1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
136 {
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
139
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
158 }
159 }
160 }
161 return 0;
162 }
163
164 /*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
171 {
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
191 }
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
204
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
216 }
217 }
218
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221
222 /**
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
229 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
232 {
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
237
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
246
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
249 /*
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 */
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
260
261 snum = first;
262 /*
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
266 */
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
287
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
291
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
297 }
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
302 }
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
306 }
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
318 }
319
320 sock_set_flag(sk, SOCK_RCU_FREE);
321
322 sk_add_node_rcu(sk, &hslot->head);
323 hslot->count++;
324 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325
326 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 spin_lock(&hslot2->lock);
328 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 sk->sk_family == AF_INET6)
330 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 &hslot2->head);
332 else
333 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 &hslot2->head);
335 hslot2->count++;
336 spin_unlock(&hslot2->lock);
337 }
338
339 error = 0;
340 fail_unlock:
341 spin_unlock_bh(&hslot->lock);
342 fail:
343 return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346
udp_v4_get_port(struct sock * sk,unsigned short snum)347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 unsigned int hash2_nulladdr =
350 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 unsigned int hash2_partial =
352 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353
354 /* precompute partial secondary hash */
355 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)359 static int compute_score(struct sock *sk, struct net *net,
360 __be32 saddr, __be16 sport,
361 __be32 daddr, unsigned short hnum,
362 int dif, int sdif)
363 {
364 int score;
365 struct inet_sock *inet;
366 bool dev_match;
367
368 if (!net_eq(sock_net(sk), net) ||
369 udp_sk(sk)->udp_port_hash != hnum ||
370 ipv6_only_sock(sk))
371 return -1;
372
373 if (sk->sk_rcv_saddr != daddr)
374 return -1;
375
376 score = (sk->sk_family == PF_INET) ? 2 : 1;
377
378 inet = inet_sk(sk);
379 if (inet->inet_daddr) {
380 if (inet->inet_daddr != saddr)
381 return -1;
382 score += 4;
383 }
384
385 if (inet->inet_dport) {
386 if (inet->inet_dport != sport)
387 return -1;
388 score += 4;
389 }
390
391 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 dif, sdif);
393 if (!dev_match)
394 return -1;
395 if (sk->sk_bound_dev_if)
396 score += 4;
397
398 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 score++;
400 return score;
401 }
402
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 const __u16 lport, const __be32 faddr,
405 const __be16 fport)
406 {
407 static u32 udp_ehash_secret __read_mostly;
408
409 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410
411 return __inet_ehashfn(laddr, lport, faddr, fport,
412 udp_ehash_secret + net_hash_mix(net));
413 }
414
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 struct sk_buff *skb,
417 __be32 saddr, __be16 sport,
418 __be32 daddr, unsigned short hnum)
419 {
420 struct sock *reuse_sk = NULL;
421 u32 hash;
422
423 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 reuse_sk = reuseport_select_sock(sk, hash, skb,
426 sizeof(struct udphdr));
427 }
428 return reuse_sk;
429 }
430
431 /**
432 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
433 * @net: Network namespace
434 * @saddr: Source address, network order
435 * @sport: Source port, network order
436 * @daddr: Destination address, network order
437 * @hnum: Destination port, host order
438 * @dif: Destination interface index
439 * @sdif: Destination bridge port index, if relevant
440 * @udptable: Set of UDP hash tables
441 *
442 * Simplified lookup to be used as fallback if no sockets are found due to a
443 * potential race between (receive) address change, and lookup happening before
444 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
445 * result sockets, because if we have one, we don't need the fallback at all.
446 *
447 * Called under rcu_read_lock().
448 *
449 * Return: socket with highest matching score if any, NULL if none
450 */
udp4_lib_lookup1(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,const struct udp_table * udptable)451 static struct sock *udp4_lib_lookup1(const struct net *net,
452 __be32 saddr, __be16 sport,
453 __be32 daddr, unsigned int hnum,
454 int dif, int sdif,
455 const struct udp_table *udptable)
456 {
457 unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
458 struct udp_hslot *hslot = &udptable->hash[slot];
459 struct sock *sk, *result = NULL;
460 int score, badness = 0;
461
462 sk_for_each_rcu(sk, &hslot->head) {
463 score = compute_score(sk, (struct net *)net,
464 saddr, sport, daddr, hnum, dif, sdif);
465 if (score > badness) {
466 result = sk;
467 badness = score;
468 }
469 }
470
471 return result;
472 }
473
474 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)475 static struct sock *udp4_lib_lookup2(struct net *net,
476 __be32 saddr, __be16 sport,
477 __be32 daddr, unsigned int hnum,
478 int dif, int sdif,
479 struct udp_hslot *hslot2,
480 struct sk_buff *skb)
481 {
482 struct sock *sk, *result;
483 int score, badness;
484
485 result = NULL;
486 badness = 0;
487 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
488 score = compute_score(sk, net, saddr, sport,
489 daddr, hnum, dif, sdif);
490 if (score > badness) {
491 badness = score;
492 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
493 if (!result) {
494 result = sk;
495 continue;
496 }
497
498 /* Fall back to scoring if group has connections */
499 if (!reuseport_has_conns(sk))
500 return result;
501
502 /* Reuseport logic returned an error, keep original score. */
503 if (IS_ERR(result))
504 continue;
505
506 badness = compute_score(result, net, saddr, sport,
507 daddr, hnum, dif, sdif);
508
509 }
510 }
511 return result;
512 }
513
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)514 static struct sock *udp4_lookup_run_bpf(struct net *net,
515 struct udp_table *udptable,
516 struct sk_buff *skb,
517 __be32 saddr, __be16 sport,
518 __be32 daddr, u16 hnum)
519 {
520 struct sock *sk, *reuse_sk;
521 bool no_reuseport;
522
523 if (udptable != &udp_table)
524 return NULL; /* only UDP is supported */
525
526 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
527 saddr, sport, daddr, hnum, &sk);
528 if (no_reuseport || IS_ERR_OR_NULL(sk))
529 return sk;
530
531 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
532 if (reuse_sk)
533 sk = reuse_sk;
534 return sk;
535 }
536
537 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
538 * harder than this. -DaveM
539 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)540 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
541 __be16 sport, __be32 daddr, __be16 dport, int dif,
542 int sdif, struct udp_table *udptable, struct sk_buff *skb)
543 {
544 unsigned short hnum = ntohs(dport);
545 unsigned int hash2, slot2;
546 struct udp_hslot *hslot2;
547 struct sock *result, *sk;
548
549 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
550 slot2 = hash2 & udptable->mask;
551 hslot2 = &udptable->hash2[slot2];
552
553 /* Lookup connected or non-wildcard socket */
554 result = udp4_lib_lookup2(net, saddr, sport,
555 daddr, hnum, dif, sdif,
556 hslot2, skb);
557 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
558 goto done;
559
560 /* Lookup redirect from BPF */
561 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
562 sk = udp4_lookup_run_bpf(net, udptable, skb,
563 saddr, sport, daddr, hnum);
564 if (sk) {
565 result = sk;
566 goto done;
567 }
568 }
569
570 /* Got non-wildcard socket or error on first lookup */
571 if (result)
572 goto done;
573
574 /* Lookup wildcard sockets */
575 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
576 slot2 = hash2 & udptable->mask;
577 hslot2 = &udptable->hash2[slot2];
578
579 result = udp4_lib_lookup2(net, saddr, sport,
580 htonl(INADDR_ANY), hnum, dif, sdif,
581 hslot2, skb);
582 if (!IS_ERR_OR_NULL(result))
583 goto done;
584
585 /* Primary hash (destination port) lookup as fallback for this race:
586 * 1. __ip4_datagram_connect() sets sk_rcv_saddr
587 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
588 * 3. rehash operation updating _secondary and four-tuple_ hashes
589 * The primary hash doesn't need an update after 1., so, thanks to this
590 * further step, 1. and 3. don't need to be atomic against the lookup.
591 */
592 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
593 udptable);
594
595 done:
596 if (IS_ERR(result))
597 return NULL;
598 return result;
599 }
600 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
601
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)602 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
603 __be16 sport, __be16 dport,
604 struct udp_table *udptable)
605 {
606 const struct iphdr *iph = ip_hdr(skb);
607
608 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
609 iph->daddr, dport, inet_iif(skb),
610 inet_sdif(skb), udptable, skb);
611 }
612
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)613 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
614 __be16 sport, __be16 dport)
615 {
616 const struct iphdr *iph = ip_hdr(skb);
617
618 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
619 iph->daddr, dport, inet_iif(skb),
620 inet_sdif(skb), &udp_table, NULL);
621 }
622 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
623
624 /* Must be called under rcu_read_lock().
625 * Does increment socket refcount.
626 */
627 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)628 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
629 __be32 daddr, __be16 dport, int dif)
630 {
631 struct sock *sk;
632
633 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
634 dif, 0, &udp_table, NULL);
635 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
636 sk = NULL;
637 return sk;
638 }
639 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
640 #endif
641
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)642 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
643 __be16 loc_port, __be32 loc_addr,
644 __be16 rmt_port, __be32 rmt_addr,
645 int dif, int sdif, unsigned short hnum)
646 {
647 struct inet_sock *inet = inet_sk(sk);
648
649 if (!net_eq(sock_net(sk), net) ||
650 udp_sk(sk)->udp_port_hash != hnum ||
651 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
652 (inet->inet_dport != rmt_port && inet->inet_dport) ||
653 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
654 ipv6_only_sock(sk) ||
655 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
656 return false;
657 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
658 return false;
659 return true;
660 }
661
662 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
663 EXPORT_SYMBOL(udp_encap_needed_key);
664
665 #if IS_ENABLED(CONFIG_IPV6)
666 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
667 EXPORT_SYMBOL(udpv6_encap_needed_key);
668 #endif
669
udp_encap_enable(void)670 void udp_encap_enable(void)
671 {
672 static_branch_inc(&udp_encap_needed_key);
673 }
674 EXPORT_SYMBOL(udp_encap_enable);
675
udp_encap_disable(void)676 void udp_encap_disable(void)
677 {
678 static_branch_dec(&udp_encap_needed_key);
679 }
680 EXPORT_SYMBOL(udp_encap_disable);
681
682 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
683 * through error handlers in encapsulations looking for a match.
684 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)685 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
686 {
687 int i;
688
689 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
690 int (*handler)(struct sk_buff *skb, u32 info);
691 const struct ip_tunnel_encap_ops *encap;
692
693 encap = rcu_dereference(iptun_encaps[i]);
694 if (!encap)
695 continue;
696 handler = encap->err_handler;
697 if (handler && !handler(skb, info))
698 return 0;
699 }
700
701 return -ENOENT;
702 }
703
704 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
705 * reversing source and destination port: this will match tunnels that force the
706 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
707 * lwtunnels might actually break this assumption by being configured with
708 * different destination ports on endpoints, in this case we won't be able to
709 * trace ICMP messages back to them.
710 *
711 * If this doesn't match any socket, probe tunnels with arbitrary destination
712 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
713 * we've sent packets to won't necessarily match the local destination port.
714 *
715 * Then ask the tunnel implementation to match the error against a valid
716 * association.
717 *
718 * Return an error if we can't find a match, the socket if we need further
719 * processing, zero otherwise.
720 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)721 static struct sock *__udp4_lib_err_encap(struct net *net,
722 const struct iphdr *iph,
723 struct udphdr *uh,
724 struct udp_table *udptable,
725 struct sk_buff *skb, u32 info)
726 {
727 int network_offset, transport_offset;
728 struct sock *sk;
729
730 network_offset = skb_network_offset(skb);
731 transport_offset = skb_transport_offset(skb);
732
733 /* Network header needs to point to the outer IPv4 header inside ICMP */
734 skb_reset_network_header(skb);
735
736 /* Transport header needs to point to the UDP header */
737 skb_set_transport_header(skb, iph->ihl << 2);
738
739 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
740 iph->saddr, uh->dest, skb->dev->ifindex, 0,
741 udptable, NULL);
742 if (sk) {
743 int (*lookup)(struct sock *sk, struct sk_buff *skb);
744 struct udp_sock *up = udp_sk(sk);
745
746 lookup = READ_ONCE(up->encap_err_lookup);
747 if (!lookup || lookup(sk, skb))
748 sk = NULL;
749 }
750
751 if (!sk)
752 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
753
754 skb_set_transport_header(skb, transport_offset);
755 skb_set_network_header(skb, network_offset);
756
757 return sk;
758 }
759
760 /*
761 * This routine is called by the ICMP module when it gets some
762 * sort of error condition. If err < 0 then the socket should
763 * be closed and the error returned to the user. If err > 0
764 * it's just the icmp type << 8 | icmp code.
765 * Header points to the ip header of the error packet. We move
766 * on past this. Then (as it used to claim before adjustment)
767 * header points to the first 8 bytes of the udp header. We need
768 * to find the appropriate port.
769 */
770
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)771 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
772 {
773 struct inet_sock *inet;
774 const struct iphdr *iph = (const struct iphdr *)skb->data;
775 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
776 const int type = icmp_hdr(skb)->type;
777 const int code = icmp_hdr(skb)->code;
778 bool tunnel = false;
779 struct sock *sk;
780 int harderr;
781 int err;
782 struct net *net = dev_net(skb->dev);
783
784 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
785 iph->saddr, uh->source, skb->dev->ifindex,
786 inet_sdif(skb), udptable, NULL);
787 if (!sk) {
788 /* No socket for error: try tunnels before discarding */
789 sk = ERR_PTR(-ENOENT);
790 if (static_branch_unlikely(&udp_encap_needed_key)) {
791 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
792 info);
793 if (!sk)
794 return 0;
795 }
796
797 if (IS_ERR(sk)) {
798 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
799 return PTR_ERR(sk);
800 }
801
802 tunnel = true;
803 }
804
805 err = 0;
806 harderr = 0;
807 inet = inet_sk(sk);
808
809 switch (type) {
810 default:
811 case ICMP_TIME_EXCEEDED:
812 err = EHOSTUNREACH;
813 break;
814 case ICMP_SOURCE_QUENCH:
815 goto out;
816 case ICMP_PARAMETERPROB:
817 err = EPROTO;
818 harderr = 1;
819 break;
820 case ICMP_DEST_UNREACH:
821 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
822 ipv4_sk_update_pmtu(skb, sk, info);
823 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
824 err = EMSGSIZE;
825 harderr = 1;
826 break;
827 }
828 goto out;
829 }
830 err = EHOSTUNREACH;
831 if (code <= NR_ICMP_UNREACH) {
832 harderr = icmp_err_convert[code].fatal;
833 err = icmp_err_convert[code].errno;
834 }
835 break;
836 case ICMP_REDIRECT:
837 ipv4_sk_redirect(skb, sk);
838 goto out;
839 }
840
841 /*
842 * RFC1122: OK. Passes ICMP errors back to application, as per
843 * 4.1.3.3.
844 */
845 if (tunnel) {
846 /* ...not for tunnels though: we don't have a sending socket */
847 goto out;
848 }
849 if (!inet->recverr) {
850 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
851 goto out;
852 } else
853 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
854
855 sk->sk_err = err;
856 sk->sk_error_report(sk);
857 out:
858 return 0;
859 }
860
udp_err(struct sk_buff * skb,u32 info)861 int udp_err(struct sk_buff *skb, u32 info)
862 {
863 return __udp4_lib_err(skb, info, &udp_table);
864 }
865
866 /*
867 * Throw away all pending data and cancel the corking. Socket is locked.
868 */
udp_flush_pending_frames(struct sock * sk)869 void udp_flush_pending_frames(struct sock *sk)
870 {
871 struct udp_sock *up = udp_sk(sk);
872
873 if (up->pending) {
874 up->len = 0;
875 up->pending = 0;
876 ip_flush_pending_frames(sk);
877 }
878 }
879 EXPORT_SYMBOL(udp_flush_pending_frames);
880
881 /**
882 * udp4_hwcsum - handle outgoing HW checksumming
883 * @skb: sk_buff containing the filled-in UDP header
884 * (checksum field must be zeroed out)
885 * @src: source IP address
886 * @dst: destination IP address
887 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)888 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
889 {
890 struct udphdr *uh = udp_hdr(skb);
891 int offset = skb_transport_offset(skb);
892 int len = skb->len - offset;
893 int hlen = len;
894 __wsum csum = 0;
895
896 if (!skb_has_frag_list(skb)) {
897 /*
898 * Only one fragment on the socket.
899 */
900 skb->csum_start = skb_transport_header(skb) - skb->head;
901 skb->csum_offset = offsetof(struct udphdr, check);
902 uh->check = ~csum_tcpudp_magic(src, dst, len,
903 IPPROTO_UDP, 0);
904 } else {
905 struct sk_buff *frags;
906
907 /*
908 * HW-checksum won't work as there are two or more
909 * fragments on the socket so that all csums of sk_buffs
910 * should be together
911 */
912 skb_walk_frags(skb, frags) {
913 csum = csum_add(csum, frags->csum);
914 hlen -= frags->len;
915 }
916
917 csum = skb_checksum(skb, offset, hlen, csum);
918 skb->ip_summed = CHECKSUM_NONE;
919
920 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
921 if (uh->check == 0)
922 uh->check = CSUM_MANGLED_0;
923 }
924 }
925 EXPORT_SYMBOL_GPL(udp4_hwcsum);
926
927 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
928 * for the simple case like when setting the checksum for a UDP tunnel.
929 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)930 void udp_set_csum(bool nocheck, struct sk_buff *skb,
931 __be32 saddr, __be32 daddr, int len)
932 {
933 struct udphdr *uh = udp_hdr(skb);
934
935 if (nocheck) {
936 uh->check = 0;
937 } else if (skb_is_gso(skb)) {
938 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
939 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
940 uh->check = 0;
941 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
942 if (uh->check == 0)
943 uh->check = CSUM_MANGLED_0;
944 } else {
945 skb->ip_summed = CHECKSUM_PARTIAL;
946 skb->csum_start = skb_transport_header(skb) - skb->head;
947 skb->csum_offset = offsetof(struct udphdr, check);
948 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
949 }
950 }
951 EXPORT_SYMBOL(udp_set_csum);
952
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)953 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
954 struct inet_cork *cork)
955 {
956 struct sock *sk = skb->sk;
957 struct inet_sock *inet = inet_sk(sk);
958 struct udphdr *uh;
959 int err = 0;
960 int is_udplite = IS_UDPLITE(sk);
961 int offset = skb_transport_offset(skb);
962 int len = skb->len - offset;
963 int datalen = len - sizeof(*uh);
964 __wsum csum = 0;
965
966 /*
967 * Create a UDP header
968 */
969 uh = udp_hdr(skb);
970 uh->source = inet->inet_sport;
971 uh->dest = fl4->fl4_dport;
972 uh->len = htons(len);
973 uh->check = 0;
974
975 if (cork->gso_size) {
976 const int hlen = skb_network_header_len(skb) +
977 sizeof(struct udphdr);
978
979 if (hlen + cork->gso_size > cork->fragsize) {
980 kfree_skb(skb);
981 return -EINVAL;
982 }
983 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
984 kfree_skb(skb);
985 return -EINVAL;
986 }
987 if (sk->sk_no_check_tx) {
988 kfree_skb(skb);
989 return -EINVAL;
990 }
991 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
992 dst_xfrm(skb_dst(skb))) {
993 kfree_skb(skb);
994 return -EIO;
995 }
996
997 if (datalen > cork->gso_size) {
998 skb_shinfo(skb)->gso_size = cork->gso_size;
999 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1000 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1001 cork->gso_size);
1002 }
1003 goto csum_partial;
1004 }
1005
1006 if (is_udplite) /* UDP-Lite */
1007 csum = udplite_csum(skb);
1008
1009 else if (sk->sk_no_check_tx) { /* UDP csum off */
1010
1011 skb->ip_summed = CHECKSUM_NONE;
1012 goto send;
1013
1014 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1015 csum_partial:
1016
1017 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1018 goto send;
1019
1020 } else
1021 csum = udp_csum(skb);
1022
1023 /* add protocol-dependent pseudo-header */
1024 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1025 sk->sk_protocol, csum);
1026 if (uh->check == 0)
1027 uh->check = CSUM_MANGLED_0;
1028
1029 send:
1030 err = ip_send_skb(sock_net(sk), skb);
1031 if (err) {
1032 if (err == -ENOBUFS && !inet->recverr) {
1033 UDP_INC_STATS(sock_net(sk),
1034 UDP_MIB_SNDBUFERRORS, is_udplite);
1035 err = 0;
1036 }
1037 } else
1038 UDP_INC_STATS(sock_net(sk),
1039 UDP_MIB_OUTDATAGRAMS, is_udplite);
1040 return err;
1041 }
1042
1043 /*
1044 * Push out all pending data as one UDP datagram. Socket is locked.
1045 */
udp_push_pending_frames(struct sock * sk)1046 int udp_push_pending_frames(struct sock *sk)
1047 {
1048 struct udp_sock *up = udp_sk(sk);
1049 struct inet_sock *inet = inet_sk(sk);
1050 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1051 struct sk_buff *skb;
1052 int err = 0;
1053
1054 skb = ip_finish_skb(sk, fl4);
1055 if (!skb)
1056 goto out;
1057
1058 err = udp_send_skb(skb, fl4, &inet->cork.base);
1059
1060 out:
1061 up->len = 0;
1062 up->pending = 0;
1063 return err;
1064 }
1065 EXPORT_SYMBOL(udp_push_pending_frames);
1066
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1067 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1068 {
1069 switch (cmsg->cmsg_type) {
1070 case UDP_SEGMENT:
1071 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1072 return -EINVAL;
1073 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1074 return 0;
1075 default:
1076 return -EINVAL;
1077 }
1078 }
1079
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1080 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1081 {
1082 struct cmsghdr *cmsg;
1083 bool need_ip = false;
1084 int err;
1085
1086 for_each_cmsghdr(cmsg, msg) {
1087 if (!CMSG_OK(msg, cmsg))
1088 return -EINVAL;
1089
1090 if (cmsg->cmsg_level != SOL_UDP) {
1091 need_ip = true;
1092 continue;
1093 }
1094
1095 err = __udp_cmsg_send(cmsg, gso_size);
1096 if (err)
1097 return err;
1098 }
1099
1100 return need_ip;
1101 }
1102 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1103
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1104 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1105 {
1106 struct inet_sock *inet = inet_sk(sk);
1107 struct udp_sock *up = udp_sk(sk);
1108 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1109 struct flowi4 fl4_stack;
1110 struct flowi4 *fl4;
1111 int ulen = len;
1112 struct ipcm_cookie ipc;
1113 struct rtable *rt = NULL;
1114 int free = 0;
1115 int connected = 0;
1116 __be32 daddr, faddr, saddr;
1117 __be16 dport;
1118 u8 tos;
1119 int err, is_udplite = IS_UDPLITE(sk);
1120 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1121 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1122 struct sk_buff *skb;
1123 struct ip_options_data opt_copy;
1124
1125 if (len > 0xFFFF)
1126 return -EMSGSIZE;
1127
1128 /*
1129 * Check the flags.
1130 */
1131
1132 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1133 return -EOPNOTSUPP;
1134
1135 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1136
1137 fl4 = &inet->cork.fl.u.ip4;
1138 if (up->pending) {
1139 /*
1140 * There are pending frames.
1141 * The socket lock must be held while it's corked.
1142 */
1143 lock_sock(sk);
1144 if (likely(up->pending)) {
1145 if (unlikely(up->pending != AF_INET)) {
1146 release_sock(sk);
1147 return -EINVAL;
1148 }
1149 goto do_append_data;
1150 }
1151 release_sock(sk);
1152 }
1153 ulen += sizeof(struct udphdr);
1154
1155 /*
1156 * Get and verify the address.
1157 */
1158 if (usin) {
1159 if (msg->msg_namelen < sizeof(*usin))
1160 return -EINVAL;
1161 if (usin->sin_family != AF_INET) {
1162 if (usin->sin_family != AF_UNSPEC)
1163 return -EAFNOSUPPORT;
1164 }
1165
1166 daddr = usin->sin_addr.s_addr;
1167 dport = usin->sin_port;
1168 if (dport == 0)
1169 return -EINVAL;
1170 } else {
1171 if (sk->sk_state != TCP_ESTABLISHED)
1172 return -EDESTADDRREQ;
1173 daddr = inet->inet_daddr;
1174 dport = inet->inet_dport;
1175 /* Open fast path for connected socket.
1176 Route will not be used, if at least one option is set.
1177 */
1178 connected = 1;
1179 }
1180
1181 ipcm_init_sk(&ipc, inet);
1182 ipc.gso_size = READ_ONCE(up->gso_size);
1183
1184 if (msg->msg_controllen) {
1185 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1186 if (err > 0)
1187 err = ip_cmsg_send(sk, msg, &ipc,
1188 sk->sk_family == AF_INET6);
1189 if (unlikely(err < 0)) {
1190 kfree(ipc.opt);
1191 return err;
1192 }
1193 if (ipc.opt)
1194 free = 1;
1195 connected = 0;
1196 }
1197 if (!ipc.opt) {
1198 struct ip_options_rcu *inet_opt;
1199
1200 rcu_read_lock();
1201 inet_opt = rcu_dereference(inet->inet_opt);
1202 if (inet_opt) {
1203 memcpy(&opt_copy, inet_opt,
1204 sizeof(*inet_opt) + inet_opt->opt.optlen);
1205 ipc.opt = &opt_copy.opt;
1206 }
1207 rcu_read_unlock();
1208 }
1209
1210 if (cgroup_bpf_enabled && !connected) {
1211 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1212 (struct sockaddr *)usin, &ipc.addr);
1213 if (err)
1214 goto out_free;
1215 if (usin) {
1216 if (usin->sin_port == 0) {
1217 /* BPF program set invalid port. Reject it. */
1218 err = -EINVAL;
1219 goto out_free;
1220 }
1221 daddr = usin->sin_addr.s_addr;
1222 dport = usin->sin_port;
1223 }
1224 }
1225
1226 saddr = ipc.addr;
1227 ipc.addr = faddr = daddr;
1228
1229 if (ipc.opt && ipc.opt->opt.srr) {
1230 if (!daddr) {
1231 err = -EINVAL;
1232 goto out_free;
1233 }
1234 faddr = ipc.opt->opt.faddr;
1235 connected = 0;
1236 }
1237 tos = get_rttos(&ipc, inet);
1238 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1239 (msg->msg_flags & MSG_DONTROUTE) ||
1240 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1241 tos |= RTO_ONLINK;
1242 connected = 0;
1243 }
1244
1245 if (ipv4_is_multicast(daddr)) {
1246 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1247 ipc.oif = inet->mc_index;
1248 if (!saddr)
1249 saddr = inet->mc_addr;
1250 connected = 0;
1251 } else if (!ipc.oif) {
1252 ipc.oif = inet->uc_index;
1253 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1254 /* oif is set, packet is to local broadcast and
1255 * uc_index is set. oif is most likely set
1256 * by sk_bound_dev_if. If uc_index != oif check if the
1257 * oif is an L3 master and uc_index is an L3 slave.
1258 * If so, we want to allow the send using the uc_index.
1259 */
1260 if (ipc.oif != inet->uc_index &&
1261 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1262 inet->uc_index)) {
1263 ipc.oif = inet->uc_index;
1264 }
1265 }
1266
1267 if (connected)
1268 rt = (struct rtable *)sk_dst_check(sk, 0);
1269
1270 if (!rt) {
1271 struct net *net = sock_net(sk);
1272 __u8 flow_flags = inet_sk_flowi_flags(sk);
1273
1274 fl4 = &fl4_stack;
1275
1276 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1277 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1278 flow_flags,
1279 faddr, saddr, dport, inet->inet_sport,
1280 sk->sk_uid);
1281
1282 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1283 rt = ip_route_output_flow(net, fl4, sk);
1284 if (IS_ERR(rt)) {
1285 err = PTR_ERR(rt);
1286 rt = NULL;
1287 if (err == -ENETUNREACH)
1288 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1289 goto out;
1290 }
1291
1292 err = -EACCES;
1293 if ((rt->rt_flags & RTCF_BROADCAST) &&
1294 !sock_flag(sk, SOCK_BROADCAST))
1295 goto out;
1296 if (connected)
1297 sk_dst_set(sk, dst_clone(&rt->dst));
1298 }
1299
1300 if (msg->msg_flags&MSG_CONFIRM)
1301 goto do_confirm;
1302 back_from_confirm:
1303
1304 saddr = fl4->saddr;
1305 if (!ipc.addr)
1306 daddr = ipc.addr = fl4->daddr;
1307
1308 /* Lockless fast path for the non-corking case. */
1309 if (!corkreq) {
1310 struct inet_cork cork;
1311
1312 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1313 sizeof(struct udphdr), &ipc, &rt,
1314 &cork, msg->msg_flags);
1315 err = PTR_ERR(skb);
1316 if (!IS_ERR_OR_NULL(skb))
1317 err = udp_send_skb(skb, fl4, &cork);
1318 goto out;
1319 }
1320
1321 lock_sock(sk);
1322 if (unlikely(up->pending)) {
1323 /* The socket is already corked while preparing it. */
1324 /* ... which is an evident application bug. --ANK */
1325 release_sock(sk);
1326
1327 net_dbg_ratelimited("socket already corked\n");
1328 err = -EINVAL;
1329 goto out;
1330 }
1331 /*
1332 * Now cork the socket to pend data.
1333 */
1334 fl4 = &inet->cork.fl.u.ip4;
1335 fl4->daddr = daddr;
1336 fl4->saddr = saddr;
1337 fl4->fl4_dport = dport;
1338 fl4->fl4_sport = inet->inet_sport;
1339 up->pending = AF_INET;
1340
1341 do_append_data:
1342 up->len += ulen;
1343 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1344 sizeof(struct udphdr), &ipc, &rt,
1345 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1346 if (err)
1347 udp_flush_pending_frames(sk);
1348 else if (!corkreq)
1349 err = udp_push_pending_frames(sk);
1350 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1351 up->pending = 0;
1352 release_sock(sk);
1353
1354 out:
1355 ip_rt_put(rt);
1356 out_free:
1357 if (free)
1358 kfree(ipc.opt);
1359 if (!err)
1360 return len;
1361 /*
1362 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1363 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1364 * we don't have a good statistic (IpOutDiscards but it can be too many
1365 * things). We could add another new stat but at least for now that
1366 * seems like overkill.
1367 */
1368 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1369 UDP_INC_STATS(sock_net(sk),
1370 UDP_MIB_SNDBUFERRORS, is_udplite);
1371 }
1372 return err;
1373
1374 do_confirm:
1375 if (msg->msg_flags & MSG_PROBE)
1376 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1377 if (!(msg->msg_flags&MSG_PROBE) || len)
1378 goto back_from_confirm;
1379 err = 0;
1380 goto out;
1381 }
1382 EXPORT_SYMBOL(udp_sendmsg);
1383
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1384 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1385 size_t size, int flags)
1386 {
1387 struct inet_sock *inet = inet_sk(sk);
1388 struct udp_sock *up = udp_sk(sk);
1389 int ret;
1390
1391 if (flags & MSG_SENDPAGE_NOTLAST)
1392 flags |= MSG_MORE;
1393
1394 if (!up->pending) {
1395 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1396
1397 /* Call udp_sendmsg to specify destination address which
1398 * sendpage interface can't pass.
1399 * This will succeed only when the socket is connected.
1400 */
1401 ret = udp_sendmsg(sk, &msg, 0);
1402 if (ret < 0)
1403 return ret;
1404 }
1405
1406 lock_sock(sk);
1407
1408 if (unlikely(!up->pending)) {
1409 release_sock(sk);
1410
1411 net_dbg_ratelimited("cork failed\n");
1412 return -EINVAL;
1413 }
1414
1415 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1416 page, offset, size, flags);
1417 if (ret == -EOPNOTSUPP) {
1418 release_sock(sk);
1419 return sock_no_sendpage(sk->sk_socket, page, offset,
1420 size, flags);
1421 }
1422 if (ret < 0) {
1423 udp_flush_pending_frames(sk);
1424 goto out;
1425 }
1426
1427 up->len += size;
1428 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1429 ret = udp_push_pending_frames(sk);
1430 if (!ret)
1431 ret = size;
1432 out:
1433 release_sock(sk);
1434 return ret;
1435 }
1436
1437 #define UDP_SKB_IS_STATELESS 0x80000000
1438
1439 /* all head states (dst, sk, nf conntrack) except skb extensions are
1440 * cleared by udp_rcv().
1441 *
1442 * We need to preserve secpath, if present, to eventually process
1443 * IP_CMSG_PASSSEC at recvmsg() time.
1444 *
1445 * Other extensions can be cleared.
1446 */
udp_try_make_stateless(struct sk_buff * skb)1447 static bool udp_try_make_stateless(struct sk_buff *skb)
1448 {
1449 if (!skb_has_extensions(skb))
1450 return true;
1451
1452 if (!secpath_exists(skb)) {
1453 skb_ext_reset(skb);
1454 return true;
1455 }
1456
1457 return false;
1458 }
1459
udp_set_dev_scratch(struct sk_buff * skb)1460 static void udp_set_dev_scratch(struct sk_buff *skb)
1461 {
1462 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1463
1464 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1465 scratch->_tsize_state = skb->truesize;
1466 #if BITS_PER_LONG == 64
1467 scratch->len = skb->len;
1468 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1469 scratch->is_linear = !skb_is_nonlinear(skb);
1470 #endif
1471 if (udp_try_make_stateless(skb))
1472 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1473 }
1474
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1475 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1476 {
1477 /* We come here after udp_lib_checksum_complete() returned 0.
1478 * This means that __skb_checksum_complete() might have
1479 * set skb->csum_valid to 1.
1480 * On 64bit platforms, we can set csum_unnecessary
1481 * to true, but only if the skb is not shared.
1482 */
1483 #if BITS_PER_LONG == 64
1484 if (!skb_shared(skb))
1485 udp_skb_scratch(skb)->csum_unnecessary = true;
1486 #endif
1487 }
1488
udp_skb_truesize(struct sk_buff * skb)1489 static int udp_skb_truesize(struct sk_buff *skb)
1490 {
1491 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1492 }
1493
udp_skb_has_head_state(struct sk_buff * skb)1494 static bool udp_skb_has_head_state(struct sk_buff *skb)
1495 {
1496 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1497 }
1498
1499 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1500 static void udp_rmem_release(struct sock *sk, int size, int partial,
1501 bool rx_queue_lock_held)
1502 {
1503 struct udp_sock *up = udp_sk(sk);
1504 struct sk_buff_head *sk_queue;
1505 int amt;
1506
1507 if (likely(partial)) {
1508 up->forward_deficit += size;
1509 size = up->forward_deficit;
1510 if (size < (sk->sk_rcvbuf >> 2) &&
1511 !skb_queue_empty(&up->reader_queue))
1512 return;
1513 } else {
1514 size += up->forward_deficit;
1515 }
1516 up->forward_deficit = 0;
1517
1518 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1519 * if the called don't held it already
1520 */
1521 sk_queue = &sk->sk_receive_queue;
1522 if (!rx_queue_lock_held)
1523 spin_lock(&sk_queue->lock);
1524
1525
1526 sk->sk_forward_alloc += size;
1527 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1528 sk->sk_forward_alloc -= amt;
1529
1530 if (amt)
1531 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1532
1533 atomic_sub(size, &sk->sk_rmem_alloc);
1534
1535 /* this can save us from acquiring the rx queue lock on next receive */
1536 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1537
1538 if (!rx_queue_lock_held)
1539 spin_unlock(&sk_queue->lock);
1540 }
1541
1542 /* Note: called with reader_queue.lock held.
1543 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1544 * This avoids a cache line miss while receive_queue lock is held.
1545 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1546 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1547 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1548 {
1549 prefetch(&skb->data);
1550 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1551 }
1552 EXPORT_SYMBOL(udp_skb_destructor);
1553
1554 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1555 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1556 {
1557 prefetch(&skb->data);
1558 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1559 }
1560
1561 /* Idea of busylocks is to let producers grab an extra spinlock
1562 * to relieve pressure on the receive_queue spinlock shared by consumer.
1563 * Under flood, this means that only one producer can be in line
1564 * trying to acquire the receive_queue spinlock.
1565 * These busylock can be allocated on a per cpu manner, instead of a
1566 * per socket one (that would consume a cache line per socket)
1567 */
1568 static int udp_busylocks_log __read_mostly;
1569 static spinlock_t *udp_busylocks __read_mostly;
1570
busylock_acquire(void * ptr)1571 static spinlock_t *busylock_acquire(void *ptr)
1572 {
1573 spinlock_t *busy;
1574
1575 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1576 spin_lock(busy);
1577 return busy;
1578 }
1579
busylock_release(spinlock_t * busy)1580 static void busylock_release(spinlock_t *busy)
1581 {
1582 if (busy)
1583 spin_unlock(busy);
1584 }
1585
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1586 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1587 {
1588 struct sk_buff_head *list = &sk->sk_receive_queue;
1589 int rmem, delta, amt, err = -ENOMEM;
1590 spinlock_t *busy = NULL;
1591 int size;
1592
1593 /* try to avoid the costly atomic add/sub pair when the receive
1594 * queue is full; always allow at least a packet
1595 */
1596 rmem = atomic_read(&sk->sk_rmem_alloc);
1597 if (rmem > sk->sk_rcvbuf)
1598 goto drop;
1599
1600 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1601 * having linear skbs :
1602 * - Reduce memory overhead and thus increase receive queue capacity
1603 * - Less cache line misses at copyout() time
1604 * - Less work at consume_skb() (less alien page frag freeing)
1605 */
1606 if (rmem > (sk->sk_rcvbuf >> 1)) {
1607 skb_condense(skb);
1608
1609 busy = busylock_acquire(sk);
1610 }
1611 size = skb->truesize;
1612 udp_set_dev_scratch(skb);
1613
1614 /* we drop only if the receive buf is full and the receive
1615 * queue contains some other skb
1616 */
1617 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1618 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1619 goto uncharge_drop;
1620
1621 spin_lock(&list->lock);
1622 if (size >= sk->sk_forward_alloc) {
1623 amt = sk_mem_pages(size);
1624 delta = amt << SK_MEM_QUANTUM_SHIFT;
1625 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1626 err = -ENOBUFS;
1627 spin_unlock(&list->lock);
1628 goto uncharge_drop;
1629 }
1630
1631 sk->sk_forward_alloc += delta;
1632 }
1633
1634 sk->sk_forward_alloc -= size;
1635
1636 /* no need to setup a destructor, we will explicitly release the
1637 * forward allocated memory on dequeue
1638 */
1639 sock_skb_set_dropcount(sk, skb);
1640
1641 __skb_queue_tail(list, skb);
1642 spin_unlock(&list->lock);
1643
1644 if (!sock_flag(sk, SOCK_DEAD))
1645 sk->sk_data_ready(sk);
1646
1647 busylock_release(busy);
1648 return 0;
1649
1650 uncharge_drop:
1651 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1652
1653 drop:
1654 atomic_inc(&sk->sk_drops);
1655 busylock_release(busy);
1656 return err;
1657 }
1658 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1659
udp_destruct_common(struct sock * sk)1660 void udp_destruct_common(struct sock *sk)
1661 {
1662 /* reclaim completely the forward allocated memory */
1663 struct udp_sock *up = udp_sk(sk);
1664 unsigned int total = 0;
1665 struct sk_buff *skb;
1666
1667 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1668 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1669 total += skb->truesize;
1670 kfree_skb(skb);
1671 }
1672 udp_rmem_release(sk, total, 0, true);
1673 }
1674 EXPORT_SYMBOL_GPL(udp_destruct_common);
1675
udp_destruct_sock(struct sock * sk)1676 static void udp_destruct_sock(struct sock *sk)
1677 {
1678 udp_destruct_common(sk);
1679 inet_sock_destruct(sk);
1680 }
1681
udp_init_sock(struct sock * sk)1682 int udp_init_sock(struct sock *sk)
1683 {
1684 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1685 sk->sk_destruct = udp_destruct_sock;
1686 return 0;
1687 }
1688
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1689 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1690 {
1691 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1692 bool slow = lock_sock_fast(sk);
1693
1694 sk_peek_offset_bwd(sk, len);
1695 unlock_sock_fast(sk, slow);
1696 }
1697
1698 if (!skb_unref(skb))
1699 return;
1700
1701 /* In the more common cases we cleared the head states previously,
1702 * see __udp_queue_rcv_skb().
1703 */
1704 if (unlikely(udp_skb_has_head_state(skb)))
1705 skb_release_head_state(skb);
1706 __consume_stateless_skb(skb);
1707 }
1708 EXPORT_SYMBOL_GPL(skb_consume_udp);
1709
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1710 static struct sk_buff *__first_packet_length(struct sock *sk,
1711 struct sk_buff_head *rcvq,
1712 int *total)
1713 {
1714 struct sk_buff *skb;
1715
1716 while ((skb = skb_peek(rcvq)) != NULL) {
1717 if (udp_lib_checksum_complete(skb)) {
1718 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1719 IS_UDPLITE(sk));
1720 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1721 IS_UDPLITE(sk));
1722 atomic_inc(&sk->sk_drops);
1723 __skb_unlink(skb, rcvq);
1724 *total += skb->truesize;
1725 kfree_skb(skb);
1726 } else {
1727 udp_skb_csum_unnecessary_set(skb);
1728 break;
1729 }
1730 }
1731 return skb;
1732 }
1733
1734 /**
1735 * first_packet_length - return length of first packet in receive queue
1736 * @sk: socket
1737 *
1738 * Drops all bad checksum frames, until a valid one is found.
1739 * Returns the length of found skb, or -1 if none is found.
1740 */
first_packet_length(struct sock * sk)1741 static int first_packet_length(struct sock *sk)
1742 {
1743 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1744 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1745 struct sk_buff *skb;
1746 int total = 0;
1747 int res;
1748
1749 spin_lock_bh(&rcvq->lock);
1750 skb = __first_packet_length(sk, rcvq, &total);
1751 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1752 spin_lock(&sk_queue->lock);
1753 skb_queue_splice_tail_init(sk_queue, rcvq);
1754 spin_unlock(&sk_queue->lock);
1755
1756 skb = __first_packet_length(sk, rcvq, &total);
1757 }
1758 res = skb ? skb->len : -1;
1759 if (total)
1760 udp_rmem_release(sk, total, 1, false);
1761 spin_unlock_bh(&rcvq->lock);
1762 return res;
1763 }
1764
1765 /*
1766 * IOCTL requests applicable to the UDP protocol
1767 */
1768
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1769 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1770 {
1771 switch (cmd) {
1772 case SIOCOUTQ:
1773 {
1774 int amount = sk_wmem_alloc_get(sk);
1775
1776 return put_user(amount, (int __user *)arg);
1777 }
1778
1779 case SIOCINQ:
1780 {
1781 int amount = max_t(int, 0, first_packet_length(sk));
1782
1783 return put_user(amount, (int __user *)arg);
1784 }
1785
1786 default:
1787 return -ENOIOCTLCMD;
1788 }
1789
1790 return 0;
1791 }
1792 EXPORT_SYMBOL(udp_ioctl);
1793
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1794 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1795 int noblock, int *off, int *err)
1796 {
1797 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1798 struct sk_buff_head *queue;
1799 struct sk_buff *last;
1800 long timeo;
1801 int error;
1802
1803 queue = &udp_sk(sk)->reader_queue;
1804 flags |= noblock ? MSG_DONTWAIT : 0;
1805 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1806 do {
1807 struct sk_buff *skb;
1808
1809 error = sock_error(sk);
1810 if (error)
1811 break;
1812
1813 error = -EAGAIN;
1814 do {
1815 spin_lock_bh(&queue->lock);
1816 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1817 err, &last);
1818 if (skb) {
1819 if (!(flags & MSG_PEEK))
1820 udp_skb_destructor(sk, skb);
1821 spin_unlock_bh(&queue->lock);
1822 return skb;
1823 }
1824
1825 if (skb_queue_empty_lockless(sk_queue)) {
1826 spin_unlock_bh(&queue->lock);
1827 goto busy_check;
1828 }
1829
1830 /* refill the reader queue and walk it again
1831 * keep both queues locked to avoid re-acquiring
1832 * the sk_receive_queue lock if fwd memory scheduling
1833 * is needed.
1834 */
1835 spin_lock(&sk_queue->lock);
1836 skb_queue_splice_tail_init(sk_queue, queue);
1837
1838 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1839 err, &last);
1840 if (skb && !(flags & MSG_PEEK))
1841 udp_skb_dtor_locked(sk, skb);
1842 spin_unlock(&sk_queue->lock);
1843 spin_unlock_bh(&queue->lock);
1844 if (skb)
1845 return skb;
1846
1847 busy_check:
1848 if (!sk_can_busy_loop(sk))
1849 break;
1850
1851 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1852 } while (!skb_queue_empty_lockless(sk_queue));
1853
1854 /* sk_queue is empty, reader_queue may contain peeked packets */
1855 } while (timeo &&
1856 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1857 &error, &timeo,
1858 (struct sk_buff *)sk_queue));
1859
1860 *err = error;
1861 return NULL;
1862 }
1863 EXPORT_SYMBOL(__skb_recv_udp);
1864
1865 /*
1866 * This should be easy, if there is something there we
1867 * return it, otherwise we block.
1868 */
1869
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1870 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1871 int flags, int *addr_len)
1872 {
1873 struct inet_sock *inet = inet_sk(sk);
1874 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1875 struct sk_buff *skb;
1876 unsigned int ulen, copied;
1877 int off, err, peeking = flags & MSG_PEEK;
1878 int is_udplite = IS_UDPLITE(sk);
1879 bool checksum_valid = false;
1880
1881 if (flags & MSG_ERRQUEUE)
1882 return ip_recv_error(sk, msg, len, addr_len);
1883
1884 try_again:
1885 off = sk_peek_offset(sk, flags);
1886 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1887 if (!skb)
1888 return err;
1889
1890 ulen = udp_skb_len(skb);
1891 copied = len;
1892 if (copied > ulen - off)
1893 copied = ulen - off;
1894 else if (copied < ulen)
1895 msg->msg_flags |= MSG_TRUNC;
1896
1897 /*
1898 * If checksum is needed at all, try to do it while copying the
1899 * data. If the data is truncated, or if we only want a partial
1900 * coverage checksum (UDP-Lite), do it before the copy.
1901 */
1902
1903 if (copied < ulen || peeking ||
1904 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1905 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1906 !__udp_lib_checksum_complete(skb);
1907 if (!checksum_valid)
1908 goto csum_copy_err;
1909 }
1910
1911 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1912 if (udp_skb_is_linear(skb))
1913 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1914 else
1915 err = skb_copy_datagram_msg(skb, off, msg, copied);
1916 } else {
1917 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1918
1919 if (err == -EINVAL)
1920 goto csum_copy_err;
1921 }
1922
1923 if (unlikely(err)) {
1924 if (!peeking) {
1925 atomic_inc(&sk->sk_drops);
1926 UDP_INC_STATS(sock_net(sk),
1927 UDP_MIB_INERRORS, is_udplite);
1928 }
1929 kfree_skb(skb);
1930 return err;
1931 }
1932
1933 if (!peeking)
1934 UDP_INC_STATS(sock_net(sk),
1935 UDP_MIB_INDATAGRAMS, is_udplite);
1936
1937 sock_recv_ts_and_drops(msg, sk, skb);
1938
1939 /* Copy the address. */
1940 if (sin) {
1941 sin->sin_family = AF_INET;
1942 sin->sin_port = udp_hdr(skb)->source;
1943 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1944 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1945 *addr_len = sizeof(*sin);
1946
1947 if (cgroup_bpf_enabled)
1948 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1949 (struct sockaddr *)sin);
1950 }
1951
1952 if (udp_sk(sk)->gro_enabled)
1953 udp_cmsg_recv(msg, sk, skb);
1954
1955 if (inet->cmsg_flags)
1956 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1957
1958 err = copied;
1959 if (flags & MSG_TRUNC)
1960 err = ulen;
1961
1962 skb_consume_udp(sk, skb, peeking ? -err : err);
1963 return err;
1964
1965 csum_copy_err:
1966 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1967 udp_skb_destructor)) {
1968 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1969 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1970 }
1971 kfree_skb(skb);
1972
1973 /* starting over for a new packet, but check if we need to yield */
1974 cond_resched();
1975 msg->msg_flags &= ~MSG_TRUNC;
1976 goto try_again;
1977 }
1978
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1979 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1980 {
1981 /* This check is replicated from __ip4_datagram_connect() and
1982 * intended to prevent BPF program called below from accessing bytes
1983 * that are out of the bound specified by user in addr_len.
1984 */
1985 if (addr_len < sizeof(struct sockaddr_in))
1986 return -EINVAL;
1987
1988 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1989 }
1990 EXPORT_SYMBOL(udp_pre_connect);
1991
__udp_disconnect(struct sock * sk,int flags)1992 int __udp_disconnect(struct sock *sk, int flags)
1993 {
1994 struct inet_sock *inet = inet_sk(sk);
1995 /*
1996 * 1003.1g - break association.
1997 */
1998
1999 sk->sk_state = TCP_CLOSE;
2000 inet->inet_daddr = 0;
2001 inet->inet_dport = 0;
2002 sock_rps_reset_rxhash(sk);
2003 sk->sk_bound_dev_if = 0;
2004 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2005 inet_reset_saddr(sk);
2006 if (sk->sk_prot->rehash &&
2007 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2008 sk->sk_prot->rehash(sk);
2009 }
2010
2011 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2012 sk->sk_prot->unhash(sk);
2013 inet->inet_sport = 0;
2014 }
2015 sk_dst_reset(sk);
2016 return 0;
2017 }
2018 EXPORT_SYMBOL(__udp_disconnect);
2019
udp_disconnect(struct sock * sk,int flags)2020 int udp_disconnect(struct sock *sk, int flags)
2021 {
2022 lock_sock(sk);
2023 __udp_disconnect(sk, flags);
2024 release_sock(sk);
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(udp_disconnect);
2028
udp_lib_unhash(struct sock * sk)2029 void udp_lib_unhash(struct sock *sk)
2030 {
2031 if (sk_hashed(sk)) {
2032 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2033 struct udp_hslot *hslot, *hslot2;
2034
2035 hslot = udp_hashslot(udptable, sock_net(sk),
2036 udp_sk(sk)->udp_port_hash);
2037 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2038
2039 spin_lock_bh(&hslot->lock);
2040 if (rcu_access_pointer(sk->sk_reuseport_cb))
2041 reuseport_detach_sock(sk);
2042 if (sk_del_node_init_rcu(sk)) {
2043 hslot->count--;
2044 inet_sk(sk)->inet_num = 0;
2045 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2046
2047 spin_lock(&hslot2->lock);
2048 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2049 hslot2->count--;
2050 spin_unlock(&hslot2->lock);
2051 }
2052 spin_unlock_bh(&hslot->lock);
2053 }
2054 }
2055 EXPORT_SYMBOL(udp_lib_unhash);
2056
2057 /*
2058 * inet_rcv_saddr was changed, we must rehash secondary hash
2059 */
udp_lib_rehash(struct sock * sk,u16 newhash)2060 void udp_lib_rehash(struct sock *sk, u16 newhash)
2061 {
2062 if (sk_hashed(sk)) {
2063 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2064 struct udp_hslot *hslot, *hslot2, *nhslot2;
2065
2066 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2067 nhslot2 = udp_hashslot2(udptable, newhash);
2068 udp_sk(sk)->udp_portaddr_hash = newhash;
2069
2070 if (hslot2 != nhslot2 ||
2071 rcu_access_pointer(sk->sk_reuseport_cb)) {
2072 hslot = udp_hashslot(udptable, sock_net(sk),
2073 udp_sk(sk)->udp_port_hash);
2074 /* we must lock primary chain too */
2075 spin_lock_bh(&hslot->lock);
2076 if (rcu_access_pointer(sk->sk_reuseport_cb))
2077 reuseport_detach_sock(sk);
2078
2079 if (hslot2 != nhslot2) {
2080 spin_lock(&hslot2->lock);
2081 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2082 hslot2->count--;
2083 spin_unlock(&hslot2->lock);
2084
2085 spin_lock(&nhslot2->lock);
2086 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2087 &nhslot2->head);
2088 nhslot2->count++;
2089 spin_unlock(&nhslot2->lock);
2090 }
2091
2092 spin_unlock_bh(&hslot->lock);
2093 }
2094 }
2095 }
2096 EXPORT_SYMBOL(udp_lib_rehash);
2097
udp_v4_rehash(struct sock * sk)2098 void udp_v4_rehash(struct sock *sk)
2099 {
2100 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2101 inet_sk(sk)->inet_rcv_saddr,
2102 inet_sk(sk)->inet_num);
2103 udp_lib_rehash(sk, new_hash);
2104 }
2105
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2106 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2107 {
2108 int rc;
2109
2110 if (inet_sk(sk)->inet_daddr) {
2111 sock_rps_save_rxhash(sk, skb);
2112 sk_mark_napi_id(sk, skb);
2113 sk_incoming_cpu_update(sk);
2114 } else {
2115 sk_mark_napi_id_once(sk, skb);
2116 }
2117
2118 rc = __udp_enqueue_schedule_skb(sk, skb);
2119 if (rc < 0) {
2120 int is_udplite = IS_UDPLITE(sk);
2121
2122 /* Note that an ENOMEM error is charged twice */
2123 if (rc == -ENOMEM)
2124 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2125 is_udplite);
2126 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2127 kfree_skb(skb);
2128 trace_udp_fail_queue_rcv_skb(rc, sk);
2129 return -1;
2130 }
2131
2132 return 0;
2133 }
2134
2135 /* returns:
2136 * -1: error
2137 * 0: success
2138 * >0: "udp encap" protocol resubmission
2139 *
2140 * Note that in the success and error cases, the skb is assumed to
2141 * have either been requeued or freed.
2142 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2143 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2144 {
2145 struct udp_sock *up = udp_sk(sk);
2146 int is_udplite = IS_UDPLITE(sk);
2147
2148 /*
2149 * Charge it to the socket, dropping if the queue is full.
2150 */
2151 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2152 goto drop;
2153 nf_reset_ct(skb);
2154
2155 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2156 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2157
2158 /*
2159 * This is an encapsulation socket so pass the skb to
2160 * the socket's udp_encap_rcv() hook. Otherwise, just
2161 * fall through and pass this up the UDP socket.
2162 * up->encap_rcv() returns the following value:
2163 * =0 if skb was successfully passed to the encap
2164 * handler or was discarded by it.
2165 * >0 if skb should be passed on to UDP.
2166 * <0 if skb should be resubmitted as proto -N
2167 */
2168
2169 /* if we're overly short, let UDP handle it */
2170 encap_rcv = READ_ONCE(up->encap_rcv);
2171 if (encap_rcv) {
2172 int ret;
2173
2174 /* Verify checksum before giving to encap */
2175 if (udp_lib_checksum_complete(skb))
2176 goto csum_error;
2177
2178 ret = encap_rcv(sk, skb);
2179 if (ret <= 0) {
2180 __UDP_INC_STATS(sock_net(sk),
2181 UDP_MIB_INDATAGRAMS,
2182 is_udplite);
2183 return -ret;
2184 }
2185 }
2186
2187 /* FALLTHROUGH -- it's a UDP Packet */
2188 }
2189
2190 /*
2191 * UDP-Lite specific tests, ignored on UDP sockets
2192 */
2193 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2194
2195 /*
2196 * MIB statistics other than incrementing the error count are
2197 * disabled for the following two types of errors: these depend
2198 * on the application settings, not on the functioning of the
2199 * protocol stack as such.
2200 *
2201 * RFC 3828 here recommends (sec 3.3): "There should also be a
2202 * way ... to ... at least let the receiving application block
2203 * delivery of packets with coverage values less than a value
2204 * provided by the application."
2205 */
2206 if (up->pcrlen == 0) { /* full coverage was set */
2207 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2208 UDP_SKB_CB(skb)->cscov, skb->len);
2209 goto drop;
2210 }
2211 /* The next case involves violating the min. coverage requested
2212 * by the receiver. This is subtle: if receiver wants x and x is
2213 * greater than the buffersize/MTU then receiver will complain
2214 * that it wants x while sender emits packets of smaller size y.
2215 * Therefore the above ...()->partial_cov statement is essential.
2216 */
2217 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2218 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2219 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2220 goto drop;
2221 }
2222 }
2223
2224 prefetch(&sk->sk_rmem_alloc);
2225 if (rcu_access_pointer(sk->sk_filter) &&
2226 udp_lib_checksum_complete(skb))
2227 goto csum_error;
2228
2229 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2230 goto drop;
2231
2232 udp_csum_pull_header(skb);
2233
2234 ipv4_pktinfo_prepare(sk, skb);
2235 return __udp_queue_rcv_skb(sk, skb);
2236
2237 csum_error:
2238 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2239 drop:
2240 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2241 atomic_inc(&sk->sk_drops);
2242 kfree_skb(skb);
2243 return -1;
2244 }
2245
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2246 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2247 {
2248 struct sk_buff *next, *segs;
2249 int ret;
2250
2251 if (likely(!udp_unexpected_gso(sk, skb)))
2252 return udp_queue_rcv_one_skb(sk, skb);
2253
2254 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2255 __skb_push(skb, -skb_mac_offset(skb));
2256 segs = udp_rcv_segment(sk, skb, true);
2257 skb_list_walk_safe(segs, skb, next) {
2258 __skb_pull(skb, skb_transport_offset(skb));
2259 ret = udp_queue_rcv_one_skb(sk, skb);
2260 if (ret > 0)
2261 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2262 }
2263 return 0;
2264 }
2265
2266 /* For TCP sockets, sk_rx_dst is protected by socket lock
2267 * For UDP, we use xchg() to guard against concurrent changes.
2268 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2269 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2270 {
2271 struct dst_entry *old;
2272
2273 if (dst_hold_safe(dst)) {
2274 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2275 dst_release(old);
2276 return old != dst;
2277 }
2278 return false;
2279 }
2280 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2281
2282 /*
2283 * Multicasts and broadcasts go to each listener.
2284 *
2285 * Note: called only from the BH handler context.
2286 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2287 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2288 struct udphdr *uh,
2289 __be32 saddr, __be32 daddr,
2290 struct udp_table *udptable,
2291 int proto)
2292 {
2293 struct sock *sk, *first = NULL;
2294 unsigned short hnum = ntohs(uh->dest);
2295 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2296 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2297 unsigned int offset = offsetof(typeof(*sk), sk_node);
2298 int dif = skb->dev->ifindex;
2299 int sdif = inet_sdif(skb);
2300 struct hlist_node *node;
2301 struct sk_buff *nskb;
2302
2303 if (use_hash2) {
2304 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2305 udptable->mask;
2306 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2307 start_lookup:
2308 hslot = &udptable->hash2[hash2];
2309 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2310 }
2311
2312 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2313 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2314 uh->source, saddr, dif, sdif, hnum))
2315 continue;
2316
2317 if (!first) {
2318 first = sk;
2319 continue;
2320 }
2321 nskb = skb_clone(skb, GFP_ATOMIC);
2322
2323 if (unlikely(!nskb)) {
2324 atomic_inc(&sk->sk_drops);
2325 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2326 IS_UDPLITE(sk));
2327 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2328 IS_UDPLITE(sk));
2329 continue;
2330 }
2331 if (udp_queue_rcv_skb(sk, nskb) > 0)
2332 consume_skb(nskb);
2333 }
2334
2335 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2336 if (use_hash2 && hash2 != hash2_any) {
2337 hash2 = hash2_any;
2338 goto start_lookup;
2339 }
2340
2341 if (first) {
2342 if (udp_queue_rcv_skb(first, skb) > 0)
2343 consume_skb(skb);
2344 } else {
2345 kfree_skb(skb);
2346 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2347 proto == IPPROTO_UDPLITE);
2348 }
2349 return 0;
2350 }
2351
2352 /* Initialize UDP checksum. If exited with zero value (success),
2353 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2354 * Otherwise, csum completion requires checksumming packet body,
2355 * including udp header and folding it to skb->csum.
2356 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2357 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2358 int proto)
2359 {
2360 int err;
2361
2362 UDP_SKB_CB(skb)->partial_cov = 0;
2363 UDP_SKB_CB(skb)->cscov = skb->len;
2364
2365 if (proto == IPPROTO_UDPLITE) {
2366 err = udplite_checksum_init(skb, uh);
2367 if (err)
2368 return err;
2369
2370 if (UDP_SKB_CB(skb)->partial_cov) {
2371 skb->csum = inet_compute_pseudo(skb, proto);
2372 return 0;
2373 }
2374 }
2375
2376 /* Note, we are only interested in != 0 or == 0, thus the
2377 * force to int.
2378 */
2379 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2380 inet_compute_pseudo);
2381 if (err)
2382 return err;
2383
2384 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2385 /* If SW calculated the value, we know it's bad */
2386 if (skb->csum_complete_sw)
2387 return 1;
2388
2389 /* HW says the value is bad. Let's validate that.
2390 * skb->csum is no longer the full packet checksum,
2391 * so don't treat it as such.
2392 */
2393 skb_checksum_complete_unset(skb);
2394 }
2395
2396 return 0;
2397 }
2398
2399 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2400 * return code conversion for ip layer consumption
2401 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2402 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2403 struct udphdr *uh)
2404 {
2405 int ret;
2406
2407 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2408 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2409
2410 ret = udp_queue_rcv_skb(sk, skb);
2411
2412 /* a return value > 0 means to resubmit the input, but
2413 * it wants the return to be -protocol, or 0
2414 */
2415 if (ret > 0)
2416 return -ret;
2417 return 0;
2418 }
2419
2420 /*
2421 * All we need to do is get the socket, and then do a checksum.
2422 */
2423
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2424 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2425 int proto)
2426 {
2427 struct sock *sk;
2428 struct udphdr *uh;
2429 unsigned short ulen;
2430 struct rtable *rt = skb_rtable(skb);
2431 __be32 saddr, daddr;
2432 struct net *net = dev_net(skb->dev);
2433 bool refcounted;
2434
2435 /*
2436 * Validate the packet.
2437 */
2438 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2439 goto drop; /* No space for header. */
2440
2441 uh = udp_hdr(skb);
2442 ulen = ntohs(uh->len);
2443 saddr = ip_hdr(skb)->saddr;
2444 daddr = ip_hdr(skb)->daddr;
2445
2446 if (ulen > skb->len)
2447 goto short_packet;
2448
2449 if (proto == IPPROTO_UDP) {
2450 /* UDP validates ulen. */
2451 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2452 goto short_packet;
2453 uh = udp_hdr(skb);
2454 }
2455
2456 if (udp4_csum_init(skb, uh, proto))
2457 goto csum_error;
2458
2459 sk = skb_steal_sock(skb, &refcounted);
2460 if (sk) {
2461 struct dst_entry *dst = skb_dst(skb);
2462 int ret;
2463
2464 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2465 udp_sk_rx_dst_set(sk, dst);
2466
2467 ret = udp_unicast_rcv_skb(sk, skb, uh);
2468 if (refcounted)
2469 sock_put(sk);
2470 return ret;
2471 }
2472
2473 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2474 return __udp4_lib_mcast_deliver(net, skb, uh,
2475 saddr, daddr, udptable, proto);
2476
2477 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2478 if (sk)
2479 return udp_unicast_rcv_skb(sk, skb, uh);
2480
2481 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2482 goto drop;
2483 nf_reset_ct(skb);
2484
2485 /* No socket. Drop packet silently, if checksum is wrong */
2486 if (udp_lib_checksum_complete(skb))
2487 goto csum_error;
2488
2489 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2490 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2491
2492 /*
2493 * Hmm. We got an UDP packet to a port to which we
2494 * don't wanna listen. Ignore it.
2495 */
2496 kfree_skb(skb);
2497 return 0;
2498
2499 short_packet:
2500 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2501 proto == IPPROTO_UDPLITE ? "Lite" : "",
2502 &saddr, ntohs(uh->source),
2503 ulen, skb->len,
2504 &daddr, ntohs(uh->dest));
2505 goto drop;
2506
2507 csum_error:
2508 /*
2509 * RFC1122: OK. Discards the bad packet silently (as far as
2510 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2511 */
2512 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2513 proto == IPPROTO_UDPLITE ? "Lite" : "",
2514 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2515 ulen);
2516 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2517 drop:
2518 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2519 kfree_skb(skb);
2520 return 0;
2521 }
2522
2523 /* We can only early demux multicast if there is a single matching socket.
2524 * If more than one socket found returns NULL
2525 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2526 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2527 __be16 loc_port, __be32 loc_addr,
2528 __be16 rmt_port, __be32 rmt_addr,
2529 int dif, int sdif)
2530 {
2531 struct sock *sk, *result;
2532 unsigned short hnum = ntohs(loc_port);
2533 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2534 struct udp_hslot *hslot = &udp_table.hash[slot];
2535
2536 /* Do not bother scanning a too big list */
2537 if (hslot->count > 10)
2538 return NULL;
2539
2540 result = NULL;
2541 sk_for_each_rcu(sk, &hslot->head) {
2542 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2543 rmt_port, rmt_addr, dif, sdif, hnum)) {
2544 if (result)
2545 return NULL;
2546 result = sk;
2547 }
2548 }
2549
2550 return result;
2551 }
2552
2553 /* For unicast we should only early demux connected sockets or we can
2554 * break forwarding setups. The chains here can be long so only check
2555 * if the first socket is an exact match and if not move on.
2556 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2557 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2558 __be16 loc_port, __be32 loc_addr,
2559 __be16 rmt_port, __be32 rmt_addr,
2560 int dif, int sdif)
2561 {
2562 unsigned short hnum = ntohs(loc_port);
2563 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2564 unsigned int slot2 = hash2 & udp_table.mask;
2565 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2566 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2567 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2568 struct sock *sk;
2569
2570 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2571 if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2572 return sk;
2573 /* Only check first socket in chain */
2574 break;
2575 }
2576 return NULL;
2577 }
2578
udp_v4_early_demux(struct sk_buff * skb)2579 int udp_v4_early_demux(struct sk_buff *skb)
2580 {
2581 struct net *net = dev_net(skb->dev);
2582 struct in_device *in_dev = NULL;
2583 const struct iphdr *iph;
2584 const struct udphdr *uh;
2585 struct sock *sk = NULL;
2586 struct dst_entry *dst;
2587 int dif = skb->dev->ifindex;
2588 int sdif = inet_sdif(skb);
2589 int ours;
2590
2591 /* validate the packet */
2592 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2593 return 0;
2594
2595 iph = ip_hdr(skb);
2596 uh = udp_hdr(skb);
2597
2598 if (skb->pkt_type == PACKET_MULTICAST) {
2599 in_dev = __in_dev_get_rcu(skb->dev);
2600
2601 if (!in_dev)
2602 return 0;
2603
2604 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2605 iph->protocol);
2606 if (!ours)
2607 return 0;
2608
2609 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2610 uh->source, iph->saddr,
2611 dif, sdif);
2612 } else if (skb->pkt_type == PACKET_HOST) {
2613 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2614 uh->source, iph->saddr, dif, sdif);
2615 }
2616
2617 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2618 return 0;
2619
2620 skb->sk = sk;
2621 skb->destructor = sock_efree;
2622 dst = rcu_dereference(sk->sk_rx_dst);
2623
2624 if (dst)
2625 dst = dst_check(dst, 0);
2626 if (dst) {
2627 u32 itag = 0;
2628
2629 /* set noref for now.
2630 * any place which wants to hold dst has to call
2631 * dst_hold_safe()
2632 */
2633 skb_dst_set_noref(skb, dst);
2634
2635 /* for unconnected multicast sockets we need to validate
2636 * the source on each packet
2637 */
2638 if (!inet_sk(sk)->inet_daddr && in_dev)
2639 return ip_mc_validate_source(skb, iph->daddr,
2640 iph->saddr,
2641 iph->tos & IPTOS_RT_MASK,
2642 skb->dev, in_dev, &itag);
2643 }
2644 return 0;
2645 }
2646
udp_rcv(struct sk_buff * skb)2647 int udp_rcv(struct sk_buff *skb)
2648 {
2649 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2650 }
2651
udp_destroy_sock(struct sock * sk)2652 void udp_destroy_sock(struct sock *sk)
2653 {
2654 struct udp_sock *up = udp_sk(sk);
2655 bool slow = lock_sock_fast(sk);
2656
2657 /* protects from races with udp_abort() */
2658 sock_set_flag(sk, SOCK_DEAD);
2659 udp_flush_pending_frames(sk);
2660 unlock_sock_fast(sk, slow);
2661 if (static_branch_unlikely(&udp_encap_needed_key)) {
2662 if (up->encap_type) {
2663 void (*encap_destroy)(struct sock *sk);
2664 encap_destroy = READ_ONCE(up->encap_destroy);
2665 if (encap_destroy)
2666 encap_destroy(sk);
2667 }
2668 if (up->encap_enabled)
2669 static_branch_dec(&udp_encap_needed_key);
2670 }
2671 }
2672
2673 /*
2674 * Socket option code for UDP
2675 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2676 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2677 sockptr_t optval, unsigned int optlen,
2678 int (*push_pending_frames)(struct sock *))
2679 {
2680 struct udp_sock *up = udp_sk(sk);
2681 int val, valbool;
2682 int err = 0;
2683 int is_udplite = IS_UDPLITE(sk);
2684
2685 if (optlen < sizeof(int))
2686 return -EINVAL;
2687
2688 if (copy_from_sockptr(&val, optval, sizeof(val)))
2689 return -EFAULT;
2690
2691 valbool = val ? 1 : 0;
2692
2693 switch (optname) {
2694 case UDP_CORK:
2695 if (val != 0) {
2696 WRITE_ONCE(up->corkflag, 1);
2697 } else {
2698 WRITE_ONCE(up->corkflag, 0);
2699 lock_sock(sk);
2700 push_pending_frames(sk);
2701 release_sock(sk);
2702 }
2703 break;
2704
2705 case UDP_ENCAP:
2706 switch (val) {
2707 case 0:
2708 #ifdef CONFIG_XFRM
2709 case UDP_ENCAP_ESPINUDP:
2710 case UDP_ENCAP_ESPINUDP_NON_IKE:
2711 #if IS_ENABLED(CONFIG_IPV6)
2712 if (sk->sk_family == AF_INET6)
2713 WRITE_ONCE(up->encap_rcv,
2714 ipv6_stub->xfrm6_udp_encap_rcv);
2715 else
2716 #endif
2717 WRITE_ONCE(up->encap_rcv,
2718 xfrm4_udp_encap_rcv);
2719 #endif
2720 fallthrough;
2721 case UDP_ENCAP_L2TPINUDP:
2722 up->encap_type = val;
2723 lock_sock(sk);
2724 udp_tunnel_encap_enable(sk->sk_socket);
2725 release_sock(sk);
2726 break;
2727 default:
2728 err = -ENOPROTOOPT;
2729 break;
2730 }
2731 break;
2732
2733 case UDP_NO_CHECK6_TX:
2734 up->no_check6_tx = valbool;
2735 break;
2736
2737 case UDP_NO_CHECK6_RX:
2738 up->no_check6_rx = valbool;
2739 break;
2740
2741 case UDP_SEGMENT:
2742 if (val < 0 || val > USHRT_MAX)
2743 return -EINVAL;
2744 WRITE_ONCE(up->gso_size, val);
2745 break;
2746
2747 case UDP_GRO:
2748 lock_sock(sk);
2749
2750 /* when enabling GRO, accept the related GSO packet type */
2751 if (valbool)
2752 udp_tunnel_encap_enable(sk->sk_socket);
2753 up->gro_enabled = valbool;
2754 up->accept_udp_l4 = valbool;
2755 release_sock(sk);
2756 break;
2757
2758 /*
2759 * UDP-Lite's partial checksum coverage (RFC 3828).
2760 */
2761 /* The sender sets actual checksum coverage length via this option.
2762 * The case coverage > packet length is handled by send module. */
2763 case UDPLITE_SEND_CSCOV:
2764 if (!is_udplite) /* Disable the option on UDP sockets */
2765 return -ENOPROTOOPT;
2766 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2767 val = 8;
2768 else if (val > USHRT_MAX)
2769 val = USHRT_MAX;
2770 up->pcslen = val;
2771 up->pcflag |= UDPLITE_SEND_CC;
2772 break;
2773
2774 /* The receiver specifies a minimum checksum coverage value. To make
2775 * sense, this should be set to at least 8 (as done below). If zero is
2776 * used, this again means full checksum coverage. */
2777 case UDPLITE_RECV_CSCOV:
2778 if (!is_udplite) /* Disable the option on UDP sockets */
2779 return -ENOPROTOOPT;
2780 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2781 val = 8;
2782 else if (val > USHRT_MAX)
2783 val = USHRT_MAX;
2784 up->pcrlen = val;
2785 up->pcflag |= UDPLITE_RECV_CC;
2786 break;
2787
2788 default:
2789 err = -ENOPROTOOPT;
2790 break;
2791 }
2792
2793 return err;
2794 }
2795 EXPORT_SYMBOL(udp_lib_setsockopt);
2796
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2797 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2798 unsigned int optlen)
2799 {
2800 if (level == SOL_UDP || level == SOL_UDPLITE)
2801 return udp_lib_setsockopt(sk, level, optname,
2802 optval, optlen,
2803 udp_push_pending_frames);
2804 return ip_setsockopt(sk, level, optname, optval, optlen);
2805 }
2806
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2807 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2808 char __user *optval, int __user *optlen)
2809 {
2810 struct udp_sock *up = udp_sk(sk);
2811 int val, len;
2812
2813 if (get_user(len, optlen))
2814 return -EFAULT;
2815
2816 len = min_t(unsigned int, len, sizeof(int));
2817
2818 if (len < 0)
2819 return -EINVAL;
2820
2821 switch (optname) {
2822 case UDP_CORK:
2823 val = READ_ONCE(up->corkflag);
2824 break;
2825
2826 case UDP_ENCAP:
2827 val = up->encap_type;
2828 break;
2829
2830 case UDP_NO_CHECK6_TX:
2831 val = up->no_check6_tx;
2832 break;
2833
2834 case UDP_NO_CHECK6_RX:
2835 val = up->no_check6_rx;
2836 break;
2837
2838 case UDP_SEGMENT:
2839 val = READ_ONCE(up->gso_size);
2840 break;
2841
2842 case UDP_GRO:
2843 val = up->gro_enabled;
2844 break;
2845
2846 /* The following two cannot be changed on UDP sockets, the return is
2847 * always 0 (which corresponds to the full checksum coverage of UDP). */
2848 case UDPLITE_SEND_CSCOV:
2849 val = up->pcslen;
2850 break;
2851
2852 case UDPLITE_RECV_CSCOV:
2853 val = up->pcrlen;
2854 break;
2855
2856 default:
2857 return -ENOPROTOOPT;
2858 }
2859
2860 if (put_user(len, optlen))
2861 return -EFAULT;
2862 if (copy_to_user(optval, &val, len))
2863 return -EFAULT;
2864 return 0;
2865 }
2866 EXPORT_SYMBOL(udp_lib_getsockopt);
2867
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2868 int udp_getsockopt(struct sock *sk, int level, int optname,
2869 char __user *optval, int __user *optlen)
2870 {
2871 if (level == SOL_UDP || level == SOL_UDPLITE)
2872 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2873 return ip_getsockopt(sk, level, optname, optval, optlen);
2874 }
2875
2876 /**
2877 * udp_poll - wait for a UDP event.
2878 * @file: - file struct
2879 * @sock: - socket
2880 * @wait: - poll table
2881 *
2882 * This is same as datagram poll, except for the special case of
2883 * blocking sockets. If application is using a blocking fd
2884 * and a packet with checksum error is in the queue;
2885 * then it could get return from select indicating data available
2886 * but then block when reading it. Add special case code
2887 * to work around these arguably broken applications.
2888 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2889 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2890 {
2891 __poll_t mask = datagram_poll(file, sock, wait);
2892 struct sock *sk = sock->sk;
2893
2894 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2895 mask |= EPOLLIN | EPOLLRDNORM;
2896
2897 /* Check for false positives due to checksum errors */
2898 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2899 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2900 mask &= ~(EPOLLIN | EPOLLRDNORM);
2901
2902 return mask;
2903
2904 }
2905 EXPORT_SYMBOL(udp_poll);
2906
udp_abort(struct sock * sk,int err)2907 int udp_abort(struct sock *sk, int err)
2908 {
2909 lock_sock(sk);
2910
2911 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2912 * with close()
2913 */
2914 if (sock_flag(sk, SOCK_DEAD))
2915 goto out;
2916
2917 sk->sk_err = err;
2918 sk->sk_error_report(sk);
2919 __udp_disconnect(sk, 0);
2920
2921 out:
2922 release_sock(sk);
2923
2924 return 0;
2925 }
2926 EXPORT_SYMBOL_GPL(udp_abort);
2927
2928 struct proto udp_prot = {
2929 .name = "UDP",
2930 .owner = THIS_MODULE,
2931 .close = udp_lib_close,
2932 .pre_connect = udp_pre_connect,
2933 .connect = ip4_datagram_connect,
2934 .disconnect = udp_disconnect,
2935 .ioctl = udp_ioctl,
2936 .init = udp_init_sock,
2937 .destroy = udp_destroy_sock,
2938 .setsockopt = udp_setsockopt,
2939 .getsockopt = udp_getsockopt,
2940 .sendmsg = udp_sendmsg,
2941 .recvmsg = udp_recvmsg,
2942 .sendpage = udp_sendpage,
2943 .release_cb = ip4_datagram_release_cb,
2944 .hash = udp_lib_hash,
2945 .unhash = udp_lib_unhash,
2946 .rehash = udp_v4_rehash,
2947 .get_port = udp_v4_get_port,
2948 .memory_allocated = &udp_memory_allocated,
2949 .sysctl_mem = sysctl_udp_mem,
2950 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2951 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2952 .obj_size = sizeof(struct udp_sock),
2953 .h.udp_table = &udp_table,
2954 .diag_destroy = udp_abort,
2955 };
2956 EXPORT_SYMBOL(udp_prot);
2957
2958 /* ------------------------------------------------------------------------ */
2959 #ifdef CONFIG_PROC_FS
2960
udp_get_first(struct seq_file * seq,int start)2961 static struct sock *udp_get_first(struct seq_file *seq, int start)
2962 {
2963 struct sock *sk;
2964 struct udp_seq_afinfo *afinfo;
2965 struct udp_iter_state *state = seq->private;
2966 struct net *net = seq_file_net(seq);
2967
2968 if (state->bpf_seq_afinfo)
2969 afinfo = state->bpf_seq_afinfo;
2970 else
2971 afinfo = PDE_DATA(file_inode(seq->file));
2972
2973 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2974 ++state->bucket) {
2975 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2976
2977 if (hlist_empty(&hslot->head))
2978 continue;
2979
2980 spin_lock_bh(&hslot->lock);
2981 sk_for_each(sk, &hslot->head) {
2982 if (!net_eq(sock_net(sk), net))
2983 continue;
2984 if (afinfo->family == AF_UNSPEC ||
2985 sk->sk_family == afinfo->family)
2986 goto found;
2987 }
2988 spin_unlock_bh(&hslot->lock);
2989 }
2990 sk = NULL;
2991 found:
2992 return sk;
2993 }
2994
udp_get_next(struct seq_file * seq,struct sock * sk)2995 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2996 {
2997 struct udp_seq_afinfo *afinfo;
2998 struct udp_iter_state *state = seq->private;
2999 struct net *net = seq_file_net(seq);
3000
3001 if (state->bpf_seq_afinfo)
3002 afinfo = state->bpf_seq_afinfo;
3003 else
3004 afinfo = PDE_DATA(file_inode(seq->file));
3005
3006 do {
3007 sk = sk_next(sk);
3008 } while (sk && (!net_eq(sock_net(sk), net) ||
3009 (afinfo->family != AF_UNSPEC &&
3010 sk->sk_family != afinfo->family)));
3011
3012 if (!sk) {
3013 if (state->bucket <= afinfo->udp_table->mask)
3014 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3015 return udp_get_first(seq, state->bucket + 1);
3016 }
3017 return sk;
3018 }
3019
udp_get_idx(struct seq_file * seq,loff_t pos)3020 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3021 {
3022 struct sock *sk = udp_get_first(seq, 0);
3023
3024 if (sk)
3025 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3026 --pos;
3027 return pos ? NULL : sk;
3028 }
3029
udp_seq_start(struct seq_file * seq,loff_t * pos)3030 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3031 {
3032 struct udp_iter_state *state = seq->private;
3033 state->bucket = MAX_UDP_PORTS;
3034
3035 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3036 }
3037 EXPORT_SYMBOL(udp_seq_start);
3038
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3039 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3040 {
3041 struct sock *sk;
3042
3043 if (v == SEQ_START_TOKEN)
3044 sk = udp_get_idx(seq, 0);
3045 else
3046 sk = udp_get_next(seq, v);
3047
3048 ++*pos;
3049 return sk;
3050 }
3051 EXPORT_SYMBOL(udp_seq_next);
3052
udp_seq_stop(struct seq_file * seq,void * v)3053 void udp_seq_stop(struct seq_file *seq, void *v)
3054 {
3055 struct udp_seq_afinfo *afinfo;
3056 struct udp_iter_state *state = seq->private;
3057
3058 if (state->bpf_seq_afinfo)
3059 afinfo = state->bpf_seq_afinfo;
3060 else
3061 afinfo = PDE_DATA(file_inode(seq->file));
3062
3063 if (state->bucket <= afinfo->udp_table->mask)
3064 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3065 }
3066 EXPORT_SYMBOL(udp_seq_stop);
3067
3068 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3069 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3070 int bucket)
3071 {
3072 struct inet_sock *inet = inet_sk(sp);
3073 __be32 dest = inet->inet_daddr;
3074 __be32 src = inet->inet_rcv_saddr;
3075 __u16 destp = ntohs(inet->inet_dport);
3076 __u16 srcp = ntohs(inet->inet_sport);
3077
3078 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3079 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3080 bucket, src, srcp, dest, destp, sp->sk_state,
3081 sk_wmem_alloc_get(sp),
3082 udp_rqueue_get(sp),
3083 0, 0L, 0,
3084 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3085 0, sock_i_ino(sp),
3086 refcount_read(&sp->sk_refcnt), sp,
3087 atomic_read(&sp->sk_drops));
3088 }
3089
udp4_seq_show(struct seq_file * seq,void * v)3090 int udp4_seq_show(struct seq_file *seq, void *v)
3091 {
3092 seq_setwidth(seq, 127);
3093 if (v == SEQ_START_TOKEN)
3094 seq_puts(seq, " sl local_address rem_address st tx_queue "
3095 "rx_queue tr tm->when retrnsmt uid timeout "
3096 "inode ref pointer drops");
3097 else {
3098 struct udp_iter_state *state = seq->private;
3099
3100 udp4_format_sock(v, seq, state->bucket);
3101 }
3102 seq_pad(seq, '\n');
3103 return 0;
3104 }
3105
3106 #ifdef CONFIG_BPF_SYSCALL
3107 struct bpf_iter__udp {
3108 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3109 __bpf_md_ptr(struct udp_sock *, udp_sk);
3110 uid_t uid __aligned(8);
3111 int bucket __aligned(8);
3112 };
3113
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3114 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3115 struct udp_sock *udp_sk, uid_t uid, int bucket)
3116 {
3117 struct bpf_iter__udp ctx;
3118
3119 meta->seq_num--; /* skip SEQ_START_TOKEN */
3120 ctx.meta = meta;
3121 ctx.udp_sk = udp_sk;
3122 ctx.uid = uid;
3123 ctx.bucket = bucket;
3124 return bpf_iter_run_prog(prog, &ctx);
3125 }
3126
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3127 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3128 {
3129 struct udp_iter_state *state = seq->private;
3130 struct bpf_iter_meta meta;
3131 struct bpf_prog *prog;
3132 struct sock *sk = v;
3133 uid_t uid;
3134
3135 if (v == SEQ_START_TOKEN)
3136 return 0;
3137
3138 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3139 meta.seq = seq;
3140 prog = bpf_iter_get_info(&meta, false);
3141 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3142 }
3143
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3144 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3145 {
3146 struct bpf_iter_meta meta;
3147 struct bpf_prog *prog;
3148
3149 if (!v) {
3150 meta.seq = seq;
3151 prog = bpf_iter_get_info(&meta, true);
3152 if (prog)
3153 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3154 }
3155
3156 udp_seq_stop(seq, v);
3157 }
3158
3159 static const struct seq_operations bpf_iter_udp_seq_ops = {
3160 .start = udp_seq_start,
3161 .next = udp_seq_next,
3162 .stop = bpf_iter_udp_seq_stop,
3163 .show = bpf_iter_udp_seq_show,
3164 };
3165 #endif
3166
3167 const struct seq_operations udp_seq_ops = {
3168 .start = udp_seq_start,
3169 .next = udp_seq_next,
3170 .stop = udp_seq_stop,
3171 .show = udp4_seq_show,
3172 };
3173 EXPORT_SYMBOL(udp_seq_ops);
3174
3175 static struct udp_seq_afinfo udp4_seq_afinfo = {
3176 .family = AF_INET,
3177 .udp_table = &udp_table,
3178 };
3179
udp4_proc_init_net(struct net * net)3180 static int __net_init udp4_proc_init_net(struct net *net)
3181 {
3182 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3183 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3184 return -ENOMEM;
3185 return 0;
3186 }
3187
udp4_proc_exit_net(struct net * net)3188 static void __net_exit udp4_proc_exit_net(struct net *net)
3189 {
3190 remove_proc_entry("udp", net->proc_net);
3191 }
3192
3193 static struct pernet_operations udp4_net_ops = {
3194 .init = udp4_proc_init_net,
3195 .exit = udp4_proc_exit_net,
3196 };
3197
udp4_proc_init(void)3198 int __init udp4_proc_init(void)
3199 {
3200 return register_pernet_subsys(&udp4_net_ops);
3201 }
3202
udp4_proc_exit(void)3203 void udp4_proc_exit(void)
3204 {
3205 unregister_pernet_subsys(&udp4_net_ops);
3206 }
3207 #endif /* CONFIG_PROC_FS */
3208
3209 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3210 static int __init set_uhash_entries(char *str)
3211 {
3212 ssize_t ret;
3213
3214 if (!str)
3215 return 0;
3216
3217 ret = kstrtoul(str, 0, &uhash_entries);
3218 if (ret)
3219 return 0;
3220
3221 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3222 uhash_entries = UDP_HTABLE_SIZE_MIN;
3223 return 1;
3224 }
3225 __setup("uhash_entries=", set_uhash_entries);
3226
udp_table_init(struct udp_table * table,const char * name)3227 void __init udp_table_init(struct udp_table *table, const char *name)
3228 {
3229 unsigned int i;
3230
3231 table->hash = alloc_large_system_hash(name,
3232 2 * sizeof(struct udp_hslot),
3233 uhash_entries,
3234 21, /* one slot per 2 MB */
3235 0,
3236 &table->log,
3237 &table->mask,
3238 UDP_HTABLE_SIZE_MIN,
3239 64 * 1024);
3240
3241 table->hash2 = table->hash + (table->mask + 1);
3242 for (i = 0; i <= table->mask; i++) {
3243 INIT_HLIST_HEAD(&table->hash[i].head);
3244 table->hash[i].count = 0;
3245 spin_lock_init(&table->hash[i].lock);
3246 }
3247 for (i = 0; i <= table->mask; i++) {
3248 INIT_HLIST_HEAD(&table->hash2[i].head);
3249 table->hash2[i].count = 0;
3250 spin_lock_init(&table->hash2[i].lock);
3251 }
3252 }
3253
udp_flow_hashrnd(void)3254 u32 udp_flow_hashrnd(void)
3255 {
3256 static u32 hashrnd __read_mostly;
3257
3258 net_get_random_once(&hashrnd, sizeof(hashrnd));
3259
3260 return hashrnd;
3261 }
3262 EXPORT_SYMBOL(udp_flow_hashrnd);
3263
__udp_sysctl_init(struct net * net)3264 static void __udp_sysctl_init(struct net *net)
3265 {
3266 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3267 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3268
3269 #ifdef CONFIG_NET_L3_MASTER_DEV
3270 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3271 #endif
3272 }
3273
udp_sysctl_init(struct net * net)3274 static int __net_init udp_sysctl_init(struct net *net)
3275 {
3276 __udp_sysctl_init(net);
3277 return 0;
3278 }
3279
3280 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3281 .init = udp_sysctl_init,
3282 };
3283
3284 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3285 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3286 struct udp_sock *udp_sk, uid_t uid, int bucket)
3287
3288 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3289 {
3290 struct udp_iter_state *st = priv_data;
3291 struct udp_seq_afinfo *afinfo;
3292 int ret;
3293
3294 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3295 if (!afinfo)
3296 return -ENOMEM;
3297
3298 afinfo->family = AF_UNSPEC;
3299 afinfo->udp_table = &udp_table;
3300 st->bpf_seq_afinfo = afinfo;
3301 ret = bpf_iter_init_seq_net(priv_data, aux);
3302 if (ret)
3303 kfree(afinfo);
3304 return ret;
3305 }
3306
bpf_iter_fini_udp(void * priv_data)3307 static void bpf_iter_fini_udp(void *priv_data)
3308 {
3309 struct udp_iter_state *st = priv_data;
3310
3311 kfree(st->bpf_seq_afinfo);
3312 bpf_iter_fini_seq_net(priv_data);
3313 }
3314
3315 static const struct bpf_iter_seq_info udp_seq_info = {
3316 .seq_ops = &bpf_iter_udp_seq_ops,
3317 .init_seq_private = bpf_iter_init_udp,
3318 .fini_seq_private = bpf_iter_fini_udp,
3319 .seq_priv_size = sizeof(struct udp_iter_state),
3320 };
3321
3322 static struct bpf_iter_reg udp_reg_info = {
3323 .target = "udp",
3324 .ctx_arg_info_size = 1,
3325 .ctx_arg_info = {
3326 { offsetof(struct bpf_iter__udp, udp_sk),
3327 PTR_TO_BTF_ID_OR_NULL },
3328 },
3329 .seq_info = &udp_seq_info,
3330 };
3331
bpf_iter_register(void)3332 static void __init bpf_iter_register(void)
3333 {
3334 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3335 if (bpf_iter_reg_target(&udp_reg_info))
3336 pr_warn("Warning: could not register bpf iterator udp\n");
3337 }
3338 #endif
3339
udp_init(void)3340 void __init udp_init(void)
3341 {
3342 unsigned long limit;
3343 unsigned int i;
3344
3345 udp_table_init(&udp_table, "UDP");
3346 limit = nr_free_buffer_pages() / 8;
3347 limit = max(limit, 128UL);
3348 sysctl_udp_mem[0] = limit / 4 * 3;
3349 sysctl_udp_mem[1] = limit;
3350 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3351
3352 __udp_sysctl_init(&init_net);
3353
3354 /* 16 spinlocks per cpu */
3355 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3356 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3357 GFP_KERNEL);
3358 if (!udp_busylocks)
3359 panic("UDP: failed to alloc udp_busylocks\n");
3360 for (i = 0; i < (1U << udp_busylocks_log); i++)
3361 spin_lock_init(udp_busylocks + i);
3362
3363 if (register_pernet_subsys(&udp_sysctl_ops))
3364 panic("UDP: failed to init sysctl parameters.\n");
3365
3366 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3367 bpf_iter_register();
3368 #endif
3369 }
3370