1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #ifdef CONFIG_LOWPOWER_PROTOCOL
84 #include <net/lowpower_protocol.h>
85 #endif /* CONFIG_LOWPOWER_PROTOCOL */
86
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88
89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
95 #define FLAG_ECE 0x40 /* ECE in this ACK */
96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
106
107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115 #define REXMIT_NONE 0 /* no loss recovery to do */
116 #define REXMIT_LOST 1 /* retransmit packets marked lost */
117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
123 void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 icsk->icsk_clean_acked = cad;
126 static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
clean_acked_data_disable(struct inet_connection_sock * icsk)130 void clean_acked_data_disable(struct inet_connection_sock *icsk)
131 {
132 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 icsk->icsk_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 struct bpf_sock_ops_kern sock_ops;
153
154 if (likely(!unknown_opt && !parse_all_opt))
155 return;
156
157 /* The skb will be handled in the
158 * bpf_skops_established() or
159 * bpf_skops_write_hdr_opt().
160 */
161 switch (sk->sk_state) {
162 case TCP_SYN_RECV:
163 case TCP_SYN_SENT:
164 case TCP_LISTEN:
165 return;
166 }
167
168 sock_owned_by_me(sk);
169
170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 sock_ops.is_fullsock = 1;
173 sock_ops.sk = sk;
174 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175
176 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 struct sk_buff *skb)
181 {
182 struct bpf_sock_ops_kern sock_ops;
183
184 sock_owned_by_me(sk);
185
186 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 sock_ops.op = bpf_op;
188 sock_ops.is_fullsock = 1;
189 sock_ops.sk = sk;
190 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 if (skb)
192 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193
194 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 }
196 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)197 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 {
199 }
200
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)201 static void bpf_skops_established(struct sock *sk, int bpf_op,
202 struct sk_buff *skb)
203 {
204 }
205 #endif
206
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)207 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208 unsigned int len)
209 {
210 static bool __once __read_mostly;
211
212 if (!__once) {
213 struct net_device *dev;
214
215 __once = true;
216
217 rcu_read_lock();
218 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
219 if (!dev || len >= dev->mtu)
220 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
221 dev ? dev->name : "Unknown driver");
222 rcu_read_unlock();
223 }
224 }
225
226 /* Adapt the MSS value used to make delayed ack decision to the
227 * real world.
228 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)229 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
230 {
231 struct inet_connection_sock *icsk = inet_csk(sk);
232 const unsigned int lss = icsk->icsk_ack.last_seg_size;
233 unsigned int len;
234
235 icsk->icsk_ack.last_seg_size = 0;
236
237 /* skb->len may jitter because of SACKs, even if peer
238 * sends good full-sized frames.
239 */
240 len = skb_shinfo(skb)->gso_size ? : skb->len;
241 if (len >= icsk->icsk_ack.rcv_mss) {
242 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
243 tcp_sk(sk)->advmss);
244 /* Account for possibly-removed options */
245 if (unlikely(len > icsk->icsk_ack.rcv_mss +
246 MAX_TCP_OPTION_SPACE))
247 tcp_gro_dev_warn(sk, skb, len);
248 /* If the skb has a len of exactly 1*MSS and has the PSH bit
249 * set then it is likely the end of an application write. So
250 * more data may not be arriving soon, and yet the data sender
251 * may be waiting for an ACK if cwnd-bound or using TX zero
252 * copy. So we set ICSK_ACK_PUSHED here so that
253 * tcp_cleanup_rbuf() will send an ACK immediately if the app
254 * reads all of the data and is not ping-pong. If len > MSS
255 * then this logic does not matter (and does not hurt) because
256 * tcp_cleanup_rbuf() will always ACK immediately if the app
257 * reads data and there is more than an MSS of unACKed data.
258 */
259 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
260 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
261 } else {
262 /* Otherwise, we make more careful check taking into account,
263 * that SACKs block is variable.
264 *
265 * "len" is invariant segment length, including TCP header.
266 */
267 len += skb->data - skb_transport_header(skb);
268 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
269 /* If PSH is not set, packet should be
270 * full sized, provided peer TCP is not badly broken.
271 * This observation (if it is correct 8)) allows
272 * to handle super-low mtu links fairly.
273 */
274 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
275 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
276 /* Subtract also invariant (if peer is RFC compliant),
277 * tcp header plus fixed timestamp option length.
278 * Resulting "len" is MSS free of SACK jitter.
279 */
280 len -= tcp_sk(sk)->tcp_header_len;
281 icsk->icsk_ack.last_seg_size = len;
282 if (len == lss) {
283 icsk->icsk_ack.rcv_mss = len;
284 return;
285 }
286 }
287 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
288 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
289 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
290 }
291 }
292
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)293 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
294 {
295 struct inet_connection_sock *icsk = inet_csk(sk);
296 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
297
298 if (quickacks == 0)
299 quickacks = 2;
300 quickacks = min(quickacks, max_quickacks);
301 if (quickacks > icsk->icsk_ack.quick)
302 icsk->icsk_ack.quick = quickacks;
303 }
304
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)305 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
306 {
307 struct inet_connection_sock *icsk = inet_csk(sk);
308
309 tcp_incr_quickack(sk, max_quickacks);
310 inet_csk_exit_pingpong_mode(sk);
311 icsk->icsk_ack.ato = TCP_ATO_MIN;
312 }
313
314 /* Send ACKs quickly, if "quick" count is not exhausted
315 * and the session is not interactive.
316 */
317
tcp_in_quickack_mode(struct sock * sk)318 static bool tcp_in_quickack_mode(struct sock *sk)
319 {
320 const struct inet_connection_sock *icsk = inet_csk(sk);
321 const struct dst_entry *dst = __sk_dst_get(sk);
322
323 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
324 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
325 }
326
tcp_ecn_queue_cwr(struct tcp_sock * tp)327 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
328 {
329 if (tp->ecn_flags & TCP_ECN_OK)
330 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
331 }
332
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)333 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
334 {
335 if (tcp_hdr(skb)->cwr) {
336 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
337
338 /* If the sender is telling us it has entered CWR, then its
339 * cwnd may be very low (even just 1 packet), so we should ACK
340 * immediately.
341 */
342 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
343 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
344 }
345 }
346
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)347 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
348 {
349 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
350 }
351
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)352 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355
356 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
357 case INET_ECN_NOT_ECT:
358 /* Funny extension: if ECT is not set on a segment,
359 * and we already seen ECT on a previous segment,
360 * it is probably a retransmit.
361 */
362 if (tp->ecn_flags & TCP_ECN_SEEN)
363 tcp_enter_quickack_mode(sk, 2);
364 break;
365 case INET_ECN_CE:
366 if (tcp_ca_needs_ecn(sk))
367 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
368
369 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
370 /* Better not delay acks, sender can have a very low cwnd */
371 tcp_enter_quickack_mode(sk, 2);
372 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
373 }
374 tp->ecn_flags |= TCP_ECN_SEEN;
375 break;
376 default:
377 if (tcp_ca_needs_ecn(sk))
378 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
379 tp->ecn_flags |= TCP_ECN_SEEN;
380 break;
381 }
382 }
383
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)384 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
385 {
386 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
387 __tcp_ecn_check_ce(sk, skb);
388 }
389
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)390 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
391 {
392 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
393 tp->ecn_flags &= ~TCP_ECN_OK;
394 }
395
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)396 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
397 {
398 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
399 tp->ecn_flags &= ~TCP_ECN_OK;
400 }
401
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)402 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
403 {
404 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
405 return true;
406 return false;
407 }
408
409 /* Buffer size and advertised window tuning.
410 *
411 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
412 */
413
tcp_sndbuf_expand(struct sock * sk)414 static void tcp_sndbuf_expand(struct sock *sk)
415 {
416 const struct tcp_sock *tp = tcp_sk(sk);
417 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
418 int sndmem, per_mss;
419 u32 nr_segs;
420
421 /* Worst case is non GSO/TSO : each frame consumes one skb
422 * and skb->head is kmalloced using power of two area of memory
423 */
424 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
425 MAX_TCP_HEADER +
426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427
428 per_mss = roundup_pow_of_two(per_mss) +
429 SKB_DATA_ALIGN(sizeof(struct sk_buff));
430
431 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
432 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
433
434 /* Fast Recovery (RFC 5681 3.2) :
435 * Cubic needs 1.7 factor, rounded to 2 to include
436 * extra cushion (application might react slowly to EPOLLOUT)
437 */
438 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
439 sndmem *= nr_segs * per_mss;
440
441 if (sk->sk_sndbuf < sndmem)
442 WRITE_ONCE(sk->sk_sndbuf,
443 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
444 }
445
446 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
447 *
448 * All tcp_full_space() is split to two parts: "network" buffer, allocated
449 * forward and advertised in receiver window (tp->rcv_wnd) and
450 * "application buffer", required to isolate scheduling/application
451 * latencies from network.
452 * window_clamp is maximal advertised window. It can be less than
453 * tcp_full_space(), in this case tcp_full_space() - window_clamp
454 * is reserved for "application" buffer. The less window_clamp is
455 * the smoother our behaviour from viewpoint of network, but the lower
456 * throughput and the higher sensitivity of the connection to losses. 8)
457 *
458 * rcv_ssthresh is more strict window_clamp used at "slow start"
459 * phase to predict further behaviour of this connection.
460 * It is used for two goals:
461 * - to enforce header prediction at sender, even when application
462 * requires some significant "application buffer". It is check #1.
463 * - to prevent pruning of receive queue because of misprediction
464 * of receiver window. Check #2.
465 *
466 * The scheme does not work when sender sends good segments opening
467 * window and then starts to feed us spaghetti. But it should work
468 * in common situations. Otherwise, we have to rely on queue collapsing.
469 */
470
471 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)472 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
473 unsigned int skbtruesize)
474 {
475 struct tcp_sock *tp = tcp_sk(sk);
476 /* Optimize this! */
477 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
478 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
479
480 while (tp->rcv_ssthresh <= window) {
481 if (truesize <= skb->len)
482 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
483
484 truesize >>= 1;
485 window >>= 1;
486 }
487 return 0;
488 }
489
490 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
491 * can play nice with us, as sk_buff and skb->head might be either
492 * freed or shared with up to MAX_SKB_FRAGS segments.
493 * Only give a boost to drivers using page frag(s) to hold the frame(s),
494 * and if no payload was pulled in skb->head before reaching us.
495 */
truesize_adjust(bool adjust,const struct sk_buff * skb)496 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
497 {
498 u32 truesize = skb->truesize;
499
500 if (adjust && !skb_headlen(skb)) {
501 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
502 /* paranoid check, some drivers might be buggy */
503 if (unlikely((int)truesize < (int)skb->len))
504 truesize = skb->truesize;
505 }
506 return truesize;
507 }
508
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)509 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
510 bool adjust)
511 {
512 struct tcp_sock *tp = tcp_sk(sk);
513 int room;
514
515 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
516
517 /* Check #1 */
518 if (room > 0 && !tcp_under_memory_pressure(sk)) {
519 unsigned int truesize = truesize_adjust(adjust, skb);
520 int incr;
521
522 /* Check #2. Increase window, if skb with such overhead
523 * will fit to rcvbuf in future.
524 */
525 if (tcp_win_from_space(sk, truesize) <= skb->len)
526 incr = 2 * tp->advmss;
527 else
528 incr = __tcp_grow_window(sk, skb, truesize);
529
530 if (incr) {
531 incr = max_t(int, incr, 2 * skb->len);
532 tp->rcv_ssthresh += min(room, incr);
533 inet_csk(sk)->icsk_ack.quick |= 1;
534 }
535 }
536 }
537
538 /* 3. Try to fixup all. It is made immediately after connection enters
539 * established state.
540 */
tcp_init_buffer_space(struct sock * sk)541 static void tcp_init_buffer_space(struct sock *sk)
542 {
543 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
544 struct tcp_sock *tp = tcp_sk(sk);
545 int maxwin;
546
547 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
548 tcp_sndbuf_expand(sk);
549
550 tcp_mstamp_refresh(tp);
551 tp->rcvq_space.time = tp->tcp_mstamp;
552 tp->rcvq_space.seq = tp->copied_seq;
553
554 maxwin = tcp_full_space(sk);
555
556 if (tp->window_clamp >= maxwin) {
557 tp->window_clamp = maxwin;
558
559 if (tcp_app_win && maxwin > 4 * tp->advmss)
560 tp->window_clamp = max(maxwin -
561 (maxwin >> tcp_app_win),
562 4 * tp->advmss);
563 }
564
565 /* Force reservation of one segment. */
566 if (tcp_app_win &&
567 tp->window_clamp > 2 * tp->advmss &&
568 tp->window_clamp + tp->advmss > maxwin)
569 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
570
571 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
572 tp->snd_cwnd_stamp = tcp_jiffies32;
573 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
574 (u32)TCP_INIT_CWND * tp->advmss);
575 }
576
577 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)578 static void tcp_clamp_window(struct sock *sk)
579 {
580 struct tcp_sock *tp = tcp_sk(sk);
581 struct inet_connection_sock *icsk = inet_csk(sk);
582 struct net *net = sock_net(sk);
583 int rmem2;
584
585 icsk->icsk_ack.quick = 0;
586 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
587
588 if (sk->sk_rcvbuf < rmem2 &&
589 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
590 !tcp_under_memory_pressure(sk) &&
591 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
592 WRITE_ONCE(sk->sk_rcvbuf,
593 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
594 }
595 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
596 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
597 }
598
599 /* Initialize RCV_MSS value.
600 * RCV_MSS is an our guess about MSS used by the peer.
601 * We haven't any direct information about the MSS.
602 * It's better to underestimate the RCV_MSS rather than overestimate.
603 * Overestimations make us ACKing less frequently than needed.
604 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
605 */
tcp_initialize_rcv_mss(struct sock * sk)606 void tcp_initialize_rcv_mss(struct sock *sk)
607 {
608 const struct tcp_sock *tp = tcp_sk(sk);
609 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
610
611 hint = min(hint, tp->rcv_wnd / 2);
612 hint = min(hint, TCP_MSS_DEFAULT);
613 hint = max(hint, TCP_MIN_MSS);
614
615 inet_csk(sk)->icsk_ack.rcv_mss = hint;
616 }
617 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
618
619 /* Receiver "autotuning" code.
620 *
621 * The algorithm for RTT estimation w/o timestamps is based on
622 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
623 * <https://public.lanl.gov/radiant/pubs.html#DRS>
624 *
625 * More detail on this code can be found at
626 * <http://staff.psc.edu/jheffner/>,
627 * though this reference is out of date. A new paper
628 * is pending.
629 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)630 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
631 {
632 u32 new_sample = tp->rcv_rtt_est.rtt_us;
633 long m = sample;
634
635 if (new_sample != 0) {
636 /* If we sample in larger samples in the non-timestamp
637 * case, we could grossly overestimate the RTT especially
638 * with chatty applications or bulk transfer apps which
639 * are stalled on filesystem I/O.
640 *
641 * Also, since we are only going for a minimum in the
642 * non-timestamp case, we do not smooth things out
643 * else with timestamps disabled convergence takes too
644 * long.
645 */
646 if (!win_dep) {
647 m -= (new_sample >> 3);
648 new_sample += m;
649 } else {
650 m <<= 3;
651 if (m < new_sample)
652 new_sample = m;
653 }
654 } else {
655 /* No previous measure. */
656 new_sample = m << 3;
657 }
658
659 tp->rcv_rtt_est.rtt_us = new_sample;
660 }
661
tcp_rcv_rtt_measure(struct tcp_sock * tp)662 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
663 {
664 u32 delta_us;
665
666 if (tp->rcv_rtt_est.time == 0)
667 goto new_measure;
668 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
669 return;
670 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
671 if (!delta_us)
672 delta_us = 1;
673 tcp_rcv_rtt_update(tp, delta_us, 1);
674
675 new_measure:
676 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
677 tp->rcv_rtt_est.time = tp->tcp_mstamp;
678 }
679
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)680 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
681 const struct sk_buff *skb)
682 {
683 struct tcp_sock *tp = tcp_sk(sk);
684
685 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
686 return;
687 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
688
689 if (TCP_SKB_CB(skb)->end_seq -
690 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
691 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
692 u32 delta_us;
693
694 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
695 if (!delta)
696 delta = 1;
697 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
698 tcp_rcv_rtt_update(tp, delta_us, 0);
699 }
700 }
701 }
702
703 /*
704 * This function should be called every time data is copied to user space.
705 * It calculates the appropriate TCP receive buffer space.
706 */
tcp_rcv_space_adjust(struct sock * sk)707 void tcp_rcv_space_adjust(struct sock *sk)
708 {
709 struct tcp_sock *tp = tcp_sk(sk);
710 u32 copied;
711 int time;
712
713 trace_tcp_rcv_space_adjust(sk);
714
715 tcp_mstamp_refresh(tp);
716 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
717 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
718 return;
719
720 /* Number of bytes copied to user in last RTT */
721 copied = tp->copied_seq - tp->rcvq_space.seq;
722 if (copied <= tp->rcvq_space.space)
723 goto new_measure;
724
725 /* A bit of theory :
726 * copied = bytes received in previous RTT, our base window
727 * To cope with packet losses, we need a 2x factor
728 * To cope with slow start, and sender growing its cwin by 100 %
729 * every RTT, we need a 4x factor, because the ACK we are sending
730 * now is for the next RTT, not the current one :
731 * <prev RTT . ><current RTT .. ><next RTT .... >
732 */
733
734 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
735 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
736 int rcvmem, rcvbuf;
737 u64 rcvwin, grow;
738
739 /* minimal window to cope with packet losses, assuming
740 * steady state. Add some cushion because of small variations.
741 */
742 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
743
744 /* Accommodate for sender rate increase (eg. slow start) */
745 grow = rcvwin * (copied - tp->rcvq_space.space);
746 do_div(grow, tp->rcvq_space.space);
747 rcvwin += (grow << 1);
748
749 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
750 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
751 rcvmem += 128;
752
753 do_div(rcvwin, tp->advmss);
754 rcvbuf = min_t(u64, rcvwin * rcvmem,
755 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
756 if (rcvbuf > sk->sk_rcvbuf) {
757 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
758
759 /* Make the window clamp follow along. */
760 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
761 }
762 }
763 tp->rcvq_space.space = copied;
764
765 new_measure:
766 tp->rcvq_space.seq = tp->copied_seq;
767 tp->rcvq_space.time = tp->tcp_mstamp;
768 }
769
770 /* There is something which you must keep in mind when you analyze the
771 * behavior of the tp->ato delayed ack timeout interval. When a
772 * connection starts up, we want to ack as quickly as possible. The
773 * problem is that "good" TCP's do slow start at the beginning of data
774 * transmission. The means that until we send the first few ACK's the
775 * sender will sit on his end and only queue most of his data, because
776 * he can only send snd_cwnd unacked packets at any given time. For
777 * each ACK we send, he increments snd_cwnd and transmits more of his
778 * queue. -DaveM
779 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)780 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
781 {
782 struct tcp_sock *tp = tcp_sk(sk);
783 struct inet_connection_sock *icsk = inet_csk(sk);
784 u32 now;
785
786 inet_csk_schedule_ack(sk);
787
788 tcp_measure_rcv_mss(sk, skb);
789
790 tcp_rcv_rtt_measure(tp);
791
792 now = tcp_jiffies32;
793
794 if (!icsk->icsk_ack.ato) {
795 /* The _first_ data packet received, initialize
796 * delayed ACK engine.
797 */
798 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
799 icsk->icsk_ack.ato = TCP_ATO_MIN;
800 } else {
801 int m = now - icsk->icsk_ack.lrcvtime;
802
803 if (m <= TCP_ATO_MIN / 2) {
804 /* The fastest case is the first. */
805 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
806 } else if (m < icsk->icsk_ack.ato) {
807 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
808 if (icsk->icsk_ack.ato > icsk->icsk_rto)
809 icsk->icsk_ack.ato = icsk->icsk_rto;
810 } else if (m > icsk->icsk_rto) {
811 /* Too long gap. Apparently sender failed to
812 * restart window, so that we send ACKs quickly.
813 */
814 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
815 sk_mem_reclaim(sk);
816 }
817 }
818 icsk->icsk_ack.lrcvtime = now;
819
820 tcp_ecn_check_ce(sk, skb);
821
822 if (skb->len >= 128)
823 tcp_grow_window(sk, skb, true);
824 }
825
826 /* Called to compute a smoothed rtt estimate. The data fed to this
827 * routine either comes from timestamps, or from segments that were
828 * known _not_ to have been retransmitted [see Karn/Partridge
829 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
830 * piece by Van Jacobson.
831 * NOTE: the next three routines used to be one big routine.
832 * To save cycles in the RFC 1323 implementation it was better to break
833 * it up into three procedures. -- erics
834 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)835 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 long m = mrtt_us; /* RTT */
839 u32 srtt = tp->srtt_us;
840
841 /* The following amusing code comes from Jacobson's
842 * article in SIGCOMM '88. Note that rtt and mdev
843 * are scaled versions of rtt and mean deviation.
844 * This is designed to be as fast as possible
845 * m stands for "measurement".
846 *
847 * On a 1990 paper the rto value is changed to:
848 * RTO = rtt + 4 * mdev
849 *
850 * Funny. This algorithm seems to be very broken.
851 * These formulae increase RTO, when it should be decreased, increase
852 * too slowly, when it should be increased quickly, decrease too quickly
853 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
854 * does not matter how to _calculate_ it. Seems, it was trap
855 * that VJ failed to avoid. 8)
856 */
857 if (srtt != 0) {
858 m -= (srtt >> 3); /* m is now error in rtt est */
859 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
860 if (m < 0) {
861 m = -m; /* m is now abs(error) */
862 m -= (tp->mdev_us >> 2); /* similar update on mdev */
863 /* This is similar to one of Eifel findings.
864 * Eifel blocks mdev updates when rtt decreases.
865 * This solution is a bit different: we use finer gain
866 * for mdev in this case (alpha*beta).
867 * Like Eifel it also prevents growth of rto,
868 * but also it limits too fast rto decreases,
869 * happening in pure Eifel.
870 */
871 if (m > 0)
872 m >>= 3;
873 } else {
874 m -= (tp->mdev_us >> 2); /* similar update on mdev */
875 }
876 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
877 if (tp->mdev_us > tp->mdev_max_us) {
878 tp->mdev_max_us = tp->mdev_us;
879 if (tp->mdev_max_us > tp->rttvar_us)
880 tp->rttvar_us = tp->mdev_max_us;
881 }
882 if (after(tp->snd_una, tp->rtt_seq)) {
883 if (tp->mdev_max_us < tp->rttvar_us)
884 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
885 tp->rtt_seq = tp->snd_nxt;
886 tp->mdev_max_us = tcp_rto_min_us(sk);
887
888 tcp_bpf_rtt(sk);
889 }
890 } else {
891 /* no previous measure. */
892 srtt = m << 3; /* take the measured time to be rtt */
893 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
894 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
895 tp->mdev_max_us = tp->rttvar_us;
896 tp->rtt_seq = tp->snd_nxt;
897
898 tcp_bpf_rtt(sk);
899 }
900 tp->srtt_us = max(1U, srtt);
901 }
902
tcp_update_pacing_rate(struct sock * sk)903 static void tcp_update_pacing_rate(struct sock *sk)
904 {
905 const struct tcp_sock *tp = tcp_sk(sk);
906 u64 rate;
907
908 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
909 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
910
911 /* current rate is (cwnd * mss) / srtt
912 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
913 * In Congestion Avoidance phase, set it to 120 % the current rate.
914 *
915 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
916 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
917 * end of slow start and should slow down.
918 */
919 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
920 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
921 else
922 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
923
924 rate *= max(tp->snd_cwnd, tp->packets_out);
925
926 if (likely(tp->srtt_us))
927 do_div(rate, tp->srtt_us);
928
929 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
930 * without any lock. We want to make sure compiler wont store
931 * intermediate values in this location.
932 */
933 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
934 sk->sk_max_pacing_rate));
935 }
936
937 /* Calculate rto without backoff. This is the second half of Van Jacobson's
938 * routine referred to above.
939 */
tcp_set_rto(struct sock * sk)940 static void tcp_set_rto(struct sock *sk)
941 {
942 const struct tcp_sock *tp = tcp_sk(sk);
943 /* Old crap is replaced with new one. 8)
944 *
945 * More seriously:
946 * 1. If rtt variance happened to be less 50msec, it is hallucination.
947 * It cannot be less due to utterly erratic ACK generation made
948 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
949 * to do with delayed acks, because at cwnd>2 true delack timeout
950 * is invisible. Actually, Linux-2.4 also generates erratic
951 * ACKs in some circumstances.
952 */
953 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
954
955 /* 2. Fixups made earlier cannot be right.
956 * If we do not estimate RTO correctly without them,
957 * all the algo is pure shit and should be replaced
958 * with correct one. It is exactly, which we pretend to do.
959 */
960
961 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
962 * guarantees that rto is higher.
963 */
964 tcp_bound_rto(sk);
965 }
966
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)967 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
968 {
969 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
970
971 if (!cwnd)
972 cwnd = TCP_INIT_CWND;
973 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
974 }
975
976 struct tcp_sacktag_state {
977 /* Timestamps for earliest and latest never-retransmitted segment
978 * that was SACKed. RTO needs the earliest RTT to stay conservative,
979 * but congestion control should still get an accurate delay signal.
980 */
981 u64 first_sackt;
982 u64 last_sackt;
983 u32 reord;
984 u32 sack_delivered;
985 int flag;
986 unsigned int mss_now;
987 struct rate_sample *rate;
988 };
989
990 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
991 * and spurious retransmission information if this DSACK is unlikely caused by
992 * sender's action:
993 * - DSACKed sequence range is larger than maximum receiver's window.
994 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
995 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)996 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
997 u32 end_seq, struct tcp_sacktag_state *state)
998 {
999 u32 seq_len, dup_segs = 1;
1000
1001 if (!before(start_seq, end_seq))
1002 return 0;
1003
1004 seq_len = end_seq - start_seq;
1005 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1006 if (seq_len > tp->max_window)
1007 return 0;
1008 if (seq_len > tp->mss_cache)
1009 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1010
1011 tp->dsack_dups += dup_segs;
1012 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1013 if (tp->dsack_dups > tp->total_retrans)
1014 return 0;
1015
1016 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1017 tp->rack.dsack_seen = 1;
1018
1019 state->flag |= FLAG_DSACKING_ACK;
1020 /* A spurious retransmission is delivered */
1021 state->sack_delivered += dup_segs;
1022
1023 return dup_segs;
1024 }
1025
1026 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1027 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1028 * distance is approximated in full-mss packet distance ("reordering").
1029 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1030 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1031 const int ts)
1032 {
1033 struct tcp_sock *tp = tcp_sk(sk);
1034 const u32 mss = tp->mss_cache;
1035 u32 fack, metric;
1036
1037 fack = tcp_highest_sack_seq(tp);
1038 if (!before(low_seq, fack))
1039 return;
1040
1041 metric = fack - low_seq;
1042 if ((metric > tp->reordering * mss) && mss) {
1043 #if FASTRETRANS_DEBUG > 1
1044 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1045 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1046 tp->reordering,
1047 0,
1048 tp->sacked_out,
1049 tp->undo_marker ? tp->undo_retrans : 0);
1050 #endif
1051 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1052 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1053 }
1054
1055 /* This exciting event is worth to be remembered. 8) */
1056 tp->reord_seen++;
1057 NET_INC_STATS(sock_net(sk),
1058 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1059 }
1060
1061 /* This must be called before lost_out or retrans_out are updated
1062 * on a new loss, because we want to know if all skbs previously
1063 * known to be lost have already been retransmitted, indicating
1064 * that this newly lost skb is our next skb to retransmit.
1065 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1066 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1067 {
1068 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1069 (tp->retransmit_skb_hint &&
1070 before(TCP_SKB_CB(skb)->seq,
1071 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1072 tp->retransmit_skb_hint = skb;
1073 }
1074
1075 /* Sum the number of packets on the wire we have marked as lost, and
1076 * notify the congestion control module that the given skb was marked lost.
1077 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1078 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1079 {
1080 tp->lost += tcp_skb_pcount(skb);
1081 }
1082
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1083 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1084 {
1085 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1086 struct tcp_sock *tp = tcp_sk(sk);
1087
1088 if (sacked & TCPCB_SACKED_ACKED)
1089 return;
1090
1091 tcp_verify_retransmit_hint(tp, skb);
1092 if (sacked & TCPCB_LOST) {
1093 if (sacked & TCPCB_SACKED_RETRANS) {
1094 /* Account for retransmits that are lost again */
1095 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1096 tp->retrans_out -= tcp_skb_pcount(skb);
1097 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1098 tcp_skb_pcount(skb));
1099 tcp_notify_skb_loss_event(tp, skb);
1100 }
1101 } else {
1102 tp->lost_out += tcp_skb_pcount(skb);
1103 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1104 tcp_notify_skb_loss_event(tp, skb);
1105 }
1106 }
1107
1108 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1109 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1110 bool ece_ack)
1111 {
1112 tp->delivered += delivered;
1113 if (ece_ack)
1114 tp->delivered_ce += delivered;
1115 }
1116
1117 /* This procedure tags the retransmission queue when SACKs arrive.
1118 *
1119 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1120 * Packets in queue with these bits set are counted in variables
1121 * sacked_out, retrans_out and lost_out, correspondingly.
1122 *
1123 * Valid combinations are:
1124 * Tag InFlight Description
1125 * 0 1 - orig segment is in flight.
1126 * S 0 - nothing flies, orig reached receiver.
1127 * L 0 - nothing flies, orig lost by net.
1128 * R 2 - both orig and retransmit are in flight.
1129 * L|R 1 - orig is lost, retransmit is in flight.
1130 * S|R 1 - orig reached receiver, retrans is still in flight.
1131 * (L|S|R is logically valid, it could occur when L|R is sacked,
1132 * but it is equivalent to plain S and code short-curcuits it to S.
1133 * L|S is logically invalid, it would mean -1 packet in flight 8))
1134 *
1135 * These 6 states form finite state machine, controlled by the following events:
1136 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1137 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1138 * 3. Loss detection event of two flavors:
1139 * A. Scoreboard estimator decided the packet is lost.
1140 * A'. Reno "three dupacks" marks head of queue lost.
1141 * B. SACK arrives sacking SND.NXT at the moment, when the
1142 * segment was retransmitted.
1143 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1144 *
1145 * It is pleasant to note, that state diagram turns out to be commutative,
1146 * so that we are allowed not to be bothered by order of our actions,
1147 * when multiple events arrive simultaneously. (see the function below).
1148 *
1149 * Reordering detection.
1150 * --------------------
1151 * Reordering metric is maximal distance, which a packet can be displaced
1152 * in packet stream. With SACKs we can estimate it:
1153 *
1154 * 1. SACK fills old hole and the corresponding segment was not
1155 * ever retransmitted -> reordering. Alas, we cannot use it
1156 * when segment was retransmitted.
1157 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1158 * for retransmitted and already SACKed segment -> reordering..
1159 * Both of these heuristics are not used in Loss state, when we cannot
1160 * account for retransmits accurately.
1161 *
1162 * SACK block validation.
1163 * ----------------------
1164 *
1165 * SACK block range validation checks that the received SACK block fits to
1166 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1167 * Note that SND.UNA is not included to the range though being valid because
1168 * it means that the receiver is rather inconsistent with itself reporting
1169 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1170 * perfectly valid, however, in light of RFC2018 which explicitly states
1171 * that "SACK block MUST reflect the newest segment. Even if the newest
1172 * segment is going to be discarded ...", not that it looks very clever
1173 * in case of head skb. Due to potentional receiver driven attacks, we
1174 * choose to avoid immediate execution of a walk in write queue due to
1175 * reneging and defer head skb's loss recovery to standard loss recovery
1176 * procedure that will eventually trigger (nothing forbids us doing this).
1177 *
1178 * Implements also blockage to start_seq wrap-around. Problem lies in the
1179 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1180 * there's no guarantee that it will be before snd_nxt (n). The problem
1181 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1182 * wrap (s_w):
1183 *
1184 * <- outs wnd -> <- wrapzone ->
1185 * u e n u_w e_w s n_w
1186 * | | | | | | |
1187 * |<------------+------+----- TCP seqno space --------------+---------->|
1188 * ...-- <2^31 ->| |<--------...
1189 * ...---- >2^31 ------>| |<--------...
1190 *
1191 * Current code wouldn't be vulnerable but it's better still to discard such
1192 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1193 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1194 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1195 * equal to the ideal case (infinite seqno space without wrap caused issues).
1196 *
1197 * With D-SACK the lower bound is extended to cover sequence space below
1198 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1199 * again, D-SACK block must not to go across snd_una (for the same reason as
1200 * for the normal SACK blocks, explained above). But there all simplicity
1201 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1202 * fully below undo_marker they do not affect behavior in anyway and can
1203 * therefore be safely ignored. In rare cases (which are more or less
1204 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1205 * fragmentation and packet reordering past skb's retransmission. To consider
1206 * them correctly, the acceptable range must be extended even more though
1207 * the exact amount is rather hard to quantify. However, tp->max_window can
1208 * be used as an exaggerated estimate.
1209 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1210 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1211 u32 start_seq, u32 end_seq)
1212 {
1213 /* Too far in future, or reversed (interpretation is ambiguous) */
1214 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1215 return false;
1216
1217 /* Nasty start_seq wrap-around check (see comments above) */
1218 if (!before(start_seq, tp->snd_nxt))
1219 return false;
1220
1221 /* In outstanding window? ...This is valid exit for D-SACKs too.
1222 * start_seq == snd_una is non-sensical (see comments above)
1223 */
1224 if (after(start_seq, tp->snd_una))
1225 return true;
1226
1227 if (!is_dsack || !tp->undo_marker)
1228 return false;
1229
1230 /* ...Then it's D-SACK, and must reside below snd_una completely */
1231 if (after(end_seq, tp->snd_una))
1232 return false;
1233
1234 if (!before(start_seq, tp->undo_marker))
1235 return true;
1236
1237 /* Too old */
1238 if (!after(end_seq, tp->undo_marker))
1239 return false;
1240
1241 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1242 * start_seq < undo_marker and end_seq >= undo_marker.
1243 */
1244 return !before(start_seq, end_seq - tp->max_window);
1245 }
1246
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1247 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1248 struct tcp_sack_block_wire *sp, int num_sacks,
1249 u32 prior_snd_una, struct tcp_sacktag_state *state)
1250 {
1251 struct tcp_sock *tp = tcp_sk(sk);
1252 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1253 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1254 u32 dup_segs;
1255
1256 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1257 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1258 } else if (num_sacks > 1) {
1259 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1260 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1261
1262 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1263 return false;
1264 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1265 } else {
1266 return false;
1267 }
1268
1269 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1270 if (!dup_segs) { /* Skip dubious DSACK */
1271 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1272 return false;
1273 }
1274
1275 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1276
1277 /* D-SACK for already forgotten data... Do dumb counting. */
1278 if (tp->undo_marker && tp->undo_retrans > 0 &&
1279 !after(end_seq_0, prior_snd_una) &&
1280 after(end_seq_0, tp->undo_marker))
1281 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1282
1283 return true;
1284 }
1285
1286 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1287 * the incoming SACK may not exactly match but we can find smaller MSS
1288 * aligned portion of it that matches. Therefore we might need to fragment
1289 * which may fail and creates some hassle (caller must handle error case
1290 * returns).
1291 *
1292 * FIXME: this could be merged to shift decision code
1293 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1294 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1295 u32 start_seq, u32 end_seq)
1296 {
1297 int err;
1298 bool in_sack;
1299 unsigned int pkt_len;
1300 unsigned int mss;
1301
1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1303 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1304
1305 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1306 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1307 mss = tcp_skb_mss(skb);
1308 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1309
1310 if (!in_sack) {
1311 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1312 if (pkt_len < mss)
1313 pkt_len = mss;
1314 } else {
1315 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1316 if (pkt_len < mss)
1317 return -EINVAL;
1318 }
1319
1320 /* Round if necessary so that SACKs cover only full MSSes
1321 * and/or the remaining small portion (if present)
1322 */
1323 if (pkt_len > mss) {
1324 unsigned int new_len = (pkt_len / mss) * mss;
1325 if (!in_sack && new_len < pkt_len)
1326 new_len += mss;
1327 pkt_len = new_len;
1328 }
1329
1330 if (pkt_len >= skb->len && !in_sack)
1331 return 0;
1332
1333 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1334 pkt_len, mss, GFP_ATOMIC);
1335 if (err < 0)
1336 return err;
1337 }
1338
1339 return in_sack;
1340 }
1341
1342 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1343 static u8 tcp_sacktag_one(struct sock *sk,
1344 struct tcp_sacktag_state *state, u8 sacked,
1345 u32 start_seq, u32 end_seq,
1346 int dup_sack, int pcount,
1347 u64 xmit_time)
1348 {
1349 struct tcp_sock *tp = tcp_sk(sk);
1350
1351 /* Account D-SACK for retransmitted packet. */
1352 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1353 if (tp->undo_marker && tp->undo_retrans > 0 &&
1354 after(end_seq, tp->undo_marker))
1355 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1356 if ((sacked & TCPCB_SACKED_ACKED) &&
1357 before(start_seq, state->reord))
1358 state->reord = start_seq;
1359 }
1360
1361 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1362 if (!after(end_seq, tp->snd_una))
1363 return sacked;
1364
1365 if (!(sacked & TCPCB_SACKED_ACKED)) {
1366 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1367
1368 if (sacked & TCPCB_SACKED_RETRANS) {
1369 /* If the segment is not tagged as lost,
1370 * we do not clear RETRANS, believing
1371 * that retransmission is still in flight.
1372 */
1373 if (sacked & TCPCB_LOST) {
1374 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1375 tp->lost_out -= pcount;
1376 tp->retrans_out -= pcount;
1377 }
1378 } else {
1379 if (!(sacked & TCPCB_RETRANS)) {
1380 /* New sack for not retransmitted frame,
1381 * which was in hole. It is reordering.
1382 */
1383 if (before(start_seq,
1384 tcp_highest_sack_seq(tp)) &&
1385 before(start_seq, state->reord))
1386 state->reord = start_seq;
1387
1388 if (!after(end_seq, tp->high_seq))
1389 state->flag |= FLAG_ORIG_SACK_ACKED;
1390 if (state->first_sackt == 0)
1391 state->first_sackt = xmit_time;
1392 state->last_sackt = xmit_time;
1393 }
1394
1395 if (sacked & TCPCB_LOST) {
1396 sacked &= ~TCPCB_LOST;
1397 tp->lost_out -= pcount;
1398 }
1399 }
1400
1401 sacked |= TCPCB_SACKED_ACKED;
1402 state->flag |= FLAG_DATA_SACKED;
1403 tp->sacked_out += pcount;
1404 /* Out-of-order packets delivered */
1405 state->sack_delivered += pcount;
1406
1407 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1408 if (tp->lost_skb_hint &&
1409 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1410 tp->lost_cnt_hint += pcount;
1411 }
1412
1413 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1414 * frames and clear it. undo_retrans is decreased above, L|R frames
1415 * are accounted above as well.
1416 */
1417 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1418 sacked &= ~TCPCB_SACKED_RETRANS;
1419 tp->retrans_out -= pcount;
1420 }
1421
1422 return sacked;
1423 }
1424
1425 /* Shift newly-SACKed bytes from this skb to the immediately previous
1426 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1427 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1428 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1429 struct sk_buff *skb,
1430 struct tcp_sacktag_state *state,
1431 unsigned int pcount, int shifted, int mss,
1432 bool dup_sack)
1433 {
1434 struct tcp_sock *tp = tcp_sk(sk);
1435 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1436 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1437
1438 BUG_ON(!pcount);
1439
1440 /* Adjust counters and hints for the newly sacked sequence
1441 * range but discard the return value since prev is already
1442 * marked. We must tag the range first because the seq
1443 * advancement below implicitly advances
1444 * tcp_highest_sack_seq() when skb is highest_sack.
1445 */
1446 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1447 start_seq, end_seq, dup_sack, pcount,
1448 tcp_skb_timestamp_us(skb));
1449 tcp_rate_skb_delivered(sk, skb, state->rate);
1450
1451 if (skb == tp->lost_skb_hint)
1452 tp->lost_cnt_hint += pcount;
1453
1454 TCP_SKB_CB(prev)->end_seq += shifted;
1455 TCP_SKB_CB(skb)->seq += shifted;
1456
1457 tcp_skb_pcount_add(prev, pcount);
1458 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1459 tcp_skb_pcount_add(skb, -pcount);
1460
1461 /* When we're adding to gso_segs == 1, gso_size will be zero,
1462 * in theory this shouldn't be necessary but as long as DSACK
1463 * code can come after this skb later on it's better to keep
1464 * setting gso_size to something.
1465 */
1466 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1467 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1468
1469 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1470 if (tcp_skb_pcount(skb) <= 1)
1471 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1472
1473 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1474 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1475
1476 if (skb->len > 0) {
1477 BUG_ON(!tcp_skb_pcount(skb));
1478 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1479 return false;
1480 }
1481
1482 /* Whole SKB was eaten :-) */
1483
1484 if (skb == tp->retransmit_skb_hint)
1485 tp->retransmit_skb_hint = prev;
1486 if (skb == tp->lost_skb_hint) {
1487 tp->lost_skb_hint = prev;
1488 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1489 }
1490
1491 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1492 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1493 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1494 TCP_SKB_CB(prev)->end_seq++;
1495
1496 if (skb == tcp_highest_sack(sk))
1497 tcp_advance_highest_sack(sk, skb);
1498
1499 tcp_skb_collapse_tstamp(prev, skb);
1500 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1501 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1502
1503 tcp_rtx_queue_unlink_and_free(skb, sk);
1504
1505 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1506
1507 return true;
1508 }
1509
1510 /* I wish gso_size would have a bit more sane initialization than
1511 * something-or-zero which complicates things
1512 */
tcp_skb_seglen(const struct sk_buff * skb)1513 static int tcp_skb_seglen(const struct sk_buff *skb)
1514 {
1515 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1516 }
1517
1518 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1519 static int skb_can_shift(const struct sk_buff *skb)
1520 {
1521 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1522 }
1523
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1524 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1525 int pcount, int shiftlen)
1526 {
1527 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1528 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1529 * to make sure not storing more than 65535 * 8 bytes per skb,
1530 * even if current MSS is bigger.
1531 */
1532 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1533 return 0;
1534 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1535 return 0;
1536 return skb_shift(to, from, shiftlen);
1537 }
1538
1539 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1540 * skb.
1541 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1542 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1543 struct tcp_sacktag_state *state,
1544 u32 start_seq, u32 end_seq,
1545 bool dup_sack)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 struct sk_buff *prev;
1549 int mss;
1550 int pcount = 0;
1551 int len;
1552 int in_sack;
1553
1554 /* Normally R but no L won't result in plain S */
1555 if (!dup_sack &&
1556 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1557 goto fallback;
1558 if (!skb_can_shift(skb))
1559 goto fallback;
1560 /* This frame is about to be dropped (was ACKed). */
1561 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1562 goto fallback;
1563
1564 /* Can only happen with delayed DSACK + discard craziness */
1565 prev = skb_rb_prev(skb);
1566 if (!prev)
1567 goto fallback;
1568
1569 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1570 goto fallback;
1571
1572 if (!tcp_skb_can_collapse(prev, skb))
1573 goto fallback;
1574
1575 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1576 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1577
1578 if (in_sack) {
1579 len = skb->len;
1580 pcount = tcp_skb_pcount(skb);
1581 mss = tcp_skb_seglen(skb);
1582
1583 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1584 * drop this restriction as unnecessary
1585 */
1586 if (mss != tcp_skb_seglen(prev))
1587 goto fallback;
1588 } else {
1589 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1590 goto noop;
1591 /* CHECKME: This is non-MSS split case only?, this will
1592 * cause skipped skbs due to advancing loop btw, original
1593 * has that feature too
1594 */
1595 if (tcp_skb_pcount(skb) <= 1)
1596 goto noop;
1597
1598 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1599 if (!in_sack) {
1600 /* TODO: head merge to next could be attempted here
1601 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1602 * though it might not be worth of the additional hassle
1603 *
1604 * ...we can probably just fallback to what was done
1605 * previously. We could try merging non-SACKed ones
1606 * as well but it probably isn't going to buy off
1607 * because later SACKs might again split them, and
1608 * it would make skb timestamp tracking considerably
1609 * harder problem.
1610 */
1611 goto fallback;
1612 }
1613
1614 len = end_seq - TCP_SKB_CB(skb)->seq;
1615 BUG_ON(len < 0);
1616 BUG_ON(len > skb->len);
1617
1618 /* MSS boundaries should be honoured or else pcount will
1619 * severely break even though it makes things bit trickier.
1620 * Optimize common case to avoid most of the divides
1621 */
1622 mss = tcp_skb_mss(skb);
1623
1624 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1625 * drop this restriction as unnecessary
1626 */
1627 if (mss != tcp_skb_seglen(prev))
1628 goto fallback;
1629
1630 if (len == mss) {
1631 pcount = 1;
1632 } else if (len < mss) {
1633 goto noop;
1634 } else {
1635 pcount = len / mss;
1636 len = pcount * mss;
1637 }
1638 }
1639
1640 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1641 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1642 goto fallback;
1643
1644 if (!tcp_skb_shift(prev, skb, pcount, len))
1645 goto fallback;
1646 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1647 goto out;
1648
1649 /* Hole filled allows collapsing with the next as well, this is very
1650 * useful when hole on every nth skb pattern happens
1651 */
1652 skb = skb_rb_next(prev);
1653 if (!skb)
1654 goto out;
1655
1656 if (!skb_can_shift(skb) ||
1657 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1658 (mss != tcp_skb_seglen(skb)))
1659 goto out;
1660
1661 if (!tcp_skb_can_collapse(prev, skb))
1662 goto out;
1663 len = skb->len;
1664 pcount = tcp_skb_pcount(skb);
1665 if (tcp_skb_shift(prev, skb, pcount, len))
1666 tcp_shifted_skb(sk, prev, skb, state, pcount,
1667 len, mss, 0);
1668
1669 out:
1670 return prev;
1671
1672 noop:
1673 return skb;
1674
1675 fallback:
1676 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1677 return NULL;
1678 }
1679
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1680 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1681 struct tcp_sack_block *next_dup,
1682 struct tcp_sacktag_state *state,
1683 u32 start_seq, u32 end_seq,
1684 bool dup_sack_in)
1685 {
1686 struct tcp_sock *tp = tcp_sk(sk);
1687 struct sk_buff *tmp;
1688
1689 skb_rbtree_walk_from(skb) {
1690 int in_sack = 0;
1691 bool dup_sack = dup_sack_in;
1692
1693 /* queue is in-order => we can short-circuit the walk early */
1694 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1695 break;
1696
1697 if (next_dup &&
1698 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1699 in_sack = tcp_match_skb_to_sack(sk, skb,
1700 next_dup->start_seq,
1701 next_dup->end_seq);
1702 if (in_sack > 0)
1703 dup_sack = true;
1704 }
1705
1706 /* skb reference here is a bit tricky to get right, since
1707 * shifting can eat and free both this skb and the next,
1708 * so not even _safe variant of the loop is enough.
1709 */
1710 if (in_sack <= 0) {
1711 tmp = tcp_shift_skb_data(sk, skb, state,
1712 start_seq, end_seq, dup_sack);
1713 if (tmp) {
1714 if (tmp != skb) {
1715 skb = tmp;
1716 continue;
1717 }
1718
1719 in_sack = 0;
1720 } else {
1721 in_sack = tcp_match_skb_to_sack(sk, skb,
1722 start_seq,
1723 end_seq);
1724 }
1725 }
1726
1727 if (unlikely(in_sack < 0))
1728 break;
1729
1730 if (in_sack) {
1731 TCP_SKB_CB(skb)->sacked =
1732 tcp_sacktag_one(sk,
1733 state,
1734 TCP_SKB_CB(skb)->sacked,
1735 TCP_SKB_CB(skb)->seq,
1736 TCP_SKB_CB(skb)->end_seq,
1737 dup_sack,
1738 tcp_skb_pcount(skb),
1739 tcp_skb_timestamp_us(skb));
1740 tcp_rate_skb_delivered(sk, skb, state->rate);
1741 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1742 list_del_init(&skb->tcp_tsorted_anchor);
1743
1744 if (!before(TCP_SKB_CB(skb)->seq,
1745 tcp_highest_sack_seq(tp)))
1746 tcp_advance_highest_sack(sk, skb);
1747 }
1748 }
1749 return skb;
1750 }
1751
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1752 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1753 {
1754 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1755 struct sk_buff *skb;
1756
1757 while (*p) {
1758 parent = *p;
1759 skb = rb_to_skb(parent);
1760 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1761 p = &parent->rb_left;
1762 continue;
1763 }
1764 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1765 p = &parent->rb_right;
1766 continue;
1767 }
1768 return skb;
1769 }
1770 return NULL;
1771 }
1772
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1773 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1774 u32 skip_to_seq)
1775 {
1776 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1777 return skb;
1778
1779 return tcp_sacktag_bsearch(sk, skip_to_seq);
1780 }
1781
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1782 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1783 struct sock *sk,
1784 struct tcp_sack_block *next_dup,
1785 struct tcp_sacktag_state *state,
1786 u32 skip_to_seq)
1787 {
1788 if (!next_dup)
1789 return skb;
1790
1791 if (before(next_dup->start_seq, skip_to_seq)) {
1792 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1793 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1794 next_dup->start_seq, next_dup->end_seq,
1795 1);
1796 }
1797
1798 return skb;
1799 }
1800
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1801 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1802 {
1803 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1804 }
1805
1806 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1807 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1808 u32 prior_snd_una, struct tcp_sacktag_state *state)
1809 {
1810 struct tcp_sock *tp = tcp_sk(sk);
1811 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1812 TCP_SKB_CB(ack_skb)->sacked);
1813 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1814 struct tcp_sack_block sp[TCP_NUM_SACKS];
1815 struct tcp_sack_block *cache;
1816 struct sk_buff *skb;
1817 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1818 int used_sacks;
1819 bool found_dup_sack = false;
1820 int i, j;
1821 int first_sack_index;
1822
1823 state->flag = 0;
1824 state->reord = tp->snd_nxt;
1825
1826 if (!tp->sacked_out)
1827 tcp_highest_sack_reset(sk);
1828
1829 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1830 num_sacks, prior_snd_una, state);
1831
1832 /* Eliminate too old ACKs, but take into
1833 * account more or less fresh ones, they can
1834 * contain valid SACK info.
1835 */
1836 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1837 return 0;
1838
1839 if (!tp->packets_out)
1840 goto out;
1841
1842 used_sacks = 0;
1843 first_sack_index = 0;
1844 for (i = 0; i < num_sacks; i++) {
1845 bool dup_sack = !i && found_dup_sack;
1846
1847 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1848 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1849
1850 if (!tcp_is_sackblock_valid(tp, dup_sack,
1851 sp[used_sacks].start_seq,
1852 sp[used_sacks].end_seq)) {
1853 int mib_idx;
1854
1855 if (dup_sack) {
1856 if (!tp->undo_marker)
1857 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1858 else
1859 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1860 } else {
1861 /* Don't count olds caused by ACK reordering */
1862 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1863 !after(sp[used_sacks].end_seq, tp->snd_una))
1864 continue;
1865 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1866 }
1867
1868 NET_INC_STATS(sock_net(sk), mib_idx);
1869 if (i == 0)
1870 first_sack_index = -1;
1871 continue;
1872 }
1873
1874 /* Ignore very old stuff early */
1875 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1876 if (i == 0)
1877 first_sack_index = -1;
1878 continue;
1879 }
1880
1881 used_sacks++;
1882 }
1883
1884 /* order SACK blocks to allow in order walk of the retrans queue */
1885 for (i = used_sacks - 1; i > 0; i--) {
1886 for (j = 0; j < i; j++) {
1887 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1888 swap(sp[j], sp[j + 1]);
1889
1890 /* Track where the first SACK block goes to */
1891 if (j == first_sack_index)
1892 first_sack_index = j + 1;
1893 }
1894 }
1895 }
1896
1897 state->mss_now = tcp_current_mss(sk);
1898 skb = NULL;
1899 i = 0;
1900
1901 if (!tp->sacked_out) {
1902 /* It's already past, so skip checking against it */
1903 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1904 } else {
1905 cache = tp->recv_sack_cache;
1906 /* Skip empty blocks in at head of the cache */
1907 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1908 !cache->end_seq)
1909 cache++;
1910 }
1911
1912 while (i < used_sacks) {
1913 u32 start_seq = sp[i].start_seq;
1914 u32 end_seq = sp[i].end_seq;
1915 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1916 struct tcp_sack_block *next_dup = NULL;
1917
1918 if (found_dup_sack && ((i + 1) == first_sack_index))
1919 next_dup = &sp[i + 1];
1920
1921 /* Skip too early cached blocks */
1922 while (tcp_sack_cache_ok(tp, cache) &&
1923 !before(start_seq, cache->end_seq))
1924 cache++;
1925
1926 /* Can skip some work by looking recv_sack_cache? */
1927 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1928 after(end_seq, cache->start_seq)) {
1929
1930 /* Head todo? */
1931 if (before(start_seq, cache->start_seq)) {
1932 skb = tcp_sacktag_skip(skb, sk, start_seq);
1933 skb = tcp_sacktag_walk(skb, sk, next_dup,
1934 state,
1935 start_seq,
1936 cache->start_seq,
1937 dup_sack);
1938 }
1939
1940 /* Rest of the block already fully processed? */
1941 if (!after(end_seq, cache->end_seq))
1942 goto advance_sp;
1943
1944 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1945 state,
1946 cache->end_seq);
1947
1948 /* ...tail remains todo... */
1949 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1950 /* ...but better entrypoint exists! */
1951 skb = tcp_highest_sack(sk);
1952 if (!skb)
1953 break;
1954 cache++;
1955 goto walk;
1956 }
1957
1958 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1959 /* Check overlap against next cached too (past this one already) */
1960 cache++;
1961 continue;
1962 }
1963
1964 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1965 skb = tcp_highest_sack(sk);
1966 if (!skb)
1967 break;
1968 }
1969 skb = tcp_sacktag_skip(skb, sk, start_seq);
1970
1971 walk:
1972 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1973 start_seq, end_seq, dup_sack);
1974
1975 advance_sp:
1976 i++;
1977 }
1978
1979 /* Clear the head of the cache sack blocks so we can skip it next time */
1980 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1981 tp->recv_sack_cache[i].start_seq = 0;
1982 tp->recv_sack_cache[i].end_seq = 0;
1983 }
1984 for (j = 0; j < used_sacks; j++)
1985 tp->recv_sack_cache[i++] = sp[j];
1986
1987 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1988 tcp_check_sack_reordering(sk, state->reord, 0);
1989
1990 tcp_verify_left_out(tp);
1991 out:
1992
1993 #if FASTRETRANS_DEBUG > 0
1994 WARN_ON((int)tp->sacked_out < 0);
1995 WARN_ON((int)tp->lost_out < 0);
1996 WARN_ON((int)tp->retrans_out < 0);
1997 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1998 #endif
1999 return state->flag;
2000 }
2001
2002 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2003 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2004 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2005 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2006 {
2007 u32 holes;
2008
2009 holes = max(tp->lost_out, 1U);
2010 holes = min(holes, tp->packets_out);
2011
2012 if ((tp->sacked_out + holes) > tp->packets_out) {
2013 tp->sacked_out = tp->packets_out - holes;
2014 return true;
2015 }
2016 return false;
2017 }
2018
2019 /* If we receive more dupacks than we expected counting segments
2020 * in assumption of absent reordering, interpret this as reordering.
2021 * The only another reason could be bug in receiver TCP.
2022 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2023 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2024 {
2025 struct tcp_sock *tp = tcp_sk(sk);
2026
2027 if (!tcp_limit_reno_sacked(tp))
2028 return;
2029
2030 tp->reordering = min_t(u32, tp->packets_out + addend,
2031 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2032 tp->reord_seen++;
2033 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2034 }
2035
2036 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2037
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2038 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2039 {
2040 if (num_dupack) {
2041 struct tcp_sock *tp = tcp_sk(sk);
2042 u32 prior_sacked = tp->sacked_out;
2043 s32 delivered;
2044
2045 tp->sacked_out += num_dupack;
2046 tcp_check_reno_reordering(sk, 0);
2047 delivered = tp->sacked_out - prior_sacked;
2048 if (delivered > 0)
2049 tcp_count_delivered(tp, delivered, ece_ack);
2050 tcp_verify_left_out(tp);
2051 }
2052 }
2053
2054 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2055
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2056 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2057 {
2058 struct tcp_sock *tp = tcp_sk(sk);
2059
2060 if (acked > 0) {
2061 /* One ACK acked hole. The rest eat duplicate ACKs. */
2062 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2063 ece_ack);
2064 if (acked - 1 >= tp->sacked_out)
2065 tp->sacked_out = 0;
2066 else
2067 tp->sacked_out -= acked - 1;
2068 }
2069 tcp_check_reno_reordering(sk, acked);
2070 tcp_verify_left_out(tp);
2071 }
2072
tcp_reset_reno_sack(struct tcp_sock * tp)2073 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2074 {
2075 tp->sacked_out = 0;
2076 }
2077
tcp_clear_retrans(struct tcp_sock * tp)2078 void tcp_clear_retrans(struct tcp_sock *tp)
2079 {
2080 tp->retrans_out = 0;
2081 tp->lost_out = 0;
2082 tp->undo_marker = 0;
2083 tp->undo_retrans = -1;
2084 tp->sacked_out = 0;
2085 }
2086
tcp_init_undo(struct tcp_sock * tp)2087 static inline void tcp_init_undo(struct tcp_sock *tp)
2088 {
2089 tp->undo_marker = tp->snd_una;
2090 /* Retransmission still in flight may cause DSACKs later. */
2091 tp->undo_retrans = tp->retrans_out ? : -1;
2092 }
2093
tcp_is_rack(const struct sock * sk)2094 static bool tcp_is_rack(const struct sock *sk)
2095 {
2096 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2097 TCP_RACK_LOSS_DETECTION;
2098 }
2099
2100 /* If we detect SACK reneging, forget all SACK information
2101 * and reset tags completely, otherwise preserve SACKs. If receiver
2102 * dropped its ofo queue, we will know this due to reneging detection.
2103 */
tcp_timeout_mark_lost(struct sock * sk)2104 static void tcp_timeout_mark_lost(struct sock *sk)
2105 {
2106 struct tcp_sock *tp = tcp_sk(sk);
2107 struct sk_buff *skb, *head;
2108 bool is_reneg; /* is receiver reneging on SACKs? */
2109
2110 head = tcp_rtx_queue_head(sk);
2111 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2112 if (is_reneg) {
2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2114 tp->sacked_out = 0;
2115 /* Mark SACK reneging until we recover from this loss event. */
2116 tp->is_sack_reneg = 1;
2117 } else if (tcp_is_reno(tp)) {
2118 tcp_reset_reno_sack(tp);
2119 }
2120
2121 skb = head;
2122 skb_rbtree_walk_from(skb) {
2123 if (is_reneg)
2124 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2125 else if (tcp_is_rack(sk) && skb != head &&
2126 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2127 continue; /* Don't mark recently sent ones lost yet */
2128 tcp_mark_skb_lost(sk, skb);
2129 }
2130 tcp_verify_left_out(tp);
2131 tcp_clear_all_retrans_hints(tp);
2132 }
2133
2134 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2135 void tcp_enter_loss(struct sock *sk)
2136 {
2137 const struct inet_connection_sock *icsk = inet_csk(sk);
2138 struct tcp_sock *tp = tcp_sk(sk);
2139 struct net *net = sock_net(sk);
2140 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2141 u8 reordering;
2142
2143 tcp_timeout_mark_lost(sk);
2144
2145 /* Reduce ssthresh if it has not yet been made inside this window. */
2146 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2147 !after(tp->high_seq, tp->snd_una) ||
2148 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2149 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2150 tp->prior_cwnd = tp->snd_cwnd;
2151 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2152 tcp_ca_event(sk, CA_EVENT_LOSS);
2153 tcp_init_undo(tp);
2154 }
2155 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2156 tp->snd_cwnd_cnt = 0;
2157 tp->snd_cwnd_stamp = tcp_jiffies32;
2158
2159 /* Timeout in disordered state after receiving substantial DUPACKs
2160 * suggests that the degree of reordering is over-estimated.
2161 */
2162 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2163 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2164 tp->sacked_out >= reordering)
2165 tp->reordering = min_t(unsigned int, tp->reordering,
2166 reordering);
2167
2168 tcp_set_ca_state(sk, TCP_CA_Loss);
2169 tp->high_seq = tp->snd_nxt;
2170 tcp_ecn_queue_cwr(tp);
2171
2172 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2173 * loss recovery is underway except recurring timeout(s) on
2174 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2175 */
2176 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2177 (new_recovery || icsk->icsk_retransmits) &&
2178 !inet_csk(sk)->icsk_mtup.probe_size;
2179 }
2180
2181 /* If ACK arrived pointing to a remembered SACK, it means that our
2182 * remembered SACKs do not reflect real state of receiver i.e.
2183 * receiver _host_ is heavily congested (or buggy).
2184 *
2185 * To avoid big spurious retransmission bursts due to transient SACK
2186 * scoreboard oddities that look like reneging, we give the receiver a
2187 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2188 * restore sanity to the SACK scoreboard. If the apparent reneging
2189 * persists until this RTO then we'll clear the SACK scoreboard.
2190 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2191 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2192 {
2193 if (*ack_flag & FLAG_SACK_RENEGING &&
2194 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2195 struct tcp_sock *tp = tcp_sk(sk);
2196 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2197 msecs_to_jiffies(10));
2198
2199 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2200 delay, TCP_RTO_MAX);
2201 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2202 return true;
2203 }
2204 return false;
2205 }
2206
2207 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2208 * counter when SACK is enabled (without SACK, sacked_out is used for
2209 * that purpose).
2210 *
2211 * With reordering, holes may still be in flight, so RFC3517 recovery
2212 * uses pure sacked_out (total number of SACKed segments) even though
2213 * it violates the RFC that uses duplicate ACKs, often these are equal
2214 * but when e.g. out-of-window ACKs or packet duplication occurs,
2215 * they differ. Since neither occurs due to loss, TCP should really
2216 * ignore them.
2217 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2218 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2219 {
2220 return tp->sacked_out + 1;
2221 }
2222
2223 /* Linux NewReno/SACK/ECN state machine.
2224 * --------------------------------------
2225 *
2226 * "Open" Normal state, no dubious events, fast path.
2227 * "Disorder" In all the respects it is "Open",
2228 * but requires a bit more attention. It is entered when
2229 * we see some SACKs or dupacks. It is split of "Open"
2230 * mainly to move some processing from fast path to slow one.
2231 * "CWR" CWND was reduced due to some Congestion Notification event.
2232 * It can be ECN, ICMP source quench, local device congestion.
2233 * "Recovery" CWND was reduced, we are fast-retransmitting.
2234 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2235 *
2236 * tcp_fastretrans_alert() is entered:
2237 * - each incoming ACK, if state is not "Open"
2238 * - when arrived ACK is unusual, namely:
2239 * * SACK
2240 * * Duplicate ACK.
2241 * * ECN ECE.
2242 *
2243 * Counting packets in flight is pretty simple.
2244 *
2245 * in_flight = packets_out - left_out + retrans_out
2246 *
2247 * packets_out is SND.NXT-SND.UNA counted in packets.
2248 *
2249 * retrans_out is number of retransmitted segments.
2250 *
2251 * left_out is number of segments left network, but not ACKed yet.
2252 *
2253 * left_out = sacked_out + lost_out
2254 *
2255 * sacked_out: Packets, which arrived to receiver out of order
2256 * and hence not ACKed. With SACKs this number is simply
2257 * amount of SACKed data. Even without SACKs
2258 * it is easy to give pretty reliable estimate of this number,
2259 * counting duplicate ACKs.
2260 *
2261 * lost_out: Packets lost by network. TCP has no explicit
2262 * "loss notification" feedback from network (for now).
2263 * It means that this number can be only _guessed_.
2264 * Actually, it is the heuristics to predict lossage that
2265 * distinguishes different algorithms.
2266 *
2267 * F.e. after RTO, when all the queue is considered as lost,
2268 * lost_out = packets_out and in_flight = retrans_out.
2269 *
2270 * Essentially, we have now a few algorithms detecting
2271 * lost packets.
2272 *
2273 * If the receiver supports SACK:
2274 *
2275 * RFC6675/3517: It is the conventional algorithm. A packet is
2276 * considered lost if the number of higher sequence packets
2277 * SACKed is greater than or equal the DUPACK thoreshold
2278 * (reordering). This is implemented in tcp_mark_head_lost and
2279 * tcp_update_scoreboard.
2280 *
2281 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2282 * (2017-) that checks timing instead of counting DUPACKs.
2283 * Essentially a packet is considered lost if it's not S/ACKed
2284 * after RTT + reordering_window, where both metrics are
2285 * dynamically measured and adjusted. This is implemented in
2286 * tcp_rack_mark_lost.
2287 *
2288 * If the receiver does not support SACK:
2289 *
2290 * NewReno (RFC6582): in Recovery we assume that one segment
2291 * is lost (classic Reno). While we are in Recovery and
2292 * a partial ACK arrives, we assume that one more packet
2293 * is lost (NewReno). This heuristics are the same in NewReno
2294 * and SACK.
2295 *
2296 * Really tricky (and requiring careful tuning) part of algorithm
2297 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2298 * The first determines the moment _when_ we should reduce CWND and,
2299 * hence, slow down forward transmission. In fact, it determines the moment
2300 * when we decide that hole is caused by loss, rather than by a reorder.
2301 *
2302 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2303 * holes, caused by lost packets.
2304 *
2305 * And the most logically complicated part of algorithm is undo
2306 * heuristics. We detect false retransmits due to both too early
2307 * fast retransmit (reordering) and underestimated RTO, analyzing
2308 * timestamps and D-SACKs. When we detect that some segments were
2309 * retransmitted by mistake and CWND reduction was wrong, we undo
2310 * window reduction and abort recovery phase. This logic is hidden
2311 * inside several functions named tcp_try_undo_<something>.
2312 */
2313
2314 /* This function decides, when we should leave Disordered state
2315 * and enter Recovery phase, reducing congestion window.
2316 *
2317 * Main question: may we further continue forward transmission
2318 * with the same cwnd?
2319 */
tcp_time_to_recover(struct sock * sk,int flag)2320 static bool tcp_time_to_recover(struct sock *sk, int flag)
2321 {
2322 struct tcp_sock *tp = tcp_sk(sk);
2323
2324 /* Trick#1: The loss is proven. */
2325 if (tp->lost_out)
2326 return true;
2327
2328 /* Not-A-Trick#2 : Classic rule... */
2329 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2330 return true;
2331
2332 return false;
2333 }
2334
2335 /* Detect loss in event "A" above by marking head of queue up as lost.
2336 * For RFC3517 SACK, a segment is considered lost if it
2337 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2338 * the maximum SACKed segments to pass before reaching this limit.
2339 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2340 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2341 {
2342 struct tcp_sock *tp = tcp_sk(sk);
2343 struct sk_buff *skb;
2344 int cnt;
2345 /* Use SACK to deduce losses of new sequences sent during recovery */
2346 const u32 loss_high = tp->snd_nxt;
2347
2348 WARN_ON(packets > tp->packets_out);
2349 skb = tp->lost_skb_hint;
2350 if (skb) {
2351 /* Head already handled? */
2352 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2353 return;
2354 cnt = tp->lost_cnt_hint;
2355 } else {
2356 skb = tcp_rtx_queue_head(sk);
2357 cnt = 0;
2358 }
2359
2360 skb_rbtree_walk_from(skb) {
2361 /* TODO: do this better */
2362 /* this is not the most efficient way to do this... */
2363 tp->lost_skb_hint = skb;
2364 tp->lost_cnt_hint = cnt;
2365
2366 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2367 break;
2368
2369 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370 cnt += tcp_skb_pcount(skb);
2371
2372 if (cnt > packets)
2373 break;
2374
2375 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2376 tcp_mark_skb_lost(sk, skb);
2377
2378 if (mark_head)
2379 break;
2380 }
2381 tcp_verify_left_out(tp);
2382 }
2383
2384 /* Account newly detected lost packet(s) */
2385
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2386 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2387 {
2388 struct tcp_sock *tp = tcp_sk(sk);
2389
2390 if (tcp_is_sack(tp)) {
2391 int sacked_upto = tp->sacked_out - tp->reordering;
2392 if (sacked_upto >= 0)
2393 tcp_mark_head_lost(sk, sacked_upto, 0);
2394 else if (fast_rexmit)
2395 tcp_mark_head_lost(sk, 1, 1);
2396 }
2397 }
2398
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2399 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2400 {
2401 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2402 before(tp->rx_opt.rcv_tsecr, when);
2403 }
2404
2405 /* skb is spurious retransmitted if the returned timestamp echo
2406 * reply is prior to the skb transmission time
2407 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2408 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2409 const struct sk_buff *skb)
2410 {
2411 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2412 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2413 }
2414
2415 /* Nothing was retransmitted or returned timestamp is less
2416 * than timestamp of the first retransmission.
2417 */
tcp_packet_delayed(const struct tcp_sock * tp)2418 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2419 {
2420 return tp->retrans_stamp &&
2421 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2422 }
2423
2424 /* Undo procedures. */
2425
2426 /* We can clear retrans_stamp when there are no retransmissions in the
2427 * window. It would seem that it is trivially available for us in
2428 * tp->retrans_out, however, that kind of assumptions doesn't consider
2429 * what will happen if errors occur when sending retransmission for the
2430 * second time. ...It could the that such segment has only
2431 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432 * the head skb is enough except for some reneging corner cases that
2433 * are not worth the effort.
2434 *
2435 * Main reason for all this complexity is the fact that connection dying
2436 * time now depends on the validity of the retrans_stamp, in particular,
2437 * that successive retransmissions of a segment must not advance
2438 * retrans_stamp under any conditions.
2439 */
tcp_any_retrans_done(const struct sock * sk)2440 static bool tcp_any_retrans_done(const struct sock *sk)
2441 {
2442 const struct tcp_sock *tp = tcp_sk(sk);
2443 struct sk_buff *skb;
2444
2445 if (tp->retrans_out)
2446 return true;
2447
2448 skb = tcp_rtx_queue_head(sk);
2449 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450 return true;
2451
2452 return false;
2453 }
2454
DBGUNDO(struct sock * sk,const char * msg)2455 static void DBGUNDO(struct sock *sk, const char *msg)
2456 {
2457 #if FASTRETRANS_DEBUG > 1
2458 struct tcp_sock *tp = tcp_sk(sk);
2459 struct inet_sock *inet = inet_sk(sk);
2460
2461 if (sk->sk_family == AF_INET) {
2462 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2463 msg,
2464 &inet->inet_daddr, ntohs(inet->inet_dport),
2465 tp->snd_cwnd, tcp_left_out(tp),
2466 tp->snd_ssthresh, tp->prior_ssthresh,
2467 tp->packets_out);
2468 }
2469 #if IS_ENABLED(CONFIG_IPV6)
2470 else if (sk->sk_family == AF_INET6) {
2471 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2472 msg,
2473 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2474 tp->snd_cwnd, tcp_left_out(tp),
2475 tp->snd_ssthresh, tp->prior_ssthresh,
2476 tp->packets_out);
2477 }
2478 #endif
2479 #endif
2480 }
2481
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2482 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2483 {
2484 struct tcp_sock *tp = tcp_sk(sk);
2485
2486 if (unmark_loss) {
2487 struct sk_buff *skb;
2488
2489 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2490 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2491 }
2492 tp->lost_out = 0;
2493 tcp_clear_all_retrans_hints(tp);
2494 }
2495
2496 if (tp->prior_ssthresh) {
2497 const struct inet_connection_sock *icsk = inet_csk(sk);
2498
2499 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2500
2501 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2502 tp->snd_ssthresh = tp->prior_ssthresh;
2503 tcp_ecn_withdraw_cwr(tp);
2504 }
2505 }
2506 tp->snd_cwnd_stamp = tcp_jiffies32;
2507 tp->undo_marker = 0;
2508 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2509 }
2510
tcp_may_undo(const struct tcp_sock * tp)2511 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2512 {
2513 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2514 }
2515
tcp_is_non_sack_preventing_reopen(struct sock * sk)2516 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2521 /* Hold old state until something *above* high_seq
2522 * is ACKed. For Reno it is MUST to prevent false
2523 * fast retransmits (RFC2582). SACK TCP is safe. */
2524 if (!tcp_any_retrans_done(sk))
2525 tp->retrans_stamp = 0;
2526 return true;
2527 }
2528 return false;
2529 }
2530
2531 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2532 static bool tcp_try_undo_recovery(struct sock *sk)
2533 {
2534 struct tcp_sock *tp = tcp_sk(sk);
2535
2536 if (tcp_may_undo(tp)) {
2537 int mib_idx;
2538
2539 /* Happy end! We did not retransmit anything
2540 * or our original transmission succeeded.
2541 */
2542 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2543 tcp_undo_cwnd_reduction(sk, false);
2544 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2545 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2546 else
2547 mib_idx = LINUX_MIB_TCPFULLUNDO;
2548
2549 NET_INC_STATS(sock_net(sk), mib_idx);
2550 } else if (tp->rack.reo_wnd_persist) {
2551 tp->rack.reo_wnd_persist--;
2552 }
2553 if (tcp_is_non_sack_preventing_reopen(sk))
2554 return true;
2555 tcp_set_ca_state(sk, TCP_CA_Open);
2556 tp->is_sack_reneg = 0;
2557 return false;
2558 }
2559
2560 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2561 static bool tcp_try_undo_dsack(struct sock *sk)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564
2565 if (tp->undo_marker && !tp->undo_retrans) {
2566 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2567 tp->rack.reo_wnd_persist + 1);
2568 DBGUNDO(sk, "D-SACK");
2569 tcp_undo_cwnd_reduction(sk, false);
2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2571 return true;
2572 }
2573 return false;
2574 }
2575
2576 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2577 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2578 {
2579 struct tcp_sock *tp = tcp_sk(sk);
2580
2581 if (frto_undo || tcp_may_undo(tp)) {
2582 tcp_undo_cwnd_reduction(sk, true);
2583
2584 DBGUNDO(sk, "partial loss");
2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2586 if (frto_undo)
2587 NET_INC_STATS(sock_net(sk),
2588 LINUX_MIB_TCPSPURIOUSRTOS);
2589 inet_csk(sk)->icsk_retransmits = 0;
2590 if (tcp_is_non_sack_preventing_reopen(sk))
2591 return true;
2592 if (frto_undo || tcp_is_sack(tp)) {
2593 tcp_set_ca_state(sk, TCP_CA_Open);
2594 tp->is_sack_reneg = 0;
2595 }
2596 return true;
2597 }
2598 return false;
2599 }
2600
2601 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2602 * It computes the number of packets to send (sndcnt) based on packets newly
2603 * delivered:
2604 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2605 * cwnd reductions across a full RTT.
2606 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2607 * But when the retransmits are acked without further losses, PRR
2608 * slow starts cwnd up to ssthresh to speed up the recovery.
2609 */
tcp_init_cwnd_reduction(struct sock * sk)2610 static void tcp_init_cwnd_reduction(struct sock *sk)
2611 {
2612 struct tcp_sock *tp = tcp_sk(sk);
2613
2614 tp->high_seq = tp->snd_nxt;
2615 tp->tlp_high_seq = 0;
2616 tp->snd_cwnd_cnt = 0;
2617 tp->prior_cwnd = tp->snd_cwnd;
2618 tp->prr_delivered = 0;
2619 tp->prr_out = 0;
2620 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2621 tcp_ecn_queue_cwr(tp);
2622 }
2623
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2624 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2625 {
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 int sndcnt = 0;
2628 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2629
2630 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2631 return;
2632
2633 tp->prr_delivered += newly_acked_sacked;
2634 if (delta < 0) {
2635 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2636 tp->prior_cwnd - 1;
2637 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2638 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2639 FLAG_RETRANS_DATA_ACKED) {
2640 sndcnt = min_t(int, delta,
2641 max_t(int, tp->prr_delivered - tp->prr_out,
2642 newly_acked_sacked) + 1);
2643 } else {
2644 sndcnt = min(delta, newly_acked_sacked);
2645 }
2646 /* Force a fast retransmit upon entering fast recovery */
2647 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2649 }
2650
tcp_end_cwnd_reduction(struct sock * sk)2651 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2652 {
2653 struct tcp_sock *tp = tcp_sk(sk);
2654
2655 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656 return;
2657
2658 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661 tp->snd_cwnd = tp->snd_ssthresh;
2662 tp->snd_cwnd_stamp = tcp_jiffies32;
2663 }
2664 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665 }
2666
2667 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2668 void tcp_enter_cwr(struct sock *sk)
2669 {
2670 struct tcp_sock *tp = tcp_sk(sk);
2671
2672 tp->prior_ssthresh = 0;
2673 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674 tp->undo_marker = 0;
2675 tcp_init_cwnd_reduction(sk);
2676 tcp_set_ca_state(sk, TCP_CA_CWR);
2677 }
2678 }
2679 EXPORT_SYMBOL(tcp_enter_cwr);
2680
tcp_try_keep_open(struct sock * sk)2681 static void tcp_try_keep_open(struct sock *sk)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 int state = TCP_CA_Open;
2685
2686 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687 state = TCP_CA_Disorder;
2688
2689 if (inet_csk(sk)->icsk_ca_state != state) {
2690 tcp_set_ca_state(sk, state);
2691 tp->high_seq = tp->snd_nxt;
2692 }
2693 }
2694
tcp_try_to_open(struct sock * sk,int flag)2695 static void tcp_try_to_open(struct sock *sk, int flag)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698
2699 tcp_verify_left_out(tp);
2700
2701 if (!tcp_any_retrans_done(sk))
2702 tp->retrans_stamp = 0;
2703
2704 if (flag & FLAG_ECE)
2705 tcp_enter_cwr(sk);
2706
2707 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708 tcp_try_keep_open(sk);
2709 }
2710 }
2711
tcp_mtup_probe_failed(struct sock * sk)2712 static void tcp_mtup_probe_failed(struct sock *sk)
2713 {
2714 struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717 icsk->icsk_mtup.probe_size = 0;
2718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719 }
2720
tcp_mtup_probe_success(struct sock * sk)2721 static void tcp_mtup_probe_success(struct sock *sk)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724 struct inet_connection_sock *icsk = inet_csk(sk);
2725 u64 val;
2726
2727 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728
2729 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2730 do_div(val, icsk->icsk_mtup.probe_size);
2731 WARN_ON_ONCE((u32)val != val);
2732 tp->snd_cwnd = max_t(u32, 1U, val);
2733
2734 tp->snd_cwnd_cnt = 0;
2735 tp->snd_cwnd_stamp = tcp_jiffies32;
2736 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737
2738 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739 icsk->icsk_mtup.probe_size = 0;
2740 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742 }
2743
2744 /* Do a simple retransmit without using the backoff mechanisms in
2745 * tcp_timer. This is used for path mtu discovery.
2746 * The socket is already locked here.
2747 */
tcp_simple_retransmit(struct sock * sk)2748 void tcp_simple_retransmit(struct sock *sk)
2749 {
2750 const struct inet_connection_sock *icsk = inet_csk(sk);
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 struct sk_buff *skb;
2753 unsigned int mss = tcp_current_mss(sk);
2754
2755 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2756 if (tcp_skb_seglen(skb) > mss)
2757 tcp_mark_skb_lost(sk, skb);
2758 }
2759
2760 tcp_clear_retrans_hints_partial(tp);
2761
2762 if (!tp->lost_out)
2763 return;
2764
2765 if (tcp_is_reno(tp))
2766 tcp_limit_reno_sacked(tp);
2767
2768 tcp_verify_left_out(tp);
2769
2770 /* Don't muck with the congestion window here.
2771 * Reason is that we do not increase amount of _data_
2772 * in network, but units changed and effective
2773 * cwnd/ssthresh really reduced now.
2774 */
2775 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2776 tp->high_seq = tp->snd_nxt;
2777 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2778 tp->prior_ssthresh = 0;
2779 tp->undo_marker = 0;
2780 tcp_set_ca_state(sk, TCP_CA_Loss);
2781 }
2782 tcp_xmit_retransmit_queue(sk);
2783 }
2784 EXPORT_SYMBOL(tcp_simple_retransmit);
2785
tcp_enter_recovery(struct sock * sk,bool ece_ack)2786 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2787 {
2788 struct tcp_sock *tp = tcp_sk(sk);
2789 int mib_idx;
2790
2791 if (tcp_is_reno(tp))
2792 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2793 else
2794 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2795
2796 NET_INC_STATS(sock_net(sk), mib_idx);
2797
2798 tp->prior_ssthresh = 0;
2799 tcp_init_undo(tp);
2800
2801 if (!tcp_in_cwnd_reduction(sk)) {
2802 if (!ece_ack)
2803 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2804 tcp_init_cwnd_reduction(sk);
2805 }
2806 tcp_set_ca_state(sk, TCP_CA_Recovery);
2807 }
2808
2809 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2810 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2811 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2812 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2813 int *rexmit)
2814 {
2815 struct tcp_sock *tp = tcp_sk(sk);
2816 bool recovered = !before(tp->snd_una, tp->high_seq);
2817
2818 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2819 tcp_try_undo_loss(sk, false))
2820 return;
2821
2822 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2823 /* Step 3.b. A timeout is spurious if not all data are
2824 * lost, i.e., never-retransmitted data are (s)acked.
2825 */
2826 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2827 tcp_try_undo_loss(sk, true))
2828 return;
2829
2830 if (after(tp->snd_nxt, tp->high_seq)) {
2831 if (flag & FLAG_DATA_SACKED || num_dupack)
2832 tp->frto = 0; /* Step 3.a. loss was real */
2833 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2834 tp->high_seq = tp->snd_nxt;
2835 /* Step 2.b. Try send new data (but deferred until cwnd
2836 * is updated in tcp_ack()). Otherwise fall back to
2837 * the conventional recovery.
2838 */
2839 if (!tcp_write_queue_empty(sk) &&
2840 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2841 *rexmit = REXMIT_NEW;
2842 return;
2843 }
2844 tp->frto = 0;
2845 }
2846 }
2847
2848 if (recovered) {
2849 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2850 tcp_try_undo_recovery(sk);
2851 return;
2852 }
2853 if (tcp_is_reno(tp)) {
2854 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2855 * delivered. Lower inflight to clock out (re)tranmissions.
2856 */
2857 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2858 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2859 else if (flag & FLAG_SND_UNA_ADVANCED)
2860 tcp_reset_reno_sack(tp);
2861 }
2862 *rexmit = REXMIT_LOST;
2863 }
2864
tcp_force_fast_retransmit(struct sock * sk)2865 static bool tcp_force_fast_retransmit(struct sock *sk)
2866 {
2867 struct tcp_sock *tp = tcp_sk(sk);
2868
2869 return after(tcp_highest_sack_seq(tp),
2870 tp->snd_una + tp->reordering * tp->mss_cache);
2871 }
2872
2873 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2874 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2875 bool *do_lost)
2876 {
2877 struct tcp_sock *tp = tcp_sk(sk);
2878
2879 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2880 /* Plain luck! Hole if filled with delayed
2881 * packet, rather than with a retransmit. Check reordering.
2882 */
2883 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2884
2885 /* We are getting evidence that the reordering degree is higher
2886 * than we realized. If there are no retransmits out then we
2887 * can undo. Otherwise we clock out new packets but do not
2888 * mark more packets lost or retransmit more.
2889 */
2890 if (tp->retrans_out)
2891 return true;
2892
2893 if (!tcp_any_retrans_done(sk))
2894 tp->retrans_stamp = 0;
2895
2896 DBGUNDO(sk, "partial recovery");
2897 tcp_undo_cwnd_reduction(sk, true);
2898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2899 tcp_try_keep_open(sk);
2900 } else {
2901 /* Partial ACK arrived. Force fast retransmit. */
2902 *do_lost = tcp_force_fast_retransmit(sk);
2903 }
2904 return false;
2905 }
2906
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2907 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2908 {
2909 struct tcp_sock *tp = tcp_sk(sk);
2910
2911 if (tcp_rtx_queue_empty(sk))
2912 return;
2913
2914 if (unlikely(tcp_is_reno(tp))) {
2915 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2916 } else if (tcp_is_rack(sk)) {
2917 u32 prior_retrans = tp->retrans_out;
2918
2919 if (tcp_rack_mark_lost(sk))
2920 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2921 if (prior_retrans > tp->retrans_out)
2922 *ack_flag |= FLAG_LOST_RETRANS;
2923 }
2924 }
2925
2926 /* Process an event, which can update packets-in-flight not trivially.
2927 * Main goal of this function is to calculate new estimate for left_out,
2928 * taking into account both packets sitting in receiver's buffer and
2929 * packets lost by network.
2930 *
2931 * Besides that it updates the congestion state when packet loss or ECN
2932 * is detected. But it does not reduce the cwnd, it is done by the
2933 * congestion control later.
2934 *
2935 * It does _not_ decide what to send, it is made in function
2936 * tcp_xmit_retransmit_queue().
2937 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2938 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2939 int num_dupack, int *ack_flag, int *rexmit)
2940 {
2941 struct inet_connection_sock *icsk = inet_csk(sk);
2942 struct tcp_sock *tp = tcp_sk(sk);
2943 int fast_rexmit = 0, flag = *ack_flag;
2944 bool ece_ack = flag & FLAG_ECE;
2945 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2946 tcp_force_fast_retransmit(sk));
2947
2948 if (!tp->packets_out && tp->sacked_out)
2949 tp->sacked_out = 0;
2950
2951 /* Now state machine starts.
2952 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953 if (ece_ack)
2954 tp->prior_ssthresh = 0;
2955
2956 /* B. In all the states check for reneging SACKs. */
2957 if (tcp_check_sack_reneging(sk, ack_flag))
2958 return;
2959
2960 /* C. Check consistency of the current state. */
2961 tcp_verify_left_out(tp);
2962
2963 /* D. Check state exit conditions. State can be terminated
2964 * when high_seq is ACKed. */
2965 if (icsk->icsk_ca_state == TCP_CA_Open) {
2966 WARN_ON(tp->retrans_out != 0);
2967 tp->retrans_stamp = 0;
2968 } else if (!before(tp->snd_una, tp->high_seq)) {
2969 switch (icsk->icsk_ca_state) {
2970 case TCP_CA_CWR:
2971 /* CWR is to be held something *above* high_seq
2972 * is ACKed for CWR bit to reach receiver. */
2973 if (tp->snd_una != tp->high_seq) {
2974 tcp_end_cwnd_reduction(sk);
2975 tcp_set_ca_state(sk, TCP_CA_Open);
2976 }
2977 break;
2978
2979 case TCP_CA_Recovery:
2980 if (tcp_is_reno(tp))
2981 tcp_reset_reno_sack(tp);
2982 if (tcp_try_undo_recovery(sk))
2983 return;
2984 tcp_end_cwnd_reduction(sk);
2985 break;
2986 }
2987 }
2988
2989 /* E. Process state. */
2990 switch (icsk->icsk_ca_state) {
2991 case TCP_CA_Recovery:
2992 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2993 if (tcp_is_reno(tp))
2994 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2995 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2996 return;
2997
2998 if (tcp_try_undo_dsack(sk))
2999 tcp_try_keep_open(sk);
3000
3001 tcp_identify_packet_loss(sk, ack_flag);
3002 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3003 if (!tcp_time_to_recover(sk, flag))
3004 return;
3005 /* Undo reverts the recovery state. If loss is evident,
3006 * starts a new recovery (e.g. reordering then loss);
3007 */
3008 tcp_enter_recovery(sk, ece_ack);
3009 }
3010 break;
3011 case TCP_CA_Loss:
3012 tcp_process_loss(sk, flag, num_dupack, rexmit);
3013 tcp_identify_packet_loss(sk, ack_flag);
3014 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3015 (*ack_flag & FLAG_LOST_RETRANS)))
3016 return;
3017 /* Change state if cwnd is undone or retransmits are lost */
3018 fallthrough;
3019 default:
3020 if (tcp_is_reno(tp)) {
3021 if (flag & FLAG_SND_UNA_ADVANCED)
3022 tcp_reset_reno_sack(tp);
3023 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3024 }
3025
3026 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3027 tcp_try_undo_dsack(sk);
3028
3029 tcp_identify_packet_loss(sk, ack_flag);
3030 if (!tcp_time_to_recover(sk, flag)) {
3031 tcp_try_to_open(sk, flag);
3032 return;
3033 }
3034
3035 /* MTU probe failure: don't reduce cwnd */
3036 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037 icsk->icsk_mtup.probe_size &&
3038 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039 tcp_mtup_probe_failed(sk);
3040 /* Restores the reduction we did in tcp_mtup_probe() */
3041 tp->snd_cwnd++;
3042 tcp_simple_retransmit(sk);
3043 return;
3044 }
3045
3046 /* Otherwise enter Recovery state */
3047 tcp_enter_recovery(sk, ece_ack);
3048 fast_rexmit = 1;
3049 }
3050
3051 if (!tcp_is_rack(sk) && do_lost)
3052 tcp_update_scoreboard(sk, fast_rexmit);
3053 *rexmit = REXMIT_LOST;
3054 }
3055
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3056 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3057 {
3058 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3059 struct tcp_sock *tp = tcp_sk(sk);
3060
3061 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3062 /* If the remote keeps returning delayed ACKs, eventually
3063 * the min filter would pick it up and overestimate the
3064 * prop. delay when it expires. Skip suspected delayed ACKs.
3065 */
3066 return;
3067 }
3068 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3069 rtt_us ? : jiffies_to_usecs(1));
3070 }
3071
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3072 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3073 long seq_rtt_us, long sack_rtt_us,
3074 long ca_rtt_us, struct rate_sample *rs)
3075 {
3076 const struct tcp_sock *tp = tcp_sk(sk);
3077
3078 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3079 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3080 * Karn's algorithm forbids taking RTT if some retransmitted data
3081 * is acked (RFC6298).
3082 */
3083 if (seq_rtt_us < 0)
3084 seq_rtt_us = sack_rtt_us;
3085
3086 /* RTTM Rule: A TSecr value received in a segment is used to
3087 * update the averaged RTT measurement only if the segment
3088 * acknowledges some new data, i.e., only if it advances the
3089 * left edge of the send window.
3090 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3091 */
3092 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3093 flag & FLAG_ACKED) {
3094 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3095
3096 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3097 if (!delta)
3098 delta = 1;
3099 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3100 ca_rtt_us = seq_rtt_us;
3101 }
3102 }
3103 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3104 if (seq_rtt_us < 0)
3105 return false;
3106
3107 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3108 * always taken together with ACK, SACK, or TS-opts. Any negative
3109 * values will be skipped with the seq_rtt_us < 0 check above.
3110 */
3111 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3112 tcp_rtt_estimator(sk, seq_rtt_us);
3113 tcp_set_rto(sk);
3114
3115 /* RFC6298: only reset backoff on valid RTT measurement. */
3116 inet_csk(sk)->icsk_backoff = 0;
3117 return true;
3118 }
3119
3120 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3121 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3122 {
3123 struct rate_sample rs;
3124 long rtt_us = -1L;
3125
3126 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3127 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3128
3129 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3130 }
3131
3132
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3133 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3134 {
3135 const struct inet_connection_sock *icsk = inet_csk(sk);
3136
3137 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3138 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3139 }
3140
3141 /* Restart timer after forward progress on connection.
3142 * RFC2988 recommends to restart timer to now+rto.
3143 */
tcp_rearm_rto(struct sock * sk)3144 void tcp_rearm_rto(struct sock *sk)
3145 {
3146 const struct inet_connection_sock *icsk = inet_csk(sk);
3147 struct tcp_sock *tp = tcp_sk(sk);
3148
3149 /* If the retrans timer is currently being used by Fast Open
3150 * for SYN-ACK retrans purpose, stay put.
3151 */
3152 if (rcu_access_pointer(tp->fastopen_rsk))
3153 return;
3154
3155 if (!tp->packets_out) {
3156 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3157 } else {
3158 u32 rto = inet_csk(sk)->icsk_rto;
3159 /* Offset the time elapsed after installing regular RTO */
3160 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3161 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3162 s64 delta_us = tcp_rto_delta_us(sk);
3163 /* delta_us may not be positive if the socket is locked
3164 * when the retrans timer fires and is rescheduled.
3165 */
3166 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3167 }
3168 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3169 TCP_RTO_MAX);
3170 }
3171 }
3172
3173 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3174 static void tcp_set_xmit_timer(struct sock *sk)
3175 {
3176 if (!tcp_schedule_loss_probe(sk, true))
3177 tcp_rearm_rto(sk);
3178 }
3179
3180 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3181 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3182 {
3183 struct tcp_sock *tp = tcp_sk(sk);
3184 u32 packets_acked;
3185
3186 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3187
3188 packets_acked = tcp_skb_pcount(skb);
3189 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3190 return 0;
3191 packets_acked -= tcp_skb_pcount(skb);
3192
3193 if (packets_acked) {
3194 BUG_ON(tcp_skb_pcount(skb) == 0);
3195 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3196 }
3197
3198 return packets_acked;
3199 }
3200
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3201 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3202 u32 prior_snd_una)
3203 {
3204 const struct skb_shared_info *shinfo;
3205
3206 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3207 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3208 return;
3209
3210 shinfo = skb_shinfo(skb);
3211 if (!before(shinfo->tskey, prior_snd_una) &&
3212 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3213 tcp_skb_tsorted_save(skb) {
3214 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3215 } tcp_skb_tsorted_restore(skb);
3216 }
3217 }
3218
3219 /* Remove acknowledged frames from the retransmission queue. If our packet
3220 * is before the ack sequence we can discard it as it's confirmed to have
3221 * arrived at the other end.
3222 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3223 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3224 u32 prior_snd_una,
3225 struct tcp_sacktag_state *sack, bool ece_ack)
3226 {
3227 const struct inet_connection_sock *icsk = inet_csk(sk);
3228 u64 first_ackt, last_ackt;
3229 struct tcp_sock *tp = tcp_sk(sk);
3230 u32 prior_sacked = tp->sacked_out;
3231 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3232 struct sk_buff *skb, *next;
3233 bool fully_acked = true;
3234 long sack_rtt_us = -1L;
3235 long seq_rtt_us = -1L;
3236 long ca_rtt_us = -1L;
3237 u32 pkts_acked = 0;
3238 u32 last_in_flight = 0;
3239 bool rtt_update;
3240 int flag = 0;
3241
3242 first_ackt = 0;
3243
3244 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3245 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3246 const u32 start_seq = scb->seq;
3247 u8 sacked = scb->sacked;
3248 u32 acked_pcount;
3249
3250 /* Determine how many packets and what bytes were acked, tso and else */
3251 if (after(scb->end_seq, tp->snd_una)) {
3252 if (tcp_skb_pcount(skb) == 1 ||
3253 !after(tp->snd_una, scb->seq))
3254 break;
3255
3256 acked_pcount = tcp_tso_acked(sk, skb);
3257 if (!acked_pcount)
3258 break;
3259 fully_acked = false;
3260 } else {
3261 acked_pcount = tcp_skb_pcount(skb);
3262 }
3263
3264 if (unlikely(sacked & TCPCB_RETRANS)) {
3265 if (sacked & TCPCB_SACKED_RETRANS)
3266 tp->retrans_out -= acked_pcount;
3267 flag |= FLAG_RETRANS_DATA_ACKED;
3268 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3269 last_ackt = tcp_skb_timestamp_us(skb);
3270 WARN_ON_ONCE(last_ackt == 0);
3271 if (!first_ackt)
3272 first_ackt = last_ackt;
3273
3274 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3275 if (before(start_seq, reord))
3276 reord = start_seq;
3277 if (!after(scb->end_seq, tp->high_seq))
3278 flag |= FLAG_ORIG_SACK_ACKED;
3279 }
3280
3281 if (sacked & TCPCB_SACKED_ACKED) {
3282 tp->sacked_out -= acked_pcount;
3283 } else if (tcp_is_sack(tp)) {
3284 tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 if (!tcp_skb_spurious_retrans(tp, skb))
3286 tcp_rack_advance(tp, sacked, scb->end_seq,
3287 tcp_skb_timestamp_us(skb));
3288 }
3289 if (sacked & TCPCB_LOST)
3290 tp->lost_out -= acked_pcount;
3291
3292 tp->packets_out -= acked_pcount;
3293 pkts_acked += acked_pcount;
3294 tcp_rate_skb_delivered(sk, skb, sack->rate);
3295
3296 /* Initial outgoing SYN's get put onto the write_queue
3297 * just like anything else we transmit. It is not
3298 * true data, and if we misinform our callers that
3299 * this ACK acks real data, we will erroneously exit
3300 * connection startup slow start one packet too
3301 * quickly. This is severely frowned upon behavior.
3302 */
3303 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 flag |= FLAG_DATA_ACKED;
3305 } else {
3306 flag |= FLAG_SYN_ACKED;
3307 tp->retrans_stamp = 0;
3308 }
3309
3310 if (!fully_acked)
3311 break;
3312
3313 tcp_ack_tstamp(sk, skb, prior_snd_una);
3314
3315 next = skb_rb_next(skb);
3316 if (unlikely(skb == tp->retransmit_skb_hint))
3317 tp->retransmit_skb_hint = NULL;
3318 if (unlikely(skb == tp->lost_skb_hint))
3319 tp->lost_skb_hint = NULL;
3320 tcp_highest_sack_replace(sk, skb, next);
3321 tcp_rtx_queue_unlink_and_free(skb, sk);
3322 }
3323
3324 if (!skb)
3325 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3326
3327 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3328 tp->snd_up = tp->snd_una;
3329
3330 if (skb) {
3331 tcp_ack_tstamp(sk, skb, prior_snd_una);
3332 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3333 flag |= FLAG_SACK_RENEGING;
3334 }
3335
3336 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3337 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3338 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3339
3340 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3341 last_in_flight && !prior_sacked && fully_acked &&
3342 sack->rate->prior_delivered + 1 == tp->delivered &&
3343 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3344 /* Conservatively mark a delayed ACK. It's typically
3345 * from a lone runt packet over the round trip to
3346 * a receiver w/o out-of-order or CE events.
3347 */
3348 flag |= FLAG_ACK_MAYBE_DELAYED;
3349 }
3350 }
3351 if (sack->first_sackt) {
3352 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3353 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3354 }
3355 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3356 ca_rtt_us, sack->rate);
3357
3358 if (flag & FLAG_ACKED) {
3359 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3360 if (unlikely(icsk->icsk_mtup.probe_size &&
3361 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3362 tcp_mtup_probe_success(sk);
3363 }
3364
3365 if (tcp_is_reno(tp)) {
3366 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3367
3368 /* If any of the cumulatively ACKed segments was
3369 * retransmitted, non-SACK case cannot confirm that
3370 * progress was due to original transmission due to
3371 * lack of TCPCB_SACKED_ACKED bits even if some of
3372 * the packets may have been never retransmitted.
3373 */
3374 if (flag & FLAG_RETRANS_DATA_ACKED)
3375 flag &= ~FLAG_ORIG_SACK_ACKED;
3376 } else {
3377 int delta;
3378
3379 /* Non-retransmitted hole got filled? That's reordering */
3380 if (before(reord, prior_fack))
3381 tcp_check_sack_reordering(sk, reord, 0);
3382
3383 delta = prior_sacked - tp->sacked_out;
3384 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3385 }
3386 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3387 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3388 tcp_skb_timestamp_us(skb))) {
3389 /* Do not re-arm RTO if the sack RTT is measured from data sent
3390 * after when the head was last (re)transmitted. Otherwise the
3391 * timeout may continue to extend in loss recovery.
3392 */
3393 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3394 }
3395
3396 if (icsk->icsk_ca_ops->pkts_acked) {
3397 struct ack_sample sample = { .pkts_acked = pkts_acked,
3398 .rtt_us = sack->rate->rtt_us,
3399 .in_flight = last_in_flight };
3400
3401 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3402 }
3403
3404 #if FASTRETRANS_DEBUG > 0
3405 WARN_ON((int)tp->sacked_out < 0);
3406 WARN_ON((int)tp->lost_out < 0);
3407 WARN_ON((int)tp->retrans_out < 0);
3408 if (!tp->packets_out && tcp_is_sack(tp)) {
3409 icsk = inet_csk(sk);
3410 if (tp->lost_out) {
3411 pr_debug("Leak l=%u %d\n",
3412 tp->lost_out, icsk->icsk_ca_state);
3413 tp->lost_out = 0;
3414 }
3415 if (tp->sacked_out) {
3416 pr_debug("Leak s=%u %d\n",
3417 tp->sacked_out, icsk->icsk_ca_state);
3418 tp->sacked_out = 0;
3419 }
3420 if (tp->retrans_out) {
3421 pr_debug("Leak r=%u %d\n",
3422 tp->retrans_out, icsk->icsk_ca_state);
3423 tp->retrans_out = 0;
3424 }
3425 }
3426 #endif
3427 return flag;
3428 }
3429
tcp_ack_probe(struct sock * sk)3430 static void tcp_ack_probe(struct sock *sk)
3431 {
3432 struct inet_connection_sock *icsk = inet_csk(sk);
3433 struct sk_buff *head = tcp_send_head(sk);
3434 const struct tcp_sock *tp = tcp_sk(sk);
3435
3436 /* Was it a usable window open? */
3437 if (!head)
3438 return;
3439 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3440 icsk->icsk_backoff = 0;
3441 icsk->icsk_probes_tstamp = 0;
3442 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3443 /* Socket must be waked up by subsequent tcp_data_snd_check().
3444 * This function is not for random using!
3445 */
3446 } else {
3447 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3448
3449 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3450 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3451 }
3452 }
3453
tcp_ack_is_dubious(const struct sock * sk,const int flag)3454 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3455 {
3456 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3457 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3458 }
3459
3460 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3461 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3462 {
3463 /* If reordering is high then always grow cwnd whenever data is
3464 * delivered regardless of its ordering. Otherwise stay conservative
3465 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3466 * new SACK or ECE mark may first advance cwnd here and later reduce
3467 * cwnd in tcp_fastretrans_alert() based on more states.
3468 */
3469 if (tcp_sk(sk)->reordering >
3470 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3471 return flag & FLAG_FORWARD_PROGRESS;
3472
3473 return flag & FLAG_DATA_ACKED;
3474 }
3475
3476 /* The "ultimate" congestion control function that aims to replace the rigid
3477 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3478 * It's called toward the end of processing an ACK with precise rate
3479 * information. All transmission or retransmission are delayed afterwards.
3480 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3481 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3482 int flag, const struct rate_sample *rs)
3483 {
3484 const struct inet_connection_sock *icsk = inet_csk(sk);
3485
3486 if (icsk->icsk_ca_ops->cong_control) {
3487 icsk->icsk_ca_ops->cong_control(sk, rs);
3488 return;
3489 }
3490
3491 if (tcp_in_cwnd_reduction(sk)) {
3492 /* Reduce cwnd if state mandates */
3493 tcp_cwnd_reduction(sk, acked_sacked, flag);
3494 } else if (tcp_may_raise_cwnd(sk, flag)) {
3495 /* Advance cwnd if state allows */
3496 tcp_cong_avoid(sk, ack, acked_sacked);
3497 }
3498 tcp_update_pacing_rate(sk);
3499 }
3500
3501 /* Check that window update is acceptable.
3502 * The function assumes that snd_una<=ack<=snd_next.
3503 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3504 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3505 const u32 ack, const u32 ack_seq,
3506 const u32 nwin)
3507 {
3508 return after(ack, tp->snd_una) ||
3509 after(ack_seq, tp->snd_wl1) ||
3510 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3511 }
3512
3513 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3514 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3515 {
3516 u32 delta = ack - tp->snd_una;
3517
3518 sock_owned_by_me((struct sock *)tp);
3519 tp->bytes_acked += delta;
3520 tp->snd_una = ack;
3521 }
3522
3523 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3524 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3525 {
3526 u32 delta = seq - tp->rcv_nxt;
3527
3528 sock_owned_by_me((struct sock *)tp);
3529 tp->bytes_received += delta;
3530 WRITE_ONCE(tp->rcv_nxt, seq);
3531 }
3532
3533 /* Update our send window.
3534 *
3535 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3536 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3537 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3538 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3539 u32 ack_seq)
3540 {
3541 struct tcp_sock *tp = tcp_sk(sk);
3542 int flag = 0;
3543 u32 nwin = ntohs(tcp_hdr(skb)->window);
3544
3545 if (likely(!tcp_hdr(skb)->syn))
3546 nwin <<= tp->rx_opt.snd_wscale;
3547
3548 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3549 flag |= FLAG_WIN_UPDATE;
3550 tcp_update_wl(tp, ack_seq);
3551
3552 if (tp->snd_wnd != nwin) {
3553 tp->snd_wnd = nwin;
3554
3555 /* Note, it is the only place, where
3556 * fast path is recovered for sending TCP.
3557 */
3558 tp->pred_flags = 0;
3559 tcp_fast_path_check(sk);
3560
3561 if (!tcp_write_queue_empty(sk))
3562 tcp_slow_start_after_idle_check(sk);
3563
3564 if (nwin > tp->max_window) {
3565 tp->max_window = nwin;
3566 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3567 }
3568 }
3569 }
3570
3571 tcp_snd_una_update(tp, ack);
3572
3573 return flag;
3574 }
3575
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3576 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3577 u32 *last_oow_ack_time)
3578 {
3579 /* Paired with the WRITE_ONCE() in this function. */
3580 u32 val = READ_ONCE(*last_oow_ack_time);
3581
3582 if (val) {
3583 s32 elapsed = (s32)(tcp_jiffies32 - val);
3584
3585 if (0 <= elapsed &&
3586 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3587 NET_INC_STATS(net, mib_idx);
3588 return true; /* rate-limited: don't send yet! */
3589 }
3590 }
3591
3592 /* Paired with the prior READ_ONCE() and with itself,
3593 * as we might be lockless.
3594 */
3595 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3596
3597 return false; /* not rate-limited: go ahead, send dupack now! */
3598 }
3599
3600 /* Return true if we're currently rate-limiting out-of-window ACKs and
3601 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3602 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3603 * attacks that send repeated SYNs or ACKs for the same connection. To
3604 * do this, we do not send a duplicate SYNACK or ACK if the remote
3605 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3606 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3607 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3608 int mib_idx, u32 *last_oow_ack_time)
3609 {
3610 /* Data packets without SYNs are not likely part of an ACK loop. */
3611 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3612 !tcp_hdr(skb)->syn)
3613 return false;
3614
3615 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3616 }
3617
3618 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3619 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3620 {
3621 /* unprotected vars, we dont care of overwrites */
3622 static u32 challenge_timestamp;
3623 static unsigned int challenge_count;
3624 struct tcp_sock *tp = tcp_sk(sk);
3625 struct net *net = sock_net(sk);
3626 u32 count, now;
3627
3628 /* First check our per-socket dupack rate limit. */
3629 if (__tcp_oow_rate_limited(net,
3630 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3631 &tp->last_oow_ack_time))
3632 return;
3633
3634 /* Then check host-wide RFC 5961 rate limit. */
3635 now = jiffies / HZ;
3636 if (now != READ_ONCE(challenge_timestamp)) {
3637 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3638 u32 half = (ack_limit + 1) >> 1;
3639
3640 WRITE_ONCE(challenge_timestamp, now);
3641 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3642 }
3643 count = READ_ONCE(challenge_count);
3644 if (count > 0) {
3645 WRITE_ONCE(challenge_count, count - 1);
3646 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3647 tcp_send_ack(sk);
3648 }
3649 }
3650
tcp_store_ts_recent(struct tcp_sock * tp)3651 static void tcp_store_ts_recent(struct tcp_sock *tp)
3652 {
3653 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3654 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3655 }
3656
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3657 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3658 {
3659 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3660 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3661 * extra check below makes sure this can only happen
3662 * for pure ACK frames. -DaveM
3663 *
3664 * Not only, also it occurs for expired timestamps.
3665 */
3666
3667 if (tcp_paws_check(&tp->rx_opt, 0))
3668 tcp_store_ts_recent(tp);
3669 }
3670 }
3671
3672 /* This routine deals with acks during a TLP episode and ends an episode by
3673 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3674 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3675 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3676 {
3677 struct tcp_sock *tp = tcp_sk(sk);
3678
3679 if (before(ack, tp->tlp_high_seq))
3680 return;
3681
3682 if (!tp->tlp_retrans) {
3683 /* TLP of new data has been acknowledged */
3684 tp->tlp_high_seq = 0;
3685 } else if (flag & FLAG_DSACKING_ACK) {
3686 /* This DSACK means original and TLP probe arrived; no loss */
3687 tp->tlp_high_seq = 0;
3688 } else if (after(ack, tp->tlp_high_seq)) {
3689 /* ACK advances: there was a loss, so reduce cwnd. Reset
3690 * tlp_high_seq in tcp_init_cwnd_reduction()
3691 */
3692 tcp_init_cwnd_reduction(sk);
3693 tcp_set_ca_state(sk, TCP_CA_CWR);
3694 tcp_end_cwnd_reduction(sk);
3695 tcp_try_keep_open(sk);
3696 NET_INC_STATS(sock_net(sk),
3697 LINUX_MIB_TCPLOSSPROBERECOVERY);
3698 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3699 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3700 /* Pure dupack: original and TLP probe arrived; no loss */
3701 tp->tlp_high_seq = 0;
3702 }
3703 }
3704
tcp_in_ack_event(struct sock * sk,u32 flags)3705 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3706 {
3707 const struct inet_connection_sock *icsk = inet_csk(sk);
3708
3709 if (icsk->icsk_ca_ops->in_ack_event)
3710 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3711 }
3712
3713 /* Congestion control has updated the cwnd already. So if we're in
3714 * loss recovery then now we do any new sends (for FRTO) or
3715 * retransmits (for CA_Loss or CA_recovery) that make sense.
3716 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3717 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3718 {
3719 struct tcp_sock *tp = tcp_sk(sk);
3720
3721 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3722 return;
3723
3724 if (unlikely(rexmit == REXMIT_NEW)) {
3725 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3726 TCP_NAGLE_OFF);
3727 if (after(tp->snd_nxt, tp->high_seq))
3728 return;
3729 tp->frto = 0;
3730 }
3731 tcp_xmit_retransmit_queue(sk);
3732 }
3733
3734 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3735 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3736 {
3737 const struct net *net = sock_net(sk);
3738 struct tcp_sock *tp = tcp_sk(sk);
3739 u32 delivered;
3740
3741 delivered = tp->delivered - prior_delivered;
3742 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3743 if (flag & FLAG_ECE)
3744 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3745
3746 return delivered;
3747 }
3748
3749 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3750 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3751 {
3752 struct inet_connection_sock *icsk = inet_csk(sk);
3753 struct tcp_sock *tp = tcp_sk(sk);
3754 struct tcp_sacktag_state sack_state;
3755 struct rate_sample rs = { .prior_delivered = 0 };
3756 u32 prior_snd_una = tp->snd_una;
3757 bool is_sack_reneg = tp->is_sack_reneg;
3758 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3759 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3760 int num_dupack = 0;
3761 int prior_packets = tp->packets_out;
3762 u32 delivered = tp->delivered;
3763 u32 lost = tp->lost;
3764 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3765 u32 prior_fack;
3766
3767 sack_state.first_sackt = 0;
3768 sack_state.rate = &rs;
3769 sack_state.sack_delivered = 0;
3770
3771 /* We very likely will need to access rtx queue. */
3772 prefetch(sk->tcp_rtx_queue.rb_node);
3773
3774 /* If the ack is older than previous acks
3775 * then we can probably ignore it.
3776 */
3777 if (before(ack, prior_snd_una)) {
3778 u32 max_window;
3779
3780 /* do not accept ACK for bytes we never sent. */
3781 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3782 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3783 if (before(ack, prior_snd_una - max_window)) {
3784 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3785 tcp_send_challenge_ack(sk, skb);
3786 return -1;
3787 }
3788 goto old_ack;
3789 }
3790
3791 /* If the ack includes data we haven't sent yet, discard
3792 * this segment (RFC793 Section 3.9).
3793 */
3794 if (after(ack, tp->snd_nxt))
3795 return -1;
3796
3797 if (after(ack, prior_snd_una)) {
3798 flag |= FLAG_SND_UNA_ADVANCED;
3799 icsk->icsk_retransmits = 0;
3800
3801 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3802 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3803 if (icsk->icsk_clean_acked)
3804 icsk->icsk_clean_acked(sk, ack);
3805 #endif
3806 }
3807
3808 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3809 rs.prior_in_flight = tcp_packets_in_flight(tp);
3810
3811 /* ts_recent update must be made after we are sure that the packet
3812 * is in window.
3813 */
3814 if (flag & FLAG_UPDATE_TS_RECENT)
3815 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3816
3817 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3818 FLAG_SND_UNA_ADVANCED) {
3819 /* Window is constant, pure forward advance.
3820 * No more checks are required.
3821 * Note, we use the fact that SND.UNA>=SND.WL2.
3822 */
3823 tcp_update_wl(tp, ack_seq);
3824 tcp_snd_una_update(tp, ack);
3825 flag |= FLAG_WIN_UPDATE;
3826
3827 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3828
3829 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3830 } else {
3831 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3832
3833 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3834 flag |= FLAG_DATA;
3835 else
3836 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3837
3838 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3839
3840 if (TCP_SKB_CB(skb)->sacked)
3841 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3842 &sack_state);
3843
3844 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3845 flag |= FLAG_ECE;
3846 ack_ev_flags |= CA_ACK_ECE;
3847 }
3848
3849 if (sack_state.sack_delivered)
3850 tcp_count_delivered(tp, sack_state.sack_delivered,
3851 flag & FLAG_ECE);
3852
3853 if (flag & FLAG_WIN_UPDATE)
3854 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3855
3856 tcp_in_ack_event(sk, ack_ev_flags);
3857 }
3858
3859 /* This is a deviation from RFC3168 since it states that:
3860 * "When the TCP data sender is ready to set the CWR bit after reducing
3861 * the congestion window, it SHOULD set the CWR bit only on the first
3862 * new data packet that it transmits."
3863 * We accept CWR on pure ACKs to be more robust
3864 * with widely-deployed TCP implementations that do this.
3865 */
3866 tcp_ecn_accept_cwr(sk, skb);
3867
3868 /* We passed data and got it acked, remove any soft error
3869 * log. Something worked...
3870 */
3871 sk->sk_err_soft = 0;
3872 icsk->icsk_probes_out = 0;
3873 tp->rcv_tstamp = tcp_jiffies32;
3874 if (!prior_packets)
3875 goto no_queue;
3876
3877 /* See if we can take anything off of the retransmit queue. */
3878 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3879 flag & FLAG_ECE);
3880
3881 tcp_rack_update_reo_wnd(sk, &rs);
3882
3883 if (tp->tlp_high_seq)
3884 tcp_process_tlp_ack(sk, ack, flag);
3885
3886 if (tcp_ack_is_dubious(sk, flag)) {
3887 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3888 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3889 num_dupack = 1;
3890 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3891 if (!(flag & FLAG_DATA))
3892 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3893 }
3894 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3895 &rexmit);
3896 }
3897
3898 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3899 if (flag & FLAG_SET_XMIT_TIMER)
3900 tcp_set_xmit_timer(sk);
3901
3902 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3903 sk_dst_confirm(sk);
3904
3905 delivered = tcp_newly_delivered(sk, delivered, flag);
3906 lost = tp->lost - lost; /* freshly marked lost */
3907 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3908 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3909 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3910 tcp_xmit_recovery(sk, rexmit);
3911 return 1;
3912
3913 no_queue:
3914 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3915 if (flag & FLAG_DSACKING_ACK) {
3916 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3917 &rexmit);
3918 tcp_newly_delivered(sk, delivered, flag);
3919 }
3920 /* If this ack opens up a zero window, clear backoff. It was
3921 * being used to time the probes, and is probably far higher than
3922 * it needs to be for normal retransmission.
3923 */
3924 tcp_ack_probe(sk);
3925
3926 if (tp->tlp_high_seq)
3927 tcp_process_tlp_ack(sk, ack, flag);
3928 return 1;
3929
3930 old_ack:
3931 /* If data was SACKed, tag it and see if we should send more data.
3932 * If data was DSACKed, see if we can undo a cwnd reduction.
3933 */
3934 if (TCP_SKB_CB(skb)->sacked) {
3935 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3936 &sack_state);
3937 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3938 &rexmit);
3939 tcp_newly_delivered(sk, delivered, flag);
3940 tcp_xmit_recovery(sk, rexmit);
3941 }
3942
3943 return 0;
3944 }
3945
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3946 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3947 bool syn, struct tcp_fastopen_cookie *foc,
3948 bool exp_opt)
3949 {
3950 /* Valid only in SYN or SYN-ACK with an even length. */
3951 if (!foc || !syn || len < 0 || (len & 1))
3952 return;
3953
3954 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3955 len <= TCP_FASTOPEN_COOKIE_MAX)
3956 memcpy(foc->val, cookie, len);
3957 else if (len != 0)
3958 len = -1;
3959 foc->len = len;
3960 foc->exp = exp_opt;
3961 }
3962
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3963 static bool smc_parse_options(const struct tcphdr *th,
3964 struct tcp_options_received *opt_rx,
3965 const unsigned char *ptr,
3966 int opsize)
3967 {
3968 #if IS_ENABLED(CONFIG_SMC)
3969 if (static_branch_unlikely(&tcp_have_smc)) {
3970 if (th->syn && !(opsize & 1) &&
3971 opsize >= TCPOLEN_EXP_SMC_BASE &&
3972 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3973 opt_rx->smc_ok = 1;
3974 return true;
3975 }
3976 }
3977 #endif
3978 return false;
3979 }
3980
3981 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3982 * value on success.
3983 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3984 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3985 {
3986 const unsigned char *ptr = (const unsigned char *)(th + 1);
3987 int length = (th->doff * 4) - sizeof(struct tcphdr);
3988 u16 mss = 0;
3989
3990 while (length > 0) {
3991 int opcode = *ptr++;
3992 int opsize;
3993
3994 switch (opcode) {
3995 case TCPOPT_EOL:
3996 return mss;
3997 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3998 length--;
3999 continue;
4000 default:
4001 if (length < 2)
4002 return mss;
4003 opsize = *ptr++;
4004 if (opsize < 2) /* "silly options" */
4005 return mss;
4006 if (opsize > length)
4007 return mss; /* fail on partial options */
4008 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4009 u16 in_mss = get_unaligned_be16(ptr);
4010
4011 if (in_mss) {
4012 if (user_mss && user_mss < in_mss)
4013 in_mss = user_mss;
4014 mss = in_mss;
4015 }
4016 }
4017 ptr += opsize - 2;
4018 length -= opsize;
4019 }
4020 }
4021 return mss;
4022 }
4023
4024 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4025 * But, this can also be called on packets in the established flow when
4026 * the fast version below fails.
4027 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4028 void tcp_parse_options(const struct net *net,
4029 const struct sk_buff *skb,
4030 struct tcp_options_received *opt_rx, int estab,
4031 struct tcp_fastopen_cookie *foc)
4032 {
4033 const unsigned char *ptr;
4034 const struct tcphdr *th = tcp_hdr(skb);
4035 int length = (th->doff * 4) - sizeof(struct tcphdr);
4036
4037 ptr = (const unsigned char *)(th + 1);
4038 opt_rx->saw_tstamp = 0;
4039 opt_rx->saw_unknown = 0;
4040
4041 while (length > 0) {
4042 int opcode = *ptr++;
4043 int opsize;
4044
4045 switch (opcode) {
4046 case TCPOPT_EOL:
4047 return;
4048 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4049 length--;
4050 continue;
4051 default:
4052 if (length < 2)
4053 return;
4054 opsize = *ptr++;
4055 if (opsize < 2) /* "silly options" */
4056 return;
4057 if (opsize > length)
4058 return; /* don't parse partial options */
4059 switch (opcode) {
4060 case TCPOPT_MSS:
4061 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4062 u16 in_mss = get_unaligned_be16(ptr);
4063 if (in_mss) {
4064 if (opt_rx->user_mss &&
4065 opt_rx->user_mss < in_mss)
4066 in_mss = opt_rx->user_mss;
4067 opt_rx->mss_clamp = in_mss;
4068 }
4069 }
4070 break;
4071 case TCPOPT_WINDOW:
4072 if (opsize == TCPOLEN_WINDOW && th->syn &&
4073 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4074 __u8 snd_wscale = *(__u8 *)ptr;
4075 opt_rx->wscale_ok = 1;
4076 if (snd_wscale > TCP_MAX_WSCALE) {
4077 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4078 __func__,
4079 snd_wscale,
4080 TCP_MAX_WSCALE);
4081 snd_wscale = TCP_MAX_WSCALE;
4082 }
4083 opt_rx->snd_wscale = snd_wscale;
4084 }
4085 break;
4086 case TCPOPT_TIMESTAMP:
4087 if ((opsize == TCPOLEN_TIMESTAMP) &&
4088 ((estab && opt_rx->tstamp_ok) ||
4089 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4090 opt_rx->saw_tstamp = 1;
4091 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4092 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4093 }
4094 break;
4095 case TCPOPT_SACK_PERM:
4096 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4097 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4098 opt_rx->sack_ok = TCP_SACK_SEEN;
4099 tcp_sack_reset(opt_rx);
4100 }
4101 break;
4102
4103 case TCPOPT_SACK:
4104 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4105 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4106 opt_rx->sack_ok) {
4107 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4108 }
4109 break;
4110 #ifdef CONFIG_TCP_MD5SIG
4111 case TCPOPT_MD5SIG:
4112 /*
4113 * The MD5 Hash has already been
4114 * checked (see tcp_v{4,6}_do_rcv()).
4115 */
4116 break;
4117 #endif
4118 case TCPOPT_FASTOPEN:
4119 tcp_parse_fastopen_option(
4120 opsize - TCPOLEN_FASTOPEN_BASE,
4121 ptr, th->syn, foc, false);
4122 break;
4123
4124 case TCPOPT_EXP:
4125 /* Fast Open option shares code 254 using a
4126 * 16 bits magic number.
4127 */
4128 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4129 get_unaligned_be16(ptr) ==
4130 TCPOPT_FASTOPEN_MAGIC) {
4131 tcp_parse_fastopen_option(opsize -
4132 TCPOLEN_EXP_FASTOPEN_BASE,
4133 ptr + 2, th->syn, foc, true);
4134 break;
4135 }
4136
4137 if (smc_parse_options(th, opt_rx, ptr, opsize))
4138 break;
4139
4140 opt_rx->saw_unknown = 1;
4141 break;
4142
4143 default:
4144 opt_rx->saw_unknown = 1;
4145 }
4146 ptr += opsize-2;
4147 length -= opsize;
4148 }
4149 }
4150 }
4151 EXPORT_SYMBOL(tcp_parse_options);
4152
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4153 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4154 {
4155 const __be32 *ptr = (const __be32 *)(th + 1);
4156
4157 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4158 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4159 tp->rx_opt.saw_tstamp = 1;
4160 ++ptr;
4161 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4162 ++ptr;
4163 if (*ptr)
4164 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4165 else
4166 tp->rx_opt.rcv_tsecr = 0;
4167 return true;
4168 }
4169 return false;
4170 }
4171
4172 /* Fast parse options. This hopes to only see timestamps.
4173 * If it is wrong it falls back on tcp_parse_options().
4174 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4175 static bool tcp_fast_parse_options(const struct net *net,
4176 const struct sk_buff *skb,
4177 const struct tcphdr *th, struct tcp_sock *tp)
4178 {
4179 /* In the spirit of fast parsing, compare doff directly to constant
4180 * values. Because equality is used, short doff can be ignored here.
4181 */
4182 if (th->doff == (sizeof(*th) / 4)) {
4183 tp->rx_opt.saw_tstamp = 0;
4184 return false;
4185 } else if (tp->rx_opt.tstamp_ok &&
4186 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4187 if (tcp_parse_aligned_timestamp(tp, th))
4188 return true;
4189 }
4190
4191 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4192 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4193 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4194
4195 return true;
4196 }
4197
4198 #ifdef CONFIG_TCP_MD5SIG
4199 /*
4200 * Parse MD5 Signature option
4201 */
tcp_parse_md5sig_option(const struct tcphdr * th)4202 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4203 {
4204 int length = (th->doff << 2) - sizeof(*th);
4205 const u8 *ptr = (const u8 *)(th + 1);
4206
4207 /* If not enough data remaining, we can short cut */
4208 while (length >= TCPOLEN_MD5SIG) {
4209 int opcode = *ptr++;
4210 int opsize;
4211
4212 switch (opcode) {
4213 case TCPOPT_EOL:
4214 return NULL;
4215 case TCPOPT_NOP:
4216 length--;
4217 continue;
4218 default:
4219 opsize = *ptr++;
4220 if (opsize < 2 || opsize > length)
4221 return NULL;
4222 if (opcode == TCPOPT_MD5SIG)
4223 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4224 }
4225 ptr += opsize - 2;
4226 length -= opsize;
4227 }
4228 return NULL;
4229 }
4230 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4231 #endif
4232
4233 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4234 *
4235 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4236 * it can pass through stack. So, the following predicate verifies that
4237 * this segment is not used for anything but congestion avoidance or
4238 * fast retransmit. Moreover, we even are able to eliminate most of such
4239 * second order effects, if we apply some small "replay" window (~RTO)
4240 * to timestamp space.
4241 *
4242 * All these measures still do not guarantee that we reject wrapped ACKs
4243 * on networks with high bandwidth, when sequence space is recycled fastly,
4244 * but it guarantees that such events will be very rare and do not affect
4245 * connection seriously. This doesn't look nice, but alas, PAWS is really
4246 * buggy extension.
4247 *
4248 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4249 * states that events when retransmit arrives after original data are rare.
4250 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4251 * the biggest problem on large power networks even with minor reordering.
4252 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4253 * up to bandwidth of 18Gigabit/sec. 8) ]
4254 */
4255
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4256 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4257 {
4258 const struct tcp_sock *tp = tcp_sk(sk);
4259 const struct tcphdr *th = tcp_hdr(skb);
4260 u32 seq = TCP_SKB_CB(skb)->seq;
4261 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4262
4263 return (/* 1. Pure ACK with correct sequence number. */
4264 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4265
4266 /* 2. ... and duplicate ACK. */
4267 ack == tp->snd_una &&
4268
4269 /* 3. ... and does not update window. */
4270 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4271
4272 /* 4. ... and sits in replay window. */
4273 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4274 }
4275
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4276 static inline bool tcp_paws_discard(const struct sock *sk,
4277 const struct sk_buff *skb)
4278 {
4279 const struct tcp_sock *tp = tcp_sk(sk);
4280
4281 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4282 !tcp_disordered_ack(sk, skb);
4283 }
4284
4285 /* Check segment sequence number for validity.
4286 *
4287 * Segment controls are considered valid, if the segment
4288 * fits to the window after truncation to the window. Acceptability
4289 * of data (and SYN, FIN, of course) is checked separately.
4290 * See tcp_data_queue(), for example.
4291 *
4292 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4293 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4294 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4295 * (borrowed from freebsd)
4296 */
4297
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4298 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4299 {
4300 return !before(end_seq, tp->rcv_wup) &&
4301 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4302 }
4303
4304 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4305 void tcp_reset(struct sock *sk)
4306 {
4307 trace_tcp_receive_reset(sk);
4308
4309 /* We want the right error as BSD sees it (and indeed as we do). */
4310 switch (sk->sk_state) {
4311 case TCP_SYN_SENT:
4312 sk->sk_err = ECONNREFUSED;
4313 break;
4314 case TCP_CLOSE_WAIT:
4315 sk->sk_err = EPIPE;
4316 break;
4317 case TCP_CLOSE:
4318 return;
4319 default:
4320 sk->sk_err = ECONNRESET;
4321 }
4322 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4323 smp_wmb();
4324
4325 tcp_write_queue_purge(sk);
4326 tcp_done(sk);
4327
4328 if (!sock_flag(sk, SOCK_DEAD))
4329 sk->sk_error_report(sk);
4330 }
4331
4332 /*
4333 * Process the FIN bit. This now behaves as it is supposed to work
4334 * and the FIN takes effect when it is validly part of sequence
4335 * space. Not before when we get holes.
4336 *
4337 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4338 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4339 * TIME-WAIT)
4340 *
4341 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4342 * close and we go into CLOSING (and later onto TIME-WAIT)
4343 *
4344 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4345 */
tcp_fin(struct sock * sk)4346 void tcp_fin(struct sock *sk)
4347 {
4348 struct tcp_sock *tp = tcp_sk(sk);
4349
4350 inet_csk_schedule_ack(sk);
4351
4352 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4353 sock_set_flag(sk, SOCK_DONE);
4354
4355 switch (sk->sk_state) {
4356 case TCP_SYN_RECV:
4357 case TCP_ESTABLISHED:
4358 /* Move to CLOSE_WAIT */
4359 tcp_set_state(sk, TCP_CLOSE_WAIT);
4360 inet_csk_enter_pingpong_mode(sk);
4361 break;
4362
4363 case TCP_CLOSE_WAIT:
4364 case TCP_CLOSING:
4365 /* Received a retransmission of the FIN, do
4366 * nothing.
4367 */
4368 break;
4369 case TCP_LAST_ACK:
4370 /* RFC793: Remain in the LAST-ACK state. */
4371 break;
4372
4373 case TCP_FIN_WAIT1:
4374 /* This case occurs when a simultaneous close
4375 * happens, we must ack the received FIN and
4376 * enter the CLOSING state.
4377 */
4378 tcp_send_ack(sk);
4379 tcp_set_state(sk, TCP_CLOSING);
4380 break;
4381 case TCP_FIN_WAIT2:
4382 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4383 tcp_send_ack(sk);
4384 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4385 break;
4386 default:
4387 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4388 * cases we should never reach this piece of code.
4389 */
4390 pr_err("%s: Impossible, sk->sk_state=%d\n",
4391 __func__, sk->sk_state);
4392 break;
4393 }
4394
4395 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4396 * Probably, we should reset in this case. For now drop them.
4397 */
4398 skb_rbtree_purge(&tp->out_of_order_queue);
4399 if (tcp_is_sack(tp))
4400 tcp_sack_reset(&tp->rx_opt);
4401 sk_mem_reclaim(sk);
4402
4403 if (!sock_flag(sk, SOCK_DEAD)) {
4404 sk->sk_state_change(sk);
4405
4406 /* Do not send POLL_HUP for half duplex close. */
4407 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4408 sk->sk_state == TCP_CLOSE)
4409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4410 else
4411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4412 }
4413 }
4414
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4415 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4416 u32 end_seq)
4417 {
4418 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4419 if (before(seq, sp->start_seq))
4420 sp->start_seq = seq;
4421 if (after(end_seq, sp->end_seq))
4422 sp->end_seq = end_seq;
4423 return true;
4424 }
4425 return false;
4426 }
4427
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4428 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4429 {
4430 struct tcp_sock *tp = tcp_sk(sk);
4431
4432 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4433 int mib_idx;
4434
4435 if (before(seq, tp->rcv_nxt))
4436 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4437 else
4438 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4439
4440 NET_INC_STATS(sock_net(sk), mib_idx);
4441
4442 tp->rx_opt.dsack = 1;
4443 tp->duplicate_sack[0].start_seq = seq;
4444 tp->duplicate_sack[0].end_seq = end_seq;
4445 }
4446 }
4447
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4448 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4449 {
4450 struct tcp_sock *tp = tcp_sk(sk);
4451
4452 if (!tp->rx_opt.dsack)
4453 tcp_dsack_set(sk, seq, end_seq);
4454 else
4455 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4456 }
4457
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4458 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4459 {
4460 /* When the ACK path fails or drops most ACKs, the sender would
4461 * timeout and spuriously retransmit the same segment repeatedly.
4462 * The receiver remembers and reflects via DSACKs. Leverage the
4463 * DSACK state and change the txhash to re-route speculatively.
4464 */
4465 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4466 sk_rethink_txhash(sk))
4467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4468 }
4469
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4470 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4471 {
4472 struct tcp_sock *tp = tcp_sk(sk);
4473
4474 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4475 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4477 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4478
4479 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4480 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4481
4482 tcp_rcv_spurious_retrans(sk, skb);
4483 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4484 end_seq = tp->rcv_nxt;
4485 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4486 }
4487 }
4488
4489 tcp_send_ack(sk);
4490 }
4491
4492 /* These routines update the SACK block as out-of-order packets arrive or
4493 * in-order packets close up the sequence space.
4494 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4495 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4496 {
4497 int this_sack;
4498 struct tcp_sack_block *sp = &tp->selective_acks[0];
4499 struct tcp_sack_block *swalk = sp + 1;
4500
4501 /* See if the recent change to the first SACK eats into
4502 * or hits the sequence space of other SACK blocks, if so coalesce.
4503 */
4504 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4505 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4506 int i;
4507
4508 /* Zap SWALK, by moving every further SACK up by one slot.
4509 * Decrease num_sacks.
4510 */
4511 tp->rx_opt.num_sacks--;
4512 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4513 sp[i] = sp[i + 1];
4514 continue;
4515 }
4516 this_sack++;
4517 swalk++;
4518 }
4519 }
4520
tcp_sack_compress_send_ack(struct sock * sk)4521 static void tcp_sack_compress_send_ack(struct sock *sk)
4522 {
4523 struct tcp_sock *tp = tcp_sk(sk);
4524
4525 if (!tp->compressed_ack)
4526 return;
4527
4528 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4529 __sock_put(sk);
4530
4531 /* Since we have to send one ack finally,
4532 * substract one from tp->compressed_ack to keep
4533 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4534 */
4535 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4536 tp->compressed_ack - 1);
4537
4538 tp->compressed_ack = 0;
4539 tcp_send_ack(sk);
4540 }
4541
4542 /* Reasonable amount of sack blocks included in TCP SACK option
4543 * The max is 4, but this becomes 3 if TCP timestamps are there.
4544 * Given that SACK packets might be lost, be conservative and use 2.
4545 */
4546 #define TCP_SACK_BLOCKS_EXPECTED 2
4547
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4548 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4549 {
4550 struct tcp_sock *tp = tcp_sk(sk);
4551 struct tcp_sack_block *sp = &tp->selective_acks[0];
4552 int cur_sacks = tp->rx_opt.num_sacks;
4553 int this_sack;
4554
4555 if (!cur_sacks)
4556 goto new_sack;
4557
4558 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4559 if (tcp_sack_extend(sp, seq, end_seq)) {
4560 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4561 tcp_sack_compress_send_ack(sk);
4562 /* Rotate this_sack to the first one. */
4563 for (; this_sack > 0; this_sack--, sp--)
4564 swap(*sp, *(sp - 1));
4565 if (cur_sacks > 1)
4566 tcp_sack_maybe_coalesce(tp);
4567 return;
4568 }
4569 }
4570
4571 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4572 tcp_sack_compress_send_ack(sk);
4573
4574 /* Could not find an adjacent existing SACK, build a new one,
4575 * put it at the front, and shift everyone else down. We
4576 * always know there is at least one SACK present already here.
4577 *
4578 * If the sack array is full, forget about the last one.
4579 */
4580 if (this_sack >= TCP_NUM_SACKS) {
4581 this_sack--;
4582 tp->rx_opt.num_sacks--;
4583 sp--;
4584 }
4585 for (; this_sack > 0; this_sack--, sp--)
4586 *sp = *(sp - 1);
4587
4588 new_sack:
4589 /* Build the new head SACK, and we're done. */
4590 sp->start_seq = seq;
4591 sp->end_seq = end_seq;
4592 tp->rx_opt.num_sacks++;
4593 }
4594
4595 /* RCV.NXT advances, some SACKs should be eaten. */
4596
tcp_sack_remove(struct tcp_sock * tp)4597 static void tcp_sack_remove(struct tcp_sock *tp)
4598 {
4599 struct tcp_sack_block *sp = &tp->selective_acks[0];
4600 int num_sacks = tp->rx_opt.num_sacks;
4601 int this_sack;
4602
4603 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4604 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4605 tp->rx_opt.num_sacks = 0;
4606 return;
4607 }
4608
4609 for (this_sack = 0; this_sack < num_sacks;) {
4610 /* Check if the start of the sack is covered by RCV.NXT. */
4611 if (!before(tp->rcv_nxt, sp->start_seq)) {
4612 int i;
4613
4614 /* RCV.NXT must cover all the block! */
4615 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4616
4617 /* Zap this SACK, by moving forward any other SACKS. */
4618 for (i = this_sack+1; i < num_sacks; i++)
4619 tp->selective_acks[i-1] = tp->selective_acks[i];
4620 num_sacks--;
4621 continue;
4622 }
4623 this_sack++;
4624 sp++;
4625 }
4626 tp->rx_opt.num_sacks = num_sacks;
4627 }
4628
4629 /**
4630 * tcp_try_coalesce - try to merge skb to prior one
4631 * @sk: socket
4632 * @to: prior buffer
4633 * @from: buffer to add in queue
4634 * @fragstolen: pointer to boolean
4635 *
4636 * Before queueing skb @from after @to, try to merge them
4637 * to reduce overall memory use and queue lengths, if cost is small.
4638 * Packets in ofo or receive queues can stay a long time.
4639 * Better try to coalesce them right now to avoid future collapses.
4640 * Returns true if caller should free @from instead of queueing it
4641 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4642 static bool tcp_try_coalesce(struct sock *sk,
4643 struct sk_buff *to,
4644 struct sk_buff *from,
4645 bool *fragstolen)
4646 {
4647 int delta;
4648
4649 *fragstolen = false;
4650
4651 /* Its possible this segment overlaps with prior segment in queue */
4652 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4653 return false;
4654
4655 if (!mptcp_skb_can_collapse(to, from))
4656 return false;
4657
4658 #ifdef CONFIG_TLS_DEVICE
4659 if (from->decrypted != to->decrypted)
4660 return false;
4661 #endif
4662
4663 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4664 return false;
4665
4666 atomic_add(delta, &sk->sk_rmem_alloc);
4667 sk_mem_charge(sk, delta);
4668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4669 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4670 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4671 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4672
4673 if (TCP_SKB_CB(from)->has_rxtstamp) {
4674 TCP_SKB_CB(to)->has_rxtstamp = true;
4675 to->tstamp = from->tstamp;
4676 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4677 }
4678
4679 return true;
4680 }
4681
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4682 static bool tcp_ooo_try_coalesce(struct sock *sk,
4683 struct sk_buff *to,
4684 struct sk_buff *from,
4685 bool *fragstolen)
4686 {
4687 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4688
4689 /* In case tcp_drop() is called later, update to->gso_segs */
4690 if (res) {
4691 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4692 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4693
4694 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4695 }
4696 return res;
4697 }
4698
tcp_drop(struct sock * sk,struct sk_buff * skb)4699 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4700 {
4701 sk_drops_add(sk, skb);
4702 __kfree_skb(skb);
4703 }
4704
4705 /* This one checks to see if we can put data from the
4706 * out_of_order queue into the receive_queue.
4707 */
tcp_ofo_queue(struct sock * sk)4708 static void tcp_ofo_queue(struct sock *sk)
4709 {
4710 struct tcp_sock *tp = tcp_sk(sk);
4711 __u32 dsack_high = tp->rcv_nxt;
4712 bool fin, fragstolen, eaten;
4713 struct sk_buff *skb, *tail;
4714 struct rb_node *p;
4715
4716 p = rb_first(&tp->out_of_order_queue);
4717 while (p) {
4718 skb = rb_to_skb(p);
4719 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4720 break;
4721
4722 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4723 __u32 dsack = dsack_high;
4724 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4725 dsack_high = TCP_SKB_CB(skb)->end_seq;
4726 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4727 }
4728 p = rb_next(p);
4729 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4730
4731 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4732 tcp_drop(sk, skb);
4733 continue;
4734 }
4735
4736 tail = skb_peek_tail(&sk->sk_receive_queue);
4737 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4738 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4739 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4740 if (!eaten)
4741 __skb_queue_tail(&sk->sk_receive_queue, skb);
4742 else
4743 kfree_skb_partial(skb, fragstolen);
4744
4745 if (unlikely(fin)) {
4746 tcp_fin(sk);
4747 /* tcp_fin() purges tp->out_of_order_queue,
4748 * so we must end this loop right now.
4749 */
4750 break;
4751 }
4752 }
4753 }
4754
4755 static bool tcp_prune_ofo_queue(struct sock *sk);
4756 static int tcp_prune_queue(struct sock *sk);
4757
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4758 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4759 unsigned int size)
4760 {
4761 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4762 !sk_rmem_schedule(sk, skb, size)) {
4763
4764 if (tcp_prune_queue(sk) < 0)
4765 return -1;
4766
4767 while (!sk_rmem_schedule(sk, skb, size)) {
4768 if (!tcp_prune_ofo_queue(sk))
4769 return -1;
4770 }
4771 }
4772 return 0;
4773 }
4774
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4775 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4776 {
4777 struct tcp_sock *tp = tcp_sk(sk);
4778 struct rb_node **p, *parent;
4779 struct sk_buff *skb1;
4780 u32 seq, end_seq;
4781 bool fragstolen;
4782
4783 tcp_ecn_check_ce(sk, skb);
4784
4785 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4787 sk->sk_data_ready(sk);
4788 tcp_drop(sk, skb);
4789 return;
4790 }
4791
4792 /* Disable header prediction. */
4793 tp->pred_flags = 0;
4794 inet_csk_schedule_ack(sk);
4795
4796 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4798 seq = TCP_SKB_CB(skb)->seq;
4799 end_seq = TCP_SKB_CB(skb)->end_seq;
4800
4801 p = &tp->out_of_order_queue.rb_node;
4802 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803 /* Initial out of order segment, build 1 SACK. */
4804 if (tcp_is_sack(tp)) {
4805 tp->rx_opt.num_sacks = 1;
4806 tp->selective_acks[0].start_seq = seq;
4807 tp->selective_acks[0].end_seq = end_seq;
4808 }
4809 rb_link_node(&skb->rbnode, NULL, p);
4810 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4811 tp->ooo_last_skb = skb;
4812 goto end;
4813 }
4814
4815 /* In the typical case, we are adding an skb to the end of the list.
4816 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4817 */
4818 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4819 skb, &fragstolen)) {
4820 coalesce_done:
4821 /* For non sack flows, do not grow window to force DUPACK
4822 * and trigger fast retransmit.
4823 */
4824 if (tcp_is_sack(tp))
4825 tcp_grow_window(sk, skb, true);
4826 kfree_skb_partial(skb, fragstolen);
4827 skb = NULL;
4828 goto add_sack;
4829 }
4830 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4831 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4832 parent = &tp->ooo_last_skb->rbnode;
4833 p = &parent->rb_right;
4834 goto insert;
4835 }
4836
4837 /* Find place to insert this segment. Handle overlaps on the way. */
4838 parent = NULL;
4839 while (*p) {
4840 parent = *p;
4841 skb1 = rb_to_skb(parent);
4842 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4843 p = &parent->rb_left;
4844 continue;
4845 }
4846 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4848 /* All the bits are present. Drop. */
4849 NET_INC_STATS(sock_net(sk),
4850 LINUX_MIB_TCPOFOMERGE);
4851 tcp_drop(sk, skb);
4852 skb = NULL;
4853 tcp_dsack_set(sk, seq, end_seq);
4854 goto add_sack;
4855 }
4856 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4857 /* Partial overlap. */
4858 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4859 } else {
4860 /* skb's seq == skb1's seq and skb covers skb1.
4861 * Replace skb1 with skb.
4862 */
4863 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4864 &tp->out_of_order_queue);
4865 tcp_dsack_extend(sk,
4866 TCP_SKB_CB(skb1)->seq,
4867 TCP_SKB_CB(skb1)->end_seq);
4868 NET_INC_STATS(sock_net(sk),
4869 LINUX_MIB_TCPOFOMERGE);
4870 tcp_drop(sk, skb1);
4871 goto merge_right;
4872 }
4873 } else if (tcp_ooo_try_coalesce(sk, skb1,
4874 skb, &fragstolen)) {
4875 goto coalesce_done;
4876 }
4877 p = &parent->rb_right;
4878 }
4879 insert:
4880 /* Insert segment into RB tree. */
4881 rb_link_node(&skb->rbnode, parent, p);
4882 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4883
4884 merge_right:
4885 /* Remove other segments covered by skb. */
4886 while ((skb1 = skb_rb_next(skb)) != NULL) {
4887 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4888 break;
4889 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4890 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4891 end_seq);
4892 break;
4893 }
4894 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4895 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4896 TCP_SKB_CB(skb1)->end_seq);
4897 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4898 tcp_drop(sk, skb1);
4899 }
4900 /* If there is no skb after us, we are the last_skb ! */
4901 if (!skb1)
4902 tp->ooo_last_skb = skb;
4903
4904 add_sack:
4905 if (tcp_is_sack(tp))
4906 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4907 end:
4908 if (skb) {
4909 /* For non sack flows, do not grow window to force DUPACK
4910 * and trigger fast retransmit.
4911 */
4912 if (tcp_is_sack(tp))
4913 tcp_grow_window(sk, skb, false);
4914 skb_condense(skb);
4915 skb_set_owner_r(skb, sk);
4916 }
4917 }
4918
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4919 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4920 bool *fragstolen)
4921 {
4922 int eaten;
4923 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4924
4925 eaten = (tail &&
4926 tcp_try_coalesce(sk, tail,
4927 skb, fragstolen)) ? 1 : 0;
4928 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4929 if (!eaten) {
4930 __skb_queue_tail(&sk->sk_receive_queue, skb);
4931 skb_set_owner_r(skb, sk);
4932 }
4933 return eaten;
4934 }
4935
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4936 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4937 {
4938 struct sk_buff *skb;
4939 int err = -ENOMEM;
4940 int data_len = 0;
4941 bool fragstolen;
4942
4943 if (size == 0)
4944 return 0;
4945
4946 if (size > PAGE_SIZE) {
4947 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4948
4949 data_len = npages << PAGE_SHIFT;
4950 size = data_len + (size & ~PAGE_MASK);
4951 }
4952 skb = alloc_skb_with_frags(size - data_len, data_len,
4953 PAGE_ALLOC_COSTLY_ORDER,
4954 &err, sk->sk_allocation);
4955 if (!skb)
4956 goto err;
4957
4958 skb_put(skb, size - data_len);
4959 skb->data_len = data_len;
4960 skb->len = size;
4961
4962 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4964 goto err_free;
4965 }
4966
4967 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4968 if (err)
4969 goto err_free;
4970
4971 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4972 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4973 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4974
4975 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4976 WARN_ON_ONCE(fragstolen); /* should not happen */
4977 __kfree_skb(skb);
4978 }
4979 return size;
4980
4981 err_free:
4982 kfree_skb(skb);
4983 err:
4984 return err;
4985
4986 }
4987
tcp_data_ready(struct sock * sk)4988 void tcp_data_ready(struct sock *sk)
4989 {
4990 const struct tcp_sock *tp = tcp_sk(sk);
4991 int avail = tp->rcv_nxt - tp->copied_seq;
4992
4993 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4994 !sock_flag(sk, SOCK_DONE) &&
4995 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4996 return;
4997
4998 sk->sk_data_ready(sk);
4999 }
5000
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5001 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5002 {
5003 struct tcp_sock *tp = tcp_sk(sk);
5004 bool fragstolen;
5005 int eaten;
5006
5007 if (sk_is_mptcp(sk))
5008 mptcp_incoming_options(sk, skb);
5009
5010 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5011 __kfree_skb(skb);
5012 return;
5013 }
5014 skb_dst_drop(skb);
5015 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5016
5017 tp->rx_opt.dsack = 0;
5018
5019 /* Queue data for delivery to the user.
5020 * Packets in sequence go to the receive queue.
5021 * Out of sequence packets to the out_of_order_queue.
5022 */
5023 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5024 if (tcp_receive_window(tp) == 0) {
5025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5026 goto out_of_window;
5027 }
5028
5029 /* Ok. In sequence. In window. */
5030 queue_and_out:
5031 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5032 sk_forced_mem_schedule(sk, skb->truesize);
5033 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5034 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5035 sk->sk_data_ready(sk);
5036 goto drop;
5037 }
5038
5039 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5040 if (skb->len)
5041 tcp_event_data_recv(sk, skb);
5042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5043 tcp_fin(sk);
5044
5045 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5046 tcp_ofo_queue(sk);
5047
5048 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5049 * gap in queue is filled.
5050 */
5051 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5052 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5053 }
5054
5055 if (tp->rx_opt.num_sacks)
5056 tcp_sack_remove(tp);
5057
5058 tcp_fast_path_check(sk);
5059
5060 if (eaten > 0)
5061 kfree_skb_partial(skb, fragstolen);
5062 if (!sock_flag(sk, SOCK_DEAD))
5063 tcp_data_ready(sk);
5064 return;
5065 }
5066
5067 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5068 tcp_rcv_spurious_retrans(sk, skb);
5069 /* A retransmit, 2nd most common case. Force an immediate ack. */
5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5071 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5072
5073 out_of_window:
5074 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5075 inet_csk_schedule_ack(sk);
5076 drop:
5077 tcp_drop(sk, skb);
5078 return;
5079 }
5080
5081 /* Out of window. F.e. zero window probe. */
5082 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5083 goto out_of_window;
5084
5085 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5086 /* Partial packet, seq < rcv_next < end_seq */
5087 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5088
5089 /* If window is closed, drop tail of packet. But after
5090 * remembering D-SACK for its head made in previous line.
5091 */
5092 if (!tcp_receive_window(tp)) {
5093 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5094 goto out_of_window;
5095 }
5096 goto queue_and_out;
5097 }
5098
5099 tcp_data_queue_ofo(sk, skb);
5100 }
5101
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5102 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5103 {
5104 if (list)
5105 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5106
5107 return skb_rb_next(skb);
5108 }
5109
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5110 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5111 struct sk_buff_head *list,
5112 struct rb_root *root)
5113 {
5114 struct sk_buff *next = tcp_skb_next(skb, list);
5115
5116 if (list)
5117 __skb_unlink(skb, list);
5118 else
5119 rb_erase(&skb->rbnode, root);
5120
5121 __kfree_skb(skb);
5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5123
5124 return next;
5125 }
5126
5127 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5128 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5129 {
5130 struct rb_node **p = &root->rb_node;
5131 struct rb_node *parent = NULL;
5132 struct sk_buff *skb1;
5133
5134 while (*p) {
5135 parent = *p;
5136 skb1 = rb_to_skb(parent);
5137 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5138 p = &parent->rb_left;
5139 else
5140 p = &parent->rb_right;
5141 }
5142 rb_link_node(&skb->rbnode, parent, p);
5143 rb_insert_color(&skb->rbnode, root);
5144 }
5145
5146 /* Collapse contiguous sequence of skbs head..tail with
5147 * sequence numbers start..end.
5148 *
5149 * If tail is NULL, this means until the end of the queue.
5150 *
5151 * Segments with FIN/SYN are not collapsed (only because this
5152 * simplifies code)
5153 */
5154 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5155 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5156 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5157 {
5158 struct sk_buff *skb = head, *n;
5159 struct sk_buff_head tmp;
5160 bool end_of_skbs;
5161
5162 /* First, check that queue is collapsible and find
5163 * the point where collapsing can be useful.
5164 */
5165 restart:
5166 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5167 n = tcp_skb_next(skb, list);
5168
5169 /* No new bits? It is possible on ofo queue. */
5170 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5171 skb = tcp_collapse_one(sk, skb, list, root);
5172 if (!skb)
5173 break;
5174 goto restart;
5175 }
5176
5177 /* The first skb to collapse is:
5178 * - not SYN/FIN and
5179 * - bloated or contains data before "start" or
5180 * overlaps to the next one and mptcp allow collapsing.
5181 */
5182 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5183 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5184 before(TCP_SKB_CB(skb)->seq, start))) {
5185 end_of_skbs = false;
5186 break;
5187 }
5188
5189 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5190 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5191 end_of_skbs = false;
5192 break;
5193 }
5194
5195 /* Decided to skip this, advance start seq. */
5196 start = TCP_SKB_CB(skb)->end_seq;
5197 }
5198 if (end_of_skbs ||
5199 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5200 return;
5201
5202 __skb_queue_head_init(&tmp);
5203
5204 while (before(start, end)) {
5205 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5206 struct sk_buff *nskb;
5207
5208 nskb = alloc_skb(copy, GFP_ATOMIC);
5209 if (!nskb)
5210 break;
5211
5212 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5213 #ifdef CONFIG_TLS_DEVICE
5214 nskb->decrypted = skb->decrypted;
5215 #endif
5216 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5217 if (list)
5218 __skb_queue_before(list, skb, nskb);
5219 else
5220 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5221 skb_set_owner_r(nskb, sk);
5222 mptcp_skb_ext_move(nskb, skb);
5223
5224 /* Copy data, releasing collapsed skbs. */
5225 while (copy > 0) {
5226 int offset = start - TCP_SKB_CB(skb)->seq;
5227 int size = TCP_SKB_CB(skb)->end_seq - start;
5228
5229 BUG_ON(offset < 0);
5230 if (size > 0) {
5231 size = min(copy, size);
5232 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5233 BUG();
5234 TCP_SKB_CB(nskb)->end_seq += size;
5235 copy -= size;
5236 start += size;
5237 }
5238 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5239 skb = tcp_collapse_one(sk, skb, list, root);
5240 if (!skb ||
5241 skb == tail ||
5242 !mptcp_skb_can_collapse(nskb, skb) ||
5243 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5244 goto end;
5245 #ifdef CONFIG_TLS_DEVICE
5246 if (skb->decrypted != nskb->decrypted)
5247 goto end;
5248 #endif
5249 }
5250 }
5251 }
5252 end:
5253 skb_queue_walk_safe(&tmp, skb, n)
5254 tcp_rbtree_insert(root, skb);
5255 }
5256
5257 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5258 * and tcp_collapse() them until all the queue is collapsed.
5259 */
tcp_collapse_ofo_queue(struct sock * sk)5260 static void tcp_collapse_ofo_queue(struct sock *sk)
5261 {
5262 struct tcp_sock *tp = tcp_sk(sk);
5263 u32 range_truesize, sum_tiny = 0;
5264 struct sk_buff *skb, *head;
5265 u32 start, end;
5266
5267 skb = skb_rb_first(&tp->out_of_order_queue);
5268 new_range:
5269 if (!skb) {
5270 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5271 return;
5272 }
5273 start = TCP_SKB_CB(skb)->seq;
5274 end = TCP_SKB_CB(skb)->end_seq;
5275 range_truesize = skb->truesize;
5276
5277 for (head = skb;;) {
5278 skb = skb_rb_next(skb);
5279
5280 /* Range is terminated when we see a gap or when
5281 * we are at the queue end.
5282 */
5283 if (!skb ||
5284 after(TCP_SKB_CB(skb)->seq, end) ||
5285 before(TCP_SKB_CB(skb)->end_seq, start)) {
5286 /* Do not attempt collapsing tiny skbs */
5287 if (range_truesize != head->truesize ||
5288 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5289 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5290 head, skb, start, end);
5291 } else {
5292 sum_tiny += range_truesize;
5293 if (sum_tiny > sk->sk_rcvbuf >> 3)
5294 return;
5295 }
5296 goto new_range;
5297 }
5298
5299 range_truesize += skb->truesize;
5300 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5301 start = TCP_SKB_CB(skb)->seq;
5302 if (after(TCP_SKB_CB(skb)->end_seq, end))
5303 end = TCP_SKB_CB(skb)->end_seq;
5304 }
5305 }
5306
5307 /*
5308 * Clean the out-of-order queue to make room.
5309 * We drop high sequences packets to :
5310 * 1) Let a chance for holes to be filled.
5311 * 2) not add too big latencies if thousands of packets sit there.
5312 * (But if application shrinks SO_RCVBUF, we could still end up
5313 * freeing whole queue here)
5314 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5315 *
5316 * Return true if queue has shrunk.
5317 */
tcp_prune_ofo_queue(struct sock * sk)5318 static bool tcp_prune_ofo_queue(struct sock *sk)
5319 {
5320 struct tcp_sock *tp = tcp_sk(sk);
5321 struct rb_node *node, *prev;
5322 int goal;
5323
5324 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5325 return false;
5326
5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5328 goal = sk->sk_rcvbuf >> 3;
5329 node = &tp->ooo_last_skb->rbnode;
5330 do {
5331 prev = rb_prev(node);
5332 rb_erase(node, &tp->out_of_order_queue);
5333 goal -= rb_to_skb(node)->truesize;
5334 tcp_drop(sk, rb_to_skb(node));
5335 if (!prev || goal <= 0) {
5336 sk_mem_reclaim(sk);
5337 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5338 !tcp_under_memory_pressure(sk))
5339 break;
5340 goal = sk->sk_rcvbuf >> 3;
5341 }
5342 node = prev;
5343 } while (node);
5344 tp->ooo_last_skb = rb_to_skb(prev);
5345
5346 /* Reset SACK state. A conforming SACK implementation will
5347 * do the same at a timeout based retransmit. When a connection
5348 * is in a sad state like this, we care only about integrity
5349 * of the connection not performance.
5350 */
5351 if (tp->rx_opt.sack_ok)
5352 tcp_sack_reset(&tp->rx_opt);
5353 return true;
5354 }
5355
5356 /* Reduce allocated memory if we can, trying to get
5357 * the socket within its memory limits again.
5358 *
5359 * Return less than zero if we should start dropping frames
5360 * until the socket owning process reads some of the data
5361 * to stabilize the situation.
5362 */
tcp_prune_queue(struct sock * sk)5363 static int tcp_prune_queue(struct sock *sk)
5364 {
5365 struct tcp_sock *tp = tcp_sk(sk);
5366
5367 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5368
5369 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5370 tcp_clamp_window(sk);
5371 else if (tcp_under_memory_pressure(sk))
5372 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5373
5374 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5375 return 0;
5376
5377 tcp_collapse_ofo_queue(sk);
5378 if (!skb_queue_empty(&sk->sk_receive_queue))
5379 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5380 skb_peek(&sk->sk_receive_queue),
5381 NULL,
5382 tp->copied_seq, tp->rcv_nxt);
5383 sk_mem_reclaim(sk);
5384
5385 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5386 return 0;
5387
5388 /* Collapsing did not help, destructive actions follow.
5389 * This must not ever occur. */
5390
5391 tcp_prune_ofo_queue(sk);
5392
5393 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5394 return 0;
5395
5396 /* If we are really being abused, tell the caller to silently
5397 * drop receive data on the floor. It will get retransmitted
5398 * and hopefully then we'll have sufficient space.
5399 */
5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5401
5402 /* Massive buffer overcommit. */
5403 tp->pred_flags = 0;
5404 return -1;
5405 }
5406
tcp_should_expand_sndbuf(const struct sock * sk)5407 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5408 {
5409 const struct tcp_sock *tp = tcp_sk(sk);
5410
5411 /* If the user specified a specific send buffer setting, do
5412 * not modify it.
5413 */
5414 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5415 return false;
5416
5417 /* If we are under global TCP memory pressure, do not expand. */
5418 if (tcp_under_memory_pressure(sk))
5419 return false;
5420
5421 /* If we are under soft global TCP memory pressure, do not expand. */
5422 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5423 return false;
5424
5425 /* If we filled the congestion window, do not expand. */
5426 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5427 return false;
5428
5429 return true;
5430 }
5431
tcp_new_space(struct sock * sk)5432 static void tcp_new_space(struct sock *sk)
5433 {
5434 struct tcp_sock *tp = tcp_sk(sk);
5435
5436 if (tcp_should_expand_sndbuf(sk)) {
5437 tcp_sndbuf_expand(sk);
5438 tp->snd_cwnd_stamp = tcp_jiffies32;
5439 }
5440
5441 sk->sk_write_space(sk);
5442 }
5443
5444 /* Caller made space either from:
5445 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5446 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5447 *
5448 * We might be able to generate EPOLLOUT to the application if:
5449 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5450 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5451 * small enough that tcp_stream_memory_free() decides it
5452 * is time to generate EPOLLOUT.
5453 */
tcp_check_space(struct sock * sk)5454 void tcp_check_space(struct sock *sk)
5455 {
5456 /* pairs with tcp_poll() */
5457 smp_mb();
5458 if (sk->sk_socket &&
5459 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5460 tcp_new_space(sk);
5461 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5463 }
5464 }
5465
tcp_data_snd_check(struct sock * sk)5466 static inline void tcp_data_snd_check(struct sock *sk)
5467 {
5468 tcp_push_pending_frames(sk);
5469 tcp_check_space(sk);
5470 }
5471
5472 /*
5473 * Check if sending an ack is needed.
5474 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5475 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5476 {
5477 struct tcp_sock *tp = tcp_sk(sk);
5478 unsigned long rtt, delay;
5479 __u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss;
5480 #ifdef CONFIG_LOWPOWER_PROTOCOL
5481 rcv_mss *= tcp_ack_num(sk);
5482 #endif /* CONFIG_LOWPOWER_PROTOCOL */
5483 /* More than one full frame received... */
5484 if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss &&
5485 /* ... and right edge of window advances far enough.
5486 * (tcp_recvmsg() will send ACK otherwise).
5487 * If application uses SO_RCVLOWAT, we want send ack now if
5488 * we have not received enough bytes to satisfy the condition.
5489 */
5490 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5491 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5492 /* We ACK each frame or... */
5493 tcp_in_quickack_mode(sk) ||
5494 /* Protocol state mandates a one-time immediate ACK */
5495 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5496 send_now:
5497 tcp_send_ack(sk);
5498 return;
5499 }
5500
5501 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5502 tcp_send_delayed_ack(sk);
5503 return;
5504 }
5505
5506 if (!tcp_is_sack(tp) ||
5507 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5508 goto send_now;
5509
5510 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5511 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5512 tp->dup_ack_counter = 0;
5513 }
5514 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5515 tp->dup_ack_counter++;
5516 goto send_now;
5517 }
5518 tp->compressed_ack++;
5519 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5520 return;
5521
5522 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5523
5524 rtt = tp->rcv_rtt_est.rtt_us;
5525 if (tp->srtt_us && tp->srtt_us < rtt)
5526 rtt = tp->srtt_us;
5527
5528 delay = min_t(unsigned long,
5529 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5530 rtt * (NSEC_PER_USEC >> 3)/20);
5531 sock_hold(sk);
5532 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5533 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5534 HRTIMER_MODE_REL_PINNED_SOFT);
5535 }
5536
tcp_ack_snd_check(struct sock * sk)5537 static inline void tcp_ack_snd_check(struct sock *sk)
5538 {
5539 if (!inet_csk_ack_scheduled(sk)) {
5540 /* We sent a data segment already. */
5541 return;
5542 }
5543 __tcp_ack_snd_check(sk, 1);
5544 }
5545
5546 /*
5547 * This routine is only called when we have urgent data
5548 * signaled. Its the 'slow' part of tcp_urg. It could be
5549 * moved inline now as tcp_urg is only called from one
5550 * place. We handle URGent data wrong. We have to - as
5551 * BSD still doesn't use the correction from RFC961.
5552 * For 1003.1g we should support a new option TCP_STDURG to permit
5553 * either form (or just set the sysctl tcp_stdurg).
5554 */
5555
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5556 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5557 {
5558 struct tcp_sock *tp = tcp_sk(sk);
5559 u32 ptr = ntohs(th->urg_ptr);
5560
5561 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5562 ptr--;
5563 ptr += ntohl(th->seq);
5564
5565 /* Ignore urgent data that we've already seen and read. */
5566 if (after(tp->copied_seq, ptr))
5567 return;
5568
5569 /* Do not replay urg ptr.
5570 *
5571 * NOTE: interesting situation not covered by specs.
5572 * Misbehaving sender may send urg ptr, pointing to segment,
5573 * which we already have in ofo queue. We are not able to fetch
5574 * such data and will stay in TCP_URG_NOTYET until will be eaten
5575 * by recvmsg(). Seems, we are not obliged to handle such wicked
5576 * situations. But it is worth to think about possibility of some
5577 * DoSes using some hypothetical application level deadlock.
5578 */
5579 if (before(ptr, tp->rcv_nxt))
5580 return;
5581
5582 /* Do we already have a newer (or duplicate) urgent pointer? */
5583 if (tp->urg_data && !after(ptr, tp->urg_seq))
5584 return;
5585
5586 /* Tell the world about our new urgent pointer. */
5587 sk_send_sigurg(sk);
5588
5589 /* We may be adding urgent data when the last byte read was
5590 * urgent. To do this requires some care. We cannot just ignore
5591 * tp->copied_seq since we would read the last urgent byte again
5592 * as data, nor can we alter copied_seq until this data arrives
5593 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5594 *
5595 * NOTE. Double Dutch. Rendering to plain English: author of comment
5596 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5597 * and expect that both A and B disappear from stream. This is _wrong_.
5598 * Though this happens in BSD with high probability, this is occasional.
5599 * Any application relying on this is buggy. Note also, that fix "works"
5600 * only in this artificial test. Insert some normal data between A and B and we will
5601 * decline of BSD again. Verdict: it is better to remove to trap
5602 * buggy users.
5603 */
5604 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5605 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5606 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5607 tp->copied_seq++;
5608 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5609 __skb_unlink(skb, &sk->sk_receive_queue);
5610 __kfree_skb(skb);
5611 }
5612 }
5613
5614 tp->urg_data = TCP_URG_NOTYET;
5615 WRITE_ONCE(tp->urg_seq, ptr);
5616
5617 /* Disable header prediction. */
5618 tp->pred_flags = 0;
5619 }
5620
5621 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5622 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5623 {
5624 struct tcp_sock *tp = tcp_sk(sk);
5625
5626 /* Check if we get a new urgent pointer - normally not. */
5627 if (th->urg)
5628 tcp_check_urg(sk, th);
5629
5630 /* Do we wait for any urgent data? - normally not... */
5631 if (tp->urg_data == TCP_URG_NOTYET) {
5632 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5633 th->syn;
5634
5635 /* Is the urgent pointer pointing into this packet? */
5636 if (ptr < skb->len) {
5637 u8 tmp;
5638 if (skb_copy_bits(skb, ptr, &tmp, 1))
5639 BUG();
5640 tp->urg_data = TCP_URG_VALID | tmp;
5641 if (!sock_flag(sk, SOCK_DEAD))
5642 sk->sk_data_ready(sk);
5643 }
5644 }
5645 }
5646
5647 /* Accept RST for rcv_nxt - 1 after a FIN.
5648 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5649 * FIN is sent followed by a RST packet. The RST is sent with the same
5650 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5651 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5652 * ACKs on the closed socket. In addition middleboxes can drop either the
5653 * challenge ACK or a subsequent RST.
5654 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5655 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5656 {
5657 struct tcp_sock *tp = tcp_sk(sk);
5658
5659 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5660 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5661 TCPF_CLOSING));
5662 }
5663
5664 /* Does PAWS and seqno based validation of an incoming segment, flags will
5665 * play significant role here.
5666 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5667 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5668 const struct tcphdr *th, int syn_inerr)
5669 {
5670 struct tcp_sock *tp = tcp_sk(sk);
5671 bool rst_seq_match = false;
5672
5673 /* RFC1323: H1. Apply PAWS check first. */
5674 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5675 tp->rx_opt.saw_tstamp &&
5676 tcp_paws_discard(sk, skb)) {
5677 if (!th->rst) {
5678 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5679 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5680 LINUX_MIB_TCPACKSKIPPEDPAWS,
5681 &tp->last_oow_ack_time))
5682 tcp_send_dupack(sk, skb);
5683 goto discard;
5684 }
5685 /* Reset is accepted even if it did not pass PAWS. */
5686 }
5687
5688 /* Step 1: check sequence number */
5689 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5690 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5691 * (RST) segments are validated by checking their SEQ-fields."
5692 * And page 69: "If an incoming segment is not acceptable,
5693 * an acknowledgment should be sent in reply (unless the RST
5694 * bit is set, if so drop the segment and return)".
5695 */
5696 if (!th->rst) {
5697 if (th->syn)
5698 goto syn_challenge;
5699 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5700 LINUX_MIB_TCPACKSKIPPEDSEQ,
5701 &tp->last_oow_ack_time))
5702 tcp_send_dupack(sk, skb);
5703 } else if (tcp_reset_check(sk, skb)) {
5704 tcp_reset(sk);
5705 }
5706 goto discard;
5707 }
5708
5709 /* Step 2: check RST bit */
5710 if (th->rst) {
5711 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5712 * FIN and SACK too if available):
5713 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5714 * the right-most SACK block,
5715 * then
5716 * RESET the connection
5717 * else
5718 * Send a challenge ACK
5719 */
5720 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5721 tcp_reset_check(sk, skb)) {
5722 rst_seq_match = true;
5723 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5724 struct tcp_sack_block *sp = &tp->selective_acks[0];
5725 int max_sack = sp[0].end_seq;
5726 int this_sack;
5727
5728 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5729 ++this_sack) {
5730 max_sack = after(sp[this_sack].end_seq,
5731 max_sack) ?
5732 sp[this_sack].end_seq : max_sack;
5733 }
5734
5735 if (TCP_SKB_CB(skb)->seq == max_sack)
5736 rst_seq_match = true;
5737 }
5738
5739 if (rst_seq_match)
5740 tcp_reset(sk);
5741 else {
5742 /* Disable TFO if RST is out-of-order
5743 * and no data has been received
5744 * for current active TFO socket
5745 */
5746 if (tp->syn_fastopen && !tp->data_segs_in &&
5747 sk->sk_state == TCP_ESTABLISHED)
5748 tcp_fastopen_active_disable(sk);
5749 tcp_send_challenge_ack(sk, skb);
5750 }
5751 goto discard;
5752 }
5753
5754 /* step 3: check security and precedence [ignored] */
5755
5756 /* step 4: Check for a SYN
5757 * RFC 5961 4.2 : Send a challenge ack
5758 */
5759 if (th->syn) {
5760 syn_challenge:
5761 if (syn_inerr)
5762 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5764 tcp_send_challenge_ack(sk, skb);
5765 goto discard;
5766 }
5767
5768 bpf_skops_parse_hdr(sk, skb);
5769
5770 return true;
5771
5772 discard:
5773 tcp_drop(sk, skb);
5774 return false;
5775 }
5776
5777 /*
5778 * TCP receive function for the ESTABLISHED state.
5779 *
5780 * It is split into a fast path and a slow path. The fast path is
5781 * disabled when:
5782 * - A zero window was announced from us - zero window probing
5783 * is only handled properly in the slow path.
5784 * - Out of order segments arrived.
5785 * - Urgent data is expected.
5786 * - There is no buffer space left
5787 * - Unexpected TCP flags/window values/header lengths are received
5788 * (detected by checking the TCP header against pred_flags)
5789 * - Data is sent in both directions. Fast path only supports pure senders
5790 * or pure receivers (this means either the sequence number or the ack
5791 * value must stay constant)
5792 * - Unexpected TCP option.
5793 *
5794 * When these conditions are not satisfied it drops into a standard
5795 * receive procedure patterned after RFC793 to handle all cases.
5796 * The first three cases are guaranteed by proper pred_flags setting,
5797 * the rest is checked inline. Fast processing is turned on in
5798 * tcp_data_queue when everything is OK.
5799 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5800 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5801 {
5802 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5803 struct tcp_sock *tp = tcp_sk(sk);
5804 unsigned int len = skb->len;
5805
5806 /* TCP congestion window tracking */
5807 trace_tcp_probe(sk, skb);
5808
5809 tcp_mstamp_refresh(tp);
5810 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5811 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5812 /*
5813 * Header prediction.
5814 * The code loosely follows the one in the famous
5815 * "30 instruction TCP receive" Van Jacobson mail.
5816 *
5817 * Van's trick is to deposit buffers into socket queue
5818 * on a device interrupt, to call tcp_recv function
5819 * on the receive process context and checksum and copy
5820 * the buffer to user space. smart...
5821 *
5822 * Our current scheme is not silly either but we take the
5823 * extra cost of the net_bh soft interrupt processing...
5824 * We do checksum and copy also but from device to kernel.
5825 */
5826
5827 tp->rx_opt.saw_tstamp = 0;
5828
5829 /* pred_flags is 0xS?10 << 16 + snd_wnd
5830 * if header_prediction is to be made
5831 * 'S' will always be tp->tcp_header_len >> 2
5832 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5833 * turn it off (when there are holes in the receive
5834 * space for instance)
5835 * PSH flag is ignored.
5836 */
5837
5838 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5839 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5840 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5841 int tcp_header_len = tp->tcp_header_len;
5842
5843 /* Timestamp header prediction: tcp_header_len
5844 * is automatically equal to th->doff*4 due to pred_flags
5845 * match.
5846 */
5847
5848 /* Check timestamp */
5849 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5850 /* No? Slow path! */
5851 if (!tcp_parse_aligned_timestamp(tp, th))
5852 goto slow_path;
5853
5854 /* If PAWS failed, check it more carefully in slow path */
5855 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5856 goto slow_path;
5857
5858 /* DO NOT update ts_recent here, if checksum fails
5859 * and timestamp was corrupted part, it will result
5860 * in a hung connection since we will drop all
5861 * future packets due to the PAWS test.
5862 */
5863 }
5864
5865 if (len <= tcp_header_len) {
5866 /* Bulk data transfer: sender */
5867 if (len == tcp_header_len) {
5868 /* Predicted packet is in window by definition.
5869 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5870 * Hence, check seq<=rcv_wup reduces to:
5871 */
5872 if (tcp_header_len ==
5873 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5874 tp->rcv_nxt == tp->rcv_wup)
5875 tcp_store_ts_recent(tp);
5876
5877 /* We know that such packets are checksummed
5878 * on entry.
5879 */
5880 tcp_ack(sk, skb, 0);
5881 __kfree_skb(skb);
5882 tcp_data_snd_check(sk);
5883 /* When receiving pure ack in fast path, update
5884 * last ts ecr directly instead of calling
5885 * tcp_rcv_rtt_measure_ts()
5886 */
5887 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5888 return;
5889 } else { /* Header too small */
5890 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5891 goto discard;
5892 }
5893 } else {
5894 int eaten = 0;
5895 bool fragstolen = false;
5896
5897 if (tcp_checksum_complete(skb))
5898 goto csum_error;
5899
5900 if ((int)skb->truesize > sk->sk_forward_alloc)
5901 goto step5;
5902
5903 /* Predicted packet is in window by definition.
5904 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5905 * Hence, check seq<=rcv_wup reduces to:
5906 */
5907 if (tcp_header_len ==
5908 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5909 tp->rcv_nxt == tp->rcv_wup)
5910 tcp_store_ts_recent(tp);
5911
5912 tcp_rcv_rtt_measure_ts(sk, skb);
5913
5914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5915
5916 /* Bulk data transfer: receiver */
5917 __skb_pull(skb, tcp_header_len);
5918 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5919
5920 tcp_event_data_recv(sk, skb);
5921
5922 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5923 /* Well, only one small jumplet in fast path... */
5924 tcp_ack(sk, skb, FLAG_DATA);
5925 tcp_data_snd_check(sk);
5926 if (!inet_csk_ack_scheduled(sk))
5927 goto no_ack;
5928 } else {
5929 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5930 }
5931
5932 __tcp_ack_snd_check(sk, 0);
5933 no_ack:
5934 if (eaten)
5935 kfree_skb_partial(skb, fragstolen);
5936 tcp_data_ready(sk);
5937 return;
5938 }
5939 }
5940
5941 slow_path:
5942 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5943 goto csum_error;
5944
5945 if (!th->ack && !th->rst && !th->syn)
5946 goto discard;
5947
5948 /*
5949 * Standard slow path.
5950 */
5951
5952 if (!tcp_validate_incoming(sk, skb, th, 1))
5953 return;
5954
5955 step5:
5956 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5957 goto discard;
5958
5959 tcp_rcv_rtt_measure_ts(sk, skb);
5960
5961 /* Process urgent data. */
5962 tcp_urg(sk, skb, th);
5963
5964 /* step 7: process the segment text */
5965 tcp_data_queue(sk, skb);
5966
5967 tcp_data_snd_check(sk);
5968 tcp_ack_snd_check(sk);
5969 return;
5970
5971 csum_error:
5972 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5973 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5974
5975 discard:
5976 tcp_drop(sk, skb);
5977 }
5978 EXPORT_SYMBOL(tcp_rcv_established);
5979
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5980 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5981 {
5982 struct inet_connection_sock *icsk = inet_csk(sk);
5983 struct tcp_sock *tp = tcp_sk(sk);
5984
5985 tcp_mtup_init(sk);
5986 icsk->icsk_af_ops->rebuild_header(sk);
5987 tcp_init_metrics(sk);
5988
5989 /* Initialize the congestion window to start the transfer.
5990 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5991 * retransmitted. In light of RFC6298 more aggressive 1sec
5992 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5993 * retransmission has occurred.
5994 */
5995 if (tp->total_retrans > 1 && tp->undo_marker)
5996 tp->snd_cwnd = 1;
5997 else
5998 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5999 tp->snd_cwnd_stamp = tcp_jiffies32;
6000
6001 bpf_skops_established(sk, bpf_op, skb);
6002 /* Initialize congestion control unless BPF initialized it already: */
6003 if (!icsk->icsk_ca_initialized)
6004 tcp_init_congestion_control(sk);
6005 tcp_init_buffer_space(sk);
6006 }
6007
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6008 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6009 {
6010 struct tcp_sock *tp = tcp_sk(sk);
6011 struct inet_connection_sock *icsk = inet_csk(sk);
6012
6013 tcp_set_state(sk, TCP_ESTABLISHED);
6014 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6015
6016 if (skb) {
6017 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6018 security_inet_conn_established(sk, skb);
6019 sk_mark_napi_id(sk, skb);
6020 }
6021
6022 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6023
6024 /* Prevent spurious tcp_cwnd_restart() on first data
6025 * packet.
6026 */
6027 tp->lsndtime = tcp_jiffies32;
6028
6029 if (sock_flag(sk, SOCK_KEEPOPEN))
6030 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6031
6032 if (!tp->rx_opt.snd_wscale)
6033 __tcp_fast_path_on(tp, tp->snd_wnd);
6034 else
6035 tp->pred_flags = 0;
6036 }
6037
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6038 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6039 struct tcp_fastopen_cookie *cookie)
6040 {
6041 struct tcp_sock *tp = tcp_sk(sk);
6042 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6043 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6044 bool syn_drop = false;
6045
6046 if (mss == tp->rx_opt.user_mss) {
6047 struct tcp_options_received opt;
6048
6049 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6050 tcp_clear_options(&opt);
6051 opt.user_mss = opt.mss_clamp = 0;
6052 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6053 mss = opt.mss_clamp;
6054 }
6055
6056 if (!tp->syn_fastopen) {
6057 /* Ignore an unsolicited cookie */
6058 cookie->len = -1;
6059 } else if (tp->total_retrans) {
6060 /* SYN timed out and the SYN-ACK neither has a cookie nor
6061 * acknowledges data. Presumably the remote received only
6062 * the retransmitted (regular) SYNs: either the original
6063 * SYN-data or the corresponding SYN-ACK was dropped.
6064 */
6065 syn_drop = (cookie->len < 0 && data);
6066 } else if (cookie->len < 0 && !tp->syn_data) {
6067 /* We requested a cookie but didn't get it. If we did not use
6068 * the (old) exp opt format then try so next time (try_exp=1).
6069 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6070 */
6071 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6072 }
6073
6074 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6075
6076 if (data) { /* Retransmit unacked data in SYN */
6077 if (tp->total_retrans)
6078 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6079 else
6080 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6081 skb_rbtree_walk_from(data) {
6082 if (__tcp_retransmit_skb(sk, data, 1))
6083 break;
6084 }
6085 tcp_rearm_rto(sk);
6086 NET_INC_STATS(sock_net(sk),
6087 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6088 return true;
6089 }
6090 tp->syn_data_acked = tp->syn_data;
6091 if (tp->syn_data_acked) {
6092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6093 /* SYN-data is counted as two separate packets in tcp_ack() */
6094 if (tp->delivered > 1)
6095 --tp->delivered;
6096 }
6097
6098 tcp_fastopen_add_skb(sk, synack);
6099
6100 return false;
6101 }
6102
smc_check_reset_syn(struct tcp_sock * tp)6103 static void smc_check_reset_syn(struct tcp_sock *tp)
6104 {
6105 #if IS_ENABLED(CONFIG_SMC)
6106 if (static_branch_unlikely(&tcp_have_smc)) {
6107 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6108 tp->syn_smc = 0;
6109 }
6110 #endif
6111 }
6112
tcp_try_undo_spurious_syn(struct sock * sk)6113 static void tcp_try_undo_spurious_syn(struct sock *sk)
6114 {
6115 struct tcp_sock *tp = tcp_sk(sk);
6116 u32 syn_stamp;
6117
6118 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6119 * spurious if the ACK's timestamp option echo value matches the
6120 * original SYN timestamp.
6121 */
6122 syn_stamp = tp->retrans_stamp;
6123 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6124 syn_stamp == tp->rx_opt.rcv_tsecr)
6125 tp->undo_marker = 0;
6126 }
6127
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6128 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6129 const struct tcphdr *th)
6130 {
6131 struct inet_connection_sock *icsk = inet_csk(sk);
6132 struct tcp_sock *tp = tcp_sk(sk);
6133 struct tcp_fastopen_cookie foc = { .len = -1 };
6134 int saved_clamp = tp->rx_opt.mss_clamp;
6135 bool fastopen_fail;
6136
6137 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6138 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6139 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6140
6141 if (th->ack) {
6142 /* rfc793:
6143 * "If the state is SYN-SENT then
6144 * first check the ACK bit
6145 * If the ACK bit is set
6146 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6147 * a reset (unless the RST bit is set, if so drop
6148 * the segment and return)"
6149 */
6150 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6151 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6152 /* Previous FIN/ACK or RST/ACK might be ignored. */
6153 if (icsk->icsk_retransmits == 0)
6154 inet_csk_reset_xmit_timer(sk,
6155 ICSK_TIME_RETRANS,
6156 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6157 goto reset_and_undo;
6158 }
6159
6160 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6161 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6162 tcp_time_stamp(tp))) {
6163 NET_INC_STATS(sock_net(sk),
6164 LINUX_MIB_PAWSACTIVEREJECTED);
6165 goto reset_and_undo;
6166 }
6167
6168 /* Now ACK is acceptable.
6169 *
6170 * "If the RST bit is set
6171 * If the ACK was acceptable then signal the user "error:
6172 * connection reset", drop the segment, enter CLOSED state,
6173 * delete TCB, and return."
6174 */
6175
6176 if (th->rst) {
6177 tcp_reset(sk);
6178 goto discard;
6179 }
6180
6181 /* rfc793:
6182 * "fifth, if neither of the SYN or RST bits is set then
6183 * drop the segment and return."
6184 *
6185 * See note below!
6186 * --ANK(990513)
6187 */
6188 if (!th->syn)
6189 goto discard_and_undo;
6190
6191 /* rfc793:
6192 * "If the SYN bit is on ...
6193 * are acceptable then ...
6194 * (our SYN has been ACKed), change the connection
6195 * state to ESTABLISHED..."
6196 */
6197
6198 tcp_ecn_rcv_synack(tp, th);
6199
6200 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6201 tcp_try_undo_spurious_syn(sk);
6202 tcp_ack(sk, skb, FLAG_SLOWPATH);
6203
6204 /* Ok.. it's good. Set up sequence numbers and
6205 * move to established.
6206 */
6207 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6208 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6209
6210 /* RFC1323: The window in SYN & SYN/ACK segments is
6211 * never scaled.
6212 */
6213 tp->snd_wnd = ntohs(th->window);
6214
6215 if (!tp->rx_opt.wscale_ok) {
6216 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6217 tp->window_clamp = min(tp->window_clamp, 65535U);
6218 }
6219
6220 if (tp->rx_opt.saw_tstamp) {
6221 tp->rx_opt.tstamp_ok = 1;
6222 tp->tcp_header_len =
6223 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6224 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6225 tcp_store_ts_recent(tp);
6226 } else {
6227 tp->tcp_header_len = sizeof(struct tcphdr);
6228 }
6229
6230 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6231 tcp_initialize_rcv_mss(sk);
6232
6233 /* Remember, tcp_poll() does not lock socket!
6234 * Change state from SYN-SENT only after copied_seq
6235 * is initialized. */
6236 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6237
6238 smc_check_reset_syn(tp);
6239
6240 smp_mb();
6241
6242 tcp_finish_connect(sk, skb);
6243
6244 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6245 tcp_rcv_fastopen_synack(sk, skb, &foc);
6246
6247 if (!sock_flag(sk, SOCK_DEAD)) {
6248 sk->sk_state_change(sk);
6249 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6250 }
6251 if (fastopen_fail)
6252 return -1;
6253 if (sk->sk_write_pending ||
6254 icsk->icsk_accept_queue.rskq_defer_accept ||
6255 inet_csk_in_pingpong_mode(sk)) {
6256 /* Save one ACK. Data will be ready after
6257 * several ticks, if write_pending is set.
6258 *
6259 * It may be deleted, but with this feature tcpdumps
6260 * look so _wonderfully_ clever, that I was not able
6261 * to stand against the temptation 8) --ANK
6262 */
6263 inet_csk_schedule_ack(sk);
6264 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6266 TCP_DELACK_MAX, TCP_RTO_MAX);
6267
6268 discard:
6269 tcp_drop(sk, skb);
6270 return 0;
6271 } else {
6272 tcp_send_ack(sk);
6273 }
6274 return -1;
6275 }
6276
6277 /* No ACK in the segment */
6278
6279 if (th->rst) {
6280 /* rfc793:
6281 * "If the RST bit is set
6282 *
6283 * Otherwise (no ACK) drop the segment and return."
6284 */
6285
6286 goto discard_and_undo;
6287 }
6288
6289 /* PAWS check. */
6290 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6291 tcp_paws_reject(&tp->rx_opt, 0))
6292 goto discard_and_undo;
6293
6294 if (th->syn) {
6295 /* We see SYN without ACK. It is attempt of
6296 * simultaneous connect with crossed SYNs.
6297 * Particularly, it can be connect to self.
6298 */
6299 tcp_set_state(sk, TCP_SYN_RECV);
6300
6301 if (tp->rx_opt.saw_tstamp) {
6302 tp->rx_opt.tstamp_ok = 1;
6303 tcp_store_ts_recent(tp);
6304 tp->tcp_header_len =
6305 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6306 } else {
6307 tp->tcp_header_len = sizeof(struct tcphdr);
6308 }
6309
6310 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6311 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6312 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6313
6314 /* RFC1323: The window in SYN & SYN/ACK segments is
6315 * never scaled.
6316 */
6317 tp->snd_wnd = ntohs(th->window);
6318 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6319 tp->max_window = tp->snd_wnd;
6320
6321 tcp_ecn_rcv_syn(tp, th);
6322
6323 tcp_mtup_init(sk);
6324 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6325 tcp_initialize_rcv_mss(sk);
6326
6327 tcp_send_synack(sk);
6328 #if 0
6329 /* Note, we could accept data and URG from this segment.
6330 * There are no obstacles to make this (except that we must
6331 * either change tcp_recvmsg() to prevent it from returning data
6332 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6333 *
6334 * However, if we ignore data in ACKless segments sometimes,
6335 * we have no reasons to accept it sometimes.
6336 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6337 * is not flawless. So, discard packet for sanity.
6338 * Uncomment this return to process the data.
6339 */
6340 return -1;
6341 #else
6342 goto discard;
6343 #endif
6344 }
6345 /* "fifth, if neither of the SYN or RST bits is set then
6346 * drop the segment and return."
6347 */
6348
6349 discard_and_undo:
6350 tcp_clear_options(&tp->rx_opt);
6351 tp->rx_opt.mss_clamp = saved_clamp;
6352 goto discard;
6353
6354 reset_and_undo:
6355 tcp_clear_options(&tp->rx_opt);
6356 tp->rx_opt.mss_clamp = saved_clamp;
6357 return 1;
6358 }
6359
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6360 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6361 {
6362 struct tcp_sock *tp = tcp_sk(sk);
6363 struct request_sock *req;
6364
6365 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6366 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6367 */
6368 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6369 tcp_try_undo_recovery(sk);
6370
6371 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6372 tp->retrans_stamp = 0;
6373 inet_csk(sk)->icsk_retransmits = 0;
6374
6375 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6376 * we no longer need req so release it.
6377 */
6378 req = rcu_dereference_protected(tp->fastopen_rsk,
6379 lockdep_sock_is_held(sk));
6380 reqsk_fastopen_remove(sk, req, false);
6381
6382 /* Re-arm the timer because data may have been sent out.
6383 * This is similar to the regular data transmission case
6384 * when new data has just been ack'ed.
6385 *
6386 * (TFO) - we could try to be more aggressive and
6387 * retransmitting any data sooner based on when they
6388 * are sent out.
6389 */
6390 tcp_rearm_rto(sk);
6391 }
6392
6393 /*
6394 * This function implements the receiving procedure of RFC 793 for
6395 * all states except ESTABLISHED and TIME_WAIT.
6396 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6397 * address independent.
6398 */
6399
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6400 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6401 {
6402 struct tcp_sock *tp = tcp_sk(sk);
6403 struct inet_connection_sock *icsk = inet_csk(sk);
6404 const struct tcphdr *th = tcp_hdr(skb);
6405 struct request_sock *req;
6406 int queued = 0;
6407 bool acceptable;
6408
6409 switch (sk->sk_state) {
6410 case TCP_CLOSE:
6411 goto discard;
6412
6413 case TCP_LISTEN:
6414 if (th->ack)
6415 return 1;
6416
6417 if (th->rst)
6418 goto discard;
6419
6420 if (th->syn) {
6421 if (th->fin)
6422 goto discard;
6423 /* It is possible that we process SYN packets from backlog,
6424 * so we need to make sure to disable BH and RCU right there.
6425 */
6426 rcu_read_lock();
6427 local_bh_disable();
6428 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6429 local_bh_enable();
6430 rcu_read_unlock();
6431
6432 if (!acceptable)
6433 return 1;
6434 consume_skb(skb);
6435 return 0;
6436 }
6437 goto discard;
6438
6439 case TCP_SYN_SENT:
6440 tp->rx_opt.saw_tstamp = 0;
6441 tcp_mstamp_refresh(tp);
6442 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6443 if (queued >= 0)
6444 return queued;
6445
6446 /* Do step6 onward by hand. */
6447 tcp_urg(sk, skb, th);
6448 __kfree_skb(skb);
6449 tcp_data_snd_check(sk);
6450 return 0;
6451 }
6452
6453 tcp_mstamp_refresh(tp);
6454 tp->rx_opt.saw_tstamp = 0;
6455 req = rcu_dereference_protected(tp->fastopen_rsk,
6456 lockdep_sock_is_held(sk));
6457 if (req) {
6458 bool req_stolen;
6459
6460 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6461 sk->sk_state != TCP_FIN_WAIT1);
6462
6463 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6464 goto discard;
6465 }
6466
6467 if (!th->ack && !th->rst && !th->syn)
6468 goto discard;
6469
6470 if (!tcp_validate_incoming(sk, skb, th, 0))
6471 return 0;
6472
6473 /* step 5: check the ACK field */
6474 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6475 FLAG_UPDATE_TS_RECENT |
6476 FLAG_NO_CHALLENGE_ACK) > 0;
6477
6478 if (!acceptable) {
6479 if (sk->sk_state == TCP_SYN_RECV)
6480 return 1; /* send one RST */
6481 tcp_send_challenge_ack(sk, skb);
6482 goto discard;
6483 }
6484 switch (sk->sk_state) {
6485 case TCP_SYN_RECV:
6486 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6487 if (!tp->srtt_us)
6488 tcp_synack_rtt_meas(sk, req);
6489
6490 if (req) {
6491 tcp_rcv_synrecv_state_fastopen(sk);
6492 } else {
6493 tcp_try_undo_spurious_syn(sk);
6494 tp->retrans_stamp = 0;
6495 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6496 skb);
6497 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6498 }
6499 smp_mb();
6500 tcp_set_state(sk, TCP_ESTABLISHED);
6501 sk->sk_state_change(sk);
6502
6503 /* Note, that this wakeup is only for marginal crossed SYN case.
6504 * Passively open sockets are not waked up, because
6505 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6506 */
6507 if (sk->sk_socket)
6508 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6509
6510 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6511 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6512 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6513
6514 if (tp->rx_opt.tstamp_ok)
6515 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6516
6517 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6518 tcp_update_pacing_rate(sk);
6519
6520 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6521 tp->lsndtime = tcp_jiffies32;
6522
6523 tcp_initialize_rcv_mss(sk);
6524 tcp_fast_path_on(tp);
6525 if (sk->sk_shutdown & SEND_SHUTDOWN)
6526 tcp_shutdown(sk, SEND_SHUTDOWN);
6527 break;
6528
6529 case TCP_FIN_WAIT1: {
6530 int tmo;
6531
6532 if (req)
6533 tcp_rcv_synrecv_state_fastopen(sk);
6534
6535 if (tp->snd_una != tp->write_seq)
6536 break;
6537
6538 tcp_set_state(sk, TCP_FIN_WAIT2);
6539 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6540
6541 sk_dst_confirm(sk);
6542
6543 if (!sock_flag(sk, SOCK_DEAD)) {
6544 /* Wake up lingering close() */
6545 sk->sk_state_change(sk);
6546 break;
6547 }
6548
6549 if (tp->linger2 < 0) {
6550 tcp_done(sk);
6551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552 return 1;
6553 }
6554 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6555 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6556 /* Receive out of order FIN after close() */
6557 if (tp->syn_fastopen && th->fin)
6558 tcp_fastopen_active_disable(sk);
6559 tcp_done(sk);
6560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6561 return 1;
6562 }
6563
6564 tmo = tcp_fin_time(sk);
6565 if (tmo > TCP_TIMEWAIT_LEN) {
6566 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6567 } else if (th->fin || sock_owned_by_user(sk)) {
6568 /* Bad case. We could lose such FIN otherwise.
6569 * It is not a big problem, but it looks confusing
6570 * and not so rare event. We still can lose it now,
6571 * if it spins in bh_lock_sock(), but it is really
6572 * marginal case.
6573 */
6574 inet_csk_reset_keepalive_timer(sk, tmo);
6575 } else {
6576 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6577 goto discard;
6578 }
6579 break;
6580 }
6581
6582 case TCP_CLOSING:
6583 if (tp->snd_una == tp->write_seq) {
6584 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6585 goto discard;
6586 }
6587 break;
6588
6589 case TCP_LAST_ACK:
6590 if (tp->snd_una == tp->write_seq) {
6591 tcp_update_metrics(sk);
6592 tcp_done(sk);
6593 goto discard;
6594 }
6595 break;
6596 }
6597
6598 /* step 6: check the URG bit */
6599 tcp_urg(sk, skb, th);
6600
6601 /* step 7: process the segment text */
6602 switch (sk->sk_state) {
6603 case TCP_CLOSE_WAIT:
6604 case TCP_CLOSING:
6605 case TCP_LAST_ACK:
6606 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6607 if (sk_is_mptcp(sk))
6608 mptcp_incoming_options(sk, skb);
6609 break;
6610 }
6611 fallthrough;
6612 case TCP_FIN_WAIT1:
6613 case TCP_FIN_WAIT2:
6614 /* RFC 793 says to queue data in these states,
6615 * RFC 1122 says we MUST send a reset.
6616 * BSD 4.4 also does reset.
6617 */
6618 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6619 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6620 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6622 tcp_reset(sk);
6623 return 1;
6624 }
6625 }
6626 fallthrough;
6627 case TCP_ESTABLISHED:
6628 tcp_data_queue(sk, skb);
6629 queued = 1;
6630 break;
6631 }
6632
6633 /* tcp_data could move socket to TIME-WAIT */
6634 if (sk->sk_state != TCP_CLOSE) {
6635 tcp_data_snd_check(sk);
6636 tcp_ack_snd_check(sk);
6637 }
6638
6639 if (!queued) {
6640 discard:
6641 tcp_drop(sk, skb);
6642 }
6643 return 0;
6644 }
6645 EXPORT_SYMBOL(tcp_rcv_state_process);
6646
pr_drop_req(struct request_sock * req,__u16 port,int family)6647 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6648 {
6649 struct inet_request_sock *ireq = inet_rsk(req);
6650
6651 if (family == AF_INET)
6652 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6653 &ireq->ir_rmt_addr, port);
6654 #if IS_ENABLED(CONFIG_IPV6)
6655 else if (family == AF_INET6)
6656 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6657 &ireq->ir_v6_rmt_addr, port);
6658 #endif
6659 }
6660
6661 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6662 *
6663 * If we receive a SYN packet with these bits set, it means a
6664 * network is playing bad games with TOS bits. In order to
6665 * avoid possible false congestion notifications, we disable
6666 * TCP ECN negotiation.
6667 *
6668 * Exception: tcp_ca wants ECN. This is required for DCTCP
6669 * congestion control: Linux DCTCP asserts ECT on all packets,
6670 * including SYN, which is most optimal solution; however,
6671 * others, such as FreeBSD do not.
6672 *
6673 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6674 * set, indicating the use of a future TCP extension (such as AccECN). See
6675 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6676 * extensions.
6677 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6678 static void tcp_ecn_create_request(struct request_sock *req,
6679 const struct sk_buff *skb,
6680 const struct sock *listen_sk,
6681 const struct dst_entry *dst)
6682 {
6683 const struct tcphdr *th = tcp_hdr(skb);
6684 const struct net *net = sock_net(listen_sk);
6685 bool th_ecn = th->ece && th->cwr;
6686 bool ect, ecn_ok;
6687 u32 ecn_ok_dst;
6688
6689 if (!th_ecn)
6690 return;
6691
6692 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6693 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6694 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6695
6696 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6697 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6698 tcp_bpf_ca_needs_ecn((struct sock *)req))
6699 inet_rsk(req)->ecn_ok = 1;
6700 }
6701
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6702 static void tcp_openreq_init(struct request_sock *req,
6703 const struct tcp_options_received *rx_opt,
6704 struct sk_buff *skb, const struct sock *sk)
6705 {
6706 struct inet_request_sock *ireq = inet_rsk(req);
6707
6708 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6709 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6710 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6711 tcp_rsk(req)->snt_synack = 0;
6712 tcp_rsk(req)->last_oow_ack_time = 0;
6713 req->mss = rx_opt->mss_clamp;
6714 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6715 ireq->tstamp_ok = rx_opt->tstamp_ok;
6716 ireq->sack_ok = rx_opt->sack_ok;
6717 ireq->snd_wscale = rx_opt->snd_wscale;
6718 ireq->wscale_ok = rx_opt->wscale_ok;
6719 ireq->acked = 0;
6720 ireq->ecn_ok = 0;
6721 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6722 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6723 ireq->ir_mark = inet_request_mark(sk, skb);
6724 #if IS_ENABLED(CONFIG_SMC)
6725 ireq->smc_ok = rx_opt->smc_ok;
6726 #endif
6727 }
6728
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6729 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6730 struct sock *sk_listener,
6731 bool attach_listener)
6732 {
6733 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6734 attach_listener);
6735
6736 if (req) {
6737 struct inet_request_sock *ireq = inet_rsk(req);
6738
6739 ireq->ireq_opt = NULL;
6740 #if IS_ENABLED(CONFIG_IPV6)
6741 ireq->pktopts = NULL;
6742 #endif
6743 atomic64_set(&ireq->ir_cookie, 0);
6744 ireq->ireq_state = TCP_NEW_SYN_RECV;
6745 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6746 ireq->ireq_family = sk_listener->sk_family;
6747 }
6748
6749 return req;
6750 }
6751 EXPORT_SYMBOL(inet_reqsk_alloc);
6752
6753 /*
6754 * Return true if a syncookie should be sent
6755 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6756 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6757 {
6758 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6759 const char *msg = "Dropping request";
6760 struct net *net = sock_net(sk);
6761 bool want_cookie = false;
6762 u8 syncookies;
6763
6764 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6765
6766 #ifdef CONFIG_SYN_COOKIES
6767 if (syncookies) {
6768 msg = "Sending cookies";
6769 want_cookie = true;
6770 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6771 } else
6772 #endif
6773 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6774
6775 if (!queue->synflood_warned && syncookies != 2 &&
6776 xchg(&queue->synflood_warned, 1) == 0)
6777 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6778 proto, sk->sk_num, msg);
6779
6780 return want_cookie;
6781 }
6782
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6783 static void tcp_reqsk_record_syn(const struct sock *sk,
6784 struct request_sock *req,
6785 const struct sk_buff *skb)
6786 {
6787 if (tcp_sk(sk)->save_syn) {
6788 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6789 struct saved_syn *saved_syn;
6790 u32 mac_hdrlen;
6791 void *base;
6792
6793 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6794 base = skb_mac_header(skb);
6795 mac_hdrlen = skb_mac_header_len(skb);
6796 len += mac_hdrlen;
6797 } else {
6798 base = skb_network_header(skb);
6799 mac_hdrlen = 0;
6800 }
6801
6802 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6803 GFP_ATOMIC);
6804 if (saved_syn) {
6805 saved_syn->mac_hdrlen = mac_hdrlen;
6806 saved_syn->network_hdrlen = skb_network_header_len(skb);
6807 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6808 memcpy(saved_syn->data, base, len);
6809 req->saved_syn = saved_syn;
6810 }
6811 }
6812 }
6813
6814 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6815 * used for SYN cookie generation.
6816 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6817 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6818 const struct tcp_request_sock_ops *af_ops,
6819 struct sock *sk, struct tcphdr *th)
6820 {
6821 struct tcp_sock *tp = tcp_sk(sk);
6822 u16 mss;
6823
6824 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6825 !inet_csk_reqsk_queue_is_full(sk))
6826 return 0;
6827
6828 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6829 return 0;
6830
6831 if (sk_acceptq_is_full(sk)) {
6832 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6833 return 0;
6834 }
6835
6836 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6837 if (!mss)
6838 mss = af_ops->mss_clamp;
6839
6840 return mss;
6841 }
6842 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6843
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6844 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6845 const struct tcp_request_sock_ops *af_ops,
6846 struct sock *sk, struct sk_buff *skb)
6847 {
6848 struct tcp_fastopen_cookie foc = { .len = -1 };
6849 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6850 struct tcp_options_received tmp_opt;
6851 struct tcp_sock *tp = tcp_sk(sk);
6852 struct net *net = sock_net(sk);
6853 struct sock *fastopen_sk = NULL;
6854 struct request_sock *req;
6855 bool want_cookie = false;
6856 struct dst_entry *dst;
6857 struct flowi fl;
6858 u8 syncookies;
6859
6860 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6861
6862 /* TW buckets are converted to open requests without
6863 * limitations, they conserve resources and peer is
6864 * evidently real one.
6865 */
6866 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6867 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6868 if (!want_cookie)
6869 goto drop;
6870 }
6871
6872 if (sk_acceptq_is_full(sk)) {
6873 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6874 goto drop;
6875 }
6876
6877 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6878 if (!req)
6879 goto drop;
6880
6881 req->syncookie = want_cookie;
6882 tcp_rsk(req)->af_specific = af_ops;
6883 tcp_rsk(req)->ts_off = 0;
6884 #if IS_ENABLED(CONFIG_MPTCP)
6885 tcp_rsk(req)->is_mptcp = 0;
6886 #endif
6887
6888 tcp_clear_options(&tmp_opt);
6889 tmp_opt.mss_clamp = af_ops->mss_clamp;
6890 tmp_opt.user_mss = tp->rx_opt.user_mss;
6891 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6892 want_cookie ? NULL : &foc);
6893
6894 if (want_cookie && !tmp_opt.saw_tstamp)
6895 tcp_clear_options(&tmp_opt);
6896
6897 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6898 tmp_opt.smc_ok = 0;
6899
6900 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6901 tcp_openreq_init(req, &tmp_opt, skb, sk);
6902 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6903
6904 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6905 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6906
6907 af_ops->init_req(req, sk, skb);
6908
6909 if (security_inet_conn_request(sk, skb, req))
6910 goto drop_and_free;
6911
6912 if (tmp_opt.tstamp_ok)
6913 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6914
6915 dst = af_ops->route_req(sk, &fl, req);
6916 if (!dst)
6917 goto drop_and_free;
6918
6919 if (!want_cookie && !isn) {
6920 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6921
6922 /* Kill the following clause, if you dislike this way. */
6923 if (!syncookies &&
6924 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6925 (max_syn_backlog >> 2)) &&
6926 !tcp_peer_is_proven(req, dst)) {
6927 /* Without syncookies last quarter of
6928 * backlog is filled with destinations,
6929 * proven to be alive.
6930 * It means that we continue to communicate
6931 * to destinations, already remembered
6932 * to the moment of synflood.
6933 */
6934 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6935 rsk_ops->family);
6936 goto drop_and_release;
6937 }
6938
6939 isn = af_ops->init_seq(skb);
6940 }
6941
6942 tcp_ecn_create_request(req, skb, sk, dst);
6943
6944 if (want_cookie) {
6945 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6946 if (!tmp_opt.tstamp_ok)
6947 inet_rsk(req)->ecn_ok = 0;
6948 }
6949
6950 tcp_rsk(req)->snt_isn = isn;
6951 tcp_rsk(req)->txhash = net_tx_rndhash();
6952 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6953 tcp_openreq_init_rwin(req, sk, dst);
6954 sk_rx_queue_set(req_to_sk(req), skb);
6955 if (!want_cookie) {
6956 tcp_reqsk_record_syn(sk, req, skb);
6957 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6958 }
6959 if (fastopen_sk) {
6960 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6961 &foc, TCP_SYNACK_FASTOPEN, skb);
6962 /* Add the child socket directly into the accept queue */
6963 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6964 reqsk_fastopen_remove(fastopen_sk, req, false);
6965 bh_unlock_sock(fastopen_sk);
6966 sock_put(fastopen_sk);
6967 goto drop_and_free;
6968 }
6969 sk->sk_data_ready(sk);
6970 bh_unlock_sock(fastopen_sk);
6971 sock_put(fastopen_sk);
6972 } else {
6973 tcp_rsk(req)->tfo_listener = false;
6974 if (!want_cookie)
6975 inet_csk_reqsk_queue_hash_add(sk, req,
6976 tcp_timeout_init((struct sock *)req));
6977 af_ops->send_synack(sk, dst, &fl, req, &foc,
6978 !want_cookie ? TCP_SYNACK_NORMAL :
6979 TCP_SYNACK_COOKIE,
6980 skb);
6981 if (want_cookie) {
6982 reqsk_free(req);
6983 return 0;
6984 }
6985 }
6986 reqsk_put(req);
6987 return 0;
6988
6989 drop_and_release:
6990 dst_release(dst);
6991 drop_and_free:
6992 __reqsk_free(req);
6993 drop:
6994 tcp_listendrop(sk);
6995 return 0;
6996 }
6997 EXPORT_SYMBOL(tcp_conn_request);
6998