• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 
69 struct convert_context_args {
70 	struct selinux_state *state;
71 	struct policydb *oldp;
72 	struct policydb *newp;
73 };
74 
75 struct selinux_policy_convert_data {
76 	struct convert_context_args args;
77 	struct sidtab_convert_params sidtab_params;
78 };
79 
80 /* Forward declaration. */
81 static int context_struct_to_string(struct policydb *policydb,
82 				    struct context *context,
83 				    char **scontext,
84 				    u32 *scontext_len);
85 
86 static int sidtab_entry_to_string(struct policydb *policydb,
87 				  struct sidtab *sidtab,
88 				  struct sidtab_entry *entry,
89 				  char **scontext,
90 				  u32 *scontext_len);
91 
92 static void context_struct_compute_av(struct policydb *policydb,
93 				      struct context *scontext,
94 				      struct context *tcontext,
95 				      u16 tclass,
96 				      struct av_decision *avd,
97 				      struct extended_perms *xperms);
98 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)99 static int selinux_set_mapping(struct policydb *pol,
100 			       struct security_class_mapping *map,
101 			       struct selinux_map *out_map)
102 {
103 	u16 i, j;
104 	unsigned k;
105 	bool print_unknown_handle = false;
106 
107 	/* Find number of classes in the input mapping */
108 	if (!map)
109 		return -EINVAL;
110 	i = 0;
111 	while (map[i].name)
112 		i++;
113 
114 	/* Allocate space for the class records, plus one for class zero */
115 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
116 	if (!out_map->mapping)
117 		return -ENOMEM;
118 
119 	/* Store the raw class and permission values */
120 	j = 0;
121 	while (map[j].name) {
122 		struct security_class_mapping *p_in = map + (j++);
123 		struct selinux_mapping *p_out = out_map->mapping + j;
124 
125 		/* An empty class string skips ahead */
126 		if (!strcmp(p_in->name, "")) {
127 			p_out->num_perms = 0;
128 			continue;
129 		}
130 
131 		p_out->value = string_to_security_class(pol, p_in->name);
132 		if (!p_out->value) {
133 			pr_info("SELinux:  Class %s not defined in policy.\n",
134 			       p_in->name);
135 			if (pol->reject_unknown)
136 				goto err;
137 			p_out->num_perms = 0;
138 			print_unknown_handle = true;
139 			continue;
140 		}
141 
142 		k = 0;
143 		while (p_in->perms[k]) {
144 			/* An empty permission string skips ahead */
145 			if (!*p_in->perms[k]) {
146 				k++;
147 				continue;
148 			}
149 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
150 							    p_in->perms[k]);
151 			if (!p_out->perms[k]) {
152 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
153 				       p_in->perms[k], p_in->name);
154 				if (pol->reject_unknown)
155 					goto err;
156 				print_unknown_handle = true;
157 			}
158 
159 			k++;
160 		}
161 		p_out->num_perms = k;
162 	}
163 
164 	if (print_unknown_handle)
165 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
166 		       pol->allow_unknown ? "allowed" : "denied");
167 
168 	out_map->size = i;
169 	return 0;
170 err:
171 	kfree(out_map->mapping);
172 	out_map->mapping = NULL;
173 	return -EINVAL;
174 }
175 
176 /*
177  * Get real, policy values from mapped values
178  */
179 
unmap_class(struct selinux_map * map,u16 tclass)180 static u16 unmap_class(struct selinux_map *map, u16 tclass)
181 {
182 	if (tclass < map->size)
183 		return map->mapping[tclass].value;
184 
185 	return tclass;
186 }
187 
188 /*
189  * Get kernel value for class from its policy value
190  */
map_class(struct selinux_map * map,u16 pol_value)191 static u16 map_class(struct selinux_map *map, u16 pol_value)
192 {
193 	u16 i;
194 
195 	for (i = 1; i < map->size; i++) {
196 		if (map->mapping[i].value == pol_value)
197 			return i;
198 	}
199 
200 	return SECCLASS_NULL;
201 }
202 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)203 static void map_decision(struct selinux_map *map,
204 			 u16 tclass, struct av_decision *avd,
205 			 int allow_unknown)
206 {
207 	if (tclass < map->size) {
208 		struct selinux_mapping *mapping = &map->mapping[tclass];
209 		unsigned int i, n = mapping->num_perms;
210 		u32 result;
211 
212 		for (i = 0, result = 0; i < n; i++) {
213 			if (avd->allowed & mapping->perms[i])
214 				result |= 1<<i;
215 			if (allow_unknown && !mapping->perms[i])
216 				result |= 1<<i;
217 		}
218 		avd->allowed = result;
219 
220 		for (i = 0, result = 0; i < n; i++)
221 			if (avd->auditallow & mapping->perms[i])
222 				result |= 1<<i;
223 		avd->auditallow = result;
224 
225 		for (i = 0, result = 0; i < n; i++) {
226 			if (avd->auditdeny & mapping->perms[i])
227 				result |= 1<<i;
228 			if (!allow_unknown && !mapping->perms[i])
229 				result |= 1<<i;
230 		}
231 		/*
232 		 * In case the kernel has a bug and requests a permission
233 		 * between num_perms and the maximum permission number, we
234 		 * should audit that denial
235 		 */
236 		for (; i < (sizeof(u32)*8); i++)
237 			result |= 1<<i;
238 		avd->auditdeny = result;
239 	}
240 }
241 
security_mls_enabled(struct selinux_state * state)242 int security_mls_enabled(struct selinux_state *state)
243 {
244 	int mls_enabled;
245 	struct selinux_policy *policy;
246 
247 	if (!selinux_initialized(state))
248 		return 0;
249 
250 	rcu_read_lock();
251 	policy = rcu_dereference(state->policy);
252 	mls_enabled = policy->policydb.mls_enabled;
253 	rcu_read_unlock();
254 	return mls_enabled;
255 }
256 
257 /*
258  * Return the boolean value of a constraint expression
259  * when it is applied to the specified source and target
260  * security contexts.
261  *
262  * xcontext is a special beast...  It is used by the validatetrans rules
263  * only.  For these rules, scontext is the context before the transition,
264  * tcontext is the context after the transition, and xcontext is the context
265  * of the process performing the transition.  All other callers of
266  * constraint_expr_eval should pass in NULL for xcontext.
267  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)268 static int constraint_expr_eval(struct policydb *policydb,
269 				struct context *scontext,
270 				struct context *tcontext,
271 				struct context *xcontext,
272 				struct constraint_expr *cexpr)
273 {
274 	u32 val1, val2;
275 	struct context *c;
276 	struct role_datum *r1, *r2;
277 	struct mls_level *l1, *l2;
278 	struct constraint_expr *e;
279 	int s[CEXPR_MAXDEPTH];
280 	int sp = -1;
281 
282 	for (e = cexpr; e; e = e->next) {
283 		switch (e->expr_type) {
284 		case CEXPR_NOT:
285 			BUG_ON(sp < 0);
286 			s[sp] = !s[sp];
287 			break;
288 		case CEXPR_AND:
289 			BUG_ON(sp < 1);
290 			sp--;
291 			s[sp] &= s[sp + 1];
292 			break;
293 		case CEXPR_OR:
294 			BUG_ON(sp < 1);
295 			sp--;
296 			s[sp] |= s[sp + 1];
297 			break;
298 		case CEXPR_ATTR:
299 			if (sp == (CEXPR_MAXDEPTH - 1))
300 				return 0;
301 			switch (e->attr) {
302 			case CEXPR_USER:
303 				val1 = scontext->user;
304 				val2 = tcontext->user;
305 				break;
306 			case CEXPR_TYPE:
307 				val1 = scontext->type;
308 				val2 = tcontext->type;
309 				break;
310 			case CEXPR_ROLE:
311 				val1 = scontext->role;
312 				val2 = tcontext->role;
313 				r1 = policydb->role_val_to_struct[val1 - 1];
314 				r2 = policydb->role_val_to_struct[val2 - 1];
315 				switch (e->op) {
316 				case CEXPR_DOM:
317 					s[++sp] = ebitmap_get_bit(&r1->dominates,
318 								  val2 - 1);
319 					continue;
320 				case CEXPR_DOMBY:
321 					s[++sp] = ebitmap_get_bit(&r2->dominates,
322 								  val1 - 1);
323 					continue;
324 				case CEXPR_INCOMP:
325 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
326 								    val2 - 1) &&
327 						   !ebitmap_get_bit(&r2->dominates,
328 								    val1 - 1));
329 					continue;
330 				default:
331 					break;
332 				}
333 				break;
334 			case CEXPR_L1L2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[0]);
337 				goto mls_ops;
338 			case CEXPR_L1H2:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(tcontext->range.level[1]);
341 				goto mls_ops;
342 			case CEXPR_H1L2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[0]);
345 				goto mls_ops;
346 			case CEXPR_H1H2:
347 				l1 = &(scontext->range.level[1]);
348 				l2 = &(tcontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L1H1:
351 				l1 = &(scontext->range.level[0]);
352 				l2 = &(scontext->range.level[1]);
353 				goto mls_ops;
354 			case CEXPR_L2H2:
355 				l1 = &(tcontext->range.level[0]);
356 				l2 = &(tcontext->range.level[1]);
357 				goto mls_ops;
358 mls_ops:
359 			switch (e->op) {
360 			case CEXPR_EQ:
361 				s[++sp] = mls_level_eq(l1, l2);
362 				continue;
363 			case CEXPR_NEQ:
364 				s[++sp] = !mls_level_eq(l1, l2);
365 				continue;
366 			case CEXPR_DOM:
367 				s[++sp] = mls_level_dom(l1, l2);
368 				continue;
369 			case CEXPR_DOMBY:
370 				s[++sp] = mls_level_dom(l2, l1);
371 				continue;
372 			case CEXPR_INCOMP:
373 				s[++sp] = mls_level_incomp(l2, l1);
374 				continue;
375 			default:
376 				BUG();
377 				return 0;
378 			}
379 			break;
380 			default:
381 				BUG();
382 				return 0;
383 			}
384 
385 			switch (e->op) {
386 			case CEXPR_EQ:
387 				s[++sp] = (val1 == val2);
388 				break;
389 			case CEXPR_NEQ:
390 				s[++sp] = (val1 != val2);
391 				break;
392 			default:
393 				BUG();
394 				return 0;
395 			}
396 			break;
397 		case CEXPR_NAMES:
398 			if (sp == (CEXPR_MAXDEPTH-1))
399 				return 0;
400 			c = scontext;
401 			if (e->attr & CEXPR_TARGET)
402 				c = tcontext;
403 			else if (e->attr & CEXPR_XTARGET) {
404 				c = xcontext;
405 				if (!c) {
406 					BUG();
407 					return 0;
408 				}
409 			}
410 			if (e->attr & CEXPR_USER)
411 				val1 = c->user;
412 			else if (e->attr & CEXPR_ROLE)
413 				val1 = c->role;
414 			else if (e->attr & CEXPR_TYPE)
415 				val1 = c->type;
416 			else {
417 				BUG();
418 				return 0;
419 			}
420 
421 			switch (e->op) {
422 			case CEXPR_EQ:
423 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			case CEXPR_NEQ:
426 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
427 				break;
428 			default:
429 				BUG();
430 				return 0;
431 			}
432 			break;
433 		default:
434 			BUG();
435 			return 0;
436 		}
437 	}
438 
439 	BUG_ON(sp != 0);
440 	return s[0];
441 }
442 
443 /*
444  * security_dump_masked_av - dumps masked permissions during
445  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
446  */
dump_masked_av_helper(void * k,void * d,void * args)447 static int dump_masked_av_helper(void *k, void *d, void *args)
448 {
449 	struct perm_datum *pdatum = d;
450 	char **permission_names = args;
451 
452 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
453 
454 	permission_names[pdatum->value - 1] = (char *)k;
455 
456 	return 0;
457 }
458 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)459 static void security_dump_masked_av(struct policydb *policydb,
460 				    struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(&common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(&tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(policydb, scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(policydb, tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(audit_context(),
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct policydb *policydb,
539 				     struct context *scontext,
540 				     struct context *tcontext,
541 				     u16 tclass,
542 				     struct av_decision *avd)
543 {
544 	struct context lo_scontext;
545 	struct context lo_tcontext, *tcontextp = tcontext;
546 	struct av_decision lo_avd;
547 	struct type_datum *source;
548 	struct type_datum *target;
549 	u32 masked = 0;
550 
551 	source = policydb->type_val_to_struct[scontext->type - 1];
552 	BUG_ON(!source);
553 
554 	if (!source->bounds)
555 		return;
556 
557 	target = policydb->type_val_to_struct[tcontext->type - 1];
558 	BUG_ON(!target);
559 
560 	memset(&lo_avd, 0, sizeof(lo_avd));
561 
562 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 	lo_scontext.type = source->bounds;
564 
565 	if (target->bounds) {
566 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 		lo_tcontext.type = target->bounds;
568 		tcontextp = &lo_tcontext;
569 	}
570 
571 	context_struct_compute_av(policydb, &lo_scontext,
572 				  tcontextp,
573 				  tclass,
574 				  &lo_avd,
575 				  NULL);
576 
577 	masked = ~lo_avd.allowed & avd->allowed;
578 
579 	if (likely(!masked))
580 		return;		/* no masked permission */
581 
582 	/* mask violated permissions */
583 	avd->allowed &= ~masked;
584 
585 	/* audit masked permissions */
586 	security_dump_masked_av(policydb, scontext, tcontext,
587 				tclass, masked, "bounds");
588 }
589 
590 /*
591  * flag which drivers have permissions
592  * only looking for ioctl based extended permssions
593  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)594 void services_compute_xperms_drivers(
595 		struct extended_perms *xperms,
596 		struct avtab_node *node)
597 {
598 	unsigned int i;
599 
600 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 		/* if one or more driver has all permissions allowed */
602 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 		/* if allowing permissions within a driver */
606 		security_xperm_set(xperms->drivers.p,
607 					node->datum.u.xperms->driver);
608 	}
609 
610 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
611 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
612 		xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 					struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled(state))
752 		return 0;
753 	return -EPERM;
754 }
755 
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(struct selinux_state *state,
757 					  u32 oldsid, u32 newsid, u32 tasksid,
758 					  u16 orig_tclass, bool user)
759 {
760 	struct selinux_policy *policy;
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct sidtab_entry *oentry;
764 	struct sidtab_entry *nentry;
765 	struct sidtab_entry *tentry;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!selinux_initialized(state))
773 		return 0;
774 
775 	rcu_read_lock();
776 
777 	policy = rcu_dereference(state->policy);
778 	policydb = &policy->policydb;
779 	sidtab = policy->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&policy->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	oentry = sidtab_search_entry(sidtab, oldsid);
793 	if (!oentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	nentry = sidtab_search_entry(sidtab, newsid);
801 	if (!nentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tentry = sidtab_search_entry(sidtab, tasksid);
809 	if (!tentry) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, &oentry->context,
819 					  &nentry->context, &tentry->context,
820 					  constraint->expr)) {
821 			if (user)
822 				rc = -EPERM;
823 			else
824 				rc = security_validtrans_handle_fail(state,
825 								policy,
826 								oentry,
827 								nentry,
828 								tentry,
829 								tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	rcu_read_unlock();
837 	return rc;
838 }
839 
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @oldsid : current security identifier
863  * @newsid : destinated security identifier
864  */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)865 int security_bounded_transition(struct selinux_state *state,
866 				u32 old_sid, u32 new_sid)
867 {
868 	struct selinux_policy *policy;
869 	struct policydb *policydb;
870 	struct sidtab *sidtab;
871 	struct sidtab_entry *old_entry, *new_entry;
872 	struct type_datum *type;
873 	int index;
874 	int rc;
875 
876 	if (!selinux_initialized(state))
877 		return 0;
878 
879 	rcu_read_lock();
880 	policy = rcu_dereference(state->policy);
881 	policydb = &policy->policydb;
882 	sidtab = policy->sidtab;
883 
884 	rc = -EINVAL;
885 	old_entry = sidtab_search_entry(sidtab, old_sid);
886 	if (!old_entry) {
887 		pr_err("SELinux: %s: unrecognized SID %u\n",
888 		       __func__, old_sid);
889 		goto out;
890 	}
891 
892 	rc = -EINVAL;
893 	new_entry = sidtab_search_entry(sidtab, new_sid);
894 	if (!new_entry) {
895 		pr_err("SELinux: %s: unrecognized SID %u\n",
896 		       __func__, new_sid);
897 		goto out;
898 	}
899 
900 	rc = 0;
901 	/* type/domain unchanged */
902 	if (old_entry->context.type == new_entry->context.type)
903 		goto out;
904 
905 	index = new_entry->context.type;
906 	while (true) {
907 		type = policydb->type_val_to_struct[index - 1];
908 		BUG_ON(!type);
909 
910 		/* not bounded anymore */
911 		rc = -EPERM;
912 		if (!type->bounds)
913 			break;
914 
915 		/* @newsid is bounded by @oldsid */
916 		rc = 0;
917 		if (type->bounds == old_entry->context.type)
918 			break;
919 
920 		index = type->bounds;
921 	}
922 
923 	if (rc) {
924 		char *old_name = NULL;
925 		char *new_name = NULL;
926 		u32 length;
927 
928 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
929 					    &old_name, &length) &&
930 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
931 					    &new_name, &length)) {
932 			audit_log(audit_context(),
933 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
934 				  "op=security_bounded_transition "
935 				  "seresult=denied "
936 				  "oldcontext=%s newcontext=%s",
937 				  old_name, new_name);
938 		}
939 		kfree(new_name);
940 		kfree(old_name);
941 	}
942 out:
943 	rcu_read_unlock();
944 
945 	return rc;
946 }
947 
avd_init(struct selinux_policy * policy,struct av_decision * avd)948 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
949 {
950 	avd->allowed = 0;
951 	avd->auditallow = 0;
952 	avd->auditdeny = 0xffffffff;
953 	if (policy)
954 		avd->seqno = policy->latest_granting;
955 	else
956 		avd->seqno = 0;
957 	avd->flags = 0;
958 }
959 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)960 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
961 					struct avtab_node *node)
962 {
963 	unsigned int i;
964 
965 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
966 		if (xpermd->driver != node->datum.u.xperms->driver)
967 			return;
968 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
970 					xpermd->driver))
971 			return;
972 	} else {
973 		pr_warn_once(
974 			"SELinux: unknown extended permission (%u) will be ignored\n",
975 			node->datum.u.xperms->specified);
976 		return;
977 	}
978 
979 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
980 		xpermd->used |= XPERMS_ALLOWED;
981 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
982 			memset(xpermd->allowed->p, 0xff,
983 					sizeof(xpermd->allowed->p));
984 		}
985 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
986 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
987 				xpermd->allowed->p[i] |=
988 					node->datum.u.xperms->perms.p[i];
989 		}
990 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
991 		xpermd->used |= XPERMS_AUDITALLOW;
992 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
993 			memset(xpermd->auditallow->p, 0xff,
994 					sizeof(xpermd->auditallow->p));
995 		}
996 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
997 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
998 				xpermd->auditallow->p[i] |=
999 					node->datum.u.xperms->perms.p[i];
1000 		}
1001 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1002 		xpermd->used |= XPERMS_DONTAUDIT;
1003 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1004 			memset(xpermd->dontaudit->p, 0xff,
1005 					sizeof(xpermd->dontaudit->p));
1006 		}
1007 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1008 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1009 				xpermd->dontaudit->p[i] |=
1010 					node->datum.u.xperms->perms.p[i];
1011 		}
1012 	} else {
1013 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1014 			     node->key.specified);
1015 	}
1016 }
1017 
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1018 void security_compute_xperms_decision(struct selinux_state *state,
1019 				      u32 ssid,
1020 				      u32 tsid,
1021 				      u16 orig_tclass,
1022 				      u8 driver,
1023 				      struct extended_perms_decision *xpermd)
1024 {
1025 	struct selinux_policy *policy;
1026 	struct policydb *policydb;
1027 	struct sidtab *sidtab;
1028 	u16 tclass;
1029 	struct context *scontext, *tcontext;
1030 	struct avtab_key avkey;
1031 	struct avtab_node *node;
1032 	struct ebitmap *sattr, *tattr;
1033 	struct ebitmap_node *snode, *tnode;
1034 	unsigned int i, j;
1035 
1036 	xpermd->driver = driver;
1037 	xpermd->used = 0;
1038 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1039 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1040 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1041 
1042 	rcu_read_lock();
1043 	if (!selinux_initialized(state))
1044 		goto allow;
1045 
1046 	policy = rcu_dereference(state->policy);
1047 	policydb = &policy->policydb;
1048 	sidtab = policy->sidtab;
1049 
1050 	scontext = sidtab_search(sidtab, ssid);
1051 	if (!scontext) {
1052 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1053 		       __func__, ssid);
1054 		goto out;
1055 	}
1056 
1057 	tcontext = sidtab_search(sidtab, tsid);
1058 	if (!tcontext) {
1059 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1060 		       __func__, tsid);
1061 		goto out;
1062 	}
1063 
1064 	tclass = unmap_class(&policy->map, orig_tclass);
1065 	if (unlikely(orig_tclass && !tclass)) {
1066 		if (policydb->allow_unknown)
1067 			goto allow;
1068 		goto out;
1069 	}
1070 
1071 
1072 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1073 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1074 		goto out;
1075 	}
1076 
1077 	avkey.target_class = tclass;
1078 	avkey.specified = AVTAB_XPERMS;
1079 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1080 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1081 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1082 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1083 			avkey.source_type = i + 1;
1084 			avkey.target_type = j + 1;
1085 			for (node = avtab_search_node(&policydb->te_avtab,
1086 						      &avkey);
1087 			     node;
1088 			     node = avtab_search_node_next(node, avkey.specified))
1089 				services_compute_xperms_decision(xpermd, node);
1090 
1091 			cond_compute_xperms(&policydb->te_cond_avtab,
1092 						&avkey, xpermd);
1093 		}
1094 	}
1095 out:
1096 	rcu_read_unlock();
1097 	return;
1098 allow:
1099 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1100 	goto out;
1101 }
1102 
1103 /**
1104  * security_compute_av - Compute access vector decisions.
1105  * @ssid: source security identifier
1106  * @tsid: target security identifier
1107  * @tclass: target security class
1108  * @avd: access vector decisions
1109  * @xperms: extended permissions
1110  *
1111  * Compute a set of access vector decisions based on the
1112  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1113  */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1114 void security_compute_av(struct selinux_state *state,
1115 			 u32 ssid,
1116 			 u32 tsid,
1117 			 u16 orig_tclass,
1118 			 struct av_decision *avd,
1119 			 struct extended_perms *xperms)
1120 {
1121 	struct selinux_policy *policy;
1122 	struct policydb *policydb;
1123 	struct sidtab *sidtab;
1124 	u16 tclass;
1125 	struct context *scontext = NULL, *tcontext = NULL;
1126 
1127 	rcu_read_lock();
1128 	policy = rcu_dereference(state->policy);
1129 	avd_init(policy, avd);
1130 	xperms->len = 0;
1131 	if (!selinux_initialized(state))
1132 		goto allow;
1133 
1134 	policydb = &policy->policydb;
1135 	sidtab = policy->sidtab;
1136 
1137 	scontext = sidtab_search(sidtab, ssid);
1138 	if (!scontext) {
1139 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1140 		       __func__, ssid);
1141 		goto out;
1142 	}
1143 
1144 	/* permissive domain? */
1145 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1146 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1147 
1148 	tcontext = sidtab_search(sidtab, tsid);
1149 	if (!tcontext) {
1150 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1151 		       __func__, tsid);
1152 		goto out;
1153 	}
1154 
1155 	tclass = unmap_class(&policy->map, orig_tclass);
1156 	if (unlikely(orig_tclass && !tclass)) {
1157 		if (policydb->allow_unknown)
1158 			goto allow;
1159 		goto out;
1160 	}
1161 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1162 				  xperms);
1163 	map_decision(&policy->map, orig_tclass, avd,
1164 		     policydb->allow_unknown);
1165 out:
1166 	rcu_read_unlock();
1167 	return;
1168 allow:
1169 	avd->allowed = 0xffffffff;
1170 	goto out;
1171 }
1172 
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1173 void security_compute_av_user(struct selinux_state *state,
1174 			      u32 ssid,
1175 			      u32 tsid,
1176 			      u16 tclass,
1177 			      struct av_decision *avd)
1178 {
1179 	struct selinux_policy *policy;
1180 	struct policydb *policydb;
1181 	struct sidtab *sidtab;
1182 	struct context *scontext = NULL, *tcontext = NULL;
1183 
1184 	rcu_read_lock();
1185 	policy = rcu_dereference(state->policy);
1186 	avd_init(policy, avd);
1187 	if (!selinux_initialized(state))
1188 		goto allow;
1189 
1190 	policydb = &policy->policydb;
1191 	sidtab = policy->sidtab;
1192 
1193 	scontext = sidtab_search(sidtab, ssid);
1194 	if (!scontext) {
1195 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1196 		       __func__, ssid);
1197 		goto out;
1198 	}
1199 
1200 	/* permissive domain? */
1201 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1202 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1203 
1204 	tcontext = sidtab_search(sidtab, tsid);
1205 	if (!tcontext) {
1206 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1207 		       __func__, tsid);
1208 		goto out;
1209 	}
1210 
1211 	if (unlikely(!tclass)) {
1212 		if (policydb->allow_unknown)
1213 			goto allow;
1214 		goto out;
1215 	}
1216 
1217 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1218 				  NULL);
1219  out:
1220 	rcu_read_unlock();
1221 	return;
1222 allow:
1223 	avd->allowed = 0xffffffff;
1224 	goto out;
1225 }
1226 
1227 /*
1228  * Write the security context string representation of
1229  * the context structure `context' into a dynamically
1230  * allocated string of the correct size.  Set `*scontext'
1231  * to point to this string and set `*scontext_len' to
1232  * the length of the string.
1233  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1234 static int context_struct_to_string(struct policydb *p,
1235 				    struct context *context,
1236 				    char **scontext, u32 *scontext_len)
1237 {
1238 	char *scontextp;
1239 
1240 	if (scontext)
1241 		*scontext = NULL;
1242 	*scontext_len = 0;
1243 
1244 	if (context->len) {
1245 		*scontext_len = context->len;
1246 		if (scontext) {
1247 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1248 			if (!(*scontext))
1249 				return -ENOMEM;
1250 		}
1251 		return 0;
1252 	}
1253 
1254 	/* Compute the size of the context. */
1255 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1256 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1257 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1258 	*scontext_len += mls_compute_context_len(p, context);
1259 
1260 	if (!scontext)
1261 		return 0;
1262 
1263 	/* Allocate space for the context; caller must free this space. */
1264 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1265 	if (!scontextp)
1266 		return -ENOMEM;
1267 	*scontext = scontextp;
1268 
1269 	/*
1270 	 * Copy the user name, role name and type name into the context.
1271 	 */
1272 	scontextp += sprintf(scontextp, "%s:%s:%s",
1273 		sym_name(p, SYM_USERS, context->user - 1),
1274 		sym_name(p, SYM_ROLES, context->role - 1),
1275 		sym_name(p, SYM_TYPES, context->type - 1));
1276 
1277 	mls_sid_to_context(p, context, &scontextp);
1278 
1279 	*scontextp = 0;
1280 
1281 	return 0;
1282 }
1283 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1284 static int sidtab_entry_to_string(struct policydb *p,
1285 				  struct sidtab *sidtab,
1286 				  struct sidtab_entry *entry,
1287 				  char **scontext, u32 *scontext_len)
1288 {
1289 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1290 
1291 	if (rc != -ENOENT)
1292 		return rc;
1293 
1294 	rc = context_struct_to_string(p, &entry->context, scontext,
1295 				      scontext_len);
1296 	if (!rc && scontext)
1297 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1298 	return rc;
1299 }
1300 
1301 #include "initial_sid_to_string.h"
1302 
security_sidtab_hash_stats(struct selinux_state * state,char * page)1303 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1304 {
1305 	struct selinux_policy *policy;
1306 	int rc;
1307 
1308 	if (!selinux_initialized(state)) {
1309 		pr_err("SELinux: %s:  called before initial load_policy\n",
1310 		       __func__);
1311 		return -EINVAL;
1312 	}
1313 
1314 	rcu_read_lock();
1315 	policy = rcu_dereference(state->policy);
1316 	rc = sidtab_hash_stats(policy->sidtab, page);
1317 	rcu_read_unlock();
1318 
1319 	return rc;
1320 }
1321 
security_get_initial_sid_context(u32 sid)1322 const char *security_get_initial_sid_context(u32 sid)
1323 {
1324 	if (unlikely(sid > SECINITSID_NUM))
1325 		return NULL;
1326 	return initial_sid_to_string[sid];
1327 }
1328 
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1329 static int security_sid_to_context_core(struct selinux_state *state,
1330 					u32 sid, char **scontext,
1331 					u32 *scontext_len, int force,
1332 					int only_invalid)
1333 {
1334 	struct selinux_policy *policy;
1335 	struct policydb *policydb;
1336 	struct sidtab *sidtab;
1337 	struct sidtab_entry *entry;
1338 	int rc = 0;
1339 
1340 	if (scontext)
1341 		*scontext = NULL;
1342 	*scontext_len  = 0;
1343 
1344 	if (!selinux_initialized(state)) {
1345 		if (sid <= SECINITSID_NUM) {
1346 			char *scontextp;
1347 			const char *s = initial_sid_to_string[sid];
1348 
1349 			if (!s)
1350 				return -EINVAL;
1351 			*scontext_len = strlen(s) + 1;
1352 			if (!scontext)
1353 				return 0;
1354 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1355 			if (!scontextp)
1356 				return -ENOMEM;
1357 			*scontext = scontextp;
1358 			return 0;
1359 		}
1360 		pr_err("SELinux: %s:  called before initial "
1361 		       "load_policy on unknown SID %d\n", __func__, sid);
1362 		return -EINVAL;
1363 	}
1364 	rcu_read_lock();
1365 	policy = rcu_dereference(state->policy);
1366 	policydb = &policy->policydb;
1367 	sidtab = policy->sidtab;
1368 
1369 	if (force)
1370 		entry = sidtab_search_entry_force(sidtab, sid);
1371 	else
1372 		entry = sidtab_search_entry(sidtab, sid);
1373 	if (!entry) {
1374 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1375 			__func__, sid);
1376 		rc = -EINVAL;
1377 		goto out_unlock;
1378 	}
1379 	if (only_invalid && !entry->context.len)
1380 		goto out_unlock;
1381 
1382 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1383 				    scontext_len);
1384 
1385 out_unlock:
1386 	rcu_read_unlock();
1387 	return rc;
1388 
1389 }
1390 
1391 /**
1392  * security_sid_to_context - Obtain a context for a given SID.
1393  * @sid: security identifier, SID
1394  * @scontext: security context
1395  * @scontext_len: length in bytes
1396  *
1397  * Write the string representation of the context associated with @sid
1398  * into a dynamically allocated string of the correct size.  Set @scontext
1399  * to point to this string and set @scontext_len to the length of the string.
1400  */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1401 int security_sid_to_context(struct selinux_state *state,
1402 			    u32 sid, char **scontext, u32 *scontext_len)
1403 {
1404 	return security_sid_to_context_core(state, sid, scontext,
1405 					    scontext_len, 0, 0);
1406 }
1407 
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1408 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1409 				  char **scontext, u32 *scontext_len)
1410 {
1411 	return security_sid_to_context_core(state, sid, scontext,
1412 					    scontext_len, 1, 0);
1413 }
1414 
1415 /**
1416  * security_sid_to_context_inval - Obtain a context for a given SID if it
1417  *                                 is invalid.
1418  * @sid: security identifier, SID
1419  * @scontext: security context
1420  * @scontext_len: length in bytes
1421  *
1422  * Write the string representation of the context associated with @sid
1423  * into a dynamically allocated string of the correct size, but only if the
1424  * context is invalid in the current policy.  Set @scontext to point to
1425  * this string (or NULL if the context is valid) and set @scontext_len to
1426  * the length of the string (or 0 if the context is valid).
1427  */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1428 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429 				  char **scontext, u32 *scontext_len)
1430 {
1431 	return security_sid_to_context_core(state, sid, scontext,
1432 					    scontext_len, 1, 1);
1433 }
1434 
1435 /*
1436  * Caveat:  Mutates scontext.
1437  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1438 static int string_to_context_struct(struct policydb *pol,
1439 				    struct sidtab *sidtabp,
1440 				    char *scontext,
1441 				    struct context *ctx,
1442 				    u32 def_sid)
1443 {
1444 	struct role_datum *role;
1445 	struct type_datum *typdatum;
1446 	struct user_datum *usrdatum;
1447 	char *scontextp, *p, oldc;
1448 	int rc = 0;
1449 
1450 	context_init(ctx);
1451 
1452 	/* Parse the security context. */
1453 
1454 	rc = -EINVAL;
1455 	scontextp = (char *) scontext;
1456 
1457 	/* Extract the user. */
1458 	p = scontextp;
1459 	while (*p && *p != ':')
1460 		p++;
1461 
1462 	if (*p == 0)
1463 		goto out;
1464 
1465 	*p++ = 0;
1466 
1467 	usrdatum = symtab_search(&pol->p_users, scontextp);
1468 	if (!usrdatum)
1469 		goto out;
1470 
1471 	ctx->user = usrdatum->value;
1472 
1473 	/* Extract role. */
1474 	scontextp = p;
1475 	while (*p && *p != ':')
1476 		p++;
1477 
1478 	if (*p == 0)
1479 		goto out;
1480 
1481 	*p++ = 0;
1482 
1483 	role = symtab_search(&pol->p_roles, scontextp);
1484 	if (!role)
1485 		goto out;
1486 	ctx->role = role->value;
1487 
1488 	/* Extract type. */
1489 	scontextp = p;
1490 	while (*p && *p != ':')
1491 		p++;
1492 	oldc = *p;
1493 	*p++ = 0;
1494 
1495 	typdatum = symtab_search(&pol->p_types, scontextp);
1496 	if (!typdatum || typdatum->attribute)
1497 		goto out;
1498 
1499 	ctx->type = typdatum->value;
1500 
1501 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502 	if (rc)
1503 		goto out;
1504 
1505 	/* Check the validity of the new context. */
1506 	rc = -EINVAL;
1507 	if (!policydb_context_isvalid(pol, ctx))
1508 		goto out;
1509 	rc = 0;
1510 out:
1511 	if (rc)
1512 		context_destroy(ctx);
1513 	return rc;
1514 }
1515 
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1516 static int security_context_to_sid_core(struct selinux_state *state,
1517 					const char *scontext, u32 scontext_len,
1518 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519 					int force)
1520 {
1521 	struct selinux_policy *policy;
1522 	struct policydb *policydb;
1523 	struct sidtab *sidtab;
1524 	char *scontext2, *str = NULL;
1525 	struct context context;
1526 	int rc = 0;
1527 
1528 	/* An empty security context is never valid. */
1529 	if (!scontext_len)
1530 		return -EINVAL;
1531 
1532 	/* Copy the string to allow changes and ensure a NUL terminator */
1533 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534 	if (!scontext2)
1535 		return -ENOMEM;
1536 
1537 	if (!selinux_initialized(state)) {
1538 		int i;
1539 
1540 		for (i = 1; i < SECINITSID_NUM; i++) {
1541 			const char *s = initial_sid_to_string[i];
1542 
1543 			if (s && !strcmp(s, scontext2)) {
1544 				*sid = i;
1545 				goto out;
1546 			}
1547 		}
1548 		*sid = SECINITSID_KERNEL;
1549 		goto out;
1550 	}
1551 	*sid = SECSID_NULL;
1552 
1553 	if (force) {
1554 		/* Save another copy for storing in uninterpreted form */
1555 		rc = -ENOMEM;
1556 		str = kstrdup(scontext2, gfp_flags);
1557 		if (!str)
1558 			goto out;
1559 	}
1560 retry:
1561 	rcu_read_lock();
1562 	policy = rcu_dereference(state->policy);
1563 	policydb = &policy->policydb;
1564 	sidtab = policy->sidtab;
1565 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566 				      &context, def_sid);
1567 	if (rc == -EINVAL && force) {
1568 		context.str = str;
1569 		context.len = strlen(str) + 1;
1570 		str = NULL;
1571 	} else if (rc)
1572 		goto out_unlock;
1573 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574 	if (rc == -ESTALE) {
1575 		rcu_read_unlock();
1576 		if (context.str) {
1577 			str = context.str;
1578 			context.str = NULL;
1579 		}
1580 		context_destroy(&context);
1581 		goto retry;
1582 	}
1583 	context_destroy(&context);
1584 out_unlock:
1585 	rcu_read_unlock();
1586 out:
1587 	kfree(scontext2);
1588 	kfree(str);
1589 	return rc;
1590 }
1591 
1592 /**
1593  * security_context_to_sid - Obtain a SID for a given security context.
1594  * @scontext: security context
1595  * @scontext_len: length in bytes
1596  * @sid: security identifier, SID
1597  * @gfp: context for the allocation
1598  *
1599  * Obtains a SID associated with the security context that
1600  * has the string representation specified by @scontext.
1601  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1602  * memory is available, or 0 on success.
1603  */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1604 int security_context_to_sid(struct selinux_state *state,
1605 			    const char *scontext, u32 scontext_len, u32 *sid,
1606 			    gfp_t gfp)
1607 {
1608 	return security_context_to_sid_core(state, scontext, scontext_len,
1609 					    sid, SECSID_NULL, gfp, 0);
1610 }
1611 
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1612 int security_context_str_to_sid(struct selinux_state *state,
1613 				const char *scontext, u32 *sid, gfp_t gfp)
1614 {
1615 	return security_context_to_sid(state, scontext, strlen(scontext),
1616 				       sid, gfp);
1617 }
1618 
1619 /**
1620  * security_context_to_sid_default - Obtain a SID for a given security context,
1621  * falling back to specified default if needed.
1622  *
1623  * @scontext: security context
1624  * @scontext_len: length in bytes
1625  * @sid: security identifier, SID
1626  * @def_sid: default SID to assign on error
1627  *
1628  * Obtains a SID associated with the security context that
1629  * has the string representation specified by @scontext.
1630  * The default SID is passed to the MLS layer to be used to allow
1631  * kernel labeling of the MLS field if the MLS field is not present
1632  * (for upgrading to MLS without full relabel).
1633  * Implicitly forces adding of the context even if it cannot be mapped yet.
1634  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1635  * memory is available, or 0 on success.
1636  */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1637 int security_context_to_sid_default(struct selinux_state *state,
1638 				    const char *scontext, u32 scontext_len,
1639 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1640 {
1641 	return security_context_to_sid_core(state, scontext, scontext_len,
1642 					    sid, def_sid, gfp_flags, 1);
1643 }
1644 
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1645 int security_context_to_sid_force(struct selinux_state *state,
1646 				  const char *scontext, u32 scontext_len,
1647 				  u32 *sid)
1648 {
1649 	return security_context_to_sid_core(state, scontext, scontext_len,
1650 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1651 }
1652 
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1653 static int compute_sid_handle_invalid_context(
1654 	struct selinux_state *state,
1655 	struct selinux_policy *policy,
1656 	struct sidtab_entry *sentry,
1657 	struct sidtab_entry *tentry,
1658 	u16 tclass,
1659 	struct context *newcontext)
1660 {
1661 	struct policydb *policydb = &policy->policydb;
1662 	struct sidtab *sidtab = policy->sidtab;
1663 	char *s = NULL, *t = NULL, *n = NULL;
1664 	u32 slen, tlen, nlen;
1665 	struct audit_buffer *ab;
1666 
1667 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1668 		goto out;
1669 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1670 		goto out;
1671 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1672 		goto out;
1673 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1674 	audit_log_format(ab,
1675 			 "op=security_compute_sid invalid_context=");
1676 	/* no need to record the NUL with untrusted strings */
1677 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1678 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1679 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1680 	audit_log_end(ab);
1681 out:
1682 	kfree(s);
1683 	kfree(t);
1684 	kfree(n);
1685 	if (!enforcing_enabled(state))
1686 		return 0;
1687 	return -EACCES;
1688 }
1689 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1690 static void filename_compute_type(struct policydb *policydb,
1691 				  struct context *newcontext,
1692 				  u32 stype, u32 ttype, u16 tclass,
1693 				  const char *objname)
1694 {
1695 	struct filename_trans_key ft;
1696 	struct filename_trans_datum *datum;
1697 
1698 	/*
1699 	 * Most filename trans rules are going to live in specific directories
1700 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1701 	 * if the ttype does not contain any rules.
1702 	 */
1703 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1704 		return;
1705 
1706 	ft.ttype = ttype;
1707 	ft.tclass = tclass;
1708 	ft.name = objname;
1709 
1710 	datum = policydb_filenametr_search(policydb, &ft);
1711 	while (datum) {
1712 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1713 			newcontext->type = datum->otype;
1714 			return;
1715 		}
1716 		datum = datum->next;
1717 	}
1718 }
1719 
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1720 static int security_compute_sid(struct selinux_state *state,
1721 				u32 ssid,
1722 				u32 tsid,
1723 				u16 orig_tclass,
1724 				u32 specified,
1725 				const char *objname,
1726 				u32 *out_sid,
1727 				bool kern)
1728 {
1729 	struct selinux_policy *policy;
1730 	struct policydb *policydb;
1731 	struct sidtab *sidtab;
1732 	struct class_datum *cladatum;
1733 	struct context *scontext, *tcontext, newcontext;
1734 	struct sidtab_entry *sentry, *tentry;
1735 	struct avtab_key avkey;
1736 	struct avtab_datum *avdatum;
1737 	struct avtab_node *node;
1738 	u16 tclass;
1739 	int rc = 0;
1740 	bool sock;
1741 
1742 	if (!selinux_initialized(state)) {
1743 		switch (orig_tclass) {
1744 		case SECCLASS_PROCESS: /* kernel value */
1745 			*out_sid = ssid;
1746 			break;
1747 		default:
1748 			*out_sid = tsid;
1749 			break;
1750 		}
1751 		goto out;
1752 	}
1753 
1754 retry:
1755 	cladatum = NULL;
1756 	context_init(&newcontext);
1757 
1758 	rcu_read_lock();
1759 
1760 	policy = rcu_dereference(state->policy);
1761 
1762 	if (kern) {
1763 		tclass = unmap_class(&policy->map, orig_tclass);
1764 		sock = security_is_socket_class(orig_tclass);
1765 	} else {
1766 		tclass = orig_tclass;
1767 		sock = security_is_socket_class(map_class(&policy->map,
1768 							  tclass));
1769 	}
1770 
1771 	policydb = &policy->policydb;
1772 	sidtab = policy->sidtab;
1773 
1774 	sentry = sidtab_search_entry(sidtab, ssid);
1775 	if (!sentry) {
1776 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1777 		       __func__, ssid);
1778 		rc = -EINVAL;
1779 		goto out_unlock;
1780 	}
1781 	tentry = sidtab_search_entry(sidtab, tsid);
1782 	if (!tentry) {
1783 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1784 		       __func__, tsid);
1785 		rc = -EINVAL;
1786 		goto out_unlock;
1787 	}
1788 
1789 	scontext = &sentry->context;
1790 	tcontext = &tentry->context;
1791 
1792 	if (tclass && tclass <= policydb->p_classes.nprim)
1793 		cladatum = policydb->class_val_to_struct[tclass - 1];
1794 
1795 	/* Set the user identity. */
1796 	switch (specified) {
1797 	case AVTAB_TRANSITION:
1798 	case AVTAB_CHANGE:
1799 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1800 			newcontext.user = tcontext->user;
1801 		} else {
1802 			/* notice this gets both DEFAULT_SOURCE and unset */
1803 			/* Use the process user identity. */
1804 			newcontext.user = scontext->user;
1805 		}
1806 		break;
1807 	case AVTAB_MEMBER:
1808 		/* Use the related object owner. */
1809 		newcontext.user = tcontext->user;
1810 		break;
1811 	}
1812 
1813 	/* Set the role to default values. */
1814 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1815 		newcontext.role = scontext->role;
1816 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1817 		newcontext.role = tcontext->role;
1818 	} else {
1819 		if ((tclass == policydb->process_class) || sock)
1820 			newcontext.role = scontext->role;
1821 		else
1822 			newcontext.role = OBJECT_R_VAL;
1823 	}
1824 
1825 	/* Set the type to default values. */
1826 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1827 		newcontext.type = scontext->type;
1828 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1829 		newcontext.type = tcontext->type;
1830 	} else {
1831 		if ((tclass == policydb->process_class) || sock) {
1832 			/* Use the type of process. */
1833 			newcontext.type = scontext->type;
1834 		} else {
1835 			/* Use the type of the related object. */
1836 			newcontext.type = tcontext->type;
1837 		}
1838 	}
1839 
1840 	/* Look for a type transition/member/change rule. */
1841 	avkey.source_type = scontext->type;
1842 	avkey.target_type = tcontext->type;
1843 	avkey.target_class = tclass;
1844 	avkey.specified = specified;
1845 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1846 
1847 	/* If no permanent rule, also check for enabled conditional rules */
1848 	if (!avdatum) {
1849 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1850 		for (; node; node = avtab_search_node_next(node, specified)) {
1851 			if (node->key.specified & AVTAB_ENABLED) {
1852 				avdatum = &node->datum;
1853 				break;
1854 			}
1855 		}
1856 	}
1857 
1858 	if (avdatum) {
1859 		/* Use the type from the type transition/member/change rule. */
1860 		newcontext.type = avdatum->u.data;
1861 	}
1862 
1863 	/* if we have a objname this is a file trans check so check those rules */
1864 	if (objname)
1865 		filename_compute_type(policydb, &newcontext, scontext->type,
1866 				      tcontext->type, tclass, objname);
1867 
1868 	/* Check for class-specific changes. */
1869 	if (specified & AVTAB_TRANSITION) {
1870 		/* Look for a role transition rule. */
1871 		struct role_trans_datum *rtd;
1872 		struct role_trans_key rtk = {
1873 			.role = scontext->role,
1874 			.type = tcontext->type,
1875 			.tclass = tclass,
1876 		};
1877 
1878 		rtd = policydb_roletr_search(policydb, &rtk);
1879 		if (rtd)
1880 			newcontext.role = rtd->new_role;
1881 	}
1882 
1883 	/* Set the MLS attributes.
1884 	   This is done last because it may allocate memory. */
1885 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1886 			     &newcontext, sock);
1887 	if (rc)
1888 		goto out_unlock;
1889 
1890 	/* Check the validity of the context. */
1891 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1892 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1893 							tentry, tclass,
1894 							&newcontext);
1895 		if (rc)
1896 			goto out_unlock;
1897 	}
1898 	/* Obtain the sid for the context. */
1899 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1900 	if (rc == -ESTALE) {
1901 		rcu_read_unlock();
1902 		context_destroy(&newcontext);
1903 		goto retry;
1904 	}
1905 out_unlock:
1906 	rcu_read_unlock();
1907 	context_destroy(&newcontext);
1908 out:
1909 	return rc;
1910 }
1911 
1912 /**
1913  * security_transition_sid - Compute the SID for a new subject/object.
1914  * @ssid: source security identifier
1915  * @tsid: target security identifier
1916  * @tclass: target security class
1917  * @out_sid: security identifier for new subject/object
1918  *
1919  * Compute a SID to use for labeling a new subject or object in the
1920  * class @tclass based on a SID pair (@ssid, @tsid).
1921  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1922  * if insufficient memory is available, or %0 if the new SID was
1923  * computed successfully.
1924  */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1925 int security_transition_sid(struct selinux_state *state,
1926 			    u32 ssid, u32 tsid, u16 tclass,
1927 			    const struct qstr *qstr, u32 *out_sid)
1928 {
1929 	return security_compute_sid(state, ssid, tsid, tclass,
1930 				    AVTAB_TRANSITION,
1931 				    qstr ? qstr->name : NULL, out_sid, true);
1932 }
1933 
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1934 int security_transition_sid_user(struct selinux_state *state,
1935 				 u32 ssid, u32 tsid, u16 tclass,
1936 				 const char *objname, u32 *out_sid)
1937 {
1938 	return security_compute_sid(state, ssid, tsid, tclass,
1939 				    AVTAB_TRANSITION,
1940 				    objname, out_sid, false);
1941 }
1942 
1943 /**
1944  * security_member_sid - Compute the SID for member selection.
1945  * @ssid: source security identifier
1946  * @tsid: target security identifier
1947  * @tclass: target security class
1948  * @out_sid: security identifier for selected member
1949  *
1950  * Compute a SID to use when selecting a member of a polyinstantiated
1951  * object of class @tclass based on a SID pair (@ssid, @tsid).
1952  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953  * if insufficient memory is available, or %0 if the SID was
1954  * computed successfully.
1955  */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1956 int security_member_sid(struct selinux_state *state,
1957 			u32 ssid,
1958 			u32 tsid,
1959 			u16 tclass,
1960 			u32 *out_sid)
1961 {
1962 	return security_compute_sid(state, ssid, tsid, tclass,
1963 				    AVTAB_MEMBER, NULL,
1964 				    out_sid, false);
1965 }
1966 
1967 /**
1968  * security_change_sid - Compute the SID for object relabeling.
1969  * @ssid: source security identifier
1970  * @tsid: target security identifier
1971  * @tclass: target security class
1972  * @out_sid: security identifier for selected member
1973  *
1974  * Compute a SID to use for relabeling an object of class @tclass
1975  * based on a SID pair (@ssid, @tsid).
1976  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1977  * if insufficient memory is available, or %0 if the SID was
1978  * computed successfully.
1979  */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1980 int security_change_sid(struct selinux_state *state,
1981 			u32 ssid,
1982 			u32 tsid,
1983 			u16 tclass,
1984 			u32 *out_sid)
1985 {
1986 	return security_compute_sid(state,
1987 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1988 				    out_sid, false);
1989 }
1990 
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1991 static inline int convert_context_handle_invalid_context(
1992 	struct selinux_state *state,
1993 	struct policydb *policydb,
1994 	struct context *context)
1995 {
1996 	char *s;
1997 	u32 len;
1998 
1999 	if (enforcing_enabled(state))
2000 		return -EINVAL;
2001 
2002 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2003 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2004 			s);
2005 		kfree(s);
2006 	}
2007 	return 0;
2008 }
2009 
2010 /*
2011  * Convert the values in the security context
2012  * structure `oldc' from the values specified
2013  * in the policy `p->oldp' to the values specified
2014  * in the policy `p->newp', storing the new context
2015  * in `newc'.  Verify that the context is valid
2016  * under the new policy.
2017  */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2018 static int convert_context(struct context *oldc, struct context *newc, void *p,
2019 			   gfp_t gfp_flags)
2020 {
2021 	struct convert_context_args *args;
2022 	struct ocontext *oc;
2023 	struct role_datum *role;
2024 	struct type_datum *typdatum;
2025 	struct user_datum *usrdatum;
2026 	char *s;
2027 	u32 len;
2028 	int rc;
2029 
2030 	args = p;
2031 
2032 	if (oldc->str) {
2033 		s = kstrdup(oldc->str, gfp_flags);
2034 		if (!s)
2035 			return -ENOMEM;
2036 
2037 		rc = string_to_context_struct(args->newp, NULL, s,
2038 					      newc, SECSID_NULL);
2039 		if (rc == -EINVAL) {
2040 			/*
2041 			 * Retain string representation for later mapping.
2042 			 *
2043 			 * IMPORTANT: We need to copy the contents of oldc->str
2044 			 * back into s again because string_to_context_struct()
2045 			 * may have garbled it.
2046 			 */
2047 			memcpy(s, oldc->str, oldc->len);
2048 			context_init(newc);
2049 			newc->str = s;
2050 			newc->len = oldc->len;
2051 			return 0;
2052 		}
2053 		kfree(s);
2054 		if (rc) {
2055 			/* Other error condition, e.g. ENOMEM. */
2056 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2057 			       oldc->str, -rc);
2058 			return rc;
2059 		}
2060 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2061 			oldc->str);
2062 		return 0;
2063 	}
2064 
2065 	context_init(newc);
2066 
2067 	/* Convert the user. */
2068 	rc = -EINVAL;
2069 	usrdatum = symtab_search(&args->newp->p_users,
2070 				 sym_name(args->oldp,
2071 					  SYM_USERS, oldc->user - 1));
2072 	if (!usrdatum)
2073 		goto bad;
2074 	newc->user = usrdatum->value;
2075 
2076 	/* Convert the role. */
2077 	rc = -EINVAL;
2078 	role = symtab_search(&args->newp->p_roles,
2079 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2080 	if (!role)
2081 		goto bad;
2082 	newc->role = role->value;
2083 
2084 	/* Convert the type. */
2085 	rc = -EINVAL;
2086 	typdatum = symtab_search(&args->newp->p_types,
2087 				 sym_name(args->oldp,
2088 					  SYM_TYPES, oldc->type - 1));
2089 	if (!typdatum)
2090 		goto bad;
2091 	newc->type = typdatum->value;
2092 
2093 	/* Convert the MLS fields if dealing with MLS policies */
2094 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096 		if (rc)
2097 			goto bad;
2098 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099 		/*
2100 		 * Switching between non-MLS and MLS policy:
2101 		 * ensure that the MLS fields of the context for all
2102 		 * existing entries in the sidtab are filled in with a
2103 		 * suitable default value, likely taken from one of the
2104 		 * initial SIDs.
2105 		 */
2106 		oc = args->newp->ocontexts[OCON_ISID];
2107 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108 			oc = oc->next;
2109 		rc = -EINVAL;
2110 		if (!oc) {
2111 			pr_err("SELinux:  unable to look up"
2112 				" the initial SIDs list\n");
2113 			goto bad;
2114 		}
2115 		rc = mls_range_set(newc, &oc->context[0].range);
2116 		if (rc)
2117 			goto bad;
2118 	}
2119 
2120 	/* Check the validity of the new context. */
2121 	if (!policydb_context_isvalid(args->newp, newc)) {
2122 		rc = convert_context_handle_invalid_context(args->state,
2123 							args->oldp,
2124 							oldc);
2125 		if (rc)
2126 			goto bad;
2127 	}
2128 
2129 	return 0;
2130 bad:
2131 	/* Map old representation to string and save it. */
2132 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2133 	if (rc)
2134 		return rc;
2135 	context_destroy(newc);
2136 	newc->str = s;
2137 	newc->len = len;
2138 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2139 		newc->str);
2140 	return 0;
2141 }
2142 
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2143 static void security_load_policycaps(struct selinux_state *state,
2144 				struct selinux_policy *policy)
2145 {
2146 	struct policydb *p;
2147 	unsigned int i;
2148 	struct ebitmap_node *node;
2149 
2150 	p = &policy->policydb;
2151 
2152 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2153 		WRITE_ONCE(state->policycap[i],
2154 			ebitmap_get_bit(&p->policycaps, i));
2155 
2156 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2157 		pr_info("SELinux:  policy capability %s=%d\n",
2158 			selinux_policycap_names[i],
2159 			ebitmap_get_bit(&p->policycaps, i));
2160 
2161 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2162 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2163 			pr_info("SELinux:  unknown policy capability %u\n",
2164 				i);
2165 	}
2166 }
2167 
2168 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2169 				struct selinux_policy *newpolicy);
2170 
selinux_policy_free(struct selinux_policy * policy)2171 static void selinux_policy_free(struct selinux_policy *policy)
2172 {
2173 	if (!policy)
2174 		return;
2175 
2176 	sidtab_destroy(policy->sidtab);
2177 	kfree(policy->map.mapping);
2178 	policydb_destroy(&policy->policydb);
2179 	kfree(policy->sidtab);
2180 	kfree(policy);
2181 }
2182 
selinux_policy_cond_free(struct selinux_policy * policy)2183 static void selinux_policy_cond_free(struct selinux_policy *policy)
2184 {
2185 	cond_policydb_destroy_dup(&policy->policydb);
2186 	kfree(policy);
2187 }
2188 
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2189 void selinux_policy_cancel(struct selinux_state *state,
2190 			   struct selinux_load_state *load_state)
2191 {
2192 	struct selinux_policy *oldpolicy;
2193 
2194 	oldpolicy = rcu_dereference_protected(state->policy,
2195 					lockdep_is_held(&state->policy_mutex));
2196 
2197 	sidtab_cancel_convert(oldpolicy->sidtab);
2198 	selinux_policy_free(load_state->policy);
2199 	kfree(load_state->convert_data);
2200 }
2201 
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2202 static void selinux_notify_policy_change(struct selinux_state *state,
2203 					u32 seqno)
2204 {
2205 	/* Flush external caches and notify userspace of policy load */
2206 	avc_ss_reset(state->avc, seqno);
2207 	selnl_notify_policyload(seqno);
2208 	selinux_status_update_policyload(state, seqno);
2209 	selinux_netlbl_cache_invalidate();
2210 	selinux_xfrm_notify_policyload();
2211 }
2212 
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2213 void selinux_policy_commit(struct selinux_state *state,
2214 			   struct selinux_load_state *load_state)
2215 {
2216 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217 	unsigned long flags;
2218 	u32 seqno;
2219 
2220 	oldpolicy = rcu_dereference_protected(state->policy,
2221 					lockdep_is_held(&state->policy_mutex));
2222 
2223 	/* If switching between different policy types, log MLS status */
2224 	if (oldpolicy) {
2225 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226 			pr_info("SELinux: Disabling MLS support...\n");
2227 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228 			pr_info("SELinux: Enabling MLS support...\n");
2229 	}
2230 
2231 	/* Set latest granting seqno for new policy. */
2232 	if (oldpolicy)
2233 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234 	else
2235 		newpolicy->latest_granting = 1;
2236 	seqno = newpolicy->latest_granting;
2237 
2238 	/* Install the new policy. */
2239 	if (oldpolicy) {
2240 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241 		rcu_assign_pointer(state->policy, newpolicy);
2242 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243 	} else {
2244 		rcu_assign_pointer(state->policy, newpolicy);
2245 	}
2246 
2247 	/* Load the policycaps from the new policy */
2248 	security_load_policycaps(state, newpolicy);
2249 
2250 	if (!selinux_initialized(state)) {
2251 		/*
2252 		 * After first policy load, the security server is
2253 		 * marked as initialized and ready to handle requests and
2254 		 * any objects created prior to policy load are then labeled.
2255 		 */
2256 		selinux_mark_initialized(state);
2257 		selinux_complete_init();
2258 	}
2259 
2260 	/* Free the old policy */
2261 	synchronize_rcu();
2262 	selinux_policy_free(oldpolicy);
2263 	kfree(load_state->convert_data);
2264 
2265 	/* Notify others of the policy change */
2266 	selinux_notify_policy_change(state, seqno);
2267 }
2268 
2269 /**
2270  * security_load_policy - Load a security policy configuration.
2271  * @data: binary policy data
2272  * @len: length of data in bytes
2273  *
2274  * Load a new set of security policy configuration data,
2275  * validate it and convert the SID table as necessary.
2276  * This function will flush the access vector cache after
2277  * loading the new policy.
2278  */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2279 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2280 			 struct selinux_load_state *load_state)
2281 {
2282 	struct selinux_policy *newpolicy, *oldpolicy;
2283 	struct selinux_policy_convert_data *convert_data;
2284 	int rc = 0;
2285 	struct policy_file file = { data, len }, *fp = &file;
2286 
2287 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2288 	if (!newpolicy)
2289 		return -ENOMEM;
2290 
2291 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2292 	if (!newpolicy->sidtab) {
2293 		rc = -ENOMEM;
2294 		goto err_policy;
2295 	}
2296 
2297 	rc = policydb_read(&newpolicy->policydb, fp);
2298 	if (rc)
2299 		goto err_sidtab;
2300 
2301 	newpolicy->policydb.len = len;
2302 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2303 				&newpolicy->map);
2304 	if (rc)
2305 		goto err_policydb;
2306 
2307 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2308 	if (rc) {
2309 		pr_err("SELinux:  unable to load the initial SIDs\n");
2310 		goto err_mapping;
2311 	}
2312 
2313 	if (!selinux_initialized(state)) {
2314 		/* First policy load, so no need to preserve state from old policy */
2315 		load_state->policy = newpolicy;
2316 		load_state->convert_data = NULL;
2317 		return 0;
2318 	}
2319 
2320 	oldpolicy = rcu_dereference_protected(state->policy,
2321 					lockdep_is_held(&state->policy_mutex));
2322 
2323 	/* Preserve active boolean values from the old policy */
2324 	rc = security_preserve_bools(oldpolicy, newpolicy);
2325 	if (rc) {
2326 		pr_err("SELinux:  unable to preserve booleans\n");
2327 		goto err_free_isids;
2328 	}
2329 
2330 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2331 	if (!convert_data) {
2332 		rc = -ENOMEM;
2333 		goto err_free_isids;
2334 	}
2335 
2336 	/*
2337 	 * Convert the internal representations of contexts
2338 	 * in the new SID table.
2339 	 */
2340 	convert_data->args.state = state;
2341 	convert_data->args.oldp = &oldpolicy->policydb;
2342 	convert_data->args.newp = &newpolicy->policydb;
2343 
2344 	convert_data->sidtab_params.func = convert_context;
2345 	convert_data->sidtab_params.args = &convert_data->args;
2346 	convert_data->sidtab_params.target = newpolicy->sidtab;
2347 
2348 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2349 	if (rc) {
2350 		pr_err("SELinux:  unable to convert the internal"
2351 			" representation of contexts in the new SID"
2352 			" table\n");
2353 		goto err_free_convert_data;
2354 	}
2355 
2356 	load_state->policy = newpolicy;
2357 	load_state->convert_data = convert_data;
2358 	return 0;
2359 
2360 err_free_convert_data:
2361 	kfree(convert_data);
2362 err_free_isids:
2363 	sidtab_destroy(newpolicy->sidtab);
2364 err_mapping:
2365 	kfree(newpolicy->map.mapping);
2366 err_policydb:
2367 	policydb_destroy(&newpolicy->policydb);
2368 err_sidtab:
2369 	kfree(newpolicy->sidtab);
2370 err_policy:
2371 	kfree(newpolicy);
2372 
2373 	return rc;
2374 }
2375 
2376 /**
2377  * ocontext_to_sid - Helper to safely get sid for an ocontext
2378  * @sidtab: SID table
2379  * @c: ocontext structure
2380  * @index: index of the context entry (0 or 1)
2381  * @out_sid: pointer to the resulting SID value
2382  *
2383  * For all ocontexts except OCON_ISID the SID fields are populated
2384  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2385  * operation, this helper must be used to do that safely.
2386  *
2387  * WARNING: This function may return -ESTALE, indicating that the caller
2388  * must retry the operation after re-acquiring the policy pointer!
2389  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2390 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2391 			   size_t index, u32 *out_sid)
2392 {
2393 	int rc;
2394 	u32 sid;
2395 
2396 	/* Ensure the associated sidtab entry is visible to this thread. */
2397 	sid = smp_load_acquire(&c->sid[index]);
2398 	if (!sid) {
2399 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2400 		if (rc)
2401 			return rc;
2402 
2403 		/*
2404 		 * Ensure the new sidtab entry is visible to other threads
2405 		 * when they see the SID.
2406 		 */
2407 		smp_store_release(&c->sid[index], sid);
2408 	}
2409 	*out_sid = sid;
2410 	return 0;
2411 }
2412 
2413 /**
2414  * security_port_sid - Obtain the SID for a port.
2415  * @protocol: protocol number
2416  * @port: port number
2417  * @out_sid: security identifier
2418  */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2419 int security_port_sid(struct selinux_state *state,
2420 		      u8 protocol, u16 port, u32 *out_sid)
2421 {
2422 	struct selinux_policy *policy;
2423 	struct policydb *policydb;
2424 	struct sidtab *sidtab;
2425 	struct ocontext *c;
2426 	int rc;
2427 
2428 	if (!selinux_initialized(state)) {
2429 		*out_sid = SECINITSID_PORT;
2430 		return 0;
2431 	}
2432 
2433 retry:
2434 	rc = 0;
2435 	rcu_read_lock();
2436 	policy = rcu_dereference(state->policy);
2437 	policydb = &policy->policydb;
2438 	sidtab = policy->sidtab;
2439 
2440 	c = policydb->ocontexts[OCON_PORT];
2441 	while (c) {
2442 		if (c->u.port.protocol == protocol &&
2443 		    c->u.port.low_port <= port &&
2444 		    c->u.port.high_port >= port)
2445 			break;
2446 		c = c->next;
2447 	}
2448 
2449 	if (c) {
2450 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2451 		if (rc == -ESTALE) {
2452 			rcu_read_unlock();
2453 			goto retry;
2454 		}
2455 		if (rc)
2456 			goto out;
2457 	} else {
2458 		*out_sid = SECINITSID_PORT;
2459 	}
2460 
2461 out:
2462 	rcu_read_unlock();
2463 	return rc;
2464 }
2465 
2466 /**
2467  * security_pkey_sid - Obtain the SID for a pkey.
2468  * @subnet_prefix: Subnet Prefix
2469  * @pkey_num: pkey number
2470  * @out_sid: security identifier
2471  */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2472 int security_ib_pkey_sid(struct selinux_state *state,
2473 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2474 {
2475 	struct selinux_policy *policy;
2476 	struct policydb *policydb;
2477 	struct sidtab *sidtab;
2478 	struct ocontext *c;
2479 	int rc;
2480 
2481 	if (!selinux_initialized(state)) {
2482 		*out_sid = SECINITSID_UNLABELED;
2483 		return 0;
2484 	}
2485 
2486 retry:
2487 	rc = 0;
2488 	rcu_read_lock();
2489 	policy = rcu_dereference(state->policy);
2490 	policydb = &policy->policydb;
2491 	sidtab = policy->sidtab;
2492 
2493 	c = policydb->ocontexts[OCON_IBPKEY];
2494 	while (c) {
2495 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2496 		    c->u.ibpkey.high_pkey >= pkey_num &&
2497 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2498 			break;
2499 
2500 		c = c->next;
2501 	}
2502 
2503 	if (c) {
2504 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2505 		if (rc == -ESTALE) {
2506 			rcu_read_unlock();
2507 			goto retry;
2508 		}
2509 		if (rc)
2510 			goto out;
2511 	} else
2512 		*out_sid = SECINITSID_UNLABELED;
2513 
2514 out:
2515 	rcu_read_unlock();
2516 	return rc;
2517 }
2518 
2519 /**
2520  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2521  * @dev_name: device name
2522  * @port: port number
2523  * @out_sid: security identifier
2524  */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2525 int security_ib_endport_sid(struct selinux_state *state,
2526 			    const char *dev_name, u8 port_num, u32 *out_sid)
2527 {
2528 	struct selinux_policy *policy;
2529 	struct policydb *policydb;
2530 	struct sidtab *sidtab;
2531 	struct ocontext *c;
2532 	int rc;
2533 
2534 	if (!selinux_initialized(state)) {
2535 		*out_sid = SECINITSID_UNLABELED;
2536 		return 0;
2537 	}
2538 
2539 retry:
2540 	rc = 0;
2541 	rcu_read_lock();
2542 	policy = rcu_dereference(state->policy);
2543 	policydb = &policy->policydb;
2544 	sidtab = policy->sidtab;
2545 
2546 	c = policydb->ocontexts[OCON_IBENDPORT];
2547 	while (c) {
2548 		if (c->u.ibendport.port == port_num &&
2549 		    !strncmp(c->u.ibendport.dev_name,
2550 			     dev_name,
2551 			     IB_DEVICE_NAME_MAX))
2552 			break;
2553 
2554 		c = c->next;
2555 	}
2556 
2557 	if (c) {
2558 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2559 		if (rc == -ESTALE) {
2560 			rcu_read_unlock();
2561 			goto retry;
2562 		}
2563 		if (rc)
2564 			goto out;
2565 	} else
2566 		*out_sid = SECINITSID_UNLABELED;
2567 
2568 out:
2569 	rcu_read_unlock();
2570 	return rc;
2571 }
2572 
2573 /**
2574  * security_netif_sid - Obtain the SID for a network interface.
2575  * @name: interface name
2576  * @if_sid: interface SID
2577  */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2578 int security_netif_sid(struct selinux_state *state,
2579 		       char *name, u32 *if_sid)
2580 {
2581 	struct selinux_policy *policy;
2582 	struct policydb *policydb;
2583 	struct sidtab *sidtab;
2584 	int rc;
2585 	struct ocontext *c;
2586 
2587 	if (!selinux_initialized(state)) {
2588 		*if_sid = SECINITSID_NETIF;
2589 		return 0;
2590 	}
2591 
2592 retry:
2593 	rc = 0;
2594 	rcu_read_lock();
2595 	policy = rcu_dereference(state->policy);
2596 	policydb = &policy->policydb;
2597 	sidtab = policy->sidtab;
2598 
2599 	c = policydb->ocontexts[OCON_NETIF];
2600 	while (c) {
2601 		if (strcmp(name, c->u.name) == 0)
2602 			break;
2603 		c = c->next;
2604 	}
2605 
2606 	if (c) {
2607 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2608 		if (rc == -ESTALE) {
2609 			rcu_read_unlock();
2610 			goto retry;
2611 		}
2612 		if (rc)
2613 			goto out;
2614 	} else
2615 		*if_sid = SECINITSID_NETIF;
2616 
2617 out:
2618 	rcu_read_unlock();
2619 	return rc;
2620 }
2621 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2622 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2623 {
2624 	int i, fail = 0;
2625 
2626 	for (i = 0; i < 4; i++)
2627 		if (addr[i] != (input[i] & mask[i])) {
2628 			fail = 1;
2629 			break;
2630 		}
2631 
2632 	return !fail;
2633 }
2634 
2635 /**
2636  * security_node_sid - Obtain the SID for a node (host).
2637  * @domain: communication domain aka address family
2638  * @addrp: address
2639  * @addrlen: address length in bytes
2640  * @out_sid: security identifier
2641  */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2642 int security_node_sid(struct selinux_state *state,
2643 		      u16 domain,
2644 		      void *addrp,
2645 		      u32 addrlen,
2646 		      u32 *out_sid)
2647 {
2648 	struct selinux_policy *policy;
2649 	struct policydb *policydb;
2650 	struct sidtab *sidtab;
2651 	int rc;
2652 	struct ocontext *c;
2653 
2654 	if (!selinux_initialized(state)) {
2655 		*out_sid = SECINITSID_NODE;
2656 		return 0;
2657 	}
2658 
2659 retry:
2660 	rcu_read_lock();
2661 	policy = rcu_dereference(state->policy);
2662 	policydb = &policy->policydb;
2663 	sidtab = policy->sidtab;
2664 
2665 	switch (domain) {
2666 	case AF_INET: {
2667 		u32 addr;
2668 
2669 		rc = -EINVAL;
2670 		if (addrlen != sizeof(u32))
2671 			goto out;
2672 
2673 		addr = *((u32 *)addrp);
2674 
2675 		c = policydb->ocontexts[OCON_NODE];
2676 		while (c) {
2677 			if (c->u.node.addr == (addr & c->u.node.mask))
2678 				break;
2679 			c = c->next;
2680 		}
2681 		break;
2682 	}
2683 
2684 	case AF_INET6:
2685 		rc = -EINVAL;
2686 		if (addrlen != sizeof(u64) * 2)
2687 			goto out;
2688 		c = policydb->ocontexts[OCON_NODE6];
2689 		while (c) {
2690 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2691 						c->u.node6.mask))
2692 				break;
2693 			c = c->next;
2694 		}
2695 		break;
2696 
2697 	default:
2698 		rc = 0;
2699 		*out_sid = SECINITSID_NODE;
2700 		goto out;
2701 	}
2702 
2703 	if (c) {
2704 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2705 		if (rc == -ESTALE) {
2706 			rcu_read_unlock();
2707 			goto retry;
2708 		}
2709 		if (rc)
2710 			goto out;
2711 	} else {
2712 		*out_sid = SECINITSID_NODE;
2713 	}
2714 
2715 	rc = 0;
2716 out:
2717 	rcu_read_unlock();
2718 	return rc;
2719 }
2720 
2721 #define SIDS_NEL 25
2722 
2723 /**
2724  * security_get_user_sids - Obtain reachable SIDs for a user.
2725  * @fromsid: starting SID
2726  * @username: username
2727  * @sids: array of reachable SIDs for user
2728  * @nel: number of elements in @sids
2729  *
2730  * Generate the set of SIDs for legal security contexts
2731  * for a given user that can be reached by @fromsid.
2732  * Set *@sids to point to a dynamically allocated
2733  * array containing the set of SIDs.  Set *@nel to the
2734  * number of elements in the array.
2735  */
2736 
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2737 int security_get_user_sids(struct selinux_state *state,
2738 			   u32 fromsid,
2739 			   char *username,
2740 			   u32 **sids,
2741 			   u32 *nel)
2742 {
2743 	struct selinux_policy *policy;
2744 	struct policydb *policydb;
2745 	struct sidtab *sidtab;
2746 	struct context *fromcon, usercon;
2747 	u32 *mysids = NULL, *mysids2, sid;
2748 	u32 i, j, mynel, maxnel = SIDS_NEL;
2749 	struct user_datum *user;
2750 	struct role_datum *role;
2751 	struct ebitmap_node *rnode, *tnode;
2752 	int rc;
2753 
2754 	*sids = NULL;
2755 	*nel = 0;
2756 
2757 	if (!selinux_initialized(state))
2758 		return 0;
2759 
2760 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761 	if (!mysids)
2762 		return -ENOMEM;
2763 
2764 retry:
2765 	mynel = 0;
2766 	rcu_read_lock();
2767 	policy = rcu_dereference(state->policy);
2768 	policydb = &policy->policydb;
2769 	sidtab = policy->sidtab;
2770 
2771 	context_init(&usercon);
2772 
2773 	rc = -EINVAL;
2774 	fromcon = sidtab_search(sidtab, fromsid);
2775 	if (!fromcon)
2776 		goto out_unlock;
2777 
2778 	rc = -EINVAL;
2779 	user = symtab_search(&policydb->p_users, username);
2780 	if (!user)
2781 		goto out_unlock;
2782 
2783 	usercon.user = user->value;
2784 
2785 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786 		role = policydb->role_val_to_struct[i];
2787 		usercon.role = i + 1;
2788 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789 			usercon.type = j + 1;
2790 
2791 			if (mls_setup_user_range(policydb, fromcon, user,
2792 						 &usercon))
2793 				continue;
2794 
2795 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796 			if (rc == -ESTALE) {
2797 				rcu_read_unlock();
2798 				goto retry;
2799 			}
2800 			if (rc)
2801 				goto out_unlock;
2802 			if (mynel < maxnel) {
2803 				mysids[mynel++] = sid;
2804 			} else {
2805 				rc = -ENOMEM;
2806 				maxnel += SIDS_NEL;
2807 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808 				if (!mysids2)
2809 					goto out_unlock;
2810 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811 				kfree(mysids);
2812 				mysids = mysids2;
2813 				mysids[mynel++] = sid;
2814 			}
2815 		}
2816 	}
2817 	rc = 0;
2818 out_unlock:
2819 	rcu_read_unlock();
2820 	if (rc || !mynel) {
2821 		kfree(mysids);
2822 		return rc;
2823 	}
2824 
2825 	rc = -ENOMEM;
2826 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827 	if (!mysids2) {
2828 		kfree(mysids);
2829 		return rc;
2830 	}
2831 	for (i = 0, j = 0; i < mynel; i++) {
2832 		struct av_decision dummy_avd;
2833 		rc = avc_has_perm_noaudit(state,
2834 					  fromsid, mysids[i],
2835 					  SECCLASS_PROCESS, /* kernel value */
2836 					  PROCESS__TRANSITION, AVC_STRICT,
2837 					  &dummy_avd);
2838 		if (!rc)
2839 			mysids2[j++] = mysids[i];
2840 		cond_resched();
2841 	}
2842 	kfree(mysids);
2843 	*sids = mysids2;
2844 	*nel = j;
2845 	return 0;
2846 }
2847 
2848 /**
2849  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850  * @fstype: filesystem type
2851  * @path: path from root of mount
2852  * @sclass: file security class
2853  * @sid: SID for path
2854  *
2855  * Obtain a SID to use for a file in a filesystem that
2856  * cannot support xattr or use a fixed labeling behavior like
2857  * transition SIDs or task SIDs.
2858  *
2859  * WARNING: This function may return -ESTALE, indicating that the caller
2860  * must retry the operation after re-acquiring the policy pointer!
2861  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2862 static inline int __security_genfs_sid(struct selinux_policy *policy,
2863 				       const char *fstype,
2864 				       char *path,
2865 				       u16 orig_sclass,
2866 				       u32 *sid)
2867 {
2868 	struct policydb *policydb = &policy->policydb;
2869 	struct sidtab *sidtab = policy->sidtab;
2870 	int len;
2871 	u16 sclass;
2872 	struct genfs *genfs;
2873 	struct ocontext *c;
2874 	int cmp = 0;
2875 
2876 	while (path[0] == '/' && path[1] == '/')
2877 		path++;
2878 
2879 	sclass = unmap_class(&policy->map, orig_sclass);
2880 	*sid = SECINITSID_UNLABELED;
2881 
2882 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883 		cmp = strcmp(fstype, genfs->fstype);
2884 		if (cmp <= 0)
2885 			break;
2886 	}
2887 
2888 	if (!genfs || cmp)
2889 		return -ENOENT;
2890 
2891 	for (c = genfs->head; c; c = c->next) {
2892 		len = strlen(c->u.name);
2893 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2894 		    (strncmp(c->u.name, path, len) == 0))
2895 			break;
2896 	}
2897 
2898 	if (!c)
2899 		return -ENOENT;
2900 
2901 	return ocontext_to_sid(sidtab, c, 0, sid);
2902 }
2903 
2904 /**
2905  * security_genfs_sid - Obtain a SID for a file in a filesystem
2906  * @fstype: filesystem type
2907  * @path: path from root of mount
2908  * @sclass: file security class
2909  * @sid: SID for path
2910  *
2911  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2912  * it afterward.
2913  */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2914 int security_genfs_sid(struct selinux_state *state,
2915 		       const char *fstype,
2916 		       char *path,
2917 		       u16 orig_sclass,
2918 		       u32 *sid)
2919 {
2920 	struct selinux_policy *policy;
2921 	int retval;
2922 
2923 	if (!selinux_initialized(state)) {
2924 		*sid = SECINITSID_UNLABELED;
2925 		return 0;
2926 	}
2927 
2928 	do {
2929 		rcu_read_lock();
2930 		policy = rcu_dereference(state->policy);
2931 		retval = __security_genfs_sid(policy, fstype, path,
2932 					      orig_sclass, sid);
2933 		rcu_read_unlock();
2934 	} while (retval == -ESTALE);
2935 	return retval;
2936 }
2937 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2938 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2939 			const char *fstype,
2940 			char *path,
2941 			u16 orig_sclass,
2942 			u32 *sid)
2943 {
2944 	/* no lock required, policy is not yet accessible by other threads */
2945 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2946 }
2947 
2948 /**
2949  * security_fs_use - Determine how to handle labeling for a filesystem.
2950  * @sb: superblock in question
2951  */
security_fs_use(struct selinux_state * state,struct super_block * sb)2952 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2953 {
2954 	struct selinux_policy *policy;
2955 	struct policydb *policydb;
2956 	struct sidtab *sidtab;
2957 	int rc;
2958 	struct ocontext *c;
2959 	struct superblock_security_struct *sbsec = sb->s_security;
2960 	const char *fstype = sb->s_type->name;
2961 
2962 	if (!selinux_initialized(state)) {
2963 		sbsec->behavior = SECURITY_FS_USE_NONE;
2964 		sbsec->sid = SECINITSID_UNLABELED;
2965 		return 0;
2966 	}
2967 
2968 retry:
2969 	rc = 0;
2970 	rcu_read_lock();
2971 	policy = rcu_dereference(state->policy);
2972 	policydb = &policy->policydb;
2973 	sidtab = policy->sidtab;
2974 
2975 	c = policydb->ocontexts[OCON_FSUSE];
2976 	while (c) {
2977 		if (strcmp(fstype, c->u.name) == 0)
2978 			break;
2979 		c = c->next;
2980 	}
2981 
2982 	if (c) {
2983 		sbsec->behavior = c->v.behavior;
2984 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2985 		if (rc == -ESTALE) {
2986 			rcu_read_unlock();
2987 			goto retry;
2988 		}
2989 		if (rc)
2990 			goto out;
2991 	} else {
2992 		rc = __security_genfs_sid(policy, fstype, "/",
2993 					SECCLASS_DIR, &sbsec->sid);
2994 		if (rc == -ESTALE) {
2995 			rcu_read_unlock();
2996 			goto retry;
2997 		}
2998 		if (rc) {
2999 			sbsec->behavior = SECURITY_FS_USE_NONE;
3000 			rc = 0;
3001 		} else {
3002 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3003 		}
3004 	}
3005 
3006 out:
3007 	rcu_read_unlock();
3008 	return rc;
3009 }
3010 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3011 int security_get_bools(struct selinux_policy *policy,
3012 		       u32 *len, char ***names, int **values)
3013 {
3014 	struct policydb *policydb;
3015 	u32 i;
3016 	int rc;
3017 
3018 	policydb = &policy->policydb;
3019 
3020 	*names = NULL;
3021 	*values = NULL;
3022 
3023 	rc = 0;
3024 	*len = policydb->p_bools.nprim;
3025 	if (!*len)
3026 		goto out;
3027 
3028 	rc = -ENOMEM;
3029 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3030 	if (!*names)
3031 		goto err;
3032 
3033 	rc = -ENOMEM;
3034 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3035 	if (!*values)
3036 		goto err;
3037 
3038 	for (i = 0; i < *len; i++) {
3039 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3040 
3041 		rc = -ENOMEM;
3042 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3043 				      GFP_ATOMIC);
3044 		if (!(*names)[i])
3045 			goto err;
3046 	}
3047 	rc = 0;
3048 out:
3049 	return rc;
3050 err:
3051 	if (*names) {
3052 		for (i = 0; i < *len; i++)
3053 			kfree((*names)[i]);
3054 		kfree(*names);
3055 	}
3056 	kfree(*values);
3057 	*len = 0;
3058 	*names = NULL;
3059 	*values = NULL;
3060 	goto out;
3061 }
3062 
3063 
security_set_bools(struct selinux_state * state,u32 len,int * values)3064 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3065 {
3066 	struct selinux_policy *newpolicy, *oldpolicy;
3067 	int rc;
3068 	u32 i, seqno = 0;
3069 
3070 	if (!selinux_initialized(state))
3071 		return -EINVAL;
3072 
3073 	oldpolicy = rcu_dereference_protected(state->policy,
3074 					lockdep_is_held(&state->policy_mutex));
3075 
3076 	/* Consistency check on number of booleans, should never fail */
3077 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3078 		return -EINVAL;
3079 
3080 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3081 	if (!newpolicy)
3082 		return -ENOMEM;
3083 
3084 	/*
3085 	 * Deep copy only the parts of the policydb that might be
3086 	 * modified as a result of changing booleans.
3087 	 */
3088 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3089 	if (rc) {
3090 		kfree(newpolicy);
3091 		return -ENOMEM;
3092 	}
3093 
3094 	/* Update the boolean states in the copy */
3095 	for (i = 0; i < len; i++) {
3096 		int new_state = !!values[i];
3097 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3098 
3099 		if (new_state != old_state) {
3100 			audit_log(audit_context(), GFP_ATOMIC,
3101 				AUDIT_MAC_CONFIG_CHANGE,
3102 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3103 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3104 				new_state,
3105 				old_state,
3106 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3107 				audit_get_sessionid(current));
3108 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3109 		}
3110 	}
3111 
3112 	/* Re-evaluate the conditional rules in the copy */
3113 	evaluate_cond_nodes(&newpolicy->policydb);
3114 
3115 	/* Set latest granting seqno for new policy */
3116 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3117 	seqno = newpolicy->latest_granting;
3118 
3119 	/* Install the new policy */
3120 	rcu_assign_pointer(state->policy, newpolicy);
3121 
3122 	/*
3123 	 * Free the conditional portions of the old policydb
3124 	 * that were copied for the new policy, and the oldpolicy
3125 	 * structure itself but not what it references.
3126 	 */
3127 	synchronize_rcu();
3128 	selinux_policy_cond_free(oldpolicy);
3129 
3130 	/* Notify others of the policy change */
3131 	selinux_notify_policy_change(state, seqno);
3132 	return 0;
3133 }
3134 
security_get_bool_value(struct selinux_state * state,u32 index)3135 int security_get_bool_value(struct selinux_state *state,
3136 			    u32 index)
3137 {
3138 	struct selinux_policy *policy;
3139 	struct policydb *policydb;
3140 	int rc;
3141 	u32 len;
3142 
3143 	if (!selinux_initialized(state))
3144 		return 0;
3145 
3146 	rcu_read_lock();
3147 	policy = rcu_dereference(state->policy);
3148 	policydb = &policy->policydb;
3149 
3150 	rc = -EFAULT;
3151 	len = policydb->p_bools.nprim;
3152 	if (index >= len)
3153 		goto out;
3154 
3155 	rc = policydb->bool_val_to_struct[index]->state;
3156 out:
3157 	rcu_read_unlock();
3158 	return rc;
3159 }
3160 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3161 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3162 				struct selinux_policy *newpolicy)
3163 {
3164 	int rc, *bvalues = NULL;
3165 	char **bnames = NULL;
3166 	struct cond_bool_datum *booldatum;
3167 	u32 i, nbools = 0;
3168 
3169 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3170 	if (rc)
3171 		goto out;
3172 	for (i = 0; i < nbools; i++) {
3173 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3174 					bnames[i]);
3175 		if (booldatum)
3176 			booldatum->state = bvalues[i];
3177 	}
3178 	evaluate_cond_nodes(&newpolicy->policydb);
3179 
3180 out:
3181 	if (bnames) {
3182 		for (i = 0; i < nbools; i++)
3183 			kfree(bnames[i]);
3184 	}
3185 	kfree(bnames);
3186 	kfree(bvalues);
3187 	return rc;
3188 }
3189 
3190 /*
3191  * security_sid_mls_copy() - computes a new sid based on the given
3192  * sid and the mls portion of mls_sid.
3193  */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3194 int security_sid_mls_copy(struct selinux_state *state,
3195 			  u32 sid, u32 mls_sid, u32 *new_sid)
3196 {
3197 	struct selinux_policy *policy;
3198 	struct policydb *policydb;
3199 	struct sidtab *sidtab;
3200 	struct context *context1;
3201 	struct context *context2;
3202 	struct context newcon;
3203 	char *s;
3204 	u32 len;
3205 	int rc;
3206 
3207 	if (!selinux_initialized(state)) {
3208 		*new_sid = sid;
3209 		return 0;
3210 	}
3211 
3212 retry:
3213 	rc = 0;
3214 	context_init(&newcon);
3215 
3216 	rcu_read_lock();
3217 	policy = rcu_dereference(state->policy);
3218 	policydb = &policy->policydb;
3219 	sidtab = policy->sidtab;
3220 
3221 	if (!policydb->mls_enabled) {
3222 		*new_sid = sid;
3223 		goto out_unlock;
3224 	}
3225 
3226 	rc = -EINVAL;
3227 	context1 = sidtab_search(sidtab, sid);
3228 	if (!context1) {
3229 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3230 			__func__, sid);
3231 		goto out_unlock;
3232 	}
3233 
3234 	rc = -EINVAL;
3235 	context2 = sidtab_search(sidtab, mls_sid);
3236 	if (!context2) {
3237 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3238 			__func__, mls_sid);
3239 		goto out_unlock;
3240 	}
3241 
3242 	newcon.user = context1->user;
3243 	newcon.role = context1->role;
3244 	newcon.type = context1->type;
3245 	rc = mls_context_cpy(&newcon, context2);
3246 	if (rc)
3247 		goto out_unlock;
3248 
3249 	/* Check the validity of the new context. */
3250 	if (!policydb_context_isvalid(policydb, &newcon)) {
3251 		rc = convert_context_handle_invalid_context(state, policydb,
3252 							&newcon);
3253 		if (rc) {
3254 			if (!context_struct_to_string(policydb, &newcon, &s,
3255 						      &len)) {
3256 				struct audit_buffer *ab;
3257 
3258 				ab = audit_log_start(audit_context(),
3259 						     GFP_ATOMIC,
3260 						     AUDIT_SELINUX_ERR);
3261 				audit_log_format(ab,
3262 						 "op=security_sid_mls_copy invalid_context=");
3263 				/* don't record NUL with untrusted strings */
3264 				audit_log_n_untrustedstring(ab, s, len - 1);
3265 				audit_log_end(ab);
3266 				kfree(s);
3267 			}
3268 			goto out_unlock;
3269 		}
3270 	}
3271 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3272 	if (rc == -ESTALE) {
3273 		rcu_read_unlock();
3274 		context_destroy(&newcon);
3275 		goto retry;
3276 	}
3277 out_unlock:
3278 	rcu_read_unlock();
3279 	context_destroy(&newcon);
3280 	return rc;
3281 }
3282 
3283 /**
3284  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3285  * @nlbl_sid: NetLabel SID
3286  * @nlbl_type: NetLabel labeling protocol type
3287  * @xfrm_sid: XFRM SID
3288  *
3289  * Description:
3290  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3291  * resolved into a single SID it is returned via @peer_sid and the function
3292  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3293  * returns a negative value.  A table summarizing the behavior is below:
3294  *
3295  *                                 | function return |      @sid
3296  *   ------------------------------+-----------------+-----------------
3297  *   no peer labels                |        0        |    SECSID_NULL
3298  *   single peer label             |        0        |    <peer_label>
3299  *   multiple, consistent labels   |        0        |    <peer_label>
3300  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3301  *
3302  */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3303 int security_net_peersid_resolve(struct selinux_state *state,
3304 				 u32 nlbl_sid, u32 nlbl_type,
3305 				 u32 xfrm_sid,
3306 				 u32 *peer_sid)
3307 {
3308 	struct selinux_policy *policy;
3309 	struct policydb *policydb;
3310 	struct sidtab *sidtab;
3311 	int rc;
3312 	struct context *nlbl_ctx;
3313 	struct context *xfrm_ctx;
3314 
3315 	*peer_sid = SECSID_NULL;
3316 
3317 	/* handle the common (which also happens to be the set of easy) cases
3318 	 * right away, these two if statements catch everything involving a
3319 	 * single or absent peer SID/label */
3320 	if (xfrm_sid == SECSID_NULL) {
3321 		*peer_sid = nlbl_sid;
3322 		return 0;
3323 	}
3324 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3325 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3326 	 * is present */
3327 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3328 		*peer_sid = xfrm_sid;
3329 		return 0;
3330 	}
3331 
3332 	if (!selinux_initialized(state))
3333 		return 0;
3334 
3335 	rcu_read_lock();
3336 	policy = rcu_dereference(state->policy);
3337 	policydb = &policy->policydb;
3338 	sidtab = policy->sidtab;
3339 
3340 	/*
3341 	 * We don't need to check initialized here since the only way both
3342 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3343 	 * security server was initialized and state->initialized was true.
3344 	 */
3345 	if (!policydb->mls_enabled) {
3346 		rc = 0;
3347 		goto out;
3348 	}
3349 
3350 	rc = -EINVAL;
3351 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3352 	if (!nlbl_ctx) {
3353 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3354 		       __func__, nlbl_sid);
3355 		goto out;
3356 	}
3357 	rc = -EINVAL;
3358 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3359 	if (!xfrm_ctx) {
3360 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3361 		       __func__, xfrm_sid);
3362 		goto out;
3363 	}
3364 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3365 	if (rc)
3366 		goto out;
3367 
3368 	/* at present NetLabel SIDs/labels really only carry MLS
3369 	 * information so if the MLS portion of the NetLabel SID
3370 	 * matches the MLS portion of the labeled XFRM SID/label
3371 	 * then pass along the XFRM SID as it is the most
3372 	 * expressive */
3373 	*peer_sid = xfrm_sid;
3374 out:
3375 	rcu_read_unlock();
3376 	return rc;
3377 }
3378 
get_classes_callback(void * k,void * d,void * args)3379 static int get_classes_callback(void *k, void *d, void *args)
3380 {
3381 	struct class_datum *datum = d;
3382 	char *name = k, **classes = args;
3383 	int value = datum->value - 1;
3384 
3385 	classes[value] = kstrdup(name, GFP_ATOMIC);
3386 	if (!classes[value])
3387 		return -ENOMEM;
3388 
3389 	return 0;
3390 }
3391 
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3392 int security_get_classes(struct selinux_policy *policy,
3393 			 char ***classes, int *nclasses)
3394 {
3395 	struct policydb *policydb;
3396 	int rc;
3397 
3398 	policydb = &policy->policydb;
3399 
3400 	rc = -ENOMEM;
3401 	*nclasses = policydb->p_classes.nprim;
3402 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3403 	if (!*classes)
3404 		goto out;
3405 
3406 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3407 			 *classes);
3408 	if (rc) {
3409 		int i;
3410 		for (i = 0; i < *nclasses; i++)
3411 			kfree((*classes)[i]);
3412 		kfree(*classes);
3413 	}
3414 
3415 out:
3416 	return rc;
3417 }
3418 
get_permissions_callback(void * k,void * d,void * args)3419 static int get_permissions_callback(void *k, void *d, void *args)
3420 {
3421 	struct perm_datum *datum = d;
3422 	char *name = k, **perms = args;
3423 	int value = datum->value - 1;
3424 
3425 	perms[value] = kstrdup(name, GFP_ATOMIC);
3426 	if (!perms[value])
3427 		return -ENOMEM;
3428 
3429 	return 0;
3430 }
3431 
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3432 int security_get_permissions(struct selinux_policy *policy,
3433 			     char *class, char ***perms, int *nperms)
3434 {
3435 	struct policydb *policydb;
3436 	int rc, i;
3437 	struct class_datum *match;
3438 
3439 	policydb = &policy->policydb;
3440 
3441 	rc = -EINVAL;
3442 	match = symtab_search(&policydb->p_classes, class);
3443 	if (!match) {
3444 		pr_err("SELinux: %s:  unrecognized class %s\n",
3445 			__func__, class);
3446 		goto out;
3447 	}
3448 
3449 	rc = -ENOMEM;
3450 	*nperms = match->permissions.nprim;
3451 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3452 	if (!*perms)
3453 		goto out;
3454 
3455 	if (match->comdatum) {
3456 		rc = hashtab_map(&match->comdatum->permissions.table,
3457 				 get_permissions_callback, *perms);
3458 		if (rc)
3459 			goto err;
3460 	}
3461 
3462 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3463 			 *perms);
3464 	if (rc)
3465 		goto err;
3466 
3467 out:
3468 	return rc;
3469 
3470 err:
3471 	for (i = 0; i < *nperms; i++)
3472 		kfree((*perms)[i]);
3473 	kfree(*perms);
3474 	return rc;
3475 }
3476 
security_get_reject_unknown(struct selinux_state * state)3477 int security_get_reject_unknown(struct selinux_state *state)
3478 {
3479 	struct selinux_policy *policy;
3480 	int value;
3481 
3482 	if (!selinux_initialized(state))
3483 		return 0;
3484 
3485 	rcu_read_lock();
3486 	policy = rcu_dereference(state->policy);
3487 	value = policy->policydb.reject_unknown;
3488 	rcu_read_unlock();
3489 	return value;
3490 }
3491 
security_get_allow_unknown(struct selinux_state * state)3492 int security_get_allow_unknown(struct selinux_state *state)
3493 {
3494 	struct selinux_policy *policy;
3495 	int value;
3496 
3497 	if (!selinux_initialized(state))
3498 		return 0;
3499 
3500 	rcu_read_lock();
3501 	policy = rcu_dereference(state->policy);
3502 	value = policy->policydb.allow_unknown;
3503 	rcu_read_unlock();
3504 	return value;
3505 }
3506 
3507 /**
3508  * security_policycap_supported - Check for a specific policy capability
3509  * @req_cap: capability
3510  *
3511  * Description:
3512  * This function queries the currently loaded policy to see if it supports the
3513  * capability specified by @req_cap.  Returns true (1) if the capability is
3514  * supported, false (0) if it isn't supported.
3515  *
3516  */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3517 int security_policycap_supported(struct selinux_state *state,
3518 				 unsigned int req_cap)
3519 {
3520 	struct selinux_policy *policy;
3521 	int rc;
3522 
3523 	if (!selinux_initialized(state))
3524 		return 0;
3525 
3526 	rcu_read_lock();
3527 	policy = rcu_dereference(state->policy);
3528 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3529 	rcu_read_unlock();
3530 
3531 	return rc;
3532 }
3533 
3534 struct selinux_audit_rule {
3535 	u32 au_seqno;
3536 	struct context au_ctxt;
3537 };
3538 
selinux_audit_rule_free(void * vrule)3539 void selinux_audit_rule_free(void *vrule)
3540 {
3541 	struct selinux_audit_rule *rule = vrule;
3542 
3543 	if (rule) {
3544 		context_destroy(&rule->au_ctxt);
3545 		kfree(rule);
3546 	}
3547 }
3548 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3549 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3550 {
3551 	struct selinux_state *state = &selinux_state;
3552 	struct selinux_policy *policy;
3553 	struct policydb *policydb;
3554 	struct selinux_audit_rule *tmprule;
3555 	struct role_datum *roledatum;
3556 	struct type_datum *typedatum;
3557 	struct user_datum *userdatum;
3558 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3559 	int rc = 0;
3560 
3561 	*rule = NULL;
3562 
3563 	if (!selinux_initialized(state))
3564 		return -EOPNOTSUPP;
3565 
3566 	switch (field) {
3567 	case AUDIT_SUBJ_USER:
3568 	case AUDIT_SUBJ_ROLE:
3569 	case AUDIT_SUBJ_TYPE:
3570 	case AUDIT_OBJ_USER:
3571 	case AUDIT_OBJ_ROLE:
3572 	case AUDIT_OBJ_TYPE:
3573 		/* only 'equals' and 'not equals' fit user, role, and type */
3574 		if (op != Audit_equal && op != Audit_not_equal)
3575 			return -EINVAL;
3576 		break;
3577 	case AUDIT_SUBJ_SEN:
3578 	case AUDIT_SUBJ_CLR:
3579 	case AUDIT_OBJ_LEV_LOW:
3580 	case AUDIT_OBJ_LEV_HIGH:
3581 		/* we do not allow a range, indicated by the presence of '-' */
3582 		if (strchr(rulestr, '-'))
3583 			return -EINVAL;
3584 		break;
3585 	default:
3586 		/* only the above fields are valid */
3587 		return -EINVAL;
3588 	}
3589 
3590 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3591 	if (!tmprule)
3592 		return -ENOMEM;
3593 
3594 	context_init(&tmprule->au_ctxt);
3595 
3596 	rcu_read_lock();
3597 	policy = rcu_dereference(state->policy);
3598 	policydb = &policy->policydb;
3599 
3600 	tmprule->au_seqno = policy->latest_granting;
3601 
3602 	switch (field) {
3603 	case AUDIT_SUBJ_USER:
3604 	case AUDIT_OBJ_USER:
3605 		rc = -EINVAL;
3606 		userdatum = symtab_search(&policydb->p_users, rulestr);
3607 		if (!userdatum)
3608 			goto out;
3609 		tmprule->au_ctxt.user = userdatum->value;
3610 		break;
3611 	case AUDIT_SUBJ_ROLE:
3612 	case AUDIT_OBJ_ROLE:
3613 		rc = -EINVAL;
3614 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3615 		if (!roledatum)
3616 			goto out;
3617 		tmprule->au_ctxt.role = roledatum->value;
3618 		break;
3619 	case AUDIT_SUBJ_TYPE:
3620 	case AUDIT_OBJ_TYPE:
3621 		rc = -EINVAL;
3622 		typedatum = symtab_search(&policydb->p_types, rulestr);
3623 		if (!typedatum)
3624 			goto out;
3625 		tmprule->au_ctxt.type = typedatum->value;
3626 		break;
3627 	case AUDIT_SUBJ_SEN:
3628 	case AUDIT_SUBJ_CLR:
3629 	case AUDIT_OBJ_LEV_LOW:
3630 	case AUDIT_OBJ_LEV_HIGH:
3631 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3632 				     GFP_ATOMIC);
3633 		if (rc)
3634 			goto out;
3635 		break;
3636 	}
3637 	rc = 0;
3638 out:
3639 	rcu_read_unlock();
3640 
3641 	if (rc) {
3642 		selinux_audit_rule_free(tmprule);
3643 		tmprule = NULL;
3644 	}
3645 
3646 	*rule = tmprule;
3647 
3648 	return rc;
3649 }
3650 
3651 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3652 int selinux_audit_rule_known(struct audit_krule *rule)
3653 {
3654 	int i;
3655 
3656 	for (i = 0; i < rule->field_count; i++) {
3657 		struct audit_field *f = &rule->fields[i];
3658 		switch (f->type) {
3659 		case AUDIT_SUBJ_USER:
3660 		case AUDIT_SUBJ_ROLE:
3661 		case AUDIT_SUBJ_TYPE:
3662 		case AUDIT_SUBJ_SEN:
3663 		case AUDIT_SUBJ_CLR:
3664 		case AUDIT_OBJ_USER:
3665 		case AUDIT_OBJ_ROLE:
3666 		case AUDIT_OBJ_TYPE:
3667 		case AUDIT_OBJ_LEV_LOW:
3668 		case AUDIT_OBJ_LEV_HIGH:
3669 			return 1;
3670 		}
3671 	}
3672 
3673 	return 0;
3674 }
3675 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3676 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3677 {
3678 	struct selinux_state *state = &selinux_state;
3679 	struct selinux_policy *policy;
3680 	struct context *ctxt;
3681 	struct mls_level *level;
3682 	struct selinux_audit_rule *rule = vrule;
3683 	int match = 0;
3684 
3685 	if (unlikely(!rule)) {
3686 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3687 		return -ENOENT;
3688 	}
3689 
3690 	if (!selinux_initialized(state))
3691 		return 0;
3692 
3693 	rcu_read_lock();
3694 
3695 	policy = rcu_dereference(state->policy);
3696 
3697 	if (rule->au_seqno < policy->latest_granting) {
3698 		match = -ESTALE;
3699 		goto out;
3700 	}
3701 
3702 	ctxt = sidtab_search(policy->sidtab, sid);
3703 	if (unlikely(!ctxt)) {
3704 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3705 			  sid);
3706 		match = -ENOENT;
3707 		goto out;
3708 	}
3709 
3710 	/* a field/op pair that is not caught here will simply fall through
3711 	   without a match */
3712 	switch (field) {
3713 	case AUDIT_SUBJ_USER:
3714 	case AUDIT_OBJ_USER:
3715 		switch (op) {
3716 		case Audit_equal:
3717 			match = (ctxt->user == rule->au_ctxt.user);
3718 			break;
3719 		case Audit_not_equal:
3720 			match = (ctxt->user != rule->au_ctxt.user);
3721 			break;
3722 		}
3723 		break;
3724 	case AUDIT_SUBJ_ROLE:
3725 	case AUDIT_OBJ_ROLE:
3726 		switch (op) {
3727 		case Audit_equal:
3728 			match = (ctxt->role == rule->au_ctxt.role);
3729 			break;
3730 		case Audit_not_equal:
3731 			match = (ctxt->role != rule->au_ctxt.role);
3732 			break;
3733 		}
3734 		break;
3735 	case AUDIT_SUBJ_TYPE:
3736 	case AUDIT_OBJ_TYPE:
3737 		switch (op) {
3738 		case Audit_equal:
3739 			match = (ctxt->type == rule->au_ctxt.type);
3740 			break;
3741 		case Audit_not_equal:
3742 			match = (ctxt->type != rule->au_ctxt.type);
3743 			break;
3744 		}
3745 		break;
3746 	case AUDIT_SUBJ_SEN:
3747 	case AUDIT_SUBJ_CLR:
3748 	case AUDIT_OBJ_LEV_LOW:
3749 	case AUDIT_OBJ_LEV_HIGH:
3750 		level = ((field == AUDIT_SUBJ_SEN ||
3751 			  field == AUDIT_OBJ_LEV_LOW) ?
3752 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3753 		switch (op) {
3754 		case Audit_equal:
3755 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3756 					     level);
3757 			break;
3758 		case Audit_not_equal:
3759 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3760 					      level);
3761 			break;
3762 		case Audit_lt:
3763 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3764 					       level) &&
3765 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3766 					       level));
3767 			break;
3768 		case Audit_le:
3769 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3770 					      level);
3771 			break;
3772 		case Audit_gt:
3773 			match = (mls_level_dom(level,
3774 					      &rule->au_ctxt.range.level[0]) &&
3775 				 !mls_level_eq(level,
3776 					       &rule->au_ctxt.range.level[0]));
3777 			break;
3778 		case Audit_ge:
3779 			match = mls_level_dom(level,
3780 					      &rule->au_ctxt.range.level[0]);
3781 			break;
3782 		}
3783 	}
3784 
3785 out:
3786 	rcu_read_unlock();
3787 	return match;
3788 }
3789 
3790 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3791 
aurule_avc_callback(u32 event)3792 static int aurule_avc_callback(u32 event)
3793 {
3794 	int err = 0;
3795 
3796 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3797 		err = aurule_callback();
3798 	return err;
3799 }
3800 
aurule_init(void)3801 static int __init aurule_init(void)
3802 {
3803 	int err;
3804 
3805 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3806 	if (err)
3807 		panic("avc_add_callback() failed, error %d\n", err);
3808 
3809 	return err;
3810 }
3811 __initcall(aurule_init);
3812 
3813 #ifdef CONFIG_NETLABEL
3814 /**
3815  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3816  * @secattr: the NetLabel packet security attributes
3817  * @sid: the SELinux SID
3818  *
3819  * Description:
3820  * Attempt to cache the context in @ctx, which was derived from the packet in
3821  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3822  * already been initialized.
3823  *
3824  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3825 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3826 				      u32 sid)
3827 {
3828 	u32 *sid_cache;
3829 
3830 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3831 	if (sid_cache == NULL)
3832 		return;
3833 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3834 	if (secattr->cache == NULL) {
3835 		kfree(sid_cache);
3836 		return;
3837 	}
3838 
3839 	*sid_cache = sid;
3840 	secattr->cache->free = kfree;
3841 	secattr->cache->data = sid_cache;
3842 	secattr->flags |= NETLBL_SECATTR_CACHE;
3843 }
3844 
3845 /**
3846  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3847  * @secattr: the NetLabel packet security attributes
3848  * @sid: the SELinux SID
3849  *
3850  * Description:
3851  * Convert the given NetLabel security attributes in @secattr into a
3852  * SELinux SID.  If the @secattr field does not contain a full SELinux
3853  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3854  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3855  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3856  * conversion for future lookups.  Returns zero on success, negative values on
3857  * failure.
3858  *
3859  */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3860 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3861 				   struct netlbl_lsm_secattr *secattr,
3862 				   u32 *sid)
3863 {
3864 	struct selinux_policy *policy;
3865 	struct policydb *policydb;
3866 	struct sidtab *sidtab;
3867 	int rc;
3868 	struct context *ctx;
3869 	struct context ctx_new;
3870 
3871 	if (!selinux_initialized(state)) {
3872 		*sid = SECSID_NULL;
3873 		return 0;
3874 	}
3875 
3876 retry:
3877 	rc = 0;
3878 	rcu_read_lock();
3879 	policy = rcu_dereference(state->policy);
3880 	policydb = &policy->policydb;
3881 	sidtab = policy->sidtab;
3882 
3883 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3884 		*sid = *(u32 *)secattr->cache->data;
3885 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3886 		*sid = secattr->attr.secid;
3887 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3888 		rc = -EIDRM;
3889 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3890 		if (ctx == NULL)
3891 			goto out;
3892 
3893 		context_init(&ctx_new);
3894 		ctx_new.user = ctx->user;
3895 		ctx_new.role = ctx->role;
3896 		ctx_new.type = ctx->type;
3897 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3898 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3899 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3900 			if (rc)
3901 				goto out;
3902 		}
3903 		rc = -EIDRM;
3904 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3905 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3906 			goto out;
3907 		}
3908 
3909 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3910 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3911 		if (rc == -ESTALE) {
3912 			rcu_read_unlock();
3913 			goto retry;
3914 		}
3915 		if (rc)
3916 			goto out;
3917 
3918 		security_netlbl_cache_add(secattr, *sid);
3919 	} else
3920 		*sid = SECSID_NULL;
3921 
3922 out:
3923 	rcu_read_unlock();
3924 	return rc;
3925 }
3926 
3927 /**
3928  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3929  * @sid: the SELinux SID
3930  * @secattr: the NetLabel packet security attributes
3931  *
3932  * Description:
3933  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3934  * Returns zero on success, negative values on failure.
3935  *
3936  */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3937 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3938 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3939 {
3940 	struct selinux_policy *policy;
3941 	struct policydb *policydb;
3942 	int rc;
3943 	struct context *ctx;
3944 
3945 	if (!selinux_initialized(state))
3946 		return 0;
3947 
3948 	rcu_read_lock();
3949 	policy = rcu_dereference(state->policy);
3950 	policydb = &policy->policydb;
3951 
3952 	rc = -ENOENT;
3953 	ctx = sidtab_search(policy->sidtab, sid);
3954 	if (ctx == NULL)
3955 		goto out;
3956 
3957 	rc = -ENOMEM;
3958 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3959 				  GFP_ATOMIC);
3960 	if (secattr->domain == NULL)
3961 		goto out;
3962 
3963 	secattr->attr.secid = sid;
3964 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3965 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3966 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3967 out:
3968 	rcu_read_unlock();
3969 	return rc;
3970 }
3971 #endif /* CONFIG_NETLABEL */
3972 
3973 /**
3974  * security_read_policy - read the policy.
3975  * @data: binary policy data
3976  * @len: length of data in bytes
3977  *
3978  */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3979 int security_read_policy(struct selinux_state *state,
3980 			 void **data, size_t *len)
3981 {
3982 	struct selinux_policy *policy;
3983 	int rc;
3984 	struct policy_file fp;
3985 
3986 	policy = rcu_dereference_protected(
3987 			state->policy, lockdep_is_held(&state->policy_mutex));
3988 	if (!policy)
3989 		return -EINVAL;
3990 
3991 	*len = policy->policydb.len;
3992 	*data = vmalloc_user(*len);
3993 	if (!*data)
3994 		return -ENOMEM;
3995 
3996 	fp.data = *data;
3997 	fp.len = *len;
3998 
3999 	rc = policydb_write(&policy->policydb, &fp);
4000 	if (rc)
4001 		return rc;
4002 
4003 	*len = (unsigned long)fp.data - (unsigned long)*data;
4004 	return 0;
4005 
4006 }
4007