1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 u64 file_offset)
129 {
130 struct rb_root *root = &tree->tree;
131 struct rb_node *prev = NULL;
132 struct rb_node *ret;
133 struct btrfs_ordered_extent *entry;
134
135 if (tree->last) {
136 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 rb_node);
138 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 return tree->last;
140 }
141 ret = __tree_search(root, file_offset, &prev);
142 if (!ret)
143 ret = prev;
144 if (ret)
145 tree->last = ret;
146 return ret;
147 }
148
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 u64 offset, unsigned long flags, int compress_type)
153 {
154 struct btrfs_ordered_extent *entry;
155 int ret;
156 u64 qgroup_rsv = 0;
157 const bool is_nocow = (flags &
158 ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
159
160 if (is_nocow) {
161 /* For nocow write, we can release the qgroup rsv right now */
162 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
163 if (ret < 0)
164 return ERR_PTR(ret);
165 } else {
166 /*
167 * The ordered extent has reserved qgroup space, release now
168 * and pass the reserved number for qgroup_record to free.
169 */
170 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
171 if (ret < 0)
172 return ERR_PTR(ret);
173 }
174 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
175 if (!entry) {
176 if (!is_nocow)
177 btrfs_qgroup_free_refroot(inode->root->fs_info,
178 btrfs_root_id(inode->root),
179 qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
180 return ERR_PTR(-ENOMEM);
181 }
182
183 entry->file_offset = file_offset;
184 entry->num_bytes = num_bytes;
185 entry->ram_bytes = ram_bytes;
186 entry->disk_bytenr = disk_bytenr;
187 entry->disk_num_bytes = disk_num_bytes;
188 entry->offset = offset;
189 entry->bytes_left = num_bytes;
190 entry->inode = igrab(&inode->vfs_inode);
191 entry->compress_type = compress_type;
192 entry->truncated_len = (u64)-1;
193 entry->qgroup_rsv = qgroup_rsv;
194 entry->flags = flags;
195 refcount_set(&entry->refs, 1);
196 init_waitqueue_head(&entry->wait);
197 INIT_LIST_HEAD(&entry->list);
198 INIT_LIST_HEAD(&entry->log_list);
199 INIT_LIST_HEAD(&entry->root_extent_list);
200 INIT_LIST_HEAD(&entry->work_list);
201 init_completion(&entry->completion);
202
203 /*
204 * We don't need the count_max_extents here, we can assume that all of
205 * that work has been done at higher layers, so this is truly the
206 * smallest the extent is going to get.
207 */
208 spin_lock(&inode->lock);
209 btrfs_mod_outstanding_extents(inode, 1);
210 spin_unlock(&inode->lock);
211
212 return entry;
213 }
214
insert_ordered_extent(struct btrfs_ordered_extent * entry)215 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
216 {
217 struct btrfs_inode *inode = BTRFS_I(entry->inode);
218 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
219 struct btrfs_root *root = inode->root;
220 struct btrfs_fs_info *fs_info = root->fs_info;
221 struct rb_node *node;
222
223 trace_btrfs_ordered_extent_add(inode, entry);
224
225 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
226 fs_info->delalloc_batch);
227
228 /* One ref for the tree. */
229 refcount_inc(&entry->refs);
230
231 spin_lock_irq(&tree->lock);
232 node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
233 if (node)
234 btrfs_panic(fs_info, -EEXIST,
235 "inconsistency in ordered tree at offset %llu",
236 entry->file_offset);
237 spin_unlock_irq(&tree->lock);
238
239 spin_lock(&root->ordered_extent_lock);
240 list_add_tail(&entry->root_extent_list,
241 &root->ordered_extents);
242 root->nr_ordered_extents++;
243 if (root->nr_ordered_extents == 1) {
244 spin_lock(&fs_info->ordered_root_lock);
245 BUG_ON(!list_empty(&root->ordered_root));
246 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
247 spin_unlock(&fs_info->ordered_root_lock);
248 }
249 spin_unlock(&root->ordered_extent_lock);
250 }
251
252 /*
253 * Add an ordered extent to the per-inode tree.
254 *
255 * @inode: Inode that this extent is for.
256 * @file_offset: Logical offset in file where the extent starts.
257 * @num_bytes: Logical length of extent in file.
258 * @ram_bytes: Full length of unencoded data.
259 * @disk_bytenr: Offset of extent on disk.
260 * @disk_num_bytes: Size of extent on disk.
261 * @offset: Offset into unencoded data where file data starts.
262 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
263 * @compress_type: Compression algorithm used for data.
264 *
265 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
266 * tree is given a single reference on the ordered extent that was inserted, and
267 * the returned pointer is given a second reference.
268 *
269 * Return: the new ordered extent or error pointer.
270 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)271 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
272 struct btrfs_inode *inode, u64 file_offset,
273 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
274 u64 disk_num_bytes, u64 offset, unsigned long flags,
275 int compress_type)
276 {
277 struct btrfs_ordered_extent *entry;
278
279 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
280
281 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
282 disk_bytenr, disk_num_bytes, offset, flags,
283 compress_type);
284 if (!IS_ERR(entry))
285 insert_ordered_extent(entry);
286 return entry;
287 }
288
289 /*
290 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
291 * when an ordered extent is finished. If the list covers more than one
292 * ordered extent, it is split across multiples.
293 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)294 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
295 struct btrfs_ordered_sum *sum)
296 {
297 struct btrfs_ordered_inode_tree *tree;
298
299 tree = &BTRFS_I(entry->inode)->ordered_tree;
300 spin_lock_irq(&tree->lock);
301 list_add_tail(&sum->list, &entry->list);
302 spin_unlock_irq(&tree->lock);
303 }
304
finish_ordered_fn(struct btrfs_work * work)305 static void finish_ordered_fn(struct btrfs_work *work)
306 {
307 struct btrfs_ordered_extent *ordered_extent;
308
309 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
310 btrfs_finish_ordered_io(ordered_extent);
311 }
312
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)313 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
314 struct page *page, u64 file_offset,
315 u64 len, bool uptodate)
316 {
317 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
318 struct btrfs_fs_info *fs_info = inode->root->fs_info;
319
320 lockdep_assert_held(&inode->ordered_tree.lock);
321
322 if (page) {
323 ASSERT(page->mapping);
324 ASSERT(page_offset(page) <= file_offset);
325 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
326
327 /*
328 * Ordered (Private2) bit indicates whether we still have
329 * pending io unfinished for the ordered extent.
330 *
331 * If there's no such bit, we need to skip to next range.
332 */
333 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
334 return false;
335 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
336 }
337
338 /* Now we're fine to update the accounting. */
339 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
340 btrfs_crit(fs_info,
341 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
342 inode->root->root_key.objectid, btrfs_ino(inode),
343 ordered->file_offset, ordered->num_bytes,
344 len, ordered->bytes_left);
345 ordered->bytes_left = 0;
346 } else {
347 ordered->bytes_left -= len;
348 }
349
350 if (!uptodate)
351 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
352
353 if (ordered->bytes_left)
354 return false;
355
356 /*
357 * All the IO of the ordered extent is finished, we need to queue
358 * the finish_func to be executed.
359 */
360 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
361 cond_wake_up(&ordered->wait);
362 refcount_inc(&ordered->refs);
363 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
364 return true;
365 }
366
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)367 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
368 {
369 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
370 struct btrfs_fs_info *fs_info = inode->root->fs_info;
371 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
372 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
373
374 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
375 btrfs_queue_work(wq, &ordered->work);
376 }
377
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)378 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
379 struct page *page, u64 file_offset, u64 len,
380 bool uptodate)
381 {
382 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
383 unsigned long flags;
384 bool ret;
385
386 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
387
388 spin_lock_irqsave(&inode->ordered_tree.lock, flags);
389 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
390 spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
391
392 if (ret)
393 btrfs_queue_ordered_fn(ordered);
394 return ret;
395 }
396
397 /*
398 * Mark all ordered extents io inside the specified range finished.
399 *
400 * @page: The involved page for the operation.
401 * For uncompressed buffered IO, the page status also needs to be
402 * updated to indicate whether the pending ordered io is finished.
403 * Can be NULL for direct IO and compressed write.
404 * For these cases, callers are ensured they won't execute the
405 * endio function twice.
406 *
407 * This function is called for endio, thus the range must have ordered
408 * extent(s) covering it.
409 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct page * page,u64 file_offset,u64 num_bytes,bool uptodate)410 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
411 struct page *page, u64 file_offset,
412 u64 num_bytes, bool uptodate)
413 {
414 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
415 struct rb_node *node;
416 struct btrfs_ordered_extent *entry = NULL;
417 unsigned long flags;
418 u64 cur = file_offset;
419
420 trace_btrfs_writepage_end_io_hook(inode, file_offset,
421 file_offset + num_bytes - 1,
422 uptodate);
423
424 spin_lock_irqsave(&tree->lock, flags);
425 while (cur < file_offset + num_bytes) {
426 u64 entry_end;
427 u64 end;
428 u32 len;
429
430 node = tree_search(tree, cur);
431 /* No ordered extents at all */
432 if (!node)
433 break;
434
435 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
436 entry_end = entry->file_offset + entry->num_bytes;
437 /*
438 * |<-- OE --->| |
439 * cur
440 * Go to next OE.
441 */
442 if (cur >= entry_end) {
443 node = rb_next(node);
444 /* No more ordered extents, exit */
445 if (!node)
446 break;
447 entry = rb_entry(node, struct btrfs_ordered_extent,
448 rb_node);
449
450 /* Go to next ordered extent and continue */
451 cur = entry->file_offset;
452 continue;
453 }
454 /*
455 * | |<--- OE --->|
456 * cur
457 * Go to the start of OE.
458 */
459 if (cur < entry->file_offset) {
460 cur = entry->file_offset;
461 continue;
462 }
463
464 /*
465 * Now we are definitely inside one ordered extent.
466 *
467 * |<--- OE --->|
468 * |
469 * cur
470 */
471 end = min(entry->file_offset + entry->num_bytes,
472 file_offset + num_bytes) - 1;
473 ASSERT(end + 1 - cur < U32_MAX);
474 len = end + 1 - cur;
475
476 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
477 spin_unlock_irqrestore(&tree->lock, flags);
478 btrfs_queue_ordered_fn(entry);
479 spin_lock_irqsave(&tree->lock, flags);
480 }
481 cur += len;
482 }
483 spin_unlock_irqrestore(&tree->lock, flags);
484 }
485
486 /*
487 * Finish IO for one ordered extent across a given range. The range can only
488 * contain one ordered extent.
489 *
490 * @cached: The cached ordered extent. If not NULL, we can skip the tree
491 * search and use the ordered extent directly.
492 * Will be also used to store the finished ordered extent.
493 * @file_offset: File offset for the finished IO
494 * @io_size: Length of the finish IO range
495 *
496 * Return true if the ordered extent is finished in the range, and update
497 * @cached.
498 * Return false otherwise.
499 *
500 * NOTE: The range can NOT cross multiple ordered extents.
501 * Thus caller should ensure the range doesn't cross ordered extents.
502 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)503 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
504 struct btrfs_ordered_extent **cached,
505 u64 file_offset, u64 io_size)
506 {
507 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
508 struct rb_node *node;
509 struct btrfs_ordered_extent *entry = NULL;
510 unsigned long flags;
511 bool finished = false;
512
513 spin_lock_irqsave(&tree->lock, flags);
514 if (cached && *cached) {
515 entry = *cached;
516 goto have_entry;
517 }
518
519 node = tree_search(tree, file_offset);
520 if (!node)
521 goto out;
522
523 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
524 have_entry:
525 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
526 goto out;
527
528 if (io_size > entry->bytes_left)
529 btrfs_crit(inode->root->fs_info,
530 "bad ordered accounting left %llu size %llu",
531 entry->bytes_left, io_size);
532
533 entry->bytes_left -= io_size;
534
535 if (entry->bytes_left == 0) {
536 /*
537 * Ensure only one caller can set the flag and finished_ret
538 * accordingly
539 */
540 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
541 /* test_and_set_bit implies a barrier */
542 cond_wake_up_nomb(&entry->wait);
543 }
544 out:
545 if (finished && cached && entry) {
546 *cached = entry;
547 refcount_inc(&entry->refs);
548 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
549 }
550 spin_unlock_irqrestore(&tree->lock, flags);
551 return finished;
552 }
553
554 /*
555 * used to drop a reference on an ordered extent. This will free
556 * the extent if the last reference is dropped
557 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)558 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
559 {
560 struct list_head *cur;
561 struct btrfs_ordered_sum *sum;
562
563 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
564
565 if (refcount_dec_and_test(&entry->refs)) {
566 ASSERT(list_empty(&entry->root_extent_list));
567 ASSERT(list_empty(&entry->log_list));
568 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
569 if (entry->inode)
570 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
571 while (!list_empty(&entry->list)) {
572 cur = entry->list.next;
573 sum = list_entry(cur, struct btrfs_ordered_sum, list);
574 list_del(&sum->list);
575 kvfree(sum);
576 }
577 kmem_cache_free(btrfs_ordered_extent_cache, entry);
578 }
579 }
580
581 /*
582 * remove an ordered extent from the tree. No references are dropped
583 * and waiters are woken up.
584 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)585 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
586 struct btrfs_ordered_extent *entry)
587 {
588 struct btrfs_ordered_inode_tree *tree;
589 struct btrfs_root *root = btrfs_inode->root;
590 struct btrfs_fs_info *fs_info = root->fs_info;
591 struct rb_node *node;
592 bool pending;
593 bool freespace_inode;
594
595 /*
596 * If this is a free space inode the thread has not acquired the ordered
597 * extents lockdep map.
598 */
599 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
600
601 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
602 /* This is paired with btrfs_alloc_ordered_extent. */
603 spin_lock(&btrfs_inode->lock);
604 btrfs_mod_outstanding_extents(btrfs_inode, -1);
605 spin_unlock(&btrfs_inode->lock);
606 if (root != fs_info->tree_root) {
607 u64 release;
608
609 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
610 release = entry->disk_num_bytes;
611 else
612 release = entry->num_bytes;
613 btrfs_delalloc_release_metadata(btrfs_inode, release,
614 test_bit(BTRFS_ORDERED_IOERR,
615 &entry->flags));
616 }
617
618 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
619 fs_info->delalloc_batch);
620
621 tree = &btrfs_inode->ordered_tree;
622 spin_lock_irq(&tree->lock);
623 node = &entry->rb_node;
624 rb_erase(node, &tree->tree);
625 RB_CLEAR_NODE(node);
626 if (tree->last == node)
627 tree->last = NULL;
628 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
629 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
630 spin_unlock_irq(&tree->lock);
631
632 /*
633 * The current running transaction is waiting on us, we need to let it
634 * know that we're complete and wake it up.
635 */
636 if (pending) {
637 struct btrfs_transaction *trans;
638
639 /*
640 * The checks for trans are just a formality, it should be set,
641 * but if it isn't we don't want to deref/assert under the spin
642 * lock, so be nice and check if trans is set, but ASSERT() so
643 * if it isn't set a developer will notice.
644 */
645 spin_lock(&fs_info->trans_lock);
646 trans = fs_info->running_transaction;
647 if (trans)
648 refcount_inc(&trans->use_count);
649 spin_unlock(&fs_info->trans_lock);
650
651 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
652 if (trans) {
653 if (atomic_dec_and_test(&trans->pending_ordered))
654 wake_up(&trans->pending_wait);
655 btrfs_put_transaction(trans);
656 }
657 }
658
659 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
660
661 spin_lock(&root->ordered_extent_lock);
662 list_del_init(&entry->root_extent_list);
663 root->nr_ordered_extents--;
664
665 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
666
667 if (!root->nr_ordered_extents) {
668 spin_lock(&fs_info->ordered_root_lock);
669 BUG_ON(list_empty(&root->ordered_root));
670 list_del_init(&root->ordered_root);
671 spin_unlock(&fs_info->ordered_root_lock);
672 }
673 spin_unlock(&root->ordered_extent_lock);
674 wake_up(&entry->wait);
675 if (!freespace_inode)
676 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
677 }
678
btrfs_run_ordered_extent_work(struct btrfs_work * work)679 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
680 {
681 struct btrfs_ordered_extent *ordered;
682
683 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
684 btrfs_start_ordered_extent(ordered);
685 complete(&ordered->completion);
686 }
687
688 /*
689 * wait for all the ordered extents in a root. This is done when balancing
690 * space between drives.
691 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const u64 range_start,const u64 range_len)692 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
693 const u64 range_start, const u64 range_len)
694 {
695 struct btrfs_fs_info *fs_info = root->fs_info;
696 LIST_HEAD(splice);
697 LIST_HEAD(skipped);
698 LIST_HEAD(works);
699 struct btrfs_ordered_extent *ordered, *next;
700 u64 count = 0;
701 const u64 range_end = range_start + range_len;
702
703 mutex_lock(&root->ordered_extent_mutex);
704 spin_lock(&root->ordered_extent_lock);
705 list_splice_init(&root->ordered_extents, &splice);
706 while (!list_empty(&splice) && nr) {
707 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
708 root_extent_list);
709
710 if (range_end <= ordered->disk_bytenr ||
711 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
712 list_move_tail(&ordered->root_extent_list, &skipped);
713 cond_resched_lock(&root->ordered_extent_lock);
714 continue;
715 }
716
717 list_move_tail(&ordered->root_extent_list,
718 &root->ordered_extents);
719 refcount_inc(&ordered->refs);
720 spin_unlock(&root->ordered_extent_lock);
721
722 btrfs_init_work(&ordered->flush_work,
723 btrfs_run_ordered_extent_work, NULL, NULL);
724 list_add_tail(&ordered->work_list, &works);
725 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
726
727 cond_resched();
728 spin_lock(&root->ordered_extent_lock);
729 if (nr != U64_MAX)
730 nr--;
731 count++;
732 }
733 list_splice_tail(&skipped, &root->ordered_extents);
734 list_splice_tail(&splice, &root->ordered_extents);
735 spin_unlock(&root->ordered_extent_lock);
736
737 list_for_each_entry_safe(ordered, next, &works, work_list) {
738 list_del_init(&ordered->work_list);
739 wait_for_completion(&ordered->completion);
740 btrfs_put_ordered_extent(ordered);
741 cond_resched();
742 }
743 mutex_unlock(&root->ordered_extent_mutex);
744
745 return count;
746 }
747
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const u64 range_start,const u64 range_len)748 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
749 const u64 range_start, const u64 range_len)
750 {
751 struct btrfs_root *root;
752 LIST_HEAD(splice);
753 u64 done;
754
755 mutex_lock(&fs_info->ordered_operations_mutex);
756 spin_lock(&fs_info->ordered_root_lock);
757 list_splice_init(&fs_info->ordered_roots, &splice);
758 while (!list_empty(&splice) && nr) {
759 root = list_first_entry(&splice, struct btrfs_root,
760 ordered_root);
761 root = btrfs_grab_root(root);
762 BUG_ON(!root);
763 list_move_tail(&root->ordered_root,
764 &fs_info->ordered_roots);
765 spin_unlock(&fs_info->ordered_root_lock);
766
767 done = btrfs_wait_ordered_extents(root, nr,
768 range_start, range_len);
769 btrfs_put_root(root);
770
771 spin_lock(&fs_info->ordered_root_lock);
772 if (nr != U64_MAX) {
773 nr -= done;
774 }
775 }
776 list_splice_tail(&splice, &fs_info->ordered_roots);
777 spin_unlock(&fs_info->ordered_root_lock);
778 mutex_unlock(&fs_info->ordered_operations_mutex);
779 }
780
781 /*
782 * Start IO and wait for a given ordered extent to finish.
783 *
784 * Wait on page writeback for all the pages in the extent and the IO completion
785 * code to insert metadata into the btree corresponding to the extent.
786 */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)787 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
788 {
789 u64 start = entry->file_offset;
790 u64 end = start + entry->num_bytes - 1;
791 struct btrfs_inode *inode = BTRFS_I(entry->inode);
792 bool freespace_inode;
793
794 trace_btrfs_ordered_extent_start(inode, entry);
795
796 /*
797 * If this is a free space inode do not take the ordered extents lockdep
798 * map.
799 */
800 freespace_inode = btrfs_is_free_space_inode(inode);
801
802 /*
803 * pages in the range can be dirty, clean or writeback. We
804 * start IO on any dirty ones so the wait doesn't stall waiting
805 * for the flusher thread to find them
806 */
807 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
808 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
809
810 if (!freespace_inode)
811 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
812 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
813 }
814
815 /*
816 * Used to wait on ordered extents across a large range of bytes.
817 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)818 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
819 {
820 int ret = 0;
821 int ret_wb = 0;
822 u64 end;
823 u64 orig_end;
824 struct btrfs_ordered_extent *ordered;
825
826 if (start + len < start) {
827 orig_end = OFFSET_MAX;
828 } else {
829 orig_end = start + len - 1;
830 if (orig_end > OFFSET_MAX)
831 orig_end = OFFSET_MAX;
832 }
833
834 /* start IO across the range first to instantiate any delalloc
835 * extents
836 */
837 ret = btrfs_fdatawrite_range(inode, start, orig_end);
838 if (ret)
839 return ret;
840
841 /*
842 * If we have a writeback error don't return immediately. Wait first
843 * for any ordered extents that haven't completed yet. This is to make
844 * sure no one can dirty the same page ranges and call writepages()
845 * before the ordered extents complete - to avoid failures (-EEXIST)
846 * when adding the new ordered extents to the ordered tree.
847 */
848 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
849
850 end = orig_end;
851 while (1) {
852 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
853 if (!ordered)
854 break;
855 if (ordered->file_offset > orig_end) {
856 btrfs_put_ordered_extent(ordered);
857 break;
858 }
859 if (ordered->file_offset + ordered->num_bytes <= start) {
860 btrfs_put_ordered_extent(ordered);
861 break;
862 }
863 btrfs_start_ordered_extent(ordered);
864 end = ordered->file_offset;
865 /*
866 * If the ordered extent had an error save the error but don't
867 * exit without waiting first for all other ordered extents in
868 * the range to complete.
869 */
870 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
871 ret = -EIO;
872 btrfs_put_ordered_extent(ordered);
873 if (end == 0 || end == start)
874 break;
875 end--;
876 }
877 return ret_wb ? ret_wb : ret;
878 }
879
880 /*
881 * find an ordered extent corresponding to file_offset. return NULL if
882 * nothing is found, otherwise take a reference on the extent and return it
883 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)884 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
885 u64 file_offset)
886 {
887 struct btrfs_ordered_inode_tree *tree;
888 struct rb_node *node;
889 struct btrfs_ordered_extent *entry = NULL;
890 unsigned long flags;
891
892 tree = &inode->ordered_tree;
893 spin_lock_irqsave(&tree->lock, flags);
894 node = tree_search(tree, file_offset);
895 if (!node)
896 goto out;
897
898 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
899 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
900 entry = NULL;
901 if (entry) {
902 refcount_inc(&entry->refs);
903 trace_btrfs_ordered_extent_lookup(inode, entry);
904 }
905 out:
906 spin_unlock_irqrestore(&tree->lock, flags);
907 return entry;
908 }
909
910 /* Since the DIO code tries to lock a wide area we need to look for any ordered
911 * extents that exist in the range, rather than just the start of the range.
912 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)913 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
914 struct btrfs_inode *inode, u64 file_offset, u64 len)
915 {
916 struct btrfs_ordered_inode_tree *tree;
917 struct rb_node *node;
918 struct btrfs_ordered_extent *entry = NULL;
919
920 tree = &inode->ordered_tree;
921 spin_lock_irq(&tree->lock);
922 node = tree_search(tree, file_offset);
923 if (!node) {
924 node = tree_search(tree, file_offset + len);
925 if (!node)
926 goto out;
927 }
928
929 while (1) {
930 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
931 if (range_overlaps(entry, file_offset, len))
932 break;
933
934 if (entry->file_offset >= file_offset + len) {
935 entry = NULL;
936 break;
937 }
938 entry = NULL;
939 node = rb_next(node);
940 if (!node)
941 break;
942 }
943 out:
944 if (entry) {
945 refcount_inc(&entry->refs);
946 trace_btrfs_ordered_extent_lookup_range(inode, entry);
947 }
948 spin_unlock_irq(&tree->lock);
949 return entry;
950 }
951
952 /*
953 * Adds all ordered extents to the given list. The list ends up sorted by the
954 * file_offset of the ordered extents.
955 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)956 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
957 struct list_head *list)
958 {
959 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
960 struct rb_node *n;
961
962 ASSERT(inode_is_locked(&inode->vfs_inode));
963
964 spin_lock_irq(&tree->lock);
965 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
966 struct btrfs_ordered_extent *ordered;
967
968 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
969
970 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
971 continue;
972
973 ASSERT(list_empty(&ordered->log_list));
974 list_add_tail(&ordered->log_list, list);
975 refcount_inc(&ordered->refs);
976 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
977 }
978 spin_unlock_irq(&tree->lock);
979 }
980
981 /*
982 * lookup and return any extent before 'file_offset'. NULL is returned
983 * if none is found
984 */
985 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)986 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
987 {
988 struct btrfs_ordered_inode_tree *tree;
989 struct rb_node *node;
990 struct btrfs_ordered_extent *entry = NULL;
991
992 tree = &inode->ordered_tree;
993 spin_lock_irq(&tree->lock);
994 node = tree_search(tree, file_offset);
995 if (!node)
996 goto out;
997
998 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
999 refcount_inc(&entry->refs);
1000 trace_btrfs_ordered_extent_lookup_first(inode, entry);
1001 out:
1002 spin_unlock_irq(&tree->lock);
1003 return entry;
1004 }
1005
1006 /*
1007 * Lookup the first ordered extent that overlaps the range
1008 * [@file_offset, @file_offset + @len).
1009 *
1010 * The difference between this and btrfs_lookup_first_ordered_extent() is
1011 * that this one won't return any ordered extent that does not overlap the range.
1012 * And the difference against btrfs_lookup_ordered_extent() is, this function
1013 * ensures the first ordered extent gets returned.
1014 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1015 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1016 struct btrfs_inode *inode, u64 file_offset, u64 len)
1017 {
1018 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1019 struct rb_node *node;
1020 struct rb_node *cur;
1021 struct rb_node *prev;
1022 struct rb_node *next;
1023 struct btrfs_ordered_extent *entry = NULL;
1024
1025 spin_lock_irq(&tree->lock);
1026 node = tree->tree.rb_node;
1027 /*
1028 * Here we don't want to use tree_search() which will use tree->last
1029 * and screw up the search order.
1030 * And __tree_search() can't return the adjacent ordered extents
1031 * either, thus here we do our own search.
1032 */
1033 while (node) {
1034 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1035
1036 if (file_offset < entry->file_offset) {
1037 node = node->rb_left;
1038 } else if (file_offset >= entry_end(entry)) {
1039 node = node->rb_right;
1040 } else {
1041 /*
1042 * Direct hit, got an ordered extent that starts at
1043 * @file_offset
1044 */
1045 goto out;
1046 }
1047 }
1048 if (!entry) {
1049 /* Empty tree */
1050 goto out;
1051 }
1052
1053 cur = &entry->rb_node;
1054 /* We got an entry around @file_offset, check adjacent entries */
1055 if (entry->file_offset < file_offset) {
1056 prev = cur;
1057 next = rb_next(cur);
1058 } else {
1059 prev = rb_prev(cur);
1060 next = cur;
1061 }
1062 if (prev) {
1063 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1064 if (range_overlaps(entry, file_offset, len))
1065 goto out;
1066 }
1067 if (next) {
1068 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1069 if (range_overlaps(entry, file_offset, len))
1070 goto out;
1071 }
1072 /* No ordered extent in the range */
1073 entry = NULL;
1074 out:
1075 if (entry) {
1076 refcount_inc(&entry->refs);
1077 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1078 }
1079
1080 spin_unlock_irq(&tree->lock);
1081 return entry;
1082 }
1083
1084 /*
1085 * Lock the passed range and ensures all pending ordered extents in it are run
1086 * to completion.
1087 *
1088 * @inode: Inode whose ordered tree is to be searched
1089 * @start: Beginning of range to flush
1090 * @end: Last byte of range to lock
1091 * @cached_state: If passed, will return the extent state responsible for the
1092 * locked range. It's the caller's responsibility to free the
1093 * cached state.
1094 *
1095 * Always return with the given range locked, ensuring after it's called no
1096 * order extent can be pending.
1097 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1098 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1099 u64 end,
1100 struct extent_state **cached_state)
1101 {
1102 struct btrfs_ordered_extent *ordered;
1103 struct extent_state *cache = NULL;
1104 struct extent_state **cachedp = &cache;
1105
1106 if (cached_state)
1107 cachedp = cached_state;
1108
1109 while (1) {
1110 lock_extent(&inode->io_tree, start, end, cachedp);
1111 ordered = btrfs_lookup_ordered_range(inode, start,
1112 end - start + 1);
1113 if (!ordered) {
1114 /*
1115 * If no external cached_state has been passed then
1116 * decrement the extra ref taken for cachedp since we
1117 * aren't exposing it outside of this function
1118 */
1119 if (!cached_state)
1120 refcount_dec(&cache->refs);
1121 break;
1122 }
1123 unlock_extent(&inode->io_tree, start, end, cachedp);
1124 btrfs_start_ordered_extent(ordered);
1125 btrfs_put_ordered_extent(ordered);
1126 }
1127 }
1128
1129 /*
1130 * Lock the passed range and ensure all pending ordered extents in it are run
1131 * to completion in nowait mode.
1132 *
1133 * Return true if btrfs_lock_ordered_range does not return any extents,
1134 * otherwise false.
1135 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1136 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1137 struct extent_state **cached_state)
1138 {
1139 struct btrfs_ordered_extent *ordered;
1140
1141 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1142 return false;
1143
1144 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1145 if (!ordered)
1146 return true;
1147
1148 btrfs_put_ordered_extent(ordered);
1149 unlock_extent(&inode->io_tree, start, end, cached_state);
1150
1151 return false;
1152 }
1153
1154 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1155 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1156 struct btrfs_ordered_extent *ordered, u64 len)
1157 {
1158 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1159 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1160 struct btrfs_root *root = inode->root;
1161 struct btrfs_fs_info *fs_info = root->fs_info;
1162 u64 file_offset = ordered->file_offset;
1163 u64 disk_bytenr = ordered->disk_bytenr;
1164 unsigned long flags = ordered->flags;
1165 struct btrfs_ordered_sum *sum, *tmpsum;
1166 struct btrfs_ordered_extent *new;
1167 struct rb_node *node;
1168 u64 offset = 0;
1169
1170 trace_btrfs_ordered_extent_split(inode, ordered);
1171
1172 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1173
1174 /*
1175 * The entire bio must be covered by the ordered extent, but we can't
1176 * reduce the original extent to a zero length either.
1177 */
1178 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1179 return ERR_PTR(-EINVAL);
1180 /*
1181 * If our ordered extent had an error there's no point in continuing.
1182 * The error may have come from a transaction abort done either by this
1183 * task or some other concurrent task, and the transaction abort path
1184 * iterates over all existing ordered extents and sets the flag
1185 * BTRFS_ORDERED_IOERR on them.
1186 */
1187 if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1188 const int fs_error = BTRFS_FS_ERROR(fs_info);
1189
1190 return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1191 }
1192 /* We cannot split partially completed ordered extents. */
1193 if (ordered->bytes_left) {
1194 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1195 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1196 return ERR_PTR(-EINVAL);
1197 }
1198 /* We cannot split a compressed ordered extent. */
1199 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1200 return ERR_PTR(-EINVAL);
1201
1202 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1203 len, 0, flags, ordered->compress_type);
1204 if (IS_ERR(new))
1205 return new;
1206
1207 /* One ref for the tree. */
1208 refcount_inc(&new->refs);
1209
1210 spin_lock_irq(&root->ordered_extent_lock);
1211 spin_lock(&tree->lock);
1212 /* Remove from tree once */
1213 node = &ordered->rb_node;
1214 rb_erase(node, &tree->tree);
1215 RB_CLEAR_NODE(node);
1216 if (tree->last == node)
1217 tree->last = NULL;
1218
1219 ordered->file_offset += len;
1220 ordered->disk_bytenr += len;
1221 ordered->num_bytes -= len;
1222 ordered->disk_num_bytes -= len;
1223 ordered->ram_bytes -= len;
1224
1225 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1226 ASSERT(ordered->bytes_left == 0);
1227 new->bytes_left = 0;
1228 } else {
1229 ordered->bytes_left -= len;
1230 }
1231
1232 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1233 if (ordered->truncated_len > len) {
1234 ordered->truncated_len -= len;
1235 } else {
1236 new->truncated_len = ordered->truncated_len;
1237 ordered->truncated_len = 0;
1238 }
1239 }
1240
1241 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1242 if (offset == len)
1243 break;
1244 list_move_tail(&sum->list, &new->list);
1245 offset += sum->len;
1246 }
1247
1248 /* Re-insert the node */
1249 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1250 if (node)
1251 btrfs_panic(fs_info, -EEXIST,
1252 "zoned: inconsistency in ordered tree at offset %llu",
1253 ordered->file_offset);
1254
1255 node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1256 if (node)
1257 btrfs_panic(fs_info, -EEXIST,
1258 "zoned: inconsistency in ordered tree at offset %llu",
1259 new->file_offset);
1260 spin_unlock(&tree->lock);
1261
1262 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1263 root->nr_ordered_extents++;
1264 spin_unlock_irq(&root->ordered_extent_lock);
1265 return new;
1266 }
1267
ordered_data_init(void)1268 int __init ordered_data_init(void)
1269 {
1270 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1271 sizeof(struct btrfs_ordered_extent), 0,
1272 SLAB_MEM_SPREAD,
1273 NULL);
1274 if (!btrfs_ordered_extent_cache)
1275 return -ENOMEM;
1276
1277 return 0;
1278 }
1279
ordered_data_exit(void)1280 void __cold ordered_data_exit(void)
1281 {
1282 kmem_cache_destroy(btrfs_ordered_extent_cache);
1283 }
1284