• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 #ifdef CONFIG_LOWPOWER_PROTOCOL
48 #include <net/lowpower_protocol.h>
49 #endif /* CONFIG_LOWPOWER_PROTOCOL */
50 #include <trace/events/tcp.h>
51 
52 /* Refresh clocks of a TCP socket,
53  * ensuring monotically increasing values.
54  */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 	u64 val = tcp_clock_ns();
58 
59 	tp->tcp_clock_cache = val;
60 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	if (tp->highest_sack == NULL)
79 		tp->highest_sack = skb;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 		tcp_rearm_rto(sk);
84 
85 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 		      tcp_skb_pcount(skb));
87 	tcp_check_space(sk);
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tp->snd_cwnd;
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tp->snd_cwnd = max(cwnd, restart_cwnd);
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		inet_csk_enter_pingpong_mode(sk);
179 }
180 
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack);
189 		tp->compressed_ack = 0;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (*window_clamp == 0)
216 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(*window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
243 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
244 		space = min_t(u32, space, *window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win = tcp_receive_window(tp);
263 	u32 new_win = __tcp_select_window(sk);
264 
265 	/* Never shrink the offered window */
266 	if (new_win < cur_win) {
267 		/* Danger Will Robinson!
268 		 * Don't update rcv_wup/rcv_wnd here or else
269 		 * we will not be able to advertise a zero
270 		 * window in time.  --DaveM
271 		 *
272 		 * Relax Will Robinson.
273 		 */
274 		if (new_win == 0)
275 			NET_INC_STATS(sock_net(sk),
276 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 	}
279 	tp->rcv_wnd = new_win;
280 	tp->rcv_wup = tp->rcv_nxt;
281 
282 	/* Make sure we do not exceed the maximum possible
283 	 * scaled window.
284 	 */
285 	if (!tp->rx_opt.rcv_wscale &&
286 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 		new_win = min(new_win, MAX_TCP_WINDOW);
288 	else
289 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 
291 	/* RFC1323 scaling applied */
292 	new_win >>= tp->rx_opt.rcv_wscale;
293 
294 	/* If we advertise zero window, disable fast path. */
295 	if (new_win == 0) {
296 		tp->pred_flags = 0;
297 		if (old_win)
298 			NET_INC_STATS(sock_net(sk),
299 				      LINUX_MIB_TCPTOZEROWINDOWADV);
300 	} else if (old_win == 0) {
301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 	}
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 	const struct tcp_sock *tp = tcp_sk(sk);
311 
312 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 	if (!(tp->ecn_flags & TCP_ECN_OK))
314 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 	else if (tcp_ca_needs_ecn(sk) ||
316 		 tcp_bpf_ca_needs_ecn(sk))
317 		INET_ECN_xmit(sk);
318 }
319 
320 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 
328 	if (!use_ecn) {
329 		const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 			use_ecn = true;
333 	}
334 
335 	tp->ecn_flags = 0;
336 
337 	if (use_ecn) {
338 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 		tp->ecn_flags = TCP_ECN_OK;
340 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 			INET_ECN_xmit(sk);
342 	}
343 }
344 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
348 		/* tp->ecn_flags are cleared at a later point in time when
349 		 * SYN ACK is ultimatively being received.
350 		 */
351 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353 
354 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 	if (inet_rsk(req)->ecn_ok)
358 		th->ece = 1;
359 }
360 
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362  * be sent.
363  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 			 struct tcphdr *th, int tcp_header_len)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	if (tp->ecn_flags & TCP_ECN_OK) {
370 		/* Not-retransmitted data segment: set ECT and inject CWR. */
371 		if (skb->len != tcp_header_len &&
372 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 			INET_ECN_xmit(sk);
374 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 				th->cwr = 1;
377 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 			}
379 		} else if (!tcp_ca_needs_ecn(sk)) {
380 			/* ACK or retransmitted segment: clear ECT|CE */
381 			INET_ECN_dontxmit(sk);
382 		}
383 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 			th->ece = 1;
385 	}
386 }
387 
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389  * auto increment end seqno.
390  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 	skb->ip_summed = CHECKSUM_PARTIAL;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
tcp_urg_mode(const struct tcp_sock * tp)406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	(1 << 0)
412 #define OPTION_TS		(1 << 1)
413 #define OPTION_MD5		(1 << 2)
414 #define OPTION_WSCALE		(1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416 #define OPTION_SMC		(1 << 9)
417 #define OPTION_MPTCP		(1 << 10)
418 
smc_options_write(__be32 * ptr,u16 * options)419 static void smc_options_write(__be32 *ptr, u16 *options)
420 {
421 #if IS_ENABLED(CONFIG_SMC)
422 	if (static_branch_unlikely(&tcp_have_smc)) {
423 		if (unlikely(OPTION_SMC & *options)) {
424 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
425 				       (TCPOPT_NOP  << 16) |
426 				       (TCPOPT_EXP <<  8) |
427 				       (TCPOLEN_EXP_SMC_BASE));
428 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
429 		}
430 	}
431 #endif
432 }
433 
434 struct tcp_out_options {
435 	u16 options;		/* bit field of OPTION_* */
436 	u16 mss;		/* 0 to disable */
437 	u8 ws;			/* window scale, 0 to disable */
438 	u8 num_sack_blocks;	/* number of SACK blocks to include */
439 	u8 hash_size;		/* bytes in hash_location */
440 	u8 bpf_opt_len;		/* length of BPF hdr option */
441 	__u8 *hash_location;	/* temporary pointer, overloaded */
442 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444 	struct mptcp_out_options mptcp;
445 };
446 
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 	if (unlikely(OPTION_MPTCP & opts->options))
451 		mptcp_write_options(ptr, &opts->mptcp);
452 #endif
453 }
454 
455 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457 					enum tcp_synack_type synack_type)
458 {
459 	if (unlikely(!skb))
460 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
461 
462 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
464 
465 	return 0;
466 }
467 
468 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct sk_buff *syn_skb,
472 				  enum tcp_synack_type synack_type,
473 				  struct tcp_out_options *opts,
474 				  unsigned int *remaining)
475 {
476 	struct bpf_sock_ops_kern sock_ops;
477 	int err;
478 
479 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
481 	    !*remaining)
482 		return;
483 
484 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
485 
486 	/* init sock_ops */
487 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
488 
489 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
490 
491 	if (req) {
492 		/* The listen "sk" cannot be passed here because
493 		 * it is not locked.  It would not make too much
494 		 * sense to do bpf_setsockopt(listen_sk) based
495 		 * on individual connection request also.
496 		 *
497 		 * Thus, "req" is passed here and the cgroup-bpf-progs
498 		 * of the listen "sk" will be run.
499 		 *
500 		 * "req" is also used here for fastopen even the "sk" here is
501 		 * a fullsock "child" sk.  It is to keep the behavior
502 		 * consistent between fastopen and non-fastopen on
503 		 * the bpf programming side.
504 		 */
505 		sock_ops.sk = (struct sock *)req;
506 		sock_ops.syn_skb = syn_skb;
507 	} else {
508 		sock_owned_by_me(sk);
509 
510 		sock_ops.is_fullsock = 1;
511 		sock_ops.sk = sk;
512 	}
513 
514 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515 	sock_ops.remaining_opt_len = *remaining;
516 	/* tcp_current_mss() does not pass a skb */
517 	if (skb)
518 		bpf_skops_init_skb(&sock_ops, skb, 0);
519 
520 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
521 
522 	if (err || sock_ops.remaining_opt_len == *remaining)
523 		return;
524 
525 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526 	/* round up to 4 bytes */
527 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
528 
529 	*remaining -= opts->bpf_opt_len;
530 }
531 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533 				    struct request_sock *req,
534 				    struct sk_buff *syn_skb,
535 				    enum tcp_synack_type synack_type,
536 				    struct tcp_out_options *opts)
537 {
538 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539 	struct bpf_sock_ops_kern sock_ops;
540 	int err;
541 
542 	if (likely(!max_opt_len))
543 		return;
544 
545 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
546 
547 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
548 
549 	if (req) {
550 		sock_ops.sk = (struct sock *)req;
551 		sock_ops.syn_skb = syn_skb;
552 	} else {
553 		sock_owned_by_me(sk);
554 
555 		sock_ops.is_fullsock = 1;
556 		sock_ops.sk = sk;
557 	}
558 
559 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560 	sock_ops.remaining_opt_len = max_opt_len;
561 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
563 
564 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
565 
566 	if (err)
567 		nr_written = 0;
568 	else
569 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
570 
571 	if (nr_written < max_opt_len)
572 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573 		       max_opt_len - nr_written);
574 }
575 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577 				  struct request_sock *req,
578 				  struct sk_buff *syn_skb,
579 				  enum tcp_synack_type synack_type,
580 				  struct tcp_out_options *opts,
581 				  unsigned int *remaining)
582 {
583 }
584 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586 				    struct request_sock *req,
587 				    struct sk_buff *syn_skb,
588 				    enum tcp_synack_type synack_type,
589 				    struct tcp_out_options *opts)
590 {
591 }
592 #endif
593 
594 /* Write previously computed TCP options to the packet.
595  *
596  * Beware: Something in the Internet is very sensitive to the ordering of
597  * TCP options, we learned this through the hard way, so be careful here.
598  * Luckily we can at least blame others for their non-compliance but from
599  * inter-operability perspective it seems that we're somewhat stuck with
600  * the ordering which we have been using if we want to keep working with
601  * those broken things (not that it currently hurts anybody as there isn't
602  * particular reason why the ordering would need to be changed).
603  *
604  * At least SACK_PERM as the first option is known to lead to a disaster
605  * (but it may well be that other scenarios fail similarly).
606  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)607 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
608 			      struct tcp_out_options *opts)
609 {
610 	u16 options = opts->options;	/* mungable copy */
611 
612 	if (unlikely(OPTION_MD5 & options)) {
613 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
614 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
615 		/* overload cookie hash location */
616 		opts->hash_location = (__u8 *)ptr;
617 		ptr += 4;
618 	}
619 
620 	if (unlikely(opts->mss)) {
621 		*ptr++ = htonl((TCPOPT_MSS << 24) |
622 			       (TCPOLEN_MSS << 16) |
623 			       opts->mss);
624 	}
625 
626 	if (likely(OPTION_TS & options)) {
627 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
628 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
629 				       (TCPOLEN_SACK_PERM << 16) |
630 				       (TCPOPT_TIMESTAMP << 8) |
631 				       TCPOLEN_TIMESTAMP);
632 			options &= ~OPTION_SACK_ADVERTISE;
633 		} else {
634 			*ptr++ = htonl((TCPOPT_NOP << 24) |
635 				       (TCPOPT_NOP << 16) |
636 				       (TCPOPT_TIMESTAMP << 8) |
637 				       TCPOLEN_TIMESTAMP);
638 		}
639 		*ptr++ = htonl(opts->tsval);
640 		*ptr++ = htonl(opts->tsecr);
641 	}
642 
643 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
644 		*ptr++ = htonl((TCPOPT_NOP << 24) |
645 			       (TCPOPT_NOP << 16) |
646 			       (TCPOPT_SACK_PERM << 8) |
647 			       TCPOLEN_SACK_PERM);
648 	}
649 
650 	if (unlikely(OPTION_WSCALE & options)) {
651 		*ptr++ = htonl((TCPOPT_NOP << 24) |
652 			       (TCPOPT_WINDOW << 16) |
653 			       (TCPOLEN_WINDOW << 8) |
654 			       opts->ws);
655 	}
656 
657 	if (unlikely(opts->num_sack_blocks)) {
658 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
659 			tp->duplicate_sack : tp->selective_acks;
660 		int this_sack;
661 
662 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
663 			       (TCPOPT_NOP  << 16) |
664 			       (TCPOPT_SACK <<  8) |
665 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
666 						     TCPOLEN_SACK_PERBLOCK)));
667 
668 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
669 		     ++this_sack) {
670 			*ptr++ = htonl(sp[this_sack].start_seq);
671 			*ptr++ = htonl(sp[this_sack].end_seq);
672 		}
673 
674 		tp->rx_opt.dsack = 0;
675 	}
676 
677 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
678 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
679 		u8 *p = (u8 *)ptr;
680 		u32 len; /* Fast Open option length */
681 
682 		if (foc->exp) {
683 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
684 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
685 				     TCPOPT_FASTOPEN_MAGIC);
686 			p += TCPOLEN_EXP_FASTOPEN_BASE;
687 		} else {
688 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
689 			*p++ = TCPOPT_FASTOPEN;
690 			*p++ = len;
691 		}
692 
693 		memcpy(p, foc->val, foc->len);
694 		if ((len & 3) == 2) {
695 			p[foc->len] = TCPOPT_NOP;
696 			p[foc->len + 1] = TCPOPT_NOP;
697 		}
698 		ptr += (len + 3) >> 2;
699 	}
700 
701 	smc_options_write(ptr, &options);
702 
703 	mptcp_options_write(ptr, opts);
704 }
705 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)706 static void smc_set_option(const struct tcp_sock *tp,
707 			   struct tcp_out_options *opts,
708 			   unsigned int *remaining)
709 {
710 #if IS_ENABLED(CONFIG_SMC)
711 	if (static_branch_unlikely(&tcp_have_smc)) {
712 		if (tp->syn_smc) {
713 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
714 				opts->options |= OPTION_SMC;
715 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
716 			}
717 		}
718 	}
719 #endif
720 }
721 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)722 static void smc_set_option_cond(const struct tcp_sock *tp,
723 				const struct inet_request_sock *ireq,
724 				struct tcp_out_options *opts,
725 				unsigned int *remaining)
726 {
727 #if IS_ENABLED(CONFIG_SMC)
728 	if (static_branch_unlikely(&tcp_have_smc)) {
729 		if (tp->syn_smc && ireq->smc_ok) {
730 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
731 				opts->options |= OPTION_SMC;
732 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
733 			}
734 		}
735 	}
736 #endif
737 }
738 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)739 static void mptcp_set_option_cond(const struct request_sock *req,
740 				  struct tcp_out_options *opts,
741 				  unsigned int *remaining)
742 {
743 	if (rsk_is_mptcp(req)) {
744 		unsigned int size;
745 
746 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
747 			if (*remaining >= size) {
748 				opts->options |= OPTION_MPTCP;
749 				*remaining -= size;
750 			}
751 		}
752 	}
753 }
754 
755 /* Compute TCP options for SYN packets. This is not the final
756  * network wire format yet.
757  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)758 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
759 				struct tcp_out_options *opts,
760 				struct tcp_md5sig_key **md5)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
764 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
765 
766 	*md5 = NULL;
767 #ifdef CONFIG_TCP_MD5SIG
768 	if (static_branch_unlikely(&tcp_md5_needed) &&
769 	    rcu_access_pointer(tp->md5sig_info)) {
770 		*md5 = tp->af_specific->md5_lookup(sk, sk);
771 		if (*md5) {
772 			opts->options |= OPTION_MD5;
773 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
774 		}
775 	}
776 #endif
777 
778 	/* We always get an MSS option.  The option bytes which will be seen in
779 	 * normal data packets should timestamps be used, must be in the MSS
780 	 * advertised.  But we subtract them from tp->mss_cache so that
781 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
782 	 * fact here if necessary.  If we don't do this correctly, as a
783 	 * receiver we won't recognize data packets as being full sized when we
784 	 * should, and thus we won't abide by the delayed ACK rules correctly.
785 	 * SACKs don't matter, we never delay an ACK when we have any of those
786 	 * going out.  */
787 	opts->mss = tcp_advertise_mss(sk);
788 	remaining -= TCPOLEN_MSS_ALIGNED;
789 
790 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
791 		opts->options |= OPTION_TS;
792 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
793 		opts->tsecr = tp->rx_opt.ts_recent;
794 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
795 	}
796 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
797 		opts->ws = tp->rx_opt.rcv_wscale;
798 		opts->options |= OPTION_WSCALE;
799 		remaining -= TCPOLEN_WSCALE_ALIGNED;
800 	}
801 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
802 		opts->options |= OPTION_SACK_ADVERTISE;
803 		if (unlikely(!(OPTION_TS & opts->options)))
804 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
805 	}
806 
807 	if (fastopen && fastopen->cookie.len >= 0) {
808 		u32 need = fastopen->cookie.len;
809 
810 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
811 					       TCPOLEN_FASTOPEN_BASE;
812 		need = (need + 3) & ~3U;  /* Align to 32 bits */
813 		if (remaining >= need) {
814 			opts->options |= OPTION_FAST_OPEN_COOKIE;
815 			opts->fastopen_cookie = &fastopen->cookie;
816 			remaining -= need;
817 			tp->syn_fastopen = 1;
818 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
819 		}
820 	}
821 
822 	smc_set_option(tp, opts, &remaining);
823 
824 	if (sk_is_mptcp(sk)) {
825 		unsigned int size;
826 
827 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
828 			opts->options |= OPTION_MPTCP;
829 			remaining -= size;
830 		}
831 	}
832 
833 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
834 
835 	return MAX_TCP_OPTION_SPACE - remaining;
836 }
837 
838 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)839 static unsigned int tcp_synack_options(const struct sock *sk,
840 				       struct request_sock *req,
841 				       unsigned int mss, struct sk_buff *skb,
842 				       struct tcp_out_options *opts,
843 				       const struct tcp_md5sig_key *md5,
844 				       struct tcp_fastopen_cookie *foc,
845 				       enum tcp_synack_type synack_type,
846 				       struct sk_buff *syn_skb)
847 {
848 	struct inet_request_sock *ireq = inet_rsk(req);
849 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
850 
851 #ifdef CONFIG_TCP_MD5SIG
852 	if (md5) {
853 		opts->options |= OPTION_MD5;
854 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
855 
856 		/* We can't fit any SACK blocks in a packet with MD5 + TS
857 		 * options. There was discussion about disabling SACK
858 		 * rather than TS in order to fit in better with old,
859 		 * buggy kernels, but that was deemed to be unnecessary.
860 		 */
861 		if (synack_type != TCP_SYNACK_COOKIE)
862 			ireq->tstamp_ok &= !ireq->sack_ok;
863 	}
864 #endif
865 
866 	/* We always send an MSS option. */
867 	opts->mss = mss;
868 	remaining -= TCPOLEN_MSS_ALIGNED;
869 
870 	if (likely(ireq->wscale_ok)) {
871 		opts->ws = ireq->rcv_wscale;
872 		opts->options |= OPTION_WSCALE;
873 		remaining -= TCPOLEN_WSCALE_ALIGNED;
874 	}
875 	if (likely(ireq->tstamp_ok)) {
876 		opts->options |= OPTION_TS;
877 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
878 		opts->tsecr = READ_ONCE(req->ts_recent);
879 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
880 	}
881 	if (likely(ireq->sack_ok)) {
882 		opts->options |= OPTION_SACK_ADVERTISE;
883 		if (unlikely(!ireq->tstamp_ok))
884 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
885 	}
886 	if (foc != NULL && foc->len >= 0) {
887 		u32 need = foc->len;
888 
889 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
890 				   TCPOLEN_FASTOPEN_BASE;
891 		need = (need + 3) & ~3U;  /* Align to 32 bits */
892 		if (remaining >= need) {
893 			opts->options |= OPTION_FAST_OPEN_COOKIE;
894 			opts->fastopen_cookie = foc;
895 			remaining -= need;
896 		}
897 	}
898 
899 	mptcp_set_option_cond(req, opts, &remaining);
900 
901 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
902 
903 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
904 			      synack_type, opts, &remaining);
905 
906 	return MAX_TCP_OPTION_SPACE - remaining;
907 }
908 
909 /* Compute TCP options for ESTABLISHED sockets. This is not the
910  * final wire format yet.
911  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)912 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
913 					struct tcp_out_options *opts,
914 					struct tcp_md5sig_key **md5)
915 {
916 	struct tcp_sock *tp = tcp_sk(sk);
917 	unsigned int size = 0;
918 	unsigned int eff_sacks;
919 
920 	opts->options = 0;
921 
922 	*md5 = NULL;
923 #ifdef CONFIG_TCP_MD5SIG
924 	if (static_branch_unlikely(&tcp_md5_needed) &&
925 	    rcu_access_pointer(tp->md5sig_info)) {
926 		*md5 = tp->af_specific->md5_lookup(sk, sk);
927 		if (*md5) {
928 			opts->options |= OPTION_MD5;
929 			size += TCPOLEN_MD5SIG_ALIGNED;
930 		}
931 	}
932 #endif
933 
934 	if (likely(tp->rx_opt.tstamp_ok)) {
935 		opts->options |= OPTION_TS;
936 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
937 		opts->tsecr = tp->rx_opt.ts_recent;
938 		size += TCPOLEN_TSTAMP_ALIGNED;
939 	}
940 
941 	/* MPTCP options have precedence over SACK for the limited TCP
942 	 * option space because a MPTCP connection would be forced to
943 	 * fall back to regular TCP if a required multipath option is
944 	 * missing. SACK still gets a chance to use whatever space is
945 	 * left.
946 	 */
947 	if (sk_is_mptcp(sk)) {
948 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
949 		unsigned int opt_size = 0;
950 
951 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
952 					      &opts->mptcp)) {
953 			opts->options |= OPTION_MPTCP;
954 			size += opt_size;
955 		}
956 	}
957 
958 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
959 	if (unlikely(eff_sacks)) {
960 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
962 					 TCPOLEN_SACK_PERBLOCK))
963 			return size;
964 
965 		opts->num_sack_blocks =
966 			min_t(unsigned int, eff_sacks,
967 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
968 			      TCPOLEN_SACK_PERBLOCK);
969 
970 		size += TCPOLEN_SACK_BASE_ALIGNED +
971 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
972 	}
973 
974 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
975 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
976 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
977 
978 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
979 
980 		size = MAX_TCP_OPTION_SPACE - remaining;
981 	}
982 
983 	return size;
984 }
985 
986 
987 /* TCP SMALL QUEUES (TSQ)
988  *
989  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
990  * to reduce RTT and bufferbloat.
991  * We do this using a special skb destructor (tcp_wfree).
992  *
993  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
994  * needs to be reallocated in a driver.
995  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
996  *
997  * Since transmit from skb destructor is forbidden, we use a tasklet
998  * to process all sockets that eventually need to send more skbs.
999  * We use one tasklet per cpu, with its own queue of sockets.
1000  */
1001 struct tsq_tasklet {
1002 	struct tasklet_struct	tasklet;
1003 	struct list_head	head; /* queue of tcp sockets */
1004 };
1005 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1006 
tcp_tsq_write(struct sock * sk)1007 static void tcp_tsq_write(struct sock *sk)
1008 {
1009 	if ((1 << sk->sk_state) &
1010 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1011 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1012 		struct tcp_sock *tp = tcp_sk(sk);
1013 
1014 		if (tp->lost_out > tp->retrans_out &&
1015 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1016 			tcp_mstamp_refresh(tp);
1017 			tcp_xmit_retransmit_queue(sk);
1018 		}
1019 
1020 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1021 			       0, GFP_ATOMIC);
1022 	}
1023 }
1024 
tcp_tsq_handler(struct sock * sk)1025 static void tcp_tsq_handler(struct sock *sk)
1026 {
1027 	bh_lock_sock(sk);
1028 	if (!sock_owned_by_user(sk))
1029 		tcp_tsq_write(sk);
1030 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1031 		sock_hold(sk);
1032 	bh_unlock_sock(sk);
1033 }
1034 /*
1035  * One tasklet per cpu tries to send more skbs.
1036  * We run in tasklet context but need to disable irqs when
1037  * transferring tsq->head because tcp_wfree() might
1038  * interrupt us (non NAPI drivers)
1039  */
tcp_tasklet_func(unsigned long data)1040 static void tcp_tasklet_func(unsigned long data)
1041 {
1042 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1043 	LIST_HEAD(list);
1044 	unsigned long flags;
1045 	struct list_head *q, *n;
1046 	struct tcp_sock *tp;
1047 	struct sock *sk;
1048 
1049 	local_irq_save(flags);
1050 	list_splice_init(&tsq->head, &list);
1051 	local_irq_restore(flags);
1052 
1053 	list_for_each_safe(q, n, &list) {
1054 		tp = list_entry(q, struct tcp_sock, tsq_node);
1055 		list_del(&tp->tsq_node);
1056 
1057 		sk = (struct sock *)tp;
1058 		smp_mb__before_atomic();
1059 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1060 
1061 		tcp_tsq_handler(sk);
1062 		sk_free(sk);
1063 	}
1064 }
1065 
1066 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1067 			  TCPF_WRITE_TIMER_DEFERRED |	\
1068 			  TCPF_DELACK_TIMER_DEFERRED |	\
1069 			  TCPF_MTU_REDUCED_DEFERRED)
1070 /**
1071  * tcp_release_cb - tcp release_sock() callback
1072  * @sk: socket
1073  *
1074  * called from release_sock() to perform protocol dependent
1075  * actions before socket release.
1076  */
tcp_release_cb(struct sock * sk)1077 void tcp_release_cb(struct sock *sk)
1078 {
1079 	unsigned long flags, nflags;
1080 
1081 	/* perform an atomic operation only if at least one flag is set */
1082 	do {
1083 		flags = sk->sk_tsq_flags;
1084 		if (!(flags & TCP_DEFERRED_ALL))
1085 			return;
1086 		nflags = flags & ~TCP_DEFERRED_ALL;
1087 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1088 
1089 	if (flags & TCPF_TSQ_DEFERRED) {
1090 		tcp_tsq_write(sk);
1091 		__sock_put(sk);
1092 	}
1093 	/* Here begins the tricky part :
1094 	 * We are called from release_sock() with :
1095 	 * 1) BH disabled
1096 	 * 2) sk_lock.slock spinlock held
1097 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1098 	 *
1099 	 * But following code is meant to be called from BH handlers,
1100 	 * so we should keep BH disabled, but early release socket ownership
1101 	 */
1102 	sock_release_ownership(sk);
1103 
1104 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1105 		tcp_write_timer_handler(sk);
1106 		__sock_put(sk);
1107 	}
1108 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1109 		tcp_delack_timer_handler(sk);
1110 		__sock_put(sk);
1111 	}
1112 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1113 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1114 		__sock_put(sk);
1115 	}
1116 }
1117 EXPORT_SYMBOL(tcp_release_cb);
1118 
tcp_tasklet_init(void)1119 void __init tcp_tasklet_init(void)
1120 {
1121 	int i;
1122 
1123 	for_each_possible_cpu(i) {
1124 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1125 
1126 		INIT_LIST_HEAD(&tsq->head);
1127 		tasklet_init(&tsq->tasklet,
1128 			     tcp_tasklet_func,
1129 			     (unsigned long)tsq);
1130 	}
1131 }
1132 
1133 /*
1134  * Write buffer destructor automatically called from kfree_skb.
1135  * We can't xmit new skbs from this context, as we might already
1136  * hold qdisc lock.
1137  */
tcp_wfree(struct sk_buff * skb)1138 void tcp_wfree(struct sk_buff *skb)
1139 {
1140 	struct sock *sk = skb->sk;
1141 	struct tcp_sock *tp = tcp_sk(sk);
1142 	unsigned long flags, nval, oval;
1143 
1144 	/* Keep one reference on sk_wmem_alloc.
1145 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1146 	 */
1147 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1148 
1149 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1150 	 * Wait until our queues (qdisc + devices) are drained.
1151 	 * This gives :
1152 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1153 	 * - chance for incoming ACK (processed by another cpu maybe)
1154 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1155 	 */
1156 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1157 		goto out;
1158 
1159 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1160 		struct tsq_tasklet *tsq;
1161 		bool empty;
1162 
1163 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1164 			goto out;
1165 
1166 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1167 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1168 		if (nval != oval)
1169 			continue;
1170 
1171 		/* queue this socket to tasklet queue */
1172 		local_irq_save(flags);
1173 		tsq = this_cpu_ptr(&tsq_tasklet);
1174 		empty = list_empty(&tsq->head);
1175 		list_add(&tp->tsq_node, &tsq->head);
1176 		if (empty)
1177 			tasklet_schedule(&tsq->tasklet);
1178 		local_irq_restore(flags);
1179 		return;
1180 	}
1181 out:
1182 	sk_free(sk);
1183 }
1184 
1185 /* Note: Called under soft irq.
1186  * We can call TCP stack right away, unless socket is owned by user.
1187  */
tcp_pace_kick(struct hrtimer * timer)1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1189 {
1190 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1191 	struct sock *sk = (struct sock *)tp;
1192 
1193 	tcp_tsq_handler(sk);
1194 	sock_put(sk);
1195 
1196 	return HRTIMER_NORESTART;
1197 }
1198 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1200 				      u64 prior_wstamp)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 
1204 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1205 		unsigned long rate = sk->sk_pacing_rate;
1206 
1207 		/* Original sch_fq does not pace first 10 MSS
1208 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1209 		 * this is a minor annoyance.
1210 		 */
1211 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1212 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1213 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1214 
1215 			/* take into account OS jitter */
1216 			len_ns -= min_t(u64, len_ns / 2, credit);
1217 			tp->tcp_wstamp_ns += len_ns;
1218 		}
1219 	}
1220 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1221 }
1222 
1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1226 
1227 /* This routine actually transmits TCP packets queued in by
1228  * tcp_do_sendmsg().  This is used by both the initial
1229  * transmission and possible later retransmissions.
1230  * All SKB's seen here are completely headerless.  It is our
1231  * job to build the TCP header, and pass the packet down to
1232  * IP so it can do the same plus pass the packet off to the
1233  * device.
1234  *
1235  * We are working here with either a clone of the original
1236  * SKB, or a fresh unique copy made by the retransmit engine.
1237  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1239 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1240 {
1241 	const struct inet_connection_sock *icsk = inet_csk(sk);
1242 	struct inet_sock *inet;
1243 	struct tcp_sock *tp;
1244 	struct tcp_skb_cb *tcb;
1245 	struct tcp_out_options opts;
1246 	unsigned int tcp_options_size, tcp_header_size;
1247 	struct sk_buff *oskb = NULL;
1248 	struct tcp_md5sig_key *md5;
1249 	struct tcphdr *th;
1250 	u64 prior_wstamp;
1251 	int err;
1252 
1253 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1254 	tp = tcp_sk(sk);
1255 	prior_wstamp = tp->tcp_wstamp_ns;
1256 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1257 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1258 	if (clone_it) {
1259 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1260 			- tp->snd_una;
1261 		oskb = skb;
1262 
1263 		tcp_skb_tsorted_save(oskb) {
1264 			if (unlikely(skb_cloned(oskb)))
1265 				skb = pskb_copy(oskb, gfp_mask);
1266 			else
1267 				skb = skb_clone(oskb, gfp_mask);
1268 		} tcp_skb_tsorted_restore(oskb);
1269 
1270 		if (unlikely(!skb))
1271 			return -ENOBUFS;
1272 		/* retransmit skbs might have a non zero value in skb->dev
1273 		 * because skb->dev is aliased with skb->rbnode.rb_left
1274 		 */
1275 		skb->dev = NULL;
1276 	}
1277 
1278 	inet = inet_sk(sk);
1279 	tcb = TCP_SKB_CB(skb);
1280 	memset(&opts, 0, sizeof(opts));
1281 
1282 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1283 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1284 	} else {
1285 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1286 							   &md5);
1287 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1288 		 * at receiver : This slightly improve GRO performance.
1289 		 * Note that we do not force the PSH flag for non GSO packets,
1290 		 * because they might be sent under high congestion events,
1291 		 * and in this case it is better to delay the delivery of 1-MSS
1292 		 * packets and thus the corresponding ACK packet that would
1293 		 * release the following packet.
1294 		 */
1295 		if (tcp_skb_pcount(skb) > 1)
1296 			tcb->tcp_flags |= TCPHDR_PSH;
1297 	}
1298 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1299 
1300 	/* if no packet is in qdisc/device queue, then allow XPS to select
1301 	 * another queue. We can be called from tcp_tsq_handler()
1302 	 * which holds one reference to sk.
1303 	 *
1304 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1305 	 * One way to get this would be to set skb->truesize = 2 on them.
1306 	 */
1307 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1308 
1309 	/* If we had to use memory reserve to allocate this skb,
1310 	 * this might cause drops if packet is looped back :
1311 	 * Other socket might not have SOCK_MEMALLOC.
1312 	 * Packets not looped back do not care about pfmemalloc.
1313 	 */
1314 	skb->pfmemalloc = 0;
1315 
1316 	skb_push(skb, tcp_header_size);
1317 	skb_reset_transport_header(skb);
1318 
1319 	skb_orphan(skb);
1320 	skb->sk = sk;
1321 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1322 	skb_set_hash_from_sk(skb, sk);
1323 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1324 
1325 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1326 
1327 	/* Build TCP header and checksum it. */
1328 	th = (struct tcphdr *)skb->data;
1329 	th->source		= inet->inet_sport;
1330 	th->dest		= inet->inet_dport;
1331 	th->seq			= htonl(tcb->seq);
1332 	th->ack_seq		= htonl(rcv_nxt);
1333 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1334 					tcb->tcp_flags);
1335 
1336 	th->check		= 0;
1337 	th->urg_ptr		= 0;
1338 
1339 	/* The urg_mode check is necessary during a below snd_una win probe */
1340 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1341 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1342 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1343 			th->urg = 1;
1344 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1345 			th->urg_ptr = htons(0xFFFF);
1346 			th->urg = 1;
1347 		}
1348 	}
1349 
1350 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1351 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1352 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1353 		th->window      = htons(tcp_select_window(sk));
1354 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1355 	} else {
1356 		/* RFC1323: The window in SYN & SYN/ACK segments
1357 		 * is never scaled.
1358 		 */
1359 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1360 	}
1361 #ifdef CONFIG_TCP_MD5SIG
1362 	/* Calculate the MD5 hash, as we have all we need now */
1363 	if (md5) {
1364 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1365 		tp->af_specific->calc_md5_hash(opts.hash_location,
1366 					       md5, sk, skb);
1367 	}
1368 #endif
1369 
1370 	/* BPF prog is the last one writing header option */
1371 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1372 
1373 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1374 			   tcp_v6_send_check, tcp_v4_send_check,
1375 			   sk, skb);
1376 
1377 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1378 		tcp_event_ack_sent(sk, rcv_nxt);
1379 
1380 	if (skb->len != tcp_header_size) {
1381 		tcp_event_data_sent(tp, sk);
1382 		tp->data_segs_out += tcp_skb_pcount(skb);
1383 		tp->bytes_sent += skb->len - tcp_header_size;
1384 	}
1385 
1386 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1387 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1388 			      tcp_skb_pcount(skb));
1389 
1390 	tp->segs_out += tcp_skb_pcount(skb);
1391 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1392 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1393 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1394 
1395 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1396 
1397 	/* Cleanup our debris for IP stacks */
1398 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1399 			       sizeof(struct inet6_skb_parm)));
1400 
1401 	tcp_add_tx_delay(skb, tp);
1402 
1403 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1404 				 inet6_csk_xmit, ip_queue_xmit,
1405 				 sk, skb, &inet->cork.fl);
1406 
1407 	if (unlikely(err > 0)) {
1408 		tcp_enter_cwr(sk);
1409 		err = net_xmit_eval(err);
1410 	}
1411 	if (!err && oskb) {
1412 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1413 		tcp_rate_skb_sent(sk, oskb);
1414 	}
1415 	return err;
1416 }
1417 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1418 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1419 			    gfp_t gfp_mask)
1420 {
1421 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1422 				  tcp_sk(sk)->rcv_nxt);
1423 }
1424 
1425 /* This routine just queues the buffer for sending.
1426  *
1427  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1428  * otherwise socket can stall.
1429  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1430 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1431 {
1432 	struct tcp_sock *tp = tcp_sk(sk);
1433 
1434 	/* Advance write_seq and place onto the write_queue. */
1435 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1436 	__skb_header_release(skb);
1437 	tcp_add_write_queue_tail(sk, skb);
1438 	sk_wmem_queued_add(sk, skb->truesize);
1439 	sk_mem_charge(sk, skb->truesize);
1440 }
1441 
1442 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1443 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1444 {
1445 	if (skb->len <= mss_now) {
1446 		/* Avoid the costly divide in the normal
1447 		 * non-TSO case.
1448 		 */
1449 		tcp_skb_pcount_set(skb, 1);
1450 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1451 	} else {
1452 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1453 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1454 	}
1455 }
1456 
1457 /* Pcount in the middle of the write queue got changed, we need to do various
1458  * tweaks to fix counters
1459  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1460 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1461 {
1462 	struct tcp_sock *tp = tcp_sk(sk);
1463 
1464 	tp->packets_out -= decr;
1465 
1466 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1467 		tp->sacked_out -= decr;
1468 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1469 		tp->retrans_out -= decr;
1470 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1471 		tp->lost_out -= decr;
1472 
1473 	/* Reno case is special. Sigh... */
1474 	if (tcp_is_reno(tp) && decr > 0)
1475 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1476 
1477 	if (tp->lost_skb_hint &&
1478 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1479 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1480 		tp->lost_cnt_hint -= decr;
1481 
1482 	tcp_verify_left_out(tp);
1483 }
1484 
tcp_has_tx_tstamp(const struct sk_buff * skb)1485 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1486 {
1487 	return TCP_SKB_CB(skb)->txstamp_ack ||
1488 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1489 }
1490 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1491 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1492 {
1493 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1494 
1495 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1496 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1497 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1498 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1499 
1500 		shinfo->tx_flags &= ~tsflags;
1501 		shinfo2->tx_flags |= tsflags;
1502 		swap(shinfo->tskey, shinfo2->tskey);
1503 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1504 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1505 	}
1506 }
1507 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1508 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1509 {
1510 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1511 	TCP_SKB_CB(skb)->eor = 0;
1512 }
1513 
1514 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1515 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1516 					 struct sk_buff *buff,
1517 					 struct sock *sk,
1518 					 enum tcp_queue tcp_queue)
1519 {
1520 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1521 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1522 	else
1523 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1524 }
1525 
1526 /* Function to create two new TCP segments.  Shrinks the given segment
1527  * to the specified size and appends a new segment with the rest of the
1528  * packet to the list.  This won't be called frequently, I hope.
1529  * Remember, these are still headerless SKBs at this point.
1530  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1532 		 struct sk_buff *skb, u32 len,
1533 		 unsigned int mss_now, gfp_t gfp)
1534 {
1535 	struct tcp_sock *tp = tcp_sk(sk);
1536 	struct sk_buff *buff;
1537 	int nsize, old_factor;
1538 	long limit;
1539 	int nlen;
1540 	u8 flags;
1541 
1542 	if (WARN_ON(len > skb->len))
1543 		return -EINVAL;
1544 
1545 	nsize = skb_headlen(skb) - len;
1546 	if (nsize < 0)
1547 		nsize = 0;
1548 
1549 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1550 	 * We need some allowance to not penalize applications setting small
1551 	 * SO_SNDBUF values.
1552 	 * Also allow first and last skb in retransmit queue to be split.
1553 	 */
1554 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1555 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1556 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1557 		     skb != tcp_rtx_queue_head(sk) &&
1558 		     skb != tcp_rtx_queue_tail(sk))) {
1559 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1560 		return -ENOMEM;
1561 	}
1562 
1563 	if (skb_unclone(skb, gfp))
1564 		return -ENOMEM;
1565 
1566 	/* Get a new skb... force flag on. */
1567 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1568 	if (!buff)
1569 		return -ENOMEM; /* We'll just try again later. */
1570 	skb_copy_decrypted(buff, skb);
1571 
1572 	sk_wmem_queued_add(sk, buff->truesize);
1573 	sk_mem_charge(sk, buff->truesize);
1574 	nlen = skb->len - len - nsize;
1575 	buff->truesize += nlen;
1576 	skb->truesize -= nlen;
1577 
1578 	/* Correct the sequence numbers. */
1579 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582 
1583 	/* PSH and FIN should only be set in the second packet. */
1584 	flags = TCP_SKB_CB(skb)->tcp_flags;
1585 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 	TCP_SKB_CB(buff)->tcp_flags = flags;
1587 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 	tcp_skb_fragment_eor(skb, buff);
1589 
1590 	skb_split(skb, buff, len);
1591 
1592 	buff->ip_summed = CHECKSUM_PARTIAL;
1593 
1594 	buff->tstamp = skb->tstamp;
1595 	tcp_fragment_tstamp(skb, buff);
1596 
1597 	old_factor = tcp_skb_pcount(skb);
1598 
1599 	/* Fix up tso_factor for both original and new SKB.  */
1600 	tcp_set_skb_tso_segs(skb, mss_now);
1601 	tcp_set_skb_tso_segs(buff, mss_now);
1602 
1603 	/* Update delivered info for the new segment */
1604 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1605 
1606 	/* If this packet has been sent out already, we must
1607 	 * adjust the various packet counters.
1608 	 */
1609 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1610 		int diff = old_factor - tcp_skb_pcount(skb) -
1611 			tcp_skb_pcount(buff);
1612 
1613 		if (diff)
1614 			tcp_adjust_pcount(sk, skb, diff);
1615 	}
1616 
1617 	/* Link BUFF into the send queue. */
1618 	__skb_header_release(buff);
1619 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1620 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1621 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1622 
1623 	return 0;
1624 }
1625 
1626 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1627  * data is not copied, but immediately discarded.
1628  */
__pskb_trim_head(struct sk_buff * skb,int len)1629 static int __pskb_trim_head(struct sk_buff *skb, int len)
1630 {
1631 	struct skb_shared_info *shinfo;
1632 	int i, k, eat;
1633 
1634 	eat = min_t(int, len, skb_headlen(skb));
1635 	if (eat) {
1636 		__skb_pull(skb, eat);
1637 		len -= eat;
1638 		if (!len)
1639 			return 0;
1640 	}
1641 	eat = len;
1642 	k = 0;
1643 	shinfo = skb_shinfo(skb);
1644 	for (i = 0; i < shinfo->nr_frags; i++) {
1645 		int size = skb_frag_size(&shinfo->frags[i]);
1646 
1647 		if (size <= eat) {
1648 			skb_frag_unref(skb, i);
1649 			eat -= size;
1650 		} else {
1651 			shinfo->frags[k] = shinfo->frags[i];
1652 			if (eat) {
1653 				skb_frag_off_add(&shinfo->frags[k], eat);
1654 				skb_frag_size_sub(&shinfo->frags[k], eat);
1655 				eat = 0;
1656 			}
1657 			k++;
1658 		}
1659 	}
1660 	shinfo->nr_frags = k;
1661 
1662 	skb->data_len -= len;
1663 	skb->len = skb->data_len;
1664 	return len;
1665 }
1666 
1667 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1668 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1669 {
1670 	u32 delta_truesize;
1671 
1672 	if (skb_unclone(skb, GFP_ATOMIC))
1673 		return -ENOMEM;
1674 
1675 	delta_truesize = __pskb_trim_head(skb, len);
1676 
1677 	TCP_SKB_CB(skb)->seq += len;
1678 	skb->ip_summed = CHECKSUM_PARTIAL;
1679 
1680 	if (delta_truesize) {
1681 		skb->truesize	   -= delta_truesize;
1682 		sk_wmem_queued_add(sk, -delta_truesize);
1683 		sk_mem_uncharge(sk, delta_truesize);
1684 	}
1685 
1686 	/* Any change of skb->len requires recalculation of tso factor. */
1687 	if (tcp_skb_pcount(skb) > 1)
1688 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1689 
1690 	return 0;
1691 }
1692 
1693 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1694 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1695 {
1696 	const struct tcp_sock *tp = tcp_sk(sk);
1697 	const struct inet_connection_sock *icsk = inet_csk(sk);
1698 	int mss_now;
1699 
1700 	/* Calculate base mss without TCP options:
1701 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1702 	 */
1703 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1704 
1705 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1706 	if (icsk->icsk_af_ops->net_frag_header_len) {
1707 		const struct dst_entry *dst = __sk_dst_get(sk);
1708 
1709 		if (dst && dst_allfrag(dst))
1710 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1711 	}
1712 
1713 	/* Clamp it (mss_clamp does not include tcp options) */
1714 	if (mss_now > tp->rx_opt.mss_clamp)
1715 		mss_now = tp->rx_opt.mss_clamp;
1716 
1717 	/* Now subtract optional transport overhead */
1718 	mss_now -= icsk->icsk_ext_hdr_len;
1719 
1720 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1721 	mss_now = max(mss_now,
1722 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1723 	return mss_now;
1724 }
1725 
1726 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 	/* Subtract TCP options size, not including SACKs */
1730 	return __tcp_mtu_to_mss(sk, pmtu) -
1731 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733 EXPORT_SYMBOL(tcp_mtu_to_mss);
1734 
1735 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1736 int tcp_mss_to_mtu(struct sock *sk, int mss)
1737 {
1738 	const struct tcp_sock *tp = tcp_sk(sk);
1739 	const struct inet_connection_sock *icsk = inet_csk(sk);
1740 	int mtu;
1741 
1742 	mtu = mss +
1743 	      tp->tcp_header_len +
1744 	      icsk->icsk_ext_hdr_len +
1745 	      icsk->icsk_af_ops->net_header_len;
1746 
1747 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1748 	if (icsk->icsk_af_ops->net_frag_header_len) {
1749 		const struct dst_entry *dst = __sk_dst_get(sk);
1750 
1751 		if (dst && dst_allfrag(dst))
1752 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1753 	}
1754 	return mtu;
1755 }
1756 EXPORT_SYMBOL(tcp_mss_to_mtu);
1757 
1758 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1759 void tcp_mtup_init(struct sock *sk)
1760 {
1761 	struct tcp_sock *tp = tcp_sk(sk);
1762 	struct inet_connection_sock *icsk = inet_csk(sk);
1763 	struct net *net = sock_net(sk);
1764 
1765 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1766 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1767 			       icsk->icsk_af_ops->net_header_len;
1768 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1769 	icsk->icsk_mtup.probe_size = 0;
1770 	if (icsk->icsk_mtup.enabled)
1771 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1772 }
1773 EXPORT_SYMBOL(tcp_mtup_init);
1774 
1775 /* This function synchronize snd mss to current pmtu/exthdr set.
1776 
1777    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1778    for TCP options, but includes only bare TCP header.
1779 
1780    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1781    It is minimum of user_mss and mss received with SYN.
1782    It also does not include TCP options.
1783 
1784    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1785 
1786    tp->mss_cache is current effective sending mss, including
1787    all tcp options except for SACKs. It is evaluated,
1788    taking into account current pmtu, but never exceeds
1789    tp->rx_opt.mss_clamp.
1790 
1791    NOTE1. rfc1122 clearly states that advertised MSS
1792    DOES NOT include either tcp or ip options.
1793 
1794    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1795    are READ ONLY outside this function.		--ANK (980731)
1796  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1797 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1798 {
1799 	struct tcp_sock *tp = tcp_sk(sk);
1800 	struct inet_connection_sock *icsk = inet_csk(sk);
1801 	int mss_now;
1802 
1803 	if (icsk->icsk_mtup.search_high > pmtu)
1804 		icsk->icsk_mtup.search_high = pmtu;
1805 
1806 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1807 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1808 
1809 	/* And store cached results */
1810 	icsk->icsk_pmtu_cookie = pmtu;
1811 	if (icsk->icsk_mtup.enabled)
1812 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1813 	tp->mss_cache = mss_now;
1814 
1815 	return mss_now;
1816 }
1817 EXPORT_SYMBOL(tcp_sync_mss);
1818 
1819 /* Compute the current effective MSS, taking SACKs and IP options,
1820  * and even PMTU discovery events into account.
1821  */
tcp_current_mss(struct sock * sk)1822 unsigned int tcp_current_mss(struct sock *sk)
1823 {
1824 	const struct tcp_sock *tp = tcp_sk(sk);
1825 	const struct dst_entry *dst = __sk_dst_get(sk);
1826 	u32 mss_now;
1827 	unsigned int header_len;
1828 	struct tcp_out_options opts;
1829 	struct tcp_md5sig_key *md5;
1830 
1831 	mss_now = tp->mss_cache;
1832 
1833 	if (dst) {
1834 		u32 mtu = dst_mtu(dst);
1835 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1836 			mss_now = tcp_sync_mss(sk, mtu);
1837 	}
1838 
1839 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1840 		     sizeof(struct tcphdr);
1841 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1842 	 * some common options. If this is an odd packet (because we have SACK
1843 	 * blocks etc) then our calculated header_len will be different, and
1844 	 * we have to adjust mss_now correspondingly */
1845 	if (header_len != tp->tcp_header_len) {
1846 		int delta = (int) header_len - tp->tcp_header_len;
1847 		mss_now -= delta;
1848 	}
1849 
1850 	return mss_now;
1851 }
1852 
1853 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1854  * As additional protections, we do not touch cwnd in retransmission phases,
1855  * and if application hit its sndbuf limit recently.
1856  */
tcp_cwnd_application_limited(struct sock * sk)1857 static void tcp_cwnd_application_limited(struct sock *sk)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 
1861 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1862 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1863 		/* Limited by application or receiver window. */
1864 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1865 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1866 		if (win_used < tp->snd_cwnd) {
1867 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1868 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1869 		}
1870 		tp->snd_cwnd_used = 0;
1871 	}
1872 	tp->snd_cwnd_stamp = tcp_jiffies32;
1873 }
1874 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1875 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1876 {
1877 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 
1880 	/* Track the strongest available signal of the degree to which the cwnd
1881 	 * is fully utilized. If cwnd-limited then remember that fact for the
1882 	 * current window. If not cwnd-limited then track the maximum number of
1883 	 * outstanding packets in the current window. (If cwnd-limited then we
1884 	 * chose to not update tp->max_packets_out to avoid an extra else
1885 	 * clause with no functional impact.)
1886 	 */
1887 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1888 	    is_cwnd_limited ||
1889 	    (!tp->is_cwnd_limited &&
1890 	     tp->packets_out > tp->max_packets_out)) {
1891 		tp->is_cwnd_limited = is_cwnd_limited;
1892 		tp->max_packets_out = tp->packets_out;
1893 		tp->cwnd_usage_seq = tp->snd_nxt;
1894 	}
1895 
1896 	if (tcp_is_cwnd_limited(sk)) {
1897 		/* Network is feed fully. */
1898 		tp->snd_cwnd_used = 0;
1899 		tp->snd_cwnd_stamp = tcp_jiffies32;
1900 	} else {
1901 		/* Network starves. */
1902 		if (tp->packets_out > tp->snd_cwnd_used)
1903 			tp->snd_cwnd_used = tp->packets_out;
1904 
1905 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1906 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1907 		    !ca_ops->cong_control)
1908 			tcp_cwnd_application_limited(sk);
1909 
1910 		/* The following conditions together indicate the starvation
1911 		 * is caused by insufficient sender buffer:
1912 		 * 1) just sent some data (see tcp_write_xmit)
1913 		 * 2) not cwnd limited (this else condition)
1914 		 * 3) no more data to send (tcp_write_queue_empty())
1915 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1916 		 */
1917 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1918 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1919 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1920 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1921 	}
1922 }
1923 
1924 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1925 static bool tcp_minshall_check(const struct tcp_sock *tp)
1926 {
1927 	return after(tp->snd_sml, tp->snd_una) &&
1928 		!after(tp->snd_sml, tp->snd_nxt);
1929 }
1930 
1931 /* Update snd_sml if this skb is under mss
1932  * Note that a TSO packet might end with a sub-mss segment
1933  * The test is really :
1934  * if ((skb->len % mss) != 0)
1935  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1936  * But we can avoid doing the divide again given we already have
1937  *  skb_pcount = skb->len / mss_now
1938  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1939 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1940 				const struct sk_buff *skb)
1941 {
1942 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1943 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1944 }
1945 
1946 /* Return false, if packet can be sent now without violation Nagle's rules:
1947  * 1. It is full sized. (provided by caller in %partial bool)
1948  * 2. Or it contains FIN. (already checked by caller)
1949  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1950  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1951  *    With Minshall's modification: all sent small packets are ACKed.
1952  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1953 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1954 			    int nonagle)
1955 {
1956 	return partial &&
1957 		((nonagle & TCP_NAGLE_CORK) ||
1958 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1959 }
1960 
1961 /* Return how many segs we'd like on a TSO packet,
1962  * to send one TSO packet per ms
1963  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1964 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1965 			    int min_tso_segs)
1966 {
1967 	u32 bytes, segs;
1968 
1969 	bytes = min_t(unsigned long,
1970 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1971 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1972 
1973 	/* Goal is to send at least one packet per ms,
1974 	 * not one big TSO packet every 100 ms.
1975 	 * This preserves ACK clocking and is consistent
1976 	 * with tcp_tso_should_defer() heuristic.
1977 	 */
1978 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1979 
1980 	return segs;
1981 }
1982 
1983 /* Return the number of segments we want in the skb we are transmitting.
1984  * See if congestion control module wants to decide; otherwise, autosize.
1985  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1986 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1987 {
1988 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1989 	u32 min_tso, tso_segs;
1990 
1991 	min_tso = ca_ops->min_tso_segs ?
1992 			ca_ops->min_tso_segs(sk) :
1993 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1994 
1995 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1996 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1997 }
1998 
1999 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2000 static unsigned int tcp_mss_split_point(const struct sock *sk,
2001 					const struct sk_buff *skb,
2002 					unsigned int mss_now,
2003 					unsigned int max_segs,
2004 					int nonagle)
2005 {
2006 	const struct tcp_sock *tp = tcp_sk(sk);
2007 	u32 partial, needed, window, max_len;
2008 
2009 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2010 	max_len = mss_now * max_segs;
2011 
2012 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2013 		return max_len;
2014 
2015 	needed = min(skb->len, window);
2016 
2017 	if (max_len <= needed)
2018 		return max_len;
2019 
2020 	partial = needed % mss_now;
2021 	/* If last segment is not a full MSS, check if Nagle rules allow us
2022 	 * to include this last segment in this skb.
2023 	 * Otherwise, we'll split the skb at last MSS boundary
2024 	 */
2025 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2026 		return needed - partial;
2027 
2028 	return needed;
2029 }
2030 
2031 /* Can at least one segment of SKB be sent right now, according to the
2032  * congestion window rules?  If so, return how many segments are allowed.
2033  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2034 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2035 					 const struct sk_buff *skb)
2036 {
2037 	u32 in_flight, cwnd, halfcwnd;
2038 
2039 	/* Don't be strict about the congestion window for the final FIN.  */
2040 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2041 	    tcp_skb_pcount(skb) == 1)
2042 		return 1;
2043 
2044 	in_flight = tcp_packets_in_flight(tp);
2045 	cwnd = tp->snd_cwnd;
2046 	if (in_flight >= cwnd)
2047 		return 0;
2048 
2049 	/* For better scheduling, ensure we have at least
2050 	 * 2 GSO packets in flight.
2051 	 */
2052 	halfcwnd = max(cwnd >> 1, 1U);
2053 	return min(halfcwnd, cwnd - in_flight);
2054 }
2055 
2056 /* Initialize TSO state of a skb.
2057  * This must be invoked the first time we consider transmitting
2058  * SKB onto the wire.
2059  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2060 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2061 {
2062 	int tso_segs = tcp_skb_pcount(skb);
2063 
2064 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2065 		tcp_set_skb_tso_segs(skb, mss_now);
2066 		tso_segs = tcp_skb_pcount(skb);
2067 	}
2068 	return tso_segs;
2069 }
2070 
2071 
2072 /* Return true if the Nagle test allows this packet to be
2073  * sent now.
2074  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2075 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2076 				  unsigned int cur_mss, int nonagle)
2077 {
2078 	/* Nagle rule does not apply to frames, which sit in the middle of the
2079 	 * write_queue (they have no chances to get new data).
2080 	 *
2081 	 * This is implemented in the callers, where they modify the 'nonagle'
2082 	 * argument based upon the location of SKB in the send queue.
2083 	 */
2084 	if (nonagle & TCP_NAGLE_PUSH)
2085 		return true;
2086 
2087 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2088 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2089 		return true;
2090 
2091 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2092 		return true;
2093 
2094 	return false;
2095 }
2096 
2097 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2098 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2099 			     const struct sk_buff *skb,
2100 			     unsigned int cur_mss)
2101 {
2102 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2103 
2104 	if (skb->len > cur_mss)
2105 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2106 
2107 	return !after(end_seq, tcp_wnd_end(tp));
2108 }
2109 
2110 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2111  * which is put after SKB on the list.  It is very much like
2112  * tcp_fragment() except that it may make several kinds of assumptions
2113  * in order to speed up the splitting operation.  In particular, we
2114  * know that all the data is in scatter-gather pages, and that the
2115  * packet has never been sent out before (and thus is not cloned).
2116  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2117 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2118 			unsigned int mss_now, gfp_t gfp)
2119 {
2120 	int nlen = skb->len - len;
2121 	struct sk_buff *buff;
2122 	u8 flags;
2123 
2124 	/* All of a TSO frame must be composed of paged data.  */
2125 	if (skb->len != skb->data_len)
2126 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2127 				    skb, len, mss_now, gfp);
2128 
2129 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2130 	if (unlikely(!buff))
2131 		return -ENOMEM;
2132 	skb_copy_decrypted(buff, skb);
2133 
2134 	sk_wmem_queued_add(sk, buff->truesize);
2135 	sk_mem_charge(sk, buff->truesize);
2136 	buff->truesize += nlen;
2137 	skb->truesize -= nlen;
2138 
2139 	/* Correct the sequence numbers. */
2140 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2141 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2142 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2143 
2144 	/* PSH and FIN should only be set in the second packet. */
2145 	flags = TCP_SKB_CB(skb)->tcp_flags;
2146 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2147 	TCP_SKB_CB(buff)->tcp_flags = flags;
2148 
2149 	/* This packet was never sent out yet, so no SACK bits. */
2150 	TCP_SKB_CB(buff)->sacked = 0;
2151 
2152 	tcp_skb_fragment_eor(skb, buff);
2153 
2154 	buff->ip_summed = CHECKSUM_PARTIAL;
2155 	skb_split(skb, buff, len);
2156 	tcp_fragment_tstamp(skb, buff);
2157 
2158 	/* Fix up tso_factor for both original and new SKB.  */
2159 	tcp_set_skb_tso_segs(skb, mss_now);
2160 	tcp_set_skb_tso_segs(buff, mss_now);
2161 
2162 	/* Link BUFF into the send queue. */
2163 	__skb_header_release(buff);
2164 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2165 
2166 	return 0;
2167 }
2168 
2169 /* Try to defer sending, if possible, in order to minimize the amount
2170  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2171  *
2172  * This algorithm is from John Heffner.
2173  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2174 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2175 				 bool *is_cwnd_limited,
2176 				 bool *is_rwnd_limited,
2177 				 u32 max_segs)
2178 {
2179 	const struct inet_connection_sock *icsk = inet_csk(sk);
2180 	u32 send_win, cong_win, limit, in_flight;
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	struct sk_buff *head;
2183 	int win_divisor;
2184 	s64 delta;
2185 
2186 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2187 		goto send_now;
2188 
2189 	/* Avoid bursty behavior by allowing defer
2190 	 * only if the last write was recent (1 ms).
2191 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2192 	 * packets waiting in a qdisc or device for EDT delivery.
2193 	 */
2194 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2195 	if (delta > 0)
2196 		goto send_now;
2197 
2198 	in_flight = tcp_packets_in_flight(tp);
2199 
2200 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2201 	BUG_ON(tp->snd_cwnd <= in_flight);
2202 
2203 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2204 
2205 	/* From in_flight test above, we know that cwnd > in_flight.  */
2206 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2207 
2208 	limit = min(send_win, cong_win);
2209 
2210 	/* If a full-sized TSO skb can be sent, do it. */
2211 	if (limit >= max_segs * tp->mss_cache)
2212 		goto send_now;
2213 
2214 	/* Middle in queue won't get any more data, full sendable already? */
2215 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2216 		goto send_now;
2217 
2218 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2219 	if (win_divisor) {
2220 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2221 
2222 		/* If at least some fraction of a window is available,
2223 		 * just use it.
2224 		 */
2225 		chunk /= win_divisor;
2226 		if (limit >= chunk)
2227 			goto send_now;
2228 	} else {
2229 		/* Different approach, try not to defer past a single
2230 		 * ACK.  Receiver should ACK every other full sized
2231 		 * frame, so if we have space for more than 3 frames
2232 		 * then send now.
2233 		 */
2234 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2235 			goto send_now;
2236 	}
2237 
2238 	/* TODO : use tsorted_sent_queue ? */
2239 	head = tcp_rtx_queue_head(sk);
2240 	if (!head)
2241 		goto send_now;
2242 	delta = tp->tcp_clock_cache - head->tstamp;
2243 	/* If next ACK is likely to come too late (half srtt), do not defer */
2244 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2245 		goto send_now;
2246 
2247 	/* Ok, it looks like it is advisable to defer.
2248 	 * Three cases are tracked :
2249 	 * 1) We are cwnd-limited
2250 	 * 2) We are rwnd-limited
2251 	 * 3) We are application limited.
2252 	 */
2253 	if (cong_win < send_win) {
2254 		if (cong_win <= skb->len) {
2255 			*is_cwnd_limited = true;
2256 			return true;
2257 		}
2258 	} else {
2259 		if (send_win <= skb->len) {
2260 			*is_rwnd_limited = true;
2261 			return true;
2262 		}
2263 	}
2264 
2265 	/* If this packet won't get more data, do not wait. */
2266 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2267 	    TCP_SKB_CB(skb)->eor)
2268 		goto send_now;
2269 
2270 	return true;
2271 
2272 send_now:
2273 	return false;
2274 }
2275 
tcp_mtu_check_reprobe(struct sock * sk)2276 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2277 {
2278 	struct inet_connection_sock *icsk = inet_csk(sk);
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 	struct net *net = sock_net(sk);
2281 	u32 interval;
2282 	s32 delta;
2283 
2284 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2285 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2286 	if (unlikely(delta >= interval * HZ)) {
2287 		int mss = tcp_current_mss(sk);
2288 
2289 		/* Update current search range */
2290 		icsk->icsk_mtup.probe_size = 0;
2291 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2292 			sizeof(struct tcphdr) +
2293 			icsk->icsk_af_ops->net_header_len;
2294 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2295 
2296 		/* Update probe time stamp */
2297 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2298 	}
2299 }
2300 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2301 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2302 {
2303 	struct sk_buff *skb, *next;
2304 
2305 	skb = tcp_send_head(sk);
2306 	tcp_for_write_queue_from_safe(skb, next, sk) {
2307 		if (len <= skb->len)
2308 			break;
2309 
2310 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2311 			return false;
2312 
2313 		len -= skb->len;
2314 	}
2315 
2316 	return true;
2317 }
2318 
2319 /* Create a new MTU probe if we are ready.
2320  * MTU probe is regularly attempting to increase the path MTU by
2321  * deliberately sending larger packets.  This discovers routing
2322  * changes resulting in larger path MTUs.
2323  *
2324  * Returns 0 if we should wait to probe (no cwnd available),
2325  *         1 if a probe was sent,
2326  *         -1 otherwise
2327  */
tcp_mtu_probe(struct sock * sk)2328 static int tcp_mtu_probe(struct sock *sk)
2329 {
2330 	struct inet_connection_sock *icsk = inet_csk(sk);
2331 	struct tcp_sock *tp = tcp_sk(sk);
2332 	struct sk_buff *skb, *nskb, *next;
2333 	struct net *net = sock_net(sk);
2334 	int probe_size;
2335 	int size_needed;
2336 	int copy, len;
2337 	int mss_now;
2338 	int interval;
2339 
2340 	/* Not currently probing/verifying,
2341 	 * not in recovery,
2342 	 * have enough cwnd, and
2343 	 * not SACKing (the variable headers throw things off)
2344 	 */
2345 	if (likely(!icsk->icsk_mtup.enabled ||
2346 		   icsk->icsk_mtup.probe_size ||
2347 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2348 		   tp->snd_cwnd < 11 ||
2349 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2350 		return -1;
2351 
2352 	/* Use binary search for probe_size between tcp_mss_base,
2353 	 * and current mss_clamp. if (search_high - search_low)
2354 	 * smaller than a threshold, backoff from probing.
2355 	 */
2356 	mss_now = tcp_current_mss(sk);
2357 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2358 				    icsk->icsk_mtup.search_low) >> 1);
2359 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2360 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2361 	/* When misfortune happens, we are reprobing actively,
2362 	 * and then reprobe timer has expired. We stick with current
2363 	 * probing process by not resetting search range to its orignal.
2364 	 */
2365 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2366 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2367 		/* Check whether enough time has elaplased for
2368 		 * another round of probing.
2369 		 */
2370 		tcp_mtu_check_reprobe(sk);
2371 		return -1;
2372 	}
2373 
2374 	/* Have enough data in the send queue to probe? */
2375 	if (tp->write_seq - tp->snd_nxt < size_needed)
2376 		return -1;
2377 
2378 	if (tp->snd_wnd < size_needed)
2379 		return -1;
2380 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2381 		return 0;
2382 
2383 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2384 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2385 		if (!tcp_packets_in_flight(tp))
2386 			return -1;
2387 		else
2388 			return 0;
2389 	}
2390 
2391 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2392 		return -1;
2393 
2394 	/* We're allowed to probe.  Build it now. */
2395 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2396 	if (!nskb)
2397 		return -1;
2398 	sk_wmem_queued_add(sk, nskb->truesize);
2399 	sk_mem_charge(sk, nskb->truesize);
2400 
2401 	skb = tcp_send_head(sk);
2402 	skb_copy_decrypted(nskb, skb);
2403 
2404 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2405 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2406 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2407 	TCP_SKB_CB(nskb)->sacked = 0;
2408 	nskb->csum = 0;
2409 	nskb->ip_summed = CHECKSUM_PARTIAL;
2410 
2411 	tcp_insert_write_queue_before(nskb, skb, sk);
2412 	tcp_highest_sack_replace(sk, skb, nskb);
2413 
2414 	len = 0;
2415 	tcp_for_write_queue_from_safe(skb, next, sk) {
2416 		copy = min_t(int, skb->len, probe_size - len);
2417 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2418 
2419 		if (skb->len <= copy) {
2420 			/* We've eaten all the data from this skb.
2421 			 * Throw it away. */
2422 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2423 			/* If this is the last SKB we copy and eor is set
2424 			 * we need to propagate it to the new skb.
2425 			 */
2426 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2427 			tcp_skb_collapse_tstamp(nskb, skb);
2428 			tcp_unlink_write_queue(skb, sk);
2429 			sk_wmem_free_skb(sk, skb);
2430 		} else {
2431 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2432 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2433 			if (!skb_shinfo(skb)->nr_frags) {
2434 				skb_pull(skb, copy);
2435 			} else {
2436 				__pskb_trim_head(skb, copy);
2437 				tcp_set_skb_tso_segs(skb, mss_now);
2438 			}
2439 			TCP_SKB_CB(skb)->seq += copy;
2440 		}
2441 
2442 		len += copy;
2443 
2444 		if (len >= probe_size)
2445 			break;
2446 	}
2447 	tcp_init_tso_segs(nskb, nskb->len);
2448 
2449 	/* We're ready to send.  If this fails, the probe will
2450 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2451 	 */
2452 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2453 		/* Decrement cwnd here because we are sending
2454 		 * effectively two packets. */
2455 		tp->snd_cwnd--;
2456 		tcp_event_new_data_sent(sk, nskb);
2457 
2458 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2459 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2460 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2461 
2462 		return 1;
2463 	}
2464 
2465 	return -1;
2466 }
2467 
tcp_pacing_check(struct sock * sk)2468 static bool tcp_pacing_check(struct sock *sk)
2469 {
2470 	struct tcp_sock *tp = tcp_sk(sk);
2471 
2472 	if (!tcp_needs_internal_pacing(sk))
2473 		return false;
2474 
2475 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2476 		return false;
2477 
2478 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2479 		hrtimer_start(&tp->pacing_timer,
2480 			      ns_to_ktime(tp->tcp_wstamp_ns),
2481 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2482 		sock_hold(sk);
2483 	}
2484 	return true;
2485 }
2486 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2487 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2488 {
2489 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2490 
2491 	/* No skb in the rtx queue. */
2492 	if (!node)
2493 		return true;
2494 
2495 	/* Only one skb in rtx queue. */
2496 	return !node->rb_left && !node->rb_right;
2497 }
2498 
2499 /* TCP Small Queues :
2500  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2501  * (These limits are doubled for retransmits)
2502  * This allows for :
2503  *  - better RTT estimation and ACK scheduling
2504  *  - faster recovery
2505  *  - high rates
2506  * Alas, some drivers / subsystems require a fair amount
2507  * of queued bytes to ensure line rate.
2508  * One example is wifi aggregation (802.11 AMPDU)
2509  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2510 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2511 				  unsigned int factor)
2512 {
2513 	unsigned long limit;
2514 
2515 	limit = max_t(unsigned long,
2516 		      2 * skb->truesize,
2517 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2518 	if (sk->sk_pacing_status == SK_PACING_NONE)
2519 		limit = min_t(unsigned long, limit,
2520 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2521 	limit <<= factor;
2522 
2523 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2524 	    tcp_sk(sk)->tcp_tx_delay) {
2525 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2526 
2527 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2528 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2529 		 * USEC_PER_SEC is approximated by 2^20.
2530 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2531 		 */
2532 		extra_bytes >>= (20 - 1);
2533 		limit += extra_bytes;
2534 	}
2535 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2536 		/* Always send skb if rtx queue is empty or has one skb.
2537 		 * No need to wait for TX completion to call us back,
2538 		 * after softirq/tasklet schedule.
2539 		 * This helps when TX completions are delayed too much.
2540 		 */
2541 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2542 			return false;
2543 
2544 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2545 		/* It is possible TX completion already happened
2546 		 * before we set TSQ_THROTTLED, so we must
2547 		 * test again the condition.
2548 		 */
2549 		smp_mb__after_atomic();
2550 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2551 			return true;
2552 	}
2553 	return false;
2554 }
2555 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2556 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2557 {
2558 	const u32 now = tcp_jiffies32;
2559 	enum tcp_chrono old = tp->chrono_type;
2560 
2561 	if (old > TCP_CHRONO_UNSPEC)
2562 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2563 	tp->chrono_start = now;
2564 	tp->chrono_type = new;
2565 }
2566 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2567 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 	/* If there are multiple conditions worthy of tracking in a
2572 	 * chronograph then the highest priority enum takes precedence
2573 	 * over the other conditions. So that if something "more interesting"
2574 	 * starts happening, stop the previous chrono and start a new one.
2575 	 */
2576 	if (type > tp->chrono_type)
2577 		tcp_chrono_set(tp, type);
2578 }
2579 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2580 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2581 {
2582 	struct tcp_sock *tp = tcp_sk(sk);
2583 
2584 
2585 	/* There are multiple conditions worthy of tracking in a
2586 	 * chronograph, so that the highest priority enum takes
2587 	 * precedence over the other conditions (see tcp_chrono_start).
2588 	 * If a condition stops, we only stop chrono tracking if
2589 	 * it's the "most interesting" or current chrono we are
2590 	 * tracking and starts busy chrono if we have pending data.
2591 	 */
2592 	if (tcp_rtx_and_write_queues_empty(sk))
2593 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2594 	else if (type == tp->chrono_type)
2595 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2596 }
2597 
2598 /* This routine writes packets to the network.  It advances the
2599  * send_head.  This happens as incoming acks open up the remote
2600  * window for us.
2601  *
2602  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2603  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2604  * account rare use of URG, this is not a big flaw.
2605  *
2606  * Send at most one packet when push_one > 0. Temporarily ignore
2607  * cwnd limit to force at most one packet out when push_one == 2.
2608 
2609  * Returns true, if no segments are in flight and we have queued segments,
2610  * but cannot send anything now because of SWS or another problem.
2611  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2612 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2613 			   int push_one, gfp_t gfp)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	struct sk_buff *skb;
2617 	unsigned int tso_segs, sent_pkts;
2618 	int cwnd_quota;
2619 	int result;
2620 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2621 	u32 max_segs;
2622 
2623 	sent_pkts = 0;
2624 
2625 	tcp_mstamp_refresh(tp);
2626 	if (!push_one) {
2627 		/* Do MTU probing. */
2628 		result = tcp_mtu_probe(sk);
2629 		if (!result) {
2630 			return false;
2631 		} else if (result > 0) {
2632 			sent_pkts = 1;
2633 		}
2634 	}
2635 
2636 	max_segs = tcp_tso_segs(sk, mss_now);
2637 	while ((skb = tcp_send_head(sk))) {
2638 		unsigned int limit;
2639 
2640 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2641 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2642 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2643 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2644 			tcp_init_tso_segs(skb, mss_now);
2645 			goto repair; /* Skip network transmission */
2646 		}
2647 
2648 		if (tcp_pacing_check(sk))
2649 			break;
2650 
2651 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2652 		BUG_ON(!tso_segs);
2653 
2654 		cwnd_quota = tcp_cwnd_test(tp, skb);
2655 		if (!cwnd_quota) {
2656 			if (push_one == 2)
2657 				/* Force out a loss probe pkt. */
2658 				cwnd_quota = 1;
2659 			else
2660 				break;
2661 		}
2662 
2663 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2664 			is_rwnd_limited = true;
2665 			break;
2666 		}
2667 
2668 		if (tso_segs == 1) {
2669 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2670 						     (tcp_skb_is_last(sk, skb) ?
2671 						      nonagle : TCP_NAGLE_PUSH))))
2672 				break;
2673 		} else {
2674 			if (!push_one &&
2675 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2676 						 &is_rwnd_limited, max_segs))
2677 				break;
2678 		}
2679 
2680 		limit = mss_now;
2681 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2682 			limit = tcp_mss_split_point(sk, skb, mss_now,
2683 						    min_t(unsigned int,
2684 							  cwnd_quota,
2685 							  max_segs),
2686 						    nonagle);
2687 
2688 		if (skb->len > limit &&
2689 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2690 			break;
2691 
2692 		if (tcp_small_queue_check(sk, skb, 0))
2693 			break;
2694 
2695 		/* Argh, we hit an empty skb(), presumably a thread
2696 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2697 		 * We do not want to send a pure-ack packet and have
2698 		 * a strange looking rtx queue with empty packet(s).
2699 		 */
2700 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2701 			break;
2702 
2703 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2704 			break;
2705 
2706 repair:
2707 		/* Advance the send_head.  This one is sent out.
2708 		 * This call will increment packets_out.
2709 		 */
2710 		tcp_event_new_data_sent(sk, skb);
2711 
2712 		tcp_minshall_update(tp, mss_now, skb);
2713 		sent_pkts += tcp_skb_pcount(skb);
2714 
2715 		if (push_one)
2716 			break;
2717 	}
2718 
2719 	if (is_rwnd_limited)
2720 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2721 	else
2722 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2723 
2724 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2725 	if (likely(sent_pkts || is_cwnd_limited))
2726 		tcp_cwnd_validate(sk, is_cwnd_limited);
2727 
2728 	if (likely(sent_pkts)) {
2729 		if (tcp_in_cwnd_reduction(sk))
2730 			tp->prr_out += sent_pkts;
2731 
2732 		/* Send one loss probe per tail loss episode. */
2733 		if (push_one != 2)
2734 			tcp_schedule_loss_probe(sk, false);
2735 		return false;
2736 	}
2737 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2738 }
2739 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2740 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2741 {
2742 	struct inet_connection_sock *icsk = inet_csk(sk);
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 	u32 timeout, timeout_us, rto_delta_us;
2745 	int early_retrans;
2746 
2747 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2748 	 * finishes.
2749 	 */
2750 	if (rcu_access_pointer(tp->fastopen_rsk))
2751 		return false;
2752 
2753 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2754 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2755 	 * not in loss recovery, that are either limited by cwnd or application.
2756 	 */
2757 	if ((early_retrans != 3 && early_retrans != 4) ||
2758 	    !tp->packets_out || !tcp_is_sack(tp) ||
2759 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2760 	     icsk->icsk_ca_state != TCP_CA_CWR))
2761 		return false;
2762 
2763 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2764 	 * for delayed ack when there's one outstanding packet. If no RTT
2765 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2766 	 */
2767 	if (tp->srtt_us) {
2768 		timeout_us = tp->srtt_us >> 2;
2769 		if (tp->packets_out == 1)
2770 			timeout_us += tcp_rto_min_us(sk);
2771 		else
2772 			timeout_us += TCP_TIMEOUT_MIN_US;
2773 		timeout = usecs_to_jiffies(timeout_us);
2774 	} else {
2775 		timeout = TCP_TIMEOUT_INIT;
2776 	}
2777 
2778 	/* If the RTO formula yields an earlier time, then use that time. */
2779 	rto_delta_us = advancing_rto ?
2780 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2781 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2782 	if (rto_delta_us > 0)
2783 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2784 
2785 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2786 	return true;
2787 }
2788 
2789 /* Thanks to skb fast clones, we can detect if a prior transmit of
2790  * a packet is still in a qdisc or driver queue.
2791  * In this case, there is very little point doing a retransmit !
2792  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2793 static bool skb_still_in_host_queue(const struct sock *sk,
2794 				    const struct sk_buff *skb)
2795 {
2796 	if (unlikely(skb_fclone_busy(sk, skb))) {
2797 		NET_INC_STATS(sock_net(sk),
2798 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2799 		return true;
2800 	}
2801 	return false;
2802 }
2803 
2804 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2805  * retransmit the last segment.
2806  */
tcp_send_loss_probe(struct sock * sk)2807 void tcp_send_loss_probe(struct sock *sk)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 	struct sk_buff *skb;
2811 	int pcount;
2812 	int mss = tcp_current_mss(sk);
2813 
2814 	/* At most one outstanding TLP */
2815 	if (tp->tlp_high_seq)
2816 		goto rearm_timer;
2817 
2818 	tp->tlp_retrans = 0;
2819 	skb = tcp_send_head(sk);
2820 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2821 		pcount = tp->packets_out;
2822 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2823 		if (tp->packets_out > pcount)
2824 			goto probe_sent;
2825 		goto rearm_timer;
2826 	}
2827 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2828 	if (unlikely(!skb)) {
2829 		WARN_ONCE(tp->packets_out,
2830 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2831 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2832 		inet_csk(sk)->icsk_pending = 0;
2833 		return;
2834 	}
2835 
2836 	if (skb_still_in_host_queue(sk, skb))
2837 		goto rearm_timer;
2838 
2839 	pcount = tcp_skb_pcount(skb);
2840 	if (WARN_ON(!pcount))
2841 		goto rearm_timer;
2842 
2843 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2844 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2845 					  (pcount - 1) * mss, mss,
2846 					  GFP_ATOMIC)))
2847 			goto rearm_timer;
2848 		skb = skb_rb_next(skb);
2849 	}
2850 
2851 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2852 		goto rearm_timer;
2853 
2854 	if (__tcp_retransmit_skb(sk, skb, 1))
2855 		goto rearm_timer;
2856 
2857 	tp->tlp_retrans = 1;
2858 
2859 probe_sent:
2860 	/* Record snd_nxt for loss detection. */
2861 	tp->tlp_high_seq = tp->snd_nxt;
2862 
2863 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2864 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2865 	inet_csk(sk)->icsk_pending = 0;
2866 rearm_timer:
2867 	tcp_rearm_rto(sk);
2868 }
2869 
2870 /* Push out any pending frames which were held back due to
2871  * TCP_CORK or attempt at coalescing tiny packets.
2872  * The socket must be locked by the caller.
2873  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2874 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2875 			       int nonagle)
2876 {
2877 	/* If we are closed, the bytes will have to remain here.
2878 	 * In time closedown will finish, we empty the write queue and
2879 	 * all will be happy.
2880 	 */
2881 	if (unlikely(sk->sk_state == TCP_CLOSE))
2882 		return;
2883 
2884 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2885 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2886 		tcp_check_probe_timer(sk);
2887 }
2888 
2889 /* Send _single_ skb sitting at the send head. This function requires
2890  * true push pending frames to setup probe timer etc.
2891  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2892 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2893 {
2894 	struct sk_buff *skb = tcp_send_head(sk);
2895 
2896 	BUG_ON(!skb || skb->len < mss_now);
2897 
2898 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2899 }
2900 
2901 /* This function returns the amount that we can raise the
2902  * usable window based on the following constraints
2903  *
2904  * 1. The window can never be shrunk once it is offered (RFC 793)
2905  * 2. We limit memory per socket
2906  *
2907  * RFC 1122:
2908  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2909  *  RECV.NEXT + RCV.WIN fixed until:
2910  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2911  *
2912  * i.e. don't raise the right edge of the window until you can raise
2913  * it at least MSS bytes.
2914  *
2915  * Unfortunately, the recommended algorithm breaks header prediction,
2916  * since header prediction assumes th->window stays fixed.
2917  *
2918  * Strictly speaking, keeping th->window fixed violates the receiver
2919  * side SWS prevention criteria. The problem is that under this rule
2920  * a stream of single byte packets will cause the right side of the
2921  * window to always advance by a single byte.
2922  *
2923  * Of course, if the sender implements sender side SWS prevention
2924  * then this will not be a problem.
2925  *
2926  * BSD seems to make the following compromise:
2927  *
2928  *	If the free space is less than the 1/4 of the maximum
2929  *	space available and the free space is less than 1/2 mss,
2930  *	then set the window to 0.
2931  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2932  *	Otherwise, just prevent the window from shrinking
2933  *	and from being larger than the largest representable value.
2934  *
2935  * This prevents incremental opening of the window in the regime
2936  * where TCP is limited by the speed of the reader side taking
2937  * data out of the TCP receive queue. It does nothing about
2938  * those cases where the window is constrained on the sender side
2939  * because the pipeline is full.
2940  *
2941  * BSD also seems to "accidentally" limit itself to windows that are a
2942  * multiple of MSS, at least until the free space gets quite small.
2943  * This would appear to be a side effect of the mbuf implementation.
2944  * Combining these two algorithms results in the observed behavior
2945  * of having a fixed window size at almost all times.
2946  *
2947  * Below we obtain similar behavior by forcing the offered window to
2948  * a multiple of the mss when it is feasible to do so.
2949  *
2950  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2951  * Regular options like TIMESTAMP are taken into account.
2952  */
__tcp_select_window(struct sock * sk)2953 u32 __tcp_select_window(struct sock *sk)
2954 {
2955 	struct inet_connection_sock *icsk = inet_csk(sk);
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 	/* MSS for the peer's data.  Previous versions used mss_clamp
2958 	 * here.  I don't know if the value based on our guesses
2959 	 * of peer's MSS is better for the performance.  It's more correct
2960 	 * but may be worse for the performance because of rcv_mss
2961 	 * fluctuations.  --SAW  1998/11/1
2962 	 */
2963 	int mss = icsk->icsk_ack.rcv_mss;
2964 	int free_space = tcp_space(sk);
2965 	int allowed_space = tcp_full_space(sk);
2966 	int full_space, window;
2967 
2968 	if (sk_is_mptcp(sk))
2969 		mptcp_space(sk, &free_space, &allowed_space);
2970 
2971 	full_space = min_t(int, tp->window_clamp, allowed_space);
2972 
2973 	if (unlikely(mss > full_space)) {
2974 		mss = full_space;
2975 		if (mss <= 0)
2976 			return 0;
2977 	}
2978 	if (free_space < (full_space >> 1)) {
2979 		icsk->icsk_ack.quick = 0;
2980 
2981 		if (tcp_under_memory_pressure(sk))
2982 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2983 					       4U * tp->advmss);
2984 
2985 		/* free_space might become our new window, make sure we don't
2986 		 * increase it due to wscale.
2987 		 */
2988 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2989 
2990 		/* if free space is less than mss estimate, or is below 1/16th
2991 		 * of the maximum allowed, try to move to zero-window, else
2992 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2993 		 * new incoming data is dropped due to memory limits.
2994 		 * With large window, mss test triggers way too late in order
2995 		 * to announce zero window in time before rmem limit kicks in.
2996 		 */
2997 		if (free_space < (allowed_space >> 4) || free_space < mss)
2998 			return 0;
2999 	}
3000 
3001 	if (free_space > tp->rcv_ssthresh)
3002 		free_space = tp->rcv_ssthresh;
3003 
3004 	/* Don't do rounding if we are using window scaling, since the
3005 	 * scaled window will not line up with the MSS boundary anyway.
3006 	 */
3007 	if (tp->rx_opt.rcv_wscale) {
3008 		window = free_space;
3009 
3010 		/* Advertise enough space so that it won't get scaled away.
3011 		 * Import case: prevent zero window announcement if
3012 		 * 1<<rcv_wscale > mss.
3013 		 */
3014 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3015 	} else {
3016 		window = tp->rcv_wnd;
3017 		/* Get the largest window that is a nice multiple of mss.
3018 		 * Window clamp already applied above.
3019 		 * If our current window offering is within 1 mss of the
3020 		 * free space we just keep it. This prevents the divide
3021 		 * and multiply from happening most of the time.
3022 		 * We also don't do any window rounding when the free space
3023 		 * is too small.
3024 		 */
3025 		if (window <= free_space - mss || window > free_space)
3026 			window = rounddown(free_space, mss);
3027 		else if (mss == full_space &&
3028 			 free_space > window + (full_space >> 1))
3029 			window = free_space;
3030 	}
3031 
3032 	return window;
3033 }
3034 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3035 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3036 			     const struct sk_buff *next_skb)
3037 {
3038 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3039 		const struct skb_shared_info *next_shinfo =
3040 			skb_shinfo(next_skb);
3041 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3042 
3043 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3044 		shinfo->tskey = next_shinfo->tskey;
3045 		TCP_SKB_CB(skb)->txstamp_ack |=
3046 			TCP_SKB_CB(next_skb)->txstamp_ack;
3047 	}
3048 }
3049 
3050 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3051 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3052 {
3053 	struct tcp_sock *tp = tcp_sk(sk);
3054 	struct sk_buff *next_skb = skb_rb_next(skb);
3055 	int next_skb_size;
3056 
3057 	next_skb_size = next_skb->len;
3058 
3059 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3060 
3061 	if (next_skb_size) {
3062 		if (next_skb_size <= skb_availroom(skb))
3063 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3064 				      next_skb_size);
3065 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3066 			return false;
3067 	}
3068 	tcp_highest_sack_replace(sk, next_skb, skb);
3069 
3070 	/* Update sequence range on original skb. */
3071 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3072 
3073 	/* Merge over control information. This moves PSH/FIN etc. over */
3074 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3075 
3076 	/* All done, get rid of second SKB and account for it so
3077 	 * packet counting does not break.
3078 	 */
3079 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3080 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3081 
3082 	/* changed transmit queue under us so clear hints */
3083 	tcp_clear_retrans_hints_partial(tp);
3084 	if (next_skb == tp->retransmit_skb_hint)
3085 		tp->retransmit_skb_hint = skb;
3086 
3087 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3088 
3089 	tcp_skb_collapse_tstamp(skb, next_skb);
3090 
3091 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3092 	return true;
3093 }
3094 
3095 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3096 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3097 {
3098 	if (tcp_skb_pcount(skb) > 1)
3099 		return false;
3100 	if (skb_cloned(skb))
3101 		return false;
3102 	/* Some heuristics for collapsing over SACK'd could be invented */
3103 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3104 		return false;
3105 
3106 	return true;
3107 }
3108 
3109 /* Collapse packets in the retransmit queue to make to create
3110  * less packets on the wire. This is only done on retransmission.
3111  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3112 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3113 				     int space)
3114 {
3115 	struct tcp_sock *tp = tcp_sk(sk);
3116 	struct sk_buff *skb = to, *tmp;
3117 	bool first = true;
3118 
3119 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3120 		return;
3121 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3122 		return;
3123 
3124 	skb_rbtree_walk_from_safe(skb, tmp) {
3125 		if (!tcp_can_collapse(sk, skb))
3126 			break;
3127 
3128 		if (!tcp_skb_can_collapse(to, skb))
3129 			break;
3130 
3131 		space -= skb->len;
3132 
3133 		if (first) {
3134 			first = false;
3135 			continue;
3136 		}
3137 
3138 		if (space < 0)
3139 			break;
3140 
3141 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3142 			break;
3143 
3144 		if (!tcp_collapse_retrans(sk, to))
3145 			break;
3146 	}
3147 }
3148 
3149 /* This retransmits one SKB.  Policy decisions and retransmit queue
3150  * state updates are done by the caller.  Returns non-zero if an
3151  * error occurred which prevented the send.
3152  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3153 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3154 {
3155 	struct inet_connection_sock *icsk = inet_csk(sk);
3156 	struct tcp_sock *tp = tcp_sk(sk);
3157 	unsigned int cur_mss;
3158 	int diff, len, err;
3159 	int avail_wnd;
3160 
3161 	/* Inconclusive MTU probe */
3162 	if (icsk->icsk_mtup.probe_size)
3163 		icsk->icsk_mtup.probe_size = 0;
3164 
3165 	/* Do not sent more than we queued. 1/4 is reserved for possible
3166 	 * copying overhead: fragmentation, tunneling, mangling etc.
3167 	 */
3168 	if (refcount_read(&sk->sk_wmem_alloc) >
3169 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3170 		  sk->sk_sndbuf))
3171 		return -EAGAIN;
3172 
3173 	if (skb_still_in_host_queue(sk, skb))
3174 		return -EBUSY;
3175 
3176 start:
3177 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3178 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3179 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3180 			TCP_SKB_CB(skb)->seq++;
3181 			goto start;
3182 		}
3183 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3184 			WARN_ON_ONCE(1);
3185 			return -EINVAL;
3186 		}
3187 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188 			return -ENOMEM;
3189 	}
3190 
3191 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3192 		return -EHOSTUNREACH; /* Routing failure or similar. */
3193 
3194 	cur_mss = tcp_current_mss(sk);
3195 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3196 
3197 	/* If receiver has shrunk his window, and skb is out of
3198 	 * new window, do not retransmit it. The exception is the
3199 	 * case, when window is shrunk to zero. In this case
3200 	 * our retransmit of one segment serves as a zero window probe.
3201 	 */
3202 	if (avail_wnd <= 0) {
3203 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3204 			return -EAGAIN;
3205 		avail_wnd = cur_mss;
3206 	}
3207 
3208 	len = cur_mss * segs;
3209 	if (len > avail_wnd) {
3210 		len = rounddown(avail_wnd, cur_mss);
3211 		if (!len)
3212 			len = avail_wnd;
3213 	}
3214 	if (skb->len > len) {
3215 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3216 				 cur_mss, GFP_ATOMIC))
3217 			return -ENOMEM; /* We'll try again later. */
3218 	} else {
3219 		if (skb_unclone(skb, GFP_ATOMIC))
3220 			return -ENOMEM;
3221 
3222 		diff = tcp_skb_pcount(skb);
3223 		tcp_set_skb_tso_segs(skb, cur_mss);
3224 		diff -= tcp_skb_pcount(skb);
3225 		if (diff)
3226 			tcp_adjust_pcount(sk, skb, diff);
3227 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3228 		if (skb->len < avail_wnd)
3229 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3230 	}
3231 
3232 	/* RFC3168, section 6.1.1.1. ECN fallback */
3233 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3234 		tcp_ecn_clear_syn(sk, skb);
3235 
3236 	/* Update global and local TCP statistics. */
3237 	segs = tcp_skb_pcount(skb);
3238 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3239 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3240 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3241 	tp->total_retrans += segs;
3242 	tp->bytes_retrans += skb->len;
3243 
3244 	/* make sure skb->data is aligned on arches that require it
3245 	 * and check if ack-trimming & collapsing extended the headroom
3246 	 * beyond what csum_start can cover.
3247 	 */
3248 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3249 		     skb_headroom(skb) >= 0xFFFF)) {
3250 		struct sk_buff *nskb;
3251 
3252 		tcp_skb_tsorted_save(skb) {
3253 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3254 			if (nskb) {
3255 				nskb->dev = NULL;
3256 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3257 			} else {
3258 				err = -ENOBUFS;
3259 			}
3260 		} tcp_skb_tsorted_restore(skb);
3261 
3262 		if (!err) {
3263 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3264 			tcp_rate_skb_sent(sk, skb);
3265 		}
3266 	} else {
3267 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3268 	}
3269 
3270 	/* To avoid taking spuriously low RTT samples based on a timestamp
3271 	 * for a transmit that never happened, always mark EVER_RETRANS
3272 	 */
3273 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3274 
3275 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3276 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3277 				  TCP_SKB_CB(skb)->seq, segs, err);
3278 
3279 	if (likely(!err)) {
3280 		trace_tcp_retransmit_skb(sk, skb);
3281 	} else if (err != -EBUSY) {
3282 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3283 	}
3284 	return err;
3285 }
3286 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3287 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3288 {
3289 	struct tcp_sock *tp = tcp_sk(sk);
3290 	int err = __tcp_retransmit_skb(sk, skb, segs);
3291 
3292 	if (err == 0) {
3293 #if FASTRETRANS_DEBUG > 0
3294 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3295 			net_dbg_ratelimited("retrans_out leaked\n");
3296 		}
3297 #endif
3298 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3299 		tp->retrans_out += tcp_skb_pcount(skb);
3300 	}
3301 
3302 	/* Save stamp of the first (attempted) retransmit. */
3303 	if (!tp->retrans_stamp)
3304 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3305 
3306 	if (tp->undo_retrans < 0)
3307 		tp->undo_retrans = 0;
3308 	tp->undo_retrans += tcp_skb_pcount(skb);
3309 	return err;
3310 }
3311 
3312 /* This gets called after a retransmit timeout, and the initially
3313  * retransmitted data is acknowledged.  It tries to continue
3314  * resending the rest of the retransmit queue, until either
3315  * we've sent it all or the congestion window limit is reached.
3316  */
tcp_xmit_retransmit_queue(struct sock * sk)3317 void tcp_xmit_retransmit_queue(struct sock *sk)
3318 {
3319 	const struct inet_connection_sock *icsk = inet_csk(sk);
3320 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3321 	struct tcp_sock *tp = tcp_sk(sk);
3322 	bool rearm_timer = false;
3323 	u32 max_segs;
3324 	int mib_idx;
3325 
3326 	if (!tp->packets_out)
3327 		return;
3328 
3329 	rtx_head = tcp_rtx_queue_head(sk);
3330 	skb = tp->retransmit_skb_hint ?: rtx_head;
3331 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3332 	skb_rbtree_walk_from(skb) {
3333 		__u8 sacked;
3334 		int segs;
3335 
3336 		if (tcp_pacing_check(sk))
3337 			break;
3338 
3339 		/* we could do better than to assign each time */
3340 		if (!hole)
3341 			tp->retransmit_skb_hint = skb;
3342 
3343 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3344 		if (segs <= 0)
3345 			break;
3346 		sacked = TCP_SKB_CB(skb)->sacked;
3347 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3348 		 * we need to make sure not sending too bigs TSO packets
3349 		 */
3350 		segs = min_t(int, segs, max_segs);
3351 
3352 		if (tp->retrans_out >= tp->lost_out) {
3353 			break;
3354 		} else if (!(sacked & TCPCB_LOST)) {
3355 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3356 				hole = skb;
3357 			continue;
3358 
3359 		} else {
3360 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3361 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3362 			else
3363 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3364 		}
3365 
3366 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3367 			continue;
3368 
3369 		if (tcp_small_queue_check(sk, skb, 1))
3370 			break;
3371 
3372 		if (tcp_retransmit_skb(sk, skb, segs))
3373 			break;
3374 
3375 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3376 
3377 		if (tcp_in_cwnd_reduction(sk))
3378 			tp->prr_out += tcp_skb_pcount(skb);
3379 
3380 		if (skb == rtx_head &&
3381 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3382 			rearm_timer = true;
3383 
3384 	}
3385 	if (rearm_timer)
3386 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3387 				     inet_csk(sk)->icsk_rto,
3388 				     TCP_RTO_MAX);
3389 }
3390 
3391 /* We allow to exceed memory limits for FIN packets to expedite
3392  * connection tear down and (memory) recovery.
3393  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3394  * or even be forced to close flow without any FIN.
3395  * In general, we want to allow one skb per socket to avoid hangs
3396  * with edge trigger epoll()
3397  */
sk_forced_mem_schedule(struct sock * sk,int size)3398 void sk_forced_mem_schedule(struct sock *sk, int size)
3399 {
3400 	int delta, amt;
3401 
3402 	delta = size - sk->sk_forward_alloc;
3403 	if (delta <= 0)
3404 		return;
3405 	amt = sk_mem_pages(delta);
3406 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3407 	sk_memory_allocated_add(sk, amt);
3408 
3409 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3410 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3411 }
3412 
3413 /* Send a FIN. The caller locks the socket for us.
3414  * We should try to send a FIN packet really hard, but eventually give up.
3415  */
tcp_send_fin(struct sock * sk)3416 void tcp_send_fin(struct sock *sk)
3417 {
3418 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3419 	struct tcp_sock *tp = tcp_sk(sk);
3420 
3421 	/* Optimization, tack on the FIN if we have one skb in write queue and
3422 	 * this skb was not yet sent, or we are under memory pressure.
3423 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3424 	 * as TCP stack thinks it has already been transmitted.
3425 	 */
3426 	tskb = tail;
3427 	if (!tskb && tcp_under_memory_pressure(sk))
3428 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3429 
3430 	if (tskb) {
3431 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3432 		TCP_SKB_CB(tskb)->end_seq++;
3433 		tp->write_seq++;
3434 		if (!tail) {
3435 			/* This means tskb was already sent.
3436 			 * Pretend we included the FIN on previous transmit.
3437 			 * We need to set tp->snd_nxt to the value it would have
3438 			 * if FIN had been sent. This is because retransmit path
3439 			 * does not change tp->snd_nxt.
3440 			 */
3441 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3442 			return;
3443 		}
3444 	} else {
3445 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3446 				       sk_gfp_mask(sk, GFP_ATOMIC |
3447 						       __GFP_NOWARN));
3448 		if (unlikely(!skb))
3449 			return;
3450 
3451 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3452 		skb_reserve(skb, MAX_TCP_HEADER);
3453 		sk_forced_mem_schedule(sk, skb->truesize);
3454 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3455 		tcp_init_nondata_skb(skb, tp->write_seq,
3456 				     TCPHDR_ACK | TCPHDR_FIN);
3457 		tcp_queue_skb(sk, skb);
3458 	}
3459 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3460 }
3461 
3462 /* We get here when a process closes a file descriptor (either due to
3463  * an explicit close() or as a byproduct of exit()'ing) and there
3464  * was unread data in the receive queue.  This behavior is recommended
3465  * by RFC 2525, section 2.17.  -DaveM
3466  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3467 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3468 {
3469 	struct sk_buff *skb;
3470 
3471 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3472 
3473 	/* NOTE: No TCP options attached and we never retransmit this. */
3474 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3475 	if (!skb) {
3476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3477 		return;
3478 	}
3479 
3480 	/* Reserve space for headers and prepare control bits. */
3481 	skb_reserve(skb, MAX_TCP_HEADER);
3482 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3483 			     TCPHDR_ACK | TCPHDR_RST);
3484 	tcp_mstamp_refresh(tcp_sk(sk));
3485 	/* Send it off. */
3486 	if (tcp_transmit_skb(sk, skb, 0, priority))
3487 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3488 
3489 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3490 	 * skb here is different to the troublesome skb, so use NULL
3491 	 */
3492 	trace_tcp_send_reset(sk, NULL);
3493 }
3494 
3495 /* Send a crossed SYN-ACK during socket establishment.
3496  * WARNING: This routine must only be called when we have already sent
3497  * a SYN packet that crossed the incoming SYN that caused this routine
3498  * to get called. If this assumption fails then the initial rcv_wnd
3499  * and rcv_wscale values will not be correct.
3500  */
tcp_send_synack(struct sock * sk)3501 int tcp_send_synack(struct sock *sk)
3502 {
3503 	struct sk_buff *skb;
3504 
3505 	skb = tcp_rtx_queue_head(sk);
3506 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3507 		pr_err("%s: wrong queue state\n", __func__);
3508 		return -EFAULT;
3509 	}
3510 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3511 		if (skb_cloned(skb)) {
3512 			struct sk_buff *nskb;
3513 
3514 			tcp_skb_tsorted_save(skb) {
3515 				nskb = skb_copy(skb, GFP_ATOMIC);
3516 			} tcp_skb_tsorted_restore(skb);
3517 			if (!nskb)
3518 				return -ENOMEM;
3519 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3520 			tcp_highest_sack_replace(sk, skb, nskb);
3521 			tcp_rtx_queue_unlink_and_free(skb, sk);
3522 			__skb_header_release(nskb);
3523 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3524 			sk_wmem_queued_add(sk, nskb->truesize);
3525 			sk_mem_charge(sk, nskb->truesize);
3526 			skb = nskb;
3527 		}
3528 
3529 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3530 		tcp_ecn_send_synack(sk, skb);
3531 	}
3532 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3533 }
3534 
3535 /**
3536  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3537  * @sk: listener socket
3538  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3539  *       should not use it again.
3540  * @req: request_sock pointer
3541  * @foc: cookie for tcp fast open
3542  * @synack_type: Type of synack to prepare
3543  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3544  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3546 				struct request_sock *req,
3547 				struct tcp_fastopen_cookie *foc,
3548 				enum tcp_synack_type synack_type,
3549 				struct sk_buff *syn_skb)
3550 {
3551 	struct inet_request_sock *ireq = inet_rsk(req);
3552 	const struct tcp_sock *tp = tcp_sk(sk);
3553 	struct tcp_md5sig_key *md5 = NULL;
3554 	struct tcp_out_options opts;
3555 	struct sk_buff *skb;
3556 	int tcp_header_size;
3557 	struct tcphdr *th;
3558 	int mss;
3559 	u64 now;
3560 
3561 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3562 	if (unlikely(!skb)) {
3563 		dst_release(dst);
3564 		return NULL;
3565 	}
3566 	/* Reserve space for headers. */
3567 	skb_reserve(skb, MAX_TCP_HEADER);
3568 
3569 	switch (synack_type) {
3570 	case TCP_SYNACK_NORMAL:
3571 		skb_set_owner_w(skb, req_to_sk(req));
3572 		break;
3573 	case TCP_SYNACK_COOKIE:
3574 		/* Under synflood, we do not attach skb to a socket,
3575 		 * to avoid false sharing.
3576 		 */
3577 		break;
3578 	case TCP_SYNACK_FASTOPEN:
3579 		/* sk is a const pointer, because we want to express multiple
3580 		 * cpu might call us concurrently.
3581 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3582 		 */
3583 		skb_set_owner_w(skb, (struct sock *)sk);
3584 		break;
3585 	}
3586 	skb_dst_set(skb, dst);
3587 
3588 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3589 
3590 	memset(&opts, 0, sizeof(opts));
3591 	now = tcp_clock_ns();
3592 #ifdef CONFIG_SYN_COOKIES
3593 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3594 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3595 	else
3596 #endif
3597 	{
3598 		skb->skb_mstamp_ns = now;
3599 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3600 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3601 	}
3602 
3603 #ifdef CONFIG_TCP_MD5SIG
3604 	rcu_read_lock();
3605 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3606 #endif
3607 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3608 	/* bpf program will be interested in the tcp_flags */
3609 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3610 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3611 					     foc, synack_type,
3612 					     syn_skb) + sizeof(*th);
3613 
3614 	skb_push(skb, tcp_header_size);
3615 	skb_reset_transport_header(skb);
3616 
3617 	th = (struct tcphdr *)skb->data;
3618 	memset(th, 0, sizeof(struct tcphdr));
3619 	th->syn = 1;
3620 	th->ack = 1;
3621 	tcp_ecn_make_synack(req, th);
3622 	th->source = htons(ireq->ir_num);
3623 	th->dest = ireq->ir_rmt_port;
3624 	skb->mark = ireq->ir_mark;
3625 	skb->ip_summed = CHECKSUM_PARTIAL;
3626 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3627 	/* XXX data is queued and acked as is. No buffer/window check */
3628 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3629 
3630 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3631 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3632 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3633 	th->doff = (tcp_header_size >> 2);
3634 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3635 
3636 #ifdef CONFIG_TCP_MD5SIG
3637 	/* Okay, we have all we need - do the md5 hash if needed */
3638 	if (md5)
3639 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3640 					       md5, req_to_sk(req), skb);
3641 	rcu_read_unlock();
3642 #endif
3643 
3644 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3645 				synack_type, &opts);
3646 
3647 	skb->skb_mstamp_ns = now;
3648 	tcp_add_tx_delay(skb, tp);
3649 
3650 	return skb;
3651 }
3652 EXPORT_SYMBOL(tcp_make_synack);
3653 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3654 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3655 {
3656 	struct inet_connection_sock *icsk = inet_csk(sk);
3657 	const struct tcp_congestion_ops *ca;
3658 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3659 
3660 	if (ca_key == TCP_CA_UNSPEC)
3661 		return;
3662 
3663 	rcu_read_lock();
3664 	ca = tcp_ca_find_key(ca_key);
3665 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3666 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3667 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3668 		icsk->icsk_ca_ops = ca;
3669 	}
3670 	rcu_read_unlock();
3671 }
3672 
3673 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3674 static void tcp_connect_init(struct sock *sk)
3675 {
3676 	const struct dst_entry *dst = __sk_dst_get(sk);
3677 	struct tcp_sock *tp = tcp_sk(sk);
3678 	__u8 rcv_wscale;
3679 	u32 rcv_wnd;
3680 
3681 	/* We'll fix this up when we get a response from the other end.
3682 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3683 	 */
3684 	tp->tcp_header_len = sizeof(struct tcphdr);
3685 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3686 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3687 
3688 #ifdef CONFIG_TCP_MD5SIG
3689 	if (tp->af_specific->md5_lookup(sk, sk))
3690 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3691 #endif
3692 
3693 	/* If user gave his TCP_MAXSEG, record it to clamp */
3694 	if (tp->rx_opt.user_mss)
3695 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3696 	tp->max_window = 0;
3697 	tcp_mtup_init(sk);
3698 	tcp_sync_mss(sk, dst_mtu(dst));
3699 
3700 	tcp_ca_dst_init(sk, dst);
3701 
3702 	if (!tp->window_clamp)
3703 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3704 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3705 
3706 	tcp_initialize_rcv_mss(sk);
3707 
3708 	/* limit the window selection if the user enforce a smaller rx buffer */
3709 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3710 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3711 		tp->window_clamp = tcp_full_space(sk);
3712 
3713 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3714 	if (rcv_wnd == 0)
3715 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3716 
3717 	tcp_select_initial_window(sk, tcp_full_space(sk),
3718 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3719 				  &tp->rcv_wnd,
3720 				  &tp->window_clamp,
3721 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3722 				  &rcv_wscale,
3723 				  rcv_wnd);
3724 
3725 #ifdef CONFIG_LOWPOWER_PROTOCOL
3726 	tp->rcv_wnd = TCP_RCV_WND_INIT;
3727 #endif /* CONFIG_LOWPOWER_PROTOCOL */
3728 	tp->rx_opt.rcv_wscale = rcv_wscale;
3729 	tp->rcv_ssthresh = tp->rcv_wnd;
3730 
3731 	sk->sk_err = 0;
3732 	sock_reset_flag(sk, SOCK_DONE);
3733 	tp->snd_wnd = 0;
3734 	tcp_init_wl(tp, 0);
3735 	tcp_write_queue_purge(sk);
3736 	tp->snd_una = tp->write_seq;
3737 	tp->snd_sml = tp->write_seq;
3738 	tp->snd_up = tp->write_seq;
3739 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3740 
3741 	if (likely(!tp->repair))
3742 		tp->rcv_nxt = 0;
3743 	else
3744 		tp->rcv_tstamp = tcp_jiffies32;
3745 	tp->rcv_wup = tp->rcv_nxt;
3746 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3747 
3748 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3749 	inet_csk(sk)->icsk_retransmits = 0;
3750 	tcp_clear_retrans(tp);
3751 }
3752 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3753 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3754 {
3755 	struct tcp_sock *tp = tcp_sk(sk);
3756 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3757 
3758 	tcb->end_seq += skb->len;
3759 	__skb_header_release(skb);
3760 	sk_wmem_queued_add(sk, skb->truesize);
3761 	sk_mem_charge(sk, skb->truesize);
3762 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3763 	tp->packets_out += tcp_skb_pcount(skb);
3764 }
3765 
3766 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3767  * queue a data-only packet after the regular SYN, such that regular SYNs
3768  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3769  * only the SYN sequence, the data are retransmitted in the first ACK.
3770  * If cookie is not cached or other error occurs, falls back to send a
3771  * regular SYN with Fast Open cookie request option.
3772  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3773 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3774 {
3775 	struct inet_connection_sock *icsk = inet_csk(sk);
3776 	struct tcp_sock *tp = tcp_sk(sk);
3777 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3778 	int space, err = 0;
3779 	struct sk_buff *syn_data;
3780 
3781 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3782 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3783 		goto fallback;
3784 
3785 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3786 	 * user-MSS. Reserve maximum option space for middleboxes that add
3787 	 * private TCP options. The cost is reduced data space in SYN :(
3788 	 */
3789 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3790 	/* Sync mss_cache after updating the mss_clamp */
3791 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3792 
3793 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3794 		MAX_TCP_OPTION_SPACE;
3795 
3796 	space = min_t(size_t, space, fo->size);
3797 
3798 	/* limit to order-0 allocations */
3799 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3800 
3801 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3802 	if (!syn_data)
3803 		goto fallback;
3804 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3805 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3806 	if (space) {
3807 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3808 					    &fo->data->msg_iter);
3809 		if (unlikely(!copied)) {
3810 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3811 			kfree_skb(syn_data);
3812 			goto fallback;
3813 		}
3814 		if (copied != space) {
3815 			skb_trim(syn_data, copied);
3816 			space = copied;
3817 		}
3818 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3819 	}
3820 	/* No more data pending in inet_wait_for_connect() */
3821 	if (space == fo->size)
3822 		fo->data = NULL;
3823 	fo->copied = space;
3824 
3825 	tcp_connect_queue_skb(sk, syn_data);
3826 	if (syn_data->len)
3827 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3828 
3829 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3830 
3831 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3832 
3833 	/* Now full SYN+DATA was cloned and sent (or not),
3834 	 * remove the SYN from the original skb (syn_data)
3835 	 * we keep in write queue in case of a retransmit, as we
3836 	 * also have the SYN packet (with no data) in the same queue.
3837 	 */
3838 	TCP_SKB_CB(syn_data)->seq++;
3839 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3840 	if (!err) {
3841 		tp->syn_data = (fo->copied > 0);
3842 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3843 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3844 		goto done;
3845 	}
3846 
3847 	/* data was not sent, put it in write_queue */
3848 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3849 	tp->packets_out -= tcp_skb_pcount(syn_data);
3850 
3851 fallback:
3852 	/* Send a regular SYN with Fast Open cookie request option */
3853 	if (fo->cookie.len > 0)
3854 		fo->cookie.len = 0;
3855 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3856 	if (err)
3857 		tp->syn_fastopen = 0;
3858 done:
3859 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3860 	return err;
3861 }
3862 
3863 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3864 int tcp_connect(struct sock *sk)
3865 {
3866 	struct tcp_sock *tp = tcp_sk(sk);
3867 	struct sk_buff *buff;
3868 	int err;
3869 
3870 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3871 
3872 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3873 		return -EHOSTUNREACH; /* Routing failure or similar. */
3874 
3875 	tcp_connect_init(sk);
3876 
3877 	if (unlikely(tp->repair)) {
3878 		tcp_finish_connect(sk, NULL);
3879 		return 0;
3880 	}
3881 
3882 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3883 	if (unlikely(!buff))
3884 		return -ENOBUFS;
3885 
3886 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3887 	tcp_mstamp_refresh(tp);
3888 	tp->retrans_stamp = tcp_time_stamp(tp);
3889 	tcp_connect_queue_skb(sk, buff);
3890 	tcp_ecn_send_syn(sk, buff);
3891 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3892 
3893 	/* Send off SYN; include data in Fast Open. */
3894 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3895 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3896 	if (err == -ECONNREFUSED)
3897 		return err;
3898 
3899 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3900 	 * in order to make this packet get counted in tcpOutSegs.
3901 	 */
3902 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3903 	tp->pushed_seq = tp->write_seq;
3904 	buff = tcp_send_head(sk);
3905 	if (unlikely(buff)) {
3906 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3907 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3908 	}
3909 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3910 
3911 	/* Timer for repeating the SYN until an answer. */
3912 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3913 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3914 	return 0;
3915 }
3916 EXPORT_SYMBOL(tcp_connect);
3917 
3918 /* Send out a delayed ack, the caller does the policy checking
3919  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3920  * for details.
3921  */
tcp_send_delayed_ack(struct sock * sk)3922 void tcp_send_delayed_ack(struct sock *sk)
3923 {
3924 	struct inet_connection_sock *icsk = inet_csk(sk);
3925 	int ato = icsk->icsk_ack.ato;
3926 	unsigned long timeout;
3927 
3928 	if (ato > TCP_DELACK_MIN) {
3929 		const struct tcp_sock *tp = tcp_sk(sk);
3930 		int max_ato = HZ / 2;
3931 
3932 		if (inet_csk_in_pingpong_mode(sk) ||
3933 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3934 			max_ato = TCP_DELACK_MAX;
3935 
3936 		/* Slow path, intersegment interval is "high". */
3937 
3938 		/* If some rtt estimate is known, use it to bound delayed ack.
3939 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3940 		 * directly.
3941 		 */
3942 		if (tp->srtt_us) {
3943 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3944 					TCP_DELACK_MIN);
3945 
3946 			if (rtt < max_ato)
3947 				max_ato = rtt;
3948 		}
3949 
3950 		ato = min(ato, max_ato);
3951 	}
3952 
3953 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3954 
3955 	/* Stay within the limit we were given */
3956 	timeout = jiffies + ato;
3957 
3958 	/* Use new timeout only if there wasn't a older one earlier. */
3959 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3960 		/* If delack timer is about to expire, send ACK now. */
3961 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3962 			tcp_send_ack(sk);
3963 			return;
3964 		}
3965 
3966 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3967 			timeout = icsk->icsk_ack.timeout;
3968 	}
3969 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3970 	icsk->icsk_ack.timeout = timeout;
3971 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3972 }
3973 
3974 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3975 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3976 {
3977 	struct sk_buff *buff;
3978 
3979 	/* If we have been reset, we may not send again. */
3980 	if (sk->sk_state == TCP_CLOSE)
3981 		return;
3982 
3983 	/* We are not putting this on the write queue, so
3984 	 * tcp_transmit_skb() will set the ownership to this
3985 	 * sock.
3986 	 */
3987 	buff = alloc_skb(MAX_TCP_HEADER,
3988 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3989 	if (unlikely(!buff)) {
3990 		struct inet_connection_sock *icsk = inet_csk(sk);
3991 		unsigned long delay;
3992 
3993 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3994 		if (delay < TCP_RTO_MAX)
3995 			icsk->icsk_ack.retry++;
3996 		inet_csk_schedule_ack(sk);
3997 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3998 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3999 		return;
4000 	}
4001 
4002 	/* Reserve space for headers and prepare control bits. */
4003 	skb_reserve(buff, MAX_TCP_HEADER);
4004 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4005 
4006 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4007 	 * too much.
4008 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4009 	 */
4010 	skb_set_tcp_pure_ack(buff);
4011 
4012 	/* Send it off, this clears delayed acks for us. */
4013 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4014 }
4015 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4016 
tcp_send_ack(struct sock * sk)4017 void tcp_send_ack(struct sock *sk)
4018 {
4019 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4020 }
4021 
4022 /* This routine sends a packet with an out of date sequence
4023  * number. It assumes the other end will try to ack it.
4024  *
4025  * Question: what should we make while urgent mode?
4026  * 4.4BSD forces sending single byte of data. We cannot send
4027  * out of window data, because we have SND.NXT==SND.MAX...
4028  *
4029  * Current solution: to send TWO zero-length segments in urgent mode:
4030  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4031  * out-of-date with SND.UNA-1 to probe window.
4032  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4033 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4034 {
4035 	struct tcp_sock *tp = tcp_sk(sk);
4036 	struct sk_buff *skb;
4037 
4038 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4039 	skb = alloc_skb(MAX_TCP_HEADER,
4040 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4041 	if (!skb)
4042 		return -1;
4043 
4044 	/* Reserve space for headers and set control bits. */
4045 	skb_reserve(skb, MAX_TCP_HEADER);
4046 	/* Use a previous sequence.  This should cause the other
4047 	 * end to send an ack.  Don't queue or clone SKB, just
4048 	 * send it.
4049 	 */
4050 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4051 	NET_INC_STATS(sock_net(sk), mib);
4052 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4053 }
4054 
4055 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4056 void tcp_send_window_probe(struct sock *sk)
4057 {
4058 	if (sk->sk_state == TCP_ESTABLISHED) {
4059 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4060 		tcp_mstamp_refresh(tcp_sk(sk));
4061 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4062 	}
4063 }
4064 
4065 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4066 int tcp_write_wakeup(struct sock *sk, int mib)
4067 {
4068 	struct tcp_sock *tp = tcp_sk(sk);
4069 	struct sk_buff *skb;
4070 
4071 	if (sk->sk_state == TCP_CLOSE)
4072 		return -1;
4073 
4074 	skb = tcp_send_head(sk);
4075 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4076 		int err;
4077 		unsigned int mss = tcp_current_mss(sk);
4078 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4079 
4080 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4081 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4082 
4083 		/* We are probing the opening of a window
4084 		 * but the window size is != 0
4085 		 * must have been a result SWS avoidance ( sender )
4086 		 */
4087 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4088 		    skb->len > mss) {
4089 			seg_size = min(seg_size, mss);
4090 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4091 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4092 					 skb, seg_size, mss, GFP_ATOMIC))
4093 				return -1;
4094 		} else if (!tcp_skb_pcount(skb))
4095 			tcp_set_skb_tso_segs(skb, mss);
4096 
4097 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4098 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4099 		if (!err)
4100 			tcp_event_new_data_sent(sk, skb);
4101 		return err;
4102 	} else {
4103 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4104 			tcp_xmit_probe_skb(sk, 1, mib);
4105 		return tcp_xmit_probe_skb(sk, 0, mib);
4106 	}
4107 }
4108 
4109 /* A window probe timeout has occurred.  If window is not closed send
4110  * a partial packet else a zero probe.
4111  */
tcp_send_probe0(struct sock * sk)4112 void tcp_send_probe0(struct sock *sk)
4113 {
4114 	struct inet_connection_sock *icsk = inet_csk(sk);
4115 	struct tcp_sock *tp = tcp_sk(sk);
4116 	unsigned long timeout;
4117 	int err;
4118 
4119 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4120 
4121 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4122 		/* Cancel probe timer, if it is not required. */
4123 		icsk->icsk_probes_out = 0;
4124 		icsk->icsk_backoff = 0;
4125 		icsk->icsk_probes_tstamp = 0;
4126 		return;
4127 	}
4128 
4129 	icsk->icsk_probes_out++;
4130 	if (err <= 0) {
4131 		if (icsk->icsk_backoff < READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2))
4132 			icsk->icsk_backoff++;
4133 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4134 	} else {
4135 		/* If packet was not sent due to local congestion,
4136 		 * Let senders fight for local resources conservatively.
4137 		 */
4138 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4139 	}
4140 
4141 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4142 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4143 }
4144 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4145 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4146 {
4147 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4148 	struct flowi fl;
4149 	int res;
4150 
4151 	tcp_rsk(req)->txhash = net_tx_rndhash();
4152 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4153 				  NULL);
4154 	if (!res) {
4155 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4156 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4157 		if (unlikely(tcp_passive_fastopen(sk)))
4158 			tcp_sk(sk)->total_retrans++;
4159 		trace_tcp_retransmit_synack(sk, req);
4160 	}
4161 	return res;
4162 }
4163 EXPORT_SYMBOL(tcp_rtx_synack);
4164