp_fwd_proxy(struct in_device * in_dev,struct net_device * dev,struct rtable * rt)452 static inline int arp_fwd_proxy(struct in_device *in_dev,
453 struct net_device *dev, struct rtable *rt)
454 {
455 struct in_device *out_dev;
456 int imi, omi = -1;
457
458 if (rt->dst.dev == dev)
459 return 0;
460
461 if (!IN_DEV_PROXY_ARP(in_dev))
462 return 0;
463 imi = IN_DEV_MEDIUM_ID(in_dev);
464 if (imi == 0)
465 return 1;
466 if (imi == -1)
467 return 0;
468
469 /* place to check for proxy_arp for routes */
470
471 out_dev = __in_dev_get_rcu(rt->dst.dev);
472 if (out_dev)
473 omi = IN_DEV_MEDIUM_ID(out_dev);
474
475 return omi != imi && omi != -1;
476 }
477
478 /*
479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480 *
481 * RFC3069 supports proxy arp replies back to the same interface. This
482 * is done to support (ethernet) switch features, like RFC 3069, where
483 * the individual ports are not allowed to communicate with each
484 * other, BUT they are allowed to talk to the upstream router. As
485 * described in RFC 3069, it is possible to allow these hosts to
486 * communicate through the upstream router, by proxy_arp'ing.
487 *
488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489 *
490 * This technology is known by different names:
491 * In RFC 3069 it is called VLAN Aggregation.
492 * Cisco and Allied Telesyn call it Private VLAN.
493 * Hewlett-Packard call it Source-Port filtering or port-isolation.
494 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
495 *
496 */
arp_fwd_pvlan(struct in_device * in_dev,struct net_device * dev,struct rtable * rt,__be32 sip,__be32 tip)497 static inline int arp_fwd_pvlan(struct in_device *in_dev,
498 struct net_device *dev, struct rtable *rt,
499 __be32 sip, __be32 tip)
500 {
501 /* Private VLAN is only concerned about the same ethernet segment */
502 if (rt->dst.dev != dev)
503 return 0;
504
505 /* Don't reply on self probes (often done by windowz boxes)*/
506 if (sip == tip)
507 return 0;
508
509 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510 return 1;
511 else
512 return 0;
513 }
514
515 /*
516 * Interface to link layer: send routine and receive handler.
517 */
518
519 /*
520 * Create an arp packet. If dest_hw is not set, we create a broadcast
521 * message.
522 */
arp_create(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)523 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524 struct net_device *dev, __be32 src_ip,
525 const unsigned char *dest_hw,
526 const unsigned char *src_hw,
527 const unsigned char *target_hw)
528 {
529 struct sk_buff *skb;
530 struct arphdr *arp;
531 unsigned char *arp_ptr;
532 int hlen = LL_RESERVED_SPACE(dev);
533 int tlen = dev->needed_tailroom;
534
535 /*
536 * Allocate a buffer
537 */
538
539 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540 if (!skb)
541 return NULL;
542
543 skb_reserve(skb, hlen);
544 skb_reset_network_header(skb);
545 arp = skb_put(skb, arp_hdr_len(dev));
546 skb->dev = dev;
547 skb->protocol = htons(ETH_P_ARP);
548 if (!src_hw)
549 src_hw = dev->dev_addr;
550 if (!dest_hw)
551 dest_hw = dev->broadcast;
552
553 /*
554 * Fill the device header for the ARP frame
555 */
556 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557 goto out;
558
559 /*
560 * Fill out the arp protocol part.
561 *
562 * The arp hardware type should match the device type, except for FDDI,
563 * which (according to RFC 1390) should always equal 1 (Ethernet).
564 */
565 /*
566 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567 * DIX code for the protocol. Make these device structure fields.
568 */
569 switch (dev->type) {
570 default:
571 arp->ar_hrd = htons(dev->type);
572 arp->ar_pro = htons(ETH_P_IP);
573 break;
574
575 #if IS_ENABLED(CONFIG_AX25)
576 case ARPHRD_AX25:
577 arp->ar_hrd = htons(ARPHRD_AX25);
578 arp->ar_pro = htons(AX25_P_IP);
579 break;
580
581 #if IS_ENABLED(CONFIG_NETROM)
582 case ARPHRD_NETROM:
583 arp->ar_hrd = htons(ARPHRD_NETROM);
584 arp->ar_pro = htons(AX25_P_IP);
585 break;
586 #endif
587 #endif
588
589 #if IS_ENABLED(CONFIG_FDDI)
590 case ARPHRD_FDDI:
591 arp->ar_hrd = htons(ARPHRD_ETHER);
592 arp->ar_pro = htons(ETH_P_IP);
593 break;
594 #endif
595 }
596
597 arp->ar_hln = dev->addr_len;
598 arp->ar_pln = 4;
599 arp->ar_op = htons(type);
600
601 arp_ptr = (unsigned char *)(arp + 1);
602
603 memcpy(arp_ptr, src_hw, dev->addr_len);
604 arp_ptr += dev->addr_len;
605 memcpy(arp_ptr, &src_ip, 4);
606 arp_ptr += 4;
607
608 switch (dev->type) {
609 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
610 case ARPHRD_IEEE1394:
611 break;
612 #endif
613 default:
614 if (target_hw)
615 memcpy(arp_ptr, target_hw, dev->addr_len);
616 else
617 memset(arp_ptr, 0, dev->addr_len);
618 arp_ptr += dev->addr_len;
619 }
620 memcpy(arp_ptr, &dest_ip, 4);
621
622 return skb;
623
624 out:
625 kfree_skb(skb);
626 return NULL;
627 }
628 EXPORT_SYMBOL(arp_create);
629
arp_xmit_finish(struct net * net,struct sock * sk,struct sk_buff * skb)630 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631 {
632 return dev_queue_xmit(skb);
633 }
634
635 /*
636 * Send an arp packet.
637 */
arp_xmit(struct sk_buff * skb)638 void arp_xmit(struct sk_buff *skb)
639 {
640 rcu_read_lock();
641 /* Send it off, maybe filter it using firewalling first. */
642 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
643 dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
644 arp_xmit_finish);
645 rcu_read_unlock();
646 }
647 EXPORT_SYMBOL(arp_xmit);
648
arp_is_garp(struct net * net,struct net_device * dev,int * addr_type,__be16 ar_op,__be32 sip,__be32 tip,unsigned char * sha,unsigned char * tha)649 static bool arp_is_garp(struct net *net, struct net_device *dev,
650 int *addr_type, __be16 ar_op,
651 __be32 sip, __be32 tip,
652 unsigned char *sha, unsigned char *tha)
653 {
654 bool is_garp = tip == sip;
655
656 /* Gratuitous ARP _replies_ also require target hwaddr to be
657 * the same as source.
658 */
659 if (is_garp && ar_op == htons(ARPOP_REPLY))
660 is_garp =
661 /* IPv4 over IEEE 1394 doesn't provide target
662 * hardware address field in its ARP payload.
663 */
664 tha &&
665 !memcmp(tha, sha, dev->addr_len);
666
667 if (is_garp) {
668 *addr_type = inet_addr_type_dev_table(net, dev, sip);
669 if (*addr_type != RTN_UNICAST)
670 is_garp = false;
671 }
672 return is_garp;
673 }
674
675 /*
676 * Process an arp request.
677 */
678
arp_process(struct net * net,struct sock * sk,struct sk_buff * skb)679 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
680 {
681 struct net_device *dev = skb->dev;
682 struct in_device *in_dev = __in_dev_get_rcu(dev);
683 struct arphdr *arp;
684 unsigned char *arp_ptr;
685 struct rtable *rt;
686 unsigned char *sha;
687 unsigned char *tha = NULL;
688 __be32 sip, tip;
689 u16 dev_type = dev->type;
690 int addr_type;
691 struct neighbour *n;
692 struct dst_entry *reply_dst = NULL;
693 bool is_garp = false;
694
695 /* arp_rcv below verifies the ARP header and verifies the device
696 * is ARP'able.
697 */
698
699 if (!in_dev)
700 goto out_free_skb;
701
702 arp = arp_hdr(skb);
703
704 switch (dev_type) {
705 default:
706 if (arp->ar_pro != htons(ETH_P_IP) ||
707 htons(dev_type) != arp->ar_hrd)
708 goto out_free_skb;
709 break;
710 case ARPHRD_ETHER:
711 case ARPHRD_FDDI:
712 case ARPHRD_IEEE802:
713 /*
714 * ETHERNET, and Fibre Channel (which are IEEE 802
715 * devices, according to RFC 2625) devices will accept ARP
716 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
717 * This is the case also of FDDI, where the RFC 1390 says that
718 * FDDI devices should accept ARP hardware of (1) Ethernet,
719 * however, to be more robust, we'll accept both 1 (Ethernet)
720 * or 6 (IEEE 802.2)
721 */
722 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
723 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
724 arp->ar_pro != htons(ETH_P_IP))
725 goto out_free_skb;
726 break;
727 case ARPHRD_AX25:
728 if (arp->ar_pro != htons(AX25_P_IP) ||
729 arp->ar_hrd != htons(ARPHRD_AX25))
730 goto out_free_skb;
731 break;
732 case ARPHRD_NETROM:
733 if (arp->ar_pro != htons(AX25_P_IP) ||
734 arp->ar_hrd != htons(ARPHRD_NETROM))
735 goto out_free_skb;
736 break;
737 }
738
739 /* Understand only these message types */
740
741 if (arp->ar_op != htons(ARPOP_REPLY) &&
742 arp->ar_op != htons(ARPOP_REQUEST))
743 goto out_free_skb;
744
745 /*
746 * Extract fields
747 */
748 arp_ptr = (unsigned char *)(arp + 1);
749 sha = arp_ptr;
750 arp_ptr += dev->addr_len;
751 memcpy(&sip, arp_ptr, 4);
752 arp_ptr += 4;
753 switch (dev_type) {
754 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
755 case ARPHRD_IEEE1394:
756 break;
757 #endif
758 default:
759 tha = arp_ptr;
760 arp_ptr += dev->addr_len;
761 }
762 memcpy(&tip, arp_ptr, 4);
763 /*
764 * Check for bad requests for 127.x.x.x and requests for multicast
765 * addresses. If this is one such, delete it.
766 */
767 if (ipv4_is_multicast(tip) ||
768 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
769 goto out_free_skb;
770
771 /*
772 * For some 802.11 wireless deployments (and possibly other networks),
773 * there will be an ARP proxy and gratuitous ARP frames are attacks
774 * and thus should not be accepted.
775 */
776 if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
777 goto out_free_skb;
778
779 /*
780 * Special case: We must set Frame Relay source Q.922 address
781 */
782 if (dev_type == ARPHRD_DLCI)
783 sha = dev->broadcast;
784
785 /*
786 * Process entry. The idea here is we want to send a reply if it is a
787 * request for us or if it is a request for someone else that we hold
788 * a proxy for. We want to add an entry to our cache if it is a reply
789 * to us or if it is a request for our address.
790 * (The assumption for this last is that if someone is requesting our
791 * address, they are probably intending to talk to us, so it saves time
792 * if we cache their address. Their address is also probably not in
793 * our cache, since ours is not in their cache.)
794 *
795 * Putting this another way, we only care about replies if they are to
796 * us, in which case we add them to the cache. For requests, we care
797 * about those for us and those for our proxies. We reply to both,
798 * and in the case of requests for us we add the requester to the arp
799 * cache.
800 */
801
802 if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
803 reply_dst = (struct dst_entry *)
804 iptunnel_metadata_reply(skb_metadata_dst(skb),
805 GFP_ATOMIC);
806
807 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
808 if (sip == 0) {
809 if (arp->ar_op == htons(ARPOP_REQUEST) &&
810 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
811 !arp_ignore(in_dev, sip, tip))
812 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
813 sha, dev->dev_addr, sha, reply_dst);
814 goto out_consume_skb;
815 }
816
817 if (arp->ar_op == htons(ARPOP_REQUEST) &&
818 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
819
820 rt = skb_rtable(skb);
821 addr_type = rt->rt_type;
822
823 if (addr_type == RTN_LOCAL) {
824 int dont_send;
825
826 dont_send = arp_ignore(in_dev, sip, tip);
827 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
828 dont_send = arp_filter(sip, tip, dev);
829 if (!dont_send) {
830 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
831 if (n) {
832 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
833 sip, dev, tip, sha,
834 dev->dev_addr, sha,
835 reply_dst);
836 neigh_release(n);
837 }
838 }
839 goto out_consume_skb;
840 } else if (IN_DEV_FORWARD(in_dev)) {
841 if (addr_type == RTN_UNICAST &&
842 (arp_fwd_proxy(in_dev, dev, rt) ||
843 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
844 (rt->dst.dev != dev &&
845 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
846 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
847 if (n)
848 neigh_release(n);
849
850 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
851 skb->pkt_type == PACKET_HOST ||
852 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
853 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
854 sip, dev, tip, sha,
855 dev->dev_addr, sha,
856 reply_dst);
857 } else {
858 pneigh_enqueue(&arp_tbl,
859 in_dev->arp_parms, skb);
860 goto out_free_dst;
861 }
862 goto out_consume_skb;
863 }
864 }
865 }
866
867 /* Update our ARP tables */
868
869 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
870
871 addr_type = -1;
872 if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
873 is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
874 sip, tip, sha, tha);
875 }
876
877 if (IN_DEV_ARP_ACCEPT(in_dev)) {
878 /* Unsolicited ARP is not accepted by default.
879 It is possible, that this option should be enabled for some
880 devices (strip is candidate)
881 */
882 if (!n &&
883 (is_garp ||
884 (arp->ar_op == htons(ARPOP_REPLY) &&
885 (addr_type == RTN_UNICAST ||
886 (addr_type < 0 &&
887 /* postpone calculation to as late as possible */
888 inet_addr_type_dev_table(net, dev, sip) ==
889 RTN_UNICAST)))))
890 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891 }
892
893 if (n) {
894 int state = NUD_REACHABLE;
895 int override;
896
897 /* If several different ARP replies follows back-to-back,
898 use the FIRST one. It is possible, if several proxy
899 agents are active. Taking the first reply prevents
900 arp trashing and chooses the fastest router.
901 */
902 override = time_after(jiffies,
903 n->updated +
904 NEIGH_VAR(n->parms, LOCKTIME)) ||
905 is_garp;
906
907 /* Broadcast replies and request packets
908 do not assert neighbour reachability.
909 */
910 if (arp->ar_op != htons(ARPOP_REPLY) ||
911 skb->pkt_type != PACKET_HOST)
912 state = NUD_STALE;
913 neigh_update(n, sha, state,
914 override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
915 neigh_release(n);
916 }
917
918 out_consume_skb:
919 consume_skb(skb);
920
921 out_free_dst:
922 dst_release(reply_dst);
923 return NET_RX_SUCCESS;
924
925 out_free_skb:
926 kfree_skb(skb);
927 return NET_RX_DROP;
928 }
929
parp_redo(struct sk_buff * skb)930 static void parp_redo(struct sk_buff *skb)
931 {
932 arp_process(dev_net(skb->dev), NULL, skb);
933 }
934
arp_is_multicast(const void * pkey)935 static int arp_is_multicast(const void *pkey)
936 {
937 return ipv4_is_multicast(*((__be32 *)pkey));
938 }
939
940 /*
941 * Receive an arp request from the device layer.
942 */
943
arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)944 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
945 struct packet_type *pt, struct net_device *orig_dev)
946 {
947 const struct arphdr *arp;
948
949 /* do not tweak dropwatch on an ARP we will ignore */
950 if (dev->flags & IFF_NOARP ||
951 skb->pkt_type == PACKET_OTHERHOST ||
952 skb->pkt_type == PACKET_LOOPBACK)
953 goto consumeskb;
954
955 skb = skb_share_check(skb, GFP_ATOMIC);
956 if (!skb)
957 goto out_of_mem;
958
959 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
960 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
961 goto freeskb;
962
963 arp = arp_hdr(skb);
964 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
965 goto freeskb;
966
967 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
968
969 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
970 dev_net(dev), NULL, skb, dev, NULL,
971 arp_process);
972
973 consumeskb:
974 consume_skb(skb);
975 return NET_RX_SUCCESS;
976 freeskb:
977 kfree_skb(skb);
978 out_of_mem:
979 return NET_RX_DROP;
980 }
981
982 /*
983 * User level interface (ioctl)
984 */
985
986 /*
987 * Set (create) an ARP cache entry.
988 */
989
arp_req_set_proxy(struct net * net,struct net_device * dev,int on)990 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
991 {
992 if (!dev) {
993 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
994 return 0;
995 }
996 if (__in_dev_get_rtnl(dev)) {
997 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
998 return 0;
999 }
1000 return -ENXIO;
1001 }
1002
arp_req_set_public(struct net * net,struct arpreq * r,struct net_device * dev)1003 static int arp_req_set_public(struct net *net, struct arpreq *r,
1004 struct net_device *dev)
1005 {
1006 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1007 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1008
1009 if (mask && mask != htonl(0xFFFFFFFF))
1010 return -EINVAL;
1011 if (!dev && (r->arp_flags & ATF_COM)) {
1012 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1013 r->arp_ha.sa_data);
1014 if (!dev)
1015 return -ENODEV;
1016 }
1017 if (mask) {
1018 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1019 return -ENOBUFS;
1020 return 0;
1021 }
1022
1023 return arp_req_set_proxy(net, dev, 1);
1024 }
1025
arp_req_set(struct net * net,struct arpreq * r,struct net_device * dev)1026 static int arp_req_set(struct net *net, struct arpreq *r,
1027 struct net_device *dev)
1028 {
1029 __be32 ip;
1030 struct neighbour *neigh;
1031 int err;
1032
1033 if (r->arp_flags & ATF_PUBL)
1034 return arp_req_set_public(net, r, dev);
1035
1036 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1037 if (r->arp_flags & ATF_PERM)
1038 r->arp_flags |= ATF_COM;
1039 if (!dev) {
1040 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1041
1042 if (IS_ERR(rt))
1043 return PTR_ERR(rt);
1044 dev = rt->dst.dev;
1045 ip_rt_put(rt);
1046 if (!dev)
1047 return -EINVAL;
1048 }
1049 switch (dev->type) {
1050 #if IS_ENABLED(CONFIG_FDDI)
1051 case ARPHRD_FDDI:
1052 /*
1053 * According to RFC 1390, FDDI devices should accept ARP
1054 * hardware types of 1 (Ethernet). However, to be more
1055 * robust, we'll accept hardware types of either 1 (Ethernet)
1056 * or 6 (IEEE 802.2).
1057 */
1058 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1059 r->arp_ha.sa_family != ARPHRD_ETHER &&
1060 r->arp_ha.sa_family != ARPHRD_IEEE802)
1061 return -EINVAL;
1062 break;
1063 #endif
1064 default:
1065 if (r->arp_ha.sa_family != dev->type)
1066 return -EINVAL;
1067 break;
1068 }
1069
1070 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1071 err = PTR_ERR(neigh);
1072 if (!IS_ERR(neigh)) {
1073 unsigned int state = NUD_STALE;
1074 if (r->arp_flags & ATF_PERM)
1075 state = NUD_PERMANENT;
1076 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1077 r->arp_ha.sa_data : NULL, state,
1078 NEIGH_UPDATE_F_OVERRIDE |
1079 NEIGH_UPDATE_F_ADMIN, 0);
1080 neigh_release(neigh);
1081 }
1082 return err;
1083 }
1084
arp_state_to_flags(struct neighbour * neigh)1085 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1086 {
1087 if (neigh->nud_state&NUD_PERMANENT)
1088 return ATF_PERM | ATF_COM;
1089 else if (neigh->nud_state&NUD_VALID)
1090 return ATF_COM;
1091 else
1092 return 0;
1093 }
1094
1095 /*
1096 * Get an ARP cache entry.
1097 */
1098
arp_req_get(struct arpreq * r,struct net_device * dev)1099 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1100 {
1101 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1102 struct neighbour *neigh;
1103 int err = -ENXIO;
1104
1105 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1106 if (neigh) {
1107 if (!(neigh->nud_state & NUD_NOARP)) {
1108 read_lock_bh(&neigh->lock);
1109 memcpy(r->arp_ha.sa_data, neigh->ha,
1110 min(dev->addr_len, (unsigned char)sizeof(r->arp_ha.sa_data_min)));
1111 r->arp_flags = arp_state_to_flags(neigh);
1112 read_unlock_bh(&neigh->lock);
1113 r->arp_ha.sa_family = dev->type;
1114 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1115 err = 0;
1116 }
1117 neigh_release(neigh);
1118 }
1119 return err;
1120 }
1121
arp_invalidate(struct net_device * dev,__be32 ip,bool force)1122 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1123 {
1124 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125 int err = -ENXIO;
1126 struct neigh_table *tbl = &arp_tbl;
1127
1128 if (neigh) {
1129 if ((neigh->nud_state & NUD_VALID) && !force) {
1130 neigh_release(neigh);
1131 return 0;
1132 }
1133
1134 if (neigh->nud_state & ~NUD_NOARP)
1135 err = neigh_update(neigh, NULL, NUD_FAILED,
1136 NEIGH_UPDATE_F_OVERRIDE|
1137 NEIGH_UPDATE_F_ADMIN, 0);
1138 write_lock_bh(&tbl->lock);
1139 neigh_release(neigh);
1140 neigh_remove_one(neigh, tbl);
1141 write_unlock_bh(&tbl->lock);
1142 }
1143
1144 return err;
1145 }
1146
arp_req_delete_public(struct net * net,struct arpreq * r,struct net_device * dev)1147 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1148 struct net_device *dev)
1149 {
1150 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1151 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1152
1153 if (mask == htonl(0xFFFFFFFF))
1154 return pneigh_delete(&arp_tbl, net, &ip, dev);
1155
1156 if (mask)
1157 return -EINVAL;
1158
1159 return arp_req_set_proxy(net, dev, 0);
1160 }
1161
arp_req_delete(struct net * net,struct arpreq * r,struct net_device * dev)1162 static int arp_req_delete(struct net *net, struct arpreq *r,
1163 struct net_device *dev)
1164 {
1165 __be32 ip;
1166
1167 if (r->arp_flags & ATF_PUBL)
1168 return arp_req_delete_public(net, r, dev);
1169
1170 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1171 if (!dev) {
1172 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1173 if (IS_ERR(rt))
1174 return PTR_ERR(rt);
1175 dev = rt->dst.dev;
1176 ip_rt_put(rt);
1177 if (!dev)
1178 return -EINVAL;
1179 }
1180 return arp_invalidate(dev, ip, true);
1181 }
1182
1183 /*
1184 * Handle an ARP layer I/O control request.
1185 */
1186
arp_ioctl(struct net * net,unsigned int cmd,void __user * arg)1187 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1188 {
1189 int err;
1190 struct arpreq r;
1191 struct net_device *dev = NULL;
1192
1193 switch (cmd) {
1194 case SIOCDARP:
1195 case SIOCSARP:
1196 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1197 return -EPERM;
1198 fallthrough;
1199 case SIOCGARP:
1200 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1201 if (err)
1202 return -EFAULT;
1203 break;
1204 default:
1205 return -EINVAL;
1206 }
1207
1208 if (r.arp_pa.sa_family != AF_INET)
1209 return -EPFNOSUPPORT;
1210
1211 if (!(r.arp_flags & ATF_PUBL) &&
1212 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1213 return -EINVAL;
1214 if (!(r.arp_flags & ATF_NETMASK))
1215 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1216 htonl(0xFFFFFFFFUL);
1217 rtnl_lock();
1218 if (r.arp_dev[0]) {
1219 err = -ENODEV;
1220 dev = __dev_get_by_name(net, r.arp_dev);
1221 if (!dev)
1222 goto out;
1223
1224 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1225 if (!r.arp_ha.sa_family)
1226 r.arp_ha.sa_family = dev->type;
1227 err = -EINVAL;
1228 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1229 goto out;
1230 } else if (cmd == SIOCGARP) {
1231 err = -ENODEV;
1232 goto out;
1233 }
1234
1235 switch (cmd) {
1236 case SIOCDARP:
1237 err = arp_req_delete(net, &r, dev);
1238 break;
1239 case SIOCSARP:
1240 err = arp_req_set(net, &r, dev);
1241 break;
1242 case SIOCGARP:
1243 err = arp_req_get(&r, dev);
1244 break;
1245 }
1246 out:
1247 rtnl_unlock();
1248 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1249 err = -EFAULT;
1250 return err;
1251 }
1252
arp_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1253 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1254 void *ptr)
1255 {
1256 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1257 struct netdev_notifier_change_info *change_info;
1258
1259 switch (event) {
1260 case NETDEV_CHANGEADDR:
1261 neigh_changeaddr(&arp_tbl, dev);
1262 rt_cache_flush(dev_net(dev));
1263 break;
1264 case NETDEV_CHANGE:
1265 change_info = ptr;
1266 if (change_info->flags_changed & IFF_NOARP)
1267 neigh_changeaddr(&arp_tbl, dev);
1268 if (!netif_carrier_ok(dev))
1269 neigh_carrier_down(&arp_tbl, dev);
1270 break;
1271 default:
1272 break;
1273 }
1274
1275 return NOTIFY_DONE;
1276 }
1277
1278 static struct notifier_block arp_netdev_notifier = {
1279 .notifier_call = arp_netdev_event,
1280 };
1281
1282 /* Note, that it is not on notifier chain.
1283 It is necessary, that this routine was called after route cache will be
1284 flushed.
1285 */
arp_ifdown(struct net_device * dev)1286 void arp_ifdown(struct net_device *dev)
1287 {
1288 neigh_ifdown(&arp_tbl, dev);
1289 }
1290
1291
1292 /*
1293 * Called once on startup.
1294 */
1295
1296 static struct packet_type arp_packet_type __read_mostly = {
1297 .type = cpu_to_be16(ETH_P_ARP),
1298 .func = arp_rcv,
1299 };
1300
1301 static int arp_proc_init(void);
1302
arp_init(void)1303 void __init arp_init(void)
1304 {
1305 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1306
1307 dev_add_pack(&arp_packet_type);
1308 arp_proc_init();
1309 #ifdef CONFIG_SYSCTL
1310 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1311 #endif
1312 register_netdevice_notifier(&arp_netdev_notifier);
1313 }
1314
1315 #ifdef CONFIG_PROC_FS
1316 #if IS_ENABLED(CONFIG_AX25)
1317
1318 /* ------------------------------------------------------------------------ */
1319 /*
1320 * ax25 -> ASCII conversion
1321 */
ax2asc2(ax25_address * a,char * buf)1322 static void ax2asc2(ax25_address *a, char *buf)
1323 {
1324 char c, *s;
1325 int n;
1326
1327 for (n = 0, s = buf; n < 6; n++) {
1328 c = (a->ax25_call[n] >> 1) & 0x7F;
1329
1330 if (c != ' ')
1331 *s++ = c;
1332 }
1333
1334 *s++ = '-';
1335 n = (a->ax25_call[6] >> 1) & 0x0F;
1336 if (n > 9) {
1337 *s++ = '1';
1338 n -= 10;
1339 }
1340
1341 *s++ = n + '0';
1342 *s++ = '\0';
1343
1344 if (*buf == '\0' || *buf == '-') {
1345 buf[0] = '*';
1346 buf[1] = '\0';
1347 }
1348 }
1349 #endif /* CONFIG_AX25 */
1350
1351 #define HBUFFERLEN 30
1352
arp_format_neigh_entry(struct seq_file * seq,struct neighbour * n)1353 static void arp_format_neigh_entry(struct seq_file *seq,
1354 struct neighbour *n)
1355 {
1356 char hbuffer[HBUFFERLEN];
1357 int k, j;
1358 char tbuf[16];
1359 struct net_device *dev = n->dev;
1360 int hatype = dev->type;
1361
1362 read_lock(&n->lock);
1363 /* Convert hardware address to XX:XX:XX:XX ... form. */
1364 #if IS_ENABLED(CONFIG_AX25)
1365 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1366 ax2asc2((ax25_address *)n->ha, hbuffer);
1367 else {
1368 #endif
1369 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1370 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1371 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1372 hbuffer[k++] = ':';
1373 }
1374 if (k != 0)
1375 --k;
1376 hbuffer[k] = 0;
1377 #if IS_ENABLED(CONFIG_AX25)
1378 }
1379 #endif
1380 sprintf(tbuf, "%pI4", n->primary_key);
1381 seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1382 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1383 read_unlock(&n->lock);
1384 }
1385
arp_format_pneigh_entry(struct seq_file * seq,struct pneigh_entry * n)1386 static void arp_format_pneigh_entry(struct seq_file *seq,
1387 struct pneigh_entry *n)
1388 {
1389 struct net_device *dev = n->dev;
1390 int hatype = dev ? dev->type : 0;
1391 char tbuf[16];
1392
1393 sprintf(tbuf, "%pI4", n->key);
1394 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1395 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1396 dev ? dev->name : "*");
1397 }
1398
arp_seq_show(struct seq_file * seq,void * v)1399 static int arp_seq_show(struct seq_file *seq, void *v)
1400 {
1401 if (v == SEQ_START_TOKEN) {
1402 seq_puts(seq, "IP address HW type Flags "
1403 "HW address Mask Device\n");
1404 } else {
1405 struct neigh_seq_state *state = seq->private;
1406
1407 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1408 arp_format_pneigh_entry(seq, v);
1409 else
1410 arp_format_neigh_entry(seq, v);
1411 }
1412
1413 return 0;
1414 }
1415
arp_seq_start(struct seq_file * seq,loff_t * pos)1416 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1417 {
1418 /* Don't want to confuse "arp -a" w/ magic entries,
1419 * so we tell the generic iterator to skip NUD_NOARP.
1420 */
1421 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1422 }
1423
1424 /* ------------------------------------------------------------------------ */
1425
1426 static const struct seq_operations arp_seq_ops = {
1427 .start = arp_seq_start,
1428 .next = neigh_seq_next,
1429 .stop = neigh_seq_stop,
1430 .show = arp_seq_show,
1431 };
1432
1433 /* ------------------------------------------------------------------------ */
1434
arp_net_init(struct net * net)1435 static int __net_init arp_net_init(struct net *net)
1436 {
1437 if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1438 sizeof(struct neigh_seq_state)))
1439 return -ENOMEM;
1440 return 0;
1441 }
1442
arp_net_exit(struct net * net)1443 static void __net_exit arp_net_exit(struct net *net)
1444 {
1445 remove_proc_entry("arp", net->proc_net);
1446 }
1447
1448 static struct pernet_operations arp_net_ops = {
1449 .init = arp_net_init,
1450 .exit = arp_net_exit,
1451 };
1452
arp_proc_init(void)1453 static int __init arp_proc_init(void)
1454 {
1455 return register_pernet_subsys(&arp_net_ops);
1456 }
1457
1458 #else /* CONFIG_PROC_FS */
1459
arp_proc_init(void)1460 static int __init arp_proc_init(void)
1461 {
1462 return 0;
1463 }
1464
1465 #endif /* CONFIG_PROC_FS */
1466