• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
389 	       isascii(alpha2[1]) && isalpha(alpha2[1]);
390 }
391 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)392 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
393 {
394 	if (!alpha2_x || !alpha2_y)
395 		return false;
396 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
397 }
398 
regdom_changes(const char * alpha2)399 static bool regdom_changes(const char *alpha2)
400 {
401 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
402 
403 	if (!r)
404 		return true;
405 	return !alpha2_equal(r->alpha2, alpha2);
406 }
407 
408 /*
409  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
410  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
411  * has ever been issued.
412  */
is_user_regdom_saved(void)413 static bool is_user_regdom_saved(void)
414 {
415 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
416 		return false;
417 
418 	/* This would indicate a mistake on the design */
419 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
420 		 "Unexpected user alpha2: %c%c\n",
421 		 user_alpha2[0], user_alpha2[1]))
422 		return false;
423 
424 	return true;
425 }
426 
427 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)428 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
429 {
430 	struct ieee80211_regdomain *regd;
431 	unsigned int i;
432 
433 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
434 		       GFP_KERNEL);
435 	if (!regd)
436 		return ERR_PTR(-ENOMEM);
437 
438 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
439 
440 	for (i = 0; i < src_regd->n_reg_rules; i++)
441 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
442 		       sizeof(struct ieee80211_reg_rule));
443 
444 	return regd;
445 }
446 
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)447 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
448 {
449 	ASSERT_RTNL();
450 
451 	if (!IS_ERR(cfg80211_user_regdom))
452 		kfree(cfg80211_user_regdom);
453 	cfg80211_user_regdom = reg_copy_regd(rd);
454 }
455 
456 struct reg_regdb_apply_request {
457 	struct list_head list;
458 	const struct ieee80211_regdomain *regdom;
459 };
460 
461 static LIST_HEAD(reg_regdb_apply_list);
462 static DEFINE_MUTEX(reg_regdb_apply_mutex);
463 
reg_regdb_apply(struct work_struct * work)464 static void reg_regdb_apply(struct work_struct *work)
465 {
466 	struct reg_regdb_apply_request *request;
467 
468 	rtnl_lock();
469 
470 	mutex_lock(&reg_regdb_apply_mutex);
471 	while (!list_empty(&reg_regdb_apply_list)) {
472 		request = list_first_entry(&reg_regdb_apply_list,
473 					   struct reg_regdb_apply_request,
474 					   list);
475 		list_del(&request->list);
476 
477 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
478 		kfree(request);
479 	}
480 	mutex_unlock(&reg_regdb_apply_mutex);
481 
482 	rtnl_unlock();
483 }
484 
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
486 
reg_schedule_apply(const struct ieee80211_regdomain * regdom)487 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
488 {
489 	struct reg_regdb_apply_request *request;
490 
491 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
492 	if (!request) {
493 		kfree(regdom);
494 		return -ENOMEM;
495 	}
496 
497 	request->regdom = regdom;
498 
499 	mutex_lock(&reg_regdb_apply_mutex);
500 	list_add_tail(&request->list, &reg_regdb_apply_list);
501 	mutex_unlock(&reg_regdb_apply_mutex);
502 
503 	schedule_work(&reg_regdb_work);
504 	return 0;
505 }
506 
507 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
508 /* Max number of consecutive attempts to communicate with CRDA  */
509 #define REG_MAX_CRDA_TIMEOUTS 10
510 
511 static u32 reg_crda_timeouts;
512 
513 static void crda_timeout_work(struct work_struct *work);
514 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
515 
crda_timeout_work(struct work_struct * work)516 static void crda_timeout_work(struct work_struct *work)
517 {
518 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
519 	rtnl_lock();
520 	reg_crda_timeouts++;
521 	restore_regulatory_settings(true, false);
522 	rtnl_unlock();
523 }
524 
cancel_crda_timeout(void)525 static void cancel_crda_timeout(void)
526 {
527 	cancel_delayed_work(&crda_timeout);
528 }
529 
cancel_crda_timeout_sync(void)530 static void cancel_crda_timeout_sync(void)
531 {
532 	cancel_delayed_work_sync(&crda_timeout);
533 }
534 
reset_crda_timeouts(void)535 static void reset_crda_timeouts(void)
536 {
537 	reg_crda_timeouts = 0;
538 }
539 
540 /*
541  * This lets us keep regulatory code which is updated on a regulatory
542  * basis in userspace.
543  */
call_crda(const char * alpha2)544 static int call_crda(const char *alpha2)
545 {
546 	char country[12];
547 	char *env[] = { country, NULL };
548 	int ret;
549 
550 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
551 		 alpha2[0], alpha2[1]);
552 
553 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
554 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
555 		return -EINVAL;
556 	}
557 
558 	if (!is_world_regdom((char *) alpha2))
559 		pr_debug("Calling CRDA for country: %c%c\n",
560 			 alpha2[0], alpha2[1]);
561 	else
562 		pr_debug("Calling CRDA to update world regulatory domain\n");
563 
564 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
565 	if (ret)
566 		return ret;
567 
568 	queue_delayed_work(system_power_efficient_wq,
569 			   &crda_timeout, msecs_to_jiffies(3142));
570 	return 0;
571 }
572 #else
cancel_crda_timeout(void)573 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)574 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)575 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)576 static inline int call_crda(const char *alpha2)
577 {
578 	return -ENODATA;
579 }
580 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
581 
582 /* code to directly load a firmware database through request_firmware */
583 static const struct fwdb_header *regdb;
584 
585 struct fwdb_country {
586 	u8 alpha2[2];
587 	__be16 coll_ptr;
588 	/* this struct cannot be extended */
589 } __packed __aligned(4);
590 
591 struct fwdb_collection {
592 	u8 len;
593 	u8 n_rules;
594 	u8 dfs_region;
595 	/* no optional data yet */
596 	/* aligned to 2, then followed by __be16 array of rule pointers */
597 } __packed __aligned(4);
598 
599 enum fwdb_flags {
600 	FWDB_FLAG_NO_OFDM	= BIT(0),
601 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
602 	FWDB_FLAG_DFS		= BIT(2),
603 	FWDB_FLAG_NO_IR		= BIT(3),
604 	FWDB_FLAG_AUTO_BW	= BIT(4),
605 };
606 
607 struct fwdb_wmm_ac {
608 	u8 ecw;
609 	u8 aifsn;
610 	__be16 cot;
611 } __packed;
612 
613 struct fwdb_wmm_rule {
614 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
615 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
616 } __packed;
617 
618 struct fwdb_rule {
619 	u8 len;
620 	u8 flags;
621 	__be16 max_eirp;
622 	__be32 start, end, max_bw;
623 	/* start of optional data */
624 	__be16 cac_timeout;
625 	__be16 wmm_ptr;
626 } __packed __aligned(4);
627 
628 #define FWDB_MAGIC 0x52474442
629 #define FWDB_VERSION 20
630 
631 struct fwdb_header {
632 	__be32 magic;
633 	__be32 version;
634 	struct fwdb_country country[];
635 } __packed __aligned(4);
636 
ecw2cw(int ecw)637 static int ecw2cw(int ecw)
638 {
639 	return (1 << ecw) - 1;
640 }
641 
valid_wmm(struct fwdb_wmm_rule * rule)642 static bool valid_wmm(struct fwdb_wmm_rule *rule)
643 {
644 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
645 	int i;
646 
647 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
648 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
649 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
650 		u8 aifsn = ac[i].aifsn;
651 
652 		if (cw_min >= cw_max)
653 			return false;
654 
655 		if (aifsn < 1)
656 			return false;
657 	}
658 
659 	return true;
660 }
661 
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)662 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
663 {
664 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
665 
666 	if ((u8 *)rule + sizeof(rule->len) > data + size)
667 		return false;
668 
669 	/* mandatory fields */
670 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
671 		return false;
672 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
673 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
674 		struct fwdb_wmm_rule *wmm;
675 
676 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
677 			return false;
678 
679 		wmm = (void *)(data + wmm_ptr);
680 
681 		if (!valid_wmm(wmm))
682 			return false;
683 	}
684 	return true;
685 }
686 
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)687 static bool valid_country(const u8 *data, unsigned int size,
688 			  const struct fwdb_country *country)
689 {
690 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
691 	struct fwdb_collection *coll = (void *)(data + ptr);
692 	__be16 *rules_ptr;
693 	unsigned int i;
694 
695 	/* make sure we can read len/n_rules */
696 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
697 		return false;
698 
699 	/* make sure base struct and all rules fit */
700 	if ((u8 *)coll + ALIGN(coll->len, 2) +
701 	    (coll->n_rules * 2) > data + size)
702 		return false;
703 
704 	/* mandatory fields must exist */
705 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
706 		return false;
707 
708 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
709 
710 	for (i = 0; i < coll->n_rules; i++) {
711 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
712 
713 		if (!valid_rule(data, size, rule_ptr))
714 			return false;
715 	}
716 
717 	return true;
718 }
719 
720 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
721 static struct key *builtin_regdb_keys;
722 
load_keys_from_buffer(const u8 * p,unsigned int buflen)723 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
724 {
725 	const u8 *end = p + buflen;
726 	size_t plen;
727 	key_ref_t key;
728 
729 	while (p < end) {
730 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
731 		 * than 256 bytes in size.
732 		 */
733 		if (end - p < 4)
734 			goto dodgy_cert;
735 		if (p[0] != 0x30 &&
736 		    p[1] != 0x82)
737 			goto dodgy_cert;
738 		plen = (p[2] << 8) | p[3];
739 		plen += 4;
740 		if (plen > end - p)
741 			goto dodgy_cert;
742 
743 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
744 					   "asymmetric", NULL, p, plen,
745 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
746 					    KEY_USR_VIEW | KEY_USR_READ),
747 					   KEY_ALLOC_NOT_IN_QUOTA |
748 					   KEY_ALLOC_BUILT_IN |
749 					   KEY_ALLOC_BYPASS_RESTRICTION);
750 		if (IS_ERR(key)) {
751 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
752 			       PTR_ERR(key));
753 		} else {
754 			pr_notice("Loaded X.509 cert '%s'\n",
755 				  key_ref_to_ptr(key)->description);
756 			key_ref_put(key);
757 		}
758 		p += plen;
759 	}
760 
761 	return;
762 
763 dodgy_cert:
764 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
765 }
766 
load_builtin_regdb_keys(void)767 static int __init load_builtin_regdb_keys(void)
768 {
769 	builtin_regdb_keys =
770 		keyring_alloc(".builtin_regdb_keys",
771 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
772 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
773 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
774 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
775 	if (IS_ERR(builtin_regdb_keys))
776 		return PTR_ERR(builtin_regdb_keys);
777 
778 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
779 
780 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
781 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
782 #endif
783 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
784 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
785 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
786 #endif
787 
788 	return 0;
789 }
790 
791 MODULE_FIRMWARE("regulatory.db.p7s");
792 
regdb_has_valid_signature(const u8 * data,unsigned int size)793 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
794 {
795 	const struct firmware *sig;
796 	bool result;
797 
798 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
799 		return false;
800 
801 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
802 					builtin_regdb_keys,
803 					VERIFYING_UNSPECIFIED_SIGNATURE,
804 					NULL, NULL) == 0;
805 
806 	release_firmware(sig);
807 
808 	return result;
809 }
810 
free_regdb_keyring(void)811 static void free_regdb_keyring(void)
812 {
813 	key_put(builtin_regdb_keys);
814 }
815 #else
load_builtin_regdb_keys(void)816 static int load_builtin_regdb_keys(void)
817 {
818 	return 0;
819 }
820 
regdb_has_valid_signature(const u8 * data,unsigned int size)821 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
822 {
823 	return true;
824 }
825 
free_regdb_keyring(void)826 static void free_regdb_keyring(void)
827 {
828 }
829 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
830 
valid_regdb(const u8 * data,unsigned int size)831 static bool valid_regdb(const u8 *data, unsigned int size)
832 {
833 	const struct fwdb_header *hdr = (void *)data;
834 	const struct fwdb_country *country;
835 
836 	if (size < sizeof(*hdr))
837 		return false;
838 
839 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
840 		return false;
841 
842 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
843 		return false;
844 
845 	if (!regdb_has_valid_signature(data, size))
846 		return false;
847 
848 	country = &hdr->country[0];
849 	while ((u8 *)(country + 1) <= data + size) {
850 		if (!country->coll_ptr)
851 			break;
852 		if (!valid_country(data, size, country))
853 			return false;
854 		country++;
855 	}
856 
857 	return true;
858 }
859 
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)860 static void set_wmm_rule(const struct fwdb_header *db,
861 			 const struct fwdb_country *country,
862 			 const struct fwdb_rule *rule,
863 			 struct ieee80211_reg_rule *rrule)
864 {
865 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
866 	struct fwdb_wmm_rule *wmm;
867 	unsigned int i, wmm_ptr;
868 
869 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
870 	wmm = (void *)((u8 *)db + wmm_ptr);
871 
872 	if (!valid_wmm(wmm)) {
873 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
874 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
875 		       country->alpha2[0], country->alpha2[1]);
876 		return;
877 	}
878 
879 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
880 		wmm_rule->client[i].cw_min =
881 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
882 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
883 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
884 		wmm_rule->client[i].cot =
885 			1000 * be16_to_cpu(wmm->client[i].cot);
886 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
887 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
888 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
889 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
890 	}
891 
892 	rrule->has_wmm = true;
893 }
894 
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)895 static int __regdb_query_wmm(const struct fwdb_header *db,
896 			     const struct fwdb_country *country, int freq,
897 			     struct ieee80211_reg_rule *rrule)
898 {
899 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
900 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
901 	int i;
902 
903 	for (i = 0; i < coll->n_rules; i++) {
904 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
905 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
906 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
907 
908 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
909 			continue;
910 
911 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
912 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
913 			set_wmm_rule(db, country, rule, rrule);
914 			return 0;
915 		}
916 	}
917 
918 	return -ENODATA;
919 }
920 
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)921 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
922 {
923 	const struct fwdb_header *hdr = regdb;
924 	const struct fwdb_country *country;
925 
926 	if (!regdb)
927 		return -ENODATA;
928 
929 	if (IS_ERR(regdb))
930 		return PTR_ERR(regdb);
931 
932 	country = &hdr->country[0];
933 	while (country->coll_ptr) {
934 		if (alpha2_equal(alpha2, country->alpha2))
935 			return __regdb_query_wmm(regdb, country, freq, rule);
936 
937 		country++;
938 	}
939 
940 	return -ENODATA;
941 }
942 EXPORT_SYMBOL(reg_query_regdb_wmm);
943 
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)944 static int regdb_query_country(const struct fwdb_header *db,
945 			       const struct fwdb_country *country)
946 {
947 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
948 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
949 	struct ieee80211_regdomain *regdom;
950 	unsigned int i;
951 
952 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
953 			 GFP_KERNEL);
954 	if (!regdom)
955 		return -ENOMEM;
956 
957 	regdom->n_reg_rules = coll->n_rules;
958 	regdom->alpha2[0] = country->alpha2[0];
959 	regdom->alpha2[1] = country->alpha2[1];
960 	regdom->dfs_region = coll->dfs_region;
961 
962 	for (i = 0; i < regdom->n_reg_rules; i++) {
963 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
964 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
965 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
966 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
967 
968 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
969 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
970 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
971 
972 		rrule->power_rule.max_antenna_gain = 0;
973 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
974 
975 		rrule->flags = 0;
976 		if (rule->flags & FWDB_FLAG_NO_OFDM)
977 			rrule->flags |= NL80211_RRF_NO_OFDM;
978 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
979 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
980 		if (rule->flags & FWDB_FLAG_DFS)
981 			rrule->flags |= NL80211_RRF_DFS;
982 		if (rule->flags & FWDB_FLAG_NO_IR)
983 			rrule->flags |= NL80211_RRF_NO_IR;
984 		if (rule->flags & FWDB_FLAG_AUTO_BW)
985 			rrule->flags |= NL80211_RRF_AUTO_BW;
986 
987 		rrule->dfs_cac_ms = 0;
988 
989 		/* handle optional data */
990 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
991 			rrule->dfs_cac_ms =
992 				1000 * be16_to_cpu(rule->cac_timeout);
993 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
994 			set_wmm_rule(db, country, rule, rrule);
995 	}
996 
997 	return reg_schedule_apply(regdom);
998 }
999 
query_regdb(const char * alpha2)1000 static int query_regdb(const char *alpha2)
1001 {
1002 	const struct fwdb_header *hdr = regdb;
1003 	const struct fwdb_country *country;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	if (IS_ERR(regdb))
1008 		return PTR_ERR(regdb);
1009 
1010 	country = &hdr->country[0];
1011 	while (country->coll_ptr) {
1012 		if (alpha2_equal(alpha2, country->alpha2))
1013 			return regdb_query_country(regdb, country);
1014 		country++;
1015 	}
1016 
1017 	return -ENODATA;
1018 }
1019 
regdb_fw_cb(const struct firmware * fw,void * context)1020 static void regdb_fw_cb(const struct firmware *fw, void *context)
1021 {
1022 	int set_error = 0;
1023 	bool restore = true;
1024 	void *db;
1025 
1026 	if (!fw) {
1027 		pr_info("failed to load regulatory.db\n");
1028 		set_error = -ENODATA;
1029 	} else if (!valid_regdb(fw->data, fw->size)) {
1030 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1031 		set_error = -EINVAL;
1032 	}
1033 
1034 	rtnl_lock();
1035 	if (regdb && !IS_ERR(regdb)) {
1036 		/* negative case - a bug
1037 		 * positive case - can happen due to race in case of multiple cb's in
1038 		 * queue, due to usage of asynchronous callback
1039 		 *
1040 		 * Either case, just restore and free new db.
1041 		 */
1042 	} else if (set_error) {
1043 		regdb = ERR_PTR(set_error);
1044 	} else if (fw) {
1045 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1046 		if (db) {
1047 			regdb = db;
1048 			restore = context && query_regdb(context);
1049 		} else {
1050 			restore = true;
1051 		}
1052 	}
1053 
1054 	if (restore)
1055 		restore_regulatory_settings(true, false);
1056 
1057 	rtnl_unlock();
1058 
1059 	kfree(context);
1060 
1061 	release_firmware(fw);
1062 }
1063 
1064 MODULE_FIRMWARE("regulatory.db");
1065 
query_regdb_file(const char * alpha2)1066 static int query_regdb_file(const char *alpha2)
1067 {
1068 	int err;
1069 
1070 	ASSERT_RTNL();
1071 
1072 	if (regdb)
1073 		return query_regdb(alpha2);
1074 
1075 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1076 	if (!alpha2)
1077 		return -ENOMEM;
1078 
1079 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1080 				      &reg_pdev->dev, GFP_KERNEL,
1081 				      (void *)alpha2, regdb_fw_cb);
1082 	if (err)
1083 		kfree(alpha2);
1084 
1085 	return err;
1086 }
1087 
reg_reload_regdb(void)1088 int reg_reload_regdb(void)
1089 {
1090 	const struct firmware *fw;
1091 	void *db;
1092 	int err;
1093 
1094 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1095 	if (err)
1096 		return err;
1097 
1098 	if (!valid_regdb(fw->data, fw->size)) {
1099 		err = -ENODATA;
1100 		goto out;
1101 	}
1102 
1103 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1104 	if (!db) {
1105 		err = -ENOMEM;
1106 		goto out;
1107 	}
1108 
1109 	rtnl_lock();
1110 	if (!IS_ERR_OR_NULL(regdb))
1111 		kfree(regdb);
1112 	regdb = db;
1113 	rtnl_unlock();
1114 
1115  out:
1116 	release_firmware(fw);
1117 	return err;
1118 }
1119 
reg_query_database(struct regulatory_request * request)1120 static bool reg_query_database(struct regulatory_request *request)
1121 {
1122 	if (query_regdb_file(request->alpha2) == 0)
1123 		return true;
1124 
1125 	if (call_crda(request->alpha2) == 0)
1126 		return true;
1127 
1128 	return false;
1129 }
1130 
reg_is_valid_request(const char * alpha2)1131 bool reg_is_valid_request(const char *alpha2)
1132 {
1133 	struct regulatory_request *lr = get_last_request();
1134 
1135 	if (!lr || lr->processed)
1136 		return false;
1137 
1138 	return alpha2_equal(lr->alpha2, alpha2);
1139 }
1140 
reg_get_regdomain(struct wiphy * wiphy)1141 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1142 {
1143 	struct regulatory_request *lr = get_last_request();
1144 
1145 	/*
1146 	 * Follow the driver's regulatory domain, if present, unless a country
1147 	 * IE has been processed or a user wants to help complaince further
1148 	 */
1149 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1150 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1151 	    wiphy->regd)
1152 		return get_wiphy_regdom(wiphy);
1153 
1154 	return get_cfg80211_regdom();
1155 }
1156 
1157 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1158 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1159 				 const struct ieee80211_reg_rule *rule)
1160 {
1161 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1162 	const struct ieee80211_freq_range *freq_range_tmp;
1163 	const struct ieee80211_reg_rule *tmp;
1164 	u32 start_freq, end_freq, idx, no;
1165 
1166 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1167 		if (rule == &rd->reg_rules[idx])
1168 			break;
1169 
1170 	if (idx == rd->n_reg_rules)
1171 		return 0;
1172 
1173 	/* get start_freq */
1174 	no = idx;
1175 
1176 	while (no) {
1177 		tmp = &rd->reg_rules[--no];
1178 		freq_range_tmp = &tmp->freq_range;
1179 
1180 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1181 			break;
1182 
1183 		freq_range = freq_range_tmp;
1184 	}
1185 
1186 	start_freq = freq_range->start_freq_khz;
1187 
1188 	/* get end_freq */
1189 	freq_range = &rule->freq_range;
1190 	no = idx;
1191 
1192 	while (no < rd->n_reg_rules - 1) {
1193 		tmp = &rd->reg_rules[++no];
1194 		freq_range_tmp = &tmp->freq_range;
1195 
1196 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1197 			break;
1198 
1199 		freq_range = freq_range_tmp;
1200 	}
1201 
1202 	end_freq = freq_range->end_freq_khz;
1203 
1204 	return end_freq - start_freq;
1205 }
1206 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1207 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1208 				   const struct ieee80211_reg_rule *rule)
1209 {
1210 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1211 
1212 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1213 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1214 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1215 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1216 
1217 	/*
1218 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1219 	 * are not allowed.
1220 	 */
1221 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1222 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1223 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1224 
1225 	return bw;
1226 }
1227 
1228 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1229 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1230 {
1231 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1232 	u32 freq_diff;
1233 
1234 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1235 		return false;
1236 
1237 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1238 		return false;
1239 
1240 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1241 
1242 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1243 	    freq_range->max_bandwidth_khz > freq_diff)
1244 		return false;
1245 
1246 	return true;
1247 }
1248 
is_valid_rd(const struct ieee80211_regdomain * rd)1249 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1250 {
1251 	const struct ieee80211_reg_rule *reg_rule = NULL;
1252 	unsigned int i;
1253 
1254 	if (!rd->n_reg_rules)
1255 		return false;
1256 
1257 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1258 		return false;
1259 
1260 	for (i = 0; i < rd->n_reg_rules; i++) {
1261 		reg_rule = &rd->reg_rules[i];
1262 		if (!is_valid_reg_rule(reg_rule))
1263 			return false;
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 /**
1270  * freq_in_rule_band - tells us if a frequency is in a frequency band
1271  * @freq_range: frequency rule we want to query
1272  * @freq_khz: frequency we are inquiring about
1273  *
1274  * This lets us know if a specific frequency rule is or is not relevant to
1275  * a specific frequency's band. Bands are device specific and artificial
1276  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1277  * however it is safe for now to assume that a frequency rule should not be
1278  * part of a frequency's band if the start freq or end freq are off by more
1279  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1280  * 60 GHz band.
1281  * This resolution can be lowered and should be considered as we add
1282  * regulatory rule support for other "bands".
1283  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1284 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1285 			      u32 freq_khz)
1286 {
1287 #define ONE_GHZ_IN_KHZ	1000000
1288 	/*
1289 	 * From 802.11ad: directional multi-gigabit (DMG):
1290 	 * Pertaining to operation in a frequency band containing a channel
1291 	 * with the Channel starting frequency above 45 GHz.
1292 	 */
1293 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1294 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1295 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1296 		return true;
1297 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1298 		return true;
1299 	return false;
1300 #undef ONE_GHZ_IN_KHZ
1301 }
1302 
1303 /*
1304  * Later on we can perhaps use the more restrictive DFS
1305  * region but we don't have information for that yet so
1306  * for now simply disallow conflicts.
1307  */
1308 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1309 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1310 			 const enum nl80211_dfs_regions dfs_region2)
1311 {
1312 	if (dfs_region1 != dfs_region2)
1313 		return NL80211_DFS_UNSET;
1314 	return dfs_region1;
1315 }
1316 
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1317 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1318 				    const struct ieee80211_wmm_ac *wmm_ac2,
1319 				    struct ieee80211_wmm_ac *intersect)
1320 {
1321 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1322 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1323 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1324 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1325 }
1326 
1327 /*
1328  * Helper for regdom_intersect(), this does the real
1329  * mathematical intersection fun
1330  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1331 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1332 			       const struct ieee80211_regdomain *rd2,
1333 			       const struct ieee80211_reg_rule *rule1,
1334 			       const struct ieee80211_reg_rule *rule2,
1335 			       struct ieee80211_reg_rule *intersected_rule)
1336 {
1337 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1338 	struct ieee80211_freq_range *freq_range;
1339 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1340 	struct ieee80211_power_rule *power_rule;
1341 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1342 	struct ieee80211_wmm_rule *wmm_rule;
1343 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1344 
1345 	freq_range1 = &rule1->freq_range;
1346 	freq_range2 = &rule2->freq_range;
1347 	freq_range = &intersected_rule->freq_range;
1348 
1349 	power_rule1 = &rule1->power_rule;
1350 	power_rule2 = &rule2->power_rule;
1351 	power_rule = &intersected_rule->power_rule;
1352 
1353 	wmm_rule1 = &rule1->wmm_rule;
1354 	wmm_rule2 = &rule2->wmm_rule;
1355 	wmm_rule = &intersected_rule->wmm_rule;
1356 
1357 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1358 					 freq_range2->start_freq_khz);
1359 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1360 				       freq_range2->end_freq_khz);
1361 
1362 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1363 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1364 
1365 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1366 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1367 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1368 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1369 
1370 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1371 
1372 	intersected_rule->flags = rule1->flags | rule2->flags;
1373 
1374 	/*
1375 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1376 	 * set AUTO_BW in intersected rule also. Next we will
1377 	 * calculate BW correctly in handle_channel function.
1378 	 * In other case remove AUTO_BW flag while we calculate
1379 	 * maximum bandwidth correctly and auto calculation is
1380 	 * not required.
1381 	 */
1382 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1383 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1384 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1385 	else
1386 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1387 
1388 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1389 	if (freq_range->max_bandwidth_khz > freq_diff)
1390 		freq_range->max_bandwidth_khz = freq_diff;
1391 
1392 	power_rule->max_eirp = min(power_rule1->max_eirp,
1393 		power_rule2->max_eirp);
1394 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1395 		power_rule2->max_antenna_gain);
1396 
1397 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1398 					   rule2->dfs_cac_ms);
1399 
1400 	if (rule1->has_wmm && rule2->has_wmm) {
1401 		u8 ac;
1402 
1403 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1404 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1405 						&wmm_rule2->client[ac],
1406 						&wmm_rule->client[ac]);
1407 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1408 						&wmm_rule2->ap[ac],
1409 						&wmm_rule->ap[ac]);
1410 		}
1411 
1412 		intersected_rule->has_wmm = true;
1413 	} else if (rule1->has_wmm) {
1414 		*wmm_rule = *wmm_rule1;
1415 		intersected_rule->has_wmm = true;
1416 	} else if (rule2->has_wmm) {
1417 		*wmm_rule = *wmm_rule2;
1418 		intersected_rule->has_wmm = true;
1419 	} else {
1420 		intersected_rule->has_wmm = false;
1421 	}
1422 
1423 	if (!is_valid_reg_rule(intersected_rule))
1424 		return -EINVAL;
1425 
1426 	return 0;
1427 }
1428 
1429 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1430 static bool rule_contains(struct ieee80211_reg_rule *r1,
1431 			  struct ieee80211_reg_rule *r2)
1432 {
1433 	/* for simplicity, currently consider only same flags */
1434 	if (r1->flags != r2->flags)
1435 		return false;
1436 
1437 	/* verify r1 is more restrictive */
1438 	if ((r1->power_rule.max_antenna_gain >
1439 	     r2->power_rule.max_antenna_gain) ||
1440 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1441 		return false;
1442 
1443 	/* make sure r2's range is contained within r1 */
1444 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1445 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1446 		return false;
1447 
1448 	/* and finally verify that r1.max_bw >= r2.max_bw */
1449 	if (r1->freq_range.max_bandwidth_khz <
1450 	    r2->freq_range.max_bandwidth_khz)
1451 		return false;
1452 
1453 	return true;
1454 }
1455 
1456 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1457 static void add_rule(struct ieee80211_reg_rule *rule,
1458 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1459 {
1460 	struct ieee80211_reg_rule *tmp_rule;
1461 	int i;
1462 
1463 	for (i = 0; i < *n_rules; i++) {
1464 		tmp_rule = &reg_rules[i];
1465 		/* rule is already contained - do nothing */
1466 		if (rule_contains(tmp_rule, rule))
1467 			return;
1468 
1469 		/* extend rule if possible */
1470 		if (rule_contains(rule, tmp_rule)) {
1471 			memcpy(tmp_rule, rule, sizeof(*rule));
1472 			return;
1473 		}
1474 	}
1475 
1476 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1477 	(*n_rules)++;
1478 }
1479 
1480 /**
1481  * regdom_intersect - do the intersection between two regulatory domains
1482  * @rd1: first regulatory domain
1483  * @rd2: second regulatory domain
1484  *
1485  * Use this function to get the intersection between two regulatory domains.
1486  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1487  * as no one single alpha2 can represent this regulatory domain.
1488  *
1489  * Returns a pointer to the regulatory domain structure which will hold the
1490  * resulting intersection of rules between rd1 and rd2. We will
1491  * kzalloc() this structure for you.
1492  */
1493 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1494 regdom_intersect(const struct ieee80211_regdomain *rd1,
1495 		 const struct ieee80211_regdomain *rd2)
1496 {
1497 	int r;
1498 	unsigned int x, y;
1499 	unsigned int num_rules = 0;
1500 	const struct ieee80211_reg_rule *rule1, *rule2;
1501 	struct ieee80211_reg_rule intersected_rule;
1502 	struct ieee80211_regdomain *rd;
1503 
1504 	if (!rd1 || !rd2)
1505 		return NULL;
1506 
1507 	/*
1508 	 * First we get a count of the rules we'll need, then we actually
1509 	 * build them. This is to so we can malloc() and free() a
1510 	 * regdomain once. The reason we use reg_rules_intersect() here
1511 	 * is it will return -EINVAL if the rule computed makes no sense.
1512 	 * All rules that do check out OK are valid.
1513 	 */
1514 
1515 	for (x = 0; x < rd1->n_reg_rules; x++) {
1516 		rule1 = &rd1->reg_rules[x];
1517 		for (y = 0; y < rd2->n_reg_rules; y++) {
1518 			rule2 = &rd2->reg_rules[y];
1519 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1520 						 &intersected_rule))
1521 				num_rules++;
1522 		}
1523 	}
1524 
1525 	if (!num_rules)
1526 		return NULL;
1527 
1528 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1529 	if (!rd)
1530 		return NULL;
1531 
1532 	for (x = 0; x < rd1->n_reg_rules; x++) {
1533 		rule1 = &rd1->reg_rules[x];
1534 		for (y = 0; y < rd2->n_reg_rules; y++) {
1535 			rule2 = &rd2->reg_rules[y];
1536 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1537 						&intersected_rule);
1538 			/*
1539 			 * No need to memset here the intersected rule here as
1540 			 * we're not using the stack anymore
1541 			 */
1542 			if (r)
1543 				continue;
1544 
1545 			add_rule(&intersected_rule, rd->reg_rules,
1546 				 &rd->n_reg_rules);
1547 		}
1548 	}
1549 
1550 	rd->alpha2[0] = '9';
1551 	rd->alpha2[1] = '8';
1552 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1553 						  rd2->dfs_region);
1554 
1555 	return rd;
1556 }
1557 
1558 /*
1559  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1560  * want to just have the channel structure use these
1561  */
map_regdom_flags(u32 rd_flags)1562 static u32 map_regdom_flags(u32 rd_flags)
1563 {
1564 	u32 channel_flags = 0;
1565 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1566 		channel_flags |= IEEE80211_CHAN_NO_IR;
1567 	if (rd_flags & NL80211_RRF_DFS)
1568 		channel_flags |= IEEE80211_CHAN_RADAR;
1569 	if (rd_flags & NL80211_RRF_NO_OFDM)
1570 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1571 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1572 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1573 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1574 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1575 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1576 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1577 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1578 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1579 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1580 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1581 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1582 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1583 	if (rd_flags & NL80211_RRF_NO_HE)
1584 		channel_flags |= IEEE80211_CHAN_NO_HE;
1585 	return channel_flags;
1586 }
1587 
1588 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1589 freq_reg_info_regd(u32 center_freq,
1590 		   const struct ieee80211_regdomain *regd, u32 bw)
1591 {
1592 	int i;
1593 	bool band_rule_found = false;
1594 	bool bw_fits = false;
1595 
1596 	if (!regd)
1597 		return ERR_PTR(-EINVAL);
1598 
1599 	for (i = 0; i < regd->n_reg_rules; i++) {
1600 		const struct ieee80211_reg_rule *rr;
1601 		const struct ieee80211_freq_range *fr = NULL;
1602 
1603 		rr = &regd->reg_rules[i];
1604 		fr = &rr->freq_range;
1605 
1606 		/*
1607 		 * We only need to know if one frequency rule was
1608 		 * in center_freq's band, that's enough, so let's
1609 		 * not overwrite it once found
1610 		 */
1611 		if (!band_rule_found)
1612 			band_rule_found = freq_in_rule_band(fr, center_freq);
1613 
1614 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1615 
1616 		if (band_rule_found && bw_fits)
1617 			return rr;
1618 	}
1619 
1620 	if (!band_rule_found)
1621 		return ERR_PTR(-ERANGE);
1622 
1623 	return ERR_PTR(-EINVAL);
1624 }
1625 
1626 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1627 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1628 {
1629 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1630 	const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1631 	const struct ieee80211_reg_rule *reg_rule;
1632 	int i = ARRAY_SIZE(bws) - 1;
1633 	u32 bw;
1634 
1635 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1636 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1637 		if (!IS_ERR(reg_rule))
1638 			return reg_rule;
1639 	}
1640 
1641 	return reg_rule;
1642 }
1643 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1644 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1645 					       u32 center_freq)
1646 {
1647 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1648 
1649 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1650 }
1651 EXPORT_SYMBOL(freq_reg_info);
1652 
reg_initiator_name(enum nl80211_reg_initiator initiator)1653 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1654 {
1655 	switch (initiator) {
1656 	case NL80211_REGDOM_SET_BY_CORE:
1657 		return "core";
1658 	case NL80211_REGDOM_SET_BY_USER:
1659 		return "user";
1660 	case NL80211_REGDOM_SET_BY_DRIVER:
1661 		return "driver";
1662 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1663 		return "country element";
1664 	default:
1665 		WARN_ON(1);
1666 		return "bug";
1667 	}
1668 }
1669 EXPORT_SYMBOL(reg_initiator_name);
1670 
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1671 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1672 					  const struct ieee80211_reg_rule *reg_rule,
1673 					  const struct ieee80211_channel *chan)
1674 {
1675 	const struct ieee80211_freq_range *freq_range = NULL;
1676 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1677 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1678 
1679 	freq_range = &reg_rule->freq_range;
1680 
1681 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1682 	center_freq_khz = ieee80211_channel_to_khz(chan);
1683 	/* Check if auto calculation requested */
1684 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1685 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1686 
1687 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1688 	if (!cfg80211_does_bw_fit_range(freq_range,
1689 					center_freq_khz,
1690 					MHZ_TO_KHZ(10)))
1691 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1692 	if (!cfg80211_does_bw_fit_range(freq_range,
1693 					center_freq_khz,
1694 					MHZ_TO_KHZ(20)))
1695 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1696 
1697 	if (is_s1g) {
1698 		/* S1G is strict about non overlapping channels. We can
1699 		 * calculate which bandwidth is allowed per channel by finding
1700 		 * the largest bandwidth which cleanly divides the freq_range.
1701 		 */
1702 		int edge_offset;
1703 		int ch_bw = max_bandwidth_khz;
1704 
1705 		while (ch_bw) {
1706 			edge_offset = (center_freq_khz - ch_bw / 2) -
1707 				      freq_range->start_freq_khz;
1708 			if (edge_offset % ch_bw == 0) {
1709 				switch (KHZ_TO_MHZ(ch_bw)) {
1710 				case 1:
1711 					bw_flags |= IEEE80211_CHAN_1MHZ;
1712 					break;
1713 				case 2:
1714 					bw_flags |= IEEE80211_CHAN_2MHZ;
1715 					break;
1716 				case 4:
1717 					bw_flags |= IEEE80211_CHAN_4MHZ;
1718 					break;
1719 				case 8:
1720 					bw_flags |= IEEE80211_CHAN_8MHZ;
1721 					break;
1722 				case 16:
1723 					bw_flags |= IEEE80211_CHAN_16MHZ;
1724 					break;
1725 				default:
1726 					/* If we got here, no bandwidths fit on
1727 					 * this frequency, ie. band edge.
1728 					 */
1729 					bw_flags |= IEEE80211_CHAN_DISABLED;
1730 					break;
1731 				}
1732 				break;
1733 			}
1734 			ch_bw /= 2;
1735 		}
1736 	} else {
1737 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1738 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1739 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1740 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1741 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1742 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1743 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1744 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1745 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1746 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1747 	}
1748 	return bw_flags;
1749 }
1750 
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1751 static void handle_channel_single_rule(struct wiphy *wiphy,
1752 				       enum nl80211_reg_initiator initiator,
1753 				       struct ieee80211_channel *chan,
1754 				       u32 flags,
1755 				       struct regulatory_request *lr,
1756 				       struct wiphy *request_wiphy,
1757 				       const struct ieee80211_reg_rule *reg_rule)
1758 {
1759 	u32 bw_flags = 0;
1760 	const struct ieee80211_power_rule *power_rule = NULL;
1761 	const struct ieee80211_regdomain *regd;
1762 
1763 	regd = reg_get_regdomain(wiphy);
1764 
1765 	power_rule = &reg_rule->power_rule;
1766 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1767 
1768 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1769 	    request_wiphy && request_wiphy == wiphy &&
1770 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1771 		/*
1772 		 * This guarantees the driver's requested regulatory domain
1773 		 * will always be used as a base for further regulatory
1774 		 * settings
1775 		 */
1776 		chan->flags = chan->orig_flags =
1777 			map_regdom_flags(reg_rule->flags) | bw_flags;
1778 		chan->max_antenna_gain = chan->orig_mag =
1779 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1780 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1781 			(int) MBM_TO_DBM(power_rule->max_eirp);
1782 
1783 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1784 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1785 			if (reg_rule->dfs_cac_ms)
1786 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1787 		}
1788 
1789 		return;
1790 	}
1791 
1792 	chan->dfs_state = NL80211_DFS_USABLE;
1793 	chan->dfs_state_entered = jiffies;
1794 
1795 	chan->beacon_found = false;
1796 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1797 	chan->max_antenna_gain =
1798 		min_t(int, chan->orig_mag,
1799 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1800 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1801 
1802 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1803 		if (reg_rule->dfs_cac_ms)
1804 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1805 		else
1806 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1807 	}
1808 
1809 	if (chan->orig_mpwr) {
1810 		/*
1811 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1812 		 * will always follow the passed country IE power settings.
1813 		 */
1814 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1815 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1816 			chan->max_power = chan->max_reg_power;
1817 		else
1818 			chan->max_power = min(chan->orig_mpwr,
1819 					      chan->max_reg_power);
1820 	} else
1821 		chan->max_power = chan->max_reg_power;
1822 }
1823 
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1824 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1825 					  enum nl80211_reg_initiator initiator,
1826 					  struct ieee80211_channel *chan,
1827 					  u32 flags,
1828 					  struct regulatory_request *lr,
1829 					  struct wiphy *request_wiphy,
1830 					  const struct ieee80211_reg_rule *rrule1,
1831 					  const struct ieee80211_reg_rule *rrule2,
1832 					  struct ieee80211_freq_range *comb_range)
1833 {
1834 	u32 bw_flags1 = 0;
1835 	u32 bw_flags2 = 0;
1836 	const struct ieee80211_power_rule *power_rule1 = NULL;
1837 	const struct ieee80211_power_rule *power_rule2 = NULL;
1838 	const struct ieee80211_regdomain *regd;
1839 
1840 	regd = reg_get_regdomain(wiphy);
1841 
1842 	power_rule1 = &rrule1->power_rule;
1843 	power_rule2 = &rrule2->power_rule;
1844 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1845 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1846 
1847 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1848 	    request_wiphy && request_wiphy == wiphy &&
1849 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1850 		/* This guarantees the driver's requested regulatory domain
1851 		 * will always be used as a base for further regulatory
1852 		 * settings
1853 		 */
1854 		chan->flags =
1855 			map_regdom_flags(rrule1->flags) |
1856 			map_regdom_flags(rrule2->flags) |
1857 			bw_flags1 |
1858 			bw_flags2;
1859 		chan->orig_flags = chan->flags;
1860 		chan->max_antenna_gain =
1861 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1862 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1863 		chan->orig_mag = chan->max_antenna_gain;
1864 		chan->max_reg_power =
1865 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1866 			      MBM_TO_DBM(power_rule2->max_eirp));
1867 		chan->max_power = chan->max_reg_power;
1868 		chan->orig_mpwr = chan->max_reg_power;
1869 
1870 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1871 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1872 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1873 				chan->dfs_cac_ms = max_t(unsigned int,
1874 							 rrule1->dfs_cac_ms,
1875 							 rrule2->dfs_cac_ms);
1876 		}
1877 
1878 		return;
1879 	}
1880 
1881 	chan->dfs_state = NL80211_DFS_USABLE;
1882 	chan->dfs_state_entered = jiffies;
1883 
1884 	chan->beacon_found = false;
1885 	chan->flags = flags | bw_flags1 | bw_flags2 |
1886 		      map_regdom_flags(rrule1->flags) |
1887 		      map_regdom_flags(rrule2->flags);
1888 
1889 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1890 	 * (otherwise no adj. rule case), recheck therefore
1891 	 */
1892 	if (cfg80211_does_bw_fit_range(comb_range,
1893 				       ieee80211_channel_to_khz(chan),
1894 				       MHZ_TO_KHZ(10)))
1895 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1896 	if (cfg80211_does_bw_fit_range(comb_range,
1897 				       ieee80211_channel_to_khz(chan),
1898 				       MHZ_TO_KHZ(20)))
1899 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1900 
1901 	chan->max_antenna_gain =
1902 		min_t(int, chan->orig_mag,
1903 		      min_t(int,
1904 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1905 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1906 	chan->max_reg_power = min_t(int,
1907 				    MBM_TO_DBM(power_rule1->max_eirp),
1908 				    MBM_TO_DBM(power_rule2->max_eirp));
1909 
1910 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1911 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 			chan->dfs_cac_ms = max_t(unsigned int,
1913 						 rrule1->dfs_cac_ms,
1914 						 rrule2->dfs_cac_ms);
1915 		else
1916 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917 	}
1918 
1919 	if (chan->orig_mpwr) {
1920 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1921 		 * will always follow the passed country IE power settings.
1922 		 */
1923 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1924 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1925 			chan->max_power = chan->max_reg_power;
1926 		else
1927 			chan->max_power = min(chan->orig_mpwr,
1928 					      chan->max_reg_power);
1929 	} else {
1930 		chan->max_power = chan->max_reg_power;
1931 	}
1932 }
1933 
1934 /* Note that right now we assume the desired channel bandwidth
1935  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1936  * per channel, the primary and the extension channel).
1937  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1938 static void handle_channel(struct wiphy *wiphy,
1939 			   enum nl80211_reg_initiator initiator,
1940 			   struct ieee80211_channel *chan)
1941 {
1942 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1943 	struct regulatory_request *lr = get_last_request();
1944 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1945 	const struct ieee80211_reg_rule *rrule = NULL;
1946 	const struct ieee80211_reg_rule *rrule1 = NULL;
1947 	const struct ieee80211_reg_rule *rrule2 = NULL;
1948 
1949 	u32 flags = chan->orig_flags;
1950 
1951 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1952 	if (IS_ERR(rrule)) {
1953 		/* check for adjacent match, therefore get rules for
1954 		 * chan - 20 MHz and chan + 20 MHz and test
1955 		 * if reg rules are adjacent
1956 		 */
1957 		rrule1 = freq_reg_info(wiphy,
1958 				       orig_chan_freq - MHZ_TO_KHZ(20));
1959 		rrule2 = freq_reg_info(wiphy,
1960 				       orig_chan_freq + MHZ_TO_KHZ(20));
1961 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1962 			struct ieee80211_freq_range comb_range;
1963 
1964 			if (rrule1->freq_range.end_freq_khz !=
1965 			    rrule2->freq_range.start_freq_khz)
1966 				goto disable_chan;
1967 
1968 			comb_range.start_freq_khz =
1969 				rrule1->freq_range.start_freq_khz;
1970 			comb_range.end_freq_khz =
1971 				rrule2->freq_range.end_freq_khz;
1972 			comb_range.max_bandwidth_khz =
1973 				min_t(u32,
1974 				      rrule1->freq_range.max_bandwidth_khz,
1975 				      rrule2->freq_range.max_bandwidth_khz);
1976 
1977 			if (!cfg80211_does_bw_fit_range(&comb_range,
1978 							orig_chan_freq,
1979 							MHZ_TO_KHZ(20)))
1980 				goto disable_chan;
1981 
1982 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1983 						      flags, lr, request_wiphy,
1984 						      rrule1, rrule2,
1985 						      &comb_range);
1986 			return;
1987 		}
1988 
1989 disable_chan:
1990 		/* We will disable all channels that do not match our
1991 		 * received regulatory rule unless the hint is coming
1992 		 * from a Country IE and the Country IE had no information
1993 		 * about a band. The IEEE 802.11 spec allows for an AP
1994 		 * to send only a subset of the regulatory rules allowed,
1995 		 * so an AP in the US that only supports 2.4 GHz may only send
1996 		 * a country IE with information for the 2.4 GHz band
1997 		 * while 5 GHz is still supported.
1998 		 */
1999 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2000 		    PTR_ERR(rrule) == -ERANGE)
2001 			return;
2002 
2003 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2004 		    request_wiphy && request_wiphy == wiphy &&
2005 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2006 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2007 				 chan->center_freq, chan->freq_offset);
2008 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2009 			chan->flags = chan->orig_flags;
2010 		} else {
2011 			pr_debug("Disabling freq %d.%03d MHz\n",
2012 				 chan->center_freq, chan->freq_offset);
2013 			chan->flags |= IEEE80211_CHAN_DISABLED;
2014 		}
2015 		return;
2016 	}
2017 
2018 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2019 				   request_wiphy, rrule);
2020 }
2021 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2022 static void handle_band(struct wiphy *wiphy,
2023 			enum nl80211_reg_initiator initiator,
2024 			struct ieee80211_supported_band *sband)
2025 {
2026 	unsigned int i;
2027 
2028 	if (!sband)
2029 		return;
2030 
2031 	for (i = 0; i < sband->n_channels; i++)
2032 		handle_channel(wiphy, initiator, &sband->channels[i]);
2033 }
2034 
reg_request_cell_base(struct regulatory_request * request)2035 static bool reg_request_cell_base(struct regulatory_request *request)
2036 {
2037 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2038 		return false;
2039 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2040 }
2041 
reg_last_request_cell_base(void)2042 bool reg_last_request_cell_base(void)
2043 {
2044 	return reg_request_cell_base(get_last_request());
2045 }
2046 
2047 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2048 /* Core specific check */
2049 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2050 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2051 {
2052 	struct regulatory_request *lr = get_last_request();
2053 
2054 	if (!reg_num_devs_support_basehint)
2055 		return REG_REQ_IGNORE;
2056 
2057 	if (reg_request_cell_base(lr) &&
2058 	    !regdom_changes(pending_request->alpha2))
2059 		return REG_REQ_ALREADY_SET;
2060 
2061 	return REG_REQ_OK;
2062 }
2063 
2064 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2065 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2066 {
2067 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2068 }
2069 #else
2070 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2071 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2072 {
2073 	return REG_REQ_IGNORE;
2074 }
2075 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2076 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2077 {
2078 	return true;
2079 }
2080 #endif
2081 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2082 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2083 {
2084 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2085 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2086 		return true;
2087 	return false;
2088 }
2089 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2090 static bool ignore_reg_update(struct wiphy *wiphy,
2091 			      enum nl80211_reg_initiator initiator)
2092 {
2093 	struct regulatory_request *lr = get_last_request();
2094 
2095 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2096 		return true;
2097 
2098 	if (!lr) {
2099 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2100 			 reg_initiator_name(initiator));
2101 		return true;
2102 	}
2103 
2104 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2105 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2106 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2107 			 reg_initiator_name(initiator));
2108 		return true;
2109 	}
2110 
2111 	/*
2112 	 * wiphy->regd will be set once the device has its own
2113 	 * desired regulatory domain set
2114 	 */
2115 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2116 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2117 	    !is_world_regdom(lr->alpha2)) {
2118 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2119 			 reg_initiator_name(initiator));
2120 		return true;
2121 	}
2122 
2123 	if (reg_request_cell_base(lr))
2124 		return reg_dev_ignore_cell_hint(wiphy);
2125 
2126 	return false;
2127 }
2128 
reg_is_world_roaming(struct wiphy * wiphy)2129 static bool reg_is_world_roaming(struct wiphy *wiphy)
2130 {
2131 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2132 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2133 	struct regulatory_request *lr = get_last_request();
2134 
2135 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2136 		return true;
2137 
2138 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2139 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2140 		return true;
2141 
2142 	return false;
2143 }
2144 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2145 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2146 			      struct reg_beacon *reg_beacon)
2147 {
2148 	struct ieee80211_supported_band *sband;
2149 	struct ieee80211_channel *chan;
2150 	bool channel_changed = false;
2151 	struct ieee80211_channel chan_before;
2152 
2153 	sband = wiphy->bands[reg_beacon->chan.band];
2154 	chan = &sband->channels[chan_idx];
2155 
2156 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2157 		return;
2158 
2159 	if (chan->beacon_found)
2160 		return;
2161 
2162 	chan->beacon_found = true;
2163 
2164 	if (!reg_is_world_roaming(wiphy))
2165 		return;
2166 
2167 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2168 		return;
2169 
2170 	chan_before = *chan;
2171 
2172 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2173 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2174 		channel_changed = true;
2175 	}
2176 
2177 	if (channel_changed)
2178 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2179 }
2180 
2181 /*
2182  * Called when a scan on a wiphy finds a beacon on
2183  * new channel
2184  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2185 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2186 				    struct reg_beacon *reg_beacon)
2187 {
2188 	unsigned int i;
2189 	struct ieee80211_supported_band *sband;
2190 
2191 	if (!wiphy->bands[reg_beacon->chan.band])
2192 		return;
2193 
2194 	sband = wiphy->bands[reg_beacon->chan.band];
2195 
2196 	for (i = 0; i < sband->n_channels; i++)
2197 		handle_reg_beacon(wiphy, i, reg_beacon);
2198 }
2199 
2200 /*
2201  * Called upon reg changes or a new wiphy is added
2202  */
wiphy_update_beacon_reg(struct wiphy * wiphy)2203 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2204 {
2205 	unsigned int i;
2206 	struct ieee80211_supported_band *sband;
2207 	struct reg_beacon *reg_beacon;
2208 
2209 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2210 		if (!wiphy->bands[reg_beacon->chan.band])
2211 			continue;
2212 		sband = wiphy->bands[reg_beacon->chan.band];
2213 		for (i = 0; i < sband->n_channels; i++)
2214 			handle_reg_beacon(wiphy, i, reg_beacon);
2215 	}
2216 }
2217 
2218 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2219 static void reg_process_beacons(struct wiphy *wiphy)
2220 {
2221 	/*
2222 	 * Means we are just firing up cfg80211, so no beacons would
2223 	 * have been processed yet.
2224 	 */
2225 	if (!last_request)
2226 		return;
2227 	wiphy_update_beacon_reg(wiphy);
2228 }
2229 
is_ht40_allowed(struct ieee80211_channel * chan)2230 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2231 {
2232 	if (!chan)
2233 		return false;
2234 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2235 		return false;
2236 	/* This would happen when regulatory rules disallow HT40 completely */
2237 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2238 		return false;
2239 	return true;
2240 }
2241 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2242 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2243 					 struct ieee80211_channel *channel)
2244 {
2245 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2246 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2247 	const struct ieee80211_regdomain *regd;
2248 	unsigned int i;
2249 	u32 flags;
2250 
2251 	if (!is_ht40_allowed(channel)) {
2252 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2253 		return;
2254 	}
2255 
2256 	/*
2257 	 * We need to ensure the extension channels exist to
2258 	 * be able to use HT40- or HT40+, this finds them (or not)
2259 	 */
2260 	for (i = 0; i < sband->n_channels; i++) {
2261 		struct ieee80211_channel *c = &sband->channels[i];
2262 
2263 		if (c->center_freq == (channel->center_freq - 20))
2264 			channel_before = c;
2265 		if (c->center_freq == (channel->center_freq + 20))
2266 			channel_after = c;
2267 	}
2268 
2269 	flags = 0;
2270 	regd = get_wiphy_regdom(wiphy);
2271 	if (regd) {
2272 		const struct ieee80211_reg_rule *reg_rule =
2273 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2274 					   regd, MHZ_TO_KHZ(20));
2275 
2276 		if (!IS_ERR(reg_rule))
2277 			flags = reg_rule->flags;
2278 	}
2279 
2280 	/*
2281 	 * Please note that this assumes target bandwidth is 20 MHz,
2282 	 * if that ever changes we also need to change the below logic
2283 	 * to include that as well.
2284 	 */
2285 	if (!is_ht40_allowed(channel_before) ||
2286 	    flags & NL80211_RRF_NO_HT40MINUS)
2287 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2288 	else
2289 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2290 
2291 	if (!is_ht40_allowed(channel_after) ||
2292 	    flags & NL80211_RRF_NO_HT40PLUS)
2293 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2294 	else
2295 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2296 }
2297 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2298 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2299 				      struct ieee80211_supported_band *sband)
2300 {
2301 	unsigned int i;
2302 
2303 	if (!sband)
2304 		return;
2305 
2306 	for (i = 0; i < sband->n_channels; i++)
2307 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2308 }
2309 
reg_process_ht_flags(struct wiphy * wiphy)2310 static void reg_process_ht_flags(struct wiphy *wiphy)
2311 {
2312 	enum nl80211_band band;
2313 
2314 	if (!wiphy)
2315 		return;
2316 
2317 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2318 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2319 }
2320 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2321 static void reg_call_notifier(struct wiphy *wiphy,
2322 			      struct regulatory_request *request)
2323 {
2324 	if (wiphy->reg_notifier)
2325 		wiphy->reg_notifier(wiphy, request);
2326 }
2327 
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2328 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2329 {
2330 	struct cfg80211_chan_def chandef = {};
2331 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2332 	enum nl80211_iftype iftype;
2333 
2334 	wdev_lock(wdev);
2335 	iftype = wdev->iftype;
2336 
2337 	/* make sure the interface is active */
2338 	if (!wdev->netdev || !netif_running(wdev->netdev))
2339 		goto wdev_inactive_unlock;
2340 
2341 	switch (iftype) {
2342 	case NL80211_IFTYPE_AP:
2343 	case NL80211_IFTYPE_P2P_GO:
2344 		if (!wdev->beacon_interval)
2345 			goto wdev_inactive_unlock;
2346 		chandef = wdev->chandef;
2347 		break;
2348 	case NL80211_IFTYPE_ADHOC:
2349 		if (!wdev->ssid_len)
2350 			goto wdev_inactive_unlock;
2351 		chandef = wdev->chandef;
2352 		break;
2353 	case NL80211_IFTYPE_STATION:
2354 	case NL80211_IFTYPE_P2P_CLIENT:
2355 		if (!wdev->current_bss ||
2356 		    !wdev->current_bss->pub.channel)
2357 			goto wdev_inactive_unlock;
2358 
2359 		if (!rdev->ops->get_channel ||
2360 		    rdev_get_channel(rdev, wdev, &chandef))
2361 			cfg80211_chandef_create(&chandef,
2362 						wdev->current_bss->pub.channel,
2363 						NL80211_CHAN_NO_HT);
2364 		break;
2365 	case NL80211_IFTYPE_MONITOR:
2366 	case NL80211_IFTYPE_AP_VLAN:
2367 	case NL80211_IFTYPE_P2P_DEVICE:
2368 		/* no enforcement required */
2369 		break;
2370 	default:
2371 		/* others not implemented for now */
2372 		WARN_ON(1);
2373 		break;
2374 	}
2375 
2376 	wdev_unlock(wdev);
2377 
2378 	switch (iftype) {
2379 	case NL80211_IFTYPE_AP:
2380 	case NL80211_IFTYPE_P2P_GO:
2381 	case NL80211_IFTYPE_ADHOC:
2382 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2383 	case NL80211_IFTYPE_STATION:
2384 	case NL80211_IFTYPE_P2P_CLIENT:
2385 		return cfg80211_chandef_usable(wiphy, &chandef,
2386 					       IEEE80211_CHAN_DISABLED);
2387 	default:
2388 		break;
2389 	}
2390 
2391 	return true;
2392 
2393 wdev_inactive_unlock:
2394 	wdev_unlock(wdev);
2395 	return true;
2396 }
2397 
reg_leave_invalid_chans(struct wiphy * wiphy)2398 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2399 {
2400 	struct wireless_dev *wdev;
2401 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2402 
2403 	ASSERT_RTNL();
2404 
2405 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2406 		if (!reg_wdev_chan_valid(wiphy, wdev))
2407 			cfg80211_leave(rdev, wdev);
2408 }
2409 
reg_check_chans_work(struct work_struct * work)2410 static void reg_check_chans_work(struct work_struct *work)
2411 {
2412 	struct cfg80211_registered_device *rdev;
2413 
2414 	pr_debug("Verifying active interfaces after reg change\n");
2415 	rtnl_lock();
2416 
2417 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2418 		if (!(rdev->wiphy.regulatory_flags &
2419 		      REGULATORY_IGNORE_STALE_KICKOFF))
2420 			reg_leave_invalid_chans(&rdev->wiphy);
2421 
2422 	rtnl_unlock();
2423 }
2424 
reg_check_channels(void)2425 static void reg_check_channels(void)
2426 {
2427 	/*
2428 	 * Give usermode a chance to do something nicer (move to another
2429 	 * channel, orderly disconnection), before forcing a disconnection.
2430 	 */
2431 	mod_delayed_work(system_power_efficient_wq,
2432 			 &reg_check_chans,
2433 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2434 }
2435 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2436 static void wiphy_update_regulatory(struct wiphy *wiphy,
2437 				    enum nl80211_reg_initiator initiator)
2438 {
2439 	enum nl80211_band band;
2440 	struct regulatory_request *lr = get_last_request();
2441 
2442 	if (ignore_reg_update(wiphy, initiator)) {
2443 		/*
2444 		 * Regulatory updates set by CORE are ignored for custom
2445 		 * regulatory cards. Let us notify the changes to the driver,
2446 		 * as some drivers used this to restore its orig_* reg domain.
2447 		 */
2448 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2449 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2450 		    !(wiphy->regulatory_flags &
2451 		      REGULATORY_WIPHY_SELF_MANAGED))
2452 			reg_call_notifier(wiphy, lr);
2453 		return;
2454 	}
2455 
2456 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2457 
2458 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2459 		handle_band(wiphy, initiator, wiphy->bands[band]);
2460 
2461 	reg_process_beacons(wiphy);
2462 	reg_process_ht_flags(wiphy);
2463 	reg_call_notifier(wiphy, lr);
2464 }
2465 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2466 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2467 {
2468 	struct cfg80211_registered_device *rdev;
2469 	struct wiphy *wiphy;
2470 
2471 	ASSERT_RTNL();
2472 
2473 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2474 		wiphy = &rdev->wiphy;
2475 		wiphy_update_regulatory(wiphy, initiator);
2476 	}
2477 
2478 	reg_check_channels();
2479 }
2480 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2481 static void handle_channel_custom(struct wiphy *wiphy,
2482 				  struct ieee80211_channel *chan,
2483 				  const struct ieee80211_regdomain *regd,
2484 				  u32 min_bw)
2485 {
2486 	u32 bw_flags = 0;
2487 	const struct ieee80211_reg_rule *reg_rule = NULL;
2488 	const struct ieee80211_power_rule *power_rule = NULL;
2489 	u32 bw, center_freq_khz;
2490 
2491 	center_freq_khz = ieee80211_channel_to_khz(chan);
2492 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2493 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2494 		if (!IS_ERR(reg_rule))
2495 			break;
2496 	}
2497 
2498 	if (IS_ERR_OR_NULL(reg_rule)) {
2499 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2500 			 chan->center_freq, chan->freq_offset);
2501 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2502 			chan->flags |= IEEE80211_CHAN_DISABLED;
2503 		} else {
2504 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2505 			chan->flags = chan->orig_flags;
2506 		}
2507 		return;
2508 	}
2509 
2510 	power_rule = &reg_rule->power_rule;
2511 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2512 
2513 	chan->dfs_state_entered = jiffies;
2514 	chan->dfs_state = NL80211_DFS_USABLE;
2515 
2516 	chan->beacon_found = false;
2517 
2518 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2519 		chan->flags = chan->orig_flags | bw_flags |
2520 			      map_regdom_flags(reg_rule->flags);
2521 	else
2522 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2523 
2524 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2525 	chan->max_reg_power = chan->max_power =
2526 		(int) MBM_TO_DBM(power_rule->max_eirp);
2527 
2528 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2529 		if (reg_rule->dfs_cac_ms)
2530 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2531 		else
2532 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2533 	}
2534 
2535 	chan->max_power = chan->max_reg_power;
2536 }
2537 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2538 static void handle_band_custom(struct wiphy *wiphy,
2539 			       struct ieee80211_supported_band *sband,
2540 			       const struct ieee80211_regdomain *regd)
2541 {
2542 	unsigned int i;
2543 
2544 	if (!sband)
2545 		return;
2546 
2547 	/*
2548 	 * We currently assume that you always want at least 20 MHz,
2549 	 * otherwise channel 12 might get enabled if this rule is
2550 	 * compatible to US, which permits 2402 - 2472 MHz.
2551 	 */
2552 	for (i = 0; i < sband->n_channels; i++)
2553 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2554 				      MHZ_TO_KHZ(20));
2555 }
2556 
2557 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2558 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2559 				   const struct ieee80211_regdomain *regd)
2560 {
2561 	enum nl80211_band band;
2562 	unsigned int bands_set = 0;
2563 
2564 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2565 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2566 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2567 
2568 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2569 		if (!wiphy->bands[band])
2570 			continue;
2571 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2572 		bands_set++;
2573 	}
2574 
2575 	/*
2576 	 * no point in calling this if it won't have any effect
2577 	 * on your device's supported bands.
2578 	 */
2579 	WARN_ON(!bands_set);
2580 }
2581 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2582 
reg_set_request_processed(void)2583 static void reg_set_request_processed(void)
2584 {
2585 	bool need_more_processing = false;
2586 	struct regulatory_request *lr = get_last_request();
2587 
2588 	lr->processed = true;
2589 
2590 	spin_lock(&reg_requests_lock);
2591 	if (!list_empty(&reg_requests_list))
2592 		need_more_processing = true;
2593 	spin_unlock(&reg_requests_lock);
2594 
2595 	cancel_crda_timeout();
2596 
2597 	if (need_more_processing)
2598 		schedule_work(&reg_work);
2599 }
2600 
2601 /**
2602  * reg_process_hint_core - process core regulatory requests
2603  * @core_request: a pending core regulatory request
2604  *
2605  * The wireless subsystem can use this function to process
2606  * a regulatory request issued by the regulatory core.
2607  */
2608 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2609 reg_process_hint_core(struct regulatory_request *core_request)
2610 {
2611 	if (reg_query_database(core_request)) {
2612 		core_request->intersect = false;
2613 		core_request->processed = false;
2614 		reg_update_last_request(core_request);
2615 		return REG_REQ_OK;
2616 	}
2617 
2618 	return REG_REQ_IGNORE;
2619 }
2620 
2621 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2622 __reg_process_hint_user(struct regulatory_request *user_request)
2623 {
2624 	struct regulatory_request *lr = get_last_request();
2625 
2626 	if (reg_request_cell_base(user_request))
2627 		return reg_ignore_cell_hint(user_request);
2628 
2629 	if (reg_request_cell_base(lr))
2630 		return REG_REQ_IGNORE;
2631 
2632 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2633 		return REG_REQ_INTERSECT;
2634 	/*
2635 	 * If the user knows better the user should set the regdom
2636 	 * to their country before the IE is picked up
2637 	 */
2638 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2639 	    lr->intersect)
2640 		return REG_REQ_IGNORE;
2641 	/*
2642 	 * Process user requests only after previous user/driver/core
2643 	 * requests have been processed
2644 	 */
2645 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2646 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2647 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2648 	    regdom_changes(lr->alpha2))
2649 		return REG_REQ_IGNORE;
2650 
2651 	if (!regdom_changes(user_request->alpha2))
2652 		return REG_REQ_ALREADY_SET;
2653 
2654 	return REG_REQ_OK;
2655 }
2656 
2657 /**
2658  * reg_process_hint_user - process user regulatory requests
2659  * @user_request: a pending user regulatory request
2660  *
2661  * The wireless subsystem can use this function to process
2662  * a regulatory request initiated by userspace.
2663  */
2664 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2665 reg_process_hint_user(struct regulatory_request *user_request)
2666 {
2667 	enum reg_request_treatment treatment;
2668 
2669 	treatment = __reg_process_hint_user(user_request);
2670 	if (treatment == REG_REQ_IGNORE ||
2671 	    treatment == REG_REQ_ALREADY_SET)
2672 		return REG_REQ_IGNORE;
2673 
2674 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2675 	user_request->processed = false;
2676 
2677 	if (reg_query_database(user_request)) {
2678 		reg_update_last_request(user_request);
2679 		user_alpha2[0] = user_request->alpha2[0];
2680 		user_alpha2[1] = user_request->alpha2[1];
2681 		return REG_REQ_OK;
2682 	}
2683 
2684 	return REG_REQ_IGNORE;
2685 }
2686 
2687 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2688 __reg_process_hint_driver(struct regulatory_request *driver_request)
2689 {
2690 	struct regulatory_request *lr = get_last_request();
2691 
2692 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2693 		if (regdom_changes(driver_request->alpha2))
2694 			return REG_REQ_OK;
2695 		return REG_REQ_ALREADY_SET;
2696 	}
2697 
2698 	/*
2699 	 * This would happen if you unplug and plug your card
2700 	 * back in or if you add a new device for which the previously
2701 	 * loaded card also agrees on the regulatory domain.
2702 	 */
2703 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2704 	    !regdom_changes(driver_request->alpha2))
2705 		return REG_REQ_ALREADY_SET;
2706 
2707 	return REG_REQ_INTERSECT;
2708 }
2709 
2710 /**
2711  * reg_process_hint_driver - process driver regulatory requests
2712  * @wiphy: the wireless device for the regulatory request
2713  * @driver_request: a pending driver regulatory request
2714  *
2715  * The wireless subsystem can use this function to process
2716  * a regulatory request issued by an 802.11 driver.
2717  *
2718  * Returns one of the different reg request treatment values.
2719  */
2720 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2721 reg_process_hint_driver(struct wiphy *wiphy,
2722 			struct regulatory_request *driver_request)
2723 {
2724 	const struct ieee80211_regdomain *regd, *tmp;
2725 	enum reg_request_treatment treatment;
2726 
2727 	treatment = __reg_process_hint_driver(driver_request);
2728 
2729 	switch (treatment) {
2730 	case REG_REQ_OK:
2731 		break;
2732 	case REG_REQ_IGNORE:
2733 		return REG_REQ_IGNORE;
2734 	case REG_REQ_INTERSECT:
2735 	case REG_REQ_ALREADY_SET:
2736 		regd = reg_copy_regd(get_cfg80211_regdom());
2737 		if (IS_ERR(regd))
2738 			return REG_REQ_IGNORE;
2739 
2740 		tmp = get_wiphy_regdom(wiphy);
2741 		rcu_assign_pointer(wiphy->regd, regd);
2742 		rcu_free_regdom(tmp);
2743 	}
2744 
2745 
2746 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2747 	driver_request->processed = false;
2748 
2749 	/*
2750 	 * Since CRDA will not be called in this case as we already
2751 	 * have applied the requested regulatory domain before we just
2752 	 * inform userspace we have processed the request
2753 	 */
2754 	if (treatment == REG_REQ_ALREADY_SET) {
2755 		nl80211_send_reg_change_event(driver_request);
2756 		reg_update_last_request(driver_request);
2757 		reg_set_request_processed();
2758 		return REG_REQ_ALREADY_SET;
2759 	}
2760 
2761 	if (reg_query_database(driver_request)) {
2762 		reg_update_last_request(driver_request);
2763 		return REG_REQ_OK;
2764 	}
2765 
2766 	return REG_REQ_IGNORE;
2767 }
2768 
2769 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2770 __reg_process_hint_country_ie(struct wiphy *wiphy,
2771 			      struct regulatory_request *country_ie_request)
2772 {
2773 	struct wiphy *last_wiphy = NULL;
2774 	struct regulatory_request *lr = get_last_request();
2775 
2776 	if (reg_request_cell_base(lr)) {
2777 		/* Trust a Cell base station over the AP's country IE */
2778 		if (regdom_changes(country_ie_request->alpha2))
2779 			return REG_REQ_IGNORE;
2780 		return REG_REQ_ALREADY_SET;
2781 	} else {
2782 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2783 			return REG_REQ_IGNORE;
2784 	}
2785 
2786 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2787 		return -EINVAL;
2788 
2789 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2790 		return REG_REQ_OK;
2791 
2792 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2793 
2794 	if (last_wiphy != wiphy) {
2795 		/*
2796 		 * Two cards with two APs claiming different
2797 		 * Country IE alpha2s. We could
2798 		 * intersect them, but that seems unlikely
2799 		 * to be correct. Reject second one for now.
2800 		 */
2801 		if (regdom_changes(country_ie_request->alpha2))
2802 			return REG_REQ_IGNORE;
2803 		return REG_REQ_ALREADY_SET;
2804 	}
2805 
2806 	if (regdom_changes(country_ie_request->alpha2))
2807 		return REG_REQ_OK;
2808 	return REG_REQ_ALREADY_SET;
2809 }
2810 
2811 /**
2812  * reg_process_hint_country_ie - process regulatory requests from country IEs
2813  * @wiphy: the wireless device for the regulatory request
2814  * @country_ie_request: a regulatory request from a country IE
2815  *
2816  * The wireless subsystem can use this function to process
2817  * a regulatory request issued by a country Information Element.
2818  *
2819  * Returns one of the different reg request treatment values.
2820  */
2821 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2822 reg_process_hint_country_ie(struct wiphy *wiphy,
2823 			    struct regulatory_request *country_ie_request)
2824 {
2825 	enum reg_request_treatment treatment;
2826 
2827 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2828 
2829 	switch (treatment) {
2830 	case REG_REQ_OK:
2831 		break;
2832 	case REG_REQ_IGNORE:
2833 		return REG_REQ_IGNORE;
2834 	case REG_REQ_ALREADY_SET:
2835 		reg_free_request(country_ie_request);
2836 		return REG_REQ_ALREADY_SET;
2837 	case REG_REQ_INTERSECT:
2838 		/*
2839 		 * This doesn't happen yet, not sure we
2840 		 * ever want to support it for this case.
2841 		 */
2842 		WARN_ONCE(1, "Unexpected intersection for country elements");
2843 		return REG_REQ_IGNORE;
2844 	}
2845 
2846 	country_ie_request->intersect = false;
2847 	country_ie_request->processed = false;
2848 
2849 	if (reg_query_database(country_ie_request)) {
2850 		reg_update_last_request(country_ie_request);
2851 		return REG_REQ_OK;
2852 	}
2853 
2854 	return REG_REQ_IGNORE;
2855 }
2856 
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2857 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2858 {
2859 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2860 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2861 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2862 	bool dfs_domain_same;
2863 
2864 	rcu_read_lock();
2865 
2866 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2867 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2868 	if (!wiphy1_regd)
2869 		wiphy1_regd = cfg80211_regd;
2870 
2871 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2872 	if (!wiphy2_regd)
2873 		wiphy2_regd = cfg80211_regd;
2874 
2875 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2876 
2877 	rcu_read_unlock();
2878 
2879 	return dfs_domain_same;
2880 }
2881 
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2882 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2883 				    struct ieee80211_channel *src_chan)
2884 {
2885 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2886 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2887 		return;
2888 
2889 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2890 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2891 		return;
2892 
2893 	if (src_chan->center_freq == dst_chan->center_freq &&
2894 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2895 		dst_chan->dfs_state = src_chan->dfs_state;
2896 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2897 	}
2898 }
2899 
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2900 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2901 				       struct wiphy *src_wiphy)
2902 {
2903 	struct ieee80211_supported_band *src_sband, *dst_sband;
2904 	struct ieee80211_channel *src_chan, *dst_chan;
2905 	int i, j, band;
2906 
2907 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2908 		return;
2909 
2910 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2911 		dst_sband = dst_wiphy->bands[band];
2912 		src_sband = src_wiphy->bands[band];
2913 		if (!dst_sband || !src_sband)
2914 			continue;
2915 
2916 		for (i = 0; i < dst_sband->n_channels; i++) {
2917 			dst_chan = &dst_sband->channels[i];
2918 			for (j = 0; j < src_sband->n_channels; j++) {
2919 				src_chan = &src_sband->channels[j];
2920 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2921 			}
2922 		}
2923 	}
2924 }
2925 
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2926 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2927 {
2928 	struct cfg80211_registered_device *rdev;
2929 
2930 	ASSERT_RTNL();
2931 
2932 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2933 		if (wiphy == &rdev->wiphy)
2934 			continue;
2935 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2936 	}
2937 }
2938 
2939 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2940 static void reg_process_hint(struct regulatory_request *reg_request)
2941 {
2942 	struct wiphy *wiphy = NULL;
2943 	enum reg_request_treatment treatment;
2944 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2945 
2946 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2947 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2948 
2949 	switch (initiator) {
2950 	case NL80211_REGDOM_SET_BY_CORE:
2951 		treatment = reg_process_hint_core(reg_request);
2952 		break;
2953 	case NL80211_REGDOM_SET_BY_USER:
2954 		treatment = reg_process_hint_user(reg_request);
2955 		break;
2956 	case NL80211_REGDOM_SET_BY_DRIVER:
2957 		if (!wiphy)
2958 			goto out_free;
2959 		treatment = reg_process_hint_driver(wiphy, reg_request);
2960 		break;
2961 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2962 		if (!wiphy)
2963 			goto out_free;
2964 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2965 		break;
2966 	default:
2967 		WARN(1, "invalid initiator %d\n", initiator);
2968 		goto out_free;
2969 	}
2970 
2971 	if (treatment == REG_REQ_IGNORE)
2972 		goto out_free;
2973 
2974 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2975 	     "unexpected treatment value %d\n", treatment);
2976 
2977 	/* This is required so that the orig_* parameters are saved.
2978 	 * NOTE: treatment must be set for any case that reaches here!
2979 	 */
2980 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2981 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2982 		wiphy_update_regulatory(wiphy, initiator);
2983 		wiphy_all_share_dfs_chan_state(wiphy);
2984 		reg_check_channels();
2985 	}
2986 
2987 	return;
2988 
2989 out_free:
2990 	reg_free_request(reg_request);
2991 }
2992 
notify_self_managed_wiphys(struct regulatory_request * request)2993 static void notify_self_managed_wiphys(struct regulatory_request *request)
2994 {
2995 	struct cfg80211_registered_device *rdev;
2996 	struct wiphy *wiphy;
2997 
2998 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2999 		wiphy = &rdev->wiphy;
3000 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3001 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3002 			reg_call_notifier(wiphy, request);
3003 	}
3004 }
3005 
3006 /*
3007  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3008  * Regulatory hints come on a first come first serve basis and we
3009  * must process each one atomically.
3010  */
reg_process_pending_hints(void)3011 static void reg_process_pending_hints(void)
3012 {
3013 	struct regulatory_request *reg_request, *lr;
3014 
3015 	lr = get_last_request();
3016 
3017 	/* When last_request->processed becomes true this will be rescheduled */
3018 	if (lr && !lr->processed) {
3019 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3020 		return;
3021 	}
3022 
3023 	spin_lock(&reg_requests_lock);
3024 
3025 	if (list_empty(&reg_requests_list)) {
3026 		spin_unlock(&reg_requests_lock);
3027 		return;
3028 	}
3029 
3030 	reg_request = list_first_entry(&reg_requests_list,
3031 				       struct regulatory_request,
3032 				       list);
3033 	list_del_init(&reg_request->list);
3034 
3035 	spin_unlock(&reg_requests_lock);
3036 
3037 	notify_self_managed_wiphys(reg_request);
3038 
3039 	reg_process_hint(reg_request);
3040 
3041 	lr = get_last_request();
3042 
3043 	spin_lock(&reg_requests_lock);
3044 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3045 		schedule_work(&reg_work);
3046 	spin_unlock(&reg_requests_lock);
3047 }
3048 
3049 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3050 static void reg_process_pending_beacon_hints(void)
3051 {
3052 	struct cfg80211_registered_device *rdev;
3053 	struct reg_beacon *pending_beacon, *tmp;
3054 
3055 	/* This goes through the _pending_ beacon list */
3056 	spin_lock_bh(&reg_pending_beacons_lock);
3057 
3058 	list_for_each_entry_safe(pending_beacon, tmp,
3059 				 &reg_pending_beacons, list) {
3060 		list_del_init(&pending_beacon->list);
3061 
3062 		/* Applies the beacon hint to current wiphys */
3063 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3064 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3065 
3066 		/* Remembers the beacon hint for new wiphys or reg changes */
3067 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3068 	}
3069 
3070 	spin_unlock_bh(&reg_pending_beacons_lock);
3071 }
3072 
reg_process_self_managed_hints(void)3073 static void reg_process_self_managed_hints(void)
3074 {
3075 	struct cfg80211_registered_device *rdev;
3076 	struct wiphy *wiphy;
3077 	const struct ieee80211_regdomain *tmp;
3078 	const struct ieee80211_regdomain *regd;
3079 	enum nl80211_band band;
3080 	struct regulatory_request request = {};
3081 
3082 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3083 		wiphy = &rdev->wiphy;
3084 
3085 		spin_lock(&reg_requests_lock);
3086 		regd = rdev->requested_regd;
3087 		rdev->requested_regd = NULL;
3088 		spin_unlock(&reg_requests_lock);
3089 
3090 		if (regd == NULL)
3091 			continue;
3092 
3093 		tmp = get_wiphy_regdom(wiphy);
3094 		rcu_assign_pointer(wiphy->regd, regd);
3095 		rcu_free_regdom(tmp);
3096 
3097 		for (band = 0; band < NUM_NL80211_BANDS; band++)
3098 			handle_band_custom(wiphy, wiphy->bands[band], regd);
3099 
3100 		reg_process_ht_flags(wiphy);
3101 
3102 		request.wiphy_idx = get_wiphy_idx(wiphy);
3103 		request.alpha2[0] = regd->alpha2[0];
3104 		request.alpha2[1] = regd->alpha2[1];
3105 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3106 
3107 		nl80211_send_wiphy_reg_change_event(&request);
3108 	}
3109 
3110 	reg_check_channels();
3111 }
3112 
reg_todo(struct work_struct * work)3113 static void reg_todo(struct work_struct *work)
3114 {
3115 	rtnl_lock();
3116 	reg_process_pending_hints();
3117 	reg_process_pending_beacon_hints();
3118 	reg_process_self_managed_hints();
3119 	rtnl_unlock();
3120 }
3121 
queue_regulatory_request(struct regulatory_request * request)3122 static void queue_regulatory_request(struct regulatory_request *request)
3123 {
3124 	request->alpha2[0] = toupper(request->alpha2[0]);
3125 	request->alpha2[1] = toupper(request->alpha2[1]);
3126 
3127 	spin_lock(&reg_requests_lock);
3128 	list_add_tail(&request->list, &reg_requests_list);
3129 	spin_unlock(&reg_requests_lock);
3130 
3131 	schedule_work(&reg_work);
3132 }
3133 
3134 /*
3135  * Core regulatory hint -- happens during cfg80211_init()
3136  * and when we restore regulatory settings.
3137  */
regulatory_hint_core(const char * alpha2)3138 static int regulatory_hint_core(const char *alpha2)
3139 {
3140 	struct regulatory_request *request;
3141 
3142 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3143 	if (!request)
3144 		return -ENOMEM;
3145 
3146 	request->alpha2[0] = alpha2[0];
3147 	request->alpha2[1] = alpha2[1];
3148 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3149 	request->wiphy_idx = WIPHY_IDX_INVALID;
3150 
3151 	queue_regulatory_request(request);
3152 
3153 	return 0;
3154 }
3155 
3156 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3157 int regulatory_hint_user(const char *alpha2,
3158 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3159 {
3160 	struct regulatory_request *request;
3161 
3162 	if (WARN_ON(!alpha2))
3163 		return -EINVAL;
3164 
3165 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3166 		return -EINVAL;
3167 
3168 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3169 	if (!request)
3170 		return -ENOMEM;
3171 
3172 	request->wiphy_idx = WIPHY_IDX_INVALID;
3173 	request->alpha2[0] = alpha2[0];
3174 	request->alpha2[1] = alpha2[1];
3175 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3176 	request->user_reg_hint_type = user_reg_hint_type;
3177 
3178 	/* Allow calling CRDA again */
3179 	reset_crda_timeouts();
3180 
3181 	queue_regulatory_request(request);
3182 
3183 	return 0;
3184 }
3185 
regulatory_hint_indoor(bool is_indoor,u32 portid)3186 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3187 {
3188 	spin_lock(&reg_indoor_lock);
3189 
3190 	/* It is possible that more than one user space process is trying to
3191 	 * configure the indoor setting. To handle such cases, clear the indoor
3192 	 * setting in case that some process does not think that the device
3193 	 * is operating in an indoor environment. In addition, if a user space
3194 	 * process indicates that it is controlling the indoor setting, save its
3195 	 * portid, i.e., make it the owner.
3196 	 */
3197 	reg_is_indoor = is_indoor;
3198 	if (reg_is_indoor) {
3199 		if (!reg_is_indoor_portid)
3200 			reg_is_indoor_portid = portid;
3201 	} else {
3202 		reg_is_indoor_portid = 0;
3203 	}
3204 
3205 	spin_unlock(&reg_indoor_lock);
3206 
3207 	if (!is_indoor)
3208 		reg_check_channels();
3209 
3210 	return 0;
3211 }
3212 
regulatory_netlink_notify(u32 portid)3213 void regulatory_netlink_notify(u32 portid)
3214 {
3215 	spin_lock(&reg_indoor_lock);
3216 
3217 	if (reg_is_indoor_portid != portid) {
3218 		spin_unlock(&reg_indoor_lock);
3219 		return;
3220 	}
3221 
3222 	reg_is_indoor = false;
3223 	reg_is_indoor_portid = 0;
3224 
3225 	spin_unlock(&reg_indoor_lock);
3226 
3227 	reg_check_channels();
3228 }
3229 
3230 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3231 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3232 {
3233 	struct regulatory_request *request;
3234 
3235 	if (WARN_ON(!alpha2 || !wiphy))
3236 		return -EINVAL;
3237 
3238 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3239 
3240 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3241 	if (!request)
3242 		return -ENOMEM;
3243 
3244 	request->wiphy_idx = get_wiphy_idx(wiphy);
3245 
3246 	request->alpha2[0] = alpha2[0];
3247 	request->alpha2[1] = alpha2[1];
3248 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3249 
3250 	/* Allow calling CRDA again */
3251 	reset_crda_timeouts();
3252 
3253 	queue_regulatory_request(request);
3254 
3255 	return 0;
3256 }
3257 EXPORT_SYMBOL(regulatory_hint);
3258 
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3259 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3260 				const u8 *country_ie, u8 country_ie_len)
3261 {
3262 	char alpha2[2];
3263 	enum environment_cap env = ENVIRON_ANY;
3264 	struct regulatory_request *request = NULL, *lr;
3265 
3266 	/* IE len must be evenly divisible by 2 */
3267 	if (country_ie_len & 0x01)
3268 		return;
3269 
3270 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3271 		return;
3272 
3273 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3274 	if (!request)
3275 		return;
3276 
3277 	alpha2[0] = country_ie[0];
3278 	alpha2[1] = country_ie[1];
3279 
3280 	if (country_ie[2] == 'I')
3281 		env = ENVIRON_INDOOR;
3282 	else if (country_ie[2] == 'O')
3283 		env = ENVIRON_OUTDOOR;
3284 
3285 	rcu_read_lock();
3286 	lr = get_last_request();
3287 
3288 	if (unlikely(!lr))
3289 		goto out;
3290 
3291 	/*
3292 	 * We will run this only upon a successful connection on cfg80211.
3293 	 * We leave conflict resolution to the workqueue, where can hold
3294 	 * the RTNL.
3295 	 */
3296 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3297 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3298 		goto out;
3299 
3300 	request->wiphy_idx = get_wiphy_idx(wiphy);
3301 	request->alpha2[0] = alpha2[0];
3302 	request->alpha2[1] = alpha2[1];
3303 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3304 	request->country_ie_env = env;
3305 
3306 	/* Allow calling CRDA again */
3307 	reset_crda_timeouts();
3308 
3309 	queue_regulatory_request(request);
3310 	request = NULL;
3311 out:
3312 	kfree(request);
3313 	rcu_read_unlock();
3314 }
3315 
restore_alpha2(char * alpha2,bool reset_user)3316 static void restore_alpha2(char *alpha2, bool reset_user)
3317 {
3318 	/* indicates there is no alpha2 to consider for restoration */
3319 	alpha2[0] = '9';
3320 	alpha2[1] = '7';
3321 
3322 	/* The user setting has precedence over the module parameter */
3323 	if (is_user_regdom_saved()) {
3324 		/* Unless we're asked to ignore it and reset it */
3325 		if (reset_user) {
3326 			pr_debug("Restoring regulatory settings including user preference\n");
3327 			user_alpha2[0] = '9';
3328 			user_alpha2[1] = '7';
3329 
3330 			/*
3331 			 * If we're ignoring user settings, we still need to
3332 			 * check the module parameter to ensure we put things
3333 			 * back as they were for a full restore.
3334 			 */
3335 			if (!is_world_regdom(ieee80211_regdom)) {
3336 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3337 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3338 				alpha2[0] = ieee80211_regdom[0];
3339 				alpha2[1] = ieee80211_regdom[1];
3340 			}
3341 		} else {
3342 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3343 				 user_alpha2[0], user_alpha2[1]);
3344 			alpha2[0] = user_alpha2[0];
3345 			alpha2[1] = user_alpha2[1];
3346 		}
3347 	} else if (!is_world_regdom(ieee80211_regdom)) {
3348 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3349 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3350 		alpha2[0] = ieee80211_regdom[0];
3351 		alpha2[1] = ieee80211_regdom[1];
3352 	} else
3353 		pr_debug("Restoring regulatory settings\n");
3354 }
3355 
restore_custom_reg_settings(struct wiphy * wiphy)3356 static void restore_custom_reg_settings(struct wiphy *wiphy)
3357 {
3358 	struct ieee80211_supported_band *sband;
3359 	enum nl80211_band band;
3360 	struct ieee80211_channel *chan;
3361 	int i;
3362 
3363 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3364 		sband = wiphy->bands[band];
3365 		if (!sband)
3366 			continue;
3367 		for (i = 0; i < sband->n_channels; i++) {
3368 			chan = &sband->channels[i];
3369 			chan->flags = chan->orig_flags;
3370 			chan->max_antenna_gain = chan->orig_mag;
3371 			chan->max_power = chan->orig_mpwr;
3372 			chan->beacon_found = false;
3373 		}
3374 	}
3375 }
3376 
3377 /*
3378  * Restoring regulatory settings involves ingoring any
3379  * possibly stale country IE information and user regulatory
3380  * settings if so desired, this includes any beacon hints
3381  * learned as we could have traveled outside to another country
3382  * after disconnection. To restore regulatory settings we do
3383  * exactly what we did at bootup:
3384  *
3385  *   - send a core regulatory hint
3386  *   - send a user regulatory hint if applicable
3387  *
3388  * Device drivers that send a regulatory hint for a specific country
3389  * keep their own regulatory domain on wiphy->regd so that does
3390  * not need to be remembered.
3391  */
restore_regulatory_settings(bool reset_user,bool cached)3392 static void restore_regulatory_settings(bool reset_user, bool cached)
3393 {
3394 	char alpha2[2];
3395 	char world_alpha2[2];
3396 	struct reg_beacon *reg_beacon, *btmp;
3397 	LIST_HEAD(tmp_reg_req_list);
3398 	struct cfg80211_registered_device *rdev;
3399 
3400 	ASSERT_RTNL();
3401 
3402 	/*
3403 	 * Clear the indoor setting in case that it is not controlled by user
3404 	 * space, as otherwise there is no guarantee that the device is still
3405 	 * operating in an indoor environment.
3406 	 */
3407 	spin_lock(&reg_indoor_lock);
3408 	if (reg_is_indoor && !reg_is_indoor_portid) {
3409 		reg_is_indoor = false;
3410 		reg_check_channels();
3411 	}
3412 	spin_unlock(&reg_indoor_lock);
3413 
3414 	reset_regdomains(true, &world_regdom);
3415 	restore_alpha2(alpha2, reset_user);
3416 
3417 	/*
3418 	 * If there's any pending requests we simply
3419 	 * stash them to a temporary pending queue and
3420 	 * add then after we've restored regulatory
3421 	 * settings.
3422 	 */
3423 	spin_lock(&reg_requests_lock);
3424 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3425 	spin_unlock(&reg_requests_lock);
3426 
3427 	/* Clear beacon hints */
3428 	spin_lock_bh(&reg_pending_beacons_lock);
3429 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3430 		list_del(&reg_beacon->list);
3431 		kfree(reg_beacon);
3432 	}
3433 	spin_unlock_bh(&reg_pending_beacons_lock);
3434 
3435 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3436 		list_del(&reg_beacon->list);
3437 		kfree(reg_beacon);
3438 	}
3439 
3440 	/* First restore to the basic regulatory settings */
3441 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3442 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3443 
3444 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3445 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3446 			continue;
3447 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3448 			restore_custom_reg_settings(&rdev->wiphy);
3449 	}
3450 
3451 	if (cached && (!is_an_alpha2(alpha2) ||
3452 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3453 		reset_regdomains(false, cfg80211_world_regdom);
3454 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3455 		print_regdomain(get_cfg80211_regdom());
3456 		nl80211_send_reg_change_event(&core_request_world);
3457 		reg_set_request_processed();
3458 
3459 		if (is_an_alpha2(alpha2) &&
3460 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3461 			struct regulatory_request *ureq;
3462 
3463 			spin_lock(&reg_requests_lock);
3464 			ureq = list_last_entry(&reg_requests_list,
3465 					       struct regulatory_request,
3466 					       list);
3467 			list_del(&ureq->list);
3468 			spin_unlock(&reg_requests_lock);
3469 
3470 			notify_self_managed_wiphys(ureq);
3471 			reg_update_last_request(ureq);
3472 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3473 				   REGD_SOURCE_CACHED);
3474 		}
3475 	} else {
3476 		regulatory_hint_core(world_alpha2);
3477 
3478 		/*
3479 		 * This restores the ieee80211_regdom module parameter
3480 		 * preference or the last user requested regulatory
3481 		 * settings, user regulatory settings takes precedence.
3482 		 */
3483 		if (is_an_alpha2(alpha2))
3484 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3485 	}
3486 
3487 	spin_lock(&reg_requests_lock);
3488 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3489 	spin_unlock(&reg_requests_lock);
3490 
3491 	pr_debug("Kicking the queue\n");
3492 
3493 	schedule_work(&reg_work);
3494 }
3495 
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3496 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3497 {
3498 	struct cfg80211_registered_device *rdev;
3499 	struct wireless_dev *wdev;
3500 
3501 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3502 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3503 			wdev_lock(wdev);
3504 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3505 				wdev_unlock(wdev);
3506 				return false;
3507 			}
3508 			wdev_unlock(wdev);
3509 		}
3510 	}
3511 
3512 	return true;
3513 }
3514 
regulatory_hint_disconnect(void)3515 void regulatory_hint_disconnect(void)
3516 {
3517 	/* Restore of regulatory settings is not required when wiphy(s)
3518 	 * ignore IE from connected access point but clearance of beacon hints
3519 	 * is required when wiphy(s) supports beacon hints.
3520 	 */
3521 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3522 		struct reg_beacon *reg_beacon, *btmp;
3523 
3524 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3525 			return;
3526 
3527 		spin_lock_bh(&reg_pending_beacons_lock);
3528 		list_for_each_entry_safe(reg_beacon, btmp,
3529 					 &reg_pending_beacons, list) {
3530 			list_del(&reg_beacon->list);
3531 			kfree(reg_beacon);
3532 		}
3533 		spin_unlock_bh(&reg_pending_beacons_lock);
3534 
3535 		list_for_each_entry_safe(reg_beacon, btmp,
3536 					 &reg_beacon_list, list) {
3537 			list_del(&reg_beacon->list);
3538 			kfree(reg_beacon);
3539 		}
3540 
3541 		return;
3542 	}
3543 
3544 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3545 	restore_regulatory_settings(false, true);
3546 }
3547 
freq_is_chan_12_13_14(u32 freq)3548 static bool freq_is_chan_12_13_14(u32 freq)
3549 {
3550 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3551 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3552 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3553 		return true;
3554 	return false;
3555 }
3556 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3557 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3558 {
3559 	struct reg_beacon *pending_beacon;
3560 
3561 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3562 		if (ieee80211_channel_equal(beacon_chan,
3563 					    &pending_beacon->chan))
3564 			return true;
3565 	return false;
3566 }
3567 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3568 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3569 				 struct ieee80211_channel *beacon_chan,
3570 				 gfp_t gfp)
3571 {
3572 	struct reg_beacon *reg_beacon;
3573 	bool processing;
3574 
3575 	if (beacon_chan->beacon_found ||
3576 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3577 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3578 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3579 		return 0;
3580 
3581 	spin_lock_bh(&reg_pending_beacons_lock);
3582 	processing = pending_reg_beacon(beacon_chan);
3583 	spin_unlock_bh(&reg_pending_beacons_lock);
3584 
3585 	if (processing)
3586 		return 0;
3587 
3588 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3589 	if (!reg_beacon)
3590 		return -ENOMEM;
3591 
3592 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3593 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3594 		 ieee80211_freq_khz_to_channel(
3595 			 ieee80211_channel_to_khz(beacon_chan)),
3596 		 wiphy_name(wiphy));
3597 
3598 	memcpy(&reg_beacon->chan, beacon_chan,
3599 	       sizeof(struct ieee80211_channel));
3600 
3601 	/*
3602 	 * Since we can be called from BH or and non-BH context
3603 	 * we must use spin_lock_bh()
3604 	 */
3605 	spin_lock_bh(&reg_pending_beacons_lock);
3606 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3607 	spin_unlock_bh(&reg_pending_beacons_lock);
3608 
3609 	schedule_work(&reg_work);
3610 
3611 	return 0;
3612 }
3613 
print_rd_rules(const struct ieee80211_regdomain * rd)3614 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3615 {
3616 	unsigned int i;
3617 	const struct ieee80211_reg_rule *reg_rule = NULL;
3618 	const struct ieee80211_freq_range *freq_range = NULL;
3619 	const struct ieee80211_power_rule *power_rule = NULL;
3620 	char bw[32], cac_time[32];
3621 
3622 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3623 
3624 	for (i = 0; i < rd->n_reg_rules; i++) {
3625 		reg_rule = &rd->reg_rules[i];
3626 		freq_range = &reg_rule->freq_range;
3627 		power_rule = &reg_rule->power_rule;
3628 
3629 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3630 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3631 				 freq_range->max_bandwidth_khz,
3632 				 reg_get_max_bandwidth(rd, reg_rule));
3633 		else
3634 			snprintf(bw, sizeof(bw), "%d KHz",
3635 				 freq_range->max_bandwidth_khz);
3636 
3637 		if (reg_rule->flags & NL80211_RRF_DFS)
3638 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3639 				  reg_rule->dfs_cac_ms/1000);
3640 		else
3641 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3642 
3643 
3644 		/*
3645 		 * There may not be documentation for max antenna gain
3646 		 * in certain regions
3647 		 */
3648 		if (power_rule->max_antenna_gain)
3649 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3650 				freq_range->start_freq_khz,
3651 				freq_range->end_freq_khz,
3652 				bw,
3653 				power_rule->max_antenna_gain,
3654 				power_rule->max_eirp,
3655 				cac_time);
3656 		else
3657 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3658 				freq_range->start_freq_khz,
3659 				freq_range->end_freq_khz,
3660 				bw,
3661 				power_rule->max_eirp,
3662 				cac_time);
3663 	}
3664 }
3665 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3666 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3667 {
3668 	switch (dfs_region) {
3669 	case NL80211_DFS_UNSET:
3670 	case NL80211_DFS_FCC:
3671 	case NL80211_DFS_ETSI:
3672 	case NL80211_DFS_JP:
3673 		return true;
3674 	default:
3675 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3676 		return false;
3677 	}
3678 }
3679 
print_regdomain(const struct ieee80211_regdomain * rd)3680 static void print_regdomain(const struct ieee80211_regdomain *rd)
3681 {
3682 	struct regulatory_request *lr = get_last_request();
3683 
3684 	if (is_intersected_alpha2(rd->alpha2)) {
3685 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3686 			struct cfg80211_registered_device *rdev;
3687 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3688 			if (rdev) {
3689 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3690 					rdev->country_ie_alpha2[0],
3691 					rdev->country_ie_alpha2[1]);
3692 			} else
3693 				pr_debug("Current regulatory domain intersected:\n");
3694 		} else
3695 			pr_debug("Current regulatory domain intersected:\n");
3696 	} else if (is_world_regdom(rd->alpha2)) {
3697 		pr_debug("World regulatory domain updated:\n");
3698 	} else {
3699 		if (is_unknown_alpha2(rd->alpha2))
3700 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3701 		else {
3702 			if (reg_request_cell_base(lr))
3703 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3704 					rd->alpha2[0], rd->alpha2[1]);
3705 			else
3706 				pr_debug("Regulatory domain changed to country: %c%c\n",
3707 					rd->alpha2[0], rd->alpha2[1]);
3708 		}
3709 	}
3710 
3711 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3712 	print_rd_rules(rd);
3713 }
3714 
print_regdomain_info(const struct ieee80211_regdomain * rd)3715 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3716 {
3717 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3718 	print_rd_rules(rd);
3719 }
3720 
reg_set_rd_core(const struct ieee80211_regdomain * rd)3721 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3722 {
3723 	if (!is_world_regdom(rd->alpha2))
3724 		return -EINVAL;
3725 	update_world_regdomain(rd);
3726 	return 0;
3727 }
3728 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3729 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3730 			   struct regulatory_request *user_request)
3731 {
3732 	const struct ieee80211_regdomain *intersected_rd = NULL;
3733 
3734 	if (!regdom_changes(rd->alpha2))
3735 		return -EALREADY;
3736 
3737 	if (!is_valid_rd(rd)) {
3738 		pr_err("Invalid regulatory domain detected: %c%c\n",
3739 		       rd->alpha2[0], rd->alpha2[1]);
3740 		print_regdomain_info(rd);
3741 		return -EINVAL;
3742 	}
3743 
3744 	if (!user_request->intersect) {
3745 		reset_regdomains(false, rd);
3746 		return 0;
3747 	}
3748 
3749 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3750 	if (!intersected_rd)
3751 		return -EINVAL;
3752 
3753 	kfree(rd);
3754 	rd = NULL;
3755 	reset_regdomains(false, intersected_rd);
3756 
3757 	return 0;
3758 }
3759 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3760 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3761 			     struct regulatory_request *driver_request)
3762 {
3763 	const struct ieee80211_regdomain *regd;
3764 	const struct ieee80211_regdomain *intersected_rd = NULL;
3765 	const struct ieee80211_regdomain *tmp;
3766 	struct wiphy *request_wiphy;
3767 
3768 	if (is_world_regdom(rd->alpha2))
3769 		return -EINVAL;
3770 
3771 	if (!regdom_changes(rd->alpha2))
3772 		return -EALREADY;
3773 
3774 	if (!is_valid_rd(rd)) {
3775 		pr_err("Invalid regulatory domain detected: %c%c\n",
3776 		       rd->alpha2[0], rd->alpha2[1]);
3777 		print_regdomain_info(rd);
3778 		return -EINVAL;
3779 	}
3780 
3781 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3782 	if (!request_wiphy)
3783 		return -ENODEV;
3784 
3785 	if (!driver_request->intersect) {
3786 		if (request_wiphy->regd)
3787 			return -EALREADY;
3788 
3789 		regd = reg_copy_regd(rd);
3790 		if (IS_ERR(regd))
3791 			return PTR_ERR(regd);
3792 
3793 		rcu_assign_pointer(request_wiphy->regd, regd);
3794 		reset_regdomains(false, rd);
3795 		return 0;
3796 	}
3797 
3798 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3799 	if (!intersected_rd)
3800 		return -EINVAL;
3801 
3802 	/*
3803 	 * We can trash what CRDA provided now.
3804 	 * However if a driver requested this specific regulatory
3805 	 * domain we keep it for its private use
3806 	 */
3807 	tmp = get_wiphy_regdom(request_wiphy);
3808 	rcu_assign_pointer(request_wiphy->regd, rd);
3809 	rcu_free_regdom(tmp);
3810 
3811 	rd = NULL;
3812 
3813 	reset_regdomains(false, intersected_rd);
3814 
3815 	return 0;
3816 }
3817 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3818 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3819 				 struct regulatory_request *country_ie_request)
3820 {
3821 	struct wiphy *request_wiphy;
3822 
3823 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3824 	    !is_unknown_alpha2(rd->alpha2))
3825 		return -EINVAL;
3826 
3827 	/*
3828 	 * Lets only bother proceeding on the same alpha2 if the current
3829 	 * rd is non static (it means CRDA was present and was used last)
3830 	 * and the pending request came in from a country IE
3831 	 */
3832 
3833 	if (!is_valid_rd(rd)) {
3834 		pr_err("Invalid regulatory domain detected: %c%c\n",
3835 		       rd->alpha2[0], rd->alpha2[1]);
3836 		print_regdomain_info(rd);
3837 		return -EINVAL;
3838 	}
3839 
3840 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3841 	if (!request_wiphy)
3842 		return -ENODEV;
3843 
3844 	if (country_ie_request->intersect)
3845 		return -EINVAL;
3846 
3847 	reset_regdomains(false, rd);
3848 	return 0;
3849 }
3850 
3851 /*
3852  * Use this call to set the current regulatory domain. Conflicts with
3853  * multiple drivers can be ironed out later. Caller must've already
3854  * kmalloc'd the rd structure.
3855  */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3856 int set_regdom(const struct ieee80211_regdomain *rd,
3857 	       enum ieee80211_regd_source regd_src)
3858 {
3859 	struct regulatory_request *lr;
3860 	bool user_reset = false;
3861 	int r;
3862 
3863 	if (IS_ERR_OR_NULL(rd))
3864 		return -ENODATA;
3865 
3866 	if (!reg_is_valid_request(rd->alpha2)) {
3867 		kfree(rd);
3868 		return -EINVAL;
3869 	}
3870 
3871 	if (regd_src == REGD_SOURCE_CRDA)
3872 		reset_crda_timeouts();
3873 
3874 	lr = get_last_request();
3875 
3876 	/* Note that this doesn't update the wiphys, this is done below */
3877 	switch (lr->initiator) {
3878 	case NL80211_REGDOM_SET_BY_CORE:
3879 		r = reg_set_rd_core(rd);
3880 		break;
3881 	case NL80211_REGDOM_SET_BY_USER:
3882 		cfg80211_save_user_regdom(rd);
3883 		r = reg_set_rd_user(rd, lr);
3884 		user_reset = true;
3885 		break;
3886 	case NL80211_REGDOM_SET_BY_DRIVER:
3887 		r = reg_set_rd_driver(rd, lr);
3888 		break;
3889 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3890 		r = reg_set_rd_country_ie(rd, lr);
3891 		break;
3892 	default:
3893 		WARN(1, "invalid initiator %d\n", lr->initiator);
3894 		kfree(rd);
3895 		return -EINVAL;
3896 	}
3897 
3898 	if (r) {
3899 		switch (r) {
3900 		case -EALREADY:
3901 			reg_set_request_processed();
3902 			break;
3903 		default:
3904 			/* Back to world regulatory in case of errors */
3905 			restore_regulatory_settings(user_reset, false);
3906 		}
3907 
3908 		kfree(rd);
3909 		return r;
3910 	}
3911 
3912 	/* This would make this whole thing pointless */
3913 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3914 		return -EINVAL;
3915 
3916 	/* update all wiphys now with the new established regulatory domain */
3917 	update_all_wiphy_regulatory(lr->initiator);
3918 
3919 	print_regdomain(get_cfg80211_regdom());
3920 
3921 	nl80211_send_reg_change_event(lr);
3922 
3923 	reg_set_request_processed();
3924 
3925 	return 0;
3926 }
3927 
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3928 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3929 				       struct ieee80211_regdomain *rd)
3930 {
3931 	const struct ieee80211_regdomain *regd;
3932 	const struct ieee80211_regdomain *prev_regd;
3933 	struct cfg80211_registered_device *rdev;
3934 
3935 	if (WARN_ON(!wiphy || !rd))
3936 		return -EINVAL;
3937 
3938 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3939 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3940 		return -EPERM;
3941 
3942 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3943 		print_regdomain_info(rd);
3944 		return -EINVAL;
3945 	}
3946 
3947 	regd = reg_copy_regd(rd);
3948 	if (IS_ERR(regd))
3949 		return PTR_ERR(regd);
3950 
3951 	rdev = wiphy_to_rdev(wiphy);
3952 
3953 	spin_lock(&reg_requests_lock);
3954 	prev_regd = rdev->requested_regd;
3955 	rdev->requested_regd = regd;
3956 	spin_unlock(&reg_requests_lock);
3957 
3958 	kfree(prev_regd);
3959 	return 0;
3960 }
3961 
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3962 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3963 			      struct ieee80211_regdomain *rd)
3964 {
3965 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3966 
3967 	if (ret)
3968 		return ret;
3969 
3970 	schedule_work(&reg_work);
3971 	return 0;
3972 }
3973 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3974 
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3975 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3976 					struct ieee80211_regdomain *rd)
3977 {
3978 	int ret;
3979 
3980 	ASSERT_RTNL();
3981 
3982 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3983 	if (ret)
3984 		return ret;
3985 
3986 	/* process the request immediately */
3987 	reg_process_self_managed_hints();
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3991 
wiphy_regulatory_register(struct wiphy * wiphy)3992 void wiphy_regulatory_register(struct wiphy *wiphy)
3993 {
3994 	struct regulatory_request *lr = get_last_request();
3995 
3996 	/* self-managed devices ignore beacon hints and country IE */
3997 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3998 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3999 					   REGULATORY_COUNTRY_IE_IGNORE;
4000 
4001 		/*
4002 		 * The last request may have been received before this
4003 		 * registration call. Call the driver notifier if
4004 		 * initiator is USER.
4005 		 */
4006 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4007 			reg_call_notifier(wiphy, lr);
4008 	}
4009 
4010 	if (!reg_dev_ignore_cell_hint(wiphy))
4011 		reg_num_devs_support_basehint++;
4012 
4013 	wiphy_update_regulatory(wiphy, lr->initiator);
4014 	wiphy_all_share_dfs_chan_state(wiphy);
4015 	reg_process_self_managed_hints();
4016 }
4017 
wiphy_regulatory_deregister(struct wiphy * wiphy)4018 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4019 {
4020 	struct wiphy *request_wiphy = NULL;
4021 	struct regulatory_request *lr;
4022 
4023 	lr = get_last_request();
4024 
4025 	if (!reg_dev_ignore_cell_hint(wiphy))
4026 		reg_num_devs_support_basehint--;
4027 
4028 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4029 	RCU_INIT_POINTER(wiphy->regd, NULL);
4030 
4031 	if (lr)
4032 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4033 
4034 	if (!request_wiphy || request_wiphy != wiphy)
4035 		return;
4036 
4037 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4038 	lr->country_ie_env = ENVIRON_ANY;
4039 }
4040 
4041 /*
4042  * See FCC notices for UNII band definitions
4043  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4044  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4045  */
cfg80211_get_unii(int freq)4046 int cfg80211_get_unii(int freq)
4047 {
4048 	/* UNII-1 */
4049 	if (freq >= 5150 && freq <= 5250)
4050 		return 0;
4051 
4052 	/* UNII-2A */
4053 	if (freq > 5250 && freq <= 5350)
4054 		return 1;
4055 
4056 	/* UNII-2B */
4057 	if (freq > 5350 && freq <= 5470)
4058 		return 2;
4059 
4060 	/* UNII-2C */
4061 	if (freq > 5470 && freq <= 5725)
4062 		return 3;
4063 
4064 	/* UNII-3 */
4065 	if (freq > 5725 && freq <= 5825)
4066 		return 4;
4067 
4068 	/* UNII-5 */
4069 	if (freq > 5925 && freq <= 6425)
4070 		return 5;
4071 
4072 	/* UNII-6 */
4073 	if (freq > 6425 && freq <= 6525)
4074 		return 6;
4075 
4076 	/* UNII-7 */
4077 	if (freq > 6525 && freq <= 6875)
4078 		return 7;
4079 
4080 	/* UNII-8 */
4081 	if (freq > 6875 && freq <= 7125)
4082 		return 8;
4083 
4084 	return -EINVAL;
4085 }
4086 
regulatory_indoor_allowed(void)4087 bool regulatory_indoor_allowed(void)
4088 {
4089 	return reg_is_indoor;
4090 }
4091 
regulatory_pre_cac_allowed(struct wiphy * wiphy)4092 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4093 {
4094 	const struct ieee80211_regdomain *regd = NULL;
4095 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4096 	bool pre_cac_allowed = false;
4097 
4098 	rcu_read_lock();
4099 
4100 	regd = rcu_dereference(cfg80211_regdomain);
4101 	wiphy_regd = rcu_dereference(wiphy->regd);
4102 	if (!wiphy_regd) {
4103 		if (regd->dfs_region == NL80211_DFS_ETSI)
4104 			pre_cac_allowed = true;
4105 
4106 		rcu_read_unlock();
4107 
4108 		return pre_cac_allowed;
4109 	}
4110 
4111 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4112 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4113 		pre_cac_allowed = true;
4114 
4115 	rcu_read_unlock();
4116 
4117 	return pre_cac_allowed;
4118 }
4119 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4120 
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4121 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4122 {
4123 	struct wireless_dev *wdev;
4124 	/* If we finished CAC or received radar, we should end any
4125 	 * CAC running on the same channels.
4126 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4127 	 * either all channels are available - those the CAC_FINISHED
4128 	 * event has effected another wdev state, or there is a channel
4129 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4130 	 * event has effected another wdev state.
4131 	 * In both cases we should end the CAC on the wdev.
4132 	 */
4133 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4134 		if (wdev->cac_started &&
4135 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4136 			rdev_end_cac(rdev, wdev->netdev);
4137 	}
4138 }
4139 
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4140 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4141 				    struct cfg80211_chan_def *chandef,
4142 				    enum nl80211_dfs_state dfs_state,
4143 				    enum nl80211_radar_event event)
4144 {
4145 	struct cfg80211_registered_device *rdev;
4146 
4147 	ASSERT_RTNL();
4148 
4149 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4150 		return;
4151 
4152 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4153 		if (wiphy == &rdev->wiphy)
4154 			continue;
4155 
4156 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4157 			continue;
4158 
4159 		if (!ieee80211_get_channel(&rdev->wiphy,
4160 					   chandef->chan->center_freq))
4161 			continue;
4162 
4163 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4164 
4165 		if (event == NL80211_RADAR_DETECTED ||
4166 		    event == NL80211_RADAR_CAC_FINISHED) {
4167 			cfg80211_sched_dfs_chan_update(rdev);
4168 			cfg80211_check_and_end_cac(rdev);
4169 		}
4170 
4171 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4172 	}
4173 }
4174 
regulatory_init_db(void)4175 static int __init regulatory_init_db(void)
4176 {
4177 	int err;
4178 
4179 	/*
4180 	 * It's possible that - due to other bugs/issues - cfg80211
4181 	 * never called regulatory_init() below, or that it failed;
4182 	 * in that case, don't try to do any further work here as
4183 	 * it's doomed to lead to crashes.
4184 	 */
4185 	if (IS_ERR_OR_NULL(reg_pdev))
4186 		return -EINVAL;
4187 
4188 	err = load_builtin_regdb_keys();
4189 	if (err) {
4190 		platform_device_unregister(reg_pdev);
4191 		return err;
4192 	}
4193 
4194 	/* We always try to get an update for the static regdomain */
4195 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4196 	if (err) {
4197 		if (err == -ENOMEM) {
4198 			platform_device_unregister(reg_pdev);
4199 			return err;
4200 		}
4201 		/*
4202 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4203 		 * memory which is handled and propagated appropriately above
4204 		 * but it can also fail during a netlink_broadcast() or during
4205 		 * early boot for call_usermodehelper(). For now treat these
4206 		 * errors as non-fatal.
4207 		 */
4208 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4209 	}
4210 
4211 	/*
4212 	 * Finally, if the user set the module parameter treat it
4213 	 * as a user hint.
4214 	 */
4215 	if (!is_world_regdom(ieee80211_regdom))
4216 		regulatory_hint_user(ieee80211_regdom,
4217 				     NL80211_USER_REG_HINT_USER);
4218 
4219 	return 0;
4220 }
4221 #ifndef MODULE
4222 late_initcall(regulatory_init_db);
4223 #endif
4224 
regulatory_init(void)4225 int __init regulatory_init(void)
4226 {
4227 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4228 	if (IS_ERR(reg_pdev))
4229 		return PTR_ERR(reg_pdev);
4230 
4231 	spin_lock_init(&reg_requests_lock);
4232 	spin_lock_init(&reg_pending_beacons_lock);
4233 	spin_lock_init(&reg_indoor_lock);
4234 
4235 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4236 
4237 	user_alpha2[0] = '9';
4238 	user_alpha2[1] = '7';
4239 
4240 #ifdef MODULE
4241 	return regulatory_init_db();
4242 #else
4243 	return 0;
4244 #endif
4245 }
4246 
regulatory_exit(void)4247 void regulatory_exit(void)
4248 {
4249 	struct regulatory_request *reg_request, *tmp;
4250 	struct reg_beacon *reg_beacon, *btmp;
4251 
4252 	cancel_work_sync(&reg_work);
4253 	cancel_crda_timeout_sync();
4254 	cancel_delayed_work_sync(&reg_check_chans);
4255 
4256 	/* Lock to suppress warnings */
4257 	rtnl_lock();
4258 	reset_regdomains(true, NULL);
4259 	rtnl_unlock();
4260 
4261 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4262 
4263 	platform_device_unregister(reg_pdev);
4264 
4265 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4266 		list_del(&reg_beacon->list);
4267 		kfree(reg_beacon);
4268 	}
4269 
4270 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4271 		list_del(&reg_beacon->list);
4272 		kfree(reg_beacon);
4273 	}
4274 
4275 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4276 		list_del(&reg_request->list);
4277 		kfree(reg_request);
4278 	}
4279 
4280 	if (!IS_ERR_OR_NULL(regdb))
4281 		kfree(regdb);
4282 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4283 		kfree(cfg80211_user_regdom);
4284 
4285 	free_regdb_keyring();
4286 }
4287