• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 
106 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
107 				    ipv6_only_sock(sk2), match_wildcard,
108 				    match_wildcard);
109 }
110 EXPORT_SYMBOL(inet_rcv_saddr_equal);
111 
inet_rcv_saddr_any(const struct sock * sk)112 bool inet_rcv_saddr_any(const struct sock *sk)
113 {
114 #if IS_ENABLED(CONFIG_IPV6)
115 	if (sk->sk_family == AF_INET6)
116 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
117 #endif
118 	return !sk->sk_rcv_saddr;
119 }
120 
inet_get_local_port_range(struct net * net,int * low,int * high)121 void inet_get_local_port_range(struct net *net, int *low, int *high)
122 {
123 	unsigned int seq;
124 
125 	do {
126 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
127 
128 		*low = net->ipv4.ip_local_ports.range[0];
129 		*high = net->ipv4.ip_local_ports.range[1];
130 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
131 }
132 EXPORT_SYMBOL(inet_get_local_port_range);
133 
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)134 static int inet_csk_bind_conflict(const struct sock *sk,
135 				  const struct inet_bind_bucket *tb,
136 				  bool relax, bool reuseport_ok)
137 {
138 	struct sock *sk2;
139 	bool reuse = sk->sk_reuse;
140 	bool reuseport = !!sk->sk_reuseport;
141 	kuid_t uid = sock_i_uid((struct sock *)sk);
142 
143 	/*
144 	 * Unlike other sk lookup places we do not check
145 	 * for sk_net here, since _all_ the socks listed
146 	 * in tb->owners list belong to the same net - the
147 	 * one this bucket belongs to.
148 	 */
149 
150 	sk_for_each_bound(sk2, &tb->owners) {
151 		int bound_dev_if2;
152 
153 		if (sk == sk2)
154 			continue;
155 		bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156 		if ((!sk->sk_bound_dev_if ||
157 		     !bound_dev_if2 ||
158 		     sk->sk_bound_dev_if == bound_dev_if2)) {
159 			if (reuse && sk2->sk_reuse &&
160 			    sk2->sk_state != TCP_LISTEN) {
161 				if ((!relax ||
162 				     (!reuseport_ok &&
163 				      reuseport && sk2->sk_reuseport &&
164 				      !rcu_access_pointer(sk->sk_reuseport_cb) &&
165 				      (sk2->sk_state == TCP_TIME_WAIT ||
166 				       uid_eq(uid, sock_i_uid(sk2))))) &&
167 				    inet_rcv_saddr_equal(sk, sk2, true))
168 					break;
169 			} else if (!reuseport_ok ||
170 				   !reuseport || !sk2->sk_reuseport ||
171 				   rcu_access_pointer(sk->sk_reuseport_cb) ||
172 				   (sk2->sk_state != TCP_TIME_WAIT &&
173 				    !uid_eq(uid, sock_i_uid(sk2)))) {
174 				if (inet_rcv_saddr_equal(sk, sk2, true))
175 					break;
176 			}
177 		}
178 	}
179 	return sk2 != NULL;
180 }
181 
182 /*
183  * Find an open port number for the socket.  Returns with the
184  * inet_bind_hashbucket lock held.
185  */
186 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)187 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
188 {
189 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
190 	int port = 0;
191 	struct inet_bind_hashbucket *head;
192 	struct net *net = sock_net(sk);
193 	bool relax = false;
194 	int i, low, high, attempt_half;
195 	struct inet_bind_bucket *tb;
196 	u32 remaining, offset;
197 	int l3mdev;
198 
199 	l3mdev = inet_sk_bound_l3mdev(sk);
200 ports_exhausted:
201 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
202 other_half_scan:
203 	inet_get_local_port_range(net, &low, &high);
204 	high++; /* [32768, 60999] -> [32768, 61000[ */
205 	if (high - low < 4)
206 		attempt_half = 0;
207 	if (attempt_half) {
208 		int half = low + (((high - low) >> 2) << 1);
209 
210 		if (attempt_half == 1)
211 			high = half;
212 		else
213 			low = half;
214 	}
215 	remaining = high - low;
216 	if (likely(remaining > 1))
217 		remaining &= ~1U;
218 
219 	offset = prandom_u32() % remaining;
220 	/* __inet_hash_connect() favors ports having @low parity
221 	 * We do the opposite to not pollute connect() users.
222 	 */
223 	offset |= 1U;
224 
225 other_parity_scan:
226 	port = low + offset;
227 	for (i = 0; i < remaining; i += 2, port += 2) {
228 		if (unlikely(port >= high))
229 			port -= remaining;
230 		if (inet_is_local_reserved_port(net, port))
231 			continue;
232 		head = &hinfo->bhash[inet_bhashfn(net, port,
233 						  hinfo->bhash_size)];
234 		spin_lock_bh(&head->lock);
235 		inet_bind_bucket_for_each(tb, &head->chain)
236 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
237 			    tb->port == port) {
238 				if (!inet_csk_bind_conflict(sk, tb, relax, false))
239 					goto success;
240 				goto next_port;
241 			}
242 		tb = NULL;
243 		goto success;
244 next_port:
245 		spin_unlock_bh(&head->lock);
246 		cond_resched();
247 	}
248 
249 	offset--;
250 	if (!(offset & 1))
251 		goto other_parity_scan;
252 
253 	if (attempt_half == 1) {
254 		/* OK we now try the upper half of the range */
255 		attempt_half = 2;
256 		goto other_half_scan;
257 	}
258 
259 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
260 		/* We still have a chance to connect to different destinations */
261 		relax = true;
262 		goto ports_exhausted;
263 	}
264 	return NULL;
265 success:
266 	*port_ret = port;
267 	*tb_ret = tb;
268 	return head;
269 }
270 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)271 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
272 				     struct sock *sk)
273 {
274 	kuid_t uid = sock_i_uid(sk);
275 
276 	if (tb->fastreuseport <= 0)
277 		return 0;
278 	if (!sk->sk_reuseport)
279 		return 0;
280 	if (rcu_access_pointer(sk->sk_reuseport_cb))
281 		return 0;
282 	if (!uid_eq(tb->fastuid, uid))
283 		return 0;
284 	/* We only need to check the rcv_saddr if this tb was once marked
285 	 * without fastreuseport and then was reset, as we can only know that
286 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
287 	 * owners list.
288 	 */
289 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
290 		return 1;
291 #if IS_ENABLED(CONFIG_IPV6)
292 	if (tb->fast_sk_family == AF_INET6)
293 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
294 					    inet6_rcv_saddr(sk),
295 					    tb->fast_rcv_saddr,
296 					    sk->sk_rcv_saddr,
297 					    tb->fast_ipv6_only,
298 					    ipv6_only_sock(sk), true, false);
299 #endif
300 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
301 				    ipv6_only_sock(sk), true, false);
302 }
303 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)304 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
305 			       struct sock *sk)
306 {
307 	kuid_t uid = sock_i_uid(sk);
308 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
309 
310 	if (hlist_empty(&tb->owners)) {
311 		tb->fastreuse = reuse;
312 		if (sk->sk_reuseport) {
313 			tb->fastreuseport = FASTREUSEPORT_ANY;
314 			tb->fastuid = uid;
315 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
316 			tb->fast_ipv6_only = ipv6_only_sock(sk);
317 			tb->fast_sk_family = sk->sk_family;
318 #if IS_ENABLED(CONFIG_IPV6)
319 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
320 #endif
321 		} else {
322 			tb->fastreuseport = 0;
323 		}
324 	} else {
325 		if (!reuse)
326 			tb->fastreuse = 0;
327 		if (sk->sk_reuseport) {
328 			/* We didn't match or we don't have fastreuseport set on
329 			 * the tb, but we have sk_reuseport set on this socket
330 			 * and we know that there are no bind conflicts with
331 			 * this socket in this tb, so reset our tb's reuseport
332 			 * settings so that any subsequent sockets that match
333 			 * our current socket will be put on the fast path.
334 			 *
335 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
336 			 * do extra checking for all subsequent sk_reuseport
337 			 * socks.
338 			 */
339 			if (!sk_reuseport_match(tb, sk)) {
340 				tb->fastreuseport = FASTREUSEPORT_STRICT;
341 				tb->fastuid = uid;
342 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
343 				tb->fast_ipv6_only = ipv6_only_sock(sk);
344 				tb->fast_sk_family = sk->sk_family;
345 #if IS_ENABLED(CONFIG_IPV6)
346 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
347 #endif
348 			}
349 		} else {
350 			tb->fastreuseport = 0;
351 		}
352 	}
353 }
354 
355 /* Obtain a reference to a local port for the given sock,
356  * if snum is zero it means select any available local port.
357  * We try to allocate an odd port (and leave even ports for connect())
358  */
inet_csk_get_port(struct sock * sk,unsigned short snum)359 int inet_csk_get_port(struct sock *sk, unsigned short snum)
360 {
361 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
362 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
363 	int ret = 1, port = snum;
364 	struct inet_bind_hashbucket *head;
365 	struct net *net = sock_net(sk);
366 	struct inet_bind_bucket *tb = NULL;
367 	int l3mdev;
368 
369 	l3mdev = inet_sk_bound_l3mdev(sk);
370 
371 	if (!port) {
372 		head = inet_csk_find_open_port(sk, &tb, &port);
373 		if (!head)
374 			return ret;
375 		if (!tb)
376 			goto tb_not_found;
377 		goto success;
378 	}
379 	head = &hinfo->bhash[inet_bhashfn(net, port,
380 					  hinfo->bhash_size)];
381 	spin_lock_bh(&head->lock);
382 	inet_bind_bucket_for_each(tb, &head->chain)
383 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
384 		    tb->port == port)
385 			goto tb_found;
386 tb_not_found:
387 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
388 				     net, head, port, l3mdev);
389 	if (!tb)
390 		goto fail_unlock;
391 tb_found:
392 	if (!hlist_empty(&tb->owners)) {
393 		if (sk->sk_reuse == SK_FORCE_REUSE)
394 			goto success;
395 
396 		if ((tb->fastreuse > 0 && reuse) ||
397 		    sk_reuseport_match(tb, sk))
398 			goto success;
399 		if (inet_csk_bind_conflict(sk, tb, true, true))
400 			goto fail_unlock;
401 	}
402 success:
403 	inet_csk_update_fastreuse(tb, sk);
404 
405 	if (!inet_csk(sk)->icsk_bind_hash)
406 		inet_bind_hash(sk, tb, port);
407 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
408 	ret = 0;
409 
410 fail_unlock:
411 	spin_unlock_bh(&head->lock);
412 	return ret;
413 }
414 EXPORT_SYMBOL_GPL(inet_csk_get_port);
415 
416 /*
417  * Wait for an incoming connection, avoid race conditions. This must be called
418  * with the socket locked.
419  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)420 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	DEFINE_WAIT(wait);
424 	int err;
425 
426 	/*
427 	 * True wake-one mechanism for incoming connections: only
428 	 * one process gets woken up, not the 'whole herd'.
429 	 * Since we do not 'race & poll' for established sockets
430 	 * anymore, the common case will execute the loop only once.
431 	 *
432 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
433 	 * after any current non-exclusive waiters, and we know that
434 	 * it will always _stay_ after any new non-exclusive waiters
435 	 * because all non-exclusive waiters are added at the
436 	 * beginning of the wait-queue. As such, it's ok to "drop"
437 	 * our exclusiveness temporarily when we get woken up without
438 	 * having to remove and re-insert us on the wait queue.
439 	 */
440 	for (;;) {
441 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
442 					  TASK_INTERRUPTIBLE);
443 		release_sock(sk);
444 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
445 			timeo = schedule_timeout(timeo);
446 		sched_annotate_sleep();
447 		lock_sock(sk);
448 		err = 0;
449 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
450 			break;
451 		err = -EINVAL;
452 		if (sk->sk_state != TCP_LISTEN)
453 			break;
454 		err = sock_intr_errno(timeo);
455 		if (signal_pending(current))
456 			break;
457 		err = -EAGAIN;
458 		if (!timeo)
459 			break;
460 	}
461 	finish_wait(sk_sleep(sk), &wait);
462 	return err;
463 }
464 
465 /*
466  * This will accept the next outstanding connection.
467  */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)468 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
469 {
470 	struct inet_connection_sock *icsk = inet_csk(sk);
471 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
472 	struct request_sock *req;
473 	struct sock *newsk;
474 	int error;
475 
476 	lock_sock(sk);
477 
478 	/* We need to make sure that this socket is listening,
479 	 * and that it has something pending.
480 	 */
481 	error = -EINVAL;
482 	if (sk->sk_state != TCP_LISTEN)
483 		goto out_err;
484 
485 	/* Find already established connection */
486 	if (reqsk_queue_empty(queue)) {
487 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
488 
489 		/* If this is a non blocking socket don't sleep */
490 		error = -EAGAIN;
491 		if (!timeo)
492 			goto out_err;
493 
494 		error = inet_csk_wait_for_connect(sk, timeo);
495 		if (error)
496 			goto out_err;
497 	}
498 	req = reqsk_queue_remove(queue, sk);
499 	newsk = req->sk;
500 
501 	if (sk->sk_protocol == IPPROTO_TCP &&
502 	    tcp_rsk(req)->tfo_listener) {
503 		spin_lock_bh(&queue->fastopenq.lock);
504 		if (tcp_rsk(req)->tfo_listener) {
505 			/* We are still waiting for the final ACK from 3WHS
506 			 * so can't free req now. Instead, we set req->sk to
507 			 * NULL to signify that the child socket is taken
508 			 * so reqsk_fastopen_remove() will free the req
509 			 * when 3WHS finishes (or is aborted).
510 			 */
511 			req->sk = NULL;
512 			req = NULL;
513 		}
514 		spin_unlock_bh(&queue->fastopenq.lock);
515 	}
516 
517 out:
518 	release_sock(sk);
519 	if (newsk && mem_cgroup_sockets_enabled) {
520 		int amt;
521 
522 		/* atomically get the memory usage, set and charge the
523 		 * newsk->sk_memcg.
524 		 */
525 		lock_sock(newsk);
526 
527 		/* The socket has not been accepted yet, no need to look at
528 		 * newsk->sk_wmem_queued.
529 		 */
530 		amt = sk_mem_pages(newsk->sk_forward_alloc +
531 				   atomic_read(&newsk->sk_rmem_alloc));
532 		mem_cgroup_sk_alloc(newsk);
533 		if (newsk->sk_memcg && amt)
534 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
535 
536 		release_sock(newsk);
537 	}
538 	if (req)
539 		reqsk_put(req);
540 
541 	if (newsk)
542 		inet_init_csk_locks(newsk);
543 
544 	return newsk;
545 out_err:
546 	newsk = NULL;
547 	req = NULL;
548 	*err = error;
549 	goto out;
550 }
551 EXPORT_SYMBOL(inet_csk_accept);
552 
553 /*
554  * Using different timers for retransmit, delayed acks and probes
555  * We may wish use just one timer maintaining a list of expire jiffies
556  * to optimize.
557  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))558 void inet_csk_init_xmit_timers(struct sock *sk,
559 			       void (*retransmit_handler)(struct timer_list *t),
560 			       void (*delack_handler)(struct timer_list *t),
561 			       void (*keepalive_handler)(struct timer_list *t))
562 {
563 	struct inet_connection_sock *icsk = inet_csk(sk);
564 
565 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
566 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
567 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
568 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
569 }
570 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
571 
inet_csk_clear_xmit_timers(struct sock * sk)572 void inet_csk_clear_xmit_timers(struct sock *sk)
573 {
574 	struct inet_connection_sock *icsk = inet_csk(sk);
575 
576 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
577 
578 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
579 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
580 	sk_stop_timer(sk, &sk->sk_timer);
581 }
582 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
583 
inet_csk_clear_xmit_timers_sync(struct sock * sk)584 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
585 {
586 	struct inet_connection_sock *icsk = inet_csk(sk);
587 
588 	/* ongoing timer handlers need to acquire socket lock. */
589 	sock_not_owned_by_me(sk);
590 
591 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
592 
593 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
594 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
595 	sk_stop_timer_sync(sk, &sk->sk_timer);
596 }
597 
inet_csk_delete_keepalive_timer(struct sock * sk)598 void inet_csk_delete_keepalive_timer(struct sock *sk)
599 {
600 	sk_stop_timer(sk, &sk->sk_timer);
601 }
602 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
603 
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)604 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
605 {
606 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
607 }
608 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
609 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)610 struct dst_entry *inet_csk_route_req(const struct sock *sk,
611 				     struct flowi4 *fl4,
612 				     const struct request_sock *req)
613 {
614 	const struct inet_request_sock *ireq = inet_rsk(req);
615 	struct net *net = read_pnet(&ireq->ireq_net);
616 	struct ip_options_rcu *opt;
617 	struct rtable *rt;
618 
619 	rcu_read_lock();
620 	opt = rcu_dereference(ireq->ireq_opt);
621 
622 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
623 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
624 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
625 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
626 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
627 			   htons(ireq->ir_num), sk->sk_uid);
628 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
629 	rt = ip_route_output_flow(net, fl4, sk);
630 	if (IS_ERR(rt))
631 		goto no_route;
632 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
633 		goto route_err;
634 	rcu_read_unlock();
635 	return &rt->dst;
636 
637 route_err:
638 	ip_rt_put(rt);
639 no_route:
640 	rcu_read_unlock();
641 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
642 	return NULL;
643 }
644 EXPORT_SYMBOL_GPL(inet_csk_route_req);
645 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)646 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
647 					    struct sock *newsk,
648 					    const struct request_sock *req)
649 {
650 	const struct inet_request_sock *ireq = inet_rsk(req);
651 	struct net *net = read_pnet(&ireq->ireq_net);
652 	struct inet_sock *newinet = inet_sk(newsk);
653 	struct ip_options_rcu *opt;
654 	struct flowi4 *fl4;
655 	struct rtable *rt;
656 
657 	opt = rcu_dereference(ireq->ireq_opt);
658 	fl4 = &newinet->cork.fl.u.ip4;
659 
660 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
661 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
662 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
663 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
664 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
665 			   htons(ireq->ir_num), sk->sk_uid);
666 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
667 	rt = ip_route_output_flow(net, fl4, sk);
668 	if (IS_ERR(rt))
669 		goto no_route;
670 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
671 		goto route_err;
672 	return &rt->dst;
673 
674 route_err:
675 	ip_rt_put(rt);
676 no_route:
677 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
681 
682 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)683 static void syn_ack_recalc(struct request_sock *req,
684 			   const int max_syn_ack_retries,
685 			   const u8 rskq_defer_accept,
686 			   int *expire, int *resend)
687 {
688 	if (!rskq_defer_accept) {
689 		*expire = req->num_timeout >= max_syn_ack_retries;
690 		*resend = 1;
691 		return;
692 	}
693 	*expire = req->num_timeout >= max_syn_ack_retries &&
694 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
695 	/* Do not resend while waiting for data after ACK,
696 	 * start to resend on end of deferring period to give
697 	 * last chance for data or ACK to create established socket.
698 	 */
699 	*resend = !inet_rsk(req)->acked ||
700 		  req->num_timeout >= rskq_defer_accept - 1;
701 }
702 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)703 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
704 {
705 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
706 
707 	if (!err)
708 		req->num_retrans++;
709 	return err;
710 }
711 EXPORT_SYMBOL(inet_rtx_syn_ack);
712 
713 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)714 static bool reqsk_queue_unlink(struct request_sock *req)
715 {
716 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
717 	bool found = false;
718 
719 	if (sk_hashed(req_to_sk(req))) {
720 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
721 
722 		spin_lock(lock);
723 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
724 		spin_unlock(lock);
725 	}
726 
727 	return found;
728 }
729 
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)730 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
731 					struct request_sock *req,
732 					bool from_timer)
733 {
734 	bool unlinked = reqsk_queue_unlink(req);
735 
736 	if (!from_timer && del_timer_sync(&req->rsk_timer))
737 		reqsk_put(req);
738 
739 	if (unlinked) {
740 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
741 		reqsk_put(req);
742 	}
743 
744 	return unlinked;
745 }
746 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)747 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
748 {
749 	return __inet_csk_reqsk_queue_drop(sk, req, false);
750 }
751 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
752 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)753 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
754 {
755 	inet_csk_reqsk_queue_drop(sk, req);
756 	reqsk_put(req);
757 }
758 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
759 
reqsk_timer_handler(struct timer_list * t)760 static void reqsk_timer_handler(struct timer_list *t)
761 {
762 	struct request_sock *req = from_timer(req, t, rsk_timer);
763 	struct sock *sk_listener = req->rsk_listener;
764 	struct net *net = sock_net(sk_listener);
765 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
766 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
767 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
768 
769 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
770 		goto drop;
771 
772 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
773 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
774 	/* Normally all the openreqs are young and become mature
775 	 * (i.e. converted to established socket) for first timeout.
776 	 * If synack was not acknowledged for 1 second, it means
777 	 * one of the following things: synack was lost, ack was lost,
778 	 * rtt is high or nobody planned to ack (i.e. synflood).
779 	 * When server is a bit loaded, queue is populated with old
780 	 * open requests, reducing effective size of queue.
781 	 * When server is well loaded, queue size reduces to zero
782 	 * after several minutes of work. It is not synflood,
783 	 * it is normal operation. The solution is pruning
784 	 * too old entries overriding normal timeout, when
785 	 * situation becomes dangerous.
786 	 *
787 	 * Essentially, we reserve half of room for young
788 	 * embrions; and abort old ones without pity, if old
789 	 * ones are about to clog our table.
790 	 */
791 	qlen = reqsk_queue_len(queue);
792 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
793 		int young = reqsk_queue_len_young(queue) << 1;
794 
795 		while (max_syn_ack_retries > 2) {
796 			if (qlen < young)
797 				break;
798 			max_syn_ack_retries--;
799 			young <<= 1;
800 		}
801 	}
802 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
803 		       &expire, &resend);
804 	req->rsk_ops->syn_ack_timeout(req);
805 	if (!expire &&
806 	    (!resend ||
807 	     !inet_rtx_syn_ack(sk_listener, req) ||
808 	     inet_rsk(req)->acked)) {
809 		unsigned long timeo;
810 
811 		if (req->num_timeout++ == 0)
812 			atomic_dec(&queue->young);
813 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
814 		mod_timer(&req->rsk_timer, jiffies + timeo);
815 		return;
816 	}
817 drop:
818 	__inet_csk_reqsk_queue_drop(sk_listener, req, true);
819 	reqsk_put(req);
820 }
821 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)822 static void reqsk_queue_hash_req(struct request_sock *req,
823 				 unsigned long timeout)
824 {
825 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
826 	mod_timer(&req->rsk_timer, jiffies + timeout);
827 
828 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
829 	/* before letting lookups find us, make sure all req fields
830 	 * are committed to memory and refcnt initialized.
831 	 */
832 	smp_wmb();
833 	refcount_set(&req->rsk_refcnt, 2 + 1);
834 }
835 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)836 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
837 				   unsigned long timeout)
838 {
839 	reqsk_queue_hash_req(req, timeout);
840 	inet_csk_reqsk_queue_added(sk);
841 }
842 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
843 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)844 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
845 			   const gfp_t priority)
846 {
847 	struct inet_connection_sock *icsk = inet_csk(newsk);
848 
849 	if (!icsk->icsk_ulp_ops)
850 		return;
851 
852 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
853 }
854 
855 /**
856  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
857  *	@sk: the socket to clone
858  *	@req: request_sock
859  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
860  *
861  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
862  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)863 struct sock *inet_csk_clone_lock(const struct sock *sk,
864 				 const struct request_sock *req,
865 				 const gfp_t priority)
866 {
867 	struct sock *newsk = sk_clone_lock(sk, priority);
868 
869 	if (newsk) {
870 		struct inet_connection_sock *newicsk = inet_csk(newsk);
871 
872 		newsk->sk_wait_pending = 0;
873 		inet_sk_set_state(newsk, TCP_SYN_RECV);
874 		newicsk->icsk_bind_hash = NULL;
875 
876 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
877 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
878 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
879 
880 		/* listeners have SOCK_RCU_FREE, not the children */
881 		sock_reset_flag(newsk, SOCK_RCU_FREE);
882 
883 		inet_sk(newsk)->mc_list = NULL;
884 
885 		newsk->sk_mark = inet_rsk(req)->ir_mark;
886 		atomic64_set(&newsk->sk_cookie,
887 			     atomic64_read(&inet_rsk(req)->ir_cookie));
888 
889 		newicsk->icsk_retransmits = 0;
890 		newicsk->icsk_backoff	  = 0;
891 		newicsk->icsk_probes_out  = 0;
892 		newicsk->icsk_probes_tstamp = 0;
893 
894 		/* Deinitialize accept_queue to trap illegal accesses. */
895 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
896 
897 		inet_clone_ulp(req, newsk, priority);
898 
899 		security_inet_csk_clone(newsk, req);
900 	}
901 	return newsk;
902 }
903 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
904 
905 /*
906  * At this point, there should be no process reference to this
907  * socket, and thus no user references at all.  Therefore we
908  * can assume the socket waitqueue is inactive and nobody will
909  * try to jump onto it.
910  */
inet_csk_destroy_sock(struct sock * sk)911 void inet_csk_destroy_sock(struct sock *sk)
912 {
913 	WARN_ON(sk->sk_state != TCP_CLOSE);
914 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
915 
916 	/* It cannot be in hash table! */
917 	WARN_ON(!sk_unhashed(sk));
918 
919 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
920 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
921 
922 	sk->sk_prot->destroy(sk);
923 
924 	sk_stream_kill_queues(sk);
925 
926 	xfrm_sk_free_policy(sk);
927 
928 	sk_refcnt_debug_release(sk);
929 
930 	this_cpu_dec(*sk->sk_prot->orphan_count);
931 
932 	sock_put(sk);
933 }
934 EXPORT_SYMBOL(inet_csk_destroy_sock);
935 
936 /* This function allows to force a closure of a socket after the call to
937  * tcp/dccp_create_openreq_child().
938  */
inet_csk_prepare_forced_close(struct sock * sk)939 void inet_csk_prepare_forced_close(struct sock *sk)
940 	__releases(&sk->sk_lock.slock)
941 {
942 	/* sk_clone_lock locked the socket and set refcnt to 2 */
943 	bh_unlock_sock(sk);
944 	sock_put(sk);
945 	inet_csk_prepare_for_destroy_sock(sk);
946 	inet_sk(sk)->inet_num = 0;
947 }
948 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
949 
inet_ulp_can_listen(const struct sock * sk)950 static int inet_ulp_can_listen(const struct sock *sk)
951 {
952 	const struct inet_connection_sock *icsk = inet_csk(sk);
953 
954 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
955 		return -EINVAL;
956 
957 	return 0;
958 }
959 
inet_csk_listen_start(struct sock * sk,int backlog)960 int inet_csk_listen_start(struct sock *sk, int backlog)
961 {
962 	struct inet_connection_sock *icsk = inet_csk(sk);
963 	struct inet_sock *inet = inet_sk(sk);
964 	int err;
965 
966 	err = inet_ulp_can_listen(sk);
967 	if (unlikely(err))
968 		return err;
969 
970 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
971 
972 	sk->sk_ack_backlog = 0;
973 	inet_csk_delack_init(sk);
974 
975 	/* There is race window here: we announce ourselves listening,
976 	 * but this transition is still not validated by get_port().
977 	 * It is OK, because this socket enters to hash table only
978 	 * after validation is complete.
979 	 */
980 	err = -EADDRINUSE;
981 	inet_sk_state_store(sk, TCP_LISTEN);
982 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
983 		inet->inet_sport = htons(inet->inet_num);
984 
985 		sk_dst_reset(sk);
986 		err = sk->sk_prot->hash(sk);
987 
988 		if (likely(!err))
989 			return 0;
990 	}
991 
992 	inet_sk_set_state(sk, TCP_CLOSE);
993 	return err;
994 }
995 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
996 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)997 static void inet_child_forget(struct sock *sk, struct request_sock *req,
998 			      struct sock *child)
999 {
1000 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1001 
1002 	sock_orphan(child);
1003 
1004 	this_cpu_inc(*sk->sk_prot->orphan_count);
1005 
1006 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1007 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1008 		BUG_ON(sk != req->rsk_listener);
1009 
1010 		/* Paranoid, to prevent race condition if
1011 		 * an inbound pkt destined for child is
1012 		 * blocked by sock lock in tcp_v4_rcv().
1013 		 * Also to satisfy an assertion in
1014 		 * tcp_v4_destroy_sock().
1015 		 */
1016 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1017 	}
1018 	inet_csk_destroy_sock(child);
1019 }
1020 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1021 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1022 				      struct request_sock *req,
1023 				      struct sock *child)
1024 {
1025 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1026 
1027 	spin_lock(&queue->rskq_lock);
1028 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1029 		inet_child_forget(sk, req, child);
1030 		child = NULL;
1031 	} else {
1032 		req->sk = child;
1033 		req->dl_next = NULL;
1034 		if (queue->rskq_accept_head == NULL)
1035 			WRITE_ONCE(queue->rskq_accept_head, req);
1036 		else
1037 			queue->rskq_accept_tail->dl_next = req;
1038 		queue->rskq_accept_tail = req;
1039 		sk_acceptq_added(sk);
1040 	}
1041 	spin_unlock(&queue->rskq_lock);
1042 	return child;
1043 }
1044 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1045 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1046 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1047 					 struct request_sock *req, bool own_req)
1048 {
1049 	if (own_req) {
1050 		inet_csk_reqsk_queue_drop(sk, req);
1051 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1052 		if (inet_csk_reqsk_queue_add(sk, req, child))
1053 			return child;
1054 	}
1055 	/* Too bad, another child took ownership of the request, undo. */
1056 	bh_unlock_sock(child);
1057 	sock_put(child);
1058 	return NULL;
1059 }
1060 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1061 
1062 /*
1063  *	This routine closes sockets which have been at least partially
1064  *	opened, but not yet accepted.
1065  */
inet_csk_listen_stop(struct sock * sk)1066 void inet_csk_listen_stop(struct sock *sk)
1067 {
1068 	struct inet_connection_sock *icsk = inet_csk(sk);
1069 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1070 	struct request_sock *next, *req;
1071 
1072 	/* Following specs, it would be better either to send FIN
1073 	 * (and enter FIN-WAIT-1, it is normal close)
1074 	 * or to send active reset (abort).
1075 	 * Certainly, it is pretty dangerous while synflood, but it is
1076 	 * bad justification for our negligence 8)
1077 	 * To be honest, we are not able to make either
1078 	 * of the variants now.			--ANK
1079 	 */
1080 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1081 		struct sock *child = req->sk;
1082 
1083 		local_bh_disable();
1084 		bh_lock_sock(child);
1085 		WARN_ON(sock_owned_by_user(child));
1086 		sock_hold(child);
1087 
1088 		inet_child_forget(sk, req, child);
1089 		reqsk_put(req);
1090 		bh_unlock_sock(child);
1091 		local_bh_enable();
1092 		sock_put(child);
1093 
1094 		cond_resched();
1095 	}
1096 	if (queue->fastopenq.rskq_rst_head) {
1097 		/* Free all the reqs queued in rskq_rst_head. */
1098 		spin_lock_bh(&queue->fastopenq.lock);
1099 		req = queue->fastopenq.rskq_rst_head;
1100 		queue->fastopenq.rskq_rst_head = NULL;
1101 		spin_unlock_bh(&queue->fastopenq.lock);
1102 		while (req != NULL) {
1103 			next = req->dl_next;
1104 			reqsk_put(req);
1105 			req = next;
1106 		}
1107 	}
1108 	WARN_ON_ONCE(sk->sk_ack_backlog);
1109 }
1110 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1111 
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1112 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1113 {
1114 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1115 	const struct inet_sock *inet = inet_sk(sk);
1116 
1117 	sin->sin_family		= AF_INET;
1118 	sin->sin_addr.s_addr	= inet->inet_daddr;
1119 	sin->sin_port		= inet->inet_dport;
1120 }
1121 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1122 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1123 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1124 {
1125 	const struct inet_sock *inet = inet_sk(sk);
1126 	const struct ip_options_rcu *inet_opt;
1127 	__be32 daddr = inet->inet_daddr;
1128 	struct flowi4 *fl4;
1129 	struct rtable *rt;
1130 
1131 	rcu_read_lock();
1132 	inet_opt = rcu_dereference(inet->inet_opt);
1133 	if (inet_opt && inet_opt->opt.srr)
1134 		daddr = inet_opt->opt.faddr;
1135 	fl4 = &fl->u.ip4;
1136 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1137 				   inet->inet_saddr, inet->inet_dport,
1138 				   inet->inet_sport, sk->sk_protocol,
1139 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1140 	if (IS_ERR(rt))
1141 		rt = NULL;
1142 	if (rt)
1143 		sk_setup_caps(sk, &rt->dst);
1144 	rcu_read_unlock();
1145 
1146 	return &rt->dst;
1147 }
1148 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1149 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1150 {
1151 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1152 	struct inet_sock *inet = inet_sk(sk);
1153 
1154 	if (!dst) {
1155 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1156 		if (!dst)
1157 			goto out;
1158 	}
1159 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1160 
1161 	dst = __sk_dst_check(sk, 0);
1162 	if (!dst)
1163 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1164 out:
1165 	return dst;
1166 }
1167 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1168