• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #ifdef CONFIG_LOWPOWER_PROTOCOL
84 #include <net/lowpower_protocol.h>
85 #endif /* CONFIG_LOWPOWER_PROTOCOL */
86 
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 
89 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
96 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106 
107 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114 
115 #define REXMIT_NONE	0 /* no loss recovery to do */
116 #define REXMIT_LOST	1 /* retransmit packets marked lost */
117 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
118 
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
123 			     void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 	icsk->icsk_clean_acked = cad;
126 	static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129 
clean_acked_data_disable(struct inet_connection_sock * icsk)130 void clean_acked_data_disable(struct inet_connection_sock *icsk)
131 {
132 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 	icsk->icsk_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136 
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 	static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143 
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 	struct bpf_sock_ops_kern sock_ops;
153 
154 	if (likely(!unknown_opt && !parse_all_opt))
155 		return;
156 
157 	/* The skb will be handled in the
158 	 * bpf_skops_established() or
159 	 * bpf_skops_write_hdr_opt().
160 	 */
161 	switch (sk->sk_state) {
162 	case TCP_SYN_RECV:
163 	case TCP_SYN_SENT:
164 	case TCP_LISTEN:
165 		return;
166 	}
167 
168 	sock_owned_by_me(sk);
169 
170 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 	sock_ops.is_fullsock = 1;
173 	sock_ops.sk = sk;
174 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175 
176 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 				  struct sk_buff *skb)
181 {
182 	struct bpf_sock_ops_kern sock_ops;
183 
184 	sock_owned_by_me(sk);
185 
186 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 	sock_ops.op = bpf_op;
188 	sock_ops.is_fullsock = 1;
189 	sock_ops.sk = sk;
190 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 	if (skb)
192 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193 
194 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 }
196 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)197 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 {
199 }
200 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)201 static void bpf_skops_established(struct sock *sk, int bpf_op,
202 				  struct sk_buff *skb)
203 {
204 }
205 #endif
206 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)207 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208 			     unsigned int len)
209 {
210 	static bool __once __read_mostly;
211 
212 	if (!__once) {
213 		struct net_device *dev;
214 
215 		__once = true;
216 
217 		rcu_read_lock();
218 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
219 		if (!dev || len >= dev->mtu)
220 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
221 				dev ? dev->name : "Unknown driver");
222 		rcu_read_unlock();
223 	}
224 }
225 
226 /* Adapt the MSS value used to make delayed ack decision to the
227  * real world.
228  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)229 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
230 {
231 	struct inet_connection_sock *icsk = inet_csk(sk);
232 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
233 	unsigned int len;
234 
235 	icsk->icsk_ack.last_seg_size = 0;
236 
237 	/* skb->len may jitter because of SACKs, even if peer
238 	 * sends good full-sized frames.
239 	 */
240 	len = skb_shinfo(skb)->gso_size ? : skb->len;
241 	if (len >= icsk->icsk_ack.rcv_mss) {
242 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
243 					       tcp_sk(sk)->advmss);
244 		/* Account for possibly-removed options */
245 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
246 				   MAX_TCP_OPTION_SPACE))
247 			tcp_gro_dev_warn(sk, skb, len);
248 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
249 		 * set then it is likely the end of an application write. So
250 		 * more data may not be arriving soon, and yet the data sender
251 		 * may be waiting for an ACK if cwnd-bound or using TX zero
252 		 * copy. So we set ICSK_ACK_PUSHED here so that
253 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
254 		 * reads all of the data and is not ping-pong. If len > MSS
255 		 * then this logic does not matter (and does not hurt) because
256 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
257 		 * reads data and there is more than an MSS of unACKed data.
258 		 */
259 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
260 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
261 	} else {
262 		/* Otherwise, we make more careful check taking into account,
263 		 * that SACKs block is variable.
264 		 *
265 		 * "len" is invariant segment length, including TCP header.
266 		 */
267 		len += skb->data - skb_transport_header(skb);
268 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
269 		    /* If PSH is not set, packet should be
270 		     * full sized, provided peer TCP is not badly broken.
271 		     * This observation (if it is correct 8)) allows
272 		     * to handle super-low mtu links fairly.
273 		     */
274 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
275 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
276 			/* Subtract also invariant (if peer is RFC compliant),
277 			 * tcp header plus fixed timestamp option length.
278 			 * Resulting "len" is MSS free of SACK jitter.
279 			 */
280 			len -= tcp_sk(sk)->tcp_header_len;
281 			icsk->icsk_ack.last_seg_size = len;
282 			if (len == lss) {
283 				icsk->icsk_ack.rcv_mss = len;
284 				return;
285 			}
286 		}
287 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
288 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
289 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
290 	}
291 }
292 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)293 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
294 {
295 	struct inet_connection_sock *icsk = inet_csk(sk);
296 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
297 
298 	if (quickacks == 0)
299 		quickacks = 2;
300 	quickacks = min(quickacks, max_quickacks);
301 	if (quickacks > icsk->icsk_ack.quick)
302 		icsk->icsk_ack.quick = quickacks;
303 }
304 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)305 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
306 {
307 	struct inet_connection_sock *icsk = inet_csk(sk);
308 
309 	tcp_incr_quickack(sk, max_quickacks);
310 	inet_csk_exit_pingpong_mode(sk);
311 	icsk->icsk_ack.ato = TCP_ATO_MIN;
312 }
313 
314 /* Send ACKs quickly, if "quick" count is not exhausted
315  * and the session is not interactive.
316  */
317 
tcp_in_quickack_mode(struct sock * sk)318 static bool tcp_in_quickack_mode(struct sock *sk)
319 {
320 	const struct inet_connection_sock *icsk = inet_csk(sk);
321 	const struct dst_entry *dst = __sk_dst_get(sk);
322 
323 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
324 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
325 }
326 
tcp_ecn_queue_cwr(struct tcp_sock * tp)327 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
328 {
329 	if (tp->ecn_flags & TCP_ECN_OK)
330 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
331 }
332 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)333 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
334 {
335 	if (tcp_hdr(skb)->cwr) {
336 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
337 
338 		/* If the sender is telling us it has entered CWR, then its
339 		 * cwnd may be very low (even just 1 packet), so we should ACK
340 		 * immediately.
341 		 */
342 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
343 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
344 	}
345 }
346 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)347 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
348 {
349 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
350 }
351 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)352 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 
356 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
357 	case INET_ECN_NOT_ECT:
358 		/* Funny extension: if ECT is not set on a segment,
359 		 * and we already seen ECT on a previous segment,
360 		 * it is probably a retransmit.
361 		 */
362 		if (tp->ecn_flags & TCP_ECN_SEEN)
363 			tcp_enter_quickack_mode(sk, 2);
364 		break;
365 	case INET_ECN_CE:
366 		if (tcp_ca_needs_ecn(sk))
367 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
368 
369 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
370 			/* Better not delay acks, sender can have a very low cwnd */
371 			tcp_enter_quickack_mode(sk, 2);
372 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
373 		}
374 		tp->ecn_flags |= TCP_ECN_SEEN;
375 		break;
376 	default:
377 		if (tcp_ca_needs_ecn(sk))
378 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
379 		tp->ecn_flags |= TCP_ECN_SEEN;
380 		break;
381 	}
382 }
383 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)384 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
385 {
386 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
387 		__tcp_ecn_check_ce(sk, skb);
388 }
389 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)390 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
391 {
392 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
393 		tp->ecn_flags &= ~TCP_ECN_OK;
394 }
395 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)396 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
397 {
398 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
399 		tp->ecn_flags &= ~TCP_ECN_OK;
400 }
401 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)402 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
403 {
404 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
405 		return true;
406 	return false;
407 }
408 
409 /* Buffer size and advertised window tuning.
410  *
411  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
412  */
413 
tcp_sndbuf_expand(struct sock * sk)414 static void tcp_sndbuf_expand(struct sock *sk)
415 {
416 	const struct tcp_sock *tp = tcp_sk(sk);
417 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
418 	int sndmem, per_mss;
419 	u32 nr_segs;
420 
421 	/* Worst case is non GSO/TSO : each frame consumes one skb
422 	 * and skb->head is kmalloced using power of two area of memory
423 	 */
424 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
425 		  MAX_TCP_HEADER +
426 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427 
428 	per_mss = roundup_pow_of_two(per_mss) +
429 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
430 
431 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
432 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
433 
434 	/* Fast Recovery (RFC 5681 3.2) :
435 	 * Cubic needs 1.7 factor, rounded to 2 to include
436 	 * extra cushion (application might react slowly to EPOLLOUT)
437 	 */
438 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
439 	sndmem *= nr_segs * per_mss;
440 
441 	if (sk->sk_sndbuf < sndmem)
442 		WRITE_ONCE(sk->sk_sndbuf,
443 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
444 }
445 
446 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
447  *
448  * All tcp_full_space() is split to two parts: "network" buffer, allocated
449  * forward and advertised in receiver window (tp->rcv_wnd) and
450  * "application buffer", required to isolate scheduling/application
451  * latencies from network.
452  * window_clamp is maximal advertised window. It can be less than
453  * tcp_full_space(), in this case tcp_full_space() - window_clamp
454  * is reserved for "application" buffer. The less window_clamp is
455  * the smoother our behaviour from viewpoint of network, but the lower
456  * throughput and the higher sensitivity of the connection to losses. 8)
457  *
458  * rcv_ssthresh is more strict window_clamp used at "slow start"
459  * phase to predict further behaviour of this connection.
460  * It is used for two goals:
461  * - to enforce header prediction at sender, even when application
462  *   requires some significant "application buffer". It is check #1.
463  * - to prevent pruning of receive queue because of misprediction
464  *   of receiver window. Check #2.
465  *
466  * The scheme does not work when sender sends good segments opening
467  * window and then starts to feed us spaghetti. But it should work
468  * in common situations. Otherwise, we have to rely on queue collapsing.
469  */
470 
471 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)472 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
473 			     unsigned int skbtruesize)
474 {
475 	struct tcp_sock *tp = tcp_sk(sk);
476 	/* Optimize this! */
477 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
478 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
479 
480 	while (tp->rcv_ssthresh <= window) {
481 		if (truesize <= skb->len)
482 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
483 
484 		truesize >>= 1;
485 		window >>= 1;
486 	}
487 	return 0;
488 }
489 
490 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
491  * can play nice with us, as sk_buff and skb->head might be either
492  * freed or shared with up to MAX_SKB_FRAGS segments.
493  * Only give a boost to drivers using page frag(s) to hold the frame(s),
494  * and if no payload was pulled in skb->head before reaching us.
495  */
truesize_adjust(bool adjust,const struct sk_buff * skb)496 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
497 {
498 	u32 truesize = skb->truesize;
499 
500 	if (adjust && !skb_headlen(skb)) {
501 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
502 		/* paranoid check, some drivers might be buggy */
503 		if (unlikely((int)truesize < (int)skb->len))
504 			truesize = skb->truesize;
505 	}
506 	return truesize;
507 }
508 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)509 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
510 			    bool adjust)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	int room;
514 
515 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
516 
517 	/* Check #1 */
518 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
519 		unsigned int truesize = truesize_adjust(adjust, skb);
520 		int incr;
521 
522 		/* Check #2. Increase window, if skb with such overhead
523 		 * will fit to rcvbuf in future.
524 		 */
525 		if (tcp_win_from_space(sk, truesize) <= skb->len)
526 			incr = 2 * tp->advmss;
527 		else
528 			incr = __tcp_grow_window(sk, skb, truesize);
529 
530 		if (incr) {
531 			incr = max_t(int, incr, 2 * skb->len);
532 			tp->rcv_ssthresh += min(room, incr);
533 			inet_csk(sk)->icsk_ack.quick |= 1;
534 		}
535 	}
536 }
537 
538 /* 3. Try to fixup all. It is made immediately after connection enters
539  *    established state.
540  */
tcp_init_buffer_space(struct sock * sk)541 static void tcp_init_buffer_space(struct sock *sk)
542 {
543 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
544 	struct tcp_sock *tp = tcp_sk(sk);
545 	int maxwin;
546 
547 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
548 		tcp_sndbuf_expand(sk);
549 
550 	tcp_mstamp_refresh(tp);
551 	tp->rcvq_space.time = tp->tcp_mstamp;
552 	tp->rcvq_space.seq = tp->copied_seq;
553 
554 	maxwin = tcp_full_space(sk);
555 
556 	if (tp->window_clamp >= maxwin) {
557 		tp->window_clamp = maxwin;
558 
559 		if (tcp_app_win && maxwin > 4 * tp->advmss)
560 			tp->window_clamp = max(maxwin -
561 					       (maxwin >> tcp_app_win),
562 					       4 * tp->advmss);
563 	}
564 
565 	/* Force reservation of one segment. */
566 	if (tcp_app_win &&
567 	    tp->window_clamp > 2 * tp->advmss &&
568 	    tp->window_clamp + tp->advmss > maxwin)
569 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
570 
571 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
572 	tp->snd_cwnd_stamp = tcp_jiffies32;
573 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
574 				    (u32)TCP_INIT_CWND * tp->advmss);
575 }
576 
577 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)578 static void tcp_clamp_window(struct sock *sk)
579 {
580 	struct tcp_sock *tp = tcp_sk(sk);
581 	struct inet_connection_sock *icsk = inet_csk(sk);
582 	struct net *net = sock_net(sk);
583 	int rmem2;
584 
585 	icsk->icsk_ack.quick = 0;
586 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
587 
588 	if (sk->sk_rcvbuf < rmem2 &&
589 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
590 	    !tcp_under_memory_pressure(sk) &&
591 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
592 		WRITE_ONCE(sk->sk_rcvbuf,
593 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
594 	}
595 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
596 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
597 }
598 
599 /* Initialize RCV_MSS value.
600  * RCV_MSS is an our guess about MSS used by the peer.
601  * We haven't any direct information about the MSS.
602  * It's better to underestimate the RCV_MSS rather than overestimate.
603  * Overestimations make us ACKing less frequently than needed.
604  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
605  */
tcp_initialize_rcv_mss(struct sock * sk)606 void tcp_initialize_rcv_mss(struct sock *sk)
607 {
608 	const struct tcp_sock *tp = tcp_sk(sk);
609 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
610 
611 	hint = min(hint, tp->rcv_wnd / 2);
612 	hint = min(hint, TCP_MSS_DEFAULT);
613 	hint = max(hint, TCP_MIN_MSS);
614 
615 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
616 }
617 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
618 
619 /* Receiver "autotuning" code.
620  *
621  * The algorithm for RTT estimation w/o timestamps is based on
622  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
623  * <https://public.lanl.gov/radiant/pubs.html#DRS>
624  *
625  * More detail on this code can be found at
626  * <http://staff.psc.edu/jheffner/>,
627  * though this reference is out of date.  A new paper
628  * is pending.
629  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)630 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
631 {
632 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
633 	long m = sample;
634 
635 	if (new_sample != 0) {
636 		/* If we sample in larger samples in the non-timestamp
637 		 * case, we could grossly overestimate the RTT especially
638 		 * with chatty applications or bulk transfer apps which
639 		 * are stalled on filesystem I/O.
640 		 *
641 		 * Also, since we are only going for a minimum in the
642 		 * non-timestamp case, we do not smooth things out
643 		 * else with timestamps disabled convergence takes too
644 		 * long.
645 		 */
646 		if (!win_dep) {
647 			m -= (new_sample >> 3);
648 			new_sample += m;
649 		} else {
650 			m <<= 3;
651 			if (m < new_sample)
652 				new_sample = m;
653 		}
654 	} else {
655 		/* No previous measure. */
656 		new_sample = m << 3;
657 	}
658 
659 	tp->rcv_rtt_est.rtt_us = new_sample;
660 }
661 
tcp_rcv_rtt_measure(struct tcp_sock * tp)662 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
663 {
664 	u32 delta_us;
665 
666 	if (tp->rcv_rtt_est.time == 0)
667 		goto new_measure;
668 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
669 		return;
670 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
671 	if (!delta_us)
672 		delta_us = 1;
673 	tcp_rcv_rtt_update(tp, delta_us, 1);
674 
675 new_measure:
676 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
677 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
678 }
679 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)680 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
681 					  const struct sk_buff *skb)
682 {
683 	struct tcp_sock *tp = tcp_sk(sk);
684 
685 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
686 		return;
687 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
688 
689 	if (TCP_SKB_CB(skb)->end_seq -
690 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
691 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
692 		u32 delta_us;
693 
694 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
695 			if (!delta)
696 				delta = 1;
697 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
698 			tcp_rcv_rtt_update(tp, delta_us, 0);
699 		}
700 	}
701 }
702 
703 /*
704  * This function should be called every time data is copied to user space.
705  * It calculates the appropriate TCP receive buffer space.
706  */
tcp_rcv_space_adjust(struct sock * sk)707 void tcp_rcv_space_adjust(struct sock *sk)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	u32 copied;
711 	int time;
712 
713 	trace_tcp_rcv_space_adjust(sk);
714 
715 	tcp_mstamp_refresh(tp);
716 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
717 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
718 		return;
719 
720 	/* Number of bytes copied to user in last RTT */
721 	copied = tp->copied_seq - tp->rcvq_space.seq;
722 	if (copied <= tp->rcvq_space.space)
723 		goto new_measure;
724 
725 	/* A bit of theory :
726 	 * copied = bytes received in previous RTT, our base window
727 	 * To cope with packet losses, we need a 2x factor
728 	 * To cope with slow start, and sender growing its cwin by 100 %
729 	 * every RTT, we need a 4x factor, because the ACK we are sending
730 	 * now is for the next RTT, not the current one :
731 	 * <prev RTT . ><current RTT .. ><next RTT .... >
732 	 */
733 
734 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
735 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
736 		int rcvmem, rcvbuf;
737 		u64 rcvwin, grow;
738 
739 		/* minimal window to cope with packet losses, assuming
740 		 * steady state. Add some cushion because of small variations.
741 		 */
742 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
743 
744 		/* Accommodate for sender rate increase (eg. slow start) */
745 		grow = rcvwin * (copied - tp->rcvq_space.space);
746 		do_div(grow, tp->rcvq_space.space);
747 		rcvwin += (grow << 1);
748 
749 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
750 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
751 			rcvmem += 128;
752 
753 		do_div(rcvwin, tp->advmss);
754 		rcvbuf = min_t(u64, rcvwin * rcvmem,
755 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
756 		if (rcvbuf > sk->sk_rcvbuf) {
757 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
758 
759 			/* Make the window clamp follow along.  */
760 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
761 		}
762 	}
763 	tp->rcvq_space.space = copied;
764 
765 new_measure:
766 	tp->rcvq_space.seq = tp->copied_seq;
767 	tp->rcvq_space.time = tp->tcp_mstamp;
768 }
769 
770 /* There is something which you must keep in mind when you analyze the
771  * behavior of the tp->ato delayed ack timeout interval.  When a
772  * connection starts up, we want to ack as quickly as possible.  The
773  * problem is that "good" TCP's do slow start at the beginning of data
774  * transmission.  The means that until we send the first few ACK's the
775  * sender will sit on his end and only queue most of his data, because
776  * he can only send snd_cwnd unacked packets at any given time.  For
777  * each ACK we send, he increments snd_cwnd and transmits more of his
778  * queue.  -DaveM
779  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)780 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
781 {
782 	struct tcp_sock *tp = tcp_sk(sk);
783 	struct inet_connection_sock *icsk = inet_csk(sk);
784 	u32 now;
785 
786 	inet_csk_schedule_ack(sk);
787 
788 	tcp_measure_rcv_mss(sk, skb);
789 
790 	tcp_rcv_rtt_measure(tp);
791 
792 	now = tcp_jiffies32;
793 
794 	if (!icsk->icsk_ack.ato) {
795 		/* The _first_ data packet received, initialize
796 		 * delayed ACK engine.
797 		 */
798 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
799 		icsk->icsk_ack.ato = TCP_ATO_MIN;
800 	} else {
801 		int m = now - icsk->icsk_ack.lrcvtime;
802 
803 		if (m <= TCP_ATO_MIN / 2) {
804 			/* The fastest case is the first. */
805 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
806 		} else if (m < icsk->icsk_ack.ato) {
807 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
808 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
809 				icsk->icsk_ack.ato = icsk->icsk_rto;
810 		} else if (m > icsk->icsk_rto) {
811 			/* Too long gap. Apparently sender failed to
812 			 * restart window, so that we send ACKs quickly.
813 			 */
814 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
815 			sk_mem_reclaim(sk);
816 		}
817 	}
818 	icsk->icsk_ack.lrcvtime = now;
819 
820 	tcp_ecn_check_ce(sk, skb);
821 
822 	if (skb->len >= 128)
823 		tcp_grow_window(sk, skb, true);
824 }
825 
826 /* Called to compute a smoothed rtt estimate. The data fed to this
827  * routine either comes from timestamps, or from segments that were
828  * known _not_ to have been retransmitted [see Karn/Partridge
829  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
830  * piece by Van Jacobson.
831  * NOTE: the next three routines used to be one big routine.
832  * To save cycles in the RFC 1323 implementation it was better to break
833  * it up into three procedures. -- erics
834  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)835 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	long m = mrtt_us; /* RTT */
839 	u32 srtt = tp->srtt_us;
840 
841 	/*	The following amusing code comes from Jacobson's
842 	 *	article in SIGCOMM '88.  Note that rtt and mdev
843 	 *	are scaled versions of rtt and mean deviation.
844 	 *	This is designed to be as fast as possible
845 	 *	m stands for "measurement".
846 	 *
847 	 *	On a 1990 paper the rto value is changed to:
848 	 *	RTO = rtt + 4 * mdev
849 	 *
850 	 * Funny. This algorithm seems to be very broken.
851 	 * These formulae increase RTO, when it should be decreased, increase
852 	 * too slowly, when it should be increased quickly, decrease too quickly
853 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
854 	 * does not matter how to _calculate_ it. Seems, it was trap
855 	 * that VJ failed to avoid. 8)
856 	 */
857 	if (srtt != 0) {
858 		m -= (srtt >> 3);	/* m is now error in rtt est */
859 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
860 		if (m < 0) {
861 			m = -m;		/* m is now abs(error) */
862 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
863 			/* This is similar to one of Eifel findings.
864 			 * Eifel blocks mdev updates when rtt decreases.
865 			 * This solution is a bit different: we use finer gain
866 			 * for mdev in this case (alpha*beta).
867 			 * Like Eifel it also prevents growth of rto,
868 			 * but also it limits too fast rto decreases,
869 			 * happening in pure Eifel.
870 			 */
871 			if (m > 0)
872 				m >>= 3;
873 		} else {
874 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
875 		}
876 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
877 		if (tp->mdev_us > tp->mdev_max_us) {
878 			tp->mdev_max_us = tp->mdev_us;
879 			if (tp->mdev_max_us > tp->rttvar_us)
880 				tp->rttvar_us = tp->mdev_max_us;
881 		}
882 		if (after(tp->snd_una, tp->rtt_seq)) {
883 			if (tp->mdev_max_us < tp->rttvar_us)
884 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
885 			tp->rtt_seq = tp->snd_nxt;
886 			tp->mdev_max_us = tcp_rto_min_us(sk);
887 
888 			tcp_bpf_rtt(sk);
889 		}
890 	} else {
891 		/* no previous measure. */
892 		srtt = m << 3;		/* take the measured time to be rtt */
893 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
894 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
895 		tp->mdev_max_us = tp->rttvar_us;
896 		tp->rtt_seq = tp->snd_nxt;
897 
898 		tcp_bpf_rtt(sk);
899 	}
900 	tp->srtt_us = max(1U, srtt);
901 }
902 
tcp_update_pacing_rate(struct sock * sk)903 static void tcp_update_pacing_rate(struct sock *sk)
904 {
905 	const struct tcp_sock *tp = tcp_sk(sk);
906 	u64 rate;
907 
908 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
909 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
910 
911 	/* current rate is (cwnd * mss) / srtt
912 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
913 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
914 	 *
915 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
916 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
917 	 *	 end of slow start and should slow down.
918 	 */
919 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
920 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
921 	else
922 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
923 
924 	rate *= max(tp->snd_cwnd, tp->packets_out);
925 
926 	if (likely(tp->srtt_us))
927 		do_div(rate, tp->srtt_us);
928 
929 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
930 	 * without any lock. We want to make sure compiler wont store
931 	 * intermediate values in this location.
932 	 */
933 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
934 					     sk->sk_max_pacing_rate));
935 }
936 
937 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
938  * routine referred to above.
939  */
tcp_set_rto(struct sock * sk)940 static void tcp_set_rto(struct sock *sk)
941 {
942 	const struct tcp_sock *tp = tcp_sk(sk);
943 	/* Old crap is replaced with new one. 8)
944 	 *
945 	 * More seriously:
946 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
947 	 *    It cannot be less due to utterly erratic ACK generation made
948 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
949 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
950 	 *    is invisible. Actually, Linux-2.4 also generates erratic
951 	 *    ACKs in some circumstances.
952 	 */
953 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
954 
955 	/* 2. Fixups made earlier cannot be right.
956 	 *    If we do not estimate RTO correctly without them,
957 	 *    all the algo is pure shit and should be replaced
958 	 *    with correct one. It is exactly, which we pretend to do.
959 	 */
960 
961 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
962 	 * guarantees that rto is higher.
963 	 */
964 	tcp_bound_rto(sk);
965 }
966 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)967 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
968 {
969 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
970 
971 	if (!cwnd)
972 		cwnd = TCP_INIT_CWND;
973 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
974 }
975 
976 struct tcp_sacktag_state {
977 	/* Timestamps for earliest and latest never-retransmitted segment
978 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
979 	 * but congestion control should still get an accurate delay signal.
980 	 */
981 	u64	first_sackt;
982 	u64	last_sackt;
983 	u32	reord;
984 	u32	sack_delivered;
985 	int	flag;
986 	unsigned int mss_now;
987 	struct rate_sample *rate;
988 };
989 
990 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
991  * and spurious retransmission information if this DSACK is unlikely caused by
992  * sender's action:
993  * - DSACKed sequence range is larger than maximum receiver's window.
994  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
995  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)996 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
997 			  u32 end_seq, struct tcp_sacktag_state *state)
998 {
999 	u32 seq_len, dup_segs = 1;
1000 
1001 	if (!before(start_seq, end_seq))
1002 		return 0;
1003 
1004 	seq_len = end_seq - start_seq;
1005 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1006 	if (seq_len > tp->max_window)
1007 		return 0;
1008 	if (seq_len > tp->mss_cache)
1009 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1010 
1011 	tp->dsack_dups += dup_segs;
1012 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1013 	if (tp->dsack_dups > tp->total_retrans)
1014 		return 0;
1015 
1016 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1017 	tp->rack.dsack_seen = 1;
1018 
1019 	state->flag |= FLAG_DSACKING_ACK;
1020 	/* A spurious retransmission is delivered */
1021 	state->sack_delivered += dup_segs;
1022 
1023 	return dup_segs;
1024 }
1025 
1026 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1027  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1028  * distance is approximated in full-mss packet distance ("reordering").
1029  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1030 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1031 				      const int ts)
1032 {
1033 	struct tcp_sock *tp = tcp_sk(sk);
1034 	const u32 mss = tp->mss_cache;
1035 	u32 fack, metric;
1036 
1037 	fack = tcp_highest_sack_seq(tp);
1038 	if (!before(low_seq, fack))
1039 		return;
1040 
1041 	metric = fack - low_seq;
1042 	if ((metric > tp->reordering * mss) && mss) {
1043 #if FASTRETRANS_DEBUG > 1
1044 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1045 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1046 			 tp->reordering,
1047 			 0,
1048 			 tp->sacked_out,
1049 			 tp->undo_marker ? tp->undo_retrans : 0);
1050 #endif
1051 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1052 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1053 	}
1054 
1055 	/* This exciting event is worth to be remembered. 8) */
1056 	tp->reord_seen++;
1057 	NET_INC_STATS(sock_net(sk),
1058 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1059 }
1060 
1061  /* This must be called before lost_out or retrans_out are updated
1062   * on a new loss, because we want to know if all skbs previously
1063   * known to be lost have already been retransmitted, indicating
1064   * that this newly lost skb is our next skb to retransmit.
1065   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1066 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1067 {
1068 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1069 	    (tp->retransmit_skb_hint &&
1070 	     before(TCP_SKB_CB(skb)->seq,
1071 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1072 		tp->retransmit_skb_hint = skb;
1073 }
1074 
1075 /* Sum the number of packets on the wire we have marked as lost, and
1076  * notify the congestion control module that the given skb was marked lost.
1077  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1078 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1079 {
1080 	tp->lost += tcp_skb_pcount(skb);
1081 }
1082 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1083 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1084 {
1085 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 
1088 	if (sacked & TCPCB_SACKED_ACKED)
1089 		return;
1090 
1091 	tcp_verify_retransmit_hint(tp, skb);
1092 	if (sacked & TCPCB_LOST) {
1093 		if (sacked & TCPCB_SACKED_RETRANS) {
1094 			/* Account for retransmits that are lost again */
1095 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1096 			tp->retrans_out -= tcp_skb_pcount(skb);
1097 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1098 				      tcp_skb_pcount(skb));
1099 			tcp_notify_skb_loss_event(tp, skb);
1100 		}
1101 	} else {
1102 		tp->lost_out += tcp_skb_pcount(skb);
1103 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1104 		tcp_notify_skb_loss_event(tp, skb);
1105 	}
1106 }
1107 
1108 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1109 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1110 				bool ece_ack)
1111 {
1112 	tp->delivered += delivered;
1113 	if (ece_ack)
1114 		tp->delivered_ce += delivered;
1115 }
1116 
1117 /* This procedure tags the retransmission queue when SACKs arrive.
1118  *
1119  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1120  * Packets in queue with these bits set are counted in variables
1121  * sacked_out, retrans_out and lost_out, correspondingly.
1122  *
1123  * Valid combinations are:
1124  * Tag  InFlight	Description
1125  * 0	1		- orig segment is in flight.
1126  * S	0		- nothing flies, orig reached receiver.
1127  * L	0		- nothing flies, orig lost by net.
1128  * R	2		- both orig and retransmit are in flight.
1129  * L|R	1		- orig is lost, retransmit is in flight.
1130  * S|R  1		- orig reached receiver, retrans is still in flight.
1131  * (L|S|R is logically valid, it could occur when L|R is sacked,
1132  *  but it is equivalent to plain S and code short-curcuits it to S.
1133  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1134  *
1135  * These 6 states form finite state machine, controlled by the following events:
1136  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1137  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1138  * 3. Loss detection event of two flavors:
1139  *	A. Scoreboard estimator decided the packet is lost.
1140  *	   A'. Reno "three dupacks" marks head of queue lost.
1141  *	B. SACK arrives sacking SND.NXT at the moment, when the
1142  *	   segment was retransmitted.
1143  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1144  *
1145  * It is pleasant to note, that state diagram turns out to be commutative,
1146  * so that we are allowed not to be bothered by order of our actions,
1147  * when multiple events arrive simultaneously. (see the function below).
1148  *
1149  * Reordering detection.
1150  * --------------------
1151  * Reordering metric is maximal distance, which a packet can be displaced
1152  * in packet stream. With SACKs we can estimate it:
1153  *
1154  * 1. SACK fills old hole and the corresponding segment was not
1155  *    ever retransmitted -> reordering. Alas, we cannot use it
1156  *    when segment was retransmitted.
1157  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1158  *    for retransmitted and already SACKed segment -> reordering..
1159  * Both of these heuristics are not used in Loss state, when we cannot
1160  * account for retransmits accurately.
1161  *
1162  * SACK block validation.
1163  * ----------------------
1164  *
1165  * SACK block range validation checks that the received SACK block fits to
1166  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1167  * Note that SND.UNA is not included to the range though being valid because
1168  * it means that the receiver is rather inconsistent with itself reporting
1169  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1170  * perfectly valid, however, in light of RFC2018 which explicitly states
1171  * that "SACK block MUST reflect the newest segment.  Even if the newest
1172  * segment is going to be discarded ...", not that it looks very clever
1173  * in case of head skb. Due to potentional receiver driven attacks, we
1174  * choose to avoid immediate execution of a walk in write queue due to
1175  * reneging and defer head skb's loss recovery to standard loss recovery
1176  * procedure that will eventually trigger (nothing forbids us doing this).
1177  *
1178  * Implements also blockage to start_seq wrap-around. Problem lies in the
1179  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1180  * there's no guarantee that it will be before snd_nxt (n). The problem
1181  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1182  * wrap (s_w):
1183  *
1184  *         <- outs wnd ->                          <- wrapzone ->
1185  *         u     e      n                         u_w   e_w  s n_w
1186  *         |     |      |                          |     |   |  |
1187  * |<------------+------+----- TCP seqno space --------------+---------->|
1188  * ...-- <2^31 ->|                                           |<--------...
1189  * ...---- >2^31 ------>|                                    |<--------...
1190  *
1191  * Current code wouldn't be vulnerable but it's better still to discard such
1192  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1193  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1194  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1195  * equal to the ideal case (infinite seqno space without wrap caused issues).
1196  *
1197  * With D-SACK the lower bound is extended to cover sequence space below
1198  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1199  * again, D-SACK block must not to go across snd_una (for the same reason as
1200  * for the normal SACK blocks, explained above). But there all simplicity
1201  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1202  * fully below undo_marker they do not affect behavior in anyway and can
1203  * therefore be safely ignored. In rare cases (which are more or less
1204  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1205  * fragmentation and packet reordering past skb's retransmission. To consider
1206  * them correctly, the acceptable range must be extended even more though
1207  * the exact amount is rather hard to quantify. However, tp->max_window can
1208  * be used as an exaggerated estimate.
1209  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1210 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1211 				   u32 start_seq, u32 end_seq)
1212 {
1213 	/* Too far in future, or reversed (interpretation is ambiguous) */
1214 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1215 		return false;
1216 
1217 	/* Nasty start_seq wrap-around check (see comments above) */
1218 	if (!before(start_seq, tp->snd_nxt))
1219 		return false;
1220 
1221 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1222 	 * start_seq == snd_una is non-sensical (see comments above)
1223 	 */
1224 	if (after(start_seq, tp->snd_una))
1225 		return true;
1226 
1227 	if (!is_dsack || !tp->undo_marker)
1228 		return false;
1229 
1230 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1231 	if (after(end_seq, tp->snd_una))
1232 		return false;
1233 
1234 	if (!before(start_seq, tp->undo_marker))
1235 		return true;
1236 
1237 	/* Too old */
1238 	if (!after(end_seq, tp->undo_marker))
1239 		return false;
1240 
1241 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1242 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1243 	 */
1244 	return !before(start_seq, end_seq - tp->max_window);
1245 }
1246 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1247 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1248 			    struct tcp_sack_block_wire *sp, int num_sacks,
1249 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1250 {
1251 	struct tcp_sock *tp = tcp_sk(sk);
1252 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1253 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1254 	u32 dup_segs;
1255 
1256 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1257 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1258 	} else if (num_sacks > 1) {
1259 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1260 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1261 
1262 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1263 			return false;
1264 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1265 	} else {
1266 		return false;
1267 	}
1268 
1269 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1270 	if (!dup_segs) {	/* Skip dubious DSACK */
1271 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1272 		return false;
1273 	}
1274 
1275 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1276 
1277 	/* D-SACK for already forgotten data... Do dumb counting. */
1278 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1279 	    !after(end_seq_0, prior_snd_una) &&
1280 	    after(end_seq_0, tp->undo_marker))
1281 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1282 
1283 	return true;
1284 }
1285 
1286 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1287  * the incoming SACK may not exactly match but we can find smaller MSS
1288  * aligned portion of it that matches. Therefore we might need to fragment
1289  * which may fail and creates some hassle (caller must handle error case
1290  * returns).
1291  *
1292  * FIXME: this could be merged to shift decision code
1293  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1294 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1295 				  u32 start_seq, u32 end_seq)
1296 {
1297 	int err;
1298 	bool in_sack;
1299 	unsigned int pkt_len;
1300 	unsigned int mss;
1301 
1302 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1303 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1304 
1305 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1306 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1307 		mss = tcp_skb_mss(skb);
1308 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1309 
1310 		if (!in_sack) {
1311 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1312 			if (pkt_len < mss)
1313 				pkt_len = mss;
1314 		} else {
1315 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1316 			if (pkt_len < mss)
1317 				return -EINVAL;
1318 		}
1319 
1320 		/* Round if necessary so that SACKs cover only full MSSes
1321 		 * and/or the remaining small portion (if present)
1322 		 */
1323 		if (pkt_len > mss) {
1324 			unsigned int new_len = (pkt_len / mss) * mss;
1325 			if (!in_sack && new_len < pkt_len)
1326 				new_len += mss;
1327 			pkt_len = new_len;
1328 		}
1329 
1330 		if (pkt_len >= skb->len && !in_sack)
1331 			return 0;
1332 
1333 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1334 				   pkt_len, mss, GFP_ATOMIC);
1335 		if (err < 0)
1336 			return err;
1337 	}
1338 
1339 	return in_sack;
1340 }
1341 
1342 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1343 static u8 tcp_sacktag_one(struct sock *sk,
1344 			  struct tcp_sacktag_state *state, u8 sacked,
1345 			  u32 start_seq, u32 end_seq,
1346 			  int dup_sack, int pcount,
1347 			  u64 xmit_time)
1348 {
1349 	struct tcp_sock *tp = tcp_sk(sk);
1350 
1351 	/* Account D-SACK for retransmitted packet. */
1352 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1353 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1354 		    after(end_seq, tp->undo_marker))
1355 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1356 		if ((sacked & TCPCB_SACKED_ACKED) &&
1357 		    before(start_seq, state->reord))
1358 				state->reord = start_seq;
1359 	}
1360 
1361 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1362 	if (!after(end_seq, tp->snd_una))
1363 		return sacked;
1364 
1365 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1366 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1367 
1368 		if (sacked & TCPCB_SACKED_RETRANS) {
1369 			/* If the segment is not tagged as lost,
1370 			 * we do not clear RETRANS, believing
1371 			 * that retransmission is still in flight.
1372 			 */
1373 			if (sacked & TCPCB_LOST) {
1374 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1375 				tp->lost_out -= pcount;
1376 				tp->retrans_out -= pcount;
1377 			}
1378 		} else {
1379 			if (!(sacked & TCPCB_RETRANS)) {
1380 				/* New sack for not retransmitted frame,
1381 				 * which was in hole. It is reordering.
1382 				 */
1383 				if (before(start_seq,
1384 					   tcp_highest_sack_seq(tp)) &&
1385 				    before(start_seq, state->reord))
1386 					state->reord = start_seq;
1387 
1388 				if (!after(end_seq, tp->high_seq))
1389 					state->flag |= FLAG_ORIG_SACK_ACKED;
1390 				if (state->first_sackt == 0)
1391 					state->first_sackt = xmit_time;
1392 				state->last_sackt = xmit_time;
1393 			}
1394 
1395 			if (sacked & TCPCB_LOST) {
1396 				sacked &= ~TCPCB_LOST;
1397 				tp->lost_out -= pcount;
1398 			}
1399 		}
1400 
1401 		sacked |= TCPCB_SACKED_ACKED;
1402 		state->flag |= FLAG_DATA_SACKED;
1403 		tp->sacked_out += pcount;
1404 		/* Out-of-order packets delivered */
1405 		state->sack_delivered += pcount;
1406 
1407 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1408 		if (tp->lost_skb_hint &&
1409 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1410 			tp->lost_cnt_hint += pcount;
1411 	}
1412 
1413 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1414 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1415 	 * are accounted above as well.
1416 	 */
1417 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1418 		sacked &= ~TCPCB_SACKED_RETRANS;
1419 		tp->retrans_out -= pcount;
1420 	}
1421 
1422 	return sacked;
1423 }
1424 
1425 /* Shift newly-SACKed bytes from this skb to the immediately previous
1426  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1427  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1428 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1429 			    struct sk_buff *skb,
1430 			    struct tcp_sacktag_state *state,
1431 			    unsigned int pcount, int shifted, int mss,
1432 			    bool dup_sack)
1433 {
1434 	struct tcp_sock *tp = tcp_sk(sk);
1435 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1436 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1437 
1438 	BUG_ON(!pcount);
1439 
1440 	/* Adjust counters and hints for the newly sacked sequence
1441 	 * range but discard the return value since prev is already
1442 	 * marked. We must tag the range first because the seq
1443 	 * advancement below implicitly advances
1444 	 * tcp_highest_sack_seq() when skb is highest_sack.
1445 	 */
1446 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1447 			start_seq, end_seq, dup_sack, pcount,
1448 			tcp_skb_timestamp_us(skb));
1449 	tcp_rate_skb_delivered(sk, skb, state->rate);
1450 
1451 	if (skb == tp->lost_skb_hint)
1452 		tp->lost_cnt_hint += pcount;
1453 
1454 	TCP_SKB_CB(prev)->end_seq += shifted;
1455 	TCP_SKB_CB(skb)->seq += shifted;
1456 
1457 	tcp_skb_pcount_add(prev, pcount);
1458 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1459 	tcp_skb_pcount_add(skb, -pcount);
1460 
1461 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1462 	 * in theory this shouldn't be necessary but as long as DSACK
1463 	 * code can come after this skb later on it's better to keep
1464 	 * setting gso_size to something.
1465 	 */
1466 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1467 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1468 
1469 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1470 	if (tcp_skb_pcount(skb) <= 1)
1471 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1472 
1473 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1474 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1475 
1476 	if (skb->len > 0) {
1477 		BUG_ON(!tcp_skb_pcount(skb));
1478 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1479 		return false;
1480 	}
1481 
1482 	/* Whole SKB was eaten :-) */
1483 
1484 	if (skb == tp->retransmit_skb_hint)
1485 		tp->retransmit_skb_hint = prev;
1486 	if (skb == tp->lost_skb_hint) {
1487 		tp->lost_skb_hint = prev;
1488 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1489 	}
1490 
1491 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1492 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1493 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1494 		TCP_SKB_CB(prev)->end_seq++;
1495 
1496 	if (skb == tcp_highest_sack(sk))
1497 		tcp_advance_highest_sack(sk, skb);
1498 
1499 	tcp_skb_collapse_tstamp(prev, skb);
1500 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1501 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1502 
1503 	tcp_rtx_queue_unlink_and_free(skb, sk);
1504 
1505 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1506 
1507 	return true;
1508 }
1509 
1510 /* I wish gso_size would have a bit more sane initialization than
1511  * something-or-zero which complicates things
1512  */
tcp_skb_seglen(const struct sk_buff * skb)1513 static int tcp_skb_seglen(const struct sk_buff *skb)
1514 {
1515 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1516 }
1517 
1518 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1519 static int skb_can_shift(const struct sk_buff *skb)
1520 {
1521 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1522 }
1523 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1524 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1525 		  int pcount, int shiftlen)
1526 {
1527 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1528 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1529 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1530 	 * even if current MSS is bigger.
1531 	 */
1532 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1533 		return 0;
1534 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1535 		return 0;
1536 	return skb_shift(to, from, shiftlen);
1537 }
1538 
1539 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1540  * skb.
1541  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1542 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1543 					  struct tcp_sacktag_state *state,
1544 					  u32 start_seq, u32 end_seq,
1545 					  bool dup_sack)
1546 {
1547 	struct tcp_sock *tp = tcp_sk(sk);
1548 	struct sk_buff *prev;
1549 	int mss;
1550 	int pcount = 0;
1551 	int len;
1552 	int in_sack;
1553 
1554 	/* Normally R but no L won't result in plain S */
1555 	if (!dup_sack &&
1556 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1557 		goto fallback;
1558 	if (!skb_can_shift(skb))
1559 		goto fallback;
1560 	/* This frame is about to be dropped (was ACKed). */
1561 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1562 		goto fallback;
1563 
1564 	/* Can only happen with delayed DSACK + discard craziness */
1565 	prev = skb_rb_prev(skb);
1566 	if (!prev)
1567 		goto fallback;
1568 
1569 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1570 		goto fallback;
1571 
1572 	if (!tcp_skb_can_collapse(prev, skb))
1573 		goto fallback;
1574 
1575 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1576 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1577 
1578 	if (in_sack) {
1579 		len = skb->len;
1580 		pcount = tcp_skb_pcount(skb);
1581 		mss = tcp_skb_seglen(skb);
1582 
1583 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1584 		 * drop this restriction as unnecessary
1585 		 */
1586 		if (mss != tcp_skb_seglen(prev))
1587 			goto fallback;
1588 	} else {
1589 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1590 			goto noop;
1591 		/* CHECKME: This is non-MSS split case only?, this will
1592 		 * cause skipped skbs due to advancing loop btw, original
1593 		 * has that feature too
1594 		 */
1595 		if (tcp_skb_pcount(skb) <= 1)
1596 			goto noop;
1597 
1598 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1599 		if (!in_sack) {
1600 			/* TODO: head merge to next could be attempted here
1601 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1602 			 * though it might not be worth of the additional hassle
1603 			 *
1604 			 * ...we can probably just fallback to what was done
1605 			 * previously. We could try merging non-SACKed ones
1606 			 * as well but it probably isn't going to buy off
1607 			 * because later SACKs might again split them, and
1608 			 * it would make skb timestamp tracking considerably
1609 			 * harder problem.
1610 			 */
1611 			goto fallback;
1612 		}
1613 
1614 		len = end_seq - TCP_SKB_CB(skb)->seq;
1615 		BUG_ON(len < 0);
1616 		BUG_ON(len > skb->len);
1617 
1618 		/* MSS boundaries should be honoured or else pcount will
1619 		 * severely break even though it makes things bit trickier.
1620 		 * Optimize common case to avoid most of the divides
1621 		 */
1622 		mss = tcp_skb_mss(skb);
1623 
1624 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1625 		 * drop this restriction as unnecessary
1626 		 */
1627 		if (mss != tcp_skb_seglen(prev))
1628 			goto fallback;
1629 
1630 		if (len == mss) {
1631 			pcount = 1;
1632 		} else if (len < mss) {
1633 			goto noop;
1634 		} else {
1635 			pcount = len / mss;
1636 			len = pcount * mss;
1637 		}
1638 	}
1639 
1640 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1641 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1642 		goto fallback;
1643 
1644 	if (!tcp_skb_shift(prev, skb, pcount, len))
1645 		goto fallback;
1646 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1647 		goto out;
1648 
1649 	/* Hole filled allows collapsing with the next as well, this is very
1650 	 * useful when hole on every nth skb pattern happens
1651 	 */
1652 	skb = skb_rb_next(prev);
1653 	if (!skb)
1654 		goto out;
1655 
1656 	if (!skb_can_shift(skb) ||
1657 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1658 	    (mss != tcp_skb_seglen(skb)))
1659 		goto out;
1660 
1661 	if (!tcp_skb_can_collapse(prev, skb))
1662 		goto out;
1663 	len = skb->len;
1664 	pcount = tcp_skb_pcount(skb);
1665 	if (tcp_skb_shift(prev, skb, pcount, len))
1666 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1667 				len, mss, 0);
1668 
1669 out:
1670 	return prev;
1671 
1672 noop:
1673 	return skb;
1674 
1675 fallback:
1676 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1677 	return NULL;
1678 }
1679 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1680 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1681 					struct tcp_sack_block *next_dup,
1682 					struct tcp_sacktag_state *state,
1683 					u32 start_seq, u32 end_seq,
1684 					bool dup_sack_in)
1685 {
1686 	struct tcp_sock *tp = tcp_sk(sk);
1687 	struct sk_buff *tmp;
1688 
1689 	skb_rbtree_walk_from(skb) {
1690 		int in_sack = 0;
1691 		bool dup_sack = dup_sack_in;
1692 
1693 		/* queue is in-order => we can short-circuit the walk early */
1694 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1695 			break;
1696 
1697 		if (next_dup  &&
1698 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1699 			in_sack = tcp_match_skb_to_sack(sk, skb,
1700 							next_dup->start_seq,
1701 							next_dup->end_seq);
1702 			if (in_sack > 0)
1703 				dup_sack = true;
1704 		}
1705 
1706 		/* skb reference here is a bit tricky to get right, since
1707 		 * shifting can eat and free both this skb and the next,
1708 		 * so not even _safe variant of the loop is enough.
1709 		 */
1710 		if (in_sack <= 0) {
1711 			tmp = tcp_shift_skb_data(sk, skb, state,
1712 						 start_seq, end_seq, dup_sack);
1713 			if (tmp) {
1714 				if (tmp != skb) {
1715 					skb = tmp;
1716 					continue;
1717 				}
1718 
1719 				in_sack = 0;
1720 			} else {
1721 				in_sack = tcp_match_skb_to_sack(sk, skb,
1722 								start_seq,
1723 								end_seq);
1724 			}
1725 		}
1726 
1727 		if (unlikely(in_sack < 0))
1728 			break;
1729 
1730 		if (in_sack) {
1731 			TCP_SKB_CB(skb)->sacked =
1732 				tcp_sacktag_one(sk,
1733 						state,
1734 						TCP_SKB_CB(skb)->sacked,
1735 						TCP_SKB_CB(skb)->seq,
1736 						TCP_SKB_CB(skb)->end_seq,
1737 						dup_sack,
1738 						tcp_skb_pcount(skb),
1739 						tcp_skb_timestamp_us(skb));
1740 			tcp_rate_skb_delivered(sk, skb, state->rate);
1741 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1742 				list_del_init(&skb->tcp_tsorted_anchor);
1743 
1744 			if (!before(TCP_SKB_CB(skb)->seq,
1745 				    tcp_highest_sack_seq(tp)))
1746 				tcp_advance_highest_sack(sk, skb);
1747 		}
1748 	}
1749 	return skb;
1750 }
1751 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1752 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1753 {
1754 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1755 	struct sk_buff *skb;
1756 
1757 	while (*p) {
1758 		parent = *p;
1759 		skb = rb_to_skb(parent);
1760 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1761 			p = &parent->rb_left;
1762 			continue;
1763 		}
1764 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1765 			p = &parent->rb_right;
1766 			continue;
1767 		}
1768 		return skb;
1769 	}
1770 	return NULL;
1771 }
1772 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1773 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1774 					u32 skip_to_seq)
1775 {
1776 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1777 		return skb;
1778 
1779 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1780 }
1781 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1782 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1783 						struct sock *sk,
1784 						struct tcp_sack_block *next_dup,
1785 						struct tcp_sacktag_state *state,
1786 						u32 skip_to_seq)
1787 {
1788 	if (!next_dup)
1789 		return skb;
1790 
1791 	if (before(next_dup->start_seq, skip_to_seq)) {
1792 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1793 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1794 				       next_dup->start_seq, next_dup->end_seq,
1795 				       1);
1796 	}
1797 
1798 	return skb;
1799 }
1800 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1801 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1802 {
1803 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1804 }
1805 
1806 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1807 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1808 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1809 {
1810 	struct tcp_sock *tp = tcp_sk(sk);
1811 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1812 				    TCP_SKB_CB(ack_skb)->sacked);
1813 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1814 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1815 	struct tcp_sack_block *cache;
1816 	struct sk_buff *skb;
1817 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1818 	int used_sacks;
1819 	bool found_dup_sack = false;
1820 	int i, j;
1821 	int first_sack_index;
1822 
1823 	state->flag = 0;
1824 	state->reord = tp->snd_nxt;
1825 
1826 	if (!tp->sacked_out)
1827 		tcp_highest_sack_reset(sk);
1828 
1829 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1830 					 num_sacks, prior_snd_una, state);
1831 
1832 	/* Eliminate too old ACKs, but take into
1833 	 * account more or less fresh ones, they can
1834 	 * contain valid SACK info.
1835 	 */
1836 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1837 		return 0;
1838 
1839 	if (!tp->packets_out)
1840 		goto out;
1841 
1842 	used_sacks = 0;
1843 	first_sack_index = 0;
1844 	for (i = 0; i < num_sacks; i++) {
1845 		bool dup_sack = !i && found_dup_sack;
1846 
1847 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1848 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1849 
1850 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1851 					    sp[used_sacks].start_seq,
1852 					    sp[used_sacks].end_seq)) {
1853 			int mib_idx;
1854 
1855 			if (dup_sack) {
1856 				if (!tp->undo_marker)
1857 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1858 				else
1859 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1860 			} else {
1861 				/* Don't count olds caused by ACK reordering */
1862 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1863 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1864 					continue;
1865 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1866 			}
1867 
1868 			NET_INC_STATS(sock_net(sk), mib_idx);
1869 			if (i == 0)
1870 				first_sack_index = -1;
1871 			continue;
1872 		}
1873 
1874 		/* Ignore very old stuff early */
1875 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1876 			if (i == 0)
1877 				first_sack_index = -1;
1878 			continue;
1879 		}
1880 
1881 		used_sacks++;
1882 	}
1883 
1884 	/* order SACK blocks to allow in order walk of the retrans queue */
1885 	for (i = used_sacks - 1; i > 0; i--) {
1886 		for (j = 0; j < i; j++) {
1887 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1888 				swap(sp[j], sp[j + 1]);
1889 
1890 				/* Track where the first SACK block goes to */
1891 				if (j == first_sack_index)
1892 					first_sack_index = j + 1;
1893 			}
1894 		}
1895 	}
1896 
1897 	state->mss_now = tcp_current_mss(sk);
1898 	skb = NULL;
1899 	i = 0;
1900 
1901 	if (!tp->sacked_out) {
1902 		/* It's already past, so skip checking against it */
1903 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1904 	} else {
1905 		cache = tp->recv_sack_cache;
1906 		/* Skip empty blocks in at head of the cache */
1907 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1908 		       !cache->end_seq)
1909 			cache++;
1910 	}
1911 
1912 	while (i < used_sacks) {
1913 		u32 start_seq = sp[i].start_seq;
1914 		u32 end_seq = sp[i].end_seq;
1915 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1916 		struct tcp_sack_block *next_dup = NULL;
1917 
1918 		if (found_dup_sack && ((i + 1) == first_sack_index))
1919 			next_dup = &sp[i + 1];
1920 
1921 		/* Skip too early cached blocks */
1922 		while (tcp_sack_cache_ok(tp, cache) &&
1923 		       !before(start_seq, cache->end_seq))
1924 			cache++;
1925 
1926 		/* Can skip some work by looking recv_sack_cache? */
1927 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1928 		    after(end_seq, cache->start_seq)) {
1929 
1930 			/* Head todo? */
1931 			if (before(start_seq, cache->start_seq)) {
1932 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1933 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1934 						       state,
1935 						       start_seq,
1936 						       cache->start_seq,
1937 						       dup_sack);
1938 			}
1939 
1940 			/* Rest of the block already fully processed? */
1941 			if (!after(end_seq, cache->end_seq))
1942 				goto advance_sp;
1943 
1944 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1945 						       state,
1946 						       cache->end_seq);
1947 
1948 			/* ...tail remains todo... */
1949 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1950 				/* ...but better entrypoint exists! */
1951 				skb = tcp_highest_sack(sk);
1952 				if (!skb)
1953 					break;
1954 				cache++;
1955 				goto walk;
1956 			}
1957 
1958 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1959 			/* Check overlap against next cached too (past this one already) */
1960 			cache++;
1961 			continue;
1962 		}
1963 
1964 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1965 			skb = tcp_highest_sack(sk);
1966 			if (!skb)
1967 				break;
1968 		}
1969 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1970 
1971 walk:
1972 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1973 				       start_seq, end_seq, dup_sack);
1974 
1975 advance_sp:
1976 		i++;
1977 	}
1978 
1979 	/* Clear the head of the cache sack blocks so we can skip it next time */
1980 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1981 		tp->recv_sack_cache[i].start_seq = 0;
1982 		tp->recv_sack_cache[i].end_seq = 0;
1983 	}
1984 	for (j = 0; j < used_sacks; j++)
1985 		tp->recv_sack_cache[i++] = sp[j];
1986 
1987 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1988 		tcp_check_sack_reordering(sk, state->reord, 0);
1989 
1990 	tcp_verify_left_out(tp);
1991 out:
1992 
1993 #if FASTRETRANS_DEBUG > 0
1994 	WARN_ON((int)tp->sacked_out < 0);
1995 	WARN_ON((int)tp->lost_out < 0);
1996 	WARN_ON((int)tp->retrans_out < 0);
1997 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1998 #endif
1999 	return state->flag;
2000 }
2001 
2002 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2003  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2004  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2005 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2006 {
2007 	u32 holes;
2008 
2009 	holes = max(tp->lost_out, 1U);
2010 	holes = min(holes, tp->packets_out);
2011 
2012 	if ((tp->sacked_out + holes) > tp->packets_out) {
2013 		tp->sacked_out = tp->packets_out - holes;
2014 		return true;
2015 	}
2016 	return false;
2017 }
2018 
2019 /* If we receive more dupacks than we expected counting segments
2020  * in assumption of absent reordering, interpret this as reordering.
2021  * The only another reason could be bug in receiver TCP.
2022  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2023 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2024 {
2025 	struct tcp_sock *tp = tcp_sk(sk);
2026 
2027 	if (!tcp_limit_reno_sacked(tp))
2028 		return;
2029 
2030 	tp->reordering = min_t(u32, tp->packets_out + addend,
2031 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2032 	tp->reord_seen++;
2033 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2034 }
2035 
2036 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2037 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2038 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2039 {
2040 	if (num_dupack) {
2041 		struct tcp_sock *tp = tcp_sk(sk);
2042 		u32 prior_sacked = tp->sacked_out;
2043 		s32 delivered;
2044 
2045 		tp->sacked_out += num_dupack;
2046 		tcp_check_reno_reordering(sk, 0);
2047 		delivered = tp->sacked_out - prior_sacked;
2048 		if (delivered > 0)
2049 			tcp_count_delivered(tp, delivered, ece_ack);
2050 		tcp_verify_left_out(tp);
2051 	}
2052 }
2053 
2054 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2055 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2056 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2057 {
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 
2060 	if (acked > 0) {
2061 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2062 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2063 				    ece_ack);
2064 		if (acked - 1 >= tp->sacked_out)
2065 			tp->sacked_out = 0;
2066 		else
2067 			tp->sacked_out -= acked - 1;
2068 	}
2069 	tcp_check_reno_reordering(sk, acked);
2070 	tcp_verify_left_out(tp);
2071 }
2072 
tcp_reset_reno_sack(struct tcp_sock * tp)2073 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2074 {
2075 	tp->sacked_out = 0;
2076 }
2077 
tcp_clear_retrans(struct tcp_sock * tp)2078 void tcp_clear_retrans(struct tcp_sock *tp)
2079 {
2080 	tp->retrans_out = 0;
2081 	tp->lost_out = 0;
2082 	tp->undo_marker = 0;
2083 	tp->undo_retrans = -1;
2084 	tp->sacked_out = 0;
2085 }
2086 
tcp_init_undo(struct tcp_sock * tp)2087 static inline void tcp_init_undo(struct tcp_sock *tp)
2088 {
2089 	tp->undo_marker = tp->snd_una;
2090 	/* Retransmission still in flight may cause DSACKs later. */
2091 	tp->undo_retrans = tp->retrans_out ? : -1;
2092 }
2093 
tcp_is_rack(const struct sock * sk)2094 static bool tcp_is_rack(const struct sock *sk)
2095 {
2096 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2097 		TCP_RACK_LOSS_DETECTION;
2098 }
2099 
2100 /* If we detect SACK reneging, forget all SACK information
2101  * and reset tags completely, otherwise preserve SACKs. If receiver
2102  * dropped its ofo queue, we will know this due to reneging detection.
2103  */
tcp_timeout_mark_lost(struct sock * sk)2104 static void tcp_timeout_mark_lost(struct sock *sk)
2105 {
2106 	struct tcp_sock *tp = tcp_sk(sk);
2107 	struct sk_buff *skb, *head;
2108 	bool is_reneg;			/* is receiver reneging on SACKs? */
2109 
2110 	head = tcp_rtx_queue_head(sk);
2111 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2112 	if (is_reneg) {
2113 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2114 		tp->sacked_out = 0;
2115 		/* Mark SACK reneging until we recover from this loss event. */
2116 		tp->is_sack_reneg = 1;
2117 	} else if (tcp_is_reno(tp)) {
2118 		tcp_reset_reno_sack(tp);
2119 	}
2120 
2121 	skb = head;
2122 	skb_rbtree_walk_from(skb) {
2123 		if (is_reneg)
2124 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2125 		else if (tcp_is_rack(sk) && skb != head &&
2126 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2127 			continue; /* Don't mark recently sent ones lost yet */
2128 		tcp_mark_skb_lost(sk, skb);
2129 	}
2130 	tcp_verify_left_out(tp);
2131 	tcp_clear_all_retrans_hints(tp);
2132 }
2133 
2134 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2135 void tcp_enter_loss(struct sock *sk)
2136 {
2137 	const struct inet_connection_sock *icsk = inet_csk(sk);
2138 	struct tcp_sock *tp = tcp_sk(sk);
2139 	struct net *net = sock_net(sk);
2140 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2141 	u8 reordering;
2142 
2143 	tcp_timeout_mark_lost(sk);
2144 
2145 	/* Reduce ssthresh if it has not yet been made inside this window. */
2146 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2147 	    !after(tp->high_seq, tp->snd_una) ||
2148 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2149 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2150 		tp->prior_cwnd = tp->snd_cwnd;
2151 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2152 		tcp_ca_event(sk, CA_EVENT_LOSS);
2153 		tcp_init_undo(tp);
2154 	}
2155 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2156 	tp->snd_cwnd_cnt   = 0;
2157 	tp->snd_cwnd_stamp = tcp_jiffies32;
2158 
2159 	/* Timeout in disordered state after receiving substantial DUPACKs
2160 	 * suggests that the degree of reordering is over-estimated.
2161 	 */
2162 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2163 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2164 	    tp->sacked_out >= reordering)
2165 		tp->reordering = min_t(unsigned int, tp->reordering,
2166 				       reordering);
2167 
2168 	tcp_set_ca_state(sk, TCP_CA_Loss);
2169 	tp->high_seq = tp->snd_nxt;
2170 	tcp_ecn_queue_cwr(tp);
2171 
2172 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2173 	 * loss recovery is underway except recurring timeout(s) on
2174 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2175 	 */
2176 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2177 		   (new_recovery || icsk->icsk_retransmits) &&
2178 		   !inet_csk(sk)->icsk_mtup.probe_size;
2179 }
2180 
2181 /* If ACK arrived pointing to a remembered SACK, it means that our
2182  * remembered SACKs do not reflect real state of receiver i.e.
2183  * receiver _host_ is heavily congested (or buggy).
2184  *
2185  * To avoid big spurious retransmission bursts due to transient SACK
2186  * scoreboard oddities that look like reneging, we give the receiver a
2187  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2188  * restore sanity to the SACK scoreboard. If the apparent reneging
2189  * persists until this RTO then we'll clear the SACK scoreboard.
2190  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2191 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2192 {
2193 	if (*ack_flag & FLAG_SACK_RENEGING &&
2194 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2195 		struct tcp_sock *tp = tcp_sk(sk);
2196 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2197 					  msecs_to_jiffies(10));
2198 
2199 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2200 					  delay, TCP_RTO_MAX);
2201 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2202 		return true;
2203 	}
2204 	return false;
2205 }
2206 
2207 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2208  * counter when SACK is enabled (without SACK, sacked_out is used for
2209  * that purpose).
2210  *
2211  * With reordering, holes may still be in flight, so RFC3517 recovery
2212  * uses pure sacked_out (total number of SACKed segments) even though
2213  * it violates the RFC that uses duplicate ACKs, often these are equal
2214  * but when e.g. out-of-window ACKs or packet duplication occurs,
2215  * they differ. Since neither occurs due to loss, TCP should really
2216  * ignore them.
2217  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2218 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2219 {
2220 	return tp->sacked_out + 1;
2221 }
2222 
2223 /* Linux NewReno/SACK/ECN state machine.
2224  * --------------------------------------
2225  *
2226  * "Open"	Normal state, no dubious events, fast path.
2227  * "Disorder"   In all the respects it is "Open",
2228  *		but requires a bit more attention. It is entered when
2229  *		we see some SACKs or dupacks. It is split of "Open"
2230  *		mainly to move some processing from fast path to slow one.
2231  * "CWR"	CWND was reduced due to some Congestion Notification event.
2232  *		It can be ECN, ICMP source quench, local device congestion.
2233  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2234  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2235  *
2236  * tcp_fastretrans_alert() is entered:
2237  * - each incoming ACK, if state is not "Open"
2238  * - when arrived ACK is unusual, namely:
2239  *	* SACK
2240  *	* Duplicate ACK.
2241  *	* ECN ECE.
2242  *
2243  * Counting packets in flight is pretty simple.
2244  *
2245  *	in_flight = packets_out - left_out + retrans_out
2246  *
2247  *	packets_out is SND.NXT-SND.UNA counted in packets.
2248  *
2249  *	retrans_out is number of retransmitted segments.
2250  *
2251  *	left_out is number of segments left network, but not ACKed yet.
2252  *
2253  *		left_out = sacked_out + lost_out
2254  *
2255  *     sacked_out: Packets, which arrived to receiver out of order
2256  *		   and hence not ACKed. With SACKs this number is simply
2257  *		   amount of SACKed data. Even without SACKs
2258  *		   it is easy to give pretty reliable estimate of this number,
2259  *		   counting duplicate ACKs.
2260  *
2261  *       lost_out: Packets lost by network. TCP has no explicit
2262  *		   "loss notification" feedback from network (for now).
2263  *		   It means that this number can be only _guessed_.
2264  *		   Actually, it is the heuristics to predict lossage that
2265  *		   distinguishes different algorithms.
2266  *
2267  *	F.e. after RTO, when all the queue is considered as lost,
2268  *	lost_out = packets_out and in_flight = retrans_out.
2269  *
2270  *		Essentially, we have now a few algorithms detecting
2271  *		lost packets.
2272  *
2273  *		If the receiver supports SACK:
2274  *
2275  *		RFC6675/3517: It is the conventional algorithm. A packet is
2276  *		considered lost if the number of higher sequence packets
2277  *		SACKed is greater than or equal the DUPACK thoreshold
2278  *		(reordering). This is implemented in tcp_mark_head_lost and
2279  *		tcp_update_scoreboard.
2280  *
2281  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2282  *		(2017-) that checks timing instead of counting DUPACKs.
2283  *		Essentially a packet is considered lost if it's not S/ACKed
2284  *		after RTT + reordering_window, where both metrics are
2285  *		dynamically measured and adjusted. This is implemented in
2286  *		tcp_rack_mark_lost.
2287  *
2288  *		If the receiver does not support SACK:
2289  *
2290  *		NewReno (RFC6582): in Recovery we assume that one segment
2291  *		is lost (classic Reno). While we are in Recovery and
2292  *		a partial ACK arrives, we assume that one more packet
2293  *		is lost (NewReno). This heuristics are the same in NewReno
2294  *		and SACK.
2295  *
2296  * Really tricky (and requiring careful tuning) part of algorithm
2297  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2298  * The first determines the moment _when_ we should reduce CWND and,
2299  * hence, slow down forward transmission. In fact, it determines the moment
2300  * when we decide that hole is caused by loss, rather than by a reorder.
2301  *
2302  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2303  * holes, caused by lost packets.
2304  *
2305  * And the most logically complicated part of algorithm is undo
2306  * heuristics. We detect false retransmits due to both too early
2307  * fast retransmit (reordering) and underestimated RTO, analyzing
2308  * timestamps and D-SACKs. When we detect that some segments were
2309  * retransmitted by mistake and CWND reduction was wrong, we undo
2310  * window reduction and abort recovery phase. This logic is hidden
2311  * inside several functions named tcp_try_undo_<something>.
2312  */
2313 
2314 /* This function decides, when we should leave Disordered state
2315  * and enter Recovery phase, reducing congestion window.
2316  *
2317  * Main question: may we further continue forward transmission
2318  * with the same cwnd?
2319  */
tcp_time_to_recover(struct sock * sk,int flag)2320 static bool tcp_time_to_recover(struct sock *sk, int flag)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 
2324 	/* Trick#1: The loss is proven. */
2325 	if (tp->lost_out)
2326 		return true;
2327 
2328 	/* Not-A-Trick#2 : Classic rule... */
2329 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2330 		return true;
2331 
2332 	return false;
2333 }
2334 
2335 /* Detect loss in event "A" above by marking head of queue up as lost.
2336  * For RFC3517 SACK, a segment is considered lost if it
2337  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2338  * the maximum SACKed segments to pass before reaching this limit.
2339  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2340 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2341 {
2342 	struct tcp_sock *tp = tcp_sk(sk);
2343 	struct sk_buff *skb;
2344 	int cnt;
2345 	/* Use SACK to deduce losses of new sequences sent during recovery */
2346 	const u32 loss_high = tp->snd_nxt;
2347 
2348 	WARN_ON(packets > tp->packets_out);
2349 	skb = tp->lost_skb_hint;
2350 	if (skb) {
2351 		/* Head already handled? */
2352 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2353 			return;
2354 		cnt = tp->lost_cnt_hint;
2355 	} else {
2356 		skb = tcp_rtx_queue_head(sk);
2357 		cnt = 0;
2358 	}
2359 
2360 	skb_rbtree_walk_from(skb) {
2361 		/* TODO: do this better */
2362 		/* this is not the most efficient way to do this... */
2363 		tp->lost_skb_hint = skb;
2364 		tp->lost_cnt_hint = cnt;
2365 
2366 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2367 			break;
2368 
2369 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370 			cnt += tcp_skb_pcount(skb);
2371 
2372 		if (cnt > packets)
2373 			break;
2374 
2375 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2376 			tcp_mark_skb_lost(sk, skb);
2377 
2378 		if (mark_head)
2379 			break;
2380 	}
2381 	tcp_verify_left_out(tp);
2382 }
2383 
2384 /* Account newly detected lost packet(s) */
2385 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2386 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2387 {
2388 	struct tcp_sock *tp = tcp_sk(sk);
2389 
2390 	if (tcp_is_sack(tp)) {
2391 		int sacked_upto = tp->sacked_out - tp->reordering;
2392 		if (sacked_upto >= 0)
2393 			tcp_mark_head_lost(sk, sacked_upto, 0);
2394 		else if (fast_rexmit)
2395 			tcp_mark_head_lost(sk, 1, 1);
2396 	}
2397 }
2398 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2399 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2400 {
2401 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2402 	       before(tp->rx_opt.rcv_tsecr, when);
2403 }
2404 
2405 /* skb is spurious retransmitted if the returned timestamp echo
2406  * reply is prior to the skb transmission time
2407  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2408 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2409 				     const struct sk_buff *skb)
2410 {
2411 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2412 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2413 }
2414 
2415 /* Nothing was retransmitted or returned timestamp is less
2416  * than timestamp of the first retransmission.
2417  */
tcp_packet_delayed(const struct tcp_sock * tp)2418 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2419 {
2420 	return tp->retrans_stamp &&
2421 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2422 }
2423 
2424 /* Undo procedures. */
2425 
2426 /* We can clear retrans_stamp when there are no retransmissions in the
2427  * window. It would seem that it is trivially available for us in
2428  * tp->retrans_out, however, that kind of assumptions doesn't consider
2429  * what will happen if errors occur when sending retransmission for the
2430  * second time. ...It could the that such segment has only
2431  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432  * the head skb is enough except for some reneging corner cases that
2433  * are not worth the effort.
2434  *
2435  * Main reason for all this complexity is the fact that connection dying
2436  * time now depends on the validity of the retrans_stamp, in particular,
2437  * that successive retransmissions of a segment must not advance
2438  * retrans_stamp under any conditions.
2439  */
tcp_any_retrans_done(const struct sock * sk)2440 static bool tcp_any_retrans_done(const struct sock *sk)
2441 {
2442 	const struct tcp_sock *tp = tcp_sk(sk);
2443 	struct sk_buff *skb;
2444 
2445 	if (tp->retrans_out)
2446 		return true;
2447 
2448 	skb = tcp_rtx_queue_head(sk);
2449 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
DBGUNDO(struct sock * sk,const char * msg)2455 static void DBGUNDO(struct sock *sk, const char *msg)
2456 {
2457 #if FASTRETRANS_DEBUG > 1
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 	struct inet_sock *inet = inet_sk(sk);
2460 
2461 	if (sk->sk_family == AF_INET) {
2462 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2463 			 msg,
2464 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2465 			 tp->snd_cwnd, tcp_left_out(tp),
2466 			 tp->snd_ssthresh, tp->prior_ssthresh,
2467 			 tp->packets_out);
2468 	}
2469 #if IS_ENABLED(CONFIG_IPV6)
2470 	else if (sk->sk_family == AF_INET6) {
2471 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2472 			 msg,
2473 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2474 			 tp->snd_cwnd, tcp_left_out(tp),
2475 			 tp->snd_ssthresh, tp->prior_ssthresh,
2476 			 tp->packets_out);
2477 	}
2478 #endif
2479 #endif
2480 }
2481 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2482 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 
2486 	if (unmark_loss) {
2487 		struct sk_buff *skb;
2488 
2489 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2490 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2491 		}
2492 		tp->lost_out = 0;
2493 		tcp_clear_all_retrans_hints(tp);
2494 	}
2495 
2496 	if (tp->prior_ssthresh) {
2497 		const struct inet_connection_sock *icsk = inet_csk(sk);
2498 
2499 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2500 
2501 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2502 			tp->snd_ssthresh = tp->prior_ssthresh;
2503 			tcp_ecn_withdraw_cwr(tp);
2504 		}
2505 	}
2506 	tp->snd_cwnd_stamp = tcp_jiffies32;
2507 	tp->undo_marker = 0;
2508 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2509 }
2510 
tcp_may_undo(const struct tcp_sock * tp)2511 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2512 {
2513 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2514 }
2515 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2516 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2521 		/* Hold old state until something *above* high_seq
2522 		 * is ACKed. For Reno it is MUST to prevent false
2523 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2524 		if (!tcp_any_retrans_done(sk))
2525 			tp->retrans_stamp = 0;
2526 		return true;
2527 	}
2528 	return false;
2529 }
2530 
2531 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2532 static bool tcp_try_undo_recovery(struct sock *sk)
2533 {
2534 	struct tcp_sock *tp = tcp_sk(sk);
2535 
2536 	if (tcp_may_undo(tp)) {
2537 		int mib_idx;
2538 
2539 		/* Happy end! We did not retransmit anything
2540 		 * or our original transmission succeeded.
2541 		 */
2542 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2543 		tcp_undo_cwnd_reduction(sk, false);
2544 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2545 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2546 		else
2547 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2548 
2549 		NET_INC_STATS(sock_net(sk), mib_idx);
2550 	} else if (tp->rack.reo_wnd_persist) {
2551 		tp->rack.reo_wnd_persist--;
2552 	}
2553 	if (tcp_is_non_sack_preventing_reopen(sk))
2554 		return true;
2555 	tcp_set_ca_state(sk, TCP_CA_Open);
2556 	tp->is_sack_reneg = 0;
2557 	return false;
2558 }
2559 
2560 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2561 static bool tcp_try_undo_dsack(struct sock *sk)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	if (tp->undo_marker && !tp->undo_retrans) {
2566 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2567 					       tp->rack.reo_wnd_persist + 1);
2568 		DBGUNDO(sk, "D-SACK");
2569 		tcp_undo_cwnd_reduction(sk, false);
2570 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2571 		return true;
2572 	}
2573 	return false;
2574 }
2575 
2576 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2577 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2578 {
2579 	struct tcp_sock *tp = tcp_sk(sk);
2580 
2581 	if (frto_undo || tcp_may_undo(tp)) {
2582 		tcp_undo_cwnd_reduction(sk, true);
2583 
2584 		DBGUNDO(sk, "partial loss");
2585 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2586 		if (frto_undo)
2587 			NET_INC_STATS(sock_net(sk),
2588 					LINUX_MIB_TCPSPURIOUSRTOS);
2589 		inet_csk(sk)->icsk_retransmits = 0;
2590 		if (tcp_is_non_sack_preventing_reopen(sk))
2591 			return true;
2592 		if (frto_undo || tcp_is_sack(tp)) {
2593 			tcp_set_ca_state(sk, TCP_CA_Open);
2594 			tp->is_sack_reneg = 0;
2595 		}
2596 		return true;
2597 	}
2598 	return false;
2599 }
2600 
2601 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2602  * It computes the number of packets to send (sndcnt) based on packets newly
2603  * delivered:
2604  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2605  *	cwnd reductions across a full RTT.
2606  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2607  *      But when the retransmits are acked without further losses, PRR
2608  *      slow starts cwnd up to ssthresh to speed up the recovery.
2609  */
tcp_init_cwnd_reduction(struct sock * sk)2610 static void tcp_init_cwnd_reduction(struct sock *sk)
2611 {
2612 	struct tcp_sock *tp = tcp_sk(sk);
2613 
2614 	tp->high_seq = tp->snd_nxt;
2615 	tp->tlp_high_seq = 0;
2616 	tp->snd_cwnd_cnt = 0;
2617 	tp->prior_cwnd = tp->snd_cwnd;
2618 	tp->prr_delivered = 0;
2619 	tp->prr_out = 0;
2620 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2621 	tcp_ecn_queue_cwr(tp);
2622 }
2623 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2624 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2625 {
2626 	struct tcp_sock *tp = tcp_sk(sk);
2627 	int sndcnt = 0;
2628 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2629 
2630 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2631 		return;
2632 
2633 	tp->prr_delivered += newly_acked_sacked;
2634 	if (delta < 0) {
2635 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2636 			       tp->prior_cwnd - 1;
2637 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2638 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2639 		   FLAG_RETRANS_DATA_ACKED) {
2640 		sndcnt = min_t(int, delta,
2641 			       max_t(int, tp->prr_delivered - tp->prr_out,
2642 				     newly_acked_sacked) + 1);
2643 	} else {
2644 		sndcnt = min(delta, newly_acked_sacked);
2645 	}
2646 	/* Force a fast retransmit upon entering fast recovery */
2647 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2649 }
2650 
tcp_end_cwnd_reduction(struct sock * sk)2651 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 
2655 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656 		return;
2657 
2658 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661 		tp->snd_cwnd = tp->snd_ssthresh;
2662 		tp->snd_cwnd_stamp = tcp_jiffies32;
2663 	}
2664 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665 }
2666 
2667 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2668 void tcp_enter_cwr(struct sock *sk)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 
2672 	tp->prior_ssthresh = 0;
2673 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674 		tp->undo_marker = 0;
2675 		tcp_init_cwnd_reduction(sk);
2676 		tcp_set_ca_state(sk, TCP_CA_CWR);
2677 	}
2678 }
2679 EXPORT_SYMBOL(tcp_enter_cwr);
2680 
tcp_try_keep_open(struct sock * sk)2681 static void tcp_try_keep_open(struct sock *sk)
2682 {
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 	int state = TCP_CA_Open;
2685 
2686 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687 		state = TCP_CA_Disorder;
2688 
2689 	if (inet_csk(sk)->icsk_ca_state != state) {
2690 		tcp_set_ca_state(sk, state);
2691 		tp->high_seq = tp->snd_nxt;
2692 	}
2693 }
2694 
tcp_try_to_open(struct sock * sk,int flag)2695 static void tcp_try_to_open(struct sock *sk, int flag)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 
2699 	tcp_verify_left_out(tp);
2700 
2701 	if (!tcp_any_retrans_done(sk))
2702 		tp->retrans_stamp = 0;
2703 
2704 	if (flag & FLAG_ECE)
2705 		tcp_enter_cwr(sk);
2706 
2707 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708 		tcp_try_keep_open(sk);
2709 	}
2710 }
2711 
tcp_mtup_probe_failed(struct sock * sk)2712 static void tcp_mtup_probe_failed(struct sock *sk)
2713 {
2714 	struct inet_connection_sock *icsk = inet_csk(sk);
2715 
2716 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717 	icsk->icsk_mtup.probe_size = 0;
2718 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719 }
2720 
tcp_mtup_probe_success(struct sock * sk)2721 static void tcp_mtup_probe_success(struct sock *sk)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 	struct inet_connection_sock *icsk = inet_csk(sk);
2725 	u64 val;
2726 
2727 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728 
2729 	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2730 	do_div(val, icsk->icsk_mtup.probe_size);
2731 	WARN_ON_ONCE((u32)val != val);
2732 	tp->snd_cwnd = max_t(u32, 1U, val);
2733 
2734 	tp->snd_cwnd_cnt = 0;
2735 	tp->snd_cwnd_stamp = tcp_jiffies32;
2736 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737 
2738 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739 	icsk->icsk_mtup.probe_size = 0;
2740 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742 }
2743 
2744 /* Do a simple retransmit without using the backoff mechanisms in
2745  * tcp_timer. This is used for path mtu discovery.
2746  * The socket is already locked here.
2747  */
tcp_simple_retransmit(struct sock * sk)2748 void tcp_simple_retransmit(struct sock *sk)
2749 {
2750 	const struct inet_connection_sock *icsk = inet_csk(sk);
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	struct sk_buff *skb;
2753 	unsigned int mss = tcp_current_mss(sk);
2754 
2755 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2756 		if (tcp_skb_seglen(skb) > mss)
2757 			tcp_mark_skb_lost(sk, skb);
2758 	}
2759 
2760 	tcp_clear_retrans_hints_partial(tp);
2761 
2762 	if (!tp->lost_out)
2763 		return;
2764 
2765 	if (tcp_is_reno(tp))
2766 		tcp_limit_reno_sacked(tp);
2767 
2768 	tcp_verify_left_out(tp);
2769 
2770 	/* Don't muck with the congestion window here.
2771 	 * Reason is that we do not increase amount of _data_
2772 	 * in network, but units changed and effective
2773 	 * cwnd/ssthresh really reduced now.
2774 	 */
2775 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2776 		tp->high_seq = tp->snd_nxt;
2777 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2778 		tp->prior_ssthresh = 0;
2779 		tp->undo_marker = 0;
2780 		tcp_set_ca_state(sk, TCP_CA_Loss);
2781 	}
2782 	tcp_xmit_retransmit_queue(sk);
2783 }
2784 EXPORT_SYMBOL(tcp_simple_retransmit);
2785 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2786 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2787 {
2788 	struct tcp_sock *tp = tcp_sk(sk);
2789 	int mib_idx;
2790 
2791 	if (tcp_is_reno(tp))
2792 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2793 	else
2794 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2795 
2796 	NET_INC_STATS(sock_net(sk), mib_idx);
2797 
2798 	tp->prior_ssthresh = 0;
2799 	tcp_init_undo(tp);
2800 
2801 	if (!tcp_in_cwnd_reduction(sk)) {
2802 		if (!ece_ack)
2803 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2804 		tcp_init_cwnd_reduction(sk);
2805 	}
2806 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2807 }
2808 
2809 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2810  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2811  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2812 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2813 			     int *rexmit)
2814 {
2815 	struct tcp_sock *tp = tcp_sk(sk);
2816 	bool recovered = !before(tp->snd_una, tp->high_seq);
2817 
2818 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2819 	    tcp_try_undo_loss(sk, false))
2820 		return;
2821 
2822 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2823 		/* Step 3.b. A timeout is spurious if not all data are
2824 		 * lost, i.e., never-retransmitted data are (s)acked.
2825 		 */
2826 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2827 		    tcp_try_undo_loss(sk, true))
2828 			return;
2829 
2830 		if (after(tp->snd_nxt, tp->high_seq)) {
2831 			if (flag & FLAG_DATA_SACKED || num_dupack)
2832 				tp->frto = 0; /* Step 3.a. loss was real */
2833 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2834 			tp->high_seq = tp->snd_nxt;
2835 			/* Step 2.b. Try send new data (but deferred until cwnd
2836 			 * is updated in tcp_ack()). Otherwise fall back to
2837 			 * the conventional recovery.
2838 			 */
2839 			if (!tcp_write_queue_empty(sk) &&
2840 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2841 				*rexmit = REXMIT_NEW;
2842 				return;
2843 			}
2844 			tp->frto = 0;
2845 		}
2846 	}
2847 
2848 	if (recovered) {
2849 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2850 		tcp_try_undo_recovery(sk);
2851 		return;
2852 	}
2853 	if (tcp_is_reno(tp)) {
2854 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2855 		 * delivered. Lower inflight to clock out (re)tranmissions.
2856 		 */
2857 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2858 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2859 		else if (flag & FLAG_SND_UNA_ADVANCED)
2860 			tcp_reset_reno_sack(tp);
2861 	}
2862 	*rexmit = REXMIT_LOST;
2863 }
2864 
tcp_force_fast_retransmit(struct sock * sk)2865 static bool tcp_force_fast_retransmit(struct sock *sk)
2866 {
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 
2869 	return after(tcp_highest_sack_seq(tp),
2870 		     tp->snd_una + tp->reordering * tp->mss_cache);
2871 }
2872 
2873 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2874 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2875 				 bool *do_lost)
2876 {
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 
2879 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2880 		/* Plain luck! Hole if filled with delayed
2881 		 * packet, rather than with a retransmit. Check reordering.
2882 		 */
2883 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2884 
2885 		/* We are getting evidence that the reordering degree is higher
2886 		 * than we realized. If there are no retransmits out then we
2887 		 * can undo. Otherwise we clock out new packets but do not
2888 		 * mark more packets lost or retransmit more.
2889 		 */
2890 		if (tp->retrans_out)
2891 			return true;
2892 
2893 		if (!tcp_any_retrans_done(sk))
2894 			tp->retrans_stamp = 0;
2895 
2896 		DBGUNDO(sk, "partial recovery");
2897 		tcp_undo_cwnd_reduction(sk, true);
2898 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2899 		tcp_try_keep_open(sk);
2900 	} else {
2901 		/* Partial ACK arrived. Force fast retransmit. */
2902 		*do_lost = tcp_force_fast_retransmit(sk);
2903 	}
2904 	return false;
2905 }
2906 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2907 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2908 {
2909 	struct tcp_sock *tp = tcp_sk(sk);
2910 
2911 	if (tcp_rtx_queue_empty(sk))
2912 		return;
2913 
2914 	if (unlikely(tcp_is_reno(tp))) {
2915 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2916 	} else if (tcp_is_rack(sk)) {
2917 		u32 prior_retrans = tp->retrans_out;
2918 
2919 		if (tcp_rack_mark_lost(sk))
2920 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2921 		if (prior_retrans > tp->retrans_out)
2922 			*ack_flag |= FLAG_LOST_RETRANS;
2923 	}
2924 }
2925 
2926 /* Process an event, which can update packets-in-flight not trivially.
2927  * Main goal of this function is to calculate new estimate for left_out,
2928  * taking into account both packets sitting in receiver's buffer and
2929  * packets lost by network.
2930  *
2931  * Besides that it updates the congestion state when packet loss or ECN
2932  * is detected. But it does not reduce the cwnd, it is done by the
2933  * congestion control later.
2934  *
2935  * It does _not_ decide what to send, it is made in function
2936  * tcp_xmit_retransmit_queue().
2937  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2938 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2939 				  int num_dupack, int *ack_flag, int *rexmit)
2940 {
2941 	struct inet_connection_sock *icsk = inet_csk(sk);
2942 	struct tcp_sock *tp = tcp_sk(sk);
2943 	int fast_rexmit = 0, flag = *ack_flag;
2944 	bool ece_ack = flag & FLAG_ECE;
2945 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2946 				      tcp_force_fast_retransmit(sk));
2947 
2948 	if (!tp->packets_out && tp->sacked_out)
2949 		tp->sacked_out = 0;
2950 
2951 	/* Now state machine starts.
2952 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953 	if (ece_ack)
2954 		tp->prior_ssthresh = 0;
2955 
2956 	/* B. In all the states check for reneging SACKs. */
2957 	if (tcp_check_sack_reneging(sk, ack_flag))
2958 		return;
2959 
2960 	/* C. Check consistency of the current state. */
2961 	tcp_verify_left_out(tp);
2962 
2963 	/* D. Check state exit conditions. State can be terminated
2964 	 *    when high_seq is ACKed. */
2965 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2966 		WARN_ON(tp->retrans_out != 0);
2967 		tp->retrans_stamp = 0;
2968 	} else if (!before(tp->snd_una, tp->high_seq)) {
2969 		switch (icsk->icsk_ca_state) {
2970 		case TCP_CA_CWR:
2971 			/* CWR is to be held something *above* high_seq
2972 			 * is ACKed for CWR bit to reach receiver. */
2973 			if (tp->snd_una != tp->high_seq) {
2974 				tcp_end_cwnd_reduction(sk);
2975 				tcp_set_ca_state(sk, TCP_CA_Open);
2976 			}
2977 			break;
2978 
2979 		case TCP_CA_Recovery:
2980 			if (tcp_is_reno(tp))
2981 				tcp_reset_reno_sack(tp);
2982 			if (tcp_try_undo_recovery(sk))
2983 				return;
2984 			tcp_end_cwnd_reduction(sk);
2985 			break;
2986 		}
2987 	}
2988 
2989 	/* E. Process state. */
2990 	switch (icsk->icsk_ca_state) {
2991 	case TCP_CA_Recovery:
2992 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2993 			if (tcp_is_reno(tp))
2994 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2995 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2996 			return;
2997 
2998 		if (tcp_try_undo_dsack(sk))
2999 			tcp_try_keep_open(sk);
3000 
3001 		tcp_identify_packet_loss(sk, ack_flag);
3002 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3003 			if (!tcp_time_to_recover(sk, flag))
3004 				return;
3005 			/* Undo reverts the recovery state. If loss is evident,
3006 			 * starts a new recovery (e.g. reordering then loss);
3007 			 */
3008 			tcp_enter_recovery(sk, ece_ack);
3009 		}
3010 		break;
3011 	case TCP_CA_Loss:
3012 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3013 		tcp_identify_packet_loss(sk, ack_flag);
3014 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3015 		      (*ack_flag & FLAG_LOST_RETRANS)))
3016 			return;
3017 		/* Change state if cwnd is undone or retransmits are lost */
3018 		fallthrough;
3019 	default:
3020 		if (tcp_is_reno(tp)) {
3021 			if (flag & FLAG_SND_UNA_ADVANCED)
3022 				tcp_reset_reno_sack(tp);
3023 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3024 		}
3025 
3026 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3027 			tcp_try_undo_dsack(sk);
3028 
3029 		tcp_identify_packet_loss(sk, ack_flag);
3030 		if (!tcp_time_to_recover(sk, flag)) {
3031 			tcp_try_to_open(sk, flag);
3032 			return;
3033 		}
3034 
3035 		/* MTU probe failure: don't reduce cwnd */
3036 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037 		    icsk->icsk_mtup.probe_size &&
3038 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039 			tcp_mtup_probe_failed(sk);
3040 			/* Restores the reduction we did in tcp_mtup_probe() */
3041 			tp->snd_cwnd++;
3042 			tcp_simple_retransmit(sk);
3043 			return;
3044 		}
3045 
3046 		/* Otherwise enter Recovery state */
3047 		tcp_enter_recovery(sk, ece_ack);
3048 		fast_rexmit = 1;
3049 	}
3050 
3051 	if (!tcp_is_rack(sk) && do_lost)
3052 		tcp_update_scoreboard(sk, fast_rexmit);
3053 	*rexmit = REXMIT_LOST;
3054 }
3055 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3056 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3057 {
3058 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3059 	struct tcp_sock *tp = tcp_sk(sk);
3060 
3061 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3062 		/* If the remote keeps returning delayed ACKs, eventually
3063 		 * the min filter would pick it up and overestimate the
3064 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3065 		 */
3066 		return;
3067 	}
3068 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3069 			   rtt_us ? : jiffies_to_usecs(1));
3070 }
3071 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3072 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3073 			       long seq_rtt_us, long sack_rtt_us,
3074 			       long ca_rtt_us, struct rate_sample *rs)
3075 {
3076 	const struct tcp_sock *tp = tcp_sk(sk);
3077 
3078 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3079 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3080 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3081 	 * is acked (RFC6298).
3082 	 */
3083 	if (seq_rtt_us < 0)
3084 		seq_rtt_us = sack_rtt_us;
3085 
3086 	/* RTTM Rule: A TSecr value received in a segment is used to
3087 	 * update the averaged RTT measurement only if the segment
3088 	 * acknowledges some new data, i.e., only if it advances the
3089 	 * left edge of the send window.
3090 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3091 	 */
3092 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3093 	    flag & FLAG_ACKED) {
3094 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3095 
3096 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3097 			if (!delta)
3098 				delta = 1;
3099 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3100 			ca_rtt_us = seq_rtt_us;
3101 		}
3102 	}
3103 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3104 	if (seq_rtt_us < 0)
3105 		return false;
3106 
3107 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3108 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3109 	 * values will be skipped with the seq_rtt_us < 0 check above.
3110 	 */
3111 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3112 	tcp_rtt_estimator(sk, seq_rtt_us);
3113 	tcp_set_rto(sk);
3114 
3115 	/* RFC6298: only reset backoff on valid RTT measurement. */
3116 	inet_csk(sk)->icsk_backoff = 0;
3117 	return true;
3118 }
3119 
3120 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3121 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3122 {
3123 	struct rate_sample rs;
3124 	long rtt_us = -1L;
3125 
3126 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3127 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3128 
3129 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3130 }
3131 
3132 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3133 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3134 {
3135 	const struct inet_connection_sock *icsk = inet_csk(sk);
3136 
3137 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3138 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3139 }
3140 
3141 /* Restart timer after forward progress on connection.
3142  * RFC2988 recommends to restart timer to now+rto.
3143  */
tcp_rearm_rto(struct sock * sk)3144 void tcp_rearm_rto(struct sock *sk)
3145 {
3146 	const struct inet_connection_sock *icsk = inet_csk(sk);
3147 	struct tcp_sock *tp = tcp_sk(sk);
3148 
3149 	/* If the retrans timer is currently being used by Fast Open
3150 	 * for SYN-ACK retrans purpose, stay put.
3151 	 */
3152 	if (rcu_access_pointer(tp->fastopen_rsk))
3153 		return;
3154 
3155 	if (!tp->packets_out) {
3156 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3157 	} else {
3158 		u32 rto = inet_csk(sk)->icsk_rto;
3159 		/* Offset the time elapsed after installing regular RTO */
3160 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3161 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3162 			s64 delta_us = tcp_rto_delta_us(sk);
3163 			/* delta_us may not be positive if the socket is locked
3164 			 * when the retrans timer fires and is rescheduled.
3165 			 */
3166 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3167 		}
3168 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3169 				     TCP_RTO_MAX);
3170 	}
3171 }
3172 
3173 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3174 static void tcp_set_xmit_timer(struct sock *sk)
3175 {
3176 	if (!tcp_schedule_loss_probe(sk, true))
3177 		tcp_rearm_rto(sk);
3178 }
3179 
3180 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3181 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3182 {
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 	u32 packets_acked;
3185 
3186 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3187 
3188 	packets_acked = tcp_skb_pcount(skb);
3189 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3190 		return 0;
3191 	packets_acked -= tcp_skb_pcount(skb);
3192 
3193 	if (packets_acked) {
3194 		BUG_ON(tcp_skb_pcount(skb) == 0);
3195 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3196 	}
3197 
3198 	return packets_acked;
3199 }
3200 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3201 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3202 			   u32 prior_snd_una)
3203 {
3204 	const struct skb_shared_info *shinfo;
3205 
3206 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3207 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3208 		return;
3209 
3210 	shinfo = skb_shinfo(skb);
3211 	if (!before(shinfo->tskey, prior_snd_una) &&
3212 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3213 		tcp_skb_tsorted_save(skb) {
3214 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3215 		} tcp_skb_tsorted_restore(skb);
3216 	}
3217 }
3218 
3219 /* Remove acknowledged frames from the retransmission queue. If our packet
3220  * is before the ack sequence we can discard it as it's confirmed to have
3221  * arrived at the other end.
3222  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3223 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3224 			       u32 prior_snd_una,
3225 			       struct tcp_sacktag_state *sack, bool ece_ack)
3226 {
3227 	const struct inet_connection_sock *icsk = inet_csk(sk);
3228 	u64 first_ackt, last_ackt;
3229 	struct tcp_sock *tp = tcp_sk(sk);
3230 	u32 prior_sacked = tp->sacked_out;
3231 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3232 	struct sk_buff *skb, *next;
3233 	bool fully_acked = true;
3234 	long sack_rtt_us = -1L;
3235 	long seq_rtt_us = -1L;
3236 	long ca_rtt_us = -1L;
3237 	u32 pkts_acked = 0;
3238 	u32 last_in_flight = 0;
3239 	bool rtt_update;
3240 	int flag = 0;
3241 
3242 	first_ackt = 0;
3243 
3244 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3245 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3246 		const u32 start_seq = scb->seq;
3247 		u8 sacked = scb->sacked;
3248 		u32 acked_pcount;
3249 
3250 		/* Determine how many packets and what bytes were acked, tso and else */
3251 		if (after(scb->end_seq, tp->snd_una)) {
3252 			if (tcp_skb_pcount(skb) == 1 ||
3253 			    !after(tp->snd_una, scb->seq))
3254 				break;
3255 
3256 			acked_pcount = tcp_tso_acked(sk, skb);
3257 			if (!acked_pcount)
3258 				break;
3259 			fully_acked = false;
3260 		} else {
3261 			acked_pcount = tcp_skb_pcount(skb);
3262 		}
3263 
3264 		if (unlikely(sacked & TCPCB_RETRANS)) {
3265 			if (sacked & TCPCB_SACKED_RETRANS)
3266 				tp->retrans_out -= acked_pcount;
3267 			flag |= FLAG_RETRANS_DATA_ACKED;
3268 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3269 			last_ackt = tcp_skb_timestamp_us(skb);
3270 			WARN_ON_ONCE(last_ackt == 0);
3271 			if (!first_ackt)
3272 				first_ackt = last_ackt;
3273 
3274 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3275 			if (before(start_seq, reord))
3276 				reord = start_seq;
3277 			if (!after(scb->end_seq, tp->high_seq))
3278 				flag |= FLAG_ORIG_SACK_ACKED;
3279 		}
3280 
3281 		if (sacked & TCPCB_SACKED_ACKED) {
3282 			tp->sacked_out -= acked_pcount;
3283 		} else if (tcp_is_sack(tp)) {
3284 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 			if (!tcp_skb_spurious_retrans(tp, skb))
3286 				tcp_rack_advance(tp, sacked, scb->end_seq,
3287 						 tcp_skb_timestamp_us(skb));
3288 		}
3289 		if (sacked & TCPCB_LOST)
3290 			tp->lost_out -= acked_pcount;
3291 
3292 		tp->packets_out -= acked_pcount;
3293 		pkts_acked += acked_pcount;
3294 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3295 
3296 		/* Initial outgoing SYN's get put onto the write_queue
3297 		 * just like anything else we transmit.  It is not
3298 		 * true data, and if we misinform our callers that
3299 		 * this ACK acks real data, we will erroneously exit
3300 		 * connection startup slow start one packet too
3301 		 * quickly.  This is severely frowned upon behavior.
3302 		 */
3303 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 			flag |= FLAG_DATA_ACKED;
3305 		} else {
3306 			flag |= FLAG_SYN_ACKED;
3307 			tp->retrans_stamp = 0;
3308 		}
3309 
3310 		if (!fully_acked)
3311 			break;
3312 
3313 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3314 
3315 		next = skb_rb_next(skb);
3316 		if (unlikely(skb == tp->retransmit_skb_hint))
3317 			tp->retransmit_skb_hint = NULL;
3318 		if (unlikely(skb == tp->lost_skb_hint))
3319 			tp->lost_skb_hint = NULL;
3320 		tcp_highest_sack_replace(sk, skb, next);
3321 		tcp_rtx_queue_unlink_and_free(skb, sk);
3322 	}
3323 
3324 	if (!skb)
3325 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3326 
3327 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3328 		tp->snd_up = tp->snd_una;
3329 
3330 	if (skb) {
3331 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3332 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3333 			flag |= FLAG_SACK_RENEGING;
3334 	}
3335 
3336 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3337 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3338 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3339 
3340 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3341 		    last_in_flight && !prior_sacked && fully_acked &&
3342 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3343 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3344 			/* Conservatively mark a delayed ACK. It's typically
3345 			 * from a lone runt packet over the round trip to
3346 			 * a receiver w/o out-of-order or CE events.
3347 			 */
3348 			flag |= FLAG_ACK_MAYBE_DELAYED;
3349 		}
3350 	}
3351 	if (sack->first_sackt) {
3352 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3353 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3354 	}
3355 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3356 					ca_rtt_us, sack->rate);
3357 
3358 	if (flag & FLAG_ACKED) {
3359 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3360 		if (unlikely(icsk->icsk_mtup.probe_size &&
3361 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3362 			tcp_mtup_probe_success(sk);
3363 		}
3364 
3365 		if (tcp_is_reno(tp)) {
3366 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3367 
3368 			/* If any of the cumulatively ACKed segments was
3369 			 * retransmitted, non-SACK case cannot confirm that
3370 			 * progress was due to original transmission due to
3371 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3372 			 * the packets may have been never retransmitted.
3373 			 */
3374 			if (flag & FLAG_RETRANS_DATA_ACKED)
3375 				flag &= ~FLAG_ORIG_SACK_ACKED;
3376 		} else {
3377 			int delta;
3378 
3379 			/* Non-retransmitted hole got filled? That's reordering */
3380 			if (before(reord, prior_fack))
3381 				tcp_check_sack_reordering(sk, reord, 0);
3382 
3383 			delta = prior_sacked - tp->sacked_out;
3384 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3385 		}
3386 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3387 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3388 						    tcp_skb_timestamp_us(skb))) {
3389 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3390 		 * after when the head was last (re)transmitted. Otherwise the
3391 		 * timeout may continue to extend in loss recovery.
3392 		 */
3393 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3394 	}
3395 
3396 	if (icsk->icsk_ca_ops->pkts_acked) {
3397 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3398 					     .rtt_us = sack->rate->rtt_us,
3399 					     .in_flight = last_in_flight };
3400 
3401 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3402 	}
3403 
3404 #if FASTRETRANS_DEBUG > 0
3405 	WARN_ON((int)tp->sacked_out < 0);
3406 	WARN_ON((int)tp->lost_out < 0);
3407 	WARN_ON((int)tp->retrans_out < 0);
3408 	if (!tp->packets_out && tcp_is_sack(tp)) {
3409 		icsk = inet_csk(sk);
3410 		if (tp->lost_out) {
3411 			pr_debug("Leak l=%u %d\n",
3412 				 tp->lost_out, icsk->icsk_ca_state);
3413 			tp->lost_out = 0;
3414 		}
3415 		if (tp->sacked_out) {
3416 			pr_debug("Leak s=%u %d\n",
3417 				 tp->sacked_out, icsk->icsk_ca_state);
3418 			tp->sacked_out = 0;
3419 		}
3420 		if (tp->retrans_out) {
3421 			pr_debug("Leak r=%u %d\n",
3422 				 tp->retrans_out, icsk->icsk_ca_state);
3423 			tp->retrans_out = 0;
3424 		}
3425 	}
3426 #endif
3427 	return flag;
3428 }
3429 
tcp_ack_probe(struct sock * sk)3430 static void tcp_ack_probe(struct sock *sk)
3431 {
3432 	struct inet_connection_sock *icsk = inet_csk(sk);
3433 	struct sk_buff *head = tcp_send_head(sk);
3434 	const struct tcp_sock *tp = tcp_sk(sk);
3435 
3436 	/* Was it a usable window open? */
3437 	if (!head)
3438 		return;
3439 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3440 		icsk->icsk_backoff = 0;
3441 		icsk->icsk_probes_tstamp = 0;
3442 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3443 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3444 		 * This function is not for random using!
3445 		 */
3446 	} else {
3447 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3448 
3449 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3450 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3451 	}
3452 }
3453 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3454 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3455 {
3456 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3457 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3458 }
3459 
3460 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3461 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3462 {
3463 	/* If reordering is high then always grow cwnd whenever data is
3464 	 * delivered regardless of its ordering. Otherwise stay conservative
3465 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3466 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3467 	 * cwnd in tcp_fastretrans_alert() based on more states.
3468 	 */
3469 	if (tcp_sk(sk)->reordering >
3470 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3471 		return flag & FLAG_FORWARD_PROGRESS;
3472 
3473 	return flag & FLAG_DATA_ACKED;
3474 }
3475 
3476 /* The "ultimate" congestion control function that aims to replace the rigid
3477  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3478  * It's called toward the end of processing an ACK with precise rate
3479  * information. All transmission or retransmission are delayed afterwards.
3480  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3481 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3482 			     int flag, const struct rate_sample *rs)
3483 {
3484 	const struct inet_connection_sock *icsk = inet_csk(sk);
3485 
3486 	if (icsk->icsk_ca_ops->cong_control) {
3487 		icsk->icsk_ca_ops->cong_control(sk, rs);
3488 		return;
3489 	}
3490 
3491 	if (tcp_in_cwnd_reduction(sk)) {
3492 		/* Reduce cwnd if state mandates */
3493 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3494 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3495 		/* Advance cwnd if state allows */
3496 		tcp_cong_avoid(sk, ack, acked_sacked);
3497 	}
3498 	tcp_update_pacing_rate(sk);
3499 }
3500 
3501 /* Check that window update is acceptable.
3502  * The function assumes that snd_una<=ack<=snd_next.
3503  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3504 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3505 					const u32 ack, const u32 ack_seq,
3506 					const u32 nwin)
3507 {
3508 	return	after(ack, tp->snd_una) ||
3509 		after(ack_seq, tp->snd_wl1) ||
3510 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3511 }
3512 
3513 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3514 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3515 {
3516 	u32 delta = ack - tp->snd_una;
3517 
3518 	sock_owned_by_me((struct sock *)tp);
3519 	tp->bytes_acked += delta;
3520 	tp->snd_una = ack;
3521 }
3522 
3523 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3524 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3525 {
3526 	u32 delta = seq - tp->rcv_nxt;
3527 
3528 	sock_owned_by_me((struct sock *)tp);
3529 	tp->bytes_received += delta;
3530 	WRITE_ONCE(tp->rcv_nxt, seq);
3531 }
3532 
3533 /* Update our send window.
3534  *
3535  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3536  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3537  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3538 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3539 				 u32 ack_seq)
3540 {
3541 	struct tcp_sock *tp = tcp_sk(sk);
3542 	int flag = 0;
3543 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3544 
3545 	if (likely(!tcp_hdr(skb)->syn))
3546 		nwin <<= tp->rx_opt.snd_wscale;
3547 
3548 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3549 		flag |= FLAG_WIN_UPDATE;
3550 		tcp_update_wl(tp, ack_seq);
3551 
3552 		if (tp->snd_wnd != nwin) {
3553 			tp->snd_wnd = nwin;
3554 
3555 			/* Note, it is the only place, where
3556 			 * fast path is recovered for sending TCP.
3557 			 */
3558 			tp->pred_flags = 0;
3559 			tcp_fast_path_check(sk);
3560 
3561 			if (!tcp_write_queue_empty(sk))
3562 				tcp_slow_start_after_idle_check(sk);
3563 
3564 			if (nwin > tp->max_window) {
3565 				tp->max_window = nwin;
3566 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3567 			}
3568 		}
3569 	}
3570 
3571 	tcp_snd_una_update(tp, ack);
3572 
3573 	return flag;
3574 }
3575 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3576 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3577 				   u32 *last_oow_ack_time)
3578 {
3579 	/* Paired with the WRITE_ONCE() in this function. */
3580 	u32 val = READ_ONCE(*last_oow_ack_time);
3581 
3582 	if (val) {
3583 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3584 
3585 		if (0 <= elapsed &&
3586 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3587 			NET_INC_STATS(net, mib_idx);
3588 			return true;	/* rate-limited: don't send yet! */
3589 		}
3590 	}
3591 
3592 	/* Paired with the prior READ_ONCE() and with itself,
3593 	 * as we might be lockless.
3594 	 */
3595 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3596 
3597 	return false;	/* not rate-limited: go ahead, send dupack now! */
3598 }
3599 
3600 /* Return true if we're currently rate-limiting out-of-window ACKs and
3601  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3602  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3603  * attacks that send repeated SYNs or ACKs for the same connection. To
3604  * do this, we do not send a duplicate SYNACK or ACK if the remote
3605  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3606  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3607 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3608 			  int mib_idx, u32 *last_oow_ack_time)
3609 {
3610 	/* Data packets without SYNs are not likely part of an ACK loop. */
3611 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3612 	    !tcp_hdr(skb)->syn)
3613 		return false;
3614 
3615 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3616 }
3617 
3618 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3619 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3620 {
3621 	/* unprotected vars, we dont care of overwrites */
3622 	static u32 challenge_timestamp;
3623 	static unsigned int challenge_count;
3624 	struct tcp_sock *tp = tcp_sk(sk);
3625 	struct net *net = sock_net(sk);
3626 	u32 count, now;
3627 
3628 	/* First check our per-socket dupack rate limit. */
3629 	if (__tcp_oow_rate_limited(net,
3630 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3631 				   &tp->last_oow_ack_time))
3632 		return;
3633 
3634 	/* Then check host-wide RFC 5961 rate limit. */
3635 	now = jiffies / HZ;
3636 	if (now != READ_ONCE(challenge_timestamp)) {
3637 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3638 		u32 half = (ack_limit + 1) >> 1;
3639 
3640 		WRITE_ONCE(challenge_timestamp, now);
3641 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3642 	}
3643 	count = READ_ONCE(challenge_count);
3644 	if (count > 0) {
3645 		WRITE_ONCE(challenge_count, count - 1);
3646 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3647 		tcp_send_ack(sk);
3648 	}
3649 }
3650 
tcp_store_ts_recent(struct tcp_sock * tp)3651 static void tcp_store_ts_recent(struct tcp_sock *tp)
3652 {
3653 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3654 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3655 }
3656 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3657 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3658 {
3659 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3660 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3661 		 * extra check below makes sure this can only happen
3662 		 * for pure ACK frames.  -DaveM
3663 		 *
3664 		 * Not only, also it occurs for expired timestamps.
3665 		 */
3666 
3667 		if (tcp_paws_check(&tp->rx_opt, 0))
3668 			tcp_store_ts_recent(tp);
3669 	}
3670 }
3671 
3672 /* This routine deals with acks during a TLP episode and ends an episode by
3673  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3674  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3675 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3676 {
3677 	struct tcp_sock *tp = tcp_sk(sk);
3678 
3679 	if (before(ack, tp->tlp_high_seq))
3680 		return;
3681 
3682 	if (!tp->tlp_retrans) {
3683 		/* TLP of new data has been acknowledged */
3684 		tp->tlp_high_seq = 0;
3685 	} else if (flag & FLAG_DSACKING_ACK) {
3686 		/* This DSACK means original and TLP probe arrived; no loss */
3687 		tp->tlp_high_seq = 0;
3688 	} else if (after(ack, tp->tlp_high_seq)) {
3689 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3690 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3691 		 */
3692 		tcp_init_cwnd_reduction(sk);
3693 		tcp_set_ca_state(sk, TCP_CA_CWR);
3694 		tcp_end_cwnd_reduction(sk);
3695 		tcp_try_keep_open(sk);
3696 		NET_INC_STATS(sock_net(sk),
3697 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3698 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3699 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3700 		/* Pure dupack: original and TLP probe arrived; no loss */
3701 		tp->tlp_high_seq = 0;
3702 	}
3703 }
3704 
tcp_in_ack_event(struct sock * sk,u32 flags)3705 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3706 {
3707 	const struct inet_connection_sock *icsk = inet_csk(sk);
3708 
3709 	if (icsk->icsk_ca_ops->in_ack_event)
3710 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3711 }
3712 
3713 /* Congestion control has updated the cwnd already. So if we're in
3714  * loss recovery then now we do any new sends (for FRTO) or
3715  * retransmits (for CA_Loss or CA_recovery) that make sense.
3716  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3717 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3718 {
3719 	struct tcp_sock *tp = tcp_sk(sk);
3720 
3721 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3722 		return;
3723 
3724 	if (unlikely(rexmit == REXMIT_NEW)) {
3725 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3726 					  TCP_NAGLE_OFF);
3727 		if (after(tp->snd_nxt, tp->high_seq))
3728 			return;
3729 		tp->frto = 0;
3730 	}
3731 	tcp_xmit_retransmit_queue(sk);
3732 }
3733 
3734 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3735 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3736 {
3737 	const struct net *net = sock_net(sk);
3738 	struct tcp_sock *tp = tcp_sk(sk);
3739 	u32 delivered;
3740 
3741 	delivered = tp->delivered - prior_delivered;
3742 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3743 	if (flag & FLAG_ECE)
3744 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3745 
3746 	return delivered;
3747 }
3748 
3749 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3750 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3751 {
3752 	struct inet_connection_sock *icsk = inet_csk(sk);
3753 	struct tcp_sock *tp = tcp_sk(sk);
3754 	struct tcp_sacktag_state sack_state;
3755 	struct rate_sample rs = { .prior_delivered = 0 };
3756 	u32 prior_snd_una = tp->snd_una;
3757 	bool is_sack_reneg = tp->is_sack_reneg;
3758 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3759 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3760 	int num_dupack = 0;
3761 	int prior_packets = tp->packets_out;
3762 	u32 delivered = tp->delivered;
3763 	u32 lost = tp->lost;
3764 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3765 	u32 prior_fack;
3766 
3767 	sack_state.first_sackt = 0;
3768 	sack_state.rate = &rs;
3769 	sack_state.sack_delivered = 0;
3770 
3771 	/* We very likely will need to access rtx queue. */
3772 	prefetch(sk->tcp_rtx_queue.rb_node);
3773 
3774 	/* If the ack is older than previous acks
3775 	 * then we can probably ignore it.
3776 	 */
3777 	if (before(ack, prior_snd_una)) {
3778 		u32 max_window;
3779 
3780 		/* do not accept ACK for bytes we never sent. */
3781 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3782 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3783 		if (before(ack, prior_snd_una - max_window)) {
3784 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3785 				tcp_send_challenge_ack(sk, skb);
3786 			return -1;
3787 		}
3788 		goto old_ack;
3789 	}
3790 
3791 	/* If the ack includes data we haven't sent yet, discard
3792 	 * this segment (RFC793 Section 3.9).
3793 	 */
3794 	if (after(ack, tp->snd_nxt))
3795 		return -1;
3796 
3797 	if (after(ack, prior_snd_una)) {
3798 		flag |= FLAG_SND_UNA_ADVANCED;
3799 		icsk->icsk_retransmits = 0;
3800 
3801 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3802 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3803 			if (icsk->icsk_clean_acked)
3804 				icsk->icsk_clean_acked(sk, ack);
3805 #endif
3806 	}
3807 
3808 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3809 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3810 
3811 	/* ts_recent update must be made after we are sure that the packet
3812 	 * is in window.
3813 	 */
3814 	if (flag & FLAG_UPDATE_TS_RECENT)
3815 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3816 
3817 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3818 	    FLAG_SND_UNA_ADVANCED) {
3819 		/* Window is constant, pure forward advance.
3820 		 * No more checks are required.
3821 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3822 		 */
3823 		tcp_update_wl(tp, ack_seq);
3824 		tcp_snd_una_update(tp, ack);
3825 		flag |= FLAG_WIN_UPDATE;
3826 
3827 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3828 
3829 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3830 	} else {
3831 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3832 
3833 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3834 			flag |= FLAG_DATA;
3835 		else
3836 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3837 
3838 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3839 
3840 		if (TCP_SKB_CB(skb)->sacked)
3841 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3842 							&sack_state);
3843 
3844 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3845 			flag |= FLAG_ECE;
3846 			ack_ev_flags |= CA_ACK_ECE;
3847 		}
3848 
3849 		if (sack_state.sack_delivered)
3850 			tcp_count_delivered(tp, sack_state.sack_delivered,
3851 					    flag & FLAG_ECE);
3852 
3853 		if (flag & FLAG_WIN_UPDATE)
3854 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3855 
3856 		tcp_in_ack_event(sk, ack_ev_flags);
3857 	}
3858 
3859 	/* This is a deviation from RFC3168 since it states that:
3860 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3861 	 * the congestion window, it SHOULD set the CWR bit only on the first
3862 	 * new data packet that it transmits."
3863 	 * We accept CWR on pure ACKs to be more robust
3864 	 * with widely-deployed TCP implementations that do this.
3865 	 */
3866 	tcp_ecn_accept_cwr(sk, skb);
3867 
3868 	/* We passed data and got it acked, remove any soft error
3869 	 * log. Something worked...
3870 	 */
3871 	sk->sk_err_soft = 0;
3872 	icsk->icsk_probes_out = 0;
3873 	tp->rcv_tstamp = tcp_jiffies32;
3874 	if (!prior_packets)
3875 		goto no_queue;
3876 
3877 	/* See if we can take anything off of the retransmit queue. */
3878 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3879 				    flag & FLAG_ECE);
3880 
3881 	tcp_rack_update_reo_wnd(sk, &rs);
3882 
3883 	if (tp->tlp_high_seq)
3884 		tcp_process_tlp_ack(sk, ack, flag);
3885 
3886 	if (tcp_ack_is_dubious(sk, flag)) {
3887 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3888 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3889 			num_dupack = 1;
3890 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3891 			if (!(flag & FLAG_DATA))
3892 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3893 		}
3894 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3895 				      &rexmit);
3896 	}
3897 
3898 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3899 	if (flag & FLAG_SET_XMIT_TIMER)
3900 		tcp_set_xmit_timer(sk);
3901 
3902 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3903 		sk_dst_confirm(sk);
3904 
3905 	delivered = tcp_newly_delivered(sk, delivered, flag);
3906 	lost = tp->lost - lost;			/* freshly marked lost */
3907 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3908 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3909 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3910 	tcp_xmit_recovery(sk, rexmit);
3911 	return 1;
3912 
3913 no_queue:
3914 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3915 	if (flag & FLAG_DSACKING_ACK) {
3916 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3917 				      &rexmit);
3918 		tcp_newly_delivered(sk, delivered, flag);
3919 	}
3920 	/* If this ack opens up a zero window, clear backoff.  It was
3921 	 * being used to time the probes, and is probably far higher than
3922 	 * it needs to be for normal retransmission.
3923 	 */
3924 	tcp_ack_probe(sk);
3925 
3926 	if (tp->tlp_high_seq)
3927 		tcp_process_tlp_ack(sk, ack, flag);
3928 	return 1;
3929 
3930 old_ack:
3931 	/* If data was SACKed, tag it and see if we should send more data.
3932 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3933 	 */
3934 	if (TCP_SKB_CB(skb)->sacked) {
3935 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3936 						&sack_state);
3937 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3938 				      &rexmit);
3939 		tcp_newly_delivered(sk, delivered, flag);
3940 		tcp_xmit_recovery(sk, rexmit);
3941 	}
3942 
3943 	return 0;
3944 }
3945 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3946 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3947 				      bool syn, struct tcp_fastopen_cookie *foc,
3948 				      bool exp_opt)
3949 {
3950 	/* Valid only in SYN or SYN-ACK with an even length.  */
3951 	if (!foc || !syn || len < 0 || (len & 1))
3952 		return;
3953 
3954 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3955 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3956 		memcpy(foc->val, cookie, len);
3957 	else if (len != 0)
3958 		len = -1;
3959 	foc->len = len;
3960 	foc->exp = exp_opt;
3961 }
3962 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3963 static bool smc_parse_options(const struct tcphdr *th,
3964 			      struct tcp_options_received *opt_rx,
3965 			      const unsigned char *ptr,
3966 			      int opsize)
3967 {
3968 #if IS_ENABLED(CONFIG_SMC)
3969 	if (static_branch_unlikely(&tcp_have_smc)) {
3970 		if (th->syn && !(opsize & 1) &&
3971 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3972 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3973 			opt_rx->smc_ok = 1;
3974 			return true;
3975 		}
3976 	}
3977 #endif
3978 	return false;
3979 }
3980 
3981 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3982  * value on success.
3983  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3984 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3985 {
3986 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3987 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3988 	u16 mss = 0;
3989 
3990 	while (length > 0) {
3991 		int opcode = *ptr++;
3992 		int opsize;
3993 
3994 		switch (opcode) {
3995 		case TCPOPT_EOL:
3996 			return mss;
3997 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3998 			length--;
3999 			continue;
4000 		default:
4001 			if (length < 2)
4002 				return mss;
4003 			opsize = *ptr++;
4004 			if (opsize < 2) /* "silly options" */
4005 				return mss;
4006 			if (opsize > length)
4007 				return mss;	/* fail on partial options */
4008 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4009 				u16 in_mss = get_unaligned_be16(ptr);
4010 
4011 				if (in_mss) {
4012 					if (user_mss && user_mss < in_mss)
4013 						in_mss = user_mss;
4014 					mss = in_mss;
4015 				}
4016 			}
4017 			ptr += opsize - 2;
4018 			length -= opsize;
4019 		}
4020 	}
4021 	return mss;
4022 }
4023 
4024 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4025  * But, this can also be called on packets in the established flow when
4026  * the fast version below fails.
4027  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4028 void tcp_parse_options(const struct net *net,
4029 		       const struct sk_buff *skb,
4030 		       struct tcp_options_received *opt_rx, int estab,
4031 		       struct tcp_fastopen_cookie *foc)
4032 {
4033 	const unsigned char *ptr;
4034 	const struct tcphdr *th = tcp_hdr(skb);
4035 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4036 
4037 	ptr = (const unsigned char *)(th + 1);
4038 	opt_rx->saw_tstamp = 0;
4039 	opt_rx->saw_unknown = 0;
4040 
4041 	while (length > 0) {
4042 		int opcode = *ptr++;
4043 		int opsize;
4044 
4045 		switch (opcode) {
4046 		case TCPOPT_EOL:
4047 			return;
4048 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4049 			length--;
4050 			continue;
4051 		default:
4052 			if (length < 2)
4053 				return;
4054 			opsize = *ptr++;
4055 			if (opsize < 2) /* "silly options" */
4056 				return;
4057 			if (opsize > length)
4058 				return;	/* don't parse partial options */
4059 			switch (opcode) {
4060 			case TCPOPT_MSS:
4061 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4062 					u16 in_mss = get_unaligned_be16(ptr);
4063 					if (in_mss) {
4064 						if (opt_rx->user_mss &&
4065 						    opt_rx->user_mss < in_mss)
4066 							in_mss = opt_rx->user_mss;
4067 						opt_rx->mss_clamp = in_mss;
4068 					}
4069 				}
4070 				break;
4071 			case TCPOPT_WINDOW:
4072 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4073 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4074 					__u8 snd_wscale = *(__u8 *)ptr;
4075 					opt_rx->wscale_ok = 1;
4076 					if (snd_wscale > TCP_MAX_WSCALE) {
4077 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4078 								     __func__,
4079 								     snd_wscale,
4080 								     TCP_MAX_WSCALE);
4081 						snd_wscale = TCP_MAX_WSCALE;
4082 					}
4083 					opt_rx->snd_wscale = snd_wscale;
4084 				}
4085 				break;
4086 			case TCPOPT_TIMESTAMP:
4087 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4088 				    ((estab && opt_rx->tstamp_ok) ||
4089 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4090 					opt_rx->saw_tstamp = 1;
4091 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4092 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4093 				}
4094 				break;
4095 			case TCPOPT_SACK_PERM:
4096 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4097 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4098 					opt_rx->sack_ok = TCP_SACK_SEEN;
4099 					tcp_sack_reset(opt_rx);
4100 				}
4101 				break;
4102 
4103 			case TCPOPT_SACK:
4104 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4105 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4106 				   opt_rx->sack_ok) {
4107 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4108 				}
4109 				break;
4110 #ifdef CONFIG_TCP_MD5SIG
4111 			case TCPOPT_MD5SIG:
4112 				/*
4113 				 * The MD5 Hash has already been
4114 				 * checked (see tcp_v{4,6}_do_rcv()).
4115 				 */
4116 				break;
4117 #endif
4118 			case TCPOPT_FASTOPEN:
4119 				tcp_parse_fastopen_option(
4120 					opsize - TCPOLEN_FASTOPEN_BASE,
4121 					ptr, th->syn, foc, false);
4122 				break;
4123 
4124 			case TCPOPT_EXP:
4125 				/* Fast Open option shares code 254 using a
4126 				 * 16 bits magic number.
4127 				 */
4128 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4129 				    get_unaligned_be16(ptr) ==
4130 				    TCPOPT_FASTOPEN_MAGIC) {
4131 					tcp_parse_fastopen_option(opsize -
4132 						TCPOLEN_EXP_FASTOPEN_BASE,
4133 						ptr + 2, th->syn, foc, true);
4134 					break;
4135 				}
4136 
4137 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4138 					break;
4139 
4140 				opt_rx->saw_unknown = 1;
4141 				break;
4142 
4143 			default:
4144 				opt_rx->saw_unknown = 1;
4145 			}
4146 			ptr += opsize-2;
4147 			length -= opsize;
4148 		}
4149 	}
4150 }
4151 EXPORT_SYMBOL(tcp_parse_options);
4152 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4153 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4154 {
4155 	const __be32 *ptr = (const __be32 *)(th + 1);
4156 
4157 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4158 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4159 		tp->rx_opt.saw_tstamp = 1;
4160 		++ptr;
4161 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4162 		++ptr;
4163 		if (*ptr)
4164 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4165 		else
4166 			tp->rx_opt.rcv_tsecr = 0;
4167 		return true;
4168 	}
4169 	return false;
4170 }
4171 
4172 /* Fast parse options. This hopes to only see timestamps.
4173  * If it is wrong it falls back on tcp_parse_options().
4174  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4175 static bool tcp_fast_parse_options(const struct net *net,
4176 				   const struct sk_buff *skb,
4177 				   const struct tcphdr *th, struct tcp_sock *tp)
4178 {
4179 	/* In the spirit of fast parsing, compare doff directly to constant
4180 	 * values.  Because equality is used, short doff can be ignored here.
4181 	 */
4182 	if (th->doff == (sizeof(*th) / 4)) {
4183 		tp->rx_opt.saw_tstamp = 0;
4184 		return false;
4185 	} else if (tp->rx_opt.tstamp_ok &&
4186 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4187 		if (tcp_parse_aligned_timestamp(tp, th))
4188 			return true;
4189 	}
4190 
4191 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4192 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4193 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4194 
4195 	return true;
4196 }
4197 
4198 #ifdef CONFIG_TCP_MD5SIG
4199 /*
4200  * Parse MD5 Signature option
4201  */
tcp_parse_md5sig_option(const struct tcphdr * th)4202 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4203 {
4204 	int length = (th->doff << 2) - sizeof(*th);
4205 	const u8 *ptr = (const u8 *)(th + 1);
4206 
4207 	/* If not enough data remaining, we can short cut */
4208 	while (length >= TCPOLEN_MD5SIG) {
4209 		int opcode = *ptr++;
4210 		int opsize;
4211 
4212 		switch (opcode) {
4213 		case TCPOPT_EOL:
4214 			return NULL;
4215 		case TCPOPT_NOP:
4216 			length--;
4217 			continue;
4218 		default:
4219 			opsize = *ptr++;
4220 			if (opsize < 2 || opsize > length)
4221 				return NULL;
4222 			if (opcode == TCPOPT_MD5SIG)
4223 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4224 		}
4225 		ptr += opsize - 2;
4226 		length -= opsize;
4227 	}
4228 	return NULL;
4229 }
4230 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4231 #endif
4232 
4233 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4234  *
4235  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4236  * it can pass through stack. So, the following predicate verifies that
4237  * this segment is not used for anything but congestion avoidance or
4238  * fast retransmit. Moreover, we even are able to eliminate most of such
4239  * second order effects, if we apply some small "replay" window (~RTO)
4240  * to timestamp space.
4241  *
4242  * All these measures still do not guarantee that we reject wrapped ACKs
4243  * on networks with high bandwidth, when sequence space is recycled fastly,
4244  * but it guarantees that such events will be very rare and do not affect
4245  * connection seriously. This doesn't look nice, but alas, PAWS is really
4246  * buggy extension.
4247  *
4248  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4249  * states that events when retransmit arrives after original data are rare.
4250  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4251  * the biggest problem on large power networks even with minor reordering.
4252  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4253  * up to bandwidth of 18Gigabit/sec. 8) ]
4254  */
4255 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4256 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4257 {
4258 	const struct tcp_sock *tp = tcp_sk(sk);
4259 	const struct tcphdr *th = tcp_hdr(skb);
4260 	u32 seq = TCP_SKB_CB(skb)->seq;
4261 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4262 
4263 	return (/* 1. Pure ACK with correct sequence number. */
4264 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4265 
4266 		/* 2. ... and duplicate ACK. */
4267 		ack == tp->snd_una &&
4268 
4269 		/* 3. ... and does not update window. */
4270 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4271 
4272 		/* 4. ... and sits in replay window. */
4273 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4274 }
4275 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4276 static inline bool tcp_paws_discard(const struct sock *sk,
4277 				   const struct sk_buff *skb)
4278 {
4279 	const struct tcp_sock *tp = tcp_sk(sk);
4280 
4281 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4282 	       !tcp_disordered_ack(sk, skb);
4283 }
4284 
4285 /* Check segment sequence number for validity.
4286  *
4287  * Segment controls are considered valid, if the segment
4288  * fits to the window after truncation to the window. Acceptability
4289  * of data (and SYN, FIN, of course) is checked separately.
4290  * See tcp_data_queue(), for example.
4291  *
4292  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4293  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4294  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4295  * (borrowed from freebsd)
4296  */
4297 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4298 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4299 {
4300 	return	!before(end_seq, tp->rcv_wup) &&
4301 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4302 }
4303 
4304 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4305 void tcp_reset(struct sock *sk)
4306 {
4307 	trace_tcp_receive_reset(sk);
4308 
4309 	/* We want the right error as BSD sees it (and indeed as we do). */
4310 	switch (sk->sk_state) {
4311 	case TCP_SYN_SENT:
4312 		sk->sk_err = ECONNREFUSED;
4313 		break;
4314 	case TCP_CLOSE_WAIT:
4315 		sk->sk_err = EPIPE;
4316 		break;
4317 	case TCP_CLOSE:
4318 		return;
4319 	default:
4320 		sk->sk_err = ECONNRESET;
4321 	}
4322 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4323 	smp_wmb();
4324 
4325 	tcp_write_queue_purge(sk);
4326 	tcp_done(sk);
4327 
4328 	if (!sock_flag(sk, SOCK_DEAD))
4329 		sk->sk_error_report(sk);
4330 }
4331 
4332 /*
4333  * 	Process the FIN bit. This now behaves as it is supposed to work
4334  *	and the FIN takes effect when it is validly part of sequence
4335  *	space. Not before when we get holes.
4336  *
4337  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4338  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4339  *	TIME-WAIT)
4340  *
4341  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4342  *	close and we go into CLOSING (and later onto TIME-WAIT)
4343  *
4344  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4345  */
tcp_fin(struct sock * sk)4346 void tcp_fin(struct sock *sk)
4347 {
4348 	struct tcp_sock *tp = tcp_sk(sk);
4349 
4350 	inet_csk_schedule_ack(sk);
4351 
4352 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4353 	sock_set_flag(sk, SOCK_DONE);
4354 
4355 	switch (sk->sk_state) {
4356 	case TCP_SYN_RECV:
4357 	case TCP_ESTABLISHED:
4358 		/* Move to CLOSE_WAIT */
4359 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4360 		inet_csk_enter_pingpong_mode(sk);
4361 		break;
4362 
4363 	case TCP_CLOSE_WAIT:
4364 	case TCP_CLOSING:
4365 		/* Received a retransmission of the FIN, do
4366 		 * nothing.
4367 		 */
4368 		break;
4369 	case TCP_LAST_ACK:
4370 		/* RFC793: Remain in the LAST-ACK state. */
4371 		break;
4372 
4373 	case TCP_FIN_WAIT1:
4374 		/* This case occurs when a simultaneous close
4375 		 * happens, we must ack the received FIN and
4376 		 * enter the CLOSING state.
4377 		 */
4378 		tcp_send_ack(sk);
4379 		tcp_set_state(sk, TCP_CLOSING);
4380 		break;
4381 	case TCP_FIN_WAIT2:
4382 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4383 		tcp_send_ack(sk);
4384 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4385 		break;
4386 	default:
4387 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4388 		 * cases we should never reach this piece of code.
4389 		 */
4390 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4391 		       __func__, sk->sk_state);
4392 		break;
4393 	}
4394 
4395 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4396 	 * Probably, we should reset in this case. For now drop them.
4397 	 */
4398 	skb_rbtree_purge(&tp->out_of_order_queue);
4399 	if (tcp_is_sack(tp))
4400 		tcp_sack_reset(&tp->rx_opt);
4401 	sk_mem_reclaim(sk);
4402 
4403 	if (!sock_flag(sk, SOCK_DEAD)) {
4404 		sk->sk_state_change(sk);
4405 
4406 		/* Do not send POLL_HUP for half duplex close. */
4407 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4408 		    sk->sk_state == TCP_CLOSE)
4409 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4410 		else
4411 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4412 	}
4413 }
4414 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4415 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4416 				  u32 end_seq)
4417 {
4418 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4419 		if (before(seq, sp->start_seq))
4420 			sp->start_seq = seq;
4421 		if (after(end_seq, sp->end_seq))
4422 			sp->end_seq = end_seq;
4423 		return true;
4424 	}
4425 	return false;
4426 }
4427 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4428 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4429 {
4430 	struct tcp_sock *tp = tcp_sk(sk);
4431 
4432 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4433 		int mib_idx;
4434 
4435 		if (before(seq, tp->rcv_nxt))
4436 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4437 		else
4438 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4439 
4440 		NET_INC_STATS(sock_net(sk), mib_idx);
4441 
4442 		tp->rx_opt.dsack = 1;
4443 		tp->duplicate_sack[0].start_seq = seq;
4444 		tp->duplicate_sack[0].end_seq = end_seq;
4445 	}
4446 }
4447 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4448 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4449 {
4450 	struct tcp_sock *tp = tcp_sk(sk);
4451 
4452 	if (!tp->rx_opt.dsack)
4453 		tcp_dsack_set(sk, seq, end_seq);
4454 	else
4455 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4456 }
4457 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4458 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4459 {
4460 	/* When the ACK path fails or drops most ACKs, the sender would
4461 	 * timeout and spuriously retransmit the same segment repeatedly.
4462 	 * The receiver remembers and reflects via DSACKs. Leverage the
4463 	 * DSACK state and change the txhash to re-route speculatively.
4464 	 */
4465 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4466 	    sk_rethink_txhash(sk))
4467 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4468 }
4469 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4470 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4471 {
4472 	struct tcp_sock *tp = tcp_sk(sk);
4473 
4474 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4475 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4477 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4478 
4479 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4480 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4481 
4482 			tcp_rcv_spurious_retrans(sk, skb);
4483 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4484 				end_seq = tp->rcv_nxt;
4485 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4486 		}
4487 	}
4488 
4489 	tcp_send_ack(sk);
4490 }
4491 
4492 /* These routines update the SACK block as out-of-order packets arrive or
4493  * in-order packets close up the sequence space.
4494  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4495 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4496 {
4497 	int this_sack;
4498 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4499 	struct tcp_sack_block *swalk = sp + 1;
4500 
4501 	/* See if the recent change to the first SACK eats into
4502 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4503 	 */
4504 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4505 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4506 			int i;
4507 
4508 			/* Zap SWALK, by moving every further SACK up by one slot.
4509 			 * Decrease num_sacks.
4510 			 */
4511 			tp->rx_opt.num_sacks--;
4512 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4513 				sp[i] = sp[i + 1];
4514 			continue;
4515 		}
4516 		this_sack++;
4517 		swalk++;
4518 	}
4519 }
4520 
tcp_sack_compress_send_ack(struct sock * sk)4521 static void tcp_sack_compress_send_ack(struct sock *sk)
4522 {
4523 	struct tcp_sock *tp = tcp_sk(sk);
4524 
4525 	if (!tp->compressed_ack)
4526 		return;
4527 
4528 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4529 		__sock_put(sk);
4530 
4531 	/* Since we have to send one ack finally,
4532 	 * substract one from tp->compressed_ack to keep
4533 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4534 	 */
4535 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4536 		      tp->compressed_ack - 1);
4537 
4538 	tp->compressed_ack = 0;
4539 	tcp_send_ack(sk);
4540 }
4541 
4542 /* Reasonable amount of sack blocks included in TCP SACK option
4543  * The max is 4, but this becomes 3 if TCP timestamps are there.
4544  * Given that SACK packets might be lost, be conservative and use 2.
4545  */
4546 #define TCP_SACK_BLOCKS_EXPECTED 2
4547 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4548 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4549 {
4550 	struct tcp_sock *tp = tcp_sk(sk);
4551 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4552 	int cur_sacks = tp->rx_opt.num_sacks;
4553 	int this_sack;
4554 
4555 	if (!cur_sacks)
4556 		goto new_sack;
4557 
4558 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4559 		if (tcp_sack_extend(sp, seq, end_seq)) {
4560 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4561 				tcp_sack_compress_send_ack(sk);
4562 			/* Rotate this_sack to the first one. */
4563 			for (; this_sack > 0; this_sack--, sp--)
4564 				swap(*sp, *(sp - 1));
4565 			if (cur_sacks > 1)
4566 				tcp_sack_maybe_coalesce(tp);
4567 			return;
4568 		}
4569 	}
4570 
4571 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4572 		tcp_sack_compress_send_ack(sk);
4573 
4574 	/* Could not find an adjacent existing SACK, build a new one,
4575 	 * put it at the front, and shift everyone else down.  We
4576 	 * always know there is at least one SACK present already here.
4577 	 *
4578 	 * If the sack array is full, forget about the last one.
4579 	 */
4580 	if (this_sack >= TCP_NUM_SACKS) {
4581 		this_sack--;
4582 		tp->rx_opt.num_sacks--;
4583 		sp--;
4584 	}
4585 	for (; this_sack > 0; this_sack--, sp--)
4586 		*sp = *(sp - 1);
4587 
4588 new_sack:
4589 	/* Build the new head SACK, and we're done. */
4590 	sp->start_seq = seq;
4591 	sp->end_seq = end_seq;
4592 	tp->rx_opt.num_sacks++;
4593 }
4594 
4595 /* RCV.NXT advances, some SACKs should be eaten. */
4596 
tcp_sack_remove(struct tcp_sock * tp)4597 static void tcp_sack_remove(struct tcp_sock *tp)
4598 {
4599 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4600 	int num_sacks = tp->rx_opt.num_sacks;
4601 	int this_sack;
4602 
4603 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4604 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4605 		tp->rx_opt.num_sacks = 0;
4606 		return;
4607 	}
4608 
4609 	for (this_sack = 0; this_sack < num_sacks;) {
4610 		/* Check if the start of the sack is covered by RCV.NXT. */
4611 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4612 			int i;
4613 
4614 			/* RCV.NXT must cover all the block! */
4615 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4616 
4617 			/* Zap this SACK, by moving forward any other SACKS. */
4618 			for (i = this_sack+1; i < num_sacks; i++)
4619 				tp->selective_acks[i-1] = tp->selective_acks[i];
4620 			num_sacks--;
4621 			continue;
4622 		}
4623 		this_sack++;
4624 		sp++;
4625 	}
4626 	tp->rx_opt.num_sacks = num_sacks;
4627 }
4628 
4629 /**
4630  * tcp_try_coalesce - try to merge skb to prior one
4631  * @sk: socket
4632  * @to: prior buffer
4633  * @from: buffer to add in queue
4634  * @fragstolen: pointer to boolean
4635  *
4636  * Before queueing skb @from after @to, try to merge them
4637  * to reduce overall memory use and queue lengths, if cost is small.
4638  * Packets in ofo or receive queues can stay a long time.
4639  * Better try to coalesce them right now to avoid future collapses.
4640  * Returns true if caller should free @from instead of queueing it
4641  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4642 static bool tcp_try_coalesce(struct sock *sk,
4643 			     struct sk_buff *to,
4644 			     struct sk_buff *from,
4645 			     bool *fragstolen)
4646 {
4647 	int delta;
4648 
4649 	*fragstolen = false;
4650 
4651 	/* Its possible this segment overlaps with prior segment in queue */
4652 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4653 		return false;
4654 
4655 	if (!mptcp_skb_can_collapse(to, from))
4656 		return false;
4657 
4658 #ifdef CONFIG_TLS_DEVICE
4659 	if (from->decrypted != to->decrypted)
4660 		return false;
4661 #endif
4662 
4663 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4664 		return false;
4665 
4666 	atomic_add(delta, &sk->sk_rmem_alloc);
4667 	sk_mem_charge(sk, delta);
4668 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4669 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4670 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4671 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4672 
4673 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4674 		TCP_SKB_CB(to)->has_rxtstamp = true;
4675 		to->tstamp = from->tstamp;
4676 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4677 	}
4678 
4679 	return true;
4680 }
4681 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4682 static bool tcp_ooo_try_coalesce(struct sock *sk,
4683 			     struct sk_buff *to,
4684 			     struct sk_buff *from,
4685 			     bool *fragstolen)
4686 {
4687 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4688 
4689 	/* In case tcp_drop() is called later, update to->gso_segs */
4690 	if (res) {
4691 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4692 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4693 
4694 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4695 	}
4696 	return res;
4697 }
4698 
tcp_drop(struct sock * sk,struct sk_buff * skb)4699 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4700 {
4701 	sk_drops_add(sk, skb);
4702 	__kfree_skb(skb);
4703 }
4704 
4705 /* This one checks to see if we can put data from the
4706  * out_of_order queue into the receive_queue.
4707  */
tcp_ofo_queue(struct sock * sk)4708 static void tcp_ofo_queue(struct sock *sk)
4709 {
4710 	struct tcp_sock *tp = tcp_sk(sk);
4711 	__u32 dsack_high = tp->rcv_nxt;
4712 	bool fin, fragstolen, eaten;
4713 	struct sk_buff *skb, *tail;
4714 	struct rb_node *p;
4715 
4716 	p = rb_first(&tp->out_of_order_queue);
4717 	while (p) {
4718 		skb = rb_to_skb(p);
4719 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4720 			break;
4721 
4722 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4723 			__u32 dsack = dsack_high;
4724 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4725 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4726 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4727 		}
4728 		p = rb_next(p);
4729 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4730 
4731 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4732 			tcp_drop(sk, skb);
4733 			continue;
4734 		}
4735 
4736 		tail = skb_peek_tail(&sk->sk_receive_queue);
4737 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4738 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4739 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4740 		if (!eaten)
4741 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4742 		else
4743 			kfree_skb_partial(skb, fragstolen);
4744 
4745 		if (unlikely(fin)) {
4746 			tcp_fin(sk);
4747 			/* tcp_fin() purges tp->out_of_order_queue,
4748 			 * so we must end this loop right now.
4749 			 */
4750 			break;
4751 		}
4752 	}
4753 }
4754 
4755 static bool tcp_prune_ofo_queue(struct sock *sk);
4756 static int tcp_prune_queue(struct sock *sk);
4757 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4758 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4759 				 unsigned int size)
4760 {
4761 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4762 	    !sk_rmem_schedule(sk, skb, size)) {
4763 
4764 		if (tcp_prune_queue(sk) < 0)
4765 			return -1;
4766 
4767 		while (!sk_rmem_schedule(sk, skb, size)) {
4768 			if (!tcp_prune_ofo_queue(sk))
4769 				return -1;
4770 		}
4771 	}
4772 	return 0;
4773 }
4774 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4775 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4776 {
4777 	struct tcp_sock *tp = tcp_sk(sk);
4778 	struct rb_node **p, *parent;
4779 	struct sk_buff *skb1;
4780 	u32 seq, end_seq;
4781 	bool fragstolen;
4782 
4783 	tcp_ecn_check_ce(sk, skb);
4784 
4785 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4786 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4787 		sk->sk_data_ready(sk);
4788 		tcp_drop(sk, skb);
4789 		return;
4790 	}
4791 
4792 	/* Disable header prediction. */
4793 	tp->pred_flags = 0;
4794 	inet_csk_schedule_ack(sk);
4795 
4796 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4797 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4798 	seq = TCP_SKB_CB(skb)->seq;
4799 	end_seq = TCP_SKB_CB(skb)->end_seq;
4800 
4801 	p = &tp->out_of_order_queue.rb_node;
4802 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803 		/* Initial out of order segment, build 1 SACK. */
4804 		if (tcp_is_sack(tp)) {
4805 			tp->rx_opt.num_sacks = 1;
4806 			tp->selective_acks[0].start_seq = seq;
4807 			tp->selective_acks[0].end_seq = end_seq;
4808 		}
4809 		rb_link_node(&skb->rbnode, NULL, p);
4810 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4811 		tp->ooo_last_skb = skb;
4812 		goto end;
4813 	}
4814 
4815 	/* In the typical case, we are adding an skb to the end of the list.
4816 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4817 	 */
4818 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4819 				 skb, &fragstolen)) {
4820 coalesce_done:
4821 		/* For non sack flows, do not grow window to force DUPACK
4822 		 * and trigger fast retransmit.
4823 		 */
4824 		if (tcp_is_sack(tp))
4825 			tcp_grow_window(sk, skb, true);
4826 		kfree_skb_partial(skb, fragstolen);
4827 		skb = NULL;
4828 		goto add_sack;
4829 	}
4830 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4831 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4832 		parent = &tp->ooo_last_skb->rbnode;
4833 		p = &parent->rb_right;
4834 		goto insert;
4835 	}
4836 
4837 	/* Find place to insert this segment. Handle overlaps on the way. */
4838 	parent = NULL;
4839 	while (*p) {
4840 		parent = *p;
4841 		skb1 = rb_to_skb(parent);
4842 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4843 			p = &parent->rb_left;
4844 			continue;
4845 		}
4846 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4848 				/* All the bits are present. Drop. */
4849 				NET_INC_STATS(sock_net(sk),
4850 					      LINUX_MIB_TCPOFOMERGE);
4851 				tcp_drop(sk, skb);
4852 				skb = NULL;
4853 				tcp_dsack_set(sk, seq, end_seq);
4854 				goto add_sack;
4855 			}
4856 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4857 				/* Partial overlap. */
4858 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4859 			} else {
4860 				/* skb's seq == skb1's seq and skb covers skb1.
4861 				 * Replace skb1 with skb.
4862 				 */
4863 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4864 						&tp->out_of_order_queue);
4865 				tcp_dsack_extend(sk,
4866 						 TCP_SKB_CB(skb1)->seq,
4867 						 TCP_SKB_CB(skb1)->end_seq);
4868 				NET_INC_STATS(sock_net(sk),
4869 					      LINUX_MIB_TCPOFOMERGE);
4870 				tcp_drop(sk, skb1);
4871 				goto merge_right;
4872 			}
4873 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4874 						skb, &fragstolen)) {
4875 			goto coalesce_done;
4876 		}
4877 		p = &parent->rb_right;
4878 	}
4879 insert:
4880 	/* Insert segment into RB tree. */
4881 	rb_link_node(&skb->rbnode, parent, p);
4882 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4883 
4884 merge_right:
4885 	/* Remove other segments covered by skb. */
4886 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4887 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4888 			break;
4889 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4890 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4891 					 end_seq);
4892 			break;
4893 		}
4894 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4895 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4896 				 TCP_SKB_CB(skb1)->end_seq);
4897 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4898 		tcp_drop(sk, skb1);
4899 	}
4900 	/* If there is no skb after us, we are the last_skb ! */
4901 	if (!skb1)
4902 		tp->ooo_last_skb = skb;
4903 
4904 add_sack:
4905 	if (tcp_is_sack(tp))
4906 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4907 end:
4908 	if (skb) {
4909 		/* For non sack flows, do not grow window to force DUPACK
4910 		 * and trigger fast retransmit.
4911 		 */
4912 		if (tcp_is_sack(tp))
4913 			tcp_grow_window(sk, skb, false);
4914 		skb_condense(skb);
4915 		skb_set_owner_r(skb, sk);
4916 	}
4917 }
4918 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4919 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4920 				      bool *fragstolen)
4921 {
4922 	int eaten;
4923 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4924 
4925 	eaten = (tail &&
4926 		 tcp_try_coalesce(sk, tail,
4927 				  skb, fragstolen)) ? 1 : 0;
4928 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4929 	if (!eaten) {
4930 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4931 		skb_set_owner_r(skb, sk);
4932 	}
4933 	return eaten;
4934 }
4935 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4936 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4937 {
4938 	struct sk_buff *skb;
4939 	int err = -ENOMEM;
4940 	int data_len = 0;
4941 	bool fragstolen;
4942 
4943 	if (size == 0)
4944 		return 0;
4945 
4946 	if (size > PAGE_SIZE) {
4947 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4948 
4949 		data_len = npages << PAGE_SHIFT;
4950 		size = data_len + (size & ~PAGE_MASK);
4951 	}
4952 	skb = alloc_skb_with_frags(size - data_len, data_len,
4953 				   PAGE_ALLOC_COSTLY_ORDER,
4954 				   &err, sk->sk_allocation);
4955 	if (!skb)
4956 		goto err;
4957 
4958 	skb_put(skb, size - data_len);
4959 	skb->data_len = data_len;
4960 	skb->len = size;
4961 
4962 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4963 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4964 		goto err_free;
4965 	}
4966 
4967 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4968 	if (err)
4969 		goto err_free;
4970 
4971 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4972 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4973 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4974 
4975 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4976 		WARN_ON_ONCE(fragstolen); /* should not happen */
4977 		__kfree_skb(skb);
4978 	}
4979 	return size;
4980 
4981 err_free:
4982 	kfree_skb(skb);
4983 err:
4984 	return err;
4985 
4986 }
4987 
tcp_data_ready(struct sock * sk)4988 void tcp_data_ready(struct sock *sk)
4989 {
4990 	const struct tcp_sock *tp = tcp_sk(sk);
4991 	int avail = tp->rcv_nxt - tp->copied_seq;
4992 
4993 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4994 	    !sock_flag(sk, SOCK_DONE) &&
4995 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4996 		return;
4997 
4998 	sk->sk_data_ready(sk);
4999 }
5000 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5001 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5002 {
5003 	struct tcp_sock *tp = tcp_sk(sk);
5004 	bool fragstolen;
5005 	int eaten;
5006 
5007 	if (sk_is_mptcp(sk))
5008 		mptcp_incoming_options(sk, skb);
5009 
5010 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5011 		__kfree_skb(skb);
5012 		return;
5013 	}
5014 	skb_dst_drop(skb);
5015 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5016 
5017 	tp->rx_opt.dsack = 0;
5018 
5019 	/*  Queue data for delivery to the user.
5020 	 *  Packets in sequence go to the receive queue.
5021 	 *  Out of sequence packets to the out_of_order_queue.
5022 	 */
5023 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5024 		if (tcp_receive_window(tp) == 0) {
5025 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5026 			goto out_of_window;
5027 		}
5028 
5029 		/* Ok. In sequence. In window. */
5030 queue_and_out:
5031 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5032 			sk_forced_mem_schedule(sk, skb->truesize);
5033 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5034 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5035 			sk->sk_data_ready(sk);
5036 			goto drop;
5037 		}
5038 
5039 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5040 		if (skb->len)
5041 			tcp_event_data_recv(sk, skb);
5042 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5043 			tcp_fin(sk);
5044 
5045 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5046 			tcp_ofo_queue(sk);
5047 
5048 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5049 			 * gap in queue is filled.
5050 			 */
5051 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5052 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5053 		}
5054 
5055 		if (tp->rx_opt.num_sacks)
5056 			tcp_sack_remove(tp);
5057 
5058 		tcp_fast_path_check(sk);
5059 
5060 		if (eaten > 0)
5061 			kfree_skb_partial(skb, fragstolen);
5062 		if (!sock_flag(sk, SOCK_DEAD))
5063 			tcp_data_ready(sk);
5064 		return;
5065 	}
5066 
5067 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5068 		tcp_rcv_spurious_retrans(sk, skb);
5069 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5070 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5071 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5072 
5073 out_of_window:
5074 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5075 		inet_csk_schedule_ack(sk);
5076 drop:
5077 		tcp_drop(sk, skb);
5078 		return;
5079 	}
5080 
5081 	/* Out of window. F.e. zero window probe. */
5082 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5083 		goto out_of_window;
5084 
5085 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5086 		/* Partial packet, seq < rcv_next < end_seq */
5087 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5088 
5089 		/* If window is closed, drop tail of packet. But after
5090 		 * remembering D-SACK for its head made in previous line.
5091 		 */
5092 		if (!tcp_receive_window(tp)) {
5093 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5094 			goto out_of_window;
5095 		}
5096 		goto queue_and_out;
5097 	}
5098 
5099 	tcp_data_queue_ofo(sk, skb);
5100 }
5101 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5102 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5103 {
5104 	if (list)
5105 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5106 
5107 	return skb_rb_next(skb);
5108 }
5109 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5110 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5111 					struct sk_buff_head *list,
5112 					struct rb_root *root)
5113 {
5114 	struct sk_buff *next = tcp_skb_next(skb, list);
5115 
5116 	if (list)
5117 		__skb_unlink(skb, list);
5118 	else
5119 		rb_erase(&skb->rbnode, root);
5120 
5121 	__kfree_skb(skb);
5122 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5123 
5124 	return next;
5125 }
5126 
5127 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5128 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5129 {
5130 	struct rb_node **p = &root->rb_node;
5131 	struct rb_node *parent = NULL;
5132 	struct sk_buff *skb1;
5133 
5134 	while (*p) {
5135 		parent = *p;
5136 		skb1 = rb_to_skb(parent);
5137 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5138 			p = &parent->rb_left;
5139 		else
5140 			p = &parent->rb_right;
5141 	}
5142 	rb_link_node(&skb->rbnode, parent, p);
5143 	rb_insert_color(&skb->rbnode, root);
5144 }
5145 
5146 /* Collapse contiguous sequence of skbs head..tail with
5147  * sequence numbers start..end.
5148  *
5149  * If tail is NULL, this means until the end of the queue.
5150  *
5151  * Segments with FIN/SYN are not collapsed (only because this
5152  * simplifies code)
5153  */
5154 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5155 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5156 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5157 {
5158 	struct sk_buff *skb = head, *n;
5159 	struct sk_buff_head tmp;
5160 	bool end_of_skbs;
5161 
5162 	/* First, check that queue is collapsible and find
5163 	 * the point where collapsing can be useful.
5164 	 */
5165 restart:
5166 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5167 		n = tcp_skb_next(skb, list);
5168 
5169 		/* No new bits? It is possible on ofo queue. */
5170 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5171 			skb = tcp_collapse_one(sk, skb, list, root);
5172 			if (!skb)
5173 				break;
5174 			goto restart;
5175 		}
5176 
5177 		/* The first skb to collapse is:
5178 		 * - not SYN/FIN and
5179 		 * - bloated or contains data before "start" or
5180 		 *   overlaps to the next one and mptcp allow collapsing.
5181 		 */
5182 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5183 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5184 		     before(TCP_SKB_CB(skb)->seq, start))) {
5185 			end_of_skbs = false;
5186 			break;
5187 		}
5188 
5189 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5190 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5191 			end_of_skbs = false;
5192 			break;
5193 		}
5194 
5195 		/* Decided to skip this, advance start seq. */
5196 		start = TCP_SKB_CB(skb)->end_seq;
5197 	}
5198 	if (end_of_skbs ||
5199 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5200 		return;
5201 
5202 	__skb_queue_head_init(&tmp);
5203 
5204 	while (before(start, end)) {
5205 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5206 		struct sk_buff *nskb;
5207 
5208 		nskb = alloc_skb(copy, GFP_ATOMIC);
5209 		if (!nskb)
5210 			break;
5211 
5212 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5213 #ifdef CONFIG_TLS_DEVICE
5214 		nskb->decrypted = skb->decrypted;
5215 #endif
5216 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5217 		if (list)
5218 			__skb_queue_before(list, skb, nskb);
5219 		else
5220 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5221 		skb_set_owner_r(nskb, sk);
5222 		mptcp_skb_ext_move(nskb, skb);
5223 
5224 		/* Copy data, releasing collapsed skbs. */
5225 		while (copy > 0) {
5226 			int offset = start - TCP_SKB_CB(skb)->seq;
5227 			int size = TCP_SKB_CB(skb)->end_seq - start;
5228 
5229 			BUG_ON(offset < 0);
5230 			if (size > 0) {
5231 				size = min(copy, size);
5232 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5233 					BUG();
5234 				TCP_SKB_CB(nskb)->end_seq += size;
5235 				copy -= size;
5236 				start += size;
5237 			}
5238 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5239 				skb = tcp_collapse_one(sk, skb, list, root);
5240 				if (!skb ||
5241 				    skb == tail ||
5242 				    !mptcp_skb_can_collapse(nskb, skb) ||
5243 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5244 					goto end;
5245 #ifdef CONFIG_TLS_DEVICE
5246 				if (skb->decrypted != nskb->decrypted)
5247 					goto end;
5248 #endif
5249 			}
5250 		}
5251 	}
5252 end:
5253 	skb_queue_walk_safe(&tmp, skb, n)
5254 		tcp_rbtree_insert(root, skb);
5255 }
5256 
5257 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5258  * and tcp_collapse() them until all the queue is collapsed.
5259  */
tcp_collapse_ofo_queue(struct sock * sk)5260 static void tcp_collapse_ofo_queue(struct sock *sk)
5261 {
5262 	struct tcp_sock *tp = tcp_sk(sk);
5263 	u32 range_truesize, sum_tiny = 0;
5264 	struct sk_buff *skb, *head;
5265 	u32 start, end;
5266 
5267 	skb = skb_rb_first(&tp->out_of_order_queue);
5268 new_range:
5269 	if (!skb) {
5270 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5271 		return;
5272 	}
5273 	start = TCP_SKB_CB(skb)->seq;
5274 	end = TCP_SKB_CB(skb)->end_seq;
5275 	range_truesize = skb->truesize;
5276 
5277 	for (head = skb;;) {
5278 		skb = skb_rb_next(skb);
5279 
5280 		/* Range is terminated when we see a gap or when
5281 		 * we are at the queue end.
5282 		 */
5283 		if (!skb ||
5284 		    after(TCP_SKB_CB(skb)->seq, end) ||
5285 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5286 			/* Do not attempt collapsing tiny skbs */
5287 			if (range_truesize != head->truesize ||
5288 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5289 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5290 					     head, skb, start, end);
5291 			} else {
5292 				sum_tiny += range_truesize;
5293 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5294 					return;
5295 			}
5296 			goto new_range;
5297 		}
5298 
5299 		range_truesize += skb->truesize;
5300 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5301 			start = TCP_SKB_CB(skb)->seq;
5302 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5303 			end = TCP_SKB_CB(skb)->end_seq;
5304 	}
5305 }
5306 
5307 /*
5308  * Clean the out-of-order queue to make room.
5309  * We drop high sequences packets to :
5310  * 1) Let a chance for holes to be filled.
5311  * 2) not add too big latencies if thousands of packets sit there.
5312  *    (But if application shrinks SO_RCVBUF, we could still end up
5313  *     freeing whole queue here)
5314  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5315  *
5316  * Return true if queue has shrunk.
5317  */
tcp_prune_ofo_queue(struct sock * sk)5318 static bool tcp_prune_ofo_queue(struct sock *sk)
5319 {
5320 	struct tcp_sock *tp = tcp_sk(sk);
5321 	struct rb_node *node, *prev;
5322 	int goal;
5323 
5324 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5325 		return false;
5326 
5327 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5328 	goal = sk->sk_rcvbuf >> 3;
5329 	node = &tp->ooo_last_skb->rbnode;
5330 	do {
5331 		prev = rb_prev(node);
5332 		rb_erase(node, &tp->out_of_order_queue);
5333 		goal -= rb_to_skb(node)->truesize;
5334 		tcp_drop(sk, rb_to_skb(node));
5335 		if (!prev || goal <= 0) {
5336 			sk_mem_reclaim(sk);
5337 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5338 			    !tcp_under_memory_pressure(sk))
5339 				break;
5340 			goal = sk->sk_rcvbuf >> 3;
5341 		}
5342 		node = prev;
5343 	} while (node);
5344 	tp->ooo_last_skb = rb_to_skb(prev);
5345 
5346 	/* Reset SACK state.  A conforming SACK implementation will
5347 	 * do the same at a timeout based retransmit.  When a connection
5348 	 * is in a sad state like this, we care only about integrity
5349 	 * of the connection not performance.
5350 	 */
5351 	if (tp->rx_opt.sack_ok)
5352 		tcp_sack_reset(&tp->rx_opt);
5353 	return true;
5354 }
5355 
5356 /* Reduce allocated memory if we can, trying to get
5357  * the socket within its memory limits again.
5358  *
5359  * Return less than zero if we should start dropping frames
5360  * until the socket owning process reads some of the data
5361  * to stabilize the situation.
5362  */
tcp_prune_queue(struct sock * sk)5363 static int tcp_prune_queue(struct sock *sk)
5364 {
5365 	struct tcp_sock *tp = tcp_sk(sk);
5366 
5367 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5368 
5369 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5370 		tcp_clamp_window(sk);
5371 	else if (tcp_under_memory_pressure(sk))
5372 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5373 
5374 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5375 		return 0;
5376 
5377 	tcp_collapse_ofo_queue(sk);
5378 	if (!skb_queue_empty(&sk->sk_receive_queue))
5379 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5380 			     skb_peek(&sk->sk_receive_queue),
5381 			     NULL,
5382 			     tp->copied_seq, tp->rcv_nxt);
5383 	sk_mem_reclaim(sk);
5384 
5385 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5386 		return 0;
5387 
5388 	/* Collapsing did not help, destructive actions follow.
5389 	 * This must not ever occur. */
5390 
5391 	tcp_prune_ofo_queue(sk);
5392 
5393 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5394 		return 0;
5395 
5396 	/* If we are really being abused, tell the caller to silently
5397 	 * drop receive data on the floor.  It will get retransmitted
5398 	 * and hopefully then we'll have sufficient space.
5399 	 */
5400 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5401 
5402 	/* Massive buffer overcommit. */
5403 	tp->pred_flags = 0;
5404 	return -1;
5405 }
5406 
tcp_should_expand_sndbuf(const struct sock * sk)5407 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5408 {
5409 	const struct tcp_sock *tp = tcp_sk(sk);
5410 
5411 	/* If the user specified a specific send buffer setting, do
5412 	 * not modify it.
5413 	 */
5414 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5415 		return false;
5416 
5417 	/* If we are under global TCP memory pressure, do not expand.  */
5418 	if (tcp_under_memory_pressure(sk))
5419 		return false;
5420 
5421 	/* If we are under soft global TCP memory pressure, do not expand.  */
5422 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5423 		return false;
5424 
5425 	/* If we filled the congestion window, do not expand.  */
5426 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5427 		return false;
5428 
5429 	return true;
5430 }
5431 
tcp_new_space(struct sock * sk)5432 static void tcp_new_space(struct sock *sk)
5433 {
5434 	struct tcp_sock *tp = tcp_sk(sk);
5435 
5436 	if (tcp_should_expand_sndbuf(sk)) {
5437 		tcp_sndbuf_expand(sk);
5438 		tp->snd_cwnd_stamp = tcp_jiffies32;
5439 	}
5440 
5441 	sk->sk_write_space(sk);
5442 }
5443 
5444 /* Caller made space either from:
5445  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5446  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5447  *
5448  * We might be able to generate EPOLLOUT to the application if:
5449  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5450  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5451  *    small enough that tcp_stream_memory_free() decides it
5452  *    is time to generate EPOLLOUT.
5453  */
tcp_check_space(struct sock * sk)5454 void tcp_check_space(struct sock *sk)
5455 {
5456 	/* pairs with tcp_poll() */
5457 	smp_mb();
5458 	if (sk->sk_socket &&
5459 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5460 		tcp_new_space(sk);
5461 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5462 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5463 	}
5464 }
5465 
tcp_data_snd_check(struct sock * sk)5466 static inline void tcp_data_snd_check(struct sock *sk)
5467 {
5468 	tcp_push_pending_frames(sk);
5469 	tcp_check_space(sk);
5470 }
5471 
5472 /*
5473  * Check if sending an ack is needed.
5474  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5475 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5476 {
5477 	struct tcp_sock *tp = tcp_sk(sk);
5478 	unsigned long rtt, delay;
5479 	__u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss;
5480 #ifdef CONFIG_LOWPOWER_PROTOCOL
5481 	rcv_mss *= tcp_ack_num(sk);
5482 #endif /* CONFIG_LOWPOWER_PROTOCOL */
5483 	    /* More than one full frame received... */
5484 	if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss &&
5485 	     /* ... and right edge of window advances far enough.
5486 	      * (tcp_recvmsg() will send ACK otherwise).
5487 	      * If application uses SO_RCVLOWAT, we want send ack now if
5488 	      * we have not received enough bytes to satisfy the condition.
5489 	      */
5490 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5491 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5492 	    /* We ACK each frame or... */
5493 	    tcp_in_quickack_mode(sk) ||
5494 	    /* Protocol state mandates a one-time immediate ACK */
5495 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5496 send_now:
5497 		tcp_send_ack(sk);
5498 		return;
5499 	}
5500 
5501 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5502 		tcp_send_delayed_ack(sk);
5503 		return;
5504 	}
5505 
5506 	if (!tcp_is_sack(tp) ||
5507 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5508 		goto send_now;
5509 
5510 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5511 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5512 		tp->dup_ack_counter = 0;
5513 	}
5514 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5515 		tp->dup_ack_counter++;
5516 		goto send_now;
5517 	}
5518 	tp->compressed_ack++;
5519 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5520 		return;
5521 
5522 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5523 
5524 	rtt = tp->rcv_rtt_est.rtt_us;
5525 	if (tp->srtt_us && tp->srtt_us < rtt)
5526 		rtt = tp->srtt_us;
5527 
5528 	delay = min_t(unsigned long,
5529 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5530 		      rtt * (NSEC_PER_USEC >> 3)/20);
5531 	sock_hold(sk);
5532 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5533 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5534 			       HRTIMER_MODE_REL_PINNED_SOFT);
5535 }
5536 
tcp_ack_snd_check(struct sock * sk)5537 static inline void tcp_ack_snd_check(struct sock *sk)
5538 {
5539 	if (!inet_csk_ack_scheduled(sk)) {
5540 		/* We sent a data segment already. */
5541 		return;
5542 	}
5543 	__tcp_ack_snd_check(sk, 1);
5544 }
5545 
5546 /*
5547  *	This routine is only called when we have urgent data
5548  *	signaled. Its the 'slow' part of tcp_urg. It could be
5549  *	moved inline now as tcp_urg is only called from one
5550  *	place. We handle URGent data wrong. We have to - as
5551  *	BSD still doesn't use the correction from RFC961.
5552  *	For 1003.1g we should support a new option TCP_STDURG to permit
5553  *	either form (or just set the sysctl tcp_stdurg).
5554  */
5555 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5556 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5557 {
5558 	struct tcp_sock *tp = tcp_sk(sk);
5559 	u32 ptr = ntohs(th->urg_ptr);
5560 
5561 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5562 		ptr--;
5563 	ptr += ntohl(th->seq);
5564 
5565 	/* Ignore urgent data that we've already seen and read. */
5566 	if (after(tp->copied_seq, ptr))
5567 		return;
5568 
5569 	/* Do not replay urg ptr.
5570 	 *
5571 	 * NOTE: interesting situation not covered by specs.
5572 	 * Misbehaving sender may send urg ptr, pointing to segment,
5573 	 * which we already have in ofo queue. We are not able to fetch
5574 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5575 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5576 	 * situations. But it is worth to think about possibility of some
5577 	 * DoSes using some hypothetical application level deadlock.
5578 	 */
5579 	if (before(ptr, tp->rcv_nxt))
5580 		return;
5581 
5582 	/* Do we already have a newer (or duplicate) urgent pointer? */
5583 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5584 		return;
5585 
5586 	/* Tell the world about our new urgent pointer. */
5587 	sk_send_sigurg(sk);
5588 
5589 	/* We may be adding urgent data when the last byte read was
5590 	 * urgent. To do this requires some care. We cannot just ignore
5591 	 * tp->copied_seq since we would read the last urgent byte again
5592 	 * as data, nor can we alter copied_seq until this data arrives
5593 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5594 	 *
5595 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5596 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5597 	 * and expect that both A and B disappear from stream. This is _wrong_.
5598 	 * Though this happens in BSD with high probability, this is occasional.
5599 	 * Any application relying on this is buggy. Note also, that fix "works"
5600 	 * only in this artificial test. Insert some normal data between A and B and we will
5601 	 * decline of BSD again. Verdict: it is better to remove to trap
5602 	 * buggy users.
5603 	 */
5604 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5605 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5606 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5607 		tp->copied_seq++;
5608 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5609 			__skb_unlink(skb, &sk->sk_receive_queue);
5610 			__kfree_skb(skb);
5611 		}
5612 	}
5613 
5614 	tp->urg_data = TCP_URG_NOTYET;
5615 	WRITE_ONCE(tp->urg_seq, ptr);
5616 
5617 	/* Disable header prediction. */
5618 	tp->pred_flags = 0;
5619 }
5620 
5621 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5622 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5623 {
5624 	struct tcp_sock *tp = tcp_sk(sk);
5625 
5626 	/* Check if we get a new urgent pointer - normally not. */
5627 	if (th->urg)
5628 		tcp_check_urg(sk, th);
5629 
5630 	/* Do we wait for any urgent data? - normally not... */
5631 	if (tp->urg_data == TCP_URG_NOTYET) {
5632 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5633 			  th->syn;
5634 
5635 		/* Is the urgent pointer pointing into this packet? */
5636 		if (ptr < skb->len) {
5637 			u8 tmp;
5638 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5639 				BUG();
5640 			tp->urg_data = TCP_URG_VALID | tmp;
5641 			if (!sock_flag(sk, SOCK_DEAD))
5642 				sk->sk_data_ready(sk);
5643 		}
5644 	}
5645 }
5646 
5647 /* Accept RST for rcv_nxt - 1 after a FIN.
5648  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5649  * FIN is sent followed by a RST packet. The RST is sent with the same
5650  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5651  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5652  * ACKs on the closed socket. In addition middleboxes can drop either the
5653  * challenge ACK or a subsequent RST.
5654  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5655 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5656 {
5657 	struct tcp_sock *tp = tcp_sk(sk);
5658 
5659 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5660 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5661 					       TCPF_CLOSING));
5662 }
5663 
5664 /* Does PAWS and seqno based validation of an incoming segment, flags will
5665  * play significant role here.
5666  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5667 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5668 				  const struct tcphdr *th, int syn_inerr)
5669 {
5670 	struct tcp_sock *tp = tcp_sk(sk);
5671 	bool rst_seq_match = false;
5672 
5673 	/* RFC1323: H1. Apply PAWS check first. */
5674 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5675 	    tp->rx_opt.saw_tstamp &&
5676 	    tcp_paws_discard(sk, skb)) {
5677 		if (!th->rst) {
5678 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5679 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5680 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5681 						  &tp->last_oow_ack_time))
5682 				tcp_send_dupack(sk, skb);
5683 			goto discard;
5684 		}
5685 		/* Reset is accepted even if it did not pass PAWS. */
5686 	}
5687 
5688 	/* Step 1: check sequence number */
5689 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5690 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5691 		 * (RST) segments are validated by checking their SEQ-fields."
5692 		 * And page 69: "If an incoming segment is not acceptable,
5693 		 * an acknowledgment should be sent in reply (unless the RST
5694 		 * bit is set, if so drop the segment and return)".
5695 		 */
5696 		if (!th->rst) {
5697 			if (th->syn)
5698 				goto syn_challenge;
5699 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5700 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5701 						  &tp->last_oow_ack_time))
5702 				tcp_send_dupack(sk, skb);
5703 		} else if (tcp_reset_check(sk, skb)) {
5704 			tcp_reset(sk);
5705 		}
5706 		goto discard;
5707 	}
5708 
5709 	/* Step 2: check RST bit */
5710 	if (th->rst) {
5711 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5712 		 * FIN and SACK too if available):
5713 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5714 		 * the right-most SACK block,
5715 		 * then
5716 		 *     RESET the connection
5717 		 * else
5718 		 *     Send a challenge ACK
5719 		 */
5720 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5721 		    tcp_reset_check(sk, skb)) {
5722 			rst_seq_match = true;
5723 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5724 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5725 			int max_sack = sp[0].end_seq;
5726 			int this_sack;
5727 
5728 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5729 			     ++this_sack) {
5730 				max_sack = after(sp[this_sack].end_seq,
5731 						 max_sack) ?
5732 					sp[this_sack].end_seq : max_sack;
5733 			}
5734 
5735 			if (TCP_SKB_CB(skb)->seq == max_sack)
5736 				rst_seq_match = true;
5737 		}
5738 
5739 		if (rst_seq_match)
5740 			tcp_reset(sk);
5741 		else {
5742 			/* Disable TFO if RST is out-of-order
5743 			 * and no data has been received
5744 			 * for current active TFO socket
5745 			 */
5746 			if (tp->syn_fastopen && !tp->data_segs_in &&
5747 			    sk->sk_state == TCP_ESTABLISHED)
5748 				tcp_fastopen_active_disable(sk);
5749 			tcp_send_challenge_ack(sk, skb);
5750 		}
5751 		goto discard;
5752 	}
5753 
5754 	/* step 3: check security and precedence [ignored] */
5755 
5756 	/* step 4: Check for a SYN
5757 	 * RFC 5961 4.2 : Send a challenge ack
5758 	 */
5759 	if (th->syn) {
5760 syn_challenge:
5761 		if (syn_inerr)
5762 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5763 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5764 		tcp_send_challenge_ack(sk, skb);
5765 		goto discard;
5766 	}
5767 
5768 	bpf_skops_parse_hdr(sk, skb);
5769 
5770 	return true;
5771 
5772 discard:
5773 	tcp_drop(sk, skb);
5774 	return false;
5775 }
5776 
5777 /*
5778  *	TCP receive function for the ESTABLISHED state.
5779  *
5780  *	It is split into a fast path and a slow path. The fast path is
5781  * 	disabled when:
5782  *	- A zero window was announced from us - zero window probing
5783  *        is only handled properly in the slow path.
5784  *	- Out of order segments arrived.
5785  *	- Urgent data is expected.
5786  *	- There is no buffer space left
5787  *	- Unexpected TCP flags/window values/header lengths are received
5788  *	  (detected by checking the TCP header against pred_flags)
5789  *	- Data is sent in both directions. Fast path only supports pure senders
5790  *	  or pure receivers (this means either the sequence number or the ack
5791  *	  value must stay constant)
5792  *	- Unexpected TCP option.
5793  *
5794  *	When these conditions are not satisfied it drops into a standard
5795  *	receive procedure patterned after RFC793 to handle all cases.
5796  *	The first three cases are guaranteed by proper pred_flags setting,
5797  *	the rest is checked inline. Fast processing is turned on in
5798  *	tcp_data_queue when everything is OK.
5799  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5800 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5801 {
5802 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5803 	struct tcp_sock *tp = tcp_sk(sk);
5804 	unsigned int len = skb->len;
5805 
5806 	/* TCP congestion window tracking */
5807 	trace_tcp_probe(sk, skb);
5808 
5809 	tcp_mstamp_refresh(tp);
5810 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5811 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5812 	/*
5813 	 *	Header prediction.
5814 	 *	The code loosely follows the one in the famous
5815 	 *	"30 instruction TCP receive" Van Jacobson mail.
5816 	 *
5817 	 *	Van's trick is to deposit buffers into socket queue
5818 	 *	on a device interrupt, to call tcp_recv function
5819 	 *	on the receive process context and checksum and copy
5820 	 *	the buffer to user space. smart...
5821 	 *
5822 	 *	Our current scheme is not silly either but we take the
5823 	 *	extra cost of the net_bh soft interrupt processing...
5824 	 *	We do checksum and copy also but from device to kernel.
5825 	 */
5826 
5827 	tp->rx_opt.saw_tstamp = 0;
5828 
5829 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5830 	 *	if header_prediction is to be made
5831 	 *	'S' will always be tp->tcp_header_len >> 2
5832 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5833 	 *  turn it off	(when there are holes in the receive
5834 	 *	 space for instance)
5835 	 *	PSH flag is ignored.
5836 	 */
5837 
5838 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5839 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5840 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5841 		int tcp_header_len = tp->tcp_header_len;
5842 
5843 		/* Timestamp header prediction: tcp_header_len
5844 		 * is automatically equal to th->doff*4 due to pred_flags
5845 		 * match.
5846 		 */
5847 
5848 		/* Check timestamp */
5849 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5850 			/* No? Slow path! */
5851 			if (!tcp_parse_aligned_timestamp(tp, th))
5852 				goto slow_path;
5853 
5854 			/* If PAWS failed, check it more carefully in slow path */
5855 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5856 				goto slow_path;
5857 
5858 			/* DO NOT update ts_recent here, if checksum fails
5859 			 * and timestamp was corrupted part, it will result
5860 			 * in a hung connection since we will drop all
5861 			 * future packets due to the PAWS test.
5862 			 */
5863 		}
5864 
5865 		if (len <= tcp_header_len) {
5866 			/* Bulk data transfer: sender */
5867 			if (len == tcp_header_len) {
5868 				/* Predicted packet is in window by definition.
5869 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5870 				 * Hence, check seq<=rcv_wup reduces to:
5871 				 */
5872 				if (tcp_header_len ==
5873 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5874 				    tp->rcv_nxt == tp->rcv_wup)
5875 					tcp_store_ts_recent(tp);
5876 
5877 				/* We know that such packets are checksummed
5878 				 * on entry.
5879 				 */
5880 				tcp_ack(sk, skb, 0);
5881 				__kfree_skb(skb);
5882 				tcp_data_snd_check(sk);
5883 				/* When receiving pure ack in fast path, update
5884 				 * last ts ecr directly instead of calling
5885 				 * tcp_rcv_rtt_measure_ts()
5886 				 */
5887 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5888 				return;
5889 			} else { /* Header too small */
5890 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5891 				goto discard;
5892 			}
5893 		} else {
5894 			int eaten = 0;
5895 			bool fragstolen = false;
5896 
5897 			if (tcp_checksum_complete(skb))
5898 				goto csum_error;
5899 
5900 			if ((int)skb->truesize > sk->sk_forward_alloc)
5901 				goto step5;
5902 
5903 			/* Predicted packet is in window by definition.
5904 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5905 			 * Hence, check seq<=rcv_wup reduces to:
5906 			 */
5907 			if (tcp_header_len ==
5908 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5909 			    tp->rcv_nxt == tp->rcv_wup)
5910 				tcp_store_ts_recent(tp);
5911 
5912 			tcp_rcv_rtt_measure_ts(sk, skb);
5913 
5914 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5915 
5916 			/* Bulk data transfer: receiver */
5917 			__skb_pull(skb, tcp_header_len);
5918 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5919 
5920 			tcp_event_data_recv(sk, skb);
5921 
5922 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5923 				/* Well, only one small jumplet in fast path... */
5924 				tcp_ack(sk, skb, FLAG_DATA);
5925 				tcp_data_snd_check(sk);
5926 				if (!inet_csk_ack_scheduled(sk))
5927 					goto no_ack;
5928 			} else {
5929 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5930 			}
5931 
5932 			__tcp_ack_snd_check(sk, 0);
5933 no_ack:
5934 			if (eaten)
5935 				kfree_skb_partial(skb, fragstolen);
5936 			tcp_data_ready(sk);
5937 			return;
5938 		}
5939 	}
5940 
5941 slow_path:
5942 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5943 		goto csum_error;
5944 
5945 	if (!th->ack && !th->rst && !th->syn)
5946 		goto discard;
5947 
5948 	/*
5949 	 *	Standard slow path.
5950 	 */
5951 
5952 	if (!tcp_validate_incoming(sk, skb, th, 1))
5953 		return;
5954 
5955 step5:
5956 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5957 		goto discard;
5958 
5959 	tcp_rcv_rtt_measure_ts(sk, skb);
5960 
5961 	/* Process urgent data. */
5962 	tcp_urg(sk, skb, th);
5963 
5964 	/* step 7: process the segment text */
5965 	tcp_data_queue(sk, skb);
5966 
5967 	tcp_data_snd_check(sk);
5968 	tcp_ack_snd_check(sk);
5969 	return;
5970 
5971 csum_error:
5972 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5973 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5974 
5975 discard:
5976 	tcp_drop(sk, skb);
5977 }
5978 EXPORT_SYMBOL(tcp_rcv_established);
5979 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5980 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5981 {
5982 	struct inet_connection_sock *icsk = inet_csk(sk);
5983 	struct tcp_sock *tp = tcp_sk(sk);
5984 
5985 	tcp_mtup_init(sk);
5986 	icsk->icsk_af_ops->rebuild_header(sk);
5987 	tcp_init_metrics(sk);
5988 
5989 	/* Initialize the congestion window to start the transfer.
5990 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5991 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5992 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5993 	 * retransmission has occurred.
5994 	 */
5995 	if (tp->total_retrans > 1 && tp->undo_marker)
5996 		tp->snd_cwnd = 1;
5997 	else
5998 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5999 	tp->snd_cwnd_stamp = tcp_jiffies32;
6000 
6001 	bpf_skops_established(sk, bpf_op, skb);
6002 	/* Initialize congestion control unless BPF initialized it already: */
6003 	if (!icsk->icsk_ca_initialized)
6004 		tcp_init_congestion_control(sk);
6005 	tcp_init_buffer_space(sk);
6006 }
6007 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6008 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6009 {
6010 	struct tcp_sock *tp = tcp_sk(sk);
6011 	struct inet_connection_sock *icsk = inet_csk(sk);
6012 
6013 	tcp_set_state(sk, TCP_ESTABLISHED);
6014 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6015 
6016 	if (skb) {
6017 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6018 		security_inet_conn_established(sk, skb);
6019 		sk_mark_napi_id(sk, skb);
6020 	}
6021 
6022 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6023 
6024 	/* Prevent spurious tcp_cwnd_restart() on first data
6025 	 * packet.
6026 	 */
6027 	tp->lsndtime = tcp_jiffies32;
6028 
6029 	if (sock_flag(sk, SOCK_KEEPOPEN))
6030 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6031 
6032 	if (!tp->rx_opt.snd_wscale)
6033 		__tcp_fast_path_on(tp, tp->snd_wnd);
6034 	else
6035 		tp->pred_flags = 0;
6036 }
6037 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6038 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6039 				    struct tcp_fastopen_cookie *cookie)
6040 {
6041 	struct tcp_sock *tp = tcp_sk(sk);
6042 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6043 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6044 	bool syn_drop = false;
6045 
6046 	if (mss == tp->rx_opt.user_mss) {
6047 		struct tcp_options_received opt;
6048 
6049 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6050 		tcp_clear_options(&opt);
6051 		opt.user_mss = opt.mss_clamp = 0;
6052 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6053 		mss = opt.mss_clamp;
6054 	}
6055 
6056 	if (!tp->syn_fastopen) {
6057 		/* Ignore an unsolicited cookie */
6058 		cookie->len = -1;
6059 	} else if (tp->total_retrans) {
6060 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6061 		 * acknowledges data. Presumably the remote received only
6062 		 * the retransmitted (regular) SYNs: either the original
6063 		 * SYN-data or the corresponding SYN-ACK was dropped.
6064 		 */
6065 		syn_drop = (cookie->len < 0 && data);
6066 	} else if (cookie->len < 0 && !tp->syn_data) {
6067 		/* We requested a cookie but didn't get it. If we did not use
6068 		 * the (old) exp opt format then try so next time (try_exp=1).
6069 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6070 		 */
6071 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6072 	}
6073 
6074 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6075 
6076 	if (data) { /* Retransmit unacked data in SYN */
6077 		if (tp->total_retrans)
6078 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6079 		else
6080 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6081 		skb_rbtree_walk_from(data) {
6082 			if (__tcp_retransmit_skb(sk, data, 1))
6083 				break;
6084 		}
6085 		tcp_rearm_rto(sk);
6086 		NET_INC_STATS(sock_net(sk),
6087 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6088 		return true;
6089 	}
6090 	tp->syn_data_acked = tp->syn_data;
6091 	if (tp->syn_data_acked) {
6092 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6093 		/* SYN-data is counted as two separate packets in tcp_ack() */
6094 		if (tp->delivered > 1)
6095 			--tp->delivered;
6096 	}
6097 
6098 	tcp_fastopen_add_skb(sk, synack);
6099 
6100 	return false;
6101 }
6102 
smc_check_reset_syn(struct tcp_sock * tp)6103 static void smc_check_reset_syn(struct tcp_sock *tp)
6104 {
6105 #if IS_ENABLED(CONFIG_SMC)
6106 	if (static_branch_unlikely(&tcp_have_smc)) {
6107 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6108 			tp->syn_smc = 0;
6109 	}
6110 #endif
6111 }
6112 
tcp_try_undo_spurious_syn(struct sock * sk)6113 static void tcp_try_undo_spurious_syn(struct sock *sk)
6114 {
6115 	struct tcp_sock *tp = tcp_sk(sk);
6116 	u32 syn_stamp;
6117 
6118 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6119 	 * spurious if the ACK's timestamp option echo value matches the
6120 	 * original SYN timestamp.
6121 	 */
6122 	syn_stamp = tp->retrans_stamp;
6123 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6124 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6125 		tp->undo_marker = 0;
6126 }
6127 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6128 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6129 					 const struct tcphdr *th)
6130 {
6131 	struct inet_connection_sock *icsk = inet_csk(sk);
6132 	struct tcp_sock *tp = tcp_sk(sk);
6133 	struct tcp_fastopen_cookie foc = { .len = -1 };
6134 	int saved_clamp = tp->rx_opt.mss_clamp;
6135 	bool fastopen_fail;
6136 
6137 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6138 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6139 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6140 
6141 	if (th->ack) {
6142 		/* rfc793:
6143 		 * "If the state is SYN-SENT then
6144 		 *    first check the ACK bit
6145 		 *      If the ACK bit is set
6146 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6147 		 *        a reset (unless the RST bit is set, if so drop
6148 		 *        the segment and return)"
6149 		 */
6150 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6151 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6152 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6153 			if (icsk->icsk_retransmits == 0)
6154 				inet_csk_reset_xmit_timer(sk,
6155 						ICSK_TIME_RETRANS,
6156 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6157 			goto reset_and_undo;
6158 		}
6159 
6160 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6161 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6162 			     tcp_time_stamp(tp))) {
6163 			NET_INC_STATS(sock_net(sk),
6164 					LINUX_MIB_PAWSACTIVEREJECTED);
6165 			goto reset_and_undo;
6166 		}
6167 
6168 		/* Now ACK is acceptable.
6169 		 *
6170 		 * "If the RST bit is set
6171 		 *    If the ACK was acceptable then signal the user "error:
6172 		 *    connection reset", drop the segment, enter CLOSED state,
6173 		 *    delete TCB, and return."
6174 		 */
6175 
6176 		if (th->rst) {
6177 			tcp_reset(sk);
6178 			goto discard;
6179 		}
6180 
6181 		/* rfc793:
6182 		 *   "fifth, if neither of the SYN or RST bits is set then
6183 		 *    drop the segment and return."
6184 		 *
6185 		 *    See note below!
6186 		 *                                        --ANK(990513)
6187 		 */
6188 		if (!th->syn)
6189 			goto discard_and_undo;
6190 
6191 		/* rfc793:
6192 		 *   "If the SYN bit is on ...
6193 		 *    are acceptable then ...
6194 		 *    (our SYN has been ACKed), change the connection
6195 		 *    state to ESTABLISHED..."
6196 		 */
6197 
6198 		tcp_ecn_rcv_synack(tp, th);
6199 
6200 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6201 		tcp_try_undo_spurious_syn(sk);
6202 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6203 
6204 		/* Ok.. it's good. Set up sequence numbers and
6205 		 * move to established.
6206 		 */
6207 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6208 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6209 
6210 		/* RFC1323: The window in SYN & SYN/ACK segments is
6211 		 * never scaled.
6212 		 */
6213 		tp->snd_wnd = ntohs(th->window);
6214 
6215 		if (!tp->rx_opt.wscale_ok) {
6216 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6217 			tp->window_clamp = min(tp->window_clamp, 65535U);
6218 		}
6219 
6220 		if (tp->rx_opt.saw_tstamp) {
6221 			tp->rx_opt.tstamp_ok	   = 1;
6222 			tp->tcp_header_len =
6223 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6224 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6225 			tcp_store_ts_recent(tp);
6226 		} else {
6227 			tp->tcp_header_len = sizeof(struct tcphdr);
6228 		}
6229 
6230 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6231 		tcp_initialize_rcv_mss(sk);
6232 
6233 		/* Remember, tcp_poll() does not lock socket!
6234 		 * Change state from SYN-SENT only after copied_seq
6235 		 * is initialized. */
6236 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6237 
6238 		smc_check_reset_syn(tp);
6239 
6240 		smp_mb();
6241 
6242 		tcp_finish_connect(sk, skb);
6243 
6244 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6245 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6246 
6247 		if (!sock_flag(sk, SOCK_DEAD)) {
6248 			sk->sk_state_change(sk);
6249 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6250 		}
6251 		if (fastopen_fail)
6252 			return -1;
6253 		if (sk->sk_write_pending ||
6254 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6255 		    inet_csk_in_pingpong_mode(sk)) {
6256 			/* Save one ACK. Data will be ready after
6257 			 * several ticks, if write_pending is set.
6258 			 *
6259 			 * It may be deleted, but with this feature tcpdumps
6260 			 * look so _wonderfully_ clever, that I was not able
6261 			 * to stand against the temptation 8)     --ANK
6262 			 */
6263 			inet_csk_schedule_ack(sk);
6264 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6265 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6266 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6267 
6268 discard:
6269 			tcp_drop(sk, skb);
6270 			return 0;
6271 		} else {
6272 			tcp_send_ack(sk);
6273 		}
6274 		return -1;
6275 	}
6276 
6277 	/* No ACK in the segment */
6278 
6279 	if (th->rst) {
6280 		/* rfc793:
6281 		 * "If the RST bit is set
6282 		 *
6283 		 *      Otherwise (no ACK) drop the segment and return."
6284 		 */
6285 
6286 		goto discard_and_undo;
6287 	}
6288 
6289 	/* PAWS check. */
6290 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6291 	    tcp_paws_reject(&tp->rx_opt, 0))
6292 		goto discard_and_undo;
6293 
6294 	if (th->syn) {
6295 		/* We see SYN without ACK. It is attempt of
6296 		 * simultaneous connect with crossed SYNs.
6297 		 * Particularly, it can be connect to self.
6298 		 */
6299 		tcp_set_state(sk, TCP_SYN_RECV);
6300 
6301 		if (tp->rx_opt.saw_tstamp) {
6302 			tp->rx_opt.tstamp_ok = 1;
6303 			tcp_store_ts_recent(tp);
6304 			tp->tcp_header_len =
6305 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6306 		} else {
6307 			tp->tcp_header_len = sizeof(struct tcphdr);
6308 		}
6309 
6310 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6311 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6312 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6313 
6314 		/* RFC1323: The window in SYN & SYN/ACK segments is
6315 		 * never scaled.
6316 		 */
6317 		tp->snd_wnd    = ntohs(th->window);
6318 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6319 		tp->max_window = tp->snd_wnd;
6320 
6321 		tcp_ecn_rcv_syn(tp, th);
6322 
6323 		tcp_mtup_init(sk);
6324 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6325 		tcp_initialize_rcv_mss(sk);
6326 
6327 		tcp_send_synack(sk);
6328 #if 0
6329 		/* Note, we could accept data and URG from this segment.
6330 		 * There are no obstacles to make this (except that we must
6331 		 * either change tcp_recvmsg() to prevent it from returning data
6332 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6333 		 *
6334 		 * However, if we ignore data in ACKless segments sometimes,
6335 		 * we have no reasons to accept it sometimes.
6336 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6337 		 * is not flawless. So, discard packet for sanity.
6338 		 * Uncomment this return to process the data.
6339 		 */
6340 		return -1;
6341 #else
6342 		goto discard;
6343 #endif
6344 	}
6345 	/* "fifth, if neither of the SYN or RST bits is set then
6346 	 * drop the segment and return."
6347 	 */
6348 
6349 discard_and_undo:
6350 	tcp_clear_options(&tp->rx_opt);
6351 	tp->rx_opt.mss_clamp = saved_clamp;
6352 	goto discard;
6353 
6354 reset_and_undo:
6355 	tcp_clear_options(&tp->rx_opt);
6356 	tp->rx_opt.mss_clamp = saved_clamp;
6357 	return 1;
6358 }
6359 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6360 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6361 {
6362 	struct tcp_sock *tp = tcp_sk(sk);
6363 	struct request_sock *req;
6364 
6365 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6366 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6367 	 */
6368 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6369 		tcp_try_undo_recovery(sk);
6370 
6371 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6372 	tp->retrans_stamp = 0;
6373 	inet_csk(sk)->icsk_retransmits = 0;
6374 
6375 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6376 	 * we no longer need req so release it.
6377 	 */
6378 	req = rcu_dereference_protected(tp->fastopen_rsk,
6379 					lockdep_sock_is_held(sk));
6380 	reqsk_fastopen_remove(sk, req, false);
6381 
6382 	/* Re-arm the timer because data may have been sent out.
6383 	 * This is similar to the regular data transmission case
6384 	 * when new data has just been ack'ed.
6385 	 *
6386 	 * (TFO) - we could try to be more aggressive and
6387 	 * retransmitting any data sooner based on when they
6388 	 * are sent out.
6389 	 */
6390 	tcp_rearm_rto(sk);
6391 }
6392 
6393 /*
6394  *	This function implements the receiving procedure of RFC 793 for
6395  *	all states except ESTABLISHED and TIME_WAIT.
6396  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6397  *	address independent.
6398  */
6399 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6400 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6401 {
6402 	struct tcp_sock *tp = tcp_sk(sk);
6403 	struct inet_connection_sock *icsk = inet_csk(sk);
6404 	const struct tcphdr *th = tcp_hdr(skb);
6405 	struct request_sock *req;
6406 	int queued = 0;
6407 	bool acceptable;
6408 
6409 	switch (sk->sk_state) {
6410 	case TCP_CLOSE:
6411 		goto discard;
6412 
6413 	case TCP_LISTEN:
6414 		if (th->ack)
6415 			return 1;
6416 
6417 		if (th->rst)
6418 			goto discard;
6419 
6420 		if (th->syn) {
6421 			if (th->fin)
6422 				goto discard;
6423 			/* It is possible that we process SYN packets from backlog,
6424 			 * so we need to make sure to disable BH and RCU right there.
6425 			 */
6426 			rcu_read_lock();
6427 			local_bh_disable();
6428 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6429 			local_bh_enable();
6430 			rcu_read_unlock();
6431 
6432 			if (!acceptable)
6433 				return 1;
6434 			consume_skb(skb);
6435 			return 0;
6436 		}
6437 		goto discard;
6438 
6439 	case TCP_SYN_SENT:
6440 		tp->rx_opt.saw_tstamp = 0;
6441 		tcp_mstamp_refresh(tp);
6442 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6443 		if (queued >= 0)
6444 			return queued;
6445 
6446 		/* Do step6 onward by hand. */
6447 		tcp_urg(sk, skb, th);
6448 		__kfree_skb(skb);
6449 		tcp_data_snd_check(sk);
6450 		return 0;
6451 	}
6452 
6453 	tcp_mstamp_refresh(tp);
6454 	tp->rx_opt.saw_tstamp = 0;
6455 	req = rcu_dereference_protected(tp->fastopen_rsk,
6456 					lockdep_sock_is_held(sk));
6457 	if (req) {
6458 		bool req_stolen;
6459 
6460 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6461 		    sk->sk_state != TCP_FIN_WAIT1);
6462 
6463 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6464 			goto discard;
6465 	}
6466 
6467 	if (!th->ack && !th->rst && !th->syn)
6468 		goto discard;
6469 
6470 	if (!tcp_validate_incoming(sk, skb, th, 0))
6471 		return 0;
6472 
6473 	/* step 5: check the ACK field */
6474 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6475 				      FLAG_UPDATE_TS_RECENT |
6476 				      FLAG_NO_CHALLENGE_ACK) > 0;
6477 
6478 	if (!acceptable) {
6479 		if (sk->sk_state == TCP_SYN_RECV)
6480 			return 1;	/* send one RST */
6481 		tcp_send_challenge_ack(sk, skb);
6482 		goto discard;
6483 	}
6484 	switch (sk->sk_state) {
6485 	case TCP_SYN_RECV:
6486 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6487 		if (!tp->srtt_us)
6488 			tcp_synack_rtt_meas(sk, req);
6489 
6490 		if (req) {
6491 			tcp_rcv_synrecv_state_fastopen(sk);
6492 		} else {
6493 			tcp_try_undo_spurious_syn(sk);
6494 			tp->retrans_stamp = 0;
6495 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6496 					  skb);
6497 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6498 		}
6499 		smp_mb();
6500 		tcp_set_state(sk, TCP_ESTABLISHED);
6501 		sk->sk_state_change(sk);
6502 
6503 		/* Note, that this wakeup is only for marginal crossed SYN case.
6504 		 * Passively open sockets are not waked up, because
6505 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6506 		 */
6507 		if (sk->sk_socket)
6508 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6509 
6510 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6511 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6512 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6513 
6514 		if (tp->rx_opt.tstamp_ok)
6515 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6516 
6517 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6518 			tcp_update_pacing_rate(sk);
6519 
6520 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6521 		tp->lsndtime = tcp_jiffies32;
6522 
6523 		tcp_initialize_rcv_mss(sk);
6524 		tcp_fast_path_on(tp);
6525 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6526 			tcp_shutdown(sk, SEND_SHUTDOWN);
6527 		break;
6528 
6529 	case TCP_FIN_WAIT1: {
6530 		int tmo;
6531 
6532 		if (req)
6533 			tcp_rcv_synrecv_state_fastopen(sk);
6534 
6535 		if (tp->snd_una != tp->write_seq)
6536 			break;
6537 
6538 		tcp_set_state(sk, TCP_FIN_WAIT2);
6539 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6540 
6541 		sk_dst_confirm(sk);
6542 
6543 		if (!sock_flag(sk, SOCK_DEAD)) {
6544 			/* Wake up lingering close() */
6545 			sk->sk_state_change(sk);
6546 			break;
6547 		}
6548 
6549 		if (tp->linger2 < 0) {
6550 			tcp_done(sk);
6551 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552 			return 1;
6553 		}
6554 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6555 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6556 			/* Receive out of order FIN after close() */
6557 			if (tp->syn_fastopen && th->fin)
6558 				tcp_fastopen_active_disable(sk);
6559 			tcp_done(sk);
6560 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6561 			return 1;
6562 		}
6563 
6564 		tmo = tcp_fin_time(sk);
6565 		if (tmo > TCP_TIMEWAIT_LEN) {
6566 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6567 		} else if (th->fin || sock_owned_by_user(sk)) {
6568 			/* Bad case. We could lose such FIN otherwise.
6569 			 * It is not a big problem, but it looks confusing
6570 			 * and not so rare event. We still can lose it now,
6571 			 * if it spins in bh_lock_sock(), but it is really
6572 			 * marginal case.
6573 			 */
6574 			inet_csk_reset_keepalive_timer(sk, tmo);
6575 		} else {
6576 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6577 			goto discard;
6578 		}
6579 		break;
6580 	}
6581 
6582 	case TCP_CLOSING:
6583 		if (tp->snd_una == tp->write_seq) {
6584 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6585 			goto discard;
6586 		}
6587 		break;
6588 
6589 	case TCP_LAST_ACK:
6590 		if (tp->snd_una == tp->write_seq) {
6591 			tcp_update_metrics(sk);
6592 			tcp_done(sk);
6593 			goto discard;
6594 		}
6595 		break;
6596 	}
6597 
6598 	/* step 6: check the URG bit */
6599 	tcp_urg(sk, skb, th);
6600 
6601 	/* step 7: process the segment text */
6602 	switch (sk->sk_state) {
6603 	case TCP_CLOSE_WAIT:
6604 	case TCP_CLOSING:
6605 	case TCP_LAST_ACK:
6606 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6607 			if (sk_is_mptcp(sk))
6608 				mptcp_incoming_options(sk, skb);
6609 			break;
6610 		}
6611 		fallthrough;
6612 	case TCP_FIN_WAIT1:
6613 	case TCP_FIN_WAIT2:
6614 		/* RFC 793 says to queue data in these states,
6615 		 * RFC 1122 says we MUST send a reset.
6616 		 * BSD 4.4 also does reset.
6617 		 */
6618 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6619 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6620 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6621 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6622 				tcp_reset(sk);
6623 				return 1;
6624 			}
6625 		}
6626 		fallthrough;
6627 	case TCP_ESTABLISHED:
6628 		tcp_data_queue(sk, skb);
6629 		queued = 1;
6630 		break;
6631 	}
6632 
6633 	/* tcp_data could move socket to TIME-WAIT */
6634 	if (sk->sk_state != TCP_CLOSE) {
6635 		tcp_data_snd_check(sk);
6636 		tcp_ack_snd_check(sk);
6637 	}
6638 
6639 	if (!queued) {
6640 discard:
6641 		tcp_drop(sk, skb);
6642 	}
6643 	return 0;
6644 }
6645 EXPORT_SYMBOL(tcp_rcv_state_process);
6646 
pr_drop_req(struct request_sock * req,__u16 port,int family)6647 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6648 {
6649 	struct inet_request_sock *ireq = inet_rsk(req);
6650 
6651 	if (family == AF_INET)
6652 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6653 				    &ireq->ir_rmt_addr, port);
6654 #if IS_ENABLED(CONFIG_IPV6)
6655 	else if (family == AF_INET6)
6656 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6657 				    &ireq->ir_v6_rmt_addr, port);
6658 #endif
6659 }
6660 
6661 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6662  *
6663  * If we receive a SYN packet with these bits set, it means a
6664  * network is playing bad games with TOS bits. In order to
6665  * avoid possible false congestion notifications, we disable
6666  * TCP ECN negotiation.
6667  *
6668  * Exception: tcp_ca wants ECN. This is required for DCTCP
6669  * congestion control: Linux DCTCP asserts ECT on all packets,
6670  * including SYN, which is most optimal solution; however,
6671  * others, such as FreeBSD do not.
6672  *
6673  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6674  * set, indicating the use of a future TCP extension (such as AccECN). See
6675  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6676  * extensions.
6677  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6678 static void tcp_ecn_create_request(struct request_sock *req,
6679 				   const struct sk_buff *skb,
6680 				   const struct sock *listen_sk,
6681 				   const struct dst_entry *dst)
6682 {
6683 	const struct tcphdr *th = tcp_hdr(skb);
6684 	const struct net *net = sock_net(listen_sk);
6685 	bool th_ecn = th->ece && th->cwr;
6686 	bool ect, ecn_ok;
6687 	u32 ecn_ok_dst;
6688 
6689 	if (!th_ecn)
6690 		return;
6691 
6692 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6693 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6694 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6695 
6696 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6697 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6698 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6699 		inet_rsk(req)->ecn_ok = 1;
6700 }
6701 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6702 static void tcp_openreq_init(struct request_sock *req,
6703 			     const struct tcp_options_received *rx_opt,
6704 			     struct sk_buff *skb, const struct sock *sk)
6705 {
6706 	struct inet_request_sock *ireq = inet_rsk(req);
6707 
6708 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6709 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6710 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6711 	tcp_rsk(req)->snt_synack = 0;
6712 	tcp_rsk(req)->last_oow_ack_time = 0;
6713 	req->mss = rx_opt->mss_clamp;
6714 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6715 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6716 	ireq->sack_ok = rx_opt->sack_ok;
6717 	ireq->snd_wscale = rx_opt->snd_wscale;
6718 	ireq->wscale_ok = rx_opt->wscale_ok;
6719 	ireq->acked = 0;
6720 	ireq->ecn_ok = 0;
6721 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6722 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6723 	ireq->ir_mark = inet_request_mark(sk, skb);
6724 #if IS_ENABLED(CONFIG_SMC)
6725 	ireq->smc_ok = rx_opt->smc_ok;
6726 #endif
6727 }
6728 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6729 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6730 				      struct sock *sk_listener,
6731 				      bool attach_listener)
6732 {
6733 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6734 					       attach_listener);
6735 
6736 	if (req) {
6737 		struct inet_request_sock *ireq = inet_rsk(req);
6738 
6739 		ireq->ireq_opt = NULL;
6740 #if IS_ENABLED(CONFIG_IPV6)
6741 		ireq->pktopts = NULL;
6742 #endif
6743 		atomic64_set(&ireq->ir_cookie, 0);
6744 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6745 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6746 		ireq->ireq_family = sk_listener->sk_family;
6747 	}
6748 
6749 	return req;
6750 }
6751 EXPORT_SYMBOL(inet_reqsk_alloc);
6752 
6753 /*
6754  * Return true if a syncookie should be sent
6755  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6756 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6757 {
6758 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6759 	const char *msg = "Dropping request";
6760 	struct net *net = sock_net(sk);
6761 	bool want_cookie = false;
6762 	u8 syncookies;
6763 
6764 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6765 
6766 #ifdef CONFIG_SYN_COOKIES
6767 	if (syncookies) {
6768 		msg = "Sending cookies";
6769 		want_cookie = true;
6770 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6771 	} else
6772 #endif
6773 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6774 
6775 	if (!queue->synflood_warned && syncookies != 2 &&
6776 	    xchg(&queue->synflood_warned, 1) == 0)
6777 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6778 				     proto, sk->sk_num, msg);
6779 
6780 	return want_cookie;
6781 }
6782 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6783 static void tcp_reqsk_record_syn(const struct sock *sk,
6784 				 struct request_sock *req,
6785 				 const struct sk_buff *skb)
6786 {
6787 	if (tcp_sk(sk)->save_syn) {
6788 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6789 		struct saved_syn *saved_syn;
6790 		u32 mac_hdrlen;
6791 		void *base;
6792 
6793 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6794 			base = skb_mac_header(skb);
6795 			mac_hdrlen = skb_mac_header_len(skb);
6796 			len += mac_hdrlen;
6797 		} else {
6798 			base = skb_network_header(skb);
6799 			mac_hdrlen = 0;
6800 		}
6801 
6802 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6803 				    GFP_ATOMIC);
6804 		if (saved_syn) {
6805 			saved_syn->mac_hdrlen = mac_hdrlen;
6806 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6807 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6808 			memcpy(saved_syn->data, base, len);
6809 			req->saved_syn = saved_syn;
6810 		}
6811 	}
6812 }
6813 
6814 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6815  * used for SYN cookie generation.
6816  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6817 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6818 			  const struct tcp_request_sock_ops *af_ops,
6819 			  struct sock *sk, struct tcphdr *th)
6820 {
6821 	struct tcp_sock *tp = tcp_sk(sk);
6822 	u16 mss;
6823 
6824 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6825 	    !inet_csk_reqsk_queue_is_full(sk))
6826 		return 0;
6827 
6828 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6829 		return 0;
6830 
6831 	if (sk_acceptq_is_full(sk)) {
6832 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6833 		return 0;
6834 	}
6835 
6836 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6837 	if (!mss)
6838 		mss = af_ops->mss_clamp;
6839 
6840 	return mss;
6841 }
6842 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6843 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6844 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6845 		     const struct tcp_request_sock_ops *af_ops,
6846 		     struct sock *sk, struct sk_buff *skb)
6847 {
6848 	struct tcp_fastopen_cookie foc = { .len = -1 };
6849 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6850 	struct tcp_options_received tmp_opt;
6851 	struct tcp_sock *tp = tcp_sk(sk);
6852 	struct net *net = sock_net(sk);
6853 	struct sock *fastopen_sk = NULL;
6854 	struct request_sock *req;
6855 	bool want_cookie = false;
6856 	struct dst_entry *dst;
6857 	struct flowi fl;
6858 	u8 syncookies;
6859 
6860 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6861 
6862 	/* TW buckets are converted to open requests without
6863 	 * limitations, they conserve resources and peer is
6864 	 * evidently real one.
6865 	 */
6866 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6867 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6868 		if (!want_cookie)
6869 			goto drop;
6870 	}
6871 
6872 	if (sk_acceptq_is_full(sk)) {
6873 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6874 		goto drop;
6875 	}
6876 
6877 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6878 	if (!req)
6879 		goto drop;
6880 
6881 	req->syncookie = want_cookie;
6882 	tcp_rsk(req)->af_specific = af_ops;
6883 	tcp_rsk(req)->ts_off = 0;
6884 #if IS_ENABLED(CONFIG_MPTCP)
6885 	tcp_rsk(req)->is_mptcp = 0;
6886 #endif
6887 
6888 	tcp_clear_options(&tmp_opt);
6889 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6890 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6891 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6892 			  want_cookie ? NULL : &foc);
6893 
6894 	if (want_cookie && !tmp_opt.saw_tstamp)
6895 		tcp_clear_options(&tmp_opt);
6896 
6897 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6898 		tmp_opt.smc_ok = 0;
6899 
6900 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6901 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6902 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6903 
6904 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6905 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6906 
6907 	af_ops->init_req(req, sk, skb);
6908 
6909 	if (security_inet_conn_request(sk, skb, req))
6910 		goto drop_and_free;
6911 
6912 	if (tmp_opt.tstamp_ok)
6913 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6914 
6915 	dst = af_ops->route_req(sk, &fl, req);
6916 	if (!dst)
6917 		goto drop_and_free;
6918 
6919 	if (!want_cookie && !isn) {
6920 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6921 
6922 		/* Kill the following clause, if you dislike this way. */
6923 		if (!syncookies &&
6924 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6925 		     (max_syn_backlog >> 2)) &&
6926 		    !tcp_peer_is_proven(req, dst)) {
6927 			/* Without syncookies last quarter of
6928 			 * backlog is filled with destinations,
6929 			 * proven to be alive.
6930 			 * It means that we continue to communicate
6931 			 * to destinations, already remembered
6932 			 * to the moment of synflood.
6933 			 */
6934 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6935 				    rsk_ops->family);
6936 			goto drop_and_release;
6937 		}
6938 
6939 		isn = af_ops->init_seq(skb);
6940 	}
6941 
6942 	tcp_ecn_create_request(req, skb, sk, dst);
6943 
6944 	if (want_cookie) {
6945 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6946 		if (!tmp_opt.tstamp_ok)
6947 			inet_rsk(req)->ecn_ok = 0;
6948 	}
6949 
6950 	tcp_rsk(req)->snt_isn = isn;
6951 	tcp_rsk(req)->txhash = net_tx_rndhash();
6952 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6953 	tcp_openreq_init_rwin(req, sk, dst);
6954 	sk_rx_queue_set(req_to_sk(req), skb);
6955 	if (!want_cookie) {
6956 		tcp_reqsk_record_syn(sk, req, skb);
6957 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6958 	}
6959 	if (fastopen_sk) {
6960 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6961 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6962 		/* Add the child socket directly into the accept queue */
6963 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6964 			reqsk_fastopen_remove(fastopen_sk, req, false);
6965 			bh_unlock_sock(fastopen_sk);
6966 			sock_put(fastopen_sk);
6967 			goto drop_and_free;
6968 		}
6969 		sk->sk_data_ready(sk);
6970 		bh_unlock_sock(fastopen_sk);
6971 		sock_put(fastopen_sk);
6972 	} else {
6973 		tcp_rsk(req)->tfo_listener = false;
6974 		if (!want_cookie)
6975 			inet_csk_reqsk_queue_hash_add(sk, req,
6976 				tcp_timeout_init((struct sock *)req));
6977 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6978 				    !want_cookie ? TCP_SYNACK_NORMAL :
6979 						   TCP_SYNACK_COOKIE,
6980 				    skb);
6981 		if (want_cookie) {
6982 			reqsk_free(req);
6983 			return 0;
6984 		}
6985 	}
6986 	reqsk_put(req);
6987 	return 0;
6988 
6989 drop_and_release:
6990 	dst_release(dst);
6991 drop_and_free:
6992 	__reqsk_free(req);
6993 drop:
6994 	tcp_listendrop(sk);
6995 	return 0;
6996 }
6997 EXPORT_SYMBOL(tcp_conn_request);
6998