• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *	Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 struct neigh_table arp_tbl = {
153 	.family		= AF_INET,
154 	.key_len	= 4,
155 	.protocol	= cpu_to_be16(ETH_P_IP),
156 	.hash		= arp_hash,
157 	.key_eq		= arp_key_eq,
158 	.constructor	= arp_constructor,
159 	.proxy_redo	= parp_redo,
160 	.is_multicast	= arp_is_multicast,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173 			[NEIGH_VAR_PROXY_QLEN] = 64,
174 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 		},
178 	},
179 	.gc_interval	= 30 * HZ,
180 	.gc_thresh1	= 128,
181 	.gc_thresh2	= 512,
182 	.gc_thresh3	= 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185 
arp_mc_map(__be32 addr,u8 * haddr,struct net_device * dev,int dir)186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 	switch (dev->type) {
189 	case ARPHRD_ETHER:
190 	case ARPHRD_FDDI:
191 	case ARPHRD_IEEE802:
192 		ip_eth_mc_map(addr, haddr);
193 		return 0;
194 	case ARPHRD_INFINIBAND:
195 		ip_ib_mc_map(addr, dev->broadcast, haddr);
196 		return 0;
197 	case ARPHRD_IPGRE:
198 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 		return 0;
200 	default:
201 		if (dir) {
202 			memcpy(haddr, dev->broadcast, dev->addr_len);
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 
209 
arp_hash(const void * pkey,const struct net_device * dev,__u32 * hash_rnd)210 static u32 arp_hash(const void *pkey,
211 		    const struct net_device *dev,
212 		    __u32 *hash_rnd)
213 {
214 	return arp_hashfn(pkey, dev, hash_rnd);
215 }
216 
arp_key_eq(const struct neighbour * neigh,const void * pkey)217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 	return neigh_key_eq32(neigh, pkey);
220 }
221 
arp_constructor(struct neighbour * neigh)222 static int arp_constructor(struct neighbour *neigh)
223 {
224 	__be32 addr;
225 	struct net_device *dev = neigh->dev;
226 	struct in_device *in_dev;
227 	struct neigh_parms *parms;
228 	u32 inaddr_any = INADDR_ANY;
229 
230 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232 
233 	addr = *(__be32 *)neigh->primary_key;
234 	rcu_read_lock();
235 	in_dev = __in_dev_get_rcu(dev);
236 	if (!in_dev) {
237 		rcu_read_unlock();
238 		return -EINVAL;
239 	}
240 
241 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242 
243 	parms = in_dev->arp_parms;
244 	__neigh_parms_put(neigh->parms);
245 	neigh->parms = neigh_parms_clone(parms);
246 	rcu_read_unlock();
247 
248 	if (!dev->header_ops) {
249 		neigh->nud_state = NUD_NOARP;
250 		neigh->ops = &arp_direct_ops;
251 		neigh->output = neigh_direct_output;
252 	} else {
253 		/* Good devices (checked by reading texts, but only Ethernet is
254 		   tested)
255 
256 		   ARPHRD_ETHER: (ethernet, apfddi)
257 		   ARPHRD_FDDI: (fddi)
258 		   ARPHRD_IEEE802: (tr)
259 		   ARPHRD_METRICOM: (strip)
260 		   ARPHRD_ARCNET:
261 		   etc. etc. etc.
262 
263 		   ARPHRD_IPDDP will also work, if author repairs it.
264 		   I did not it, because this driver does not work even
265 		   in old paradigm.
266 		 */
267 
268 		if (neigh->type == RTN_MULTICAST) {
269 			neigh->nud_state = NUD_NOARP;
270 			arp_mc_map(addr, neigh->ha, dev, 1);
271 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272 			neigh->nud_state = NUD_NOARP;
273 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274 		} else if (neigh->type == RTN_BROADCAST ||
275 			   (dev->flags & IFF_POINTOPOINT)) {
276 			neigh->nud_state = NUD_NOARP;
277 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278 		}
279 
280 		if (dev->header_ops->cache)
281 			neigh->ops = &arp_hh_ops;
282 		else
283 			neigh->ops = &arp_generic_ops;
284 
285 		if (neigh->nud_state & NUD_VALID)
286 			neigh->output = neigh->ops->connected_output;
287 		else
288 			neigh->output = neigh->ops->output;
289 	}
290 	return 0;
291 }
292 
arp_error_report(struct neighbour * neigh,struct sk_buff * skb)293 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294 {
295 	dst_link_failure(skb);
296 	kfree_skb(skb);
297 }
298 
299 /* Create and send an arp packet. */
arp_send_dst(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw,struct dst_entry * dst)300 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301 			 struct net_device *dev, __be32 src_ip,
302 			 const unsigned char *dest_hw,
303 			 const unsigned char *src_hw,
304 			 const unsigned char *target_hw,
305 			 struct dst_entry *dst)
306 {
307 	struct sk_buff *skb;
308 
309 	/* arp on this interface. */
310 	if (dev->flags & IFF_NOARP)
311 		return;
312 
313 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314 			 dest_hw, src_hw, target_hw);
315 	if (!skb)
316 		return;
317 
318 	skb_dst_set(skb, dst_clone(dst));
319 	arp_xmit(skb);
320 }
321 
arp_send(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)322 void arp_send(int type, int ptype, __be32 dest_ip,
323 	      struct net_device *dev, __be32 src_ip,
324 	      const unsigned char *dest_hw, const unsigned char *src_hw,
325 	      const unsigned char *target_hw)
326 {
327 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328 		     target_hw, NULL);
329 }
330 EXPORT_SYMBOL(arp_send);
331 
arp_solicit(struct neighbour * neigh,struct sk_buff * skb)332 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 {
334 	__be32 saddr = 0;
335 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336 	struct net_device *dev = neigh->dev;
337 	__be32 target = *(__be32 *)neigh->primary_key;
338 	int probes = atomic_read(&neigh->probes);
339 	struct in_device *in_dev;
340 	struct dst_entry *dst = NULL;
341 
342 	rcu_read_lock();
343 	in_dev = __in_dev_get_rcu(dev);
344 	if (!in_dev) {
345 		rcu_read_unlock();
346 		return;
347 	}
348 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349 	default:
350 	case 0:		/* By default announce any local IP */
351 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
353 			saddr = ip_hdr(skb)->saddr;
354 		break;
355 	case 1:		/* Restrict announcements of saddr in same subnet */
356 		if (!skb)
357 			break;
358 		saddr = ip_hdr(skb)->saddr;
359 		if (inet_addr_type_dev_table(dev_net(dev), dev,
360 					     saddr) == RTN_LOCAL) {
361 			/* saddr should be known to target */
362 			if (inet_addr_onlink(in_dev, target, saddr))
363 				break;
364 		}
365 		saddr = 0;
366 		break;
367 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
368 		break;
369 	}
370 	rcu_read_unlock();
371 
372 	if (!saddr)
373 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374 
375 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376 	if (probes < 0) {
377 		if (!(neigh->nud_state & NUD_VALID))
378 			pr_debug("trying to ucast probe in NUD_INVALID\n");
379 		neigh_ha_snapshot(dst_ha, neigh, dev);
380 		dst_hw = dst_ha;
381 	} else {
382 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383 		if (probes < 0) {
384 			neigh_app_ns(neigh);
385 			return;
386 		}
387 	}
388 
389 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390 		dst = skb_dst(skb);
391 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392 		     dst_hw, dev->dev_addr, NULL, dst);
393 }
394 
arp_ignore(struct in_device * in_dev,__be32 sip,__be32 tip)395 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396 {
397 	struct net *net = dev_net(in_dev->dev);
398 	int scope;
399 
400 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
401 	case 0:	/* Reply, the tip is already validated */
402 		return 0;
403 	case 1:	/* Reply only if tip is configured on the incoming interface */
404 		sip = 0;
405 		scope = RT_SCOPE_HOST;
406 		break;
407 	case 2:	/*
408 		 * Reply only if tip is configured on the incoming interface
409 		 * and is in same subnet as sip
410 		 */
411 		scope = RT_SCOPE_HOST;
412 		break;
413 	case 3:	/* Do not reply for scope host addresses */
414 		sip = 0;
415 		scope = RT_SCOPE_LINK;
416 		in_dev = NULL;
417 		break;
418 	case 4:	/* Reserved */
419 	case 5:
420 	case 6:
421 	case 7:
422 		return 0;
423 	case 8:	/* Do not reply */
424 		return 1;
425 	default:
426 		return 0;
427 	}
428 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429 }
430 
arp_filter(__be32 sip,__be32 tip,struct net_device * dev)431 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432 {
433 	struct rtable *rt;
434 	int flag = 0;
435 	/*unsigned long now; */
436 	struct net *net = dev_net(dev);
437 
438 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439 	if (IS_ERR(rt))
440 		return 1;
441 	if (rt->dst.dev != dev) {
442 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443 		flag = 1;
444 	}
445 	ip_rt_put(rt);
446 	return flag;
447 }
448 
449 /*
450  * Check if we can use proxy ARP for this path
451  */
arp_fwd_proxy(struct in_device * in_dev,struct net_device * dev,struct rtable * rt)452 static inline int arp_fwd_proxy(struct in_device *in_dev,
453 				struct net_device *dev,	struct rtable *rt)
454 {
455 	struct in_device *out_dev;
456 	int imi, omi = -1;
457 
458 	if (rt->dst.dev == dev)
459 		return 0;
460 
461 	if (!IN_DEV_PROXY_ARP(in_dev))
462 		return 0;
463 	imi = IN_DEV_MEDIUM_ID(in_dev);
464 	if (imi == 0)
465 		return 1;
466 	if (imi == -1)
467 		return 0;
468 
469 	/* place to check for proxy_arp for routes */
470 
471 	out_dev = __in_dev_get_rcu(rt->dst.dev);
472 	if (out_dev)
473 		omi = IN_DEV_MEDIUM_ID(out_dev);
474 
475 	return omi != imi && omi != -1;
476 }
477 
478 /*
479  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480  *
481  * RFC3069 supports proxy arp replies back to the same interface.  This
482  * is done to support (ethernet) switch features, like RFC 3069, where
483  * the individual ports are not allowed to communicate with each
484  * other, BUT they are allowed to talk to the upstream router.  As
485  * described in RFC 3069, it is possible to allow these hosts to
486  * communicate through the upstream router, by proxy_arp'ing.
487  *
488  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489  *
490  *  This technology is known by different names:
491  *    In RFC 3069 it is called VLAN Aggregation.
492  *    Cisco and Allied Telesyn call it Private VLAN.
493  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
494  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
495  *
496  */
arp_fwd_pvlan(struct in_device * in_dev,struct net_device * dev,struct rtable * rt,__be32 sip,__be32 tip)497 static inline int arp_fwd_pvlan(struct in_device *in_dev,
498 				struct net_device *dev,	struct rtable *rt,
499 				__be32 sip, __be32 tip)
500 {
501 	/* Private VLAN is only concerned about the same ethernet segment */
502 	if (rt->dst.dev != dev)
503 		return 0;
504 
505 	/* Don't reply on self probes (often done by windowz boxes)*/
506 	if (sip == tip)
507 		return 0;
508 
509 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510 		return 1;
511 	else
512 		return 0;
513 }
514 
515 /*
516  *	Interface to link layer: send routine and receive handler.
517  */
518 
519 /*
520  *	Create an arp packet. If dest_hw is not set, we create a broadcast
521  *	message.
522  */
arp_create(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)523 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524 			   struct net_device *dev, __be32 src_ip,
525 			   const unsigned char *dest_hw,
526 			   const unsigned char *src_hw,
527 			   const unsigned char *target_hw)
528 {
529 	struct sk_buff *skb;
530 	struct arphdr *arp;
531 	unsigned char *arp_ptr;
532 	int hlen = LL_RESERVED_SPACE(dev);
533 	int tlen = dev->needed_tailroom;
534 
535 	/*
536 	 *	Allocate a buffer
537 	 */
538 
539 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540 	if (!skb)
541 		return NULL;
542 
543 	skb_reserve(skb, hlen);
544 	skb_reset_network_header(skb);
545 	arp = skb_put(skb, arp_hdr_len(dev));
546 	skb->dev = dev;
547 	skb->protocol = htons(ETH_P_ARP);
548 	if (!src_hw)
549 		src_hw = dev->dev_addr;
550 	if (!dest_hw)
551 		dest_hw = dev->broadcast;
552 
553 	/*
554 	 *	Fill the device header for the ARP frame
555 	 */
556 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557 		goto out;
558 
559 	/*
560 	 * Fill out the arp protocol part.
561 	 *
562 	 * The arp hardware type should match the device type, except for FDDI,
563 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
564 	 */
565 	/*
566 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567 	 *	DIX code for the protocol. Make these device structure fields.
568 	 */
569 	switch (dev->type) {
570 	default:
571 		arp->ar_hrd = htons(dev->type);
572 		arp->ar_pro = htons(ETH_P_IP);
573 		break;
574 
575 #if IS_ENABLED(CONFIG_AX25)
576 	case ARPHRD_AX25:
577 		arp->ar_hrd = htons(ARPHRD_AX25);
578 		arp->ar_pro = htons(AX25_P_IP);
579 		break;
580 
581 #if IS_ENABLED(CONFIG_NETROM)
582 	case ARPHRD_NETROM:
583 		arp->ar_hrd = htons(ARPHRD_NETROM);
584 		arp->ar_pro = htons(AX25_P_IP);
585 		break;
586 #endif
587 #endif
588 
589 #if IS_ENABLED(CONFIG_FDDI)
590 	case ARPHRD_FDDI:
591 		arp->ar_hrd = htons(ARPHRD_ETHER);
592 		arp->ar_pro = htons(ETH_P_IP);
593 		break;
594 #endif
595 	}
596 
597 	arp->ar_hln = dev->addr_len;
598 	arp->ar_pln = 4;
599 	arp->ar_op = htons(type);
600 
601 	arp_ptr = (unsigned char *)(arp + 1);
602 
603 	memcpy(arp_ptr, src_hw, dev->addr_len);
604 	arp_ptr += dev->addr_len;
605 	memcpy(arp_ptr, &src_ip, 4);
606 	arp_ptr += 4;
607 
608 	switch (dev->type) {
609 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
610 	case ARPHRD_IEEE1394:
611 		break;
612 #endif
613 	default:
614 		if (target_hw)
615 			memcpy(arp_ptr, target_hw, dev->addr_len);
616 		else
617 			memset(arp_ptr, 0, dev->addr_len);
618 		arp_ptr += dev->addr_len;
619 	}
620 	memcpy(arp_ptr, &dest_ip, 4);
621 
622 	return skb;
623 
624 out:
625 	kfree_skb(skb);
626 	return NULL;
627 }
628 EXPORT_SYMBOL(arp_create);
629 
arp_xmit_finish(struct net * net,struct sock * sk,struct sk_buff * skb)630 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631 {
632 	return dev_queue_xmit(skb);
633 }
634 
635 /*
636  *	Send an arp packet.
637  */
arp_xmit(struct sk_buff * skb)638 void arp_xmit(struct sk_buff *skb)
639 {
640 	rcu_read_lock();
641 	/* Send it off, maybe filter it using firewalling first.  */
642 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
643 		dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
644 		arp_xmit_finish);
645 	rcu_read_unlock();
646 }
647 EXPORT_SYMBOL(arp_xmit);
648 
arp_is_garp(struct net * net,struct net_device * dev,int * addr_type,__be16 ar_op,__be32 sip,__be32 tip,unsigned char * sha,unsigned char * tha)649 static bool arp_is_garp(struct net *net, struct net_device *dev,
650 			int *addr_type, __be16 ar_op,
651 			__be32 sip, __be32 tip,
652 			unsigned char *sha, unsigned char *tha)
653 {
654 	bool is_garp = tip == sip;
655 
656 	/* Gratuitous ARP _replies_ also require target hwaddr to be
657 	 * the same as source.
658 	 */
659 	if (is_garp && ar_op == htons(ARPOP_REPLY))
660 		is_garp =
661 			/* IPv4 over IEEE 1394 doesn't provide target
662 			 * hardware address field in its ARP payload.
663 			 */
664 			tha &&
665 			!memcmp(tha, sha, dev->addr_len);
666 
667 	if (is_garp) {
668 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
669 		if (*addr_type != RTN_UNICAST)
670 			is_garp = false;
671 	}
672 	return is_garp;
673 }
674 
675 /*
676  *	Process an arp request.
677  */
678 
arp_process(struct net * net,struct sock * sk,struct sk_buff * skb)679 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
680 {
681 	struct net_device *dev = skb->dev;
682 	struct in_device *in_dev = __in_dev_get_rcu(dev);
683 	struct arphdr *arp;
684 	unsigned char *arp_ptr;
685 	struct rtable *rt;
686 	unsigned char *sha;
687 	unsigned char *tha = NULL;
688 	__be32 sip, tip;
689 	u16 dev_type = dev->type;
690 	int addr_type;
691 	struct neighbour *n;
692 	struct dst_entry *reply_dst = NULL;
693 	bool is_garp = false;
694 
695 	/* arp_rcv below verifies the ARP header and verifies the device
696 	 * is ARP'able.
697 	 */
698 
699 	if (!in_dev)
700 		goto out_free_skb;
701 
702 	arp = arp_hdr(skb);
703 
704 	switch (dev_type) {
705 	default:
706 		if (arp->ar_pro != htons(ETH_P_IP) ||
707 		    htons(dev_type) != arp->ar_hrd)
708 			goto out_free_skb;
709 		break;
710 	case ARPHRD_ETHER:
711 	case ARPHRD_FDDI:
712 	case ARPHRD_IEEE802:
713 		/*
714 		 * ETHERNET, and Fibre Channel (which are IEEE 802
715 		 * devices, according to RFC 2625) devices will accept ARP
716 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
717 		 * This is the case also of FDDI, where the RFC 1390 says that
718 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
719 		 * however, to be more robust, we'll accept both 1 (Ethernet)
720 		 * or 6 (IEEE 802.2)
721 		 */
722 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
723 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
724 		    arp->ar_pro != htons(ETH_P_IP))
725 			goto out_free_skb;
726 		break;
727 	case ARPHRD_AX25:
728 		if (arp->ar_pro != htons(AX25_P_IP) ||
729 		    arp->ar_hrd != htons(ARPHRD_AX25))
730 			goto out_free_skb;
731 		break;
732 	case ARPHRD_NETROM:
733 		if (arp->ar_pro != htons(AX25_P_IP) ||
734 		    arp->ar_hrd != htons(ARPHRD_NETROM))
735 			goto out_free_skb;
736 		break;
737 	}
738 
739 	/* Understand only these message types */
740 
741 	if (arp->ar_op != htons(ARPOP_REPLY) &&
742 	    arp->ar_op != htons(ARPOP_REQUEST))
743 		goto out_free_skb;
744 
745 /*
746  *	Extract fields
747  */
748 	arp_ptr = (unsigned char *)(arp + 1);
749 	sha	= arp_ptr;
750 	arp_ptr += dev->addr_len;
751 	memcpy(&sip, arp_ptr, 4);
752 	arp_ptr += 4;
753 	switch (dev_type) {
754 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
755 	case ARPHRD_IEEE1394:
756 		break;
757 #endif
758 	default:
759 		tha = arp_ptr;
760 		arp_ptr += dev->addr_len;
761 	}
762 	memcpy(&tip, arp_ptr, 4);
763 /*
764  *	Check for bad requests for 127.x.x.x and requests for multicast
765  *	addresses.  If this is one such, delete it.
766  */
767 	if (ipv4_is_multicast(tip) ||
768 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
769 		goto out_free_skb;
770 
771  /*
772   *	For some 802.11 wireless deployments (and possibly other networks),
773   *	there will be an ARP proxy and gratuitous ARP frames are attacks
774   *	and thus should not be accepted.
775   */
776 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
777 		goto out_free_skb;
778 
779 /*
780  *     Special case: We must set Frame Relay source Q.922 address
781  */
782 	if (dev_type == ARPHRD_DLCI)
783 		sha = dev->broadcast;
784 
785 /*
786  *  Process entry.  The idea here is we want to send a reply if it is a
787  *  request for us or if it is a request for someone else that we hold
788  *  a proxy for.  We want to add an entry to our cache if it is a reply
789  *  to us or if it is a request for our address.
790  *  (The assumption for this last is that if someone is requesting our
791  *  address, they are probably intending to talk to us, so it saves time
792  *  if we cache their address.  Their address is also probably not in
793  *  our cache, since ours is not in their cache.)
794  *
795  *  Putting this another way, we only care about replies if they are to
796  *  us, in which case we add them to the cache.  For requests, we care
797  *  about those for us and those for our proxies.  We reply to both,
798  *  and in the case of requests for us we add the requester to the arp
799  *  cache.
800  */
801 
802 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
803 		reply_dst = (struct dst_entry *)
804 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
805 						    GFP_ATOMIC);
806 
807 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
808 	if (sip == 0) {
809 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
810 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
811 		    !arp_ignore(in_dev, sip, tip))
812 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
813 				     sha, dev->dev_addr, sha, reply_dst);
814 		goto out_consume_skb;
815 	}
816 
817 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
818 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
819 
820 		rt = skb_rtable(skb);
821 		addr_type = rt->rt_type;
822 
823 		if (addr_type == RTN_LOCAL) {
824 			int dont_send;
825 
826 			dont_send = arp_ignore(in_dev, sip, tip);
827 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
828 				dont_send = arp_filter(sip, tip, dev);
829 			if (!dont_send) {
830 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
831 				if (n) {
832 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
833 						     sip, dev, tip, sha,
834 						     dev->dev_addr, sha,
835 						     reply_dst);
836 					neigh_release(n);
837 				}
838 			}
839 			goto out_consume_skb;
840 		} else if (IN_DEV_FORWARD(in_dev)) {
841 			if (addr_type == RTN_UNICAST  &&
842 			    (arp_fwd_proxy(in_dev, dev, rt) ||
843 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
844 			     (rt->dst.dev != dev &&
845 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
846 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
847 				if (n)
848 					neigh_release(n);
849 
850 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
851 				    skb->pkt_type == PACKET_HOST ||
852 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
853 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
854 						     sip, dev, tip, sha,
855 						     dev->dev_addr, sha,
856 						     reply_dst);
857 				} else {
858 					pneigh_enqueue(&arp_tbl,
859 						       in_dev->arp_parms, skb);
860 					goto out_free_dst;
861 				}
862 				goto out_consume_skb;
863 			}
864 		}
865 	}
866 
867 	/* Update our ARP tables */
868 
869 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
870 
871 	addr_type = -1;
872 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
873 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
874 				      sip, tip, sha, tha);
875 	}
876 
877 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
878 		/* Unsolicited ARP is not accepted by default.
879 		   It is possible, that this option should be enabled for some
880 		   devices (strip is candidate)
881 		 */
882 		if (!n &&
883 		    (is_garp ||
884 		     (arp->ar_op == htons(ARPOP_REPLY) &&
885 		      (addr_type == RTN_UNICAST ||
886 		       (addr_type < 0 &&
887 			/* postpone calculation to as late as possible */
888 			inet_addr_type_dev_table(net, dev, sip) ==
889 				RTN_UNICAST)))))
890 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891 	}
892 
893 	if (n) {
894 		int state = NUD_REACHABLE;
895 		int override;
896 
897 		/* If several different ARP replies follows back-to-back,
898 		   use the FIRST one. It is possible, if several proxy
899 		   agents are active. Taking the first reply prevents
900 		   arp trashing and chooses the fastest router.
901 		 */
902 		override = time_after(jiffies,
903 				      n->updated +
904 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
905 			   is_garp;
906 
907 		/* Broadcast replies and request packets
908 		   do not assert neighbour reachability.
909 		 */
910 		if (arp->ar_op != htons(ARPOP_REPLY) ||
911 		    skb->pkt_type != PACKET_HOST)
912 			state = NUD_STALE;
913 		neigh_update(n, sha, state,
914 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
915 		neigh_release(n);
916 	}
917 
918 out_consume_skb:
919 	consume_skb(skb);
920 
921 out_free_dst:
922 	dst_release(reply_dst);
923 	return NET_RX_SUCCESS;
924 
925 out_free_skb:
926 	kfree_skb(skb);
927 	return NET_RX_DROP;
928 }
929 
parp_redo(struct sk_buff * skb)930 static void parp_redo(struct sk_buff *skb)
931 {
932 	arp_process(dev_net(skb->dev), NULL, skb);
933 }
934 
arp_is_multicast(const void * pkey)935 static int arp_is_multicast(const void *pkey)
936 {
937 	return ipv4_is_multicast(*((__be32 *)pkey));
938 }
939 
940 /*
941  *	Receive an arp request from the device layer.
942  */
943 
arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)944 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
945 		   struct packet_type *pt, struct net_device *orig_dev)
946 {
947 	const struct arphdr *arp;
948 
949 	/* do not tweak dropwatch on an ARP we will ignore */
950 	if (dev->flags & IFF_NOARP ||
951 	    skb->pkt_type == PACKET_OTHERHOST ||
952 	    skb->pkt_type == PACKET_LOOPBACK)
953 		goto consumeskb;
954 
955 	skb = skb_share_check(skb, GFP_ATOMIC);
956 	if (!skb)
957 		goto out_of_mem;
958 
959 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
960 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
961 		goto freeskb;
962 
963 	arp = arp_hdr(skb);
964 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
965 		goto freeskb;
966 
967 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
968 
969 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
970 		       dev_net(dev), NULL, skb, dev, NULL,
971 		       arp_process);
972 
973 consumeskb:
974 	consume_skb(skb);
975 	return NET_RX_SUCCESS;
976 freeskb:
977 	kfree_skb(skb);
978 out_of_mem:
979 	return NET_RX_DROP;
980 }
981 
982 /*
983  *	User level interface (ioctl)
984  */
985 
986 /*
987  *	Set (create) an ARP cache entry.
988  */
989 
arp_req_set_proxy(struct net * net,struct net_device * dev,int on)990 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
991 {
992 	if (!dev) {
993 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
994 		return 0;
995 	}
996 	if (__in_dev_get_rtnl(dev)) {
997 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
998 		return 0;
999 	}
1000 	return -ENXIO;
1001 }
1002 
arp_req_set_public(struct net * net,struct arpreq * r,struct net_device * dev)1003 static int arp_req_set_public(struct net *net, struct arpreq *r,
1004 		struct net_device *dev)
1005 {
1006 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1007 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1008 
1009 	if (mask && mask != htonl(0xFFFFFFFF))
1010 		return -EINVAL;
1011 	if (!dev && (r->arp_flags & ATF_COM)) {
1012 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1013 				      r->arp_ha.sa_data);
1014 		if (!dev)
1015 			return -ENODEV;
1016 	}
1017 	if (mask) {
1018 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1019 			return -ENOBUFS;
1020 		return 0;
1021 	}
1022 
1023 	return arp_req_set_proxy(net, dev, 1);
1024 }
1025 
arp_req_set(struct net * net,struct arpreq * r,struct net_device * dev)1026 static int arp_req_set(struct net *net, struct arpreq *r,
1027 		       struct net_device *dev)
1028 {
1029 	__be32 ip;
1030 	struct neighbour *neigh;
1031 	int err;
1032 
1033 	if (r->arp_flags & ATF_PUBL)
1034 		return arp_req_set_public(net, r, dev);
1035 
1036 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1037 	if (r->arp_flags & ATF_PERM)
1038 		r->arp_flags |= ATF_COM;
1039 	if (!dev) {
1040 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1041 
1042 		if (IS_ERR(rt))
1043 			return PTR_ERR(rt);
1044 		dev = rt->dst.dev;
1045 		ip_rt_put(rt);
1046 		if (!dev)
1047 			return -EINVAL;
1048 	}
1049 	switch (dev->type) {
1050 #if IS_ENABLED(CONFIG_FDDI)
1051 	case ARPHRD_FDDI:
1052 		/*
1053 		 * According to RFC 1390, FDDI devices should accept ARP
1054 		 * hardware types of 1 (Ethernet).  However, to be more
1055 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1056 		 * or 6 (IEEE 802.2).
1057 		 */
1058 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1059 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1060 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1061 			return -EINVAL;
1062 		break;
1063 #endif
1064 	default:
1065 		if (r->arp_ha.sa_family != dev->type)
1066 			return -EINVAL;
1067 		break;
1068 	}
1069 
1070 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1071 	err = PTR_ERR(neigh);
1072 	if (!IS_ERR(neigh)) {
1073 		unsigned int state = NUD_STALE;
1074 		if (r->arp_flags & ATF_PERM)
1075 			state = NUD_PERMANENT;
1076 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1077 				   r->arp_ha.sa_data : NULL, state,
1078 				   NEIGH_UPDATE_F_OVERRIDE |
1079 				   NEIGH_UPDATE_F_ADMIN, 0);
1080 		neigh_release(neigh);
1081 	}
1082 	return err;
1083 }
1084 
arp_state_to_flags(struct neighbour * neigh)1085 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1086 {
1087 	if (neigh->nud_state&NUD_PERMANENT)
1088 		return ATF_PERM | ATF_COM;
1089 	else if (neigh->nud_state&NUD_VALID)
1090 		return ATF_COM;
1091 	else
1092 		return 0;
1093 }
1094 
1095 /*
1096  *	Get an ARP cache entry.
1097  */
1098 
arp_req_get(struct arpreq * r,struct net_device * dev)1099 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1100 {
1101 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1102 	struct neighbour *neigh;
1103 	int err = -ENXIO;
1104 
1105 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1106 	if (neigh) {
1107 		if (!(neigh->nud_state & NUD_NOARP)) {
1108 			read_lock_bh(&neigh->lock);
1109 			memcpy(r->arp_ha.sa_data, neigh->ha,
1110 			       min(dev->addr_len, (unsigned char)sizeof(r->arp_ha.sa_data_min)));
1111 			r->arp_flags = arp_state_to_flags(neigh);
1112 			read_unlock_bh(&neigh->lock);
1113 			r->arp_ha.sa_family = dev->type;
1114 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1115 			err = 0;
1116 		}
1117 		neigh_release(neigh);
1118 	}
1119 	return err;
1120 }
1121 
arp_invalidate(struct net_device * dev,__be32 ip,bool force)1122 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1123 {
1124 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125 	int err = -ENXIO;
1126 	struct neigh_table *tbl = &arp_tbl;
1127 
1128 	if (neigh) {
1129 		if ((neigh->nud_state & NUD_VALID) && !force) {
1130 			neigh_release(neigh);
1131 			return 0;
1132 		}
1133 
1134 		if (neigh->nud_state & ~NUD_NOARP)
1135 			err = neigh_update(neigh, NULL, NUD_FAILED,
1136 					   NEIGH_UPDATE_F_OVERRIDE|
1137 					   NEIGH_UPDATE_F_ADMIN, 0);
1138 		write_lock_bh(&tbl->lock);
1139 		neigh_release(neigh);
1140 		neigh_remove_one(neigh, tbl);
1141 		write_unlock_bh(&tbl->lock);
1142 	}
1143 
1144 	return err;
1145 }
1146 
arp_req_delete_public(struct net * net,struct arpreq * r,struct net_device * dev)1147 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1148 		struct net_device *dev)
1149 {
1150 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1151 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1152 
1153 	if (mask == htonl(0xFFFFFFFF))
1154 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1155 
1156 	if (mask)
1157 		return -EINVAL;
1158 
1159 	return arp_req_set_proxy(net, dev, 0);
1160 }
1161 
arp_req_delete(struct net * net,struct arpreq * r,struct net_device * dev)1162 static int arp_req_delete(struct net *net, struct arpreq *r,
1163 			  struct net_device *dev)
1164 {
1165 	__be32 ip;
1166 
1167 	if (r->arp_flags & ATF_PUBL)
1168 		return arp_req_delete_public(net, r, dev);
1169 
1170 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1171 	if (!dev) {
1172 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1173 		if (IS_ERR(rt))
1174 			return PTR_ERR(rt);
1175 		dev = rt->dst.dev;
1176 		ip_rt_put(rt);
1177 		if (!dev)
1178 			return -EINVAL;
1179 	}
1180 	return arp_invalidate(dev, ip, true);
1181 }
1182 
1183 /*
1184  *	Handle an ARP layer I/O control request.
1185  */
1186 
arp_ioctl(struct net * net,unsigned int cmd,void __user * arg)1187 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1188 {
1189 	int err;
1190 	struct arpreq r;
1191 	struct net_device *dev = NULL;
1192 
1193 	switch (cmd) {
1194 	case SIOCDARP:
1195 	case SIOCSARP:
1196 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1197 			return -EPERM;
1198 		fallthrough;
1199 	case SIOCGARP:
1200 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1201 		if (err)
1202 			return -EFAULT;
1203 		break;
1204 	default:
1205 		return -EINVAL;
1206 	}
1207 
1208 	if (r.arp_pa.sa_family != AF_INET)
1209 		return -EPFNOSUPPORT;
1210 
1211 	if (!(r.arp_flags & ATF_PUBL) &&
1212 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1213 		return -EINVAL;
1214 	if (!(r.arp_flags & ATF_NETMASK))
1215 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1216 							   htonl(0xFFFFFFFFUL);
1217 	rtnl_lock();
1218 	if (r.arp_dev[0]) {
1219 		err = -ENODEV;
1220 		dev = __dev_get_by_name(net, r.arp_dev);
1221 		if (!dev)
1222 			goto out;
1223 
1224 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1225 		if (!r.arp_ha.sa_family)
1226 			r.arp_ha.sa_family = dev->type;
1227 		err = -EINVAL;
1228 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1229 			goto out;
1230 	} else if (cmd == SIOCGARP) {
1231 		err = -ENODEV;
1232 		goto out;
1233 	}
1234 
1235 	switch (cmd) {
1236 	case SIOCDARP:
1237 		err = arp_req_delete(net, &r, dev);
1238 		break;
1239 	case SIOCSARP:
1240 		err = arp_req_set(net, &r, dev);
1241 		break;
1242 	case SIOCGARP:
1243 		err = arp_req_get(&r, dev);
1244 		break;
1245 	}
1246 out:
1247 	rtnl_unlock();
1248 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1249 		err = -EFAULT;
1250 	return err;
1251 }
1252 
arp_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1253 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1254 			    void *ptr)
1255 {
1256 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1257 	struct netdev_notifier_change_info *change_info;
1258 
1259 	switch (event) {
1260 	case NETDEV_CHANGEADDR:
1261 		neigh_changeaddr(&arp_tbl, dev);
1262 		rt_cache_flush(dev_net(dev));
1263 		break;
1264 	case NETDEV_CHANGE:
1265 		change_info = ptr;
1266 		if (change_info->flags_changed & IFF_NOARP)
1267 			neigh_changeaddr(&arp_tbl, dev);
1268 		if (!netif_carrier_ok(dev))
1269 			neigh_carrier_down(&arp_tbl, dev);
1270 		break;
1271 	default:
1272 		break;
1273 	}
1274 
1275 	return NOTIFY_DONE;
1276 }
1277 
1278 static struct notifier_block arp_netdev_notifier = {
1279 	.notifier_call = arp_netdev_event,
1280 };
1281 
1282 /* Note, that it is not on notifier chain.
1283    It is necessary, that this routine was called after route cache will be
1284    flushed.
1285  */
arp_ifdown(struct net_device * dev)1286 void arp_ifdown(struct net_device *dev)
1287 {
1288 	neigh_ifdown(&arp_tbl, dev);
1289 }
1290 
1291 
1292 /*
1293  *	Called once on startup.
1294  */
1295 
1296 static struct packet_type arp_packet_type __read_mostly = {
1297 	.type =	cpu_to_be16(ETH_P_ARP),
1298 	.func =	arp_rcv,
1299 };
1300 
1301 static int arp_proc_init(void);
1302 
arp_init(void)1303 void __init arp_init(void)
1304 {
1305 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1306 
1307 	dev_add_pack(&arp_packet_type);
1308 	arp_proc_init();
1309 #ifdef CONFIG_SYSCTL
1310 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1311 #endif
1312 	register_netdevice_notifier(&arp_netdev_notifier);
1313 }
1314 
1315 #ifdef CONFIG_PROC_FS
1316 #if IS_ENABLED(CONFIG_AX25)
1317 
1318 /* ------------------------------------------------------------------------ */
1319 /*
1320  *	ax25 -> ASCII conversion
1321  */
ax2asc2(ax25_address * a,char * buf)1322 static void ax2asc2(ax25_address *a, char *buf)
1323 {
1324 	char c, *s;
1325 	int n;
1326 
1327 	for (n = 0, s = buf; n < 6; n++) {
1328 		c = (a->ax25_call[n] >> 1) & 0x7F;
1329 
1330 		if (c != ' ')
1331 			*s++ = c;
1332 	}
1333 
1334 	*s++ = '-';
1335 	n = (a->ax25_call[6] >> 1) & 0x0F;
1336 	if (n > 9) {
1337 		*s++ = '1';
1338 		n -= 10;
1339 	}
1340 
1341 	*s++ = n + '0';
1342 	*s++ = '\0';
1343 
1344 	if (*buf == '\0' || *buf == '-') {
1345 		buf[0] = '*';
1346 		buf[1] = '\0';
1347 	}
1348 }
1349 #endif /* CONFIG_AX25 */
1350 
1351 #define HBUFFERLEN 30
1352 
arp_format_neigh_entry(struct seq_file * seq,struct neighbour * n)1353 static void arp_format_neigh_entry(struct seq_file *seq,
1354 				   struct neighbour *n)
1355 {
1356 	char hbuffer[HBUFFERLEN];
1357 	int k, j;
1358 	char tbuf[16];
1359 	struct net_device *dev = n->dev;
1360 	int hatype = dev->type;
1361 
1362 	read_lock(&n->lock);
1363 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1364 #if IS_ENABLED(CONFIG_AX25)
1365 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1366 		ax2asc2((ax25_address *)n->ha, hbuffer);
1367 	else {
1368 #endif
1369 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1370 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1371 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1372 		hbuffer[k++] = ':';
1373 	}
1374 	if (k != 0)
1375 		--k;
1376 	hbuffer[k] = 0;
1377 #if IS_ENABLED(CONFIG_AX25)
1378 	}
1379 #endif
1380 	sprintf(tbuf, "%pI4", n->primary_key);
1381 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1382 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1383 	read_unlock(&n->lock);
1384 }
1385 
arp_format_pneigh_entry(struct seq_file * seq,struct pneigh_entry * n)1386 static void arp_format_pneigh_entry(struct seq_file *seq,
1387 				    struct pneigh_entry *n)
1388 {
1389 	struct net_device *dev = n->dev;
1390 	int hatype = dev ? dev->type : 0;
1391 	char tbuf[16];
1392 
1393 	sprintf(tbuf, "%pI4", n->key);
1394 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1395 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1396 		   dev ? dev->name : "*");
1397 }
1398 
arp_seq_show(struct seq_file * seq,void * v)1399 static int arp_seq_show(struct seq_file *seq, void *v)
1400 {
1401 	if (v == SEQ_START_TOKEN) {
1402 		seq_puts(seq, "IP address       HW type     Flags       "
1403 			      "HW address            Mask     Device\n");
1404 	} else {
1405 		struct neigh_seq_state *state = seq->private;
1406 
1407 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1408 			arp_format_pneigh_entry(seq, v);
1409 		else
1410 			arp_format_neigh_entry(seq, v);
1411 	}
1412 
1413 	return 0;
1414 }
1415 
arp_seq_start(struct seq_file * seq,loff_t * pos)1416 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1417 {
1418 	/* Don't want to confuse "arp -a" w/ magic entries,
1419 	 * so we tell the generic iterator to skip NUD_NOARP.
1420 	 */
1421 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1422 }
1423 
1424 /* ------------------------------------------------------------------------ */
1425 
1426 static const struct seq_operations arp_seq_ops = {
1427 	.start	= arp_seq_start,
1428 	.next	= neigh_seq_next,
1429 	.stop	= neigh_seq_stop,
1430 	.show	= arp_seq_show,
1431 };
1432 
1433 /* ------------------------------------------------------------------------ */
1434 
arp_net_init(struct net * net)1435 static int __net_init arp_net_init(struct net *net)
1436 {
1437 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1438 			sizeof(struct neigh_seq_state)))
1439 		return -ENOMEM;
1440 	return 0;
1441 }
1442 
arp_net_exit(struct net * net)1443 static void __net_exit arp_net_exit(struct net *net)
1444 {
1445 	remove_proc_entry("arp", net->proc_net);
1446 }
1447 
1448 static struct pernet_operations arp_net_ops = {
1449 	.init = arp_net_init,
1450 	.exit = arp_net_exit,
1451 };
1452 
arp_proc_init(void)1453 static int __init arp_proc_init(void)
1454 {
1455 	return register_pernet_subsys(&arp_net_ops);
1456 }
1457 
1458 #else /* CONFIG_PROC_FS */
1459 
arp_proc_init(void)1460 static int __init arp_proc_init(void)
1461 {
1462 	return 0;
1463 }
1464 
1465 #endif /* CONFIG_PROC_FS */
1466