• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 enum usb4_sb_target {
21 	USB4_SB_TARGET_ROUTER,
22 	USB4_SB_TARGET_PARTNER,
23 	USB4_SB_TARGET_RETIMER,
24 };
25 
26 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
27 #define USB4_NVM_READ_OFFSET_SHIFT	2
28 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
29 #define USB4_NVM_READ_LENGTH_SHIFT	24
30 
31 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
32 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
33 
34 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
35 #define USB4_DROM_ADDRESS_SHIFT		2
36 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
37 #define USB4_DROM_SIZE_SHIFT		15
38 
39 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
40 
41 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
42 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
43 
44 enum usb4_ba_index {
45 	USB4_BA_MAX_USB3 = 0x1,
46 	USB4_BA_MIN_DP_AUX = 0x2,
47 	USB4_BA_MIN_DP_MAIN = 0x3,
48 	USB4_BA_MAX_PCIE = 0x4,
49 	USB4_BA_MAX_HI = 0x5,
50 };
51 
52 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
53 #define USB4_BA_VALUE_SHIFT		16
54 
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)55 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56 				 u32 *metadata, u8 *status,
57 				 const void *tx_data, size_t tx_dwords,
58 				 void *rx_data, size_t rx_dwords)
59 {
60 	u32 val;
61 	int ret;
62 
63 	if (metadata) {
64 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65 		if (ret)
66 			return ret;
67 	}
68 	if (tx_dwords) {
69 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70 				  tx_dwords);
71 		if (ret)
72 			return ret;
73 	}
74 
75 	val = opcode | ROUTER_CS_26_OV;
76 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77 	if (ret)
78 		return ret;
79 
80 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81 	if (ret)
82 		return ret;
83 
84 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85 	if (ret)
86 		return ret;
87 
88 	if (val & ROUTER_CS_26_ONS)
89 		return -EOPNOTSUPP;
90 
91 	if (status)
92 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
93 			ROUTER_CS_26_STATUS_SHIFT;
94 
95 	if (metadata) {
96 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97 		if (ret)
98 			return ret;
99 	}
100 	if (rx_dwords) {
101 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102 				 rx_dwords);
103 		if (ret)
104 			return ret;
105 	}
106 
107 	return 0;
108 }
109 
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)110 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111 			    u8 *status, const void *tx_data, size_t tx_dwords,
112 			    void *rx_data, size_t rx_dwords)
113 {
114 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115 
116 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117 		return -EINVAL;
118 
119 	/*
120 	 * If the connection manager implementation provides USB4 router
121 	 * operation proxy callback, call it here instead of running the
122 	 * operation natively.
123 	 */
124 	if (cm_ops->usb4_switch_op) {
125 		int ret;
126 
127 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128 					     tx_data, tx_dwords, rx_data,
129 					     rx_dwords);
130 		if (ret != -EOPNOTSUPP)
131 			return ret;
132 
133 		/*
134 		 * If the proxy was not supported then run the native
135 		 * router operation instead.
136 		 */
137 	}
138 
139 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140 				     tx_dwords, rx_data, rx_dwords);
141 }
142 
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)143 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144 				 u32 *metadata, u8 *status)
145 {
146 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147 }
148 
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)149 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150 				      u32 *metadata, u8 *status,
151 				      const void *tx_data, size_t tx_dwords,
152 				      void *rx_data, size_t rx_dwords)
153 {
154 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155 				tx_dwords, rx_data, rx_dwords);
156 }
157 
158 /**
159  * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
160  * @sw: Router whose wakes to check
161  *
162  * Checks wakes occurred during suspend and notify the PM core about them.
163  */
usb4_switch_check_wakes(struct tb_switch * sw)164 void usb4_switch_check_wakes(struct tb_switch *sw)
165 {
166 	bool wakeup_usb4 = false;
167 	struct usb4_port *usb4;
168 	struct tb_port *port;
169 	bool wakeup = false;
170 	u32 val;
171 
172 	if (tb_route(sw)) {
173 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
174 			return;
175 
176 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
177 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
178 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
179 
180 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
181 	}
182 
183 	/*
184 	 * Check for any downstream ports for USB4 wake,
185 	 * connection wake and disconnection wake.
186 	 */
187 	tb_switch_for_each_port(sw, port) {
188 		if (!port->cap_usb4)
189 			continue;
190 
191 		if (tb_port_read(port, &val, TB_CFG_PORT,
192 				 port->cap_usb4 + PORT_CS_18, 1))
193 			break;
194 
195 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
196 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
197 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
198 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
199 
200 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
201 				     PORT_CS_18_WODS);
202 
203 		usb4 = port->usb4;
204 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
205 			pm_wakeup_event(&usb4->dev, 0);
206 
207 		wakeup |= wakeup_usb4;
208 	}
209 
210 	if (wakeup)
211 		pm_wakeup_event(&sw->dev, 0);
212 }
213 
link_is_usb4(struct tb_port * port)214 static bool link_is_usb4(struct tb_port *port)
215 {
216 	u32 val;
217 
218 	if (!port->cap_usb4)
219 		return false;
220 
221 	if (tb_port_read(port, &val, TB_CFG_PORT,
222 			 port->cap_usb4 + PORT_CS_18, 1))
223 		return false;
224 
225 	return !(val & PORT_CS_18_TCM);
226 }
227 
228 /**
229  * usb4_switch_setup() - Additional setup for USB4 device
230  * @sw: USB4 router to setup
231  *
232  * USB4 routers need additional settings in order to enable all the
233  * tunneling. This function enables USB and PCIe tunneling if it can be
234  * enabled (e.g the parent switch also supports them). If USB tunneling
235  * is not available for some reason (like that there is Thunderbolt 3
236  * switch upstream) then the internal xHCI controller is enabled
237  * instead.
238  *
239  * This does not set the configuration valid bit of the router. To do
240  * that call usb4_switch_configuration_valid().
241  */
usb4_switch_setup(struct tb_switch * sw)242 int usb4_switch_setup(struct tb_switch *sw)
243 {
244 	struct tb_switch *parent = tb_switch_parent(sw);
245 	struct tb_port *down;
246 	bool tbt3, xhci;
247 	u32 val = 0;
248 	int ret;
249 
250 	if (!tb_route(sw))
251 		return 0;
252 
253 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
254 	if (ret)
255 		return ret;
256 
257 	down = tb_switch_downstream_port(sw);
258 	sw->link_usb4 = link_is_usb4(down);
259 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
260 
261 	xhci = val & ROUTER_CS_6_HCI;
262 	tbt3 = !(val & ROUTER_CS_6_TNS);
263 
264 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
265 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
266 
267 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
268 	if (ret)
269 		return ret;
270 
271 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
272 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
273 		val |= ROUTER_CS_5_UTO;
274 		xhci = false;
275 	}
276 
277 	/*
278 	 * Only enable PCIe tunneling if the parent router supports it
279 	 * and it is not disabled.
280 	 */
281 	if (tb_acpi_may_tunnel_pcie() &&
282 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
283 		val |= ROUTER_CS_5_PTO;
284 		/*
285 		 * xHCI can be enabled if PCIe tunneling is supported
286 		 * and the parent does not have any USB3 dowstream
287 		 * adapters (so we cannot do USB 3.x tunneling).
288 		 */
289 		if (xhci)
290 			val |= ROUTER_CS_5_HCO;
291 	}
292 
293 	/* TBT3 supported by the CM */
294 	val &= ~ROUTER_CS_5_CNS;
295 
296 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
297 }
298 
299 /**
300  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
301  * @sw: USB4 router
302  *
303  * Sets configuration valid bit for the router. Must be called before
304  * any tunnels can be set through the router and after
305  * usb4_switch_setup() has been called. Can be called to host and device
306  * routers (does nothing for the latter).
307  *
308  * Returns %0 in success and negative errno otherwise.
309  */
usb4_switch_configuration_valid(struct tb_switch * sw)310 int usb4_switch_configuration_valid(struct tb_switch *sw)
311 {
312 	u32 val;
313 	int ret;
314 
315 	if (!tb_route(sw))
316 		return 0;
317 
318 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
319 	if (ret)
320 		return ret;
321 
322 	val |= ROUTER_CS_5_CV;
323 
324 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
325 	if (ret)
326 		return ret;
327 
328 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
329 				      ROUTER_CS_6_CR, 50);
330 }
331 
332 /**
333  * usb4_switch_read_uid() - Read UID from USB4 router
334  * @sw: USB4 router
335  * @uid: UID is stored here
336  *
337  * Reads 64-bit UID from USB4 router config space.
338  */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)339 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
340 {
341 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
342 }
343 
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)344 static int usb4_switch_drom_read_block(void *data,
345 				       unsigned int dwaddress, void *buf,
346 				       size_t dwords)
347 {
348 	struct tb_switch *sw = data;
349 	u8 status = 0;
350 	u32 metadata;
351 	int ret;
352 
353 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
354 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
355 		USB4_DROM_ADDRESS_MASK;
356 
357 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
358 				  &status, NULL, 0, buf, dwords);
359 	if (ret)
360 		return ret;
361 
362 	return status ? -EIO : 0;
363 }
364 
365 /**
366  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
367  * @sw: USB4 router
368  * @address: Byte address inside DROM to start reading
369  * @buf: Buffer where the DROM content is stored
370  * @size: Number of bytes to read from DROM
371  *
372  * Uses USB4 router operations to read router DROM. For devices this
373  * should always work but for hosts it may return %-EOPNOTSUPP in which
374  * case the host router does not have DROM.
375  */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)376 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
377 			  size_t size)
378 {
379 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
380 				usb4_switch_drom_read_block, sw);
381 }
382 
383 /**
384  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
385  * @sw: USB4 router
386  *
387  * Checks whether conditions are met so that lane bonding can be
388  * established with the upstream router. Call only for device routers.
389  */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)390 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
391 {
392 	struct tb_port *up;
393 	int ret;
394 	u32 val;
395 
396 	up = tb_upstream_port(sw);
397 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
398 	if (ret)
399 		return false;
400 
401 	return !!(val & PORT_CS_18_BE);
402 }
403 
404 /**
405  * usb4_switch_set_wake() - Enabled/disable wake
406  * @sw: USB4 router
407  * @flags: Wakeup flags (%0 to disable)
408  * @runtime: Wake is being programmed during system runtime
409  *
410  * Enables/disables router to wake up from sleep.
411  */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags,bool runtime)412 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags, bool runtime)
413 {
414 	struct tb_port *port;
415 	u64 route = tb_route(sw);
416 	u32 val;
417 	int ret;
418 
419 	/*
420 	 * Enable wakes coming from all USB4 downstream ports (from
421 	 * child routers). For device routers do this also for the
422 	 * upstream USB4 port.
423 	 */
424 	tb_switch_for_each_port(sw, port) {
425 		if (!tb_port_is_null(port))
426 			continue;
427 		if (!route && tb_is_upstream_port(port))
428 			continue;
429 		if (!port->cap_usb4)
430 			continue;
431 
432 		ret = tb_port_read(port, &val, TB_CFG_PORT,
433 				   port->cap_usb4 + PORT_CS_19, 1);
434 		if (ret)
435 			return ret;
436 
437 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
438 
439 		if (tb_is_upstream_port(port)) {
440 			val |= PORT_CS_19_WOU4;
441 		} else {
442 			bool configured = val & PORT_CS_19_PC;
443 			bool wakeup = runtime || device_may_wakeup(&port->usb4->dev);
444 
445 			if ((flags & TB_WAKE_ON_CONNECT) && wakeup && !configured)
446 				val |= PORT_CS_19_WOC;
447 			if ((flags & TB_WAKE_ON_DISCONNECT) && wakeup && configured)
448 				val |= PORT_CS_19_WOD;
449 			if ((flags & TB_WAKE_ON_USB4) && configured)
450 				val |= PORT_CS_19_WOU4;
451 		}
452 
453 		ret = tb_port_write(port, &val, TB_CFG_PORT,
454 				    port->cap_usb4 + PORT_CS_19, 1);
455 		if (ret)
456 			return ret;
457 	}
458 
459 	/*
460 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
461 	 * needed for device routers.
462 	 */
463 	if (route) {
464 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
465 		if (ret)
466 			return ret;
467 
468 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
469 		if (flags & TB_WAKE_ON_USB3)
470 			val |= ROUTER_CS_5_WOU;
471 		if (flags & TB_WAKE_ON_PCIE)
472 			val |= ROUTER_CS_5_WOP;
473 		if (flags & TB_WAKE_ON_DP)
474 			val |= ROUTER_CS_5_WOD;
475 
476 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
477 		if (ret)
478 			return ret;
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  * usb4_switch_set_sleep() - Prepare the router to enter sleep
486  * @sw: USB4 router
487  *
488  * Sets sleep bit for the router. Returns when the router sleep ready
489  * bit has been asserted.
490  */
usb4_switch_set_sleep(struct tb_switch * sw)491 int usb4_switch_set_sleep(struct tb_switch *sw)
492 {
493 	int ret;
494 	u32 val;
495 
496 	/* Set sleep bit and wait for sleep ready to be asserted */
497 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
498 	if (ret)
499 		return ret;
500 
501 	val |= ROUTER_CS_5_SLP;
502 
503 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
504 	if (ret)
505 		return ret;
506 
507 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
508 				      ROUTER_CS_6_SLPR, 500);
509 }
510 
511 /**
512  * usb4_switch_nvm_sector_size() - Return router NVM sector size
513  * @sw: USB4 router
514  *
515  * If the router supports NVM operations this function returns the NVM
516  * sector size in bytes. If NVM operations are not supported returns
517  * %-EOPNOTSUPP.
518  */
usb4_switch_nvm_sector_size(struct tb_switch * sw)519 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
520 {
521 	u32 metadata;
522 	u8 status;
523 	int ret;
524 
525 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
526 			     &status);
527 	if (ret)
528 		return ret;
529 
530 	if (status)
531 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
532 
533 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
534 }
535 
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)536 static int usb4_switch_nvm_read_block(void *data,
537 	unsigned int dwaddress, void *buf, size_t dwords)
538 {
539 	struct tb_switch *sw = data;
540 	u8 status = 0;
541 	u32 metadata;
542 	int ret;
543 
544 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
545 		   USB4_NVM_READ_LENGTH_MASK;
546 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
547 		   USB4_NVM_READ_OFFSET_MASK;
548 
549 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
550 				  &status, NULL, 0, buf, dwords);
551 	if (ret)
552 		return ret;
553 
554 	return status ? -EIO : 0;
555 }
556 
557 /**
558  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559  * @sw: USB4 router
560  * @address: Starting address in bytes
561  * @buf: Read data is placed here
562  * @size: How many bytes to read
563  *
564  * Reads NVM contents of the router. If NVM is not supported returns
565  * %-EOPNOTSUPP.
566  */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)567 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 			 size_t size)
569 {
570 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
571 				usb4_switch_nvm_read_block, sw);
572 }
573 
574 /**
575  * usb4_switch_nvm_set_offset() - Set NVM write offset
576  * @sw: USB4 router
577  * @address: Start offset
578  *
579  * Explicitly sets NVM write offset. Normally when writing to NVM this
580  * is done automatically by usb4_switch_nvm_write().
581  *
582  * Returns %0 in success and negative errno if there was a failure.
583  */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)584 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
585 {
586 	u32 metadata, dwaddress;
587 	u8 status = 0;
588 	int ret;
589 
590 	dwaddress = address / 4;
591 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
592 		   USB4_NVM_SET_OFFSET_MASK;
593 
594 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
595 			     &status);
596 	if (ret)
597 		return ret;
598 
599 	return status ? -EIO : 0;
600 }
601 
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)602 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
603 					    const void *buf, size_t dwords)
604 {
605 	struct tb_switch *sw = data;
606 	u8 status;
607 	int ret;
608 
609 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
610 				  buf, dwords, NULL, 0);
611 	if (ret)
612 		return ret;
613 
614 	return status ? -EIO : 0;
615 }
616 
617 /**
618  * usb4_switch_nvm_write() - Write to the router NVM
619  * @sw: USB4 router
620  * @address: Start address where to write in bytes
621  * @buf: Pointer to the data to write
622  * @size: Size of @buf in bytes
623  *
624  * Writes @buf to the router NVM using USB4 router operations. If NVM
625  * write is not supported returns %-EOPNOTSUPP.
626  */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)627 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
628 			  const void *buf, size_t size)
629 {
630 	int ret;
631 
632 	ret = usb4_switch_nvm_set_offset(sw, address);
633 	if (ret)
634 		return ret;
635 
636 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
637 				 usb4_switch_nvm_write_next_block, sw);
638 }
639 
640 /**
641  * usb4_switch_nvm_authenticate() - Authenticate new NVM
642  * @sw: USB4 router
643  *
644  * After the new NVM has been written via usb4_switch_nvm_write(), this
645  * function triggers NVM authentication process. The router gets power
646  * cycled and if the authentication is successful the new NVM starts
647  * running. In case of failure returns negative errno.
648  *
649  * The caller should call usb4_switch_nvm_authenticate_status() to read
650  * the status of the authentication after power cycle. It should be the
651  * first router operation to avoid the status being lost.
652  */
usb4_switch_nvm_authenticate(struct tb_switch * sw)653 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
654 {
655 	int ret;
656 
657 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
658 	switch (ret) {
659 	/*
660 	 * The router is power cycled once NVM_AUTH is started so it is
661 	 * expected to get any of the following errors back.
662 	 */
663 	case -EACCES:
664 	case -ENOTCONN:
665 	case -ETIMEDOUT:
666 		return 0;
667 
668 	default:
669 		return ret;
670 	}
671 }
672 
673 /**
674  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
675  * @sw: USB4 router
676  * @status: Status code of the operation
677  *
678  * The function checks if there is status available from the last NVM
679  * authenticate router operation. If there is status then %0 is returned
680  * and the status code is placed in @status. Returns negative errno in case
681  * of failure.
682  *
683  * Must be called before any other router operation.
684  */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)685 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
686 {
687 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
688 	u16 opcode;
689 	u32 val;
690 	int ret;
691 
692 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
693 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
694 		if (ret != -EOPNOTSUPP)
695 			return ret;
696 	}
697 
698 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
699 	if (ret)
700 		return ret;
701 
702 	/* Check that the opcode is correct */
703 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
704 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
705 		if (val & ROUTER_CS_26_OV)
706 			return -EBUSY;
707 		if (val & ROUTER_CS_26_ONS)
708 			return -EOPNOTSUPP;
709 
710 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
711 			ROUTER_CS_26_STATUS_SHIFT;
712 	} else {
713 		*status = 0;
714 	}
715 
716 	return 0;
717 }
718 
719 /**
720  * usb4_switch_credits_init() - Read buffer allocation parameters
721  * @sw: USB4 router
722  *
723  * Reads @sw buffer allocation parameters and initializes @sw buffer
724  * allocation fields accordingly. Specifically @sw->credits_allocation
725  * is set to %true if these parameters can be used in tunneling.
726  *
727  * Returns %0 on success and negative errno otherwise.
728  */
usb4_switch_credits_init(struct tb_switch * sw)729 int usb4_switch_credits_init(struct tb_switch *sw)
730 {
731 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
732 	int ret, length, i, nports;
733 	const struct tb_port *port;
734 	u32 data[USB4_DATA_DWORDS];
735 	u32 metadata = 0;
736 	u8 status = 0;
737 
738 	memset(data, 0, sizeof(data));
739 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
740 				  &status, NULL, 0, data, ARRAY_SIZE(data));
741 	if (ret)
742 		return ret;
743 	if (status)
744 		return -EIO;
745 
746 	length = metadata & USB4_BA_LENGTH_MASK;
747 	if (WARN_ON(length > ARRAY_SIZE(data)))
748 		return -EMSGSIZE;
749 
750 	max_usb3 = -1;
751 	min_dp_aux = -1;
752 	min_dp_main = -1;
753 	max_pcie = -1;
754 	max_dma = -1;
755 
756 	tb_sw_dbg(sw, "credit allocation parameters:\n");
757 
758 	for (i = 0; i < length; i++) {
759 		u16 index, value;
760 
761 		index = data[i] & USB4_BA_INDEX_MASK;
762 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
763 
764 		switch (index) {
765 		case USB4_BA_MAX_USB3:
766 			tb_sw_dbg(sw, " USB3: %u\n", value);
767 			max_usb3 = value;
768 			break;
769 		case USB4_BA_MIN_DP_AUX:
770 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
771 			min_dp_aux = value;
772 			break;
773 		case USB4_BA_MIN_DP_MAIN:
774 			tb_sw_dbg(sw, " DP main: %u\n", value);
775 			min_dp_main = value;
776 			break;
777 		case USB4_BA_MAX_PCIE:
778 			tb_sw_dbg(sw, " PCIe: %u\n", value);
779 			max_pcie = value;
780 			break;
781 		case USB4_BA_MAX_HI:
782 			tb_sw_dbg(sw, " DMA: %u\n", value);
783 			max_dma = value;
784 			break;
785 		default:
786 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
787 				  index);
788 			break;
789 		}
790 	}
791 
792 	/*
793 	 * Validate the buffer allocation preferences. If we find
794 	 * issues, log a warning and fall back using the hard-coded
795 	 * values.
796 	 */
797 
798 	/* Host router must report baMaxHI */
799 	if (!tb_route(sw) && max_dma < 0) {
800 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
801 		goto err_invalid;
802 	}
803 
804 	nports = 0;
805 	tb_switch_for_each_port(sw, port) {
806 		if (tb_port_is_null(port))
807 			nports++;
808 	}
809 
810 	/* Must have DP buffer allocation (multiple USB4 ports) */
811 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
812 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
813 		goto err_invalid;
814 	}
815 
816 	tb_switch_for_each_port(sw, port) {
817 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
818 			tb_sw_warn(sw, "missing baMinDPmain");
819 			goto err_invalid;
820 		}
821 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
822 		    min_dp_aux < 0) {
823 			tb_sw_warn(sw, "missing baMinDPaux");
824 			goto err_invalid;
825 		}
826 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
827 		    max_usb3 < 0) {
828 			tb_sw_warn(sw, "missing baMaxUSB3");
829 			goto err_invalid;
830 		}
831 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
832 		    max_pcie < 0) {
833 			tb_sw_warn(sw, "missing baMaxPCIe");
834 			goto err_invalid;
835 		}
836 	}
837 
838 	/*
839 	 * Buffer allocation passed the validation so we can use it in
840 	 * path creation.
841 	 */
842 	sw->credit_allocation = true;
843 	if (max_usb3 > 0)
844 		sw->max_usb3_credits = max_usb3;
845 	if (min_dp_aux > 0)
846 		sw->min_dp_aux_credits = min_dp_aux;
847 	if (min_dp_main > 0)
848 		sw->min_dp_main_credits = min_dp_main;
849 	if (max_pcie > 0)
850 		sw->max_pcie_credits = max_pcie;
851 	if (max_dma > 0)
852 		sw->max_dma_credits = max_dma;
853 
854 	return 0;
855 
856 err_invalid:
857 	return -EINVAL;
858 }
859 
860 /**
861  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
862  * @sw: USB4 router
863  * @in: DP IN adapter
864  *
865  * For DP tunneling this function can be used to query availability of
866  * DP IN resource. Returns true if the resource is available for DP
867  * tunneling, false otherwise.
868  */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)869 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
870 {
871 	u32 metadata = in->port;
872 	u8 status;
873 	int ret;
874 
875 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
876 			     &status);
877 	/*
878 	 * If DP resource allocation is not supported assume it is
879 	 * always available.
880 	 */
881 	if (ret == -EOPNOTSUPP)
882 		return true;
883 	if (ret)
884 		return false;
885 
886 	return !status;
887 }
888 
889 /**
890  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
891  * @sw: USB4 router
892  * @in: DP IN adapter
893  *
894  * Allocates DP IN resource for DP tunneling using USB4 router
895  * operations. If the resource was allocated returns %0. Otherwise
896  * returns negative errno, in particular %-EBUSY if the resource is
897  * already allocated.
898  */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)899 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
900 {
901 	u32 metadata = in->port;
902 	u8 status;
903 	int ret;
904 
905 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
906 			     &status);
907 	if (ret == -EOPNOTSUPP)
908 		return 0;
909 	if (ret)
910 		return ret;
911 
912 	return status ? -EBUSY : 0;
913 }
914 
915 /**
916  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
917  * @sw: USB4 router
918  * @in: DP IN adapter
919  *
920  * Releases the previously allocated DP IN resource.
921  */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)922 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
923 {
924 	u32 metadata = in->port;
925 	u8 status;
926 	int ret;
927 
928 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
929 			     &status);
930 	if (ret == -EOPNOTSUPP)
931 		return 0;
932 	if (ret)
933 		return ret;
934 
935 	return status ? -EIO : 0;
936 }
937 
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)938 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
939 {
940 	struct tb_port *p;
941 	int usb4_idx = 0;
942 
943 	/* Assume port is primary */
944 	tb_switch_for_each_port(sw, p) {
945 		if (!tb_port_is_null(p))
946 			continue;
947 		if (tb_is_upstream_port(p))
948 			continue;
949 		if (!p->link_nr) {
950 			if (p == port)
951 				break;
952 			usb4_idx++;
953 		}
954 	}
955 
956 	return usb4_idx;
957 }
958 
959 /**
960  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
961  * @sw: USB4 router
962  * @port: USB4 port
963  *
964  * USB4 routers have direct mapping between USB4 ports and PCIe
965  * downstream adapters where the PCIe topology is extended. This
966  * function returns the corresponding downstream PCIe adapter or %NULL
967  * if no such mapping was possible.
968  */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)969 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
970 					  const struct tb_port *port)
971 {
972 	int usb4_idx = usb4_port_idx(sw, port);
973 	struct tb_port *p;
974 	int pcie_idx = 0;
975 
976 	/* Find PCIe down port matching usb4_port */
977 	tb_switch_for_each_port(sw, p) {
978 		if (!tb_port_is_pcie_down(p))
979 			continue;
980 
981 		if (pcie_idx == usb4_idx)
982 			return p;
983 
984 		pcie_idx++;
985 	}
986 
987 	return NULL;
988 }
989 
990 /**
991  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
992  * @sw: USB4 router
993  * @port: USB4 port
994  *
995  * USB4 routers have direct mapping between USB4 ports and USB 3.x
996  * downstream adapters where the USB 3.x topology is extended. This
997  * function returns the corresponding downstream USB 3.x adapter or
998  * %NULL if no such mapping was possible.
999  */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)1000 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1001 					  const struct tb_port *port)
1002 {
1003 	int usb4_idx = usb4_port_idx(sw, port);
1004 	struct tb_port *p;
1005 	int usb_idx = 0;
1006 
1007 	/* Find USB3 down port matching usb4_port */
1008 	tb_switch_for_each_port(sw, p) {
1009 		if (!tb_port_is_usb3_down(p))
1010 			continue;
1011 
1012 		if (usb_idx == usb4_idx)
1013 			return p;
1014 
1015 		usb_idx++;
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 /**
1022  * usb4_switch_add_ports() - Add USB4 ports for this router
1023  * @sw: USB4 router
1024  *
1025  * For USB4 router finds all USB4 ports and registers devices for each.
1026  * Can be called to any router.
1027  *
1028  * Return %0 in case of success and negative errno in case of failure.
1029  */
usb4_switch_add_ports(struct tb_switch * sw)1030 int usb4_switch_add_ports(struct tb_switch *sw)
1031 {
1032 	struct tb_port *port;
1033 
1034 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1035 		return 0;
1036 
1037 	tb_switch_for_each_port(sw, port) {
1038 		struct usb4_port *usb4;
1039 
1040 		if (!tb_port_is_null(port))
1041 			continue;
1042 		if (!port->cap_usb4)
1043 			continue;
1044 
1045 		usb4 = usb4_port_device_add(port);
1046 		if (IS_ERR(usb4)) {
1047 			usb4_switch_remove_ports(sw);
1048 			return PTR_ERR(usb4);
1049 		}
1050 
1051 		port->usb4 = usb4;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1059  * @sw: USB4 router
1060  *
1061  * Unregisters previously registered USB4 ports.
1062  */
usb4_switch_remove_ports(struct tb_switch * sw)1063 void usb4_switch_remove_ports(struct tb_switch *sw)
1064 {
1065 	struct tb_port *port;
1066 
1067 	tb_switch_for_each_port(sw, port) {
1068 		if (port->usb4) {
1069 			usb4_port_device_remove(port->usb4);
1070 			port->usb4 = NULL;
1071 		}
1072 	}
1073 }
1074 
1075 /**
1076  * usb4_port_unlock() - Unlock USB4 downstream port
1077  * @port: USB4 port to unlock
1078  *
1079  * Unlocks USB4 downstream port so that the connection manager can
1080  * access the router below this port.
1081  */
usb4_port_unlock(struct tb_port * port)1082 int usb4_port_unlock(struct tb_port *port)
1083 {
1084 	int ret;
1085 	u32 val;
1086 
1087 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1088 	if (ret)
1089 		return ret;
1090 
1091 	val &= ~ADP_CS_4_LCK;
1092 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1093 }
1094 
1095 /**
1096  * usb4_port_hotplug_enable() - Enables hotplug for a port
1097  * @port: USB4 port to operate on
1098  *
1099  * Enables hot plug events on a given port. This is only intended
1100  * to be used on lane, DP-IN, and DP-OUT adapters.
1101  */
usb4_port_hotplug_enable(struct tb_port * port)1102 int usb4_port_hotplug_enable(struct tb_port *port)
1103 {
1104 	int ret;
1105 	u32 val;
1106 
1107 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1108 	if (ret)
1109 		return ret;
1110 
1111 	val &= ~ADP_CS_5_DHP;
1112 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1113 }
1114 
1115 /**
1116  * usb4_port_reset() - Issue downstream port reset
1117  * @port: USB4 port to reset
1118  *
1119  * Issues downstream port reset to @port.
1120  */
usb4_port_reset(struct tb_port * port)1121 int usb4_port_reset(struct tb_port *port)
1122 {
1123 	int ret;
1124 	u32 val;
1125 
1126 	if (!port->cap_usb4)
1127 		return -EINVAL;
1128 
1129 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1130 			   port->cap_usb4 + PORT_CS_19, 1);
1131 	if (ret)
1132 		return ret;
1133 
1134 	val |= PORT_CS_19_DPR;
1135 
1136 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1137 			    port->cap_usb4 + PORT_CS_19, 1);
1138 	if (ret)
1139 		return ret;
1140 
1141 	fsleep(10000);
1142 
1143 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1144 			   port->cap_usb4 + PORT_CS_19, 1);
1145 	if (ret)
1146 		return ret;
1147 
1148 	val &= ~PORT_CS_19_DPR;
1149 
1150 	return tb_port_write(port, &val, TB_CFG_PORT,
1151 			     port->cap_usb4 + PORT_CS_19, 1);
1152 }
1153 
usb4_port_set_configured(struct tb_port * port,bool configured)1154 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1155 {
1156 	int ret;
1157 	u32 val;
1158 
1159 	if (!port->cap_usb4)
1160 		return -EINVAL;
1161 
1162 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1163 			   port->cap_usb4 + PORT_CS_19, 1);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (configured)
1168 		val |= PORT_CS_19_PC;
1169 	else
1170 		val &= ~PORT_CS_19_PC;
1171 
1172 	return tb_port_write(port, &val, TB_CFG_PORT,
1173 			     port->cap_usb4 + PORT_CS_19, 1);
1174 }
1175 
1176 /**
1177  * usb4_port_configure() - Set USB4 port configured
1178  * @port: USB4 router
1179  *
1180  * Sets the USB4 link to be configured for power management purposes.
1181  */
usb4_port_configure(struct tb_port * port)1182 int usb4_port_configure(struct tb_port *port)
1183 {
1184 	return usb4_port_set_configured(port, true);
1185 }
1186 
1187 /**
1188  * usb4_port_unconfigure() - Set USB4 port unconfigured
1189  * @port: USB4 router
1190  *
1191  * Sets the USB4 link to be unconfigured for power management purposes.
1192  */
usb4_port_unconfigure(struct tb_port * port)1193 void usb4_port_unconfigure(struct tb_port *port)
1194 {
1195 	usb4_port_set_configured(port, false);
1196 }
1197 
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1198 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1199 {
1200 	int ret;
1201 	u32 val;
1202 
1203 	if (!port->cap_usb4)
1204 		return -EINVAL;
1205 
1206 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1207 			   port->cap_usb4 + PORT_CS_19, 1);
1208 	if (ret)
1209 		return ret;
1210 
1211 	if (configured)
1212 		val |= PORT_CS_19_PID;
1213 	else
1214 		val &= ~PORT_CS_19_PID;
1215 
1216 	return tb_port_write(port, &val, TB_CFG_PORT,
1217 			     port->cap_usb4 + PORT_CS_19, 1);
1218 }
1219 
1220 /**
1221  * usb4_port_configure_xdomain() - Configure port for XDomain
1222  * @port: USB4 port connected to another host
1223  * @xd: XDomain that is connected to the port
1224  *
1225  * Marks the USB4 port as being connected to another host and updates
1226  * the link type. Returns %0 in success and negative errno in failure.
1227  */
usb4_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)1228 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1229 {
1230 	xd->link_usb4 = link_is_usb4(port);
1231 	return usb4_set_xdomain_configured(port, true);
1232 }
1233 
1234 /**
1235  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1236  * @port: USB4 port that was connected to another host
1237  *
1238  * Clears USB4 port from being marked as XDomain.
1239  */
usb4_port_unconfigure_xdomain(struct tb_port * port)1240 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1241 {
1242 	usb4_set_xdomain_configured(port, false);
1243 }
1244 
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)1245 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1246 				  u32 value, int timeout_msec)
1247 {
1248 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1249 
1250 	do {
1251 		u32 val;
1252 		int ret;
1253 
1254 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1255 		if (ret)
1256 			return ret;
1257 
1258 		if ((val & bit) == value)
1259 			return 0;
1260 
1261 		usleep_range(50, 100);
1262 	} while (ktime_before(ktime_get(), timeout));
1263 
1264 	return -ETIMEDOUT;
1265 }
1266 
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1267 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1268 {
1269 	if (dwords > USB4_DATA_DWORDS)
1270 		return -EINVAL;
1271 
1272 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1273 			    dwords);
1274 }
1275 
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1276 static int usb4_port_write_data(struct tb_port *port, const void *data,
1277 				size_t dwords)
1278 {
1279 	if (dwords > USB4_DATA_DWORDS)
1280 		return -EINVAL;
1281 
1282 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1283 			     dwords);
1284 }
1285 
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1286 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1287 			     u8 index, u8 reg, void *buf, u8 size)
1288 {
1289 	size_t dwords = DIV_ROUND_UP(size, 4);
1290 	int ret;
1291 	u32 val;
1292 
1293 	if (!port->cap_usb4)
1294 		return -EINVAL;
1295 
1296 	val = reg;
1297 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1298 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1299 	if (target == USB4_SB_TARGET_RETIMER)
1300 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1301 	val |= PORT_CS_1_PND;
1302 
1303 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1304 			    port->cap_usb4 + PORT_CS_1, 1);
1305 	if (ret)
1306 		return ret;
1307 
1308 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1309 				     PORT_CS_1_PND, 0, 500);
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1314 			    port->cap_usb4 + PORT_CS_1, 1);
1315 	if (ret)
1316 		return ret;
1317 
1318 	if (val & PORT_CS_1_NR)
1319 		return -ENODEV;
1320 	if (val & PORT_CS_1_RC)
1321 		return -EIO;
1322 
1323 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1324 }
1325 
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1326 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1327 			      u8 index, u8 reg, const void *buf, u8 size)
1328 {
1329 	size_t dwords = DIV_ROUND_UP(size, 4);
1330 	int ret;
1331 	u32 val;
1332 
1333 	if (!port->cap_usb4)
1334 		return -EINVAL;
1335 
1336 	if (buf) {
1337 		ret = usb4_port_write_data(port, buf, dwords);
1338 		if (ret)
1339 			return ret;
1340 	}
1341 
1342 	val = reg;
1343 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1344 	val |= PORT_CS_1_WNR_WRITE;
1345 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1346 	if (target == USB4_SB_TARGET_RETIMER)
1347 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1348 	val |= PORT_CS_1_PND;
1349 
1350 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1351 			    port->cap_usb4 + PORT_CS_1, 1);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1356 				     PORT_CS_1_PND, 0, 500);
1357 	if (ret)
1358 		return ret;
1359 
1360 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1361 			    port->cap_usb4 + PORT_CS_1, 1);
1362 	if (ret)
1363 		return ret;
1364 
1365 	if (val & PORT_CS_1_NR)
1366 		return -ENODEV;
1367 	if (val & PORT_CS_1_RC)
1368 		return -EIO;
1369 
1370 	return 0;
1371 }
1372 
usb4_port_sb_opcode_err_to_errno(u32 val)1373 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1374 {
1375 	switch (val) {
1376 	case 0:
1377 		return 0;
1378 	case USB4_SB_OPCODE_ERR:
1379 		return -EAGAIN;
1380 	case USB4_SB_OPCODE_ONS:
1381 		return -EOPNOTSUPP;
1382 	default:
1383 		return -EIO;
1384 	}
1385 }
1386 
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1387 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1388 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1389 {
1390 	ktime_t timeout;
1391 	u32 val;
1392 	int ret;
1393 
1394 	val = opcode;
1395 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1396 				 sizeof(val));
1397 	if (ret)
1398 		return ret;
1399 
1400 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1401 
1402 	do {
1403 		/* Check results */
1404 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1405 					&val, sizeof(val));
1406 		if (ret)
1407 			return ret;
1408 
1409 		if (val != opcode)
1410 			return usb4_port_sb_opcode_err_to_errno(val);
1411 	} while (ktime_before(ktime_get(), timeout));
1412 
1413 	return -ETIMEDOUT;
1414 }
1415 
usb4_port_set_router_offline(struct tb_port * port,bool offline)1416 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1417 {
1418 	u32 val = !offline;
1419 	int ret;
1420 
1421 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1422 				  USB4_SB_METADATA, &val, sizeof(val));
1423 	if (ret)
1424 		return ret;
1425 
1426 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1427 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1428 				  USB4_SB_OPCODE, &val, sizeof(val));
1429 }
1430 
1431 /**
1432  * usb4_port_router_offline() - Put the USB4 port to offline mode
1433  * @port: USB4 port
1434  *
1435  * This function puts the USB4 port into offline mode. In this mode the
1436  * port does not react on hotplug events anymore. This needs to be
1437  * called before retimer access is done when the USB4 links is not up.
1438  *
1439  * Returns %0 in case of success and negative errno if there was an
1440  * error.
1441  */
usb4_port_router_offline(struct tb_port * port)1442 int usb4_port_router_offline(struct tb_port *port)
1443 {
1444 	return usb4_port_set_router_offline(port, true);
1445 }
1446 
1447 /**
1448  * usb4_port_router_online() - Put the USB4 port back to online
1449  * @port: USB4 port
1450  *
1451  * Makes the USB4 port functional again.
1452  */
usb4_port_router_online(struct tb_port * port)1453 int usb4_port_router_online(struct tb_port *port)
1454 {
1455 	return usb4_port_set_router_offline(port, false);
1456 }
1457 
1458 /**
1459  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1460  * @port: USB4 port
1461  *
1462  * This forces the USB4 port to send broadcast RT transaction which
1463  * makes the retimers on the link to assign index to themselves. Returns
1464  * %0 in case of success and negative errno if there was an error.
1465  */
usb4_port_enumerate_retimers(struct tb_port * port)1466 int usb4_port_enumerate_retimers(struct tb_port *port)
1467 {
1468 	u32 val;
1469 
1470 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1471 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1472 				  USB4_SB_OPCODE, &val, sizeof(val));
1473 }
1474 
1475 /**
1476  * usb4_port_clx_supported() - Check if CLx is supported by the link
1477  * @port: Port to check for CLx support for
1478  *
1479  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1480  * active cables (if connected on the link).
1481  */
usb4_port_clx_supported(struct tb_port * port)1482 bool usb4_port_clx_supported(struct tb_port *port)
1483 {
1484 	int ret;
1485 	u32 val;
1486 
1487 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1488 			   port->cap_usb4 + PORT_CS_18, 1);
1489 	if (ret)
1490 		return false;
1491 
1492 	return !!(val & PORT_CS_18_CPS);
1493 }
1494 
1495 /**
1496  * usb4_port_asym_supported() - If the port supports asymmetric link
1497  * @port: USB4 port
1498  *
1499  * Checks if the port and the cable supports asymmetric link and returns
1500  * %true in that case.
1501  */
usb4_port_asym_supported(struct tb_port * port)1502 bool usb4_port_asym_supported(struct tb_port *port)
1503 {
1504 	u32 val;
1505 
1506 	if (!port->cap_usb4)
1507 		return false;
1508 
1509 	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1510 		return false;
1511 
1512 	return !!(val & PORT_CS_18_CSA);
1513 }
1514 
1515 /**
1516  * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1517  * @port: USB4 port
1518  * @width: Asymmetric width to configure
1519  *
1520  * Sets USB4 port link width to @width. Can be called for widths where
1521  * usb4_port_asym_width_supported() returned @true.
1522  */
usb4_port_asym_set_link_width(struct tb_port * port,enum tb_link_width width)1523 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1524 {
1525 	u32 val;
1526 	int ret;
1527 
1528 	if (!port->cap_phy)
1529 		return -EINVAL;
1530 
1531 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1532 			   port->cap_phy + LANE_ADP_CS_1, 1);
1533 	if (ret)
1534 		return ret;
1535 
1536 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1537 	switch (width) {
1538 	case TB_LINK_WIDTH_DUAL:
1539 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1540 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1541 		break;
1542 	case TB_LINK_WIDTH_ASYM_TX:
1543 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1544 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1545 		break;
1546 	case TB_LINK_WIDTH_ASYM_RX:
1547 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1548 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1549 		break;
1550 	default:
1551 		return -EINVAL;
1552 	}
1553 
1554 	return tb_port_write(port, &val, TB_CFG_PORT,
1555 			     port->cap_phy + LANE_ADP_CS_1, 1);
1556 }
1557 
1558 /**
1559  * usb4_port_asym_start() - Start symmetry change and wait for completion
1560  * @port: USB4 port
1561  *
1562  * Start symmetry change of the link to asymmetric or symmetric
1563  * (according to what was previously set in tb_port_set_link_width().
1564  * Wait for completion of the change.
1565  *
1566  * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1567  * a negative errno in case of a failure.
1568  */
usb4_port_asym_start(struct tb_port * port)1569 int usb4_port_asym_start(struct tb_port *port)
1570 {
1571 	int ret;
1572 	u32 val;
1573 
1574 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1575 			   port->cap_usb4 + PORT_CS_19, 1);
1576 	if (ret)
1577 		return ret;
1578 
1579 	val &= ~PORT_CS_19_START_ASYM;
1580 	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1581 
1582 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1583 			    port->cap_usb4 + PORT_CS_19, 1);
1584 	if (ret)
1585 		return ret;
1586 
1587 	/*
1588 	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1589 	 * port started the symmetry transition.
1590 	 */
1591 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1592 				     PORT_CS_19_START_ASYM, 0, 1000);
1593 	if (ret)
1594 		return ret;
1595 
1596 	/* Then wait for the transtion to be completed */
1597 	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1598 				      PORT_CS_18_TIP, 0, 5000);
1599 }
1600 
1601 /**
1602  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1603  * @port: USB4 port
1604  * @caps: Array with at least two elements to hold the results
1605  *
1606  * Reads the USB4 port lane margining capabilities into @caps.
1607  */
usb4_port_margining_caps(struct tb_port * port,u32 * caps)1608 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1609 {
1610 	int ret;
1611 
1612 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1613 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1614 	if (ret)
1615 		return ret;
1616 
1617 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1618 				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1619 }
1620 
1621 /**
1622  * usb4_port_hw_margin() - Run hardware lane margining on port
1623  * @port: USB4 port
1624  * @lanes: Which lanes to run (must match the port capabilities). Can be
1625  *	   %0, %1 or %7.
1626  * @ber_level: BER level contour value
1627  * @timing: Perform timing margining instead of voltage
1628  * @right_high: Use Right/high margin instead of left/low
1629  * @results: Array with at least two elements to hold the results
1630  *
1631  * Runs hardware lane margining on USB4 port and returns the result in
1632  * @results.
1633  */
usb4_port_hw_margin(struct tb_port * port,unsigned int lanes,unsigned int ber_level,bool timing,bool right_high,u32 * results)1634 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1635 			unsigned int ber_level, bool timing, bool right_high,
1636 			u32 *results)
1637 {
1638 	u32 val;
1639 	int ret;
1640 
1641 	val = lanes;
1642 	if (timing)
1643 		val |= USB4_MARGIN_HW_TIME;
1644 	if (right_high)
1645 		val |= USB4_MARGIN_HW_RH;
1646 	if (ber_level)
1647 		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1648 			USB4_MARGIN_HW_BER_MASK;
1649 
1650 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1651 				 USB4_SB_METADATA, &val, sizeof(val));
1652 	if (ret)
1653 		return ret;
1654 
1655 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1656 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1657 	if (ret)
1658 		return ret;
1659 
1660 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1661 				 USB4_SB_DATA, results, sizeof(*results) * 2);
1662 }
1663 
1664 /**
1665  * usb4_port_sw_margin() - Run software lane margining on port
1666  * @port: USB4 port
1667  * @lanes: Which lanes to run (must match the port capabilities). Can be
1668  *	   %0, %1 or %7.
1669  * @timing: Perform timing margining instead of voltage
1670  * @right_high: Use Right/high margin instead of left/low
1671  * @counter: What to do with the error counter
1672  *
1673  * Runs software lane margining on USB4 port. Read back the error
1674  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1675  * success and negative errno otherwise.
1676  */
usb4_port_sw_margin(struct tb_port * port,unsigned int lanes,bool timing,bool right_high,u32 counter)1677 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1678 			bool right_high, u32 counter)
1679 {
1680 	u32 val;
1681 	int ret;
1682 
1683 	val = lanes;
1684 	if (timing)
1685 		val |= USB4_MARGIN_SW_TIME;
1686 	if (right_high)
1687 		val |= USB4_MARGIN_SW_RH;
1688 	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1689 		USB4_MARGIN_SW_COUNTER_MASK;
1690 
1691 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1692 				 USB4_SB_METADATA, &val, sizeof(val));
1693 	if (ret)
1694 		return ret;
1695 
1696 	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1697 			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1698 }
1699 
1700 /**
1701  * usb4_port_sw_margin_errors() - Read the software margining error counters
1702  * @port: USB4 port
1703  * @errors: Error metadata is copied here.
1704  *
1705  * This reads back the software margining error counters from the port.
1706  * Returns %0 in success and negative errno otherwise.
1707  */
usb4_port_sw_margin_errors(struct tb_port * port,u32 * errors)1708 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1709 {
1710 	int ret;
1711 
1712 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1713 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1714 	if (ret)
1715 		return ret;
1716 
1717 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1718 				 USB4_SB_METADATA, errors, sizeof(*errors));
1719 }
1720 
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1721 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1722 				       enum usb4_sb_opcode opcode,
1723 				       int timeout_msec)
1724 {
1725 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1726 			       timeout_msec);
1727 }
1728 
1729 /**
1730  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1731  * @port: USB4 port
1732  * @index: Retimer index
1733  *
1734  * Enables sideband channel transations on SBTX. Can be used when USB4
1735  * link does not go up, for example if there is no device connected.
1736  */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1737 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1738 {
1739 	int ret;
1740 
1741 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1742 				   500);
1743 
1744 	if (ret != -ENODEV)
1745 		return ret;
1746 
1747 	/*
1748 	 * Per the USB4 retimer spec, the retimer is not required to
1749 	 * send an RT (Retimer Transaction) response for the first
1750 	 * SET_INBOUND_SBTX command
1751 	 */
1752 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1753 				    500);
1754 }
1755 
1756 /**
1757  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1758  * @port: USB4 port
1759  * @index: Retimer index
1760  *
1761  * Disables sideband channel transations on SBTX. The reverse of
1762  * usb4_port_retimer_set_inbound_sbtx().
1763  */
usb4_port_retimer_unset_inbound_sbtx(struct tb_port * port,u8 index)1764 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1765 {
1766 	return usb4_port_retimer_op(port, index,
1767 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1768 }
1769 
1770 /**
1771  * usb4_port_retimer_read() - Read from retimer sideband registers
1772  * @port: USB4 port
1773  * @index: Retimer index
1774  * @reg: Sideband register to read
1775  * @buf: Data from @reg is stored here
1776  * @size: Number of bytes to read
1777  *
1778  * Function reads retimer sideband registers starting from @reg. The
1779  * retimer is connected to @port at @index. Returns %0 in case of
1780  * success, and read data is copied to @buf. If there is no retimer
1781  * present at given @index returns %-ENODEV. In any other failure
1782  * returns negative errno.
1783  */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1784 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1785 			   u8 size)
1786 {
1787 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1788 				 size);
1789 }
1790 
1791 /**
1792  * usb4_port_retimer_write() - Write to retimer sideband registers
1793  * @port: USB4 port
1794  * @index: Retimer index
1795  * @reg: Sideband register to write
1796  * @buf: Data that is written starting from @reg
1797  * @size: Number of bytes to write
1798  *
1799  * Writes retimer sideband registers starting from @reg. The retimer is
1800  * connected to @port at @index. Returns %0 in case of success. If there
1801  * is no retimer present at given @index returns %-ENODEV. In any other
1802  * failure returns negative errno.
1803  */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1804 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1805 			    const void *buf, u8 size)
1806 {
1807 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1808 				  size);
1809 }
1810 
1811 /**
1812  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1813  * @port: USB4 port
1814  * @index: Retimer index
1815  *
1816  * If the retimer at @index is last one (connected directly to the
1817  * Type-C port) this function returns %1. If it is not returns %0. If
1818  * the retimer is not present returns %-ENODEV. Otherwise returns
1819  * negative errno.
1820  */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1821 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1822 {
1823 	u32 metadata;
1824 	int ret;
1825 
1826 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1827 				   500);
1828 	if (ret)
1829 		return ret;
1830 
1831 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1832 				     sizeof(metadata));
1833 	return ret ? ret : metadata & 1;
1834 }
1835 
1836 /**
1837  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1838  * @port: USB4 port
1839  * @index: Retimer index
1840  *
1841  * Reads NVM sector size (in bytes) of a retimer at @index. This
1842  * operation can be used to determine whether the retimer supports NVM
1843  * upgrade for example. Returns sector size in bytes or negative errno
1844  * in case of error. Specifically returns %-ENODEV if there is no
1845  * retimer at @index.
1846  */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1847 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1848 {
1849 	u32 metadata;
1850 	int ret;
1851 
1852 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1853 				   500);
1854 	if (ret)
1855 		return ret;
1856 
1857 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1858 				     sizeof(metadata));
1859 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1860 }
1861 
1862 /**
1863  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1864  * @port: USB4 port
1865  * @index: Retimer index
1866  * @address: Start offset
1867  *
1868  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1869  * done automatically by usb4_port_retimer_nvm_write().
1870  *
1871  * Returns %0 in success and negative errno if there was a failure.
1872  */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1873 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1874 				     unsigned int address)
1875 {
1876 	u32 metadata, dwaddress;
1877 	int ret;
1878 
1879 	dwaddress = address / 4;
1880 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1881 		  USB4_NVM_SET_OFFSET_MASK;
1882 
1883 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1884 				      sizeof(metadata));
1885 	if (ret)
1886 		return ret;
1887 
1888 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1889 				    500);
1890 }
1891 
1892 struct retimer_info {
1893 	struct tb_port *port;
1894 	u8 index;
1895 };
1896 
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1897 static int usb4_port_retimer_nvm_write_next_block(void *data,
1898 	unsigned int dwaddress, const void *buf, size_t dwords)
1899 
1900 {
1901 	const struct retimer_info *info = data;
1902 	struct tb_port *port = info->port;
1903 	u8 index = info->index;
1904 	int ret;
1905 
1906 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1907 				      buf, dwords * 4);
1908 	if (ret)
1909 		return ret;
1910 
1911 	return usb4_port_retimer_op(port, index,
1912 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1913 }
1914 
1915 /**
1916  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1917  * @port: USB4 port
1918  * @index: Retimer index
1919  * @address: Byte address where to start the write
1920  * @buf: Data to write
1921  * @size: Size in bytes how much to write
1922  *
1923  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1924  * upgrade. Returns %0 if the data was written successfully and negative
1925  * errno in case of failure. Specifically returns %-ENODEV if there is
1926  * no retimer at @index.
1927  */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1928 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1929 				const void *buf, size_t size)
1930 {
1931 	struct retimer_info info = { .port = port, .index = index };
1932 	int ret;
1933 
1934 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1935 	if (ret)
1936 		return ret;
1937 
1938 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1939 				 usb4_port_retimer_nvm_write_next_block, &info);
1940 }
1941 
1942 /**
1943  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1944  * @port: USB4 port
1945  * @index: Retimer index
1946  *
1947  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1948  * this function can be used to trigger the NVM upgrade process. If
1949  * successful the retimer restarts with the new NVM and may not have the
1950  * index set so one needs to call usb4_port_enumerate_retimers() to
1951  * force index to be assigned.
1952  */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1953 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1954 {
1955 	u32 val;
1956 
1957 	/*
1958 	 * We need to use the raw operation here because once the
1959 	 * authentication completes the retimer index is not set anymore
1960 	 * so we do not get back the status now.
1961 	 */
1962 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1963 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1964 				  USB4_SB_OPCODE, &val, sizeof(val));
1965 }
1966 
1967 /**
1968  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1969  * @port: USB4 port
1970  * @index: Retimer index
1971  * @status: Raw status code read from metadata
1972  *
1973  * This can be called after usb4_port_retimer_nvm_authenticate() and
1974  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1975  *
1976  * Returns %0 if the authentication status was successfully read. The
1977  * completion metadata (the result) is then stored into @status. If
1978  * reading the status fails, returns negative errno.
1979  */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1980 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1981 					      u32 *status)
1982 {
1983 	u32 metadata, val;
1984 	int ret;
1985 
1986 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1987 				     sizeof(val));
1988 	if (ret)
1989 		return ret;
1990 
1991 	ret = usb4_port_sb_opcode_err_to_errno(val);
1992 	switch (ret) {
1993 	case 0:
1994 		*status = 0;
1995 		return 0;
1996 
1997 	case -EAGAIN:
1998 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1999 					     &metadata, sizeof(metadata));
2000 		if (ret)
2001 			return ret;
2002 
2003 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2004 		return 0;
2005 
2006 	default:
2007 		return ret;
2008 	}
2009 }
2010 
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)2011 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2012 					    void *buf, size_t dwords)
2013 {
2014 	const struct retimer_info *info = data;
2015 	struct tb_port *port = info->port;
2016 	u8 index = info->index;
2017 	u32 metadata;
2018 	int ret;
2019 
2020 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2021 	if (dwords < USB4_DATA_DWORDS)
2022 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2023 
2024 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
2025 				      sizeof(metadata));
2026 	if (ret)
2027 		return ret;
2028 
2029 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
2030 	if (ret)
2031 		return ret;
2032 
2033 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
2034 				      dwords * 4);
2035 }
2036 
2037 /**
2038  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2039  * @port: USB4 port
2040  * @index: Retimer index
2041  * @address: NVM address (in bytes) to start reading
2042  * @buf: Data read from NVM is stored here
2043  * @size: Number of bytes to read
2044  *
2045  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2046  * read was successful and negative errno in case of failure.
2047  * Specifically returns %-ENODEV if there is no retimer at @index.
2048  */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)2049 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2050 			       unsigned int address, void *buf, size_t size)
2051 {
2052 	struct retimer_info info = { .port = port, .index = index };
2053 
2054 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2055 				usb4_port_retimer_nvm_read_block, &info);
2056 }
2057 
2058 static inline unsigned int
usb4_usb3_port_max_bandwidth(const struct tb_port * port,unsigned int bw)2059 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2060 {
2061 	/* Take the possible bandwidth limitation into account */
2062 	if (port->max_bw)
2063 		return min(bw, port->max_bw);
2064 	return bw;
2065 }
2066 
2067 /**
2068  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2069  * @port: USB3 adapter port
2070  *
2071  * Return maximum supported link rate of a USB3 adapter in Mb/s.
2072  * Negative errno in case of error.
2073  */
usb4_usb3_port_max_link_rate(struct tb_port * port)2074 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2075 {
2076 	int ret, lr;
2077 	u32 val;
2078 
2079 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2080 		return -EINVAL;
2081 
2082 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2083 			   port->cap_adap + ADP_USB3_CS_4, 1);
2084 	if (ret)
2085 		return ret;
2086 
2087 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2088 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2089 
2090 	return usb4_usb3_port_max_bandwidth(port, ret);
2091 }
2092 
2093 /**
2094  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
2095  * @port: USB3 adapter port
2096  *
2097  * Return actual established link rate of a USB3 adapter in Mb/s. If the
2098  * link is not up returns %0 and negative errno in case of failure.
2099  */
usb4_usb3_port_actual_link_rate(struct tb_port * port)2100 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
2101 {
2102 	int ret, lr;
2103 	u32 val;
2104 
2105 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2106 		return -EINVAL;
2107 
2108 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2109 			   port->cap_adap + ADP_USB3_CS_4, 1);
2110 	if (ret)
2111 		return ret;
2112 
2113 	if (!(val & ADP_USB3_CS_4_ULV))
2114 		return 0;
2115 
2116 	lr = val & ADP_USB3_CS_4_ALR_MASK;
2117 	ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
2118 
2119 	return usb4_usb3_port_max_bandwidth(port, ret);
2120 }
2121 
usb4_usb3_port_cm_request(struct tb_port * port,bool request)2122 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2123 {
2124 	int ret;
2125 	u32 val;
2126 
2127 	if (!tb_port_is_usb3_down(port))
2128 		return -EINVAL;
2129 	if (tb_route(port->sw))
2130 		return -EINVAL;
2131 
2132 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2133 			   port->cap_adap + ADP_USB3_CS_2, 1);
2134 	if (ret)
2135 		return ret;
2136 
2137 	if (request)
2138 		val |= ADP_USB3_CS_2_CMR;
2139 	else
2140 		val &= ~ADP_USB3_CS_2_CMR;
2141 
2142 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2143 			    port->cap_adap + ADP_USB3_CS_2, 1);
2144 	if (ret)
2145 		return ret;
2146 
2147 	/*
2148 	 * We can use val here directly as the CMR bit is in the same place
2149 	 * as HCA. Just mask out others.
2150 	 */
2151 	val &= ADP_USB3_CS_2_CMR;
2152 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2153 				      ADP_USB3_CS_1_HCA, val, 1500);
2154 }
2155 
usb4_usb3_port_set_cm_request(struct tb_port * port)2156 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2157 {
2158 	return usb4_usb3_port_cm_request(port, true);
2159 }
2160 
usb4_usb3_port_clear_cm_request(struct tb_port * port)2161 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2162 {
2163 	return usb4_usb3_port_cm_request(port, false);
2164 }
2165 
usb3_bw_to_mbps(u32 bw,u8 scale)2166 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2167 {
2168 	unsigned long uframes;
2169 
2170 	uframes = bw * 512UL << scale;
2171 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2172 }
2173 
mbps_to_usb3_bw(unsigned int mbps,u8 scale)2174 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2175 {
2176 	unsigned long uframes;
2177 
2178 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2179 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2180 	return DIV_ROUND_UP(uframes, 512UL << scale);
2181 }
2182 
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2183 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2184 						   int *upstream_bw,
2185 						   int *downstream_bw)
2186 {
2187 	u32 val, bw, scale;
2188 	int ret;
2189 
2190 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2191 			   port->cap_adap + ADP_USB3_CS_2, 1);
2192 	if (ret)
2193 		return ret;
2194 
2195 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2196 			   port->cap_adap + ADP_USB3_CS_3, 1);
2197 	if (ret)
2198 		return ret;
2199 
2200 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2201 
2202 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2203 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2204 
2205 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2206 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2207 
2208 	return 0;
2209 }
2210 
2211 /**
2212  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2213  * @port: USB3 adapter port
2214  * @upstream_bw: Allocated upstream bandwidth is stored here
2215  * @downstream_bw: Allocated downstream bandwidth is stored here
2216  *
2217  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2218  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2219  * errno in failure.
2220  */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2221 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2222 				       int *downstream_bw)
2223 {
2224 	int ret;
2225 
2226 	ret = usb4_usb3_port_set_cm_request(port);
2227 	if (ret)
2228 		return ret;
2229 
2230 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2231 						      downstream_bw);
2232 	usb4_usb3_port_clear_cm_request(port);
2233 
2234 	return ret;
2235 }
2236 
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2237 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2238 						  int *upstream_bw,
2239 						  int *downstream_bw)
2240 {
2241 	u32 val, bw, scale;
2242 	int ret;
2243 
2244 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2245 			   port->cap_adap + ADP_USB3_CS_1, 1);
2246 	if (ret)
2247 		return ret;
2248 
2249 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2250 			   port->cap_adap + ADP_USB3_CS_3, 1);
2251 	if (ret)
2252 		return ret;
2253 
2254 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2255 
2256 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2257 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2258 
2259 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2260 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2261 
2262 	return 0;
2263 }
2264 
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)2265 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2266 						    int upstream_bw,
2267 						    int downstream_bw)
2268 {
2269 	u32 val, ubw, dbw, scale;
2270 	int ret, max_bw;
2271 
2272 	/* Figure out suitable scale */
2273 	scale = 0;
2274 	max_bw = max(upstream_bw, downstream_bw);
2275 	while (scale < 64) {
2276 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2277 			break;
2278 		scale++;
2279 	}
2280 
2281 	if (WARN_ON(scale >= 64))
2282 		return -EINVAL;
2283 
2284 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2285 			    port->cap_adap + ADP_USB3_CS_3, 1);
2286 	if (ret)
2287 		return ret;
2288 
2289 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2290 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2291 
2292 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2293 
2294 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2295 			   port->cap_adap + ADP_USB3_CS_2, 1);
2296 	if (ret)
2297 		return ret;
2298 
2299 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2300 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2301 	val |= ubw;
2302 
2303 	return tb_port_write(port, &val, TB_CFG_PORT,
2304 			     port->cap_adap + ADP_USB3_CS_2, 1);
2305 }
2306 
2307 /**
2308  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2309  * @port: USB3 adapter port
2310  * @upstream_bw: New upstream bandwidth
2311  * @downstream_bw: New downstream bandwidth
2312  *
2313  * This can be used to set how much bandwidth is allocated for the USB3
2314  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2315  * new values programmed to the USB3 adapter allocation registers. If
2316  * the values are lower than what is currently consumed the allocation
2317  * is set to what is currently consumed instead (consumed bandwidth
2318  * cannot be taken away by CM). The actual new values are returned in
2319  * @upstream_bw and @downstream_bw.
2320  *
2321  * Returns %0 in case of success and negative errno if there was a
2322  * failure.
2323  */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2324 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2325 				      int *downstream_bw)
2326 {
2327 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2328 
2329 	ret = usb4_usb3_port_set_cm_request(port);
2330 	if (ret)
2331 		return ret;
2332 
2333 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2334 						     &consumed_down);
2335 	if (ret)
2336 		goto err_request;
2337 
2338 	/* Don't allow it go lower than what is consumed */
2339 	allocate_up = max(*upstream_bw, consumed_up);
2340 	allocate_down = max(*downstream_bw, consumed_down);
2341 
2342 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2343 						       allocate_down);
2344 	if (ret)
2345 		goto err_request;
2346 
2347 	*upstream_bw = allocate_up;
2348 	*downstream_bw = allocate_down;
2349 
2350 err_request:
2351 	usb4_usb3_port_clear_cm_request(port);
2352 	return ret;
2353 }
2354 
2355 /**
2356  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2357  * @port: USB3 adapter port
2358  * @upstream_bw: New allocated upstream bandwidth
2359  * @downstream_bw: New allocated downstream bandwidth
2360  *
2361  * Releases USB3 allocated bandwidth down to what is actually consumed.
2362  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2363  *
2364  * Returns 0% in success and negative errno in case of failure.
2365  */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2366 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2367 				     int *downstream_bw)
2368 {
2369 	int ret, consumed_up, consumed_down;
2370 
2371 	ret = usb4_usb3_port_set_cm_request(port);
2372 	if (ret)
2373 		return ret;
2374 
2375 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2376 						     &consumed_down);
2377 	if (ret)
2378 		goto err_request;
2379 
2380 	/*
2381 	 * Always keep 900 Mb/s to make sure xHCI has at least some
2382 	 * bandwidth available for isochronous traffic.
2383 	 */
2384 	if (consumed_up < 900)
2385 		consumed_up = 900;
2386 	if (consumed_down < 900)
2387 		consumed_down = 900;
2388 
2389 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2390 						       consumed_down);
2391 	if (ret)
2392 		goto err_request;
2393 
2394 	*upstream_bw = consumed_up;
2395 	*downstream_bw = consumed_down;
2396 
2397 err_request:
2398 	usb4_usb3_port_clear_cm_request(port);
2399 	return ret;
2400 }
2401 
is_usb4_dpin(const struct tb_port * port)2402 static bool is_usb4_dpin(const struct tb_port *port)
2403 {
2404 	if (!tb_port_is_dpin(port))
2405 		return false;
2406 	if (!tb_switch_is_usb4(port->sw))
2407 		return false;
2408 	return true;
2409 }
2410 
2411 /**
2412  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2413  * @port: DP IN adapter
2414  * @cm_id: CM ID to assign
2415  *
2416  * Sets CM ID for the @port. Returns %0 on success and negative errno
2417  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2418  * support this.
2419  */
usb4_dp_port_set_cm_id(struct tb_port * port,int cm_id)2420 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2421 {
2422 	u32 val;
2423 	int ret;
2424 
2425 	if (!is_usb4_dpin(port))
2426 		return -EOPNOTSUPP;
2427 
2428 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2429 			   port->cap_adap + ADP_DP_CS_2, 1);
2430 	if (ret)
2431 		return ret;
2432 
2433 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2434 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2435 
2436 	return tb_port_write(port, &val, TB_CFG_PORT,
2437 			     port->cap_adap + ADP_DP_CS_2, 1);
2438 }
2439 
2440 /**
2441  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2442  *					     supported
2443  * @port: DP IN adapter to check
2444  *
2445  * Can be called to any DP IN adapter. Returns true if the adapter
2446  * supports USB4 bandwidth allocation mode, false otherwise.
2447  */
usb4_dp_port_bandwidth_mode_supported(struct tb_port * port)2448 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2449 {
2450 	int ret;
2451 	u32 val;
2452 
2453 	if (!is_usb4_dpin(port))
2454 		return false;
2455 
2456 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2457 			   port->cap_adap + DP_LOCAL_CAP, 1);
2458 	if (ret)
2459 		return false;
2460 
2461 	return !!(val & DP_COMMON_CAP_BW_MODE);
2462 }
2463 
2464 /**
2465  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2466  *					   enabled
2467  * @port: DP IN adapter to check
2468  *
2469  * Can be called to any DP IN adapter. Returns true if the bandwidth
2470  * allocation mode has been enabled, false otherwise.
2471  */
usb4_dp_port_bandwidth_mode_enabled(struct tb_port * port)2472 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2473 {
2474 	int ret;
2475 	u32 val;
2476 
2477 	if (!is_usb4_dpin(port))
2478 		return false;
2479 
2480 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2481 			   port->cap_adap + ADP_DP_CS_8, 1);
2482 	if (ret)
2483 		return false;
2484 
2485 	return !!(val & ADP_DP_CS_8_DPME);
2486 }
2487 
2488 /**
2489  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2490  *						    bandwidth allocation mode
2491  * @port: DP IN adapter
2492  * @supported: Does the CM support bandwidth allocation mode
2493  *
2494  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2495  * of the DP IN adapter. Returns %0 in success and negative errno
2496  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2497  * does not support this.
2498  */
usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port * port,bool supported)2499 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2500 						 bool supported)
2501 {
2502 	u32 val;
2503 	int ret;
2504 
2505 	if (!is_usb4_dpin(port))
2506 		return -EOPNOTSUPP;
2507 
2508 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2509 			   port->cap_adap + ADP_DP_CS_2, 1);
2510 	if (ret)
2511 		return ret;
2512 
2513 	if (supported)
2514 		val |= ADP_DP_CS_2_CMMS;
2515 	else
2516 		val &= ~ADP_DP_CS_2_CMMS;
2517 
2518 	return tb_port_write(port, &val, TB_CFG_PORT,
2519 			     port->cap_adap + ADP_DP_CS_2, 1);
2520 }
2521 
2522 /**
2523  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2524  * @port: DP IN adapter
2525  *
2526  * Reads bandwidth allocation Group ID from the DP IN adapter and
2527  * returns it. If the adapter does not support setting Group_ID
2528  * %-EOPNOTSUPP is returned.
2529  */
usb4_dp_port_group_id(struct tb_port * port)2530 int usb4_dp_port_group_id(struct tb_port *port)
2531 {
2532 	u32 val;
2533 	int ret;
2534 
2535 	if (!is_usb4_dpin(port))
2536 		return -EOPNOTSUPP;
2537 
2538 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2539 			   port->cap_adap + ADP_DP_CS_2, 1);
2540 	if (ret)
2541 		return ret;
2542 
2543 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2544 }
2545 
2546 /**
2547  * usb4_dp_port_set_group_id() - Set adapter Group ID
2548  * @port: DP IN adapter
2549  * @group_id: Group ID for the adapter
2550  *
2551  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2552  * Returns %0 in case of success and negative errno otherwise.
2553  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2554  * this.
2555  */
usb4_dp_port_set_group_id(struct tb_port * port,int group_id)2556 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2557 {
2558 	u32 val;
2559 	int ret;
2560 
2561 	if (!is_usb4_dpin(port))
2562 		return -EOPNOTSUPP;
2563 
2564 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2565 			   port->cap_adap + ADP_DP_CS_2, 1);
2566 	if (ret)
2567 		return ret;
2568 
2569 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2570 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2571 
2572 	return tb_port_write(port, &val, TB_CFG_PORT,
2573 			     port->cap_adap + ADP_DP_CS_2, 1);
2574 }
2575 
2576 /**
2577  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2578  * @port: DP IN adapter
2579  * @rate: Non-reduced rate in Mb/s is placed here
2580  * @lanes: Non-reduced lanes are placed here
2581  *
2582  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2583  * %0 in success and negative errno otherwise. Specifically returns
2584  * %-EOPNOTSUPP if the adapter does not support this.
2585  */
usb4_dp_port_nrd(struct tb_port * port,int * rate,int * lanes)2586 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2587 {
2588 	u32 val, tmp;
2589 	int ret;
2590 
2591 	if (!is_usb4_dpin(port))
2592 		return -EOPNOTSUPP;
2593 
2594 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2595 			   port->cap_adap + ADP_DP_CS_2, 1);
2596 	if (ret)
2597 		return ret;
2598 
2599 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2600 	switch (tmp) {
2601 	case DP_COMMON_CAP_RATE_RBR:
2602 		*rate = 1620;
2603 		break;
2604 	case DP_COMMON_CAP_RATE_HBR:
2605 		*rate = 2700;
2606 		break;
2607 	case DP_COMMON_CAP_RATE_HBR2:
2608 		*rate = 5400;
2609 		break;
2610 	case DP_COMMON_CAP_RATE_HBR3:
2611 		*rate = 8100;
2612 		break;
2613 	}
2614 
2615 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2616 	switch (tmp) {
2617 	case DP_COMMON_CAP_1_LANE:
2618 		*lanes = 1;
2619 		break;
2620 	case DP_COMMON_CAP_2_LANES:
2621 		*lanes = 2;
2622 		break;
2623 	case DP_COMMON_CAP_4_LANES:
2624 		*lanes = 4;
2625 		break;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 /**
2632  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2633  * @port: DP IN adapter
2634  * @rate: Non-reduced rate in Mb/s
2635  * @lanes: Non-reduced lanes
2636  *
2637  * Before the capabilities reduction this function can be used to set
2638  * the non-reduced values for the DP IN adapter. Returns %0 in success
2639  * and negative errno otherwise. If the adapter does not support this
2640  * %-EOPNOTSUPP is returned.
2641  */
usb4_dp_port_set_nrd(struct tb_port * port,int rate,int lanes)2642 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2643 {
2644 	u32 val;
2645 	int ret;
2646 
2647 	if (!is_usb4_dpin(port))
2648 		return -EOPNOTSUPP;
2649 
2650 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2651 			   port->cap_adap + ADP_DP_CS_2, 1);
2652 	if (ret)
2653 		return ret;
2654 
2655 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2656 
2657 	switch (rate) {
2658 	case 1620:
2659 		break;
2660 	case 2700:
2661 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2662 			& ADP_DP_CS_2_NRD_MLR_MASK;
2663 		break;
2664 	case 5400:
2665 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2666 			& ADP_DP_CS_2_NRD_MLR_MASK;
2667 		break;
2668 	case 8100:
2669 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2670 			& ADP_DP_CS_2_NRD_MLR_MASK;
2671 		break;
2672 	default:
2673 		return -EINVAL;
2674 	}
2675 
2676 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2677 
2678 	switch (lanes) {
2679 	case 1:
2680 		break;
2681 	case 2:
2682 		val |= DP_COMMON_CAP_2_LANES;
2683 		break;
2684 	case 4:
2685 		val |= DP_COMMON_CAP_4_LANES;
2686 		break;
2687 	default:
2688 		return -EINVAL;
2689 	}
2690 
2691 	return tb_port_write(port, &val, TB_CFG_PORT,
2692 			     port->cap_adap + ADP_DP_CS_2, 1);
2693 }
2694 
2695 /**
2696  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2697  * @port: DP IN adapter
2698  *
2699  * Reads the programmed granularity from @port. If the DP IN adapter does
2700  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2701  * errno in other error cases.
2702  */
usb4_dp_port_granularity(struct tb_port * port)2703 int usb4_dp_port_granularity(struct tb_port *port)
2704 {
2705 	u32 val;
2706 	int ret;
2707 
2708 	if (!is_usb4_dpin(port))
2709 		return -EOPNOTSUPP;
2710 
2711 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2712 			   port->cap_adap + ADP_DP_CS_2, 1);
2713 	if (ret)
2714 		return ret;
2715 
2716 	val &= ADP_DP_CS_2_GR_MASK;
2717 	val >>= ADP_DP_CS_2_GR_SHIFT;
2718 
2719 	switch (val) {
2720 	case ADP_DP_CS_2_GR_0_25G:
2721 		return 250;
2722 	case ADP_DP_CS_2_GR_0_5G:
2723 		return 500;
2724 	case ADP_DP_CS_2_GR_1G:
2725 		return 1000;
2726 	}
2727 
2728 	return -EINVAL;
2729 }
2730 
2731 /**
2732  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2733  * @port: DP IN adapter
2734  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2735  *
2736  * Sets the granularity used with the estimated, allocated and requested
2737  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2738  * adapter does not support this %-EOPNOTSUPP is returned.
2739  */
usb4_dp_port_set_granularity(struct tb_port * port,int granularity)2740 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2741 {
2742 	u32 val;
2743 	int ret;
2744 
2745 	if (!is_usb4_dpin(port))
2746 		return -EOPNOTSUPP;
2747 
2748 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2749 			   port->cap_adap + ADP_DP_CS_2, 1);
2750 	if (ret)
2751 		return ret;
2752 
2753 	val &= ~ADP_DP_CS_2_GR_MASK;
2754 
2755 	switch (granularity) {
2756 	case 250:
2757 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2758 		break;
2759 	case 500:
2760 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2761 		break;
2762 	case 1000:
2763 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2764 		break;
2765 	default:
2766 		return -EINVAL;
2767 	}
2768 
2769 	return tb_port_write(port, &val, TB_CFG_PORT,
2770 			     port->cap_adap + ADP_DP_CS_2, 1);
2771 }
2772 
2773 /**
2774  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2775  * @port: DP IN adapter
2776  * @bw: Estimated bandwidth in Mb/s.
2777  *
2778  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2779  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2780  * down to the closest granularity multiplier. Returns %0 in success
2781  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2782  * the adapter does not support this.
2783  */
usb4_dp_port_set_estimated_bandwidth(struct tb_port * port,int bw)2784 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2785 {
2786 	u32 val, granularity;
2787 	int ret;
2788 
2789 	if (!is_usb4_dpin(port))
2790 		return -EOPNOTSUPP;
2791 
2792 	ret = usb4_dp_port_granularity(port);
2793 	if (ret < 0)
2794 		return ret;
2795 	granularity = ret;
2796 
2797 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2798 			   port->cap_adap + ADP_DP_CS_2, 1);
2799 	if (ret)
2800 		return ret;
2801 
2802 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2803 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2804 
2805 	return tb_port_write(port, &val, TB_CFG_PORT,
2806 			     port->cap_adap + ADP_DP_CS_2, 1);
2807 }
2808 
2809 /**
2810  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2811  * @port: DP IN adapter
2812  *
2813  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2814  * account the programmed granularity). Returns negative errno in case
2815  * of error.
2816  */
usb4_dp_port_allocated_bandwidth(struct tb_port * port)2817 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2818 {
2819 	u32 val, granularity;
2820 	int ret;
2821 
2822 	if (!is_usb4_dpin(port))
2823 		return -EOPNOTSUPP;
2824 
2825 	ret = usb4_dp_port_granularity(port);
2826 	if (ret < 0)
2827 		return ret;
2828 	granularity = ret;
2829 
2830 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2831 			   port->cap_adap + DP_STATUS, 1);
2832 	if (ret)
2833 		return ret;
2834 
2835 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2836 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2837 
2838 	return val * granularity;
2839 }
2840 
__usb4_dp_port_set_cm_ack(struct tb_port * port,bool ack)2841 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2842 {
2843 	u32 val;
2844 	int ret;
2845 
2846 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2847 			   port->cap_adap + ADP_DP_CS_2, 1);
2848 	if (ret)
2849 		return ret;
2850 
2851 	if (ack)
2852 		val |= ADP_DP_CS_2_CA;
2853 	else
2854 		val &= ~ADP_DP_CS_2_CA;
2855 
2856 	return tb_port_write(port, &val, TB_CFG_PORT,
2857 			     port->cap_adap + ADP_DP_CS_2, 1);
2858 }
2859 
usb4_dp_port_set_cm_ack(struct tb_port * port)2860 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2861 {
2862 	return __usb4_dp_port_set_cm_ack(port, true);
2863 }
2864 
usb4_dp_port_wait_and_clear_cm_ack(struct tb_port * port,int timeout_msec)2865 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2866 					      int timeout_msec)
2867 {
2868 	ktime_t end;
2869 	u32 val;
2870 	int ret;
2871 
2872 	ret = __usb4_dp_port_set_cm_ack(port, false);
2873 	if (ret)
2874 		return ret;
2875 
2876 	end = ktime_add_ms(ktime_get(), timeout_msec);
2877 	do {
2878 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2879 				   port->cap_adap + ADP_DP_CS_8, 1);
2880 		if (ret)
2881 			return ret;
2882 
2883 		if (!(val & ADP_DP_CS_8_DR))
2884 			break;
2885 
2886 		usleep_range(50, 100);
2887 	} while (ktime_before(ktime_get(), end));
2888 
2889 	if (val & ADP_DP_CS_8_DR)
2890 		return -ETIMEDOUT;
2891 
2892 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2893 			   port->cap_adap + ADP_DP_CS_2, 1);
2894 	if (ret)
2895 		return ret;
2896 
2897 	val &= ~ADP_DP_CS_2_CA;
2898 	return tb_port_write(port, &val, TB_CFG_PORT,
2899 			     port->cap_adap + ADP_DP_CS_2, 1);
2900 }
2901 
2902 /**
2903  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2904  * @port: DP IN adapter
2905  * @bw: New allocated bandwidth in Mb/s
2906  *
2907  * Communicates the new allocated bandwidth with the DPCD (graphics
2908  * driver). Takes into account the programmed granularity. Returns %0 in
2909  * success and negative errno in case of error.
2910  */
usb4_dp_port_allocate_bandwidth(struct tb_port * port,int bw)2911 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2912 {
2913 	u32 val, granularity;
2914 	int ret;
2915 
2916 	if (!is_usb4_dpin(port))
2917 		return -EOPNOTSUPP;
2918 
2919 	ret = usb4_dp_port_granularity(port);
2920 	if (ret < 0)
2921 		return ret;
2922 	granularity = ret;
2923 
2924 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2925 			   port->cap_adap + DP_STATUS, 1);
2926 	if (ret)
2927 		return ret;
2928 
2929 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2930 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2931 
2932 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2933 			    port->cap_adap + DP_STATUS, 1);
2934 	if (ret)
2935 		return ret;
2936 
2937 	ret = usb4_dp_port_set_cm_ack(port);
2938 	if (ret)
2939 		return ret;
2940 
2941 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2942 }
2943 
2944 /**
2945  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2946  * @port: DP IN adapter
2947  *
2948  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2949  * in Mb/s. Takes the programmed granularity into account. In case of
2950  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2951  * the adapter does not support bandwidth allocation mode, and %ENODATA
2952  * if there is no active bandwidth request from the graphics driver.
2953  */
usb4_dp_port_requested_bandwidth(struct tb_port * port)2954 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2955 {
2956 	u32 val, granularity;
2957 	int ret;
2958 
2959 	if (!is_usb4_dpin(port))
2960 		return -EOPNOTSUPP;
2961 
2962 	ret = usb4_dp_port_granularity(port);
2963 	if (ret < 0)
2964 		return ret;
2965 	granularity = ret;
2966 
2967 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2968 			   port->cap_adap + ADP_DP_CS_8, 1);
2969 	if (ret)
2970 		return ret;
2971 
2972 	if (!(val & ADP_DP_CS_8_DR))
2973 		return -ENODATA;
2974 
2975 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2976 }
2977 
2978 /**
2979  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2980  * @port: PCIe adapter
2981  * @enable: Enable/disable extended encapsulation
2982  *
2983  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2984  * needs to make sure both adapters support this before enabling. Returns %0 on
2985  * success and negative errno otherwise.
2986  */
usb4_pci_port_set_ext_encapsulation(struct tb_port * port,bool enable)2987 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2988 {
2989 	u32 val;
2990 	int ret;
2991 
2992 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2993 		return -EINVAL;
2994 
2995 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2996 			   port->cap_adap + ADP_PCIE_CS_1, 1);
2997 	if (ret)
2998 		return ret;
2999 
3000 	if (enable)
3001 		val |= ADP_PCIE_CS_1_EE;
3002 	else
3003 		val &= ~ADP_PCIE_CS_1_EE;
3004 
3005 	return tb_port_write(port, &val, TB_CFG_PORT,
3006 			     port->cap_adap + ADP_PCIE_CS_1, 1);
3007 }
3008