1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io, bool simu_fail)
165 {
166 if (simu_fail) {
167 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 return;
170 }
171
172 /*
173 * buffer's verified bit is no longer valid after reading from
174 * disk again due to write out error, clear it to make sure we
175 * recheck the buffer contents.
176 */
177 clear_buffer_verified(bh);
178
179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 get_bh(bh);
181 submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 bh_end_io_t *end_io, bool simu_fail)
186 {
187 BUG_ON(!buffer_locked(bh));
188
189 if (ext4_buffer_uptodate(bh)) {
190 unlock_buffer(bh);
191 return;
192 }
193 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 bh_end_io_t *end_io, bool simu_fail)
198 {
199 BUG_ON(!buffer_locked(bh));
200
201 if (ext4_buffer_uptodate(bh)) {
202 unlock_buffer(bh);
203 return 0;
204 }
205
206 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
207
208 wait_on_buffer(bh);
209 if (buffer_uptodate(bh))
210 return 0;
211 return -EIO;
212 }
213
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 lock_buffer(bh);
217 if (!wait) {
218 ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 return 0;
220 }
221 return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223
224 /*
225 * This works like __bread_gfp() except it uses ERR_PTR for error
226 * returns. Currently with sb_bread it's impossible to distinguish
227 * between ENOMEM and EIO situations (since both result in a NULL
228 * return.
229 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 sector_t block,
232 blk_opf_t op_flags, gfp_t gfp)
233 {
234 struct buffer_head *bh;
235 int ret;
236
237 bh = sb_getblk_gfp(sb, block, gfp);
238 if (bh == NULL)
239 return ERR_PTR(-ENOMEM);
240 if (ext4_buffer_uptodate(bh))
241 return bh;
242
243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 if (ret) {
245 put_bh(bh);
246 return ERR_PTR(ret);
247 }
248 return bh;
249 }
250
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 blk_opf_t op_flags)
253 {
254 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
255 }
256
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)257 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
258 sector_t block)
259 {
260 return __ext4_sb_bread_gfp(sb, block, 0, 0);
261 }
262
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)263 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 {
265 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
266
267 if (likely(bh)) {
268 if (trylock_buffer(bh))
269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
270 brelse(bh);
271 }
272 }
273
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)274 static int ext4_verify_csum_type(struct super_block *sb,
275 struct ext4_super_block *es)
276 {
277 if (!ext4_has_feature_metadata_csum(sb))
278 return 1;
279
280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)283 __le32 ext4_superblock_csum(struct super_block *sb,
284 struct ext4_super_block *es)
285 {
286 struct ext4_sb_info *sbi = EXT4_SB(sb);
287 int offset = offsetof(struct ext4_super_block, s_checksum);
288 __u32 csum;
289
290 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291
292 return cpu_to_le32(csum);
293 }
294
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 struct ext4_super_block *es)
297 {
298 if (!ext4_has_metadata_csum(sb))
299 return 1;
300
301 return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303
ext4_superblock_csum_set(struct super_block * sb)304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 if (!ext4_has_metadata_csum(sb))
309 return;
310
311 es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le32_to_cpu(bg->bg_inode_table_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
352 }
353
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 struct ext4_group_desc *bg)
364 {
365 return le16_to_cpu(bg->bg_itable_unused_lo) |
366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_block_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_bitmap_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)386 void ext4_inode_table_set(struct super_block *sb,
387 struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_group_clusters_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_free_inodes_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
408 }
409
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_used_dirs_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)418 void ext4_itable_unused_set(struct super_block *sb,
419 struct ext4_group_desc *bg, __u32 count)
420 {
421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 now = clamp_val(now, 0, (1ull << 40) - 1);
429
430 *lo = cpu_to_le32(lower_32_bits(now));
431 *hi = upper_32_bits(now);
432 }
433
__ext4_get_tstamp(__le32 * lo,__u8 * hi)434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446
447 /*
448 * The ext4_maybe_update_superblock() function checks and updates the
449 * superblock if needed.
450 *
451 * This function is designed to update the on-disk superblock only under
452 * certain conditions to prevent excessive disk writes and unnecessary
453 * waking of the disk from sleep. The superblock will be updated if:
454 * 1. More than an hour has passed since the last superblock update, and
455 * 2. More than 16MB have been written since the last superblock update.
456 *
457 * @sb: The superblock
458 */
ext4_maybe_update_superblock(struct super_block * sb)459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 struct ext4_super_block *es = sbi->s_es;
463 journal_t *journal = sbi->s_journal;
464 time64_t now;
465 __u64 last_update;
466 __u64 lifetime_write_kbytes;
467 __u64 diff_size;
468
469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 !journal || (journal->j_flags & JBD2_UNMOUNT))
471 return;
472
473 now = ktime_get_real_seconds();
474 last_update = ext4_get_tstamp(es, s_wtime);
475
476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 return;
478
479 lifetime_write_kbytes = sbi->s_kbytes_written +
480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 sbi->s_sectors_written_start) >> 1);
482
483 /* Get the number of kilobytes not written to disk to account
484 * for statistics and compare with a multiple of 16 MB. This
485 * is used to determine when the next superblock commit should
486 * occur (i.e. not more often than once per 16MB if there was
487 * less written in an hour).
488 */
489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490
491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494
495 /*
496 * The del_gendisk() function uninitializes the disk-specific data
497 * structures, including the bdi structure, without telling anyone
498 * else. Once this happens, any attempt to call mark_buffer_dirty()
499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
500 * This is a kludge to prevent these oops until we can put in a proper
501 * hook in del_gendisk() to inform the VFS and file system layers.
502 */
block_device_ejected(struct super_block * sb)503 static int block_device_ejected(struct super_block *sb)
504 {
505 struct inode *bd_inode = sb->s_bdev->bd_inode;
506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507
508 return bdi->dev == NULL;
509 }
510
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 struct super_block *sb = journal->j_private;
514 struct ext4_sb_info *sbi = EXT4_SB(sb);
515 int error = is_journal_aborted(journal);
516 struct ext4_journal_cb_entry *jce;
517
518 BUG_ON(txn->t_state == T_FINISHED);
519
520 ext4_process_freed_data(sb, txn->t_tid);
521 ext4_maybe_update_superblock(sb);
522
523 spin_lock(&sbi->s_md_lock);
524 while (!list_empty(&txn->t_private_list)) {
525 jce = list_entry(txn->t_private_list.next,
526 struct ext4_journal_cb_entry, jce_list);
527 list_del_init(&jce->jce_list);
528 spin_unlock(&sbi->s_md_lock);
529 jce->jce_func(sb, jce, error);
530 spin_lock(&sbi->s_md_lock);
531 }
532 spin_unlock(&sbi->s_md_lock);
533 }
534
535 /*
536 * This writepage callback for write_cache_pages()
537 * takes care of a few cases after page cleaning.
538 *
539 * write_cache_pages() already checks for dirty pages
540 * and calls clear_page_dirty_for_io(), which we want,
541 * to write protect the pages.
542 *
543 * However, we may have to redirty a page (see below.)
544 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 struct writeback_control *wbc,
547 void *data)
548 {
549 transaction_t *transaction = (transaction_t *) data;
550 struct buffer_head *bh, *head;
551 struct journal_head *jh;
552
553 bh = head = folio_buffers(folio);
554 do {
555 /*
556 * We have to redirty a page in these cases:
557 * 1) If buffer is dirty, it means the page was dirty because it
558 * contains a buffer that needs checkpointing. So the dirty bit
559 * needs to be preserved so that checkpointing writes the buffer
560 * properly.
561 * 2) If buffer is not part of the committing transaction
562 * (we may have just accidentally come across this buffer because
563 * inode range tracking is not exact) or if the currently running
564 * transaction already contains this buffer as well, dirty bit
565 * needs to be preserved so that the buffer gets writeprotected
566 * properly on running transaction's commit.
567 */
568 jh = bh2jh(bh);
569 if (buffer_dirty(bh) ||
570 (jh && (jh->b_transaction != transaction ||
571 jh->b_next_transaction))) {
572 folio_redirty_for_writepage(wbc, folio);
573 goto out;
574 }
575 } while ((bh = bh->b_this_page) != head);
576
577 out:
578 return AOP_WRITEPAGE_ACTIVATE;
579 }
580
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_ALL,
586 .nr_to_write = LONG_MAX,
587 .range_start = jinode->i_dirty_start,
588 .range_end = jinode->i_dirty_end,
589 };
590
591 return write_cache_pages(mapping, &wbc,
592 ext4_journalled_writepage_callback,
593 jinode->i_transaction);
594 }
595
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 int ret;
599
600 if (ext4_should_journal_data(jinode->i_vfs_inode))
601 ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 else
603 ret = ext4_normal_submit_inode_data_buffers(jinode);
604 return ret;
605 }
606
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 int ret = 0;
610
611 if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 ret = jbd2_journal_finish_inode_data_buffers(jinode);
613
614 return ret;
615 }
616
system_going_down(void)617 static bool system_going_down(void)
618 {
619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 || system_state == SYSTEM_RESTART;
621 }
622
623 struct ext4_err_translation {
624 int code;
625 int errno;
626 };
627
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629
630 static struct ext4_err_translation err_translation[] = {
631 EXT4_ERR_TRANSLATE(EIO),
632 EXT4_ERR_TRANSLATE(ENOMEM),
633 EXT4_ERR_TRANSLATE(EFSBADCRC),
634 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 EXT4_ERR_TRANSLATE(ENOSPC),
636 EXT4_ERR_TRANSLATE(ENOKEY),
637 EXT4_ERR_TRANSLATE(EROFS),
638 EXT4_ERR_TRANSLATE(EFBIG),
639 EXT4_ERR_TRANSLATE(EEXIST),
640 EXT4_ERR_TRANSLATE(ERANGE),
641 EXT4_ERR_TRANSLATE(EOVERFLOW),
642 EXT4_ERR_TRANSLATE(EBUSY),
643 EXT4_ERR_TRANSLATE(ENOTDIR),
644 EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 EXT4_ERR_TRANSLATE(EFAULT),
647 };
648
ext4_errno_to_code(int errno)649 static int ext4_errno_to_code(int errno)
650 {
651 int i;
652
653 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 if (err_translation[i].errno == errno)
655 return err_translation[i].code;
656 return EXT4_ERR_UNKNOWN;
657 }
658
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)659 static void save_error_info(struct super_block *sb, int error,
660 __u32 ino, __u64 block,
661 const char *func, unsigned int line)
662 {
663 struct ext4_sb_info *sbi = EXT4_SB(sb);
664
665 /* We default to EFSCORRUPTED error... */
666 if (error == 0)
667 error = EFSCORRUPTED;
668
669 spin_lock(&sbi->s_error_lock);
670 sbi->s_add_error_count++;
671 sbi->s_last_error_code = error;
672 sbi->s_last_error_line = line;
673 sbi->s_last_error_ino = ino;
674 sbi->s_last_error_block = block;
675 sbi->s_last_error_func = func;
676 sbi->s_last_error_time = ktime_get_real_seconds();
677 if (!sbi->s_first_error_time) {
678 sbi->s_first_error_code = error;
679 sbi->s_first_error_line = line;
680 sbi->s_first_error_ino = ino;
681 sbi->s_first_error_block = block;
682 sbi->s_first_error_func = func;
683 sbi->s_first_error_time = sbi->s_last_error_time;
684 }
685 spin_unlock(&sbi->s_error_lock);
686 }
687
688 /* Deal with the reporting of failure conditions on a filesystem such as
689 * inconsistencies detected or read IO failures.
690 *
691 * On ext2, we can store the error state of the filesystem in the
692 * superblock. That is not possible on ext4, because we may have other
693 * write ordering constraints on the superblock which prevent us from
694 * writing it out straight away; and given that the journal is about to
695 * be aborted, we can't rely on the current, or future, transactions to
696 * write out the superblock safely.
697 *
698 * We'll just use the jbd2_journal_abort() error code to record an error in
699 * the journal instead. On recovery, the journal will complain about
700 * that error until we've noted it down and cleared it.
701 *
702 * If force_ro is set, we unconditionally force the filesystem into an
703 * ABORT|READONLY state, unless the error response on the fs has been set to
704 * panic in which case we take the easy way out and panic immediately. This is
705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706 * at a critical moment in log management.
707 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 __u32 ino, __u64 block,
710 const char *func, unsigned int line)
711 {
712 journal_t *journal = EXT4_SB(sb)->s_journal;
713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714
715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 if (test_opt(sb, WARN_ON_ERROR))
717 WARN_ON_ONCE(1);
718
719 if (!continue_fs && !sb_rdonly(sb)) {
720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 if (journal)
722 jbd2_journal_abort(journal, -EIO);
723 }
724
725 if (!bdev_read_only(sb->s_bdev)) {
726 save_error_info(sb, error, ino, block, func, line);
727 /*
728 * In case the fs should keep running, we need to writeout
729 * superblock through the journal. Due to lock ordering
730 * constraints, it may not be safe to do it right here so we
731 * defer superblock flushing to a workqueue. We just need to be
732 * careful when the journal is already shutting down. If we get
733 * here in that case, just update the sb directly as the last
734 * transaction won't commit anyway.
735 */
736 if (continue_fs && journal &&
737 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
738 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
739 else
740 ext4_commit_super(sb);
741 }
742
743 /*
744 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
745 * could panic during 'reboot -f' as the underlying device got already
746 * disabled.
747 */
748 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
749 panic("EXT4-fs (device %s): panic forced after error\n",
750 sb->s_id);
751 }
752
753 if (sb_rdonly(sb) || continue_fs)
754 return;
755
756 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
757 /*
758 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
759 * modifications. We don't set SB_RDONLY because that requires
760 * sb->s_umount semaphore and setting it without proper remount
761 * procedure is confusing code such as freeze_super() leading to
762 * deadlocks and other problems.
763 */
764 }
765
update_super_work(struct work_struct * work)766 static void update_super_work(struct work_struct *work)
767 {
768 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
769 s_sb_upd_work);
770 journal_t *journal = sbi->s_journal;
771 handle_t *handle;
772
773 /*
774 * If the journal is still running, we have to write out superblock
775 * through the journal to avoid collisions of other journalled sb
776 * updates.
777 *
778 * We use directly jbd2 functions here to avoid recursing back into
779 * ext4 error handling code during handling of previous errors.
780 */
781 if (!sb_rdonly(sbi->s_sb) && journal) {
782 struct buffer_head *sbh = sbi->s_sbh;
783 bool call_notify_err = false;
784
785 handle = jbd2_journal_start(journal, 1);
786 if (IS_ERR(handle))
787 goto write_directly;
788 if (jbd2_journal_get_write_access(handle, sbh)) {
789 jbd2_journal_stop(handle);
790 goto write_directly;
791 }
792
793 if (sbi->s_add_error_count > 0)
794 call_notify_err = true;
795
796 ext4_update_super(sbi->s_sb);
797 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
798 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
799 "superblock detected");
800 clear_buffer_write_io_error(sbh);
801 set_buffer_uptodate(sbh);
802 }
803
804 if (jbd2_journal_dirty_metadata(handle, sbh)) {
805 jbd2_journal_stop(handle);
806 goto write_directly;
807 }
808 jbd2_journal_stop(handle);
809
810 if (call_notify_err)
811 ext4_notify_error_sysfs(sbi);
812
813 return;
814 }
815 write_directly:
816 /*
817 * Write through journal failed. Write sb directly to get error info
818 * out and hope for the best.
819 */
820 ext4_commit_super(sbi->s_sb);
821 ext4_notify_error_sysfs(sbi);
822 }
823
824 #define ext4_error_ratelimit(sb) \
825 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
826 "EXT4-fs error")
827
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)828 void __ext4_error(struct super_block *sb, const char *function,
829 unsigned int line, bool force_ro, int error, __u64 block,
830 const char *fmt, ...)
831 {
832 struct va_format vaf;
833 va_list args;
834
835 if (unlikely(ext4_forced_shutdown(sb)))
836 return;
837
838 trace_ext4_error(sb, function, line);
839 if (ext4_error_ratelimit(sb)) {
840 va_start(args, fmt);
841 vaf.fmt = fmt;
842 vaf.va = &args;
843 printk(KERN_CRIT
844 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
845 sb->s_id, function, line, current->comm, &vaf);
846 va_end(args);
847 }
848 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
849
850 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
851 }
852
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)853 void __ext4_error_inode(struct inode *inode, const char *function,
854 unsigned int line, ext4_fsblk_t block, int error,
855 const char *fmt, ...)
856 {
857 va_list args;
858 struct va_format vaf;
859
860 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
861 return;
862
863 trace_ext4_error(inode->i_sb, function, line);
864 if (ext4_error_ratelimit(inode->i_sb)) {
865 va_start(args, fmt);
866 vaf.fmt = fmt;
867 vaf.va = &args;
868 if (block)
869 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 "inode #%lu: block %llu: comm %s: %pV\n",
871 inode->i_sb->s_id, function, line, inode->i_ino,
872 block, current->comm, &vaf);
873 else
874 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
875 "inode #%lu: comm %s: %pV\n",
876 inode->i_sb->s_id, function, line, inode->i_ino,
877 current->comm, &vaf);
878 va_end(args);
879 }
880 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
881
882 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
883 function, line);
884 }
885
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)886 void __ext4_error_file(struct file *file, const char *function,
887 unsigned int line, ext4_fsblk_t block,
888 const char *fmt, ...)
889 {
890 va_list args;
891 struct va_format vaf;
892 struct inode *inode = file_inode(file);
893 char pathname[80], *path;
894
895 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
896 return;
897
898 trace_ext4_error(inode->i_sb, function, line);
899 if (ext4_error_ratelimit(inode->i_sb)) {
900 path = file_path(file, pathname, sizeof(pathname));
901 if (IS_ERR(path))
902 path = "(unknown)";
903 va_start(args, fmt);
904 vaf.fmt = fmt;
905 vaf.va = &args;
906 if (block)
907 printk(KERN_CRIT
908 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
909 "block %llu: comm %s: path %s: %pV\n",
910 inode->i_sb->s_id, function, line, inode->i_ino,
911 block, current->comm, path, &vaf);
912 else
913 printk(KERN_CRIT
914 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
915 "comm %s: path %s: %pV\n",
916 inode->i_sb->s_id, function, line, inode->i_ino,
917 current->comm, path, &vaf);
918 va_end(args);
919 }
920 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
921
922 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
923 function, line);
924 }
925
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])926 const char *ext4_decode_error(struct super_block *sb, int errno,
927 char nbuf[16])
928 {
929 char *errstr = NULL;
930
931 switch (errno) {
932 case -EFSCORRUPTED:
933 errstr = "Corrupt filesystem";
934 break;
935 case -EFSBADCRC:
936 errstr = "Filesystem failed CRC";
937 break;
938 case -EIO:
939 errstr = "IO failure";
940 break;
941 case -ENOMEM:
942 errstr = "Out of memory";
943 break;
944 case -EROFS:
945 if (!sb || (EXT4_SB(sb)->s_journal &&
946 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
947 errstr = "Journal has aborted";
948 else
949 errstr = "Readonly filesystem";
950 break;
951 default:
952 /* If the caller passed in an extra buffer for unknown
953 * errors, textualise them now. Else we just return
954 * NULL. */
955 if (nbuf) {
956 /* Check for truncated error codes... */
957 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
958 errstr = nbuf;
959 }
960 break;
961 }
962
963 return errstr;
964 }
965
966 /* __ext4_std_error decodes expected errors from journaling functions
967 * automatically and invokes the appropriate error response. */
968
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)969 void __ext4_std_error(struct super_block *sb, const char *function,
970 unsigned int line, int errno)
971 {
972 char nbuf[16];
973 const char *errstr;
974
975 if (unlikely(ext4_forced_shutdown(sb)))
976 return;
977
978 /* Special case: if the error is EROFS, and we're not already
979 * inside a transaction, then there's really no point in logging
980 * an error. */
981 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
982 return;
983
984 if (ext4_error_ratelimit(sb)) {
985 errstr = ext4_decode_error(sb, errno, nbuf);
986 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
987 sb->s_id, function, line, errstr);
988 }
989 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
990
991 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
992 }
993
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)994 void __ext4_msg(struct super_block *sb,
995 const char *prefix, const char *fmt, ...)
996 {
997 struct va_format vaf;
998 va_list args;
999
1000 if (sb) {
1001 atomic_inc(&EXT4_SB(sb)->s_msg_count);
1002 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
1003 "EXT4-fs"))
1004 return;
1005 }
1006
1007 va_start(args, fmt);
1008 vaf.fmt = fmt;
1009 vaf.va = &args;
1010 if (sb)
1011 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1012 else
1013 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1014 va_end(args);
1015 }
1016
ext4_warning_ratelimit(struct super_block * sb)1017 static int ext4_warning_ratelimit(struct super_block *sb)
1018 {
1019 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1020 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1021 "EXT4-fs warning");
1022 }
1023
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1024 void __ext4_warning(struct super_block *sb, const char *function,
1025 unsigned int line, const char *fmt, ...)
1026 {
1027 struct va_format vaf;
1028 va_list args;
1029
1030 if (!ext4_warning_ratelimit(sb))
1031 return;
1032
1033 va_start(args, fmt);
1034 vaf.fmt = fmt;
1035 vaf.va = &args;
1036 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1037 sb->s_id, function, line, &vaf);
1038 va_end(args);
1039 }
1040
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1041 void __ext4_warning_inode(const struct inode *inode, const char *function,
1042 unsigned int line, const char *fmt, ...)
1043 {
1044 struct va_format vaf;
1045 va_list args;
1046
1047 if (!ext4_warning_ratelimit(inode->i_sb))
1048 return;
1049
1050 va_start(args, fmt);
1051 vaf.fmt = fmt;
1052 vaf.va = &args;
1053 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1054 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1055 function, line, inode->i_ino, current->comm, &vaf);
1056 va_end(args);
1057 }
1058
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1059 void __ext4_grp_locked_error(const char *function, unsigned int line,
1060 struct super_block *sb, ext4_group_t grp,
1061 unsigned long ino, ext4_fsblk_t block,
1062 const char *fmt, ...)
1063 __releases(bitlock)
1064 __acquires(bitlock)
1065 {
1066 struct va_format vaf;
1067 va_list args;
1068
1069 if (unlikely(ext4_forced_shutdown(sb)))
1070 return;
1071
1072 trace_ext4_error(sb, function, line);
1073 if (ext4_error_ratelimit(sb)) {
1074 va_start(args, fmt);
1075 vaf.fmt = fmt;
1076 vaf.va = &args;
1077 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1078 sb->s_id, function, line, grp);
1079 if (ino)
1080 printk(KERN_CONT "inode %lu: ", ino);
1081 if (block)
1082 printk(KERN_CONT "block %llu:",
1083 (unsigned long long) block);
1084 printk(KERN_CONT "%pV\n", &vaf);
1085 va_end(args);
1086 }
1087
1088 if (test_opt(sb, ERRORS_CONT)) {
1089 if (test_opt(sb, WARN_ON_ERROR))
1090 WARN_ON_ONCE(1);
1091 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1092 if (!bdev_read_only(sb->s_bdev)) {
1093 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1094 line);
1095 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1096 }
1097 return;
1098 }
1099 ext4_unlock_group(sb, grp);
1100 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1101 /*
1102 * We only get here in the ERRORS_RO case; relocking the group
1103 * may be dangerous, but nothing bad will happen since the
1104 * filesystem will have already been marked read/only and the
1105 * journal has been aborted. We return 1 as a hint to callers
1106 * who might what to use the return value from
1107 * ext4_grp_locked_error() to distinguish between the
1108 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1109 * aggressively from the ext4 function in question, with a
1110 * more appropriate error code.
1111 */
1112 ext4_lock_group(sb, grp);
1113 return;
1114 }
1115
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1116 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1117 ext4_group_t group,
1118 unsigned int flags)
1119 {
1120 struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1122 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1123 int ret;
1124
1125 if (!grp || !gdp)
1126 return;
1127 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1128 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1129 &grp->bb_state);
1130 if (!ret)
1131 percpu_counter_sub(&sbi->s_freeclusters_counter,
1132 grp->bb_free);
1133 }
1134
1135 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1136 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1137 &grp->bb_state);
1138 if (!ret && gdp) {
1139 int count;
1140
1141 count = ext4_free_inodes_count(sb, gdp);
1142 percpu_counter_sub(&sbi->s_freeinodes_counter,
1143 count);
1144 }
1145 }
1146 }
1147
ext4_update_dynamic_rev(struct super_block * sb)1148 void ext4_update_dynamic_rev(struct super_block *sb)
1149 {
1150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1151
1152 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1153 return;
1154
1155 ext4_warning(sb,
1156 "updating to rev %d because of new feature flag, "
1157 "running e2fsck is recommended",
1158 EXT4_DYNAMIC_REV);
1159
1160 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1161 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1162 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1163 /* leave es->s_feature_*compat flags alone */
1164 /* es->s_uuid will be set by e2fsck if empty */
1165
1166 /*
1167 * The rest of the superblock fields should be zero, and if not it
1168 * means they are likely already in use, so leave them alone. We
1169 * can leave it up to e2fsck to clean up any inconsistencies there.
1170 */
1171 }
1172
orphan_list_entry(struct list_head * l)1173 static inline struct inode *orphan_list_entry(struct list_head *l)
1174 {
1175 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1176 }
1177
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1178 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1179 {
1180 struct list_head *l;
1181
1182 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1183 le32_to_cpu(sbi->s_es->s_last_orphan));
1184
1185 printk(KERN_ERR "sb_info orphan list:\n");
1186 list_for_each(l, &sbi->s_orphan) {
1187 struct inode *inode = orphan_list_entry(l);
1188 printk(KERN_ERR " "
1189 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1190 inode->i_sb->s_id, inode->i_ino, inode,
1191 inode->i_mode, inode->i_nlink,
1192 NEXT_ORPHAN(inode));
1193 }
1194 }
1195
1196 #ifdef CONFIG_QUOTA
1197 static int ext4_quota_off(struct super_block *sb, int type);
1198
ext4_quotas_off(struct super_block * sb,int type)1199 static inline void ext4_quotas_off(struct super_block *sb, int type)
1200 {
1201 BUG_ON(type > EXT4_MAXQUOTAS);
1202
1203 /* Use our quota_off function to clear inode flags etc. */
1204 for (type--; type >= 0; type--)
1205 ext4_quota_off(sb, type);
1206 }
1207
1208 /*
1209 * This is a helper function which is used in the mount/remount
1210 * codepaths (which holds s_umount) to fetch the quota file name.
1211 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1212 static inline char *get_qf_name(struct super_block *sb,
1213 struct ext4_sb_info *sbi,
1214 int type)
1215 {
1216 return rcu_dereference_protected(sbi->s_qf_names[type],
1217 lockdep_is_held(&sb->s_umount));
1218 }
1219 #else
ext4_quotas_off(struct super_block * sb,int type)1220 static inline void ext4_quotas_off(struct super_block *sb, int type)
1221 {
1222 }
1223 #endif
1224
ext4_percpu_param_init(struct ext4_sb_info * sbi)1225 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1226 {
1227 ext4_fsblk_t block;
1228 int err;
1229
1230 block = ext4_count_free_clusters(sbi->s_sb);
1231 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1232 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1233 GFP_KERNEL);
1234 if (!err) {
1235 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1236 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1237 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1238 GFP_KERNEL);
1239 }
1240 if (!err)
1241 err = percpu_counter_init(&sbi->s_dirs_counter,
1242 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1243 if (!err)
1244 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1245 GFP_KERNEL);
1246 if (!err)
1247 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1248 GFP_KERNEL);
1249 if (!err)
1250 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1251
1252 if (err)
1253 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1254
1255 return err;
1256 }
1257
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1258 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1259 {
1260 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1261 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1262 percpu_counter_destroy(&sbi->s_dirs_counter);
1263 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1264 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1265 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1266 }
1267
ext4_group_desc_free(struct ext4_sb_info * sbi)1268 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1269 {
1270 struct buffer_head **group_desc;
1271 int i;
1272
1273 rcu_read_lock();
1274 group_desc = rcu_dereference(sbi->s_group_desc);
1275 for (i = 0; i < sbi->s_gdb_count; i++)
1276 brelse(group_desc[i]);
1277 kvfree(group_desc);
1278 rcu_read_unlock();
1279 }
1280
ext4_flex_groups_free(struct ext4_sb_info * sbi)1281 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1282 {
1283 struct flex_groups **flex_groups;
1284 int i;
1285
1286 rcu_read_lock();
1287 flex_groups = rcu_dereference(sbi->s_flex_groups);
1288 if (flex_groups) {
1289 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1290 kvfree(flex_groups[i]);
1291 kvfree(flex_groups);
1292 }
1293 rcu_read_unlock();
1294 }
1295
ext4_put_super(struct super_block * sb)1296 static void ext4_put_super(struct super_block *sb)
1297 {
1298 struct ext4_sb_info *sbi = EXT4_SB(sb);
1299 struct ext4_super_block *es = sbi->s_es;
1300 int aborted = 0;
1301 int err;
1302
1303 /*
1304 * Unregister sysfs before destroying jbd2 journal.
1305 * Since we could still access attr_journal_task attribute via sysfs
1306 * path which could have sbi->s_journal->j_task as NULL
1307 * Unregister sysfs before flush sbi->s_sb_upd_work.
1308 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1309 * read metadata verify failed then will queue error work.
1310 * update_super_work will call start_this_handle may trigger
1311 * BUG_ON.
1312 */
1313 ext4_unregister_sysfs(sb);
1314
1315 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1316 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1317 &sb->s_uuid);
1318
1319 ext4_unregister_li_request(sb);
1320 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1321
1322 destroy_workqueue(sbi->rsv_conversion_wq);
1323 ext4_release_orphan_info(sb);
1324
1325 if (sbi->s_journal) {
1326 aborted = is_journal_aborted(sbi->s_journal);
1327 err = ext4_journal_destroy(sbi, sbi->s_journal);
1328 if ((err < 0) && !aborted) {
1329 ext4_abort(sb, -err, "Couldn't clean up the journal");
1330 }
1331 } else
1332 flush_work(&sbi->s_sb_upd_work);
1333
1334 ext4_es_unregister_shrinker(sbi);
1335 timer_shutdown_sync(&sbi->s_err_report);
1336 ext4_release_system_zone(sb);
1337 ext4_mb_release(sb);
1338 ext4_ext_release(sb);
1339
1340 if (!sb_rdonly(sb) && !aborted) {
1341 ext4_clear_feature_journal_needs_recovery(sb);
1342 ext4_clear_feature_orphan_present(sb);
1343 es->s_state = cpu_to_le16(sbi->s_mount_state);
1344 }
1345 if (!sb_rdonly(sb))
1346 ext4_commit_super(sb);
1347
1348 ext4_group_desc_free(sbi);
1349 ext4_flex_groups_free(sbi);
1350 ext4_percpu_param_destroy(sbi);
1351 #ifdef CONFIG_QUOTA
1352 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1353 kfree(get_qf_name(sb, sbi, i));
1354 #endif
1355
1356 /* Debugging code just in case the in-memory inode orphan list
1357 * isn't empty. The on-disk one can be non-empty if we've
1358 * detected an error and taken the fs readonly, but the
1359 * in-memory list had better be clean by this point. */
1360 if (!list_empty(&sbi->s_orphan))
1361 dump_orphan_list(sb, sbi);
1362 ASSERT(list_empty(&sbi->s_orphan));
1363
1364 sync_blockdev(sb->s_bdev);
1365 invalidate_bdev(sb->s_bdev);
1366 if (sbi->s_journal_bdev) {
1367 /*
1368 * Invalidate the journal device's buffers. We don't want them
1369 * floating about in memory - the physical journal device may
1370 * hotswapped, and it breaks the `ro-after' testing code.
1371 */
1372 sync_blockdev(sbi->s_journal_bdev);
1373 invalidate_bdev(sbi->s_journal_bdev);
1374 }
1375
1376 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1377 sbi->s_ea_inode_cache = NULL;
1378
1379 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1380 sbi->s_ea_block_cache = NULL;
1381
1382 ext4_stop_mmpd(sbi);
1383
1384 brelse(sbi->s_sbh);
1385 sb->s_fs_info = NULL;
1386 /*
1387 * Now that we are completely done shutting down the
1388 * superblock, we need to actually destroy the kobject.
1389 */
1390 kobject_put(&sbi->s_kobj);
1391 wait_for_completion(&sbi->s_kobj_unregister);
1392 if (sbi->s_chksum_driver)
1393 crypto_free_shash(sbi->s_chksum_driver);
1394 kfree(sbi->s_blockgroup_lock);
1395 fs_put_dax(sbi->s_daxdev, NULL);
1396 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1397 #if IS_ENABLED(CONFIG_UNICODE)
1398 utf8_unload(sb->s_encoding);
1399 #endif
1400 kfree(sbi);
1401 }
1402
1403 static struct kmem_cache *ext4_inode_cachep;
1404
1405 /*
1406 * Called inside transaction, so use GFP_NOFS
1407 */
ext4_alloc_inode(struct super_block * sb)1408 static struct inode *ext4_alloc_inode(struct super_block *sb)
1409 {
1410 struct ext4_inode_info *ei;
1411
1412 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1413 if (!ei)
1414 return NULL;
1415
1416 inode_set_iversion(&ei->vfs_inode, 1);
1417 ei->i_flags = 0;
1418 spin_lock_init(&ei->i_raw_lock);
1419 ei->i_prealloc_node = RB_ROOT;
1420 atomic_set(&ei->i_prealloc_active, 0);
1421 rwlock_init(&ei->i_prealloc_lock);
1422 ext4_es_init_tree(&ei->i_es_tree);
1423 rwlock_init(&ei->i_es_lock);
1424 INIT_LIST_HEAD(&ei->i_es_list);
1425 ei->i_es_all_nr = 0;
1426 ei->i_es_shk_nr = 0;
1427 ei->i_es_shrink_lblk = 0;
1428 ei->i_reserved_data_blocks = 0;
1429 spin_lock_init(&(ei->i_block_reservation_lock));
1430 ext4_init_pending_tree(&ei->i_pending_tree);
1431 #ifdef CONFIG_QUOTA
1432 ei->i_reserved_quota = 0;
1433 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1434 #endif
1435 ei->jinode = NULL;
1436 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1437 spin_lock_init(&ei->i_completed_io_lock);
1438 ei->i_sync_tid = 0;
1439 ei->i_datasync_tid = 0;
1440 atomic_set(&ei->i_unwritten, 0);
1441 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1442 ext4_fc_init_inode(&ei->vfs_inode);
1443 mutex_init(&ei->i_fc_lock);
1444 return &ei->vfs_inode;
1445 }
1446
ext4_drop_inode(struct inode * inode)1447 static int ext4_drop_inode(struct inode *inode)
1448 {
1449 int drop = generic_drop_inode(inode);
1450
1451 if (!drop)
1452 drop = fscrypt_drop_inode(inode);
1453
1454 trace_ext4_drop_inode(inode, drop);
1455 return drop;
1456 }
1457
ext4_free_in_core_inode(struct inode * inode)1458 static void ext4_free_in_core_inode(struct inode *inode)
1459 {
1460 fscrypt_free_inode(inode);
1461 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1462 pr_warn("%s: inode %ld still in fc list",
1463 __func__, inode->i_ino);
1464 }
1465 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1466 }
1467
ext4_destroy_inode(struct inode * inode)1468 static void ext4_destroy_inode(struct inode *inode)
1469 {
1470 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1471 ext4_msg(inode->i_sb, KERN_ERR,
1472 "Inode %lu (%p): orphan list check failed!",
1473 inode->i_ino, EXT4_I(inode));
1474 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1475 EXT4_I(inode), sizeof(struct ext4_inode_info),
1476 true);
1477 dump_stack();
1478 }
1479
1480 if (EXT4_I(inode)->i_reserved_data_blocks)
1481 ext4_msg(inode->i_sb, KERN_ERR,
1482 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1483 inode->i_ino, EXT4_I(inode),
1484 EXT4_I(inode)->i_reserved_data_blocks);
1485 }
1486
ext4_shutdown(struct super_block * sb)1487 static void ext4_shutdown(struct super_block *sb)
1488 {
1489 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1490 }
1491
init_once(void * foo)1492 static void init_once(void *foo)
1493 {
1494 struct ext4_inode_info *ei = foo;
1495
1496 INIT_LIST_HEAD(&ei->i_orphan);
1497 init_rwsem(&ei->xattr_sem);
1498 init_rwsem(&ei->i_data_sem);
1499 inode_init_once(&ei->vfs_inode);
1500 ext4_fc_init_inode(&ei->vfs_inode);
1501 }
1502
init_inodecache(void)1503 static int __init init_inodecache(void)
1504 {
1505 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1506 sizeof(struct ext4_inode_info), 0,
1507 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1508 SLAB_ACCOUNT),
1509 offsetof(struct ext4_inode_info, i_data),
1510 sizeof_field(struct ext4_inode_info, i_data),
1511 init_once);
1512 if (ext4_inode_cachep == NULL)
1513 return -ENOMEM;
1514 return 0;
1515 }
1516
destroy_inodecache(void)1517 static void destroy_inodecache(void)
1518 {
1519 /*
1520 * Make sure all delayed rcu free inodes are flushed before we
1521 * destroy cache.
1522 */
1523 rcu_barrier();
1524 kmem_cache_destroy(ext4_inode_cachep);
1525 }
1526
ext4_clear_inode(struct inode * inode)1527 void ext4_clear_inode(struct inode *inode)
1528 {
1529 ext4_fc_del(inode);
1530 invalidate_inode_buffers(inode);
1531 clear_inode(inode);
1532 ext4_discard_preallocations(inode, 0);
1533 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1534 dquot_drop(inode);
1535 if (EXT4_I(inode)->jinode) {
1536 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1537 EXT4_I(inode)->jinode);
1538 jbd2_free_inode(EXT4_I(inode)->jinode);
1539 EXT4_I(inode)->jinode = NULL;
1540 }
1541 fscrypt_put_encryption_info(inode);
1542 fsverity_cleanup_inode(inode);
1543 }
1544
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1545 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1546 u64 ino, u32 generation)
1547 {
1548 struct inode *inode;
1549
1550 /*
1551 * Currently we don't know the generation for parent directory, so
1552 * a generation of 0 means "accept any"
1553 */
1554 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1555 if (IS_ERR(inode))
1556 return ERR_CAST(inode);
1557 if (generation && inode->i_generation != generation) {
1558 iput(inode);
1559 return ERR_PTR(-ESTALE);
1560 }
1561
1562 return inode;
1563 }
1564
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1565 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1566 int fh_len, int fh_type)
1567 {
1568 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1569 ext4_nfs_get_inode);
1570 }
1571
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1572 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1573 int fh_len, int fh_type)
1574 {
1575 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1576 ext4_nfs_get_inode);
1577 }
1578
ext4_nfs_commit_metadata(struct inode * inode)1579 static int ext4_nfs_commit_metadata(struct inode *inode)
1580 {
1581 struct writeback_control wbc = {
1582 .sync_mode = WB_SYNC_ALL
1583 };
1584
1585 trace_ext4_nfs_commit_metadata(inode);
1586 return ext4_write_inode(inode, &wbc);
1587 }
1588
1589 #ifdef CONFIG_QUOTA
1590 static const char * const quotatypes[] = INITQFNAMES;
1591 #define QTYPE2NAME(t) (quotatypes[t])
1592
1593 static int ext4_write_dquot(struct dquot *dquot);
1594 static int ext4_acquire_dquot(struct dquot *dquot);
1595 static int ext4_release_dquot(struct dquot *dquot);
1596 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1597 static int ext4_write_info(struct super_block *sb, int type);
1598 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1599 const struct path *path);
1600 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1601 size_t len, loff_t off);
1602 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1603 const char *data, size_t len, loff_t off);
1604 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1605 unsigned int flags);
1606
ext4_get_dquots(struct inode * inode)1607 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1608 {
1609 return EXT4_I(inode)->i_dquot;
1610 }
1611
1612 static const struct dquot_operations ext4_quota_operations = {
1613 .get_reserved_space = ext4_get_reserved_space,
1614 .write_dquot = ext4_write_dquot,
1615 .acquire_dquot = ext4_acquire_dquot,
1616 .release_dquot = ext4_release_dquot,
1617 .mark_dirty = ext4_mark_dquot_dirty,
1618 .write_info = ext4_write_info,
1619 .alloc_dquot = dquot_alloc,
1620 .destroy_dquot = dquot_destroy,
1621 .get_projid = ext4_get_projid,
1622 .get_inode_usage = ext4_get_inode_usage,
1623 .get_next_id = dquot_get_next_id,
1624 };
1625
1626 static const struct quotactl_ops ext4_qctl_operations = {
1627 .quota_on = ext4_quota_on,
1628 .quota_off = ext4_quota_off,
1629 .quota_sync = dquot_quota_sync,
1630 .get_state = dquot_get_state,
1631 .set_info = dquot_set_dqinfo,
1632 .get_dqblk = dquot_get_dqblk,
1633 .set_dqblk = dquot_set_dqblk,
1634 .get_nextdqblk = dquot_get_next_dqblk,
1635 };
1636 #endif
1637
1638 static const struct super_operations ext4_sops = {
1639 .alloc_inode = ext4_alloc_inode,
1640 .free_inode = ext4_free_in_core_inode,
1641 .destroy_inode = ext4_destroy_inode,
1642 .write_inode = ext4_write_inode,
1643 .dirty_inode = ext4_dirty_inode,
1644 .drop_inode = ext4_drop_inode,
1645 .evict_inode = ext4_evict_inode,
1646 .put_super = ext4_put_super,
1647 .sync_fs = ext4_sync_fs,
1648 .freeze_fs = ext4_freeze,
1649 .unfreeze_fs = ext4_unfreeze,
1650 .statfs = ext4_statfs,
1651 .show_options = ext4_show_options,
1652 .shutdown = ext4_shutdown,
1653 #ifdef CONFIG_QUOTA
1654 .quota_read = ext4_quota_read,
1655 .quota_write = ext4_quota_write,
1656 .get_dquots = ext4_get_dquots,
1657 #endif
1658 };
1659
1660 static const struct export_operations ext4_export_ops = {
1661 .fh_to_dentry = ext4_fh_to_dentry,
1662 .fh_to_parent = ext4_fh_to_parent,
1663 .get_parent = ext4_get_parent,
1664 .commit_metadata = ext4_nfs_commit_metadata,
1665 };
1666
1667 enum {
1668 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1669 Opt_resgid, Opt_resuid, Opt_sb,
1670 Opt_nouid32, Opt_debug, Opt_removed,
1671 Opt_user_xattr, Opt_acl,
1672 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1673 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1674 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1675 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1676 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1677 Opt_inlinecrypt,
1678 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1679 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1680 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1681 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1682 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1683 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1684 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1685 Opt_inode_readahead_blks, Opt_journal_ioprio,
1686 Opt_dioread_nolock, Opt_dioread_lock,
1687 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1688 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1689 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1690 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1691 #ifdef CONFIG_EXT4_DEBUG
1692 Opt_fc_debug_max_replay, Opt_fc_debug_force
1693 #endif
1694 };
1695
1696 static const struct constant_table ext4_param_errors[] = {
1697 {"continue", EXT4_MOUNT_ERRORS_CONT},
1698 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1699 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1700 {}
1701 };
1702
1703 static const struct constant_table ext4_param_data[] = {
1704 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1705 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1706 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1707 {}
1708 };
1709
1710 static const struct constant_table ext4_param_data_err[] = {
1711 {"abort", Opt_data_err_abort},
1712 {"ignore", Opt_data_err_ignore},
1713 {}
1714 };
1715
1716 static const struct constant_table ext4_param_jqfmt[] = {
1717 {"vfsold", QFMT_VFS_OLD},
1718 {"vfsv0", QFMT_VFS_V0},
1719 {"vfsv1", QFMT_VFS_V1},
1720 {}
1721 };
1722
1723 static const struct constant_table ext4_param_dax[] = {
1724 {"always", Opt_dax_always},
1725 {"inode", Opt_dax_inode},
1726 {"never", Opt_dax_never},
1727 {}
1728 };
1729
1730 /* String parameter that allows empty argument */
1731 #define fsparam_string_empty(NAME, OPT) \
1732 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1733
1734 /*
1735 * Mount option specification
1736 * We don't use fsparam_flag_no because of the way we set the
1737 * options and the way we show them in _ext4_show_options(). To
1738 * keep the changes to a minimum, let's keep the negative options
1739 * separate for now.
1740 */
1741 static const struct fs_parameter_spec ext4_param_specs[] = {
1742 fsparam_flag ("bsddf", Opt_bsd_df),
1743 fsparam_flag ("minixdf", Opt_minix_df),
1744 fsparam_flag ("grpid", Opt_grpid),
1745 fsparam_flag ("bsdgroups", Opt_grpid),
1746 fsparam_flag ("nogrpid", Opt_nogrpid),
1747 fsparam_flag ("sysvgroups", Opt_nogrpid),
1748 fsparam_u32 ("resgid", Opt_resgid),
1749 fsparam_u32 ("resuid", Opt_resuid),
1750 fsparam_u32 ("sb", Opt_sb),
1751 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1752 fsparam_flag ("nouid32", Opt_nouid32),
1753 fsparam_flag ("debug", Opt_debug),
1754 fsparam_flag ("oldalloc", Opt_removed),
1755 fsparam_flag ("orlov", Opt_removed),
1756 fsparam_flag ("user_xattr", Opt_user_xattr),
1757 fsparam_flag ("acl", Opt_acl),
1758 fsparam_flag ("norecovery", Opt_noload),
1759 fsparam_flag ("noload", Opt_noload),
1760 fsparam_flag ("bh", Opt_removed),
1761 fsparam_flag ("nobh", Opt_removed),
1762 fsparam_u32 ("commit", Opt_commit),
1763 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1764 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1765 fsparam_u32 ("journal_dev", Opt_journal_dev),
1766 fsparam_bdev ("journal_path", Opt_journal_path),
1767 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1768 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1769 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1770 fsparam_flag ("abort", Opt_abort),
1771 fsparam_enum ("data", Opt_data, ext4_param_data),
1772 fsparam_enum ("data_err", Opt_data_err,
1773 ext4_param_data_err),
1774 fsparam_string_empty
1775 ("usrjquota", Opt_usrjquota),
1776 fsparam_string_empty
1777 ("grpjquota", Opt_grpjquota),
1778 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1779 fsparam_flag ("grpquota", Opt_grpquota),
1780 fsparam_flag ("quota", Opt_quota),
1781 fsparam_flag ("noquota", Opt_noquota),
1782 fsparam_flag ("usrquota", Opt_usrquota),
1783 fsparam_flag ("prjquota", Opt_prjquota),
1784 fsparam_flag ("barrier", Opt_barrier),
1785 fsparam_u32 ("barrier", Opt_barrier),
1786 fsparam_flag ("nobarrier", Opt_nobarrier),
1787 fsparam_flag ("i_version", Opt_removed),
1788 fsparam_flag ("dax", Opt_dax),
1789 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1790 fsparam_u32 ("stripe", Opt_stripe),
1791 fsparam_flag ("delalloc", Opt_delalloc),
1792 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1793 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1794 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1795 fsparam_u32 ("debug_want_extra_isize",
1796 Opt_debug_want_extra_isize),
1797 fsparam_flag ("mblk_io_submit", Opt_removed),
1798 fsparam_flag ("nomblk_io_submit", Opt_removed),
1799 fsparam_flag ("block_validity", Opt_block_validity),
1800 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1801 fsparam_u32 ("inode_readahead_blks",
1802 Opt_inode_readahead_blks),
1803 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1804 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1805 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1806 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1807 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1808 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1809 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1810 fsparam_flag ("discard", Opt_discard),
1811 fsparam_flag ("nodiscard", Opt_nodiscard),
1812 fsparam_u32 ("init_itable", Opt_init_itable),
1813 fsparam_flag ("init_itable", Opt_init_itable),
1814 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1815 #ifdef CONFIG_EXT4_DEBUG
1816 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1817 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1818 #endif
1819 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1820 fsparam_flag ("test_dummy_encryption",
1821 Opt_test_dummy_encryption),
1822 fsparam_string ("test_dummy_encryption",
1823 Opt_test_dummy_encryption),
1824 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1825 fsparam_flag ("nombcache", Opt_nombcache),
1826 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1827 fsparam_flag ("prefetch_block_bitmaps",
1828 Opt_removed),
1829 fsparam_flag ("no_prefetch_block_bitmaps",
1830 Opt_no_prefetch_block_bitmaps),
1831 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1832 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1833 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1834 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1835 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1836 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1837 {}
1838 };
1839
1840 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1841
1842 #define MOPT_SET 0x0001
1843 #define MOPT_CLEAR 0x0002
1844 #define MOPT_NOSUPPORT 0x0004
1845 #define MOPT_EXPLICIT 0x0008
1846 #ifdef CONFIG_QUOTA
1847 #define MOPT_Q 0
1848 #define MOPT_QFMT 0x0010
1849 #else
1850 #define MOPT_Q MOPT_NOSUPPORT
1851 #define MOPT_QFMT MOPT_NOSUPPORT
1852 #endif
1853 #define MOPT_NO_EXT2 0x0020
1854 #define MOPT_NO_EXT3 0x0040
1855 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1856 #define MOPT_SKIP 0x0080
1857 #define MOPT_2 0x0100
1858
1859 static const struct mount_opts {
1860 int token;
1861 int mount_opt;
1862 int flags;
1863 } ext4_mount_opts[] = {
1864 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1865 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1866 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1867 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1868 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1869 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1870 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1871 MOPT_EXT4_ONLY | MOPT_SET},
1872 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1873 MOPT_EXT4_ONLY | MOPT_CLEAR},
1874 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1875 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1876 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1877 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1879 MOPT_EXT4_ONLY | MOPT_CLEAR},
1880 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1881 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1882 {Opt_commit, 0, MOPT_NO_EXT2},
1883 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1884 MOPT_EXT4_ONLY | MOPT_CLEAR},
1885 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1886 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1888 EXT4_MOUNT_JOURNAL_CHECKSUM),
1889 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1890 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1891 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1892 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1893 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1894 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1895 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1896 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1897 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1898 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1899 {Opt_journal_path, 0, MOPT_NO_EXT2},
1900 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1901 {Opt_data, 0, MOPT_NO_EXT2},
1902 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1903 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1904 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1905 #else
1906 {Opt_acl, 0, MOPT_NOSUPPORT},
1907 #endif
1908 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1909 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1910 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1911 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1912 MOPT_SET | MOPT_Q},
1913 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1914 MOPT_SET | MOPT_Q},
1915 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1916 MOPT_SET | MOPT_Q},
1917 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1918 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1919 MOPT_CLEAR | MOPT_Q},
1920 {Opt_usrjquota, 0, MOPT_Q},
1921 {Opt_grpjquota, 0, MOPT_Q},
1922 {Opt_jqfmt, 0, MOPT_QFMT},
1923 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1924 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1925 MOPT_SET},
1926 #ifdef CONFIG_EXT4_DEBUG
1927 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1928 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1929 #endif
1930 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1931 {Opt_err, 0, 0}
1932 };
1933
1934 #if IS_ENABLED(CONFIG_UNICODE)
1935 static const struct ext4_sb_encodings {
1936 __u16 magic;
1937 char *name;
1938 unsigned int version;
1939 } ext4_sb_encoding_map[] = {
1940 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1941 };
1942
1943 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1944 ext4_sb_read_encoding(const struct ext4_super_block *es)
1945 {
1946 __u16 magic = le16_to_cpu(es->s_encoding);
1947 int i;
1948
1949 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1950 if (magic == ext4_sb_encoding_map[i].magic)
1951 return &ext4_sb_encoding_map[i];
1952
1953 return NULL;
1954 }
1955 #endif
1956
1957 #define EXT4_SPEC_JQUOTA (1 << 0)
1958 #define EXT4_SPEC_JQFMT (1 << 1)
1959 #define EXT4_SPEC_DATAJ (1 << 2)
1960 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1961 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1962 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1963 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1964 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1965 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1966 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1967 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1968 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1969 #define EXT4_SPEC_s_stripe (1 << 13)
1970 #define EXT4_SPEC_s_resuid (1 << 14)
1971 #define EXT4_SPEC_s_resgid (1 << 15)
1972 #define EXT4_SPEC_s_commit_interval (1 << 16)
1973 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1974 #define EXT4_SPEC_s_sb_block (1 << 18)
1975 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1976
1977 struct ext4_fs_context {
1978 char *s_qf_names[EXT4_MAXQUOTAS];
1979 struct fscrypt_dummy_policy dummy_enc_policy;
1980 int s_jquota_fmt; /* Format of quota to use */
1981 #ifdef CONFIG_EXT4_DEBUG
1982 int s_fc_debug_max_replay;
1983 #endif
1984 unsigned short qname_spec;
1985 unsigned long vals_s_flags; /* Bits to set in s_flags */
1986 unsigned long mask_s_flags; /* Bits changed in s_flags */
1987 unsigned long journal_devnum;
1988 unsigned long s_commit_interval;
1989 unsigned long s_stripe;
1990 unsigned int s_inode_readahead_blks;
1991 unsigned int s_want_extra_isize;
1992 unsigned int s_li_wait_mult;
1993 unsigned int s_max_dir_size_kb;
1994 unsigned int journal_ioprio;
1995 unsigned int vals_s_mount_opt;
1996 unsigned int mask_s_mount_opt;
1997 unsigned int vals_s_mount_opt2;
1998 unsigned int mask_s_mount_opt2;
1999 unsigned int opt_flags; /* MOPT flags */
2000 unsigned int spec;
2001 u32 s_max_batch_time;
2002 u32 s_min_batch_time;
2003 kuid_t s_resuid;
2004 kgid_t s_resgid;
2005 ext4_fsblk_t s_sb_block;
2006 };
2007
ext4_fc_free(struct fs_context * fc)2008 static void ext4_fc_free(struct fs_context *fc)
2009 {
2010 struct ext4_fs_context *ctx = fc->fs_private;
2011 int i;
2012
2013 if (!ctx)
2014 return;
2015
2016 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2017 kfree(ctx->s_qf_names[i]);
2018
2019 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2020 kfree(ctx);
2021 }
2022
ext4_init_fs_context(struct fs_context * fc)2023 int ext4_init_fs_context(struct fs_context *fc)
2024 {
2025 struct ext4_fs_context *ctx;
2026
2027 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2028 if (!ctx)
2029 return -ENOMEM;
2030
2031 fc->fs_private = ctx;
2032 fc->ops = &ext4_context_ops;
2033
2034 return 0;
2035 }
2036
2037 #ifdef CONFIG_QUOTA
2038 /*
2039 * Note the name of the specified quota file.
2040 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2041 static int note_qf_name(struct fs_context *fc, int qtype,
2042 struct fs_parameter *param)
2043 {
2044 struct ext4_fs_context *ctx = fc->fs_private;
2045 char *qname;
2046
2047 if (param->size < 1) {
2048 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2049 return -EINVAL;
2050 }
2051 if (strchr(param->string, '/')) {
2052 ext4_msg(NULL, KERN_ERR,
2053 "quotafile must be on filesystem root");
2054 return -EINVAL;
2055 }
2056 if (ctx->s_qf_names[qtype]) {
2057 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2058 ext4_msg(NULL, KERN_ERR,
2059 "%s quota file already specified",
2060 QTYPE2NAME(qtype));
2061 return -EINVAL;
2062 }
2063 return 0;
2064 }
2065
2066 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2067 if (!qname) {
2068 ext4_msg(NULL, KERN_ERR,
2069 "Not enough memory for storing quotafile name");
2070 return -ENOMEM;
2071 }
2072 ctx->s_qf_names[qtype] = qname;
2073 ctx->qname_spec |= 1 << qtype;
2074 ctx->spec |= EXT4_SPEC_JQUOTA;
2075 return 0;
2076 }
2077
2078 /*
2079 * Clear the name of the specified quota file.
2080 */
unnote_qf_name(struct fs_context * fc,int qtype)2081 static int unnote_qf_name(struct fs_context *fc, int qtype)
2082 {
2083 struct ext4_fs_context *ctx = fc->fs_private;
2084
2085 if (ctx->s_qf_names[qtype])
2086 kfree(ctx->s_qf_names[qtype]);
2087
2088 ctx->s_qf_names[qtype] = NULL;
2089 ctx->qname_spec |= 1 << qtype;
2090 ctx->spec |= EXT4_SPEC_JQUOTA;
2091 return 0;
2092 }
2093 #endif
2094
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2095 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2096 struct ext4_fs_context *ctx)
2097 {
2098 int err;
2099
2100 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2101 ext4_msg(NULL, KERN_WARNING,
2102 "test_dummy_encryption option not supported");
2103 return -EINVAL;
2104 }
2105 err = fscrypt_parse_test_dummy_encryption(param,
2106 &ctx->dummy_enc_policy);
2107 if (err == -EINVAL) {
2108 ext4_msg(NULL, KERN_WARNING,
2109 "Value of option \"%s\" is unrecognized", param->key);
2110 } else if (err == -EEXIST) {
2111 ext4_msg(NULL, KERN_WARNING,
2112 "Conflicting test_dummy_encryption options");
2113 return -EINVAL;
2114 }
2115 return err;
2116 }
2117
2118 #define EXT4_SET_CTX(name) \
2119 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2120 unsigned long flag) \
2121 { \
2122 ctx->mask_s_##name |= flag; \
2123 ctx->vals_s_##name |= flag; \
2124 }
2125
2126 #define EXT4_CLEAR_CTX(name) \
2127 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2128 unsigned long flag) \
2129 { \
2130 ctx->mask_s_##name |= flag; \
2131 ctx->vals_s_##name &= ~flag; \
2132 }
2133
2134 #define EXT4_TEST_CTX(name) \
2135 static inline unsigned long \
2136 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2137 { \
2138 return (ctx->vals_s_##name & flag); \
2139 }
2140
2141 EXT4_SET_CTX(flags); /* set only */
2142 EXT4_SET_CTX(mount_opt);
2143 EXT4_CLEAR_CTX(mount_opt);
2144 EXT4_TEST_CTX(mount_opt);
2145 EXT4_SET_CTX(mount_opt2);
2146 EXT4_CLEAR_CTX(mount_opt2);
2147 EXT4_TEST_CTX(mount_opt2);
2148
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2149 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2150 {
2151 struct ext4_fs_context *ctx = fc->fs_private;
2152 struct fs_parse_result result;
2153 const struct mount_opts *m;
2154 int is_remount;
2155 kuid_t uid;
2156 kgid_t gid;
2157 int token;
2158
2159 token = fs_parse(fc, ext4_param_specs, param, &result);
2160 if (token < 0)
2161 return token;
2162 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2163
2164 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2165 if (token == m->token)
2166 break;
2167
2168 ctx->opt_flags |= m->flags;
2169
2170 if (m->flags & MOPT_EXPLICIT) {
2171 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2172 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2173 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2174 ctx_set_mount_opt2(ctx,
2175 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2176 } else
2177 return -EINVAL;
2178 }
2179
2180 if (m->flags & MOPT_NOSUPPORT) {
2181 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2182 param->key);
2183 return 0;
2184 }
2185
2186 switch (token) {
2187 #ifdef CONFIG_QUOTA
2188 case Opt_usrjquota:
2189 if (!*param->string)
2190 return unnote_qf_name(fc, USRQUOTA);
2191 else
2192 return note_qf_name(fc, USRQUOTA, param);
2193 case Opt_grpjquota:
2194 if (!*param->string)
2195 return unnote_qf_name(fc, GRPQUOTA);
2196 else
2197 return note_qf_name(fc, GRPQUOTA, param);
2198 #endif
2199 case Opt_sb:
2200 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2201 ext4_msg(NULL, KERN_WARNING,
2202 "Ignoring %s option on remount", param->key);
2203 } else {
2204 ctx->s_sb_block = result.uint_32;
2205 ctx->spec |= EXT4_SPEC_s_sb_block;
2206 }
2207 return 0;
2208 case Opt_removed:
2209 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2210 param->key);
2211 return 0;
2212 case Opt_inlinecrypt:
2213 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2214 ctx_set_flags(ctx, SB_INLINECRYPT);
2215 #else
2216 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2217 #endif
2218 return 0;
2219 case Opt_errors:
2220 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2221 ctx_set_mount_opt(ctx, result.uint_32);
2222 return 0;
2223 #ifdef CONFIG_QUOTA
2224 case Opt_jqfmt:
2225 ctx->s_jquota_fmt = result.uint_32;
2226 ctx->spec |= EXT4_SPEC_JQFMT;
2227 return 0;
2228 #endif
2229 case Opt_data:
2230 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2231 ctx_set_mount_opt(ctx, result.uint_32);
2232 ctx->spec |= EXT4_SPEC_DATAJ;
2233 return 0;
2234 case Opt_commit:
2235 if (result.uint_32 == 0)
2236 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2237 else if (result.uint_32 > INT_MAX / HZ) {
2238 ext4_msg(NULL, KERN_ERR,
2239 "Invalid commit interval %d, "
2240 "must be smaller than %d",
2241 result.uint_32, INT_MAX / HZ);
2242 return -EINVAL;
2243 }
2244 ctx->s_commit_interval = HZ * result.uint_32;
2245 ctx->spec |= EXT4_SPEC_s_commit_interval;
2246 return 0;
2247 case Opt_debug_want_extra_isize:
2248 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2249 ext4_msg(NULL, KERN_ERR,
2250 "Invalid want_extra_isize %d", result.uint_32);
2251 return -EINVAL;
2252 }
2253 ctx->s_want_extra_isize = result.uint_32;
2254 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2255 return 0;
2256 case Opt_max_batch_time:
2257 ctx->s_max_batch_time = result.uint_32;
2258 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2259 return 0;
2260 case Opt_min_batch_time:
2261 ctx->s_min_batch_time = result.uint_32;
2262 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2263 return 0;
2264 case Opt_inode_readahead_blks:
2265 if (result.uint_32 &&
2266 (result.uint_32 > (1 << 30) ||
2267 !is_power_of_2(result.uint_32))) {
2268 ext4_msg(NULL, KERN_ERR,
2269 "EXT4-fs: inode_readahead_blks must be "
2270 "0 or a power of 2 smaller than 2^31");
2271 return -EINVAL;
2272 }
2273 ctx->s_inode_readahead_blks = result.uint_32;
2274 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2275 return 0;
2276 case Opt_init_itable:
2277 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2278 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2279 if (param->type == fs_value_is_string)
2280 ctx->s_li_wait_mult = result.uint_32;
2281 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2282 return 0;
2283 case Opt_max_dir_size_kb:
2284 ctx->s_max_dir_size_kb = result.uint_32;
2285 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2286 return 0;
2287 #ifdef CONFIG_EXT4_DEBUG
2288 case Opt_fc_debug_max_replay:
2289 ctx->s_fc_debug_max_replay = result.uint_32;
2290 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2291 return 0;
2292 #endif
2293 case Opt_stripe:
2294 ctx->s_stripe = result.uint_32;
2295 ctx->spec |= EXT4_SPEC_s_stripe;
2296 return 0;
2297 case Opt_resuid:
2298 uid = make_kuid(current_user_ns(), result.uint_32);
2299 if (!uid_valid(uid)) {
2300 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2301 result.uint_32);
2302 return -EINVAL;
2303 }
2304 ctx->s_resuid = uid;
2305 ctx->spec |= EXT4_SPEC_s_resuid;
2306 return 0;
2307 case Opt_resgid:
2308 gid = make_kgid(current_user_ns(), result.uint_32);
2309 if (!gid_valid(gid)) {
2310 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2311 result.uint_32);
2312 return -EINVAL;
2313 }
2314 ctx->s_resgid = gid;
2315 ctx->spec |= EXT4_SPEC_s_resgid;
2316 return 0;
2317 case Opt_journal_dev:
2318 if (is_remount) {
2319 ext4_msg(NULL, KERN_ERR,
2320 "Cannot specify journal on remount");
2321 return -EINVAL;
2322 }
2323 ctx->journal_devnum = result.uint_32;
2324 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2325 return 0;
2326 case Opt_journal_path:
2327 {
2328 struct inode *journal_inode;
2329 struct path path;
2330 int error;
2331
2332 if (is_remount) {
2333 ext4_msg(NULL, KERN_ERR,
2334 "Cannot specify journal on remount");
2335 return -EINVAL;
2336 }
2337
2338 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2339 if (error) {
2340 ext4_msg(NULL, KERN_ERR, "error: could not find "
2341 "journal device path");
2342 return -EINVAL;
2343 }
2344
2345 journal_inode = d_inode(path.dentry);
2346 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2347 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2348 path_put(&path);
2349 return 0;
2350 }
2351 case Opt_journal_ioprio:
2352 if (result.uint_32 > 7) {
2353 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2354 " (must be 0-7)");
2355 return -EINVAL;
2356 }
2357 ctx->journal_ioprio =
2358 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2359 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2360 return 0;
2361 case Opt_test_dummy_encryption:
2362 return ext4_parse_test_dummy_encryption(param, ctx);
2363 case Opt_dax:
2364 case Opt_dax_type:
2365 #ifdef CONFIG_FS_DAX
2366 {
2367 int type = (token == Opt_dax) ?
2368 Opt_dax : result.uint_32;
2369
2370 switch (type) {
2371 case Opt_dax:
2372 case Opt_dax_always:
2373 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2374 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375 break;
2376 case Opt_dax_never:
2377 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2378 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379 break;
2380 case Opt_dax_inode:
2381 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2382 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2383 /* Strictly for printing options */
2384 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2385 break;
2386 }
2387 return 0;
2388 }
2389 #else
2390 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2391 return -EINVAL;
2392 #endif
2393 case Opt_data_err:
2394 if (result.uint_32 == Opt_data_err_abort)
2395 ctx_set_mount_opt(ctx, m->mount_opt);
2396 else if (result.uint_32 == Opt_data_err_ignore)
2397 ctx_clear_mount_opt(ctx, m->mount_opt);
2398 return 0;
2399 case Opt_mb_optimize_scan:
2400 if (result.int_32 == 1) {
2401 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403 } else if (result.int_32 == 0) {
2404 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2405 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2406 } else {
2407 ext4_msg(NULL, KERN_WARNING,
2408 "mb_optimize_scan should be set to 0 or 1.");
2409 return -EINVAL;
2410 }
2411 return 0;
2412 }
2413
2414 /*
2415 * At this point we should only be getting options requiring MOPT_SET,
2416 * or MOPT_CLEAR. Anything else is a bug
2417 */
2418 if (m->token == Opt_err) {
2419 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2420 param->key);
2421 WARN_ON(1);
2422 return -EINVAL;
2423 }
2424
2425 else {
2426 unsigned int set = 0;
2427
2428 if ((param->type == fs_value_is_flag) ||
2429 result.uint_32 > 0)
2430 set = 1;
2431
2432 if (m->flags & MOPT_CLEAR)
2433 set = !set;
2434 else if (unlikely(!(m->flags & MOPT_SET))) {
2435 ext4_msg(NULL, KERN_WARNING,
2436 "buggy handling of option %s",
2437 param->key);
2438 WARN_ON(1);
2439 return -EINVAL;
2440 }
2441 if (m->flags & MOPT_2) {
2442 if (set != 0)
2443 ctx_set_mount_opt2(ctx, m->mount_opt);
2444 else
2445 ctx_clear_mount_opt2(ctx, m->mount_opt);
2446 } else {
2447 if (set != 0)
2448 ctx_set_mount_opt(ctx, m->mount_opt);
2449 else
2450 ctx_clear_mount_opt(ctx, m->mount_opt);
2451 }
2452 }
2453
2454 return 0;
2455 }
2456
parse_options(struct fs_context * fc,char * options)2457 static int parse_options(struct fs_context *fc, char *options)
2458 {
2459 struct fs_parameter param;
2460 int ret;
2461 char *key;
2462
2463 if (!options)
2464 return 0;
2465
2466 while ((key = strsep(&options, ",")) != NULL) {
2467 if (*key) {
2468 size_t v_len = 0;
2469 char *value = strchr(key, '=');
2470
2471 param.type = fs_value_is_flag;
2472 param.string = NULL;
2473
2474 if (value) {
2475 if (value == key)
2476 continue;
2477
2478 *value++ = 0;
2479 v_len = strlen(value);
2480 param.string = kmemdup_nul(value, v_len,
2481 GFP_KERNEL);
2482 if (!param.string)
2483 return -ENOMEM;
2484 param.type = fs_value_is_string;
2485 }
2486
2487 param.key = key;
2488 param.size = v_len;
2489
2490 ret = ext4_parse_param(fc, ¶m);
2491 if (param.string)
2492 kfree(param.string);
2493 if (ret < 0)
2494 return ret;
2495 }
2496 }
2497
2498 ret = ext4_validate_options(fc);
2499 if (ret < 0)
2500 return ret;
2501
2502 return 0;
2503 }
2504
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2505 static int parse_apply_sb_mount_options(struct super_block *sb,
2506 struct ext4_fs_context *m_ctx)
2507 {
2508 struct ext4_sb_info *sbi = EXT4_SB(sb);
2509 char *s_mount_opts = NULL;
2510 struct ext4_fs_context *s_ctx = NULL;
2511 struct fs_context *fc = NULL;
2512 int ret = -ENOMEM;
2513
2514 if (!sbi->s_es->s_mount_opts[0])
2515 return 0;
2516
2517 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2518 sizeof(sbi->s_es->s_mount_opts),
2519 GFP_KERNEL);
2520 if (!s_mount_opts)
2521 return ret;
2522
2523 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2524 if (!fc)
2525 goto out_free;
2526
2527 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2528 if (!s_ctx)
2529 goto out_free;
2530
2531 fc->fs_private = s_ctx;
2532 fc->s_fs_info = sbi;
2533
2534 ret = parse_options(fc, s_mount_opts);
2535 if (ret < 0)
2536 goto parse_failed;
2537
2538 ret = ext4_check_opt_consistency(fc, sb);
2539 if (ret < 0) {
2540 parse_failed:
2541 ext4_msg(sb, KERN_WARNING,
2542 "failed to parse options in superblock: %s",
2543 s_mount_opts);
2544 ret = 0;
2545 goto out_free;
2546 }
2547
2548 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2549 m_ctx->journal_devnum = s_ctx->journal_devnum;
2550 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2551 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2552
2553 ext4_apply_options(fc, sb);
2554 ret = 0;
2555
2556 out_free:
2557 if (fc) {
2558 ext4_fc_free(fc);
2559 kfree(fc);
2560 }
2561 kfree(s_mount_opts);
2562 return ret;
2563 }
2564
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2565 static void ext4_apply_quota_options(struct fs_context *fc,
2566 struct super_block *sb)
2567 {
2568 #ifdef CONFIG_QUOTA
2569 bool quota_feature = ext4_has_feature_quota(sb);
2570 struct ext4_fs_context *ctx = fc->fs_private;
2571 struct ext4_sb_info *sbi = EXT4_SB(sb);
2572 char *qname;
2573 int i;
2574
2575 if (quota_feature)
2576 return;
2577
2578 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2579 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2580 if (!(ctx->qname_spec & (1 << i)))
2581 continue;
2582
2583 qname = ctx->s_qf_names[i]; /* May be NULL */
2584 if (qname)
2585 set_opt(sb, QUOTA);
2586 ctx->s_qf_names[i] = NULL;
2587 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2588 lockdep_is_held(&sb->s_umount));
2589 if (qname)
2590 kfree_rcu_mightsleep(qname);
2591 }
2592 }
2593
2594 if (ctx->spec & EXT4_SPEC_JQFMT)
2595 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2596 #endif
2597 }
2598
2599 /*
2600 * Check quota settings consistency.
2601 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2602 static int ext4_check_quota_consistency(struct fs_context *fc,
2603 struct super_block *sb)
2604 {
2605 #ifdef CONFIG_QUOTA
2606 struct ext4_fs_context *ctx = fc->fs_private;
2607 struct ext4_sb_info *sbi = EXT4_SB(sb);
2608 bool quota_feature = ext4_has_feature_quota(sb);
2609 bool quota_loaded = sb_any_quota_loaded(sb);
2610 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2611 int quota_flags, i;
2612
2613 /*
2614 * We do the test below only for project quotas. 'usrquota' and
2615 * 'grpquota' mount options are allowed even without quota feature
2616 * to support legacy quotas in quota files.
2617 */
2618 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2619 !ext4_has_feature_project(sb)) {
2620 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2621 "Cannot enable project quota enforcement.");
2622 return -EINVAL;
2623 }
2624
2625 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2626 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2627 if (quota_loaded &&
2628 ctx->mask_s_mount_opt & quota_flags &&
2629 !ctx_test_mount_opt(ctx, quota_flags))
2630 goto err_quota_change;
2631
2632 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2633
2634 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2635 if (!(ctx->qname_spec & (1 << i)))
2636 continue;
2637
2638 if (quota_loaded &&
2639 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2640 goto err_jquota_change;
2641
2642 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2643 strcmp(get_qf_name(sb, sbi, i),
2644 ctx->s_qf_names[i]) != 0)
2645 goto err_jquota_specified;
2646 }
2647
2648 if (quota_feature) {
2649 ext4_msg(NULL, KERN_INFO,
2650 "Journaled quota options ignored when "
2651 "QUOTA feature is enabled");
2652 return 0;
2653 }
2654 }
2655
2656 if (ctx->spec & EXT4_SPEC_JQFMT) {
2657 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2658 goto err_jquota_change;
2659 if (quota_feature) {
2660 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2661 "ignored when QUOTA feature is enabled");
2662 return 0;
2663 }
2664 }
2665
2666 /* Make sure we don't mix old and new quota format */
2667 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2668 ctx->s_qf_names[USRQUOTA]);
2669 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2670 ctx->s_qf_names[GRPQUOTA]);
2671
2672 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2673 test_opt(sb, USRQUOTA));
2674
2675 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2676 test_opt(sb, GRPQUOTA));
2677
2678 if (usr_qf_name) {
2679 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2680 usrquota = false;
2681 }
2682 if (grp_qf_name) {
2683 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2684 grpquota = false;
2685 }
2686
2687 if (usr_qf_name || grp_qf_name) {
2688 if (usrquota || grpquota) {
2689 ext4_msg(NULL, KERN_ERR, "old and new quota "
2690 "format mixing");
2691 return -EINVAL;
2692 }
2693
2694 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2695 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2696 "not specified");
2697 return -EINVAL;
2698 }
2699 }
2700
2701 return 0;
2702
2703 err_quota_change:
2704 ext4_msg(NULL, KERN_ERR,
2705 "Cannot change quota options when quota turned on");
2706 return -EINVAL;
2707 err_jquota_change:
2708 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2709 "options when quota turned on");
2710 return -EINVAL;
2711 err_jquota_specified:
2712 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2713 QTYPE2NAME(i));
2714 return -EINVAL;
2715 #else
2716 return 0;
2717 #endif
2718 }
2719
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2720 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2721 struct super_block *sb)
2722 {
2723 const struct ext4_fs_context *ctx = fc->fs_private;
2724 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2725
2726 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2727 return 0;
2728
2729 if (!ext4_has_feature_encrypt(sb)) {
2730 ext4_msg(NULL, KERN_WARNING,
2731 "test_dummy_encryption requires encrypt feature");
2732 return -EINVAL;
2733 }
2734 /*
2735 * This mount option is just for testing, and it's not worthwhile to
2736 * implement the extra complexity (e.g. RCU protection) that would be
2737 * needed to allow it to be set or changed during remount. We do allow
2738 * it to be specified during remount, but only if there is no change.
2739 */
2740 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2741 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2742 &ctx->dummy_enc_policy))
2743 return 0;
2744 ext4_msg(NULL, KERN_WARNING,
2745 "Can't set or change test_dummy_encryption on remount");
2746 return -EINVAL;
2747 }
2748 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2749 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2750 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2751 &ctx->dummy_enc_policy))
2752 return 0;
2753 ext4_msg(NULL, KERN_WARNING,
2754 "Conflicting test_dummy_encryption options");
2755 return -EINVAL;
2756 }
2757 return 0;
2758 }
2759
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2760 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2761 struct super_block *sb)
2762 {
2763 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2764 /* if already set, it was already verified to be the same */
2765 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2766 return;
2767 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2768 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2769 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2770 }
2771
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2772 static int ext4_check_opt_consistency(struct fs_context *fc,
2773 struct super_block *sb)
2774 {
2775 struct ext4_fs_context *ctx = fc->fs_private;
2776 struct ext4_sb_info *sbi = fc->s_fs_info;
2777 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2778 int err;
2779
2780 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2781 ext4_msg(NULL, KERN_ERR,
2782 "Mount option(s) incompatible with ext2");
2783 return -EINVAL;
2784 }
2785 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2786 ext4_msg(NULL, KERN_ERR,
2787 "Mount option(s) incompatible with ext3");
2788 return -EINVAL;
2789 }
2790
2791 if (ctx->s_want_extra_isize >
2792 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2793 ext4_msg(NULL, KERN_ERR,
2794 "Invalid want_extra_isize %d",
2795 ctx->s_want_extra_isize);
2796 return -EINVAL;
2797 }
2798
2799 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2800 int blocksize =
2801 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2802 if (blocksize < PAGE_SIZE)
2803 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2804 "experimental mount option 'dioread_nolock' "
2805 "for blocksize < PAGE_SIZE");
2806 }
2807
2808 err = ext4_check_test_dummy_encryption(fc, sb);
2809 if (err)
2810 return err;
2811
2812 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2813 if (!sbi->s_journal) {
2814 ext4_msg(NULL, KERN_WARNING,
2815 "Remounting file system with no journal "
2816 "so ignoring journalled data option");
2817 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2818 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2819 test_opt(sb, DATA_FLAGS)) {
2820 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2821 "on remount");
2822 return -EINVAL;
2823 }
2824 }
2825
2826 if (is_remount) {
2827 if (!sbi->s_journal &&
2828 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2829 ext4_msg(NULL, KERN_WARNING,
2830 "Remounting fs w/o journal so ignoring data_err option");
2831 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2832 }
2833
2834 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2835 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2836 ext4_msg(NULL, KERN_ERR, "can't mount with "
2837 "both data=journal and dax");
2838 return -EINVAL;
2839 }
2840
2841 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2842 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2843 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2844 fail_dax_change_remount:
2845 ext4_msg(NULL, KERN_ERR, "can't change "
2846 "dax mount option while remounting");
2847 return -EINVAL;
2848 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2849 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2850 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2851 goto fail_dax_change_remount;
2852 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2853 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2854 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2855 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2856 goto fail_dax_change_remount;
2857 }
2858 }
2859
2860 return ext4_check_quota_consistency(fc, sb);
2861 }
2862
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2863 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2864 {
2865 struct ext4_fs_context *ctx = fc->fs_private;
2866 struct ext4_sb_info *sbi = fc->s_fs_info;
2867
2868 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2869 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2870 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2871 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2872 sb->s_flags &= ~ctx->mask_s_flags;
2873 sb->s_flags |= ctx->vals_s_flags;
2874
2875 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2876 APPLY(s_commit_interval);
2877 APPLY(s_stripe);
2878 APPLY(s_max_batch_time);
2879 APPLY(s_min_batch_time);
2880 APPLY(s_want_extra_isize);
2881 APPLY(s_inode_readahead_blks);
2882 APPLY(s_max_dir_size_kb);
2883 APPLY(s_li_wait_mult);
2884 APPLY(s_resgid);
2885 APPLY(s_resuid);
2886
2887 #ifdef CONFIG_EXT4_DEBUG
2888 APPLY(s_fc_debug_max_replay);
2889 #endif
2890
2891 ext4_apply_quota_options(fc, sb);
2892 ext4_apply_test_dummy_encryption(ctx, sb);
2893 }
2894
2895
ext4_validate_options(struct fs_context * fc)2896 static int ext4_validate_options(struct fs_context *fc)
2897 {
2898 #ifdef CONFIG_QUOTA
2899 struct ext4_fs_context *ctx = fc->fs_private;
2900 char *usr_qf_name, *grp_qf_name;
2901
2902 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2903 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2904
2905 if (usr_qf_name || grp_qf_name) {
2906 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2907 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2908
2909 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2910 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2911
2912 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2913 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2914 ext4_msg(NULL, KERN_ERR, "old and new quota "
2915 "format mixing");
2916 return -EINVAL;
2917 }
2918 }
2919 #endif
2920 return 1;
2921 }
2922
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2923 static inline void ext4_show_quota_options(struct seq_file *seq,
2924 struct super_block *sb)
2925 {
2926 #if defined(CONFIG_QUOTA)
2927 struct ext4_sb_info *sbi = EXT4_SB(sb);
2928 char *usr_qf_name, *grp_qf_name;
2929
2930 if (sbi->s_jquota_fmt) {
2931 char *fmtname = "";
2932
2933 switch (sbi->s_jquota_fmt) {
2934 case QFMT_VFS_OLD:
2935 fmtname = "vfsold";
2936 break;
2937 case QFMT_VFS_V0:
2938 fmtname = "vfsv0";
2939 break;
2940 case QFMT_VFS_V1:
2941 fmtname = "vfsv1";
2942 break;
2943 }
2944 seq_printf(seq, ",jqfmt=%s", fmtname);
2945 }
2946
2947 rcu_read_lock();
2948 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2949 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2950 if (usr_qf_name)
2951 seq_show_option(seq, "usrjquota", usr_qf_name);
2952 if (grp_qf_name)
2953 seq_show_option(seq, "grpjquota", grp_qf_name);
2954 rcu_read_unlock();
2955 #endif
2956 }
2957
token2str(int token)2958 static const char *token2str(int token)
2959 {
2960 const struct fs_parameter_spec *spec;
2961
2962 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2963 if (spec->opt == token && !spec->type)
2964 break;
2965 return spec->name;
2966 }
2967
2968 /*
2969 * Show an option if
2970 * - it's set to a non-default value OR
2971 * - if the per-sb default is different from the global default
2972 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2973 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2974 int nodefs)
2975 {
2976 struct ext4_sb_info *sbi = EXT4_SB(sb);
2977 struct ext4_super_block *es = sbi->s_es;
2978 int def_errors;
2979 const struct mount_opts *m;
2980 char sep = nodefs ? '\n' : ',';
2981
2982 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2983 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2984
2985 if (sbi->s_sb_block != 1)
2986 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2987
2988 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2989 int want_set = m->flags & MOPT_SET;
2990 int opt_2 = m->flags & MOPT_2;
2991 unsigned int mount_opt, def_mount_opt;
2992
2993 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2994 m->flags & MOPT_SKIP)
2995 continue;
2996
2997 if (opt_2) {
2998 mount_opt = sbi->s_mount_opt2;
2999 def_mount_opt = sbi->s_def_mount_opt2;
3000 } else {
3001 mount_opt = sbi->s_mount_opt;
3002 def_mount_opt = sbi->s_def_mount_opt;
3003 }
3004 /* skip if same as the default */
3005 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
3006 continue;
3007 /* select Opt_noFoo vs Opt_Foo */
3008 if ((want_set &&
3009 (mount_opt & m->mount_opt) != m->mount_opt) ||
3010 (!want_set && (mount_opt & m->mount_opt)))
3011 continue;
3012 SEQ_OPTS_PRINT("%s", token2str(m->token));
3013 }
3014
3015 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3016 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3017 SEQ_OPTS_PRINT("resuid=%u",
3018 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3019 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3020 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3021 SEQ_OPTS_PRINT("resgid=%u",
3022 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3023 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3024 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3025 SEQ_OPTS_PUTS("errors=remount-ro");
3026 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3027 SEQ_OPTS_PUTS("errors=continue");
3028 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3029 SEQ_OPTS_PUTS("errors=panic");
3030 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3031 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3032 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3033 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3034 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3035 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3036 if (nodefs || sbi->s_stripe)
3037 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3038 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3039 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3040 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3041 SEQ_OPTS_PUTS("data=journal");
3042 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3043 SEQ_OPTS_PUTS("data=ordered");
3044 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3045 SEQ_OPTS_PUTS("data=writeback");
3046 }
3047 if (nodefs ||
3048 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3049 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3050 sbi->s_inode_readahead_blks);
3051
3052 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3053 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3054 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3055 if (nodefs || sbi->s_max_dir_size_kb)
3056 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3057 if (test_opt(sb, DATA_ERR_ABORT))
3058 SEQ_OPTS_PUTS("data_err=abort");
3059
3060 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3061
3062 if (sb->s_flags & SB_INLINECRYPT)
3063 SEQ_OPTS_PUTS("inlinecrypt");
3064
3065 if (test_opt(sb, DAX_ALWAYS)) {
3066 if (IS_EXT2_SB(sb))
3067 SEQ_OPTS_PUTS("dax");
3068 else
3069 SEQ_OPTS_PUTS("dax=always");
3070 } else if (test_opt2(sb, DAX_NEVER)) {
3071 SEQ_OPTS_PUTS("dax=never");
3072 } else if (test_opt2(sb, DAX_INODE)) {
3073 SEQ_OPTS_PUTS("dax=inode");
3074 }
3075
3076 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3077 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3078 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3079 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3080 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3081 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3082 }
3083
3084 ext4_show_quota_options(seq, sb);
3085 return 0;
3086 }
3087
ext4_show_options(struct seq_file * seq,struct dentry * root)3088 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3089 {
3090 return _ext4_show_options(seq, root->d_sb, 0);
3091 }
3092
ext4_seq_options_show(struct seq_file * seq,void * offset)3093 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3094 {
3095 struct super_block *sb = seq->private;
3096 int rc;
3097
3098 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3099 rc = _ext4_show_options(seq, sb, 1);
3100 seq_puts(seq, "\n");
3101 return rc;
3102 }
3103
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3104 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3105 int read_only)
3106 {
3107 struct ext4_sb_info *sbi = EXT4_SB(sb);
3108 int err = 0;
3109
3110 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3111 ext4_msg(sb, KERN_ERR, "revision level too high, "
3112 "forcing read-only mode");
3113 err = -EROFS;
3114 goto done;
3115 }
3116 if (read_only)
3117 goto done;
3118 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3119 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3120 "running e2fsck is recommended");
3121 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3122 ext4_msg(sb, KERN_WARNING,
3123 "warning: mounting fs with errors, "
3124 "running e2fsck is recommended");
3125 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3126 le16_to_cpu(es->s_mnt_count) >=
3127 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3128 ext4_msg(sb, KERN_WARNING,
3129 "warning: maximal mount count reached, "
3130 "running e2fsck is recommended");
3131 else if (le32_to_cpu(es->s_checkinterval) &&
3132 (ext4_get_tstamp(es, s_lastcheck) +
3133 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3134 ext4_msg(sb, KERN_WARNING,
3135 "warning: checktime reached, "
3136 "running e2fsck is recommended");
3137 if (!sbi->s_journal)
3138 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3139 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3140 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3141 le16_add_cpu(&es->s_mnt_count, 1);
3142 ext4_update_tstamp(es, s_mtime);
3143 if (sbi->s_journal) {
3144 ext4_set_feature_journal_needs_recovery(sb);
3145 if (ext4_has_feature_orphan_file(sb))
3146 ext4_set_feature_orphan_present(sb);
3147 }
3148
3149 err = ext4_commit_super(sb);
3150 done:
3151 if (test_opt(sb, DEBUG))
3152 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3153 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3154 sb->s_blocksize,
3155 sbi->s_groups_count,
3156 EXT4_BLOCKS_PER_GROUP(sb),
3157 EXT4_INODES_PER_GROUP(sb),
3158 sbi->s_mount_opt, sbi->s_mount_opt2);
3159 return err;
3160 }
3161
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3162 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3163 {
3164 struct ext4_sb_info *sbi = EXT4_SB(sb);
3165 struct flex_groups **old_groups, **new_groups;
3166 int size, i, j;
3167
3168 if (!sbi->s_log_groups_per_flex)
3169 return 0;
3170
3171 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3172 if (size <= sbi->s_flex_groups_allocated)
3173 return 0;
3174
3175 new_groups = kvzalloc(roundup_pow_of_two(size *
3176 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3177 if (!new_groups) {
3178 ext4_msg(sb, KERN_ERR,
3179 "not enough memory for %d flex group pointers", size);
3180 return -ENOMEM;
3181 }
3182 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3183 new_groups[i] = kvzalloc(roundup_pow_of_two(
3184 sizeof(struct flex_groups)),
3185 GFP_KERNEL);
3186 if (!new_groups[i]) {
3187 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3188 kvfree(new_groups[j]);
3189 kvfree(new_groups);
3190 ext4_msg(sb, KERN_ERR,
3191 "not enough memory for %d flex groups", size);
3192 return -ENOMEM;
3193 }
3194 }
3195 rcu_read_lock();
3196 old_groups = rcu_dereference(sbi->s_flex_groups);
3197 if (old_groups)
3198 memcpy(new_groups, old_groups,
3199 (sbi->s_flex_groups_allocated *
3200 sizeof(struct flex_groups *)));
3201 rcu_read_unlock();
3202 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3203 sbi->s_flex_groups_allocated = size;
3204 if (old_groups)
3205 ext4_kvfree_array_rcu(old_groups);
3206 return 0;
3207 }
3208
ext4_fill_flex_info(struct super_block * sb)3209 static int ext4_fill_flex_info(struct super_block *sb)
3210 {
3211 struct ext4_sb_info *sbi = EXT4_SB(sb);
3212 struct ext4_group_desc *gdp = NULL;
3213 struct flex_groups *fg;
3214 ext4_group_t flex_group;
3215 int i, err;
3216
3217 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3218 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3219 sbi->s_log_groups_per_flex = 0;
3220 return 1;
3221 }
3222
3223 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3224 if (err)
3225 goto failed;
3226
3227 for (i = 0; i < sbi->s_groups_count; i++) {
3228 gdp = ext4_get_group_desc(sb, i, NULL);
3229
3230 flex_group = ext4_flex_group(sbi, i);
3231 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3232 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3233 atomic64_add(ext4_free_group_clusters(sb, gdp),
3234 &fg->free_clusters);
3235 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3236 }
3237
3238 return 1;
3239 failed:
3240 return 0;
3241 }
3242
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3243 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3244 struct ext4_group_desc *gdp)
3245 {
3246 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3247 __u16 crc = 0;
3248 __le32 le_group = cpu_to_le32(block_group);
3249 struct ext4_sb_info *sbi = EXT4_SB(sb);
3250
3251 if (ext4_has_metadata_csum(sbi->s_sb)) {
3252 /* Use new metadata_csum algorithm */
3253 __u32 csum32;
3254 __u16 dummy_csum = 0;
3255
3256 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3257 sizeof(le_group));
3258 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3259 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3260 sizeof(dummy_csum));
3261 offset += sizeof(dummy_csum);
3262 if (offset < sbi->s_desc_size)
3263 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3264 sbi->s_desc_size - offset);
3265
3266 crc = csum32 & 0xFFFF;
3267 goto out;
3268 }
3269
3270 /* old crc16 code */
3271 if (!ext4_has_feature_gdt_csum(sb))
3272 return 0;
3273
3274 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3275 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3276 crc = crc16(crc, (__u8 *)gdp, offset);
3277 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3278 /* for checksum of struct ext4_group_desc do the rest...*/
3279 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3280 crc = crc16(crc, (__u8 *)gdp + offset,
3281 sbi->s_desc_size - offset);
3282
3283 out:
3284 return cpu_to_le16(crc);
3285 }
3286
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3287 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3288 struct ext4_group_desc *gdp)
3289 {
3290 if (ext4_has_group_desc_csum(sb) &&
3291 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3292 return 0;
3293
3294 return 1;
3295 }
3296
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3297 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3298 struct ext4_group_desc *gdp)
3299 {
3300 if (!ext4_has_group_desc_csum(sb))
3301 return;
3302 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3303 }
3304
3305 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3306 static int ext4_check_descriptors(struct super_block *sb,
3307 ext4_fsblk_t sb_block,
3308 ext4_group_t *first_not_zeroed)
3309 {
3310 struct ext4_sb_info *sbi = EXT4_SB(sb);
3311 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3312 ext4_fsblk_t last_block;
3313 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3314 ext4_fsblk_t block_bitmap;
3315 ext4_fsblk_t inode_bitmap;
3316 ext4_fsblk_t inode_table;
3317 int flexbg_flag = 0;
3318 ext4_group_t i, grp = sbi->s_groups_count;
3319
3320 if (ext4_has_feature_flex_bg(sb))
3321 flexbg_flag = 1;
3322
3323 ext4_debug("Checking group descriptors");
3324
3325 for (i = 0; i < sbi->s_groups_count; i++) {
3326 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3327
3328 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3329 last_block = ext4_blocks_count(sbi->s_es) - 1;
3330 else
3331 last_block = first_block +
3332 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3333
3334 if ((grp == sbi->s_groups_count) &&
3335 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3336 grp = i;
3337
3338 block_bitmap = ext4_block_bitmap(sb, gdp);
3339 if (block_bitmap == sb_block) {
3340 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3341 "Block bitmap for group %u overlaps "
3342 "superblock", i);
3343 if (!sb_rdonly(sb))
3344 return 0;
3345 }
3346 if (block_bitmap >= sb_block + 1 &&
3347 block_bitmap <= last_bg_block) {
3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 "Block bitmap for group %u overlaps "
3350 "block group descriptors", i);
3351 if (!sb_rdonly(sb))
3352 return 0;
3353 }
3354 if (block_bitmap < first_block || block_bitmap > last_block) {
3355 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3356 "Block bitmap for group %u not in group "
3357 "(block %llu)!", i, block_bitmap);
3358 return 0;
3359 }
3360 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3361 if (inode_bitmap == sb_block) {
3362 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3363 "Inode bitmap for group %u overlaps "
3364 "superblock", i);
3365 if (!sb_rdonly(sb))
3366 return 0;
3367 }
3368 if (inode_bitmap >= sb_block + 1 &&
3369 inode_bitmap <= last_bg_block) {
3370 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3371 "Inode bitmap for group %u overlaps "
3372 "block group descriptors", i);
3373 if (!sb_rdonly(sb))
3374 return 0;
3375 }
3376 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3377 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3378 "Inode bitmap for group %u not in group "
3379 "(block %llu)!", i, inode_bitmap);
3380 return 0;
3381 }
3382 inode_table = ext4_inode_table(sb, gdp);
3383 if (inode_table == sb_block) {
3384 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3385 "Inode table for group %u overlaps "
3386 "superblock", i);
3387 if (!sb_rdonly(sb))
3388 return 0;
3389 }
3390 if (inode_table >= sb_block + 1 &&
3391 inode_table <= last_bg_block) {
3392 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3393 "Inode table for group %u overlaps "
3394 "block group descriptors", i);
3395 if (!sb_rdonly(sb))
3396 return 0;
3397 }
3398 if (inode_table < first_block ||
3399 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3400 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3401 "Inode table for group %u not in group "
3402 "(block %llu)!", i, inode_table);
3403 return 0;
3404 }
3405 ext4_lock_group(sb, i);
3406 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3407 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3408 "Checksum for group %u failed (%u!=%u)",
3409 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3410 gdp)), le16_to_cpu(gdp->bg_checksum));
3411 if (!sb_rdonly(sb)) {
3412 ext4_unlock_group(sb, i);
3413 return 0;
3414 }
3415 }
3416 ext4_unlock_group(sb, i);
3417 if (!flexbg_flag)
3418 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3419 }
3420 if (NULL != first_not_zeroed)
3421 *first_not_zeroed = grp;
3422 return 1;
3423 }
3424
3425 /*
3426 * Maximal extent format file size.
3427 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3428 * extent format containers, within a sector_t, and within i_blocks
3429 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3430 * so that won't be a limiting factor.
3431 *
3432 * However there is other limiting factor. We do store extents in the form
3433 * of starting block and length, hence the resulting length of the extent
3434 * covering maximum file size must fit into on-disk format containers as
3435 * well. Given that length is always by 1 unit bigger than max unit (because
3436 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3437 *
3438 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3439 */
ext4_max_size(int blkbits,int has_huge_files)3440 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3441 {
3442 loff_t res;
3443 loff_t upper_limit = MAX_LFS_FILESIZE;
3444
3445 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3446
3447 if (!has_huge_files) {
3448 upper_limit = (1LL << 32) - 1;
3449
3450 /* total blocks in file system block size */
3451 upper_limit >>= (blkbits - 9);
3452 upper_limit <<= blkbits;
3453 }
3454
3455 /*
3456 * 32-bit extent-start container, ee_block. We lower the maxbytes
3457 * by one fs block, so ee_len can cover the extent of maximum file
3458 * size
3459 */
3460 res = (1LL << 32) - 1;
3461 res <<= blkbits;
3462
3463 /* Sanity check against vm- & vfs- imposed limits */
3464 if (res > upper_limit)
3465 res = upper_limit;
3466
3467 return res;
3468 }
3469
3470 /*
3471 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3472 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3473 * We need to be 1 filesystem block less than the 2^48 sector limit.
3474 */
ext4_max_bitmap_size(int bits,int has_huge_files)3475 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3476 {
3477 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3478 int meta_blocks;
3479 unsigned int ppb = 1 << (bits - 2);
3480
3481 /*
3482 * This is calculated to be the largest file size for a dense, block
3483 * mapped file such that the file's total number of 512-byte sectors,
3484 * including data and all indirect blocks, does not exceed (2^48 - 1).
3485 *
3486 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3487 * number of 512-byte sectors of the file.
3488 */
3489 if (!has_huge_files) {
3490 /*
3491 * !has_huge_files or implies that the inode i_block field
3492 * represents total file blocks in 2^32 512-byte sectors ==
3493 * size of vfs inode i_blocks * 8
3494 */
3495 upper_limit = (1LL << 32) - 1;
3496
3497 /* total blocks in file system block size */
3498 upper_limit >>= (bits - 9);
3499
3500 } else {
3501 /*
3502 * We use 48 bit ext4_inode i_blocks
3503 * With EXT4_HUGE_FILE_FL set the i_blocks
3504 * represent total number of blocks in
3505 * file system block size
3506 */
3507 upper_limit = (1LL << 48) - 1;
3508
3509 }
3510
3511 /* Compute how many blocks we can address by block tree */
3512 res += ppb;
3513 res += ppb * ppb;
3514 res += ((loff_t)ppb) * ppb * ppb;
3515 /* Compute how many metadata blocks are needed */
3516 meta_blocks = 1;
3517 meta_blocks += 1 + ppb;
3518 meta_blocks += 1 + ppb + ppb * ppb;
3519 /* Does block tree limit file size? */
3520 if (res + meta_blocks <= upper_limit)
3521 goto check_lfs;
3522
3523 res = upper_limit;
3524 /* How many metadata blocks are needed for addressing upper_limit? */
3525 upper_limit -= EXT4_NDIR_BLOCKS;
3526 /* indirect blocks */
3527 meta_blocks = 1;
3528 upper_limit -= ppb;
3529 /* double indirect blocks */
3530 if (upper_limit < ppb * ppb) {
3531 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3532 res -= meta_blocks;
3533 goto check_lfs;
3534 }
3535 meta_blocks += 1 + ppb;
3536 upper_limit -= ppb * ppb;
3537 /* tripple indirect blocks for the rest */
3538 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3539 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3540 res -= meta_blocks;
3541 check_lfs:
3542 res <<= bits;
3543 if (res > MAX_LFS_FILESIZE)
3544 res = MAX_LFS_FILESIZE;
3545
3546 return res;
3547 }
3548
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3549 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3550 ext4_fsblk_t logical_sb_block, int nr)
3551 {
3552 struct ext4_sb_info *sbi = EXT4_SB(sb);
3553 ext4_group_t bg, first_meta_bg;
3554 int has_super = 0;
3555
3556 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3557
3558 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3559 return logical_sb_block + nr + 1;
3560 bg = sbi->s_desc_per_block * nr;
3561 if (ext4_bg_has_super(sb, bg))
3562 has_super = 1;
3563
3564 /*
3565 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3566 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3567 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3568 * compensate.
3569 */
3570 if (sb->s_blocksize == 1024 && nr == 0 &&
3571 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3572 has_super++;
3573
3574 return (has_super + ext4_group_first_block_no(sb, bg));
3575 }
3576
3577 /**
3578 * ext4_get_stripe_size: Get the stripe size.
3579 * @sbi: In memory super block info
3580 *
3581 * If we have specified it via mount option, then
3582 * use the mount option value. If the value specified at mount time is
3583 * greater than the blocks per group use the super block value.
3584 * If the super block value is greater than blocks per group return 0.
3585 * Allocator needs it be less than blocks per group.
3586 *
3587 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3588 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3589 {
3590 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3591 unsigned long stripe_width =
3592 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3593 int ret;
3594
3595 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3596 ret = sbi->s_stripe;
3597 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3598 ret = stripe_width;
3599 else if (stride && stride <= sbi->s_blocks_per_group)
3600 ret = stride;
3601 else
3602 ret = 0;
3603
3604 /*
3605 * If the stripe width is 1, this makes no sense and
3606 * we set it to 0 to turn off stripe handling code.
3607 */
3608 if (ret <= 1)
3609 ret = 0;
3610
3611 return ret;
3612 }
3613
3614 /*
3615 * Check whether this filesystem can be mounted based on
3616 * the features present and the RDONLY/RDWR mount requested.
3617 * Returns 1 if this filesystem can be mounted as requested,
3618 * 0 if it cannot be.
3619 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3620 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3621 {
3622 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3623 ext4_msg(sb, KERN_ERR,
3624 "Couldn't mount because of "
3625 "unsupported optional features (%x)",
3626 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3627 ~EXT4_FEATURE_INCOMPAT_SUPP));
3628 return 0;
3629 }
3630
3631 #if !IS_ENABLED(CONFIG_UNICODE)
3632 if (ext4_has_feature_casefold(sb)) {
3633 ext4_msg(sb, KERN_ERR,
3634 "Filesystem with casefold feature cannot be "
3635 "mounted without CONFIG_UNICODE");
3636 return 0;
3637 }
3638 #endif
3639 if (EXT4_SB(sb)->s_es->s_def_hash_version == DX_HASH_SIPHASH &&
3640 !ext4_has_feature_casefold(sb)) {
3641 ext4_msg(sb, KERN_ERR,
3642 "Filesystem without casefold feature cannot be "
3643 "mounted with siphash");
3644 return 0;
3645 }
3646
3647 if (readonly)
3648 return 1;
3649
3650 if (ext4_has_feature_readonly(sb)) {
3651 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3652 sb->s_flags |= SB_RDONLY;
3653 return 1;
3654 }
3655
3656 /* Check that feature set is OK for a read-write mount */
3657 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3658 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3659 "unsupported optional features (%x)",
3660 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3661 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3662 return 0;
3663 }
3664 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3665 ext4_msg(sb, KERN_ERR,
3666 "Can't support bigalloc feature without "
3667 "extents feature\n");
3668 return 0;
3669 }
3670
3671 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3672 if (!readonly && (ext4_has_feature_quota(sb) ||
3673 ext4_has_feature_project(sb))) {
3674 ext4_msg(sb, KERN_ERR,
3675 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3676 return 0;
3677 }
3678 #endif /* CONFIG_QUOTA */
3679 return 1;
3680 }
3681
3682 /*
3683 * This function is called once a day if we have errors logged
3684 * on the file system
3685 */
print_daily_error_info(struct timer_list * t)3686 static void print_daily_error_info(struct timer_list *t)
3687 {
3688 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3689 struct super_block *sb = sbi->s_sb;
3690 struct ext4_super_block *es = sbi->s_es;
3691
3692 if (es->s_error_count)
3693 /* fsck newer than v1.41.13 is needed to clean this condition. */
3694 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3695 le32_to_cpu(es->s_error_count));
3696 if (es->s_first_error_time) {
3697 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3698 sb->s_id,
3699 ext4_get_tstamp(es, s_first_error_time),
3700 (int) sizeof(es->s_first_error_func),
3701 es->s_first_error_func,
3702 le32_to_cpu(es->s_first_error_line));
3703 if (es->s_first_error_ino)
3704 printk(KERN_CONT ": inode %u",
3705 le32_to_cpu(es->s_first_error_ino));
3706 if (es->s_first_error_block)
3707 printk(KERN_CONT ": block %llu", (unsigned long long)
3708 le64_to_cpu(es->s_first_error_block));
3709 printk(KERN_CONT "\n");
3710 }
3711 if (es->s_last_error_time) {
3712 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3713 sb->s_id,
3714 ext4_get_tstamp(es, s_last_error_time),
3715 (int) sizeof(es->s_last_error_func),
3716 es->s_last_error_func,
3717 le32_to_cpu(es->s_last_error_line));
3718 if (es->s_last_error_ino)
3719 printk(KERN_CONT ": inode %u",
3720 le32_to_cpu(es->s_last_error_ino));
3721 if (es->s_last_error_block)
3722 printk(KERN_CONT ": block %llu", (unsigned long long)
3723 le64_to_cpu(es->s_last_error_block));
3724 printk(KERN_CONT "\n");
3725 }
3726 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3727 }
3728
3729 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3730 static int ext4_run_li_request(struct ext4_li_request *elr)
3731 {
3732 struct ext4_group_desc *gdp = NULL;
3733 struct super_block *sb = elr->lr_super;
3734 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3735 ext4_group_t group = elr->lr_next_group;
3736 unsigned int prefetch_ios = 0;
3737 int ret = 0;
3738 int nr = EXT4_SB(sb)->s_mb_prefetch;
3739 u64 start_time;
3740
3741 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3742 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3743 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3744 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3745 if (group >= elr->lr_next_group) {
3746 ret = 1;
3747 if (elr->lr_first_not_zeroed != ngroups &&
3748 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3749 elr->lr_next_group = elr->lr_first_not_zeroed;
3750 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3751 ret = 0;
3752 }
3753 }
3754 return ret;
3755 }
3756
3757 for (; group < ngroups; group++) {
3758 gdp = ext4_get_group_desc(sb, group, NULL);
3759 if (!gdp) {
3760 ret = 1;
3761 break;
3762 }
3763
3764 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3765 break;
3766 }
3767
3768 if (group >= ngroups)
3769 ret = 1;
3770
3771 if (!ret) {
3772 start_time = ktime_get_real_ns();
3773 ret = ext4_init_inode_table(sb, group,
3774 elr->lr_timeout ? 0 : 1);
3775 trace_ext4_lazy_itable_init(sb, group);
3776 if (elr->lr_timeout == 0) {
3777 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3778 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3779 }
3780 elr->lr_next_sched = jiffies + elr->lr_timeout;
3781 elr->lr_next_group = group + 1;
3782 }
3783 return ret;
3784 }
3785
3786 /*
3787 * Remove lr_request from the list_request and free the
3788 * request structure. Should be called with li_list_mtx held
3789 */
ext4_remove_li_request(struct ext4_li_request * elr)3790 static void ext4_remove_li_request(struct ext4_li_request *elr)
3791 {
3792 if (!elr)
3793 return;
3794
3795 list_del(&elr->lr_request);
3796 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3797 kfree(elr);
3798 }
3799
ext4_unregister_li_request(struct super_block * sb)3800 static void ext4_unregister_li_request(struct super_block *sb)
3801 {
3802 mutex_lock(&ext4_li_mtx);
3803 if (!ext4_li_info) {
3804 mutex_unlock(&ext4_li_mtx);
3805 return;
3806 }
3807
3808 mutex_lock(&ext4_li_info->li_list_mtx);
3809 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3810 mutex_unlock(&ext4_li_info->li_list_mtx);
3811 mutex_unlock(&ext4_li_mtx);
3812 }
3813
3814 static struct task_struct *ext4_lazyinit_task;
3815
3816 /*
3817 * This is the function where ext4lazyinit thread lives. It walks
3818 * through the request list searching for next scheduled filesystem.
3819 * When such a fs is found, run the lazy initialization request
3820 * (ext4_rn_li_request) and keep track of the time spend in this
3821 * function. Based on that time we compute next schedule time of
3822 * the request. When walking through the list is complete, compute
3823 * next waking time and put itself into sleep.
3824 */
ext4_lazyinit_thread(void * arg)3825 static int ext4_lazyinit_thread(void *arg)
3826 {
3827 struct ext4_lazy_init *eli = arg;
3828 struct list_head *pos, *n;
3829 struct ext4_li_request *elr;
3830 unsigned long next_wakeup, cur;
3831
3832 BUG_ON(NULL == eli);
3833 set_freezable();
3834
3835 cont_thread:
3836 while (true) {
3837 next_wakeup = MAX_JIFFY_OFFSET;
3838
3839 mutex_lock(&eli->li_list_mtx);
3840 if (list_empty(&eli->li_request_list)) {
3841 mutex_unlock(&eli->li_list_mtx);
3842 goto exit_thread;
3843 }
3844 list_for_each_safe(pos, n, &eli->li_request_list) {
3845 int err = 0;
3846 int progress = 0;
3847 elr = list_entry(pos, struct ext4_li_request,
3848 lr_request);
3849
3850 if (time_before(jiffies, elr->lr_next_sched)) {
3851 if (time_before(elr->lr_next_sched, next_wakeup))
3852 next_wakeup = elr->lr_next_sched;
3853 continue;
3854 }
3855 if (down_read_trylock(&elr->lr_super->s_umount)) {
3856 if (sb_start_write_trylock(elr->lr_super)) {
3857 progress = 1;
3858 /*
3859 * We hold sb->s_umount, sb can not
3860 * be removed from the list, it is
3861 * now safe to drop li_list_mtx
3862 */
3863 mutex_unlock(&eli->li_list_mtx);
3864 err = ext4_run_li_request(elr);
3865 sb_end_write(elr->lr_super);
3866 mutex_lock(&eli->li_list_mtx);
3867 n = pos->next;
3868 }
3869 up_read((&elr->lr_super->s_umount));
3870 }
3871 /* error, remove the lazy_init job */
3872 if (err) {
3873 ext4_remove_li_request(elr);
3874 continue;
3875 }
3876 if (!progress) {
3877 elr->lr_next_sched = jiffies +
3878 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3879 }
3880 if (time_before(elr->lr_next_sched, next_wakeup))
3881 next_wakeup = elr->lr_next_sched;
3882 }
3883 mutex_unlock(&eli->li_list_mtx);
3884
3885 try_to_freeze();
3886
3887 cur = jiffies;
3888 if ((time_after_eq(cur, next_wakeup)) ||
3889 (MAX_JIFFY_OFFSET == next_wakeup)) {
3890 cond_resched();
3891 continue;
3892 }
3893
3894 schedule_timeout_interruptible(next_wakeup - cur);
3895
3896 if (kthread_should_stop()) {
3897 ext4_clear_request_list();
3898 goto exit_thread;
3899 }
3900 }
3901
3902 exit_thread:
3903 /*
3904 * It looks like the request list is empty, but we need
3905 * to check it under the li_list_mtx lock, to prevent any
3906 * additions into it, and of course we should lock ext4_li_mtx
3907 * to atomically free the list and ext4_li_info, because at
3908 * this point another ext4 filesystem could be registering
3909 * new one.
3910 */
3911 mutex_lock(&ext4_li_mtx);
3912 mutex_lock(&eli->li_list_mtx);
3913 if (!list_empty(&eli->li_request_list)) {
3914 mutex_unlock(&eli->li_list_mtx);
3915 mutex_unlock(&ext4_li_mtx);
3916 goto cont_thread;
3917 }
3918 mutex_unlock(&eli->li_list_mtx);
3919 kfree(ext4_li_info);
3920 ext4_li_info = NULL;
3921 mutex_unlock(&ext4_li_mtx);
3922
3923 return 0;
3924 }
3925
ext4_clear_request_list(void)3926 static void ext4_clear_request_list(void)
3927 {
3928 struct list_head *pos, *n;
3929 struct ext4_li_request *elr;
3930
3931 mutex_lock(&ext4_li_info->li_list_mtx);
3932 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3933 elr = list_entry(pos, struct ext4_li_request,
3934 lr_request);
3935 ext4_remove_li_request(elr);
3936 }
3937 mutex_unlock(&ext4_li_info->li_list_mtx);
3938 }
3939
ext4_run_lazyinit_thread(void)3940 static int ext4_run_lazyinit_thread(void)
3941 {
3942 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3943 ext4_li_info, "ext4lazyinit");
3944 if (IS_ERR(ext4_lazyinit_task)) {
3945 int err = PTR_ERR(ext4_lazyinit_task);
3946 ext4_clear_request_list();
3947 kfree(ext4_li_info);
3948 ext4_li_info = NULL;
3949 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3950 "initialization thread\n",
3951 err);
3952 return err;
3953 }
3954 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3955 return 0;
3956 }
3957
3958 /*
3959 * Check whether it make sense to run itable init. thread or not.
3960 * If there is at least one uninitialized inode table, return
3961 * corresponding group number, else the loop goes through all
3962 * groups and return total number of groups.
3963 */
ext4_has_uninit_itable(struct super_block * sb)3964 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3965 {
3966 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3967 struct ext4_group_desc *gdp = NULL;
3968
3969 if (!ext4_has_group_desc_csum(sb))
3970 return ngroups;
3971
3972 for (group = 0; group < ngroups; group++) {
3973 gdp = ext4_get_group_desc(sb, group, NULL);
3974 if (!gdp)
3975 continue;
3976
3977 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3978 break;
3979 }
3980
3981 return group;
3982 }
3983
ext4_li_info_new(void)3984 static int ext4_li_info_new(void)
3985 {
3986 struct ext4_lazy_init *eli = NULL;
3987
3988 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3989 if (!eli)
3990 return -ENOMEM;
3991
3992 INIT_LIST_HEAD(&eli->li_request_list);
3993 mutex_init(&eli->li_list_mtx);
3994
3995 eli->li_state |= EXT4_LAZYINIT_QUIT;
3996
3997 ext4_li_info = eli;
3998
3999 return 0;
4000 }
4001
ext4_li_request_new(struct super_block * sb,ext4_group_t start)4002 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
4003 ext4_group_t start)
4004 {
4005 struct ext4_li_request *elr;
4006
4007 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
4008 if (!elr)
4009 return NULL;
4010
4011 elr->lr_super = sb;
4012 elr->lr_first_not_zeroed = start;
4013 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
4014 elr->lr_mode = EXT4_LI_MODE_ITABLE;
4015 elr->lr_next_group = start;
4016 } else {
4017 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4018 }
4019
4020 /*
4021 * Randomize first schedule time of the request to
4022 * spread the inode table initialization requests
4023 * better.
4024 */
4025 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4026 return elr;
4027 }
4028
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4029 int ext4_register_li_request(struct super_block *sb,
4030 ext4_group_t first_not_zeroed)
4031 {
4032 struct ext4_sb_info *sbi = EXT4_SB(sb);
4033 struct ext4_li_request *elr = NULL;
4034 ext4_group_t ngroups = sbi->s_groups_count;
4035 int ret = 0;
4036
4037 mutex_lock(&ext4_li_mtx);
4038 if (sbi->s_li_request != NULL) {
4039 /*
4040 * Reset timeout so it can be computed again, because
4041 * s_li_wait_mult might have changed.
4042 */
4043 sbi->s_li_request->lr_timeout = 0;
4044 goto out;
4045 }
4046
4047 if (sb_rdonly(sb) ||
4048 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4049 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4050 goto out;
4051
4052 elr = ext4_li_request_new(sb, first_not_zeroed);
4053 if (!elr) {
4054 ret = -ENOMEM;
4055 goto out;
4056 }
4057
4058 if (NULL == ext4_li_info) {
4059 ret = ext4_li_info_new();
4060 if (ret)
4061 goto out;
4062 }
4063
4064 mutex_lock(&ext4_li_info->li_list_mtx);
4065 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4066 mutex_unlock(&ext4_li_info->li_list_mtx);
4067
4068 sbi->s_li_request = elr;
4069 /*
4070 * set elr to NULL here since it has been inserted to
4071 * the request_list and the removal and free of it is
4072 * handled by ext4_clear_request_list from now on.
4073 */
4074 elr = NULL;
4075
4076 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4077 ret = ext4_run_lazyinit_thread();
4078 if (ret)
4079 goto out;
4080 }
4081 out:
4082 mutex_unlock(&ext4_li_mtx);
4083 if (ret)
4084 kfree(elr);
4085 return ret;
4086 }
4087
4088 /*
4089 * We do not need to lock anything since this is called on
4090 * module unload.
4091 */
ext4_destroy_lazyinit_thread(void)4092 static void ext4_destroy_lazyinit_thread(void)
4093 {
4094 /*
4095 * If thread exited earlier
4096 * there's nothing to be done.
4097 */
4098 if (!ext4_li_info || !ext4_lazyinit_task)
4099 return;
4100
4101 kthread_stop(ext4_lazyinit_task);
4102 }
4103
set_journal_csum_feature_set(struct super_block * sb)4104 static int set_journal_csum_feature_set(struct super_block *sb)
4105 {
4106 int ret = 1;
4107 int compat, incompat;
4108 struct ext4_sb_info *sbi = EXT4_SB(sb);
4109
4110 if (ext4_has_metadata_csum(sb)) {
4111 /* journal checksum v3 */
4112 compat = 0;
4113 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4114 } else {
4115 /* journal checksum v1 */
4116 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4117 incompat = 0;
4118 }
4119
4120 jbd2_journal_clear_features(sbi->s_journal,
4121 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4122 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4123 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4124 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4125 ret = jbd2_journal_set_features(sbi->s_journal,
4126 compat, 0,
4127 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4128 incompat);
4129 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4130 ret = jbd2_journal_set_features(sbi->s_journal,
4131 compat, 0,
4132 incompat);
4133 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4134 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4135 } else {
4136 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4137 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4138 }
4139
4140 return ret;
4141 }
4142
4143 /*
4144 * Note: calculating the overhead so we can be compatible with
4145 * historical BSD practice is quite difficult in the face of
4146 * clusters/bigalloc. This is because multiple metadata blocks from
4147 * different block group can end up in the same allocation cluster.
4148 * Calculating the exact overhead in the face of clustered allocation
4149 * requires either O(all block bitmaps) in memory or O(number of block
4150 * groups**2) in time. We will still calculate the superblock for
4151 * older file systems --- and if we come across with a bigalloc file
4152 * system with zero in s_overhead_clusters the estimate will be close to
4153 * correct especially for very large cluster sizes --- but for newer
4154 * file systems, it's better to calculate this figure once at mkfs
4155 * time, and store it in the superblock. If the superblock value is
4156 * present (even for non-bigalloc file systems), we will use it.
4157 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4158 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4159 char *buf)
4160 {
4161 struct ext4_sb_info *sbi = EXT4_SB(sb);
4162 struct ext4_group_desc *gdp;
4163 ext4_fsblk_t first_block, last_block, b;
4164 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4165 int s, j, count = 0;
4166 int has_super = ext4_bg_has_super(sb, grp);
4167
4168 if (!ext4_has_feature_bigalloc(sb))
4169 return (has_super + ext4_bg_num_gdb(sb, grp) +
4170 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4171 sbi->s_itb_per_group + 2);
4172
4173 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4174 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4175 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4176 for (i = 0; i < ngroups; i++) {
4177 gdp = ext4_get_group_desc(sb, i, NULL);
4178 b = ext4_block_bitmap(sb, gdp);
4179 if (b >= first_block && b <= last_block) {
4180 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4181 count++;
4182 }
4183 b = ext4_inode_bitmap(sb, gdp);
4184 if (b >= first_block && b <= last_block) {
4185 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4186 count++;
4187 }
4188 b = ext4_inode_table(sb, gdp);
4189 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4190 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4191 int c = EXT4_B2C(sbi, b - first_block);
4192 ext4_set_bit(c, buf);
4193 count++;
4194 }
4195 if (i != grp)
4196 continue;
4197 s = 0;
4198 if (ext4_bg_has_super(sb, grp)) {
4199 ext4_set_bit(s++, buf);
4200 count++;
4201 }
4202 j = ext4_bg_num_gdb(sb, grp);
4203 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4204 ext4_error(sb, "Invalid number of block group "
4205 "descriptor blocks: %d", j);
4206 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4207 }
4208 count += j;
4209 for (; j > 0; j--)
4210 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4211 }
4212 if (!count)
4213 return 0;
4214 return EXT4_CLUSTERS_PER_GROUP(sb) -
4215 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4216 }
4217
4218 /*
4219 * Compute the overhead and stash it in sbi->s_overhead
4220 */
ext4_calculate_overhead(struct super_block * sb)4221 int ext4_calculate_overhead(struct super_block *sb)
4222 {
4223 struct ext4_sb_info *sbi = EXT4_SB(sb);
4224 struct ext4_super_block *es = sbi->s_es;
4225 struct inode *j_inode;
4226 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4227 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4228 ext4_fsblk_t overhead = 0;
4229 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4230
4231 if (!buf)
4232 return -ENOMEM;
4233
4234 /*
4235 * Compute the overhead (FS structures). This is constant
4236 * for a given filesystem unless the number of block groups
4237 * changes so we cache the previous value until it does.
4238 */
4239
4240 /*
4241 * All of the blocks before first_data_block are overhead
4242 */
4243 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4244
4245 /*
4246 * Add the overhead found in each block group
4247 */
4248 for (i = 0; i < ngroups; i++) {
4249 int blks;
4250
4251 blks = count_overhead(sb, i, buf);
4252 overhead += blks;
4253 if (blks)
4254 memset(buf, 0, PAGE_SIZE);
4255 cond_resched();
4256 }
4257
4258 /*
4259 * Add the internal journal blocks whether the journal has been
4260 * loaded or not
4261 */
4262 if (sbi->s_journal && !sbi->s_journal_bdev)
4263 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4264 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4265 /* j_inum for internal journal is non-zero */
4266 j_inode = ext4_get_journal_inode(sb, j_inum);
4267 if (!IS_ERR(j_inode)) {
4268 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4269 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4270 iput(j_inode);
4271 } else {
4272 ext4_msg(sb, KERN_ERR, "can't get journal size");
4273 }
4274 }
4275 sbi->s_overhead = overhead;
4276 smp_wmb();
4277 free_page((unsigned long) buf);
4278 return 0;
4279 }
4280
ext4_set_resv_clusters(struct super_block * sb)4281 static void ext4_set_resv_clusters(struct super_block *sb)
4282 {
4283 ext4_fsblk_t resv_clusters;
4284 struct ext4_sb_info *sbi = EXT4_SB(sb);
4285
4286 /*
4287 * There's no need to reserve anything when we aren't using extents.
4288 * The space estimates are exact, there are no unwritten extents,
4289 * hole punching doesn't need new metadata... This is needed especially
4290 * to keep ext2/3 backward compatibility.
4291 */
4292 if (!ext4_has_feature_extents(sb))
4293 return;
4294 /*
4295 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4296 * This should cover the situations where we can not afford to run
4297 * out of space like for example punch hole, or converting
4298 * unwritten extents in delalloc path. In most cases such
4299 * allocation would require 1, or 2 blocks, higher numbers are
4300 * very rare.
4301 */
4302 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4303 sbi->s_cluster_bits);
4304
4305 do_div(resv_clusters, 50);
4306 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4307
4308 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4309 }
4310
ext4_quota_mode(struct super_block * sb)4311 static const char *ext4_quota_mode(struct super_block *sb)
4312 {
4313 #ifdef CONFIG_QUOTA
4314 if (!ext4_quota_capable(sb))
4315 return "none";
4316
4317 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4318 return "journalled";
4319 else
4320 return "writeback";
4321 #else
4322 return "disabled";
4323 #endif
4324 }
4325
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4326 static void ext4_setup_csum_trigger(struct super_block *sb,
4327 enum ext4_journal_trigger_type type,
4328 void (*trigger)(
4329 struct jbd2_buffer_trigger_type *type,
4330 struct buffer_head *bh,
4331 void *mapped_data,
4332 size_t size))
4333 {
4334 struct ext4_sb_info *sbi = EXT4_SB(sb);
4335
4336 sbi->s_journal_triggers[type].sb = sb;
4337 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4338 }
4339
ext4_free_sbi(struct ext4_sb_info * sbi)4340 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4341 {
4342 if (!sbi)
4343 return;
4344
4345 kfree(sbi->s_blockgroup_lock);
4346 fs_put_dax(sbi->s_daxdev, NULL);
4347 kfree(sbi);
4348 }
4349
ext4_alloc_sbi(struct super_block * sb)4350 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4351 {
4352 struct ext4_sb_info *sbi;
4353
4354 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4355 if (!sbi)
4356 return NULL;
4357
4358 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4359 NULL, NULL);
4360
4361 sbi->s_blockgroup_lock =
4362 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4363
4364 if (!sbi->s_blockgroup_lock)
4365 goto err_out;
4366
4367 sb->s_fs_info = sbi;
4368 sbi->s_sb = sb;
4369 return sbi;
4370 err_out:
4371 fs_put_dax(sbi->s_daxdev, NULL);
4372 kfree(sbi);
4373 return NULL;
4374 }
4375
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4376 static void ext4_set_def_opts(struct super_block *sb,
4377 struct ext4_super_block *es)
4378 {
4379 unsigned long def_mount_opts;
4380
4381 /* Set defaults before we parse the mount options */
4382 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4383 set_opt(sb, INIT_INODE_TABLE);
4384 if (def_mount_opts & EXT4_DEFM_DEBUG)
4385 set_opt(sb, DEBUG);
4386 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4387 set_opt(sb, GRPID);
4388 if (def_mount_opts & EXT4_DEFM_UID16)
4389 set_opt(sb, NO_UID32);
4390 /* xattr user namespace & acls are now defaulted on */
4391 set_opt(sb, XATTR_USER);
4392 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4393 set_opt(sb, POSIX_ACL);
4394 #endif
4395 if (ext4_has_feature_fast_commit(sb))
4396 set_opt2(sb, JOURNAL_FAST_COMMIT);
4397 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4398 if (ext4_has_metadata_csum(sb))
4399 set_opt(sb, JOURNAL_CHECKSUM);
4400
4401 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4402 set_opt(sb, JOURNAL_DATA);
4403 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4404 set_opt(sb, ORDERED_DATA);
4405 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4406 set_opt(sb, WRITEBACK_DATA);
4407
4408 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4409 set_opt(sb, ERRORS_PANIC);
4410 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4411 set_opt(sb, ERRORS_CONT);
4412 else
4413 set_opt(sb, ERRORS_RO);
4414 /* block_validity enabled by default; disable with noblock_validity */
4415 set_opt(sb, BLOCK_VALIDITY);
4416 if (def_mount_opts & EXT4_DEFM_DISCARD)
4417 set_opt(sb, DISCARD);
4418
4419 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4420 set_opt(sb, BARRIER);
4421
4422 /*
4423 * enable delayed allocation by default
4424 * Use -o nodelalloc to turn it off
4425 */
4426 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4427 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4428 set_opt(sb, DELALLOC);
4429
4430 if (sb->s_blocksize == PAGE_SIZE)
4431 set_opt(sb, DIOREAD_NOLOCK);
4432 }
4433
ext4_handle_clustersize(struct super_block * sb)4434 static int ext4_handle_clustersize(struct super_block *sb)
4435 {
4436 struct ext4_sb_info *sbi = EXT4_SB(sb);
4437 struct ext4_super_block *es = sbi->s_es;
4438 int clustersize;
4439
4440 /* Handle clustersize */
4441 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4442 if (ext4_has_feature_bigalloc(sb)) {
4443 if (clustersize < sb->s_blocksize) {
4444 ext4_msg(sb, KERN_ERR,
4445 "cluster size (%d) smaller than "
4446 "block size (%lu)", clustersize, sb->s_blocksize);
4447 return -EINVAL;
4448 }
4449 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4450 le32_to_cpu(es->s_log_block_size);
4451 sbi->s_clusters_per_group =
4452 le32_to_cpu(es->s_clusters_per_group);
4453 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4454 ext4_msg(sb, KERN_ERR,
4455 "#clusters per group too big: %lu",
4456 sbi->s_clusters_per_group);
4457 return -EINVAL;
4458 }
4459 if (sbi->s_blocks_per_group !=
4460 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4461 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4462 "clusters per group (%lu) inconsistent",
4463 sbi->s_blocks_per_group,
4464 sbi->s_clusters_per_group);
4465 return -EINVAL;
4466 }
4467 } else {
4468 if (clustersize != sb->s_blocksize) {
4469 ext4_msg(sb, KERN_ERR,
4470 "fragment/cluster size (%d) != "
4471 "block size (%lu)", clustersize, sb->s_blocksize);
4472 return -EINVAL;
4473 }
4474 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4475 ext4_msg(sb, KERN_ERR,
4476 "#blocks per group too big: %lu",
4477 sbi->s_blocks_per_group);
4478 return -EINVAL;
4479 }
4480 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4481 sbi->s_cluster_bits = 0;
4482 }
4483 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4484
4485 /* Do we have standard group size of clustersize * 8 blocks ? */
4486 if (sbi->s_blocks_per_group == clustersize << 3)
4487 set_opt2(sb, STD_GROUP_SIZE);
4488
4489 return 0;
4490 }
4491
ext4_fast_commit_init(struct super_block * sb)4492 static void ext4_fast_commit_init(struct super_block *sb)
4493 {
4494 struct ext4_sb_info *sbi = EXT4_SB(sb);
4495
4496 /* Initialize fast commit stuff */
4497 atomic_set(&sbi->s_fc_subtid, 0);
4498 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4499 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4500 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4501 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4502 sbi->s_fc_bytes = 0;
4503 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4504 sbi->s_fc_ineligible_tid = 0;
4505 spin_lock_init(&sbi->s_fc_lock);
4506 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4507 sbi->s_fc_replay_state.fc_regions = NULL;
4508 sbi->s_fc_replay_state.fc_regions_size = 0;
4509 sbi->s_fc_replay_state.fc_regions_used = 0;
4510 sbi->s_fc_replay_state.fc_regions_valid = 0;
4511 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4512 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4513 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4514 }
4515
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4516 static int ext4_inode_info_init(struct super_block *sb,
4517 struct ext4_super_block *es)
4518 {
4519 struct ext4_sb_info *sbi = EXT4_SB(sb);
4520
4521 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4522 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4523 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4524 } else {
4525 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4526 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4527 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4528 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4529 sbi->s_first_ino);
4530 return -EINVAL;
4531 }
4532 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4533 (!is_power_of_2(sbi->s_inode_size)) ||
4534 (sbi->s_inode_size > sb->s_blocksize)) {
4535 ext4_msg(sb, KERN_ERR,
4536 "unsupported inode size: %d",
4537 sbi->s_inode_size);
4538 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4539 return -EINVAL;
4540 }
4541 /*
4542 * i_atime_extra is the last extra field available for
4543 * [acm]times in struct ext4_inode. Checking for that
4544 * field should suffice to ensure we have extra space
4545 * for all three.
4546 */
4547 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4548 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4549 sb->s_time_gran = 1;
4550 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4551 } else {
4552 sb->s_time_gran = NSEC_PER_SEC;
4553 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4554 }
4555 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4556 }
4557
4558 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4559 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4560 EXT4_GOOD_OLD_INODE_SIZE;
4561 if (ext4_has_feature_extra_isize(sb)) {
4562 unsigned v, max = (sbi->s_inode_size -
4563 EXT4_GOOD_OLD_INODE_SIZE);
4564
4565 v = le16_to_cpu(es->s_want_extra_isize);
4566 if (v > max) {
4567 ext4_msg(sb, KERN_ERR,
4568 "bad s_want_extra_isize: %d", v);
4569 return -EINVAL;
4570 }
4571 if (sbi->s_want_extra_isize < v)
4572 sbi->s_want_extra_isize = v;
4573
4574 v = le16_to_cpu(es->s_min_extra_isize);
4575 if (v > max) {
4576 ext4_msg(sb, KERN_ERR,
4577 "bad s_min_extra_isize: %d", v);
4578 return -EINVAL;
4579 }
4580 if (sbi->s_want_extra_isize < v)
4581 sbi->s_want_extra_isize = v;
4582 }
4583 }
4584
4585 return 0;
4586 }
4587
4588 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4589 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4590 {
4591 const struct ext4_sb_encodings *encoding_info;
4592 struct unicode_map *encoding;
4593 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4594
4595 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4596 return 0;
4597
4598 encoding_info = ext4_sb_read_encoding(es);
4599 if (!encoding_info) {
4600 ext4_msg(sb, KERN_ERR,
4601 "Encoding requested by superblock is unknown");
4602 return -EINVAL;
4603 }
4604
4605 encoding = utf8_load(encoding_info->version);
4606 if (IS_ERR(encoding)) {
4607 ext4_msg(sb, KERN_ERR,
4608 "can't mount with superblock charset: %s-%u.%u.%u "
4609 "not supported by the kernel. flags: 0x%x.",
4610 encoding_info->name,
4611 unicode_major(encoding_info->version),
4612 unicode_minor(encoding_info->version),
4613 unicode_rev(encoding_info->version),
4614 encoding_flags);
4615 return -EINVAL;
4616 }
4617 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4618 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4619 unicode_major(encoding_info->version),
4620 unicode_minor(encoding_info->version),
4621 unicode_rev(encoding_info->version),
4622 encoding_flags);
4623
4624 sb->s_encoding = encoding;
4625 sb->s_encoding_flags = encoding_flags;
4626
4627 return 0;
4628 }
4629 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4630 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4631 {
4632 return 0;
4633 }
4634 #endif
4635
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4636 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4637 {
4638 struct ext4_sb_info *sbi = EXT4_SB(sb);
4639
4640 /* Warn if metadata_csum and gdt_csum are both set. */
4641 if (ext4_has_feature_metadata_csum(sb) &&
4642 ext4_has_feature_gdt_csum(sb))
4643 ext4_warning(sb, "metadata_csum and uninit_bg are "
4644 "redundant flags; please run fsck.");
4645
4646 /* Check for a known checksum algorithm */
4647 if (!ext4_verify_csum_type(sb, es)) {
4648 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 "unknown checksum algorithm.");
4650 return -EINVAL;
4651 }
4652 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4653 ext4_orphan_file_block_trigger);
4654
4655 /* Load the checksum driver */
4656 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4657 if (IS_ERR(sbi->s_chksum_driver)) {
4658 int ret = PTR_ERR(sbi->s_chksum_driver);
4659 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4660 sbi->s_chksum_driver = NULL;
4661 return ret;
4662 }
4663
4664 /* Check superblock checksum */
4665 if (!ext4_superblock_csum_verify(sb, es)) {
4666 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4667 "invalid superblock checksum. Run e2fsck?");
4668 return -EFSBADCRC;
4669 }
4670
4671 /* Precompute checksum seed for all metadata */
4672 if (ext4_has_feature_csum_seed(sb))
4673 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4674 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4675 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4676 sizeof(es->s_uuid));
4677 return 0;
4678 }
4679
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4680 static int ext4_check_feature_compatibility(struct super_block *sb,
4681 struct ext4_super_block *es,
4682 int silent)
4683 {
4684 struct ext4_sb_info *sbi = EXT4_SB(sb);
4685
4686 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4687 (ext4_has_compat_features(sb) ||
4688 ext4_has_ro_compat_features(sb) ||
4689 ext4_has_incompat_features(sb)))
4690 ext4_msg(sb, KERN_WARNING,
4691 "feature flags set on rev 0 fs, "
4692 "running e2fsck is recommended");
4693
4694 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4695 set_opt2(sb, HURD_COMPAT);
4696 if (ext4_has_feature_64bit(sb)) {
4697 ext4_msg(sb, KERN_ERR,
4698 "The Hurd can't support 64-bit file systems");
4699 return -EINVAL;
4700 }
4701
4702 /*
4703 * ea_inode feature uses l_i_version field which is not
4704 * available in HURD_COMPAT mode.
4705 */
4706 if (ext4_has_feature_ea_inode(sb)) {
4707 ext4_msg(sb, KERN_ERR,
4708 "ea_inode feature is not supported for Hurd");
4709 return -EINVAL;
4710 }
4711 }
4712
4713 if (IS_EXT2_SB(sb)) {
4714 if (ext2_feature_set_ok(sb))
4715 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4716 "using the ext4 subsystem");
4717 else {
4718 /*
4719 * If we're probing be silent, if this looks like
4720 * it's actually an ext[34] filesystem.
4721 */
4722 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4723 return -EINVAL;
4724 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4725 "to feature incompatibilities");
4726 return -EINVAL;
4727 }
4728 }
4729
4730 if (IS_EXT3_SB(sb)) {
4731 if (ext3_feature_set_ok(sb))
4732 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4733 "using the ext4 subsystem");
4734 else {
4735 /*
4736 * If we're probing be silent, if this looks like
4737 * it's actually an ext4 filesystem.
4738 */
4739 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4740 return -EINVAL;
4741 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4742 "to feature incompatibilities");
4743 return -EINVAL;
4744 }
4745 }
4746
4747 /*
4748 * Check feature flags regardless of the revision level, since we
4749 * previously didn't change the revision level when setting the flags,
4750 * so there is a chance incompat flags are set on a rev 0 filesystem.
4751 */
4752 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4753 return -EINVAL;
4754
4755 if (sbi->s_daxdev) {
4756 if (sb->s_blocksize == PAGE_SIZE)
4757 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4758 else
4759 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4760 }
4761
4762 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4763 if (ext4_has_feature_inline_data(sb)) {
4764 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4765 " that may contain inline data");
4766 return -EINVAL;
4767 }
4768 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4769 ext4_msg(sb, KERN_ERR,
4770 "DAX unsupported by block device.");
4771 return -EINVAL;
4772 }
4773 }
4774
4775 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4776 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4777 es->s_encryption_level);
4778 return -EINVAL;
4779 }
4780
4781 return 0;
4782 }
4783
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4784 static int ext4_check_geometry(struct super_block *sb,
4785 struct ext4_super_block *es)
4786 {
4787 struct ext4_sb_info *sbi = EXT4_SB(sb);
4788 __u64 blocks_count;
4789 int err;
4790
4791 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4792 ext4_msg(sb, KERN_ERR,
4793 "Number of reserved GDT blocks insanely large: %d",
4794 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4795 return -EINVAL;
4796 }
4797 /*
4798 * Test whether we have more sectors than will fit in sector_t,
4799 * and whether the max offset is addressable by the page cache.
4800 */
4801 err = generic_check_addressable(sb->s_blocksize_bits,
4802 ext4_blocks_count(es));
4803 if (err) {
4804 ext4_msg(sb, KERN_ERR, "filesystem"
4805 " too large to mount safely on this system");
4806 return err;
4807 }
4808
4809 /* check blocks count against device size */
4810 blocks_count = sb_bdev_nr_blocks(sb);
4811 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4812 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4813 "exceeds size of device (%llu blocks)",
4814 ext4_blocks_count(es), blocks_count);
4815 return -EINVAL;
4816 }
4817
4818 /*
4819 * It makes no sense for the first data block to be beyond the end
4820 * of the filesystem.
4821 */
4822 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4823 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4824 "block %u is beyond end of filesystem (%llu)",
4825 le32_to_cpu(es->s_first_data_block),
4826 ext4_blocks_count(es));
4827 return -EINVAL;
4828 }
4829 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4830 (sbi->s_cluster_ratio == 1)) {
4831 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4832 "block is 0 with a 1k block and cluster size");
4833 return -EINVAL;
4834 }
4835
4836 blocks_count = (ext4_blocks_count(es) -
4837 le32_to_cpu(es->s_first_data_block) +
4838 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4839 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4840 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4841 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4842 "(block count %llu, first data block %u, "
4843 "blocks per group %lu)", blocks_count,
4844 ext4_blocks_count(es),
4845 le32_to_cpu(es->s_first_data_block),
4846 EXT4_BLOCKS_PER_GROUP(sb));
4847 return -EINVAL;
4848 }
4849 sbi->s_groups_count = blocks_count;
4850 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4851 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4852 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4853 le32_to_cpu(es->s_inodes_count)) {
4854 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4855 le32_to_cpu(es->s_inodes_count),
4856 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4857 return -EINVAL;
4858 }
4859
4860 return 0;
4861 }
4862
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4863 static int ext4_group_desc_init(struct super_block *sb,
4864 struct ext4_super_block *es,
4865 ext4_fsblk_t logical_sb_block,
4866 ext4_group_t *first_not_zeroed)
4867 {
4868 struct ext4_sb_info *sbi = EXT4_SB(sb);
4869 unsigned int db_count;
4870 ext4_fsblk_t block;
4871 int i;
4872
4873 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4874 EXT4_DESC_PER_BLOCK(sb);
4875 if (ext4_has_feature_meta_bg(sb)) {
4876 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4877 ext4_msg(sb, KERN_WARNING,
4878 "first meta block group too large: %u "
4879 "(group descriptor block count %u)",
4880 le32_to_cpu(es->s_first_meta_bg), db_count);
4881 return -EINVAL;
4882 }
4883 }
4884 rcu_assign_pointer(sbi->s_group_desc,
4885 kvmalloc_array(db_count,
4886 sizeof(struct buffer_head *),
4887 GFP_KERNEL));
4888 if (sbi->s_group_desc == NULL) {
4889 ext4_msg(sb, KERN_ERR, "not enough memory");
4890 return -ENOMEM;
4891 }
4892
4893 bgl_lock_init(sbi->s_blockgroup_lock);
4894
4895 /* Pre-read the descriptors into the buffer cache */
4896 for (i = 0; i < db_count; i++) {
4897 block = descriptor_loc(sb, logical_sb_block, i);
4898 ext4_sb_breadahead_unmovable(sb, block);
4899 }
4900
4901 for (i = 0; i < db_count; i++) {
4902 struct buffer_head *bh;
4903
4904 block = descriptor_loc(sb, logical_sb_block, i);
4905 bh = ext4_sb_bread_unmovable(sb, block);
4906 if (IS_ERR(bh)) {
4907 ext4_msg(sb, KERN_ERR,
4908 "can't read group descriptor %d", i);
4909 sbi->s_gdb_count = i;
4910 return PTR_ERR(bh);
4911 }
4912 rcu_read_lock();
4913 rcu_dereference(sbi->s_group_desc)[i] = bh;
4914 rcu_read_unlock();
4915 }
4916 sbi->s_gdb_count = db_count;
4917 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4918 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4919 return -EFSCORRUPTED;
4920 }
4921
4922 return 0;
4923 }
4924
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4925 static int ext4_load_and_init_journal(struct super_block *sb,
4926 struct ext4_super_block *es,
4927 struct ext4_fs_context *ctx)
4928 {
4929 struct ext4_sb_info *sbi = EXT4_SB(sb);
4930 int err;
4931
4932 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4933 if (err)
4934 return err;
4935
4936 if (ext4_has_feature_64bit(sb) &&
4937 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4938 JBD2_FEATURE_INCOMPAT_64BIT)) {
4939 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4940 goto out;
4941 }
4942
4943 if (!set_journal_csum_feature_set(sb)) {
4944 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4945 "feature set");
4946 goto out;
4947 }
4948
4949 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4950 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4951 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4952 ext4_msg(sb, KERN_ERR,
4953 "Failed to set fast commit journal feature");
4954 goto out;
4955 }
4956
4957 /* We have now updated the journal if required, so we can
4958 * validate the data journaling mode. */
4959 switch (test_opt(sb, DATA_FLAGS)) {
4960 case 0:
4961 /* No mode set, assume a default based on the journal
4962 * capabilities: ORDERED_DATA if the journal can
4963 * cope, else JOURNAL_DATA
4964 */
4965 if (jbd2_journal_check_available_features
4966 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4967 set_opt(sb, ORDERED_DATA);
4968 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4969 } else {
4970 set_opt(sb, JOURNAL_DATA);
4971 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4972 }
4973 break;
4974
4975 case EXT4_MOUNT_ORDERED_DATA:
4976 case EXT4_MOUNT_WRITEBACK_DATA:
4977 if (!jbd2_journal_check_available_features
4978 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4979 ext4_msg(sb, KERN_ERR, "Journal does not support "
4980 "requested data journaling mode");
4981 goto out;
4982 }
4983 break;
4984 default:
4985 break;
4986 }
4987
4988 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4989 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4990 ext4_msg(sb, KERN_ERR, "can't mount with "
4991 "journal_async_commit in data=ordered mode");
4992 goto out;
4993 }
4994
4995 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4996
4997 sbi->s_journal->j_submit_inode_data_buffers =
4998 ext4_journal_submit_inode_data_buffers;
4999 sbi->s_journal->j_finish_inode_data_buffers =
5000 ext4_journal_finish_inode_data_buffers;
5001
5002 return 0;
5003
5004 out:
5005 ext4_journal_destroy(sbi, sbi->s_journal);
5006 return -EINVAL;
5007 }
5008
ext4_check_journal_data_mode(struct super_block * sb)5009 static int ext4_check_journal_data_mode(struct super_block *sb)
5010 {
5011 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5012 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
5013 "data=journal disables delayed allocation, "
5014 "dioread_nolock, O_DIRECT and fast_commit support!\n");
5015 /* can't mount with both data=journal and dioread_nolock. */
5016 clear_opt(sb, DIOREAD_NOLOCK);
5017 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5018 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5019 ext4_msg(sb, KERN_ERR, "can't mount with "
5020 "both data=journal and delalloc");
5021 return -EINVAL;
5022 }
5023 if (test_opt(sb, DAX_ALWAYS)) {
5024 ext4_msg(sb, KERN_ERR, "can't mount with "
5025 "both data=journal and dax");
5026 return -EINVAL;
5027 }
5028 if (ext4_has_feature_encrypt(sb)) {
5029 ext4_msg(sb, KERN_WARNING,
5030 "encrypted files will use data=ordered "
5031 "instead of data journaling mode");
5032 }
5033 if (test_opt(sb, DELALLOC))
5034 clear_opt(sb, DELALLOC);
5035 } else {
5036 sb->s_iflags |= SB_I_CGROUPWB;
5037 }
5038
5039 return 0;
5040 }
5041
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5042 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5043 int silent)
5044 {
5045 struct ext4_sb_info *sbi = EXT4_SB(sb);
5046 struct ext4_super_block *es;
5047 ext4_fsblk_t logical_sb_block;
5048 unsigned long offset = 0;
5049 struct buffer_head *bh;
5050 int ret = -EINVAL;
5051 int blocksize;
5052
5053 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5054 if (!blocksize) {
5055 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5056 return -EINVAL;
5057 }
5058
5059 /*
5060 * The ext4 superblock will not be buffer aligned for other than 1kB
5061 * block sizes. We need to calculate the offset from buffer start.
5062 */
5063 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5064 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5065 offset = do_div(logical_sb_block, blocksize);
5066 } else {
5067 logical_sb_block = sbi->s_sb_block;
5068 }
5069
5070 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5071 if (IS_ERR(bh)) {
5072 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5073 return PTR_ERR(bh);
5074 }
5075 /*
5076 * Note: s_es must be initialized as soon as possible because
5077 * some ext4 macro-instructions depend on its value
5078 */
5079 es = (struct ext4_super_block *) (bh->b_data + offset);
5080 sbi->s_es = es;
5081 sb->s_magic = le16_to_cpu(es->s_magic);
5082 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5083 if (!silent)
5084 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5085 goto out;
5086 }
5087
5088 if (le32_to_cpu(es->s_log_block_size) >
5089 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5090 ext4_msg(sb, KERN_ERR,
5091 "Invalid log block size: %u",
5092 le32_to_cpu(es->s_log_block_size));
5093 goto out;
5094 }
5095 if (le32_to_cpu(es->s_log_cluster_size) >
5096 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5097 ext4_msg(sb, KERN_ERR,
5098 "Invalid log cluster size: %u",
5099 le32_to_cpu(es->s_log_cluster_size));
5100 goto out;
5101 }
5102
5103 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5104
5105 /*
5106 * If the default block size is not the same as the real block size,
5107 * we need to reload it.
5108 */
5109 if (sb->s_blocksize == blocksize) {
5110 *lsb = logical_sb_block;
5111 sbi->s_sbh = bh;
5112 return 0;
5113 }
5114
5115 /*
5116 * bh must be released before kill_bdev(), otherwise
5117 * it won't be freed and its page also. kill_bdev()
5118 * is called by sb_set_blocksize().
5119 */
5120 brelse(bh);
5121 /* Validate the filesystem blocksize */
5122 if (!sb_set_blocksize(sb, blocksize)) {
5123 ext4_msg(sb, KERN_ERR, "bad block size %d",
5124 blocksize);
5125 bh = NULL;
5126 goto out;
5127 }
5128
5129 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5130 offset = do_div(logical_sb_block, blocksize);
5131 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5132 if (IS_ERR(bh)) {
5133 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5134 ret = PTR_ERR(bh);
5135 bh = NULL;
5136 goto out;
5137 }
5138 es = (struct ext4_super_block *)(bh->b_data + offset);
5139 sbi->s_es = es;
5140 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5141 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5142 goto out;
5143 }
5144 *lsb = logical_sb_block;
5145 sbi->s_sbh = bh;
5146 return 0;
5147 out:
5148 brelse(bh);
5149 return ret;
5150 }
5151
ext4_hash_info_init(struct super_block * sb)5152 static void ext4_hash_info_init(struct super_block *sb)
5153 {
5154 struct ext4_sb_info *sbi = EXT4_SB(sb);
5155 struct ext4_super_block *es = sbi->s_es;
5156 unsigned int i;
5157
5158 for (i = 0; i < 4; i++)
5159 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5160
5161 sbi->s_def_hash_version = es->s_def_hash_version;
5162 if (ext4_has_feature_dir_index(sb)) {
5163 i = le32_to_cpu(es->s_flags);
5164 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5165 sbi->s_hash_unsigned = 3;
5166 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5167 #ifdef __CHAR_UNSIGNED__
5168 if (!sb_rdonly(sb))
5169 es->s_flags |=
5170 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5171 sbi->s_hash_unsigned = 3;
5172 #else
5173 if (!sb_rdonly(sb))
5174 es->s_flags |=
5175 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5176 #endif
5177 }
5178 }
5179 }
5180
ext4_block_group_meta_init(struct super_block * sb,int silent)5181 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5182 {
5183 struct ext4_sb_info *sbi = EXT4_SB(sb);
5184 struct ext4_super_block *es = sbi->s_es;
5185 int has_huge_files;
5186
5187 has_huge_files = ext4_has_feature_huge_file(sb);
5188 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5189 has_huge_files);
5190 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5191
5192 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5193 if (ext4_has_feature_64bit(sb)) {
5194 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5195 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5196 !is_power_of_2(sbi->s_desc_size)) {
5197 ext4_msg(sb, KERN_ERR,
5198 "unsupported descriptor size %lu",
5199 sbi->s_desc_size);
5200 return -EINVAL;
5201 }
5202 } else
5203 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5204
5205 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5206 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5207
5208 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5209 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5210 if (!silent)
5211 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5212 return -EINVAL;
5213 }
5214 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5215 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5216 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5217 sbi->s_inodes_per_group);
5218 return -EINVAL;
5219 }
5220 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5221 sbi->s_inodes_per_block;
5222 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5223 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5224 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5225 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5226
5227 return 0;
5228 }
5229
5230 /*
5231 * It's hard to get stripe aligned blocks if stripe is not aligned with
5232 * cluster, just disable stripe and alert user to simplify code and avoid
5233 * stripe aligned allocation which will rarely succeed.
5234 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5235 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5236 {
5237 struct ext4_sb_info *sbi = EXT4_SB(sb);
5238 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5239 stripe % sbi->s_cluster_ratio != 0);
5240 }
5241
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5242 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5243 {
5244 struct ext4_super_block *es = NULL;
5245 struct ext4_sb_info *sbi = EXT4_SB(sb);
5246 ext4_fsblk_t logical_sb_block;
5247 struct inode *root;
5248 int needs_recovery;
5249 int err;
5250 ext4_group_t first_not_zeroed;
5251 struct ext4_fs_context *ctx = fc->fs_private;
5252 int silent = fc->sb_flags & SB_SILENT;
5253
5254 /* Set defaults for the variables that will be set during parsing */
5255 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5256 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5257
5258 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5259 sbi->s_sectors_written_start =
5260 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5261
5262 err = ext4_load_super(sb, &logical_sb_block, silent);
5263 if (err)
5264 goto out_fail;
5265
5266 es = sbi->s_es;
5267 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5268
5269 err = ext4_init_metadata_csum(sb, es);
5270 if (err)
5271 goto failed_mount;
5272
5273 ext4_set_def_opts(sb, es);
5274
5275 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5276 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5277 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5278 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5279 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5280
5281 /*
5282 * set default s_li_wait_mult for lazyinit, for the case there is
5283 * no mount option specified.
5284 */
5285 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5286
5287 err = ext4_inode_info_init(sb, es);
5288 if (err)
5289 goto failed_mount;
5290
5291 err = parse_apply_sb_mount_options(sb, ctx);
5292 if (err < 0)
5293 goto failed_mount;
5294
5295 sbi->s_def_mount_opt = sbi->s_mount_opt;
5296 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5297
5298 err = ext4_check_opt_consistency(fc, sb);
5299 if (err < 0)
5300 goto failed_mount;
5301
5302 ext4_apply_options(fc, sb);
5303
5304 err = ext4_encoding_init(sb, es);
5305 if (err)
5306 goto failed_mount;
5307
5308 err = ext4_check_journal_data_mode(sb);
5309 if (err)
5310 goto failed_mount;
5311
5312 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5313 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5314
5315 /* i_version is always enabled now */
5316 sb->s_flags |= SB_I_VERSION;
5317
5318 err = ext4_check_feature_compatibility(sb, es, silent);
5319 if (err)
5320 goto failed_mount;
5321
5322 err = ext4_block_group_meta_init(sb, silent);
5323 if (err)
5324 goto failed_mount;
5325
5326 ext4_hash_info_init(sb);
5327
5328 err = ext4_handle_clustersize(sb);
5329 if (err)
5330 goto failed_mount;
5331
5332 err = ext4_check_geometry(sb, es);
5333 if (err)
5334 goto failed_mount;
5335
5336 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5337 spin_lock_init(&sbi->s_error_lock);
5338 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5339
5340 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5341 if (err)
5342 goto failed_mount3;
5343
5344 err = ext4_es_register_shrinker(sbi);
5345 if (err)
5346 goto failed_mount3;
5347
5348 sbi->s_stripe = ext4_get_stripe_size(sbi);
5349 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5350 ext4_msg(sb, KERN_WARNING,
5351 "stripe (%lu) is not aligned with cluster size (%u), "
5352 "stripe is disabled",
5353 sbi->s_stripe, sbi->s_cluster_ratio);
5354 sbi->s_stripe = 0;
5355 }
5356 sbi->s_extent_max_zeroout_kb = 32;
5357
5358 /*
5359 * set up enough so that it can read an inode
5360 */
5361 sb->s_op = &ext4_sops;
5362 sb->s_export_op = &ext4_export_ops;
5363 sb->s_xattr = ext4_xattr_handlers;
5364 #ifdef CONFIG_FS_ENCRYPTION
5365 sb->s_cop = &ext4_cryptops;
5366 #endif
5367 #ifdef CONFIG_FS_VERITY
5368 sb->s_vop = &ext4_verityops;
5369 #endif
5370 #ifdef CONFIG_QUOTA
5371 sb->dq_op = &ext4_quota_operations;
5372 if (ext4_has_feature_quota(sb))
5373 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5374 else
5375 sb->s_qcop = &ext4_qctl_operations;
5376 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5377 #endif
5378 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5379
5380 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5381 mutex_init(&sbi->s_orphan_lock);
5382
5383 spin_lock_init(&sbi->s_bdev_wb_lock);
5384
5385 ext4_fast_commit_init(sb);
5386
5387 sb->s_root = NULL;
5388
5389 needs_recovery = (es->s_last_orphan != 0 ||
5390 ext4_has_feature_orphan_present(sb) ||
5391 ext4_has_feature_journal_needs_recovery(sb));
5392
5393 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5394 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5395 if (err)
5396 goto failed_mount3a;
5397 }
5398
5399 err = -EINVAL;
5400 /*
5401 * The first inode we look at is the journal inode. Don't try
5402 * root first: it may be modified in the journal!
5403 */
5404 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5405 err = ext4_load_and_init_journal(sb, es, ctx);
5406 if (err)
5407 goto failed_mount3a;
5408 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5409 ext4_has_feature_journal_needs_recovery(sb)) {
5410 ext4_msg(sb, KERN_ERR, "required journal recovery "
5411 "suppressed and not mounted read-only");
5412 goto failed_mount3a;
5413 } else {
5414 /* Nojournal mode, all journal mount options are illegal */
5415 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5416 ext4_msg(sb, KERN_ERR, "can't mount with "
5417 "journal_async_commit, fs mounted w/o journal");
5418 goto failed_mount3a;
5419 }
5420
5421 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5422 ext4_msg(sb, KERN_ERR, "can't mount with "
5423 "journal_checksum, fs mounted w/o journal");
5424 goto failed_mount3a;
5425 }
5426 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5427 ext4_msg(sb, KERN_ERR, "can't mount with "
5428 "commit=%lu, fs mounted w/o journal",
5429 sbi->s_commit_interval / HZ);
5430 goto failed_mount3a;
5431 }
5432 if (EXT4_MOUNT_DATA_FLAGS &
5433 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5434 ext4_msg(sb, KERN_ERR, "can't mount with "
5435 "data=, fs mounted w/o journal");
5436 goto failed_mount3a;
5437 }
5438 if (test_opt(sb, DATA_ERR_ABORT)) {
5439 ext4_msg(sb, KERN_ERR,
5440 "can't mount with data_err=abort, fs mounted w/o journal");
5441 goto failed_mount3a;
5442 }
5443 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5444 clear_opt(sb, JOURNAL_CHECKSUM);
5445 clear_opt(sb, DATA_FLAGS);
5446 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5447 sbi->s_journal = NULL;
5448 needs_recovery = 0;
5449 }
5450
5451 if (!test_opt(sb, NO_MBCACHE)) {
5452 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5453 if (!sbi->s_ea_block_cache) {
5454 ext4_msg(sb, KERN_ERR,
5455 "Failed to create ea_block_cache");
5456 err = -EINVAL;
5457 goto failed_mount_wq;
5458 }
5459
5460 if (ext4_has_feature_ea_inode(sb)) {
5461 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5462 if (!sbi->s_ea_inode_cache) {
5463 ext4_msg(sb, KERN_ERR,
5464 "Failed to create ea_inode_cache");
5465 err = -EINVAL;
5466 goto failed_mount_wq;
5467 }
5468 }
5469 }
5470
5471 /*
5472 * Get the # of file system overhead blocks from the
5473 * superblock if present.
5474 */
5475 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5476 /* ignore the precalculated value if it is ridiculous */
5477 if (sbi->s_overhead > ext4_blocks_count(es))
5478 sbi->s_overhead = 0;
5479 /*
5480 * If the bigalloc feature is not enabled recalculating the
5481 * overhead doesn't take long, so we might as well just redo
5482 * it to make sure we are using the correct value.
5483 */
5484 if (!ext4_has_feature_bigalloc(sb))
5485 sbi->s_overhead = 0;
5486 if (sbi->s_overhead == 0) {
5487 err = ext4_calculate_overhead(sb);
5488 if (err)
5489 goto failed_mount_wq;
5490 }
5491
5492 /*
5493 * The maximum number of concurrent works can be high and
5494 * concurrency isn't really necessary. Limit it to 1.
5495 */
5496 EXT4_SB(sb)->rsv_conversion_wq =
5497 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5498 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5499 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5500 err = -ENOMEM;
5501 goto failed_mount4;
5502 }
5503
5504 /*
5505 * The jbd2_journal_load will have done any necessary log recovery,
5506 * so we can safely mount the rest of the filesystem now.
5507 */
5508
5509 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5510 if (IS_ERR(root)) {
5511 ext4_msg(sb, KERN_ERR, "get root inode failed");
5512 err = PTR_ERR(root);
5513 root = NULL;
5514 goto failed_mount4;
5515 }
5516 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5517 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5518 iput(root);
5519 err = -EFSCORRUPTED;
5520 goto failed_mount4;
5521 }
5522
5523 sb->s_root = d_make_root(root);
5524 if (!sb->s_root) {
5525 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5526 err = -ENOMEM;
5527 goto failed_mount4;
5528 }
5529
5530 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5531 if (err == -EROFS) {
5532 sb->s_flags |= SB_RDONLY;
5533 } else if (err)
5534 goto failed_mount4a;
5535
5536 ext4_set_resv_clusters(sb);
5537
5538 if (test_opt(sb, BLOCK_VALIDITY)) {
5539 err = ext4_setup_system_zone(sb);
5540 if (err) {
5541 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5542 "zone (%d)", err);
5543 goto failed_mount4a;
5544 }
5545 }
5546 ext4_fc_replay_cleanup(sb);
5547
5548 ext4_ext_init(sb);
5549
5550 /*
5551 * Enable optimize_scan if number of groups is > threshold. This can be
5552 * turned off by passing "mb_optimize_scan=0". This can also be
5553 * turned on forcefully by passing "mb_optimize_scan=1".
5554 */
5555 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5556 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5557 set_opt2(sb, MB_OPTIMIZE_SCAN);
5558 else
5559 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5560 }
5561
5562 err = ext4_mb_init(sb);
5563 if (err) {
5564 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5565 err);
5566 goto failed_mount5;
5567 }
5568
5569 /*
5570 * We can only set up the journal commit callback once
5571 * mballoc is initialized
5572 */
5573 if (sbi->s_journal)
5574 sbi->s_journal->j_commit_callback =
5575 ext4_journal_commit_callback;
5576
5577 err = ext4_percpu_param_init(sbi);
5578 if (err)
5579 goto failed_mount6;
5580
5581 if (ext4_has_feature_flex_bg(sb))
5582 if (!ext4_fill_flex_info(sb)) {
5583 ext4_msg(sb, KERN_ERR,
5584 "unable to initialize "
5585 "flex_bg meta info!");
5586 err = -ENOMEM;
5587 goto failed_mount6;
5588 }
5589
5590 err = ext4_register_li_request(sb, first_not_zeroed);
5591 if (err)
5592 goto failed_mount6;
5593
5594 err = ext4_init_orphan_info(sb);
5595 if (err)
5596 goto failed_mount7;
5597 #ifdef CONFIG_QUOTA
5598 /* Enable quota usage during mount. */
5599 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5600 err = ext4_enable_quotas(sb);
5601 if (err)
5602 goto failed_mount8;
5603 }
5604 #endif /* CONFIG_QUOTA */
5605
5606 /*
5607 * Save the original bdev mapping's wb_err value which could be
5608 * used to detect the metadata async write error.
5609 */
5610 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5611 &sbi->s_bdev_wb_err);
5612 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5613 ext4_orphan_cleanup(sb, es);
5614 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5615 /*
5616 * Update the checksum after updating free space/inode counters and
5617 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5618 * checksum in the buffer cache until it is written out and
5619 * e2fsprogs programs trying to open a file system immediately
5620 * after it is mounted can fail.
5621 */
5622 ext4_superblock_csum_set(sb);
5623 if (needs_recovery) {
5624 ext4_msg(sb, KERN_INFO, "recovery complete");
5625 err = ext4_mark_recovery_complete(sb, es);
5626 if (err)
5627 goto failed_mount9;
5628 }
5629
5630 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5631 ext4_msg(sb, KERN_WARNING,
5632 "mounting with \"discard\" option, but the device does not support discard");
5633
5634 if (es->s_error_count)
5635 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5636
5637 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5638 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5639 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5640 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5641 atomic_set(&sbi->s_warning_count, 0);
5642 atomic_set(&sbi->s_msg_count, 0);
5643
5644 /* Register sysfs after all initializations are complete. */
5645 err = ext4_register_sysfs(sb);
5646 if (err)
5647 goto failed_mount9;
5648
5649 return 0;
5650
5651 failed_mount9:
5652 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5653 failed_mount8: __maybe_unused
5654 ext4_release_orphan_info(sb);
5655 failed_mount7:
5656 ext4_unregister_li_request(sb);
5657 failed_mount6:
5658 ext4_mb_release(sb);
5659 ext4_flex_groups_free(sbi);
5660 ext4_percpu_param_destroy(sbi);
5661 failed_mount5:
5662 ext4_ext_release(sb);
5663 ext4_release_system_zone(sb);
5664 failed_mount4a:
5665 dput(sb->s_root);
5666 sb->s_root = NULL;
5667 failed_mount4:
5668 ext4_msg(sb, KERN_ERR, "mount failed");
5669 if (EXT4_SB(sb)->rsv_conversion_wq)
5670 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5671 failed_mount_wq:
5672 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5673 sbi->s_ea_inode_cache = NULL;
5674
5675 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5676 sbi->s_ea_block_cache = NULL;
5677
5678 if (sbi->s_journal) {
5679 ext4_journal_destroy(sbi, sbi->s_journal);
5680 }
5681 failed_mount3a:
5682 ext4_es_unregister_shrinker(sbi);
5683 failed_mount3:
5684 /* flush s_sb_upd_work before sbi destroy */
5685 flush_work(&sbi->s_sb_upd_work);
5686 ext4_stop_mmpd(sbi);
5687 del_timer_sync(&sbi->s_err_report);
5688 ext4_group_desc_free(sbi);
5689 failed_mount:
5690 if (sbi->s_chksum_driver)
5691 crypto_free_shash(sbi->s_chksum_driver);
5692
5693 #if IS_ENABLED(CONFIG_UNICODE)
5694 utf8_unload(sb->s_encoding);
5695 #endif
5696
5697 #ifdef CONFIG_QUOTA
5698 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5699 kfree(get_qf_name(sb, sbi, i));
5700 #endif
5701 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5702 brelse(sbi->s_sbh);
5703 if (sbi->s_journal_bdev) {
5704 invalidate_bdev(sbi->s_journal_bdev);
5705 blkdev_put(sbi->s_journal_bdev, sb);
5706 }
5707 out_fail:
5708 invalidate_bdev(sb->s_bdev);
5709 sb->s_fs_info = NULL;
5710 return err;
5711 }
5712
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5713 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5714 {
5715 struct ext4_fs_context *ctx = fc->fs_private;
5716 struct ext4_sb_info *sbi;
5717 const char *descr;
5718 int ret;
5719
5720 sbi = ext4_alloc_sbi(sb);
5721 if (!sbi)
5722 return -ENOMEM;
5723
5724 fc->s_fs_info = sbi;
5725
5726 /* Cleanup superblock name */
5727 strreplace(sb->s_id, '/', '!');
5728
5729 sbi->s_sb_block = 1; /* Default super block location */
5730 if (ctx->spec & EXT4_SPEC_s_sb_block)
5731 sbi->s_sb_block = ctx->s_sb_block;
5732
5733 ret = __ext4_fill_super(fc, sb);
5734 if (ret < 0)
5735 goto free_sbi;
5736
5737 if (sbi->s_journal) {
5738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5739 descr = " journalled data mode";
5740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5741 descr = " ordered data mode";
5742 else
5743 descr = " writeback data mode";
5744 } else
5745 descr = "out journal";
5746
5747 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5748 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5749 "Quota mode: %s.", &sb->s_uuid,
5750 sb_rdonly(sb) ? "ro" : "r/w", descr,
5751 ext4_quota_mode(sb));
5752
5753 /* Update the s_overhead_clusters if necessary */
5754 ext4_update_overhead(sb, false);
5755 return 0;
5756
5757 free_sbi:
5758 ext4_free_sbi(sbi);
5759 fc->s_fs_info = NULL;
5760 return ret;
5761 }
5762
ext4_get_tree(struct fs_context * fc)5763 static int ext4_get_tree(struct fs_context *fc)
5764 {
5765 return get_tree_bdev(fc, ext4_fill_super);
5766 }
5767
5768 /*
5769 * Setup any per-fs journal parameters now. We'll do this both on
5770 * initial mount, once the journal has been initialised but before we've
5771 * done any recovery; and again on any subsequent remount.
5772 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5773 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5774 {
5775 struct ext4_sb_info *sbi = EXT4_SB(sb);
5776
5777 journal->j_commit_interval = sbi->s_commit_interval;
5778 journal->j_min_batch_time = sbi->s_min_batch_time;
5779 journal->j_max_batch_time = sbi->s_max_batch_time;
5780 ext4_fc_init(sb, journal);
5781
5782 write_lock(&journal->j_state_lock);
5783 if (test_opt(sb, BARRIER))
5784 journal->j_flags |= JBD2_BARRIER;
5785 else
5786 journal->j_flags &= ~JBD2_BARRIER;
5787 if (test_opt(sb, DATA_ERR_ABORT))
5788 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5789 else
5790 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5791 /*
5792 * Always enable journal cycle record option, letting the journal
5793 * records log transactions continuously between each mount.
5794 */
5795 journal->j_flags |= JBD2_CYCLE_RECORD;
5796 write_unlock(&journal->j_state_lock);
5797 }
5798
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5799 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5800 unsigned int journal_inum)
5801 {
5802 struct inode *journal_inode;
5803
5804 /*
5805 * Test for the existence of a valid inode on disk. Bad things
5806 * happen if we iget() an unused inode, as the subsequent iput()
5807 * will try to delete it.
5808 */
5809 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5810 if (IS_ERR(journal_inode)) {
5811 ext4_msg(sb, KERN_ERR, "no journal found");
5812 return ERR_CAST(journal_inode);
5813 }
5814 if (!journal_inode->i_nlink) {
5815 make_bad_inode(journal_inode);
5816 iput(journal_inode);
5817 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5818 return ERR_PTR(-EFSCORRUPTED);
5819 }
5820 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5821 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5822 iput(journal_inode);
5823 return ERR_PTR(-EFSCORRUPTED);
5824 }
5825
5826 ext4_debug("Journal inode found at %p: %lld bytes\n",
5827 journal_inode, journal_inode->i_size);
5828 return journal_inode;
5829 }
5830
ext4_journal_bmap(journal_t * journal,sector_t * block)5831 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5832 {
5833 struct ext4_map_blocks map;
5834 int ret;
5835
5836 if (journal->j_inode == NULL)
5837 return 0;
5838
5839 map.m_lblk = *block;
5840 map.m_len = 1;
5841 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5842 if (ret <= 0) {
5843 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5844 "journal bmap failed: block %llu ret %d\n",
5845 *block, ret);
5846 jbd2_journal_abort(journal, ret ? ret : -EIO);
5847 return ret;
5848 }
5849 *block = map.m_pblk;
5850 return 0;
5851 }
5852
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5853 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5854 unsigned int journal_inum)
5855 {
5856 struct inode *journal_inode;
5857 journal_t *journal;
5858
5859 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5860 if (IS_ERR(journal_inode))
5861 return ERR_CAST(journal_inode);
5862
5863 journal = jbd2_journal_init_inode(journal_inode);
5864 if (IS_ERR(journal)) {
5865 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5866 iput(journal_inode);
5867 return ERR_CAST(journal);
5868 }
5869 journal->j_private = sb;
5870 journal->j_bmap = ext4_journal_bmap;
5871 ext4_init_journal_params(sb, journal);
5872 return journal;
5873 }
5874
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5875 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5876 dev_t j_dev, ext4_fsblk_t *j_start,
5877 ext4_fsblk_t *j_len)
5878 {
5879 struct buffer_head *bh;
5880 struct block_device *bdev;
5881 int hblock, blocksize;
5882 ext4_fsblk_t sb_block;
5883 unsigned long offset;
5884 struct ext4_super_block *es;
5885 int errno;
5886
5887 /* see get_tree_bdev why this is needed and safe */
5888 up_write(&sb->s_umount);
5889 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5890 &fs_holder_ops);
5891 down_write(&sb->s_umount);
5892 if (IS_ERR(bdev)) {
5893 ext4_msg(sb, KERN_ERR,
5894 "failed to open journal device unknown-block(%u,%u) %ld",
5895 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5896 return ERR_CAST(bdev);
5897 }
5898
5899 blocksize = sb->s_blocksize;
5900 hblock = bdev_logical_block_size(bdev);
5901 if (blocksize < hblock) {
5902 ext4_msg(sb, KERN_ERR,
5903 "blocksize too small for journal device");
5904 errno = -EINVAL;
5905 goto out_bdev;
5906 }
5907
5908 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5909 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5910 set_blocksize(bdev, blocksize);
5911 bh = __bread(bdev, sb_block, blocksize);
5912 if (!bh) {
5913 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5914 "external journal");
5915 errno = -EINVAL;
5916 goto out_bdev;
5917 }
5918
5919 es = (struct ext4_super_block *) (bh->b_data + offset);
5920 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5921 !(le32_to_cpu(es->s_feature_incompat) &
5922 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5923 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5924 errno = -EFSCORRUPTED;
5925 goto out_bh;
5926 }
5927
5928 if ((le32_to_cpu(es->s_feature_ro_compat) &
5929 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5930 es->s_checksum != ext4_superblock_csum(sb, es)) {
5931 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5932 errno = -EFSCORRUPTED;
5933 goto out_bh;
5934 }
5935
5936 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5937 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5938 errno = -EFSCORRUPTED;
5939 goto out_bh;
5940 }
5941
5942 *j_start = sb_block + 1;
5943 *j_len = ext4_blocks_count(es);
5944 brelse(bh);
5945 return bdev;
5946
5947 out_bh:
5948 brelse(bh);
5949 out_bdev:
5950 blkdev_put(bdev, sb);
5951 return ERR_PTR(errno);
5952 }
5953
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5954 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5955 dev_t j_dev)
5956 {
5957 journal_t *journal;
5958 ext4_fsblk_t j_start;
5959 ext4_fsblk_t j_len;
5960 struct block_device *journal_bdev;
5961 int errno = 0;
5962
5963 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5964 if (IS_ERR(journal_bdev))
5965 return ERR_CAST(journal_bdev);
5966
5967 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5968 j_len, sb->s_blocksize);
5969 if (IS_ERR(journal)) {
5970 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5971 errno = PTR_ERR(journal);
5972 goto out_bdev;
5973 }
5974 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5975 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5976 "user (unsupported) - %d",
5977 be32_to_cpu(journal->j_superblock->s_nr_users));
5978 errno = -EINVAL;
5979 goto out_journal;
5980 }
5981 journal->j_private = sb;
5982 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5983 ext4_init_journal_params(sb, journal);
5984 return journal;
5985
5986 out_journal:
5987 ext4_journal_destroy(EXT4_SB(sb), journal);
5988 out_bdev:
5989 blkdev_put(journal_bdev, sb);
5990 return ERR_PTR(errno);
5991 }
5992
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5993 static int ext4_load_journal(struct super_block *sb,
5994 struct ext4_super_block *es,
5995 unsigned long journal_devnum)
5996 {
5997 journal_t *journal;
5998 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5999 dev_t journal_dev;
6000 int err = 0;
6001 int really_read_only;
6002 int journal_dev_ro;
6003
6004 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6005 return -EFSCORRUPTED;
6006
6007 if (journal_devnum &&
6008 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6009 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6010 "numbers have changed");
6011 journal_dev = new_decode_dev(journal_devnum);
6012 } else
6013 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6014
6015 if (journal_inum && journal_dev) {
6016 ext4_msg(sb, KERN_ERR,
6017 "filesystem has both journal inode and journal device!");
6018 return -EINVAL;
6019 }
6020
6021 if (journal_inum) {
6022 journal = ext4_open_inode_journal(sb, journal_inum);
6023 if (IS_ERR(journal))
6024 return PTR_ERR(journal);
6025 } else {
6026 journal = ext4_open_dev_journal(sb, journal_dev);
6027 if (IS_ERR(journal))
6028 return PTR_ERR(journal);
6029 }
6030
6031 journal_dev_ro = bdev_read_only(journal->j_dev);
6032 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6033
6034 if (journal_dev_ro && !sb_rdonly(sb)) {
6035 ext4_msg(sb, KERN_ERR,
6036 "journal device read-only, try mounting with '-o ro'");
6037 err = -EROFS;
6038 goto err_out;
6039 }
6040
6041 /*
6042 * Are we loading a blank journal or performing recovery after a
6043 * crash? For recovery, we need to check in advance whether we
6044 * can get read-write access to the device.
6045 */
6046 if (ext4_has_feature_journal_needs_recovery(sb)) {
6047 if (sb_rdonly(sb)) {
6048 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6049 "required on readonly filesystem");
6050 if (really_read_only) {
6051 ext4_msg(sb, KERN_ERR, "write access "
6052 "unavailable, cannot proceed "
6053 "(try mounting with noload)");
6054 err = -EROFS;
6055 goto err_out;
6056 }
6057 ext4_msg(sb, KERN_INFO, "write access will "
6058 "be enabled during recovery");
6059 }
6060 }
6061
6062 if (!(journal->j_flags & JBD2_BARRIER))
6063 ext4_msg(sb, KERN_INFO, "barriers disabled");
6064
6065 if (!ext4_has_feature_journal_needs_recovery(sb))
6066 err = jbd2_journal_wipe(journal, !really_read_only);
6067 if (!err) {
6068 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6069 __le16 orig_state;
6070 bool changed = false;
6071
6072 if (save)
6073 memcpy(save, ((char *) es) +
6074 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6075 err = jbd2_journal_load(journal);
6076 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6077 save, EXT4_S_ERR_LEN)) {
6078 memcpy(((char *) es) + EXT4_S_ERR_START,
6079 save, EXT4_S_ERR_LEN);
6080 changed = true;
6081 }
6082 kfree(save);
6083 orig_state = es->s_state;
6084 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6085 EXT4_ERROR_FS);
6086 if (orig_state != es->s_state)
6087 changed = true;
6088 /* Write out restored error information to the superblock */
6089 if (changed && !really_read_only) {
6090 int err2;
6091 err2 = ext4_commit_super(sb);
6092 err = err ? : err2;
6093 }
6094 }
6095
6096 if (err) {
6097 ext4_msg(sb, KERN_ERR, "error loading journal");
6098 goto err_out;
6099 }
6100
6101 EXT4_SB(sb)->s_journal = journal;
6102 err = ext4_clear_journal_err(sb, es);
6103 if (err) {
6104 ext4_journal_destroy(EXT4_SB(sb), journal);
6105 return err;
6106 }
6107
6108 if (!really_read_only && journal_devnum &&
6109 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6110 es->s_journal_dev = cpu_to_le32(journal_devnum);
6111 ext4_commit_super(sb);
6112 }
6113 if (!really_read_only && journal_inum &&
6114 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6115 es->s_journal_inum = cpu_to_le32(journal_inum);
6116 ext4_commit_super(sb);
6117 }
6118
6119 return 0;
6120
6121 err_out:
6122 ext4_journal_destroy(EXT4_SB(sb), journal);
6123 return err;
6124 }
6125
6126 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6127 static void ext4_update_super(struct super_block *sb)
6128 {
6129 struct ext4_sb_info *sbi = EXT4_SB(sb);
6130 struct ext4_super_block *es = sbi->s_es;
6131 struct buffer_head *sbh = sbi->s_sbh;
6132
6133 lock_buffer(sbh);
6134 /*
6135 * If the file system is mounted read-only, don't update the
6136 * superblock write time. This avoids updating the superblock
6137 * write time when we are mounting the root file system
6138 * read/only but we need to replay the journal; at that point,
6139 * for people who are east of GMT and who make their clock
6140 * tick in localtime for Windows bug-for-bug compatibility,
6141 * the clock is set in the future, and this will cause e2fsck
6142 * to complain and force a full file system check.
6143 */
6144 if (!sb_rdonly(sb))
6145 ext4_update_tstamp(es, s_wtime);
6146 es->s_kbytes_written =
6147 cpu_to_le64(sbi->s_kbytes_written +
6148 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6149 sbi->s_sectors_written_start) >> 1));
6150 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6151 ext4_free_blocks_count_set(es,
6152 EXT4_C2B(sbi, percpu_counter_sum_positive(
6153 &sbi->s_freeclusters_counter)));
6154 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6155 es->s_free_inodes_count =
6156 cpu_to_le32(percpu_counter_sum_positive(
6157 &sbi->s_freeinodes_counter));
6158 /* Copy error information to the on-disk superblock */
6159 spin_lock(&sbi->s_error_lock);
6160 if (sbi->s_add_error_count > 0) {
6161 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6162 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6163 __ext4_update_tstamp(&es->s_first_error_time,
6164 &es->s_first_error_time_hi,
6165 sbi->s_first_error_time);
6166 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6167 sizeof(es->s_first_error_func));
6168 es->s_first_error_line =
6169 cpu_to_le32(sbi->s_first_error_line);
6170 es->s_first_error_ino =
6171 cpu_to_le32(sbi->s_first_error_ino);
6172 es->s_first_error_block =
6173 cpu_to_le64(sbi->s_first_error_block);
6174 es->s_first_error_errcode =
6175 ext4_errno_to_code(sbi->s_first_error_code);
6176 }
6177 __ext4_update_tstamp(&es->s_last_error_time,
6178 &es->s_last_error_time_hi,
6179 sbi->s_last_error_time);
6180 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6181 sizeof(es->s_last_error_func));
6182 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6183 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6184 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6185 es->s_last_error_errcode =
6186 ext4_errno_to_code(sbi->s_last_error_code);
6187 /*
6188 * Start the daily error reporting function if it hasn't been
6189 * started already
6190 */
6191 if (!es->s_error_count)
6192 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6193 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6194 sbi->s_add_error_count = 0;
6195 }
6196 spin_unlock(&sbi->s_error_lock);
6197
6198 ext4_superblock_csum_set(sb);
6199 unlock_buffer(sbh);
6200 }
6201
ext4_commit_super(struct super_block * sb)6202 static int ext4_commit_super(struct super_block *sb)
6203 {
6204 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6205
6206 if (!sbh)
6207 return -EINVAL;
6208 if (block_device_ejected(sb))
6209 return -ENODEV;
6210
6211 ext4_update_super(sb);
6212
6213 lock_buffer(sbh);
6214 /* Buffer got discarded which means block device got invalidated */
6215 if (!buffer_mapped(sbh)) {
6216 unlock_buffer(sbh);
6217 return -EIO;
6218 }
6219
6220 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6221 /*
6222 * Oh, dear. A previous attempt to write the
6223 * superblock failed. This could happen because the
6224 * USB device was yanked out. Or it could happen to
6225 * be a transient write error and maybe the block will
6226 * be remapped. Nothing we can do but to retry the
6227 * write and hope for the best.
6228 */
6229 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6230 "superblock detected");
6231 clear_buffer_write_io_error(sbh);
6232 set_buffer_uptodate(sbh);
6233 }
6234 get_bh(sbh);
6235 /* Clear potential dirty bit if it was journalled update */
6236 clear_buffer_dirty(sbh);
6237 sbh->b_end_io = end_buffer_write_sync;
6238 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6239 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6240 wait_on_buffer(sbh);
6241 if (buffer_write_io_error(sbh)) {
6242 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6243 "superblock");
6244 clear_buffer_write_io_error(sbh);
6245 set_buffer_uptodate(sbh);
6246 return -EIO;
6247 }
6248 return 0;
6249 }
6250
6251 /*
6252 * Have we just finished recovery? If so, and if we are mounting (or
6253 * remounting) the filesystem readonly, then we will end up with a
6254 * consistent fs on disk. Record that fact.
6255 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6256 static int ext4_mark_recovery_complete(struct super_block *sb,
6257 struct ext4_super_block *es)
6258 {
6259 int err;
6260 journal_t *journal = EXT4_SB(sb)->s_journal;
6261
6262 if (!ext4_has_feature_journal(sb)) {
6263 if (journal != NULL) {
6264 ext4_error(sb, "Journal got removed while the fs was "
6265 "mounted!");
6266 return -EFSCORRUPTED;
6267 }
6268 return 0;
6269 }
6270 jbd2_journal_lock_updates(journal);
6271 err = jbd2_journal_flush(journal, 0);
6272 if (err < 0)
6273 goto out;
6274
6275 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6276 ext4_has_feature_orphan_present(sb))) {
6277 if (!ext4_orphan_file_empty(sb)) {
6278 ext4_error(sb, "Orphan file not empty on read-only fs.");
6279 err = -EFSCORRUPTED;
6280 goto out;
6281 }
6282 ext4_clear_feature_journal_needs_recovery(sb);
6283 ext4_clear_feature_orphan_present(sb);
6284 ext4_commit_super(sb);
6285 }
6286 out:
6287 jbd2_journal_unlock_updates(journal);
6288 return err;
6289 }
6290
6291 /*
6292 * If we are mounting (or read-write remounting) a filesystem whose journal
6293 * has recorded an error from a previous lifetime, move that error to the
6294 * main filesystem now.
6295 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6296 static int ext4_clear_journal_err(struct super_block *sb,
6297 struct ext4_super_block *es)
6298 {
6299 journal_t *journal;
6300 int j_errno;
6301 const char *errstr;
6302
6303 if (!ext4_has_feature_journal(sb)) {
6304 ext4_error(sb, "Journal got removed while the fs was mounted!");
6305 return -EFSCORRUPTED;
6306 }
6307
6308 journal = EXT4_SB(sb)->s_journal;
6309
6310 /*
6311 * Now check for any error status which may have been recorded in the
6312 * journal by a prior ext4_error() or ext4_abort()
6313 */
6314
6315 j_errno = jbd2_journal_errno(journal);
6316 if (j_errno) {
6317 char nbuf[16];
6318
6319 errstr = ext4_decode_error(sb, j_errno, nbuf);
6320 ext4_warning(sb, "Filesystem error recorded "
6321 "from previous mount: %s", errstr);
6322
6323 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6325 j_errno = ext4_commit_super(sb);
6326 if (j_errno)
6327 return j_errno;
6328 ext4_warning(sb, "Marked fs in need of filesystem check.");
6329
6330 jbd2_journal_clear_err(journal);
6331 jbd2_journal_update_sb_errno(journal);
6332 }
6333 return 0;
6334 }
6335
6336 /*
6337 * Force the running and committing transactions to commit,
6338 * and wait on the commit.
6339 */
ext4_force_commit(struct super_block * sb)6340 int ext4_force_commit(struct super_block *sb)
6341 {
6342 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6343 }
6344
ext4_sync_fs(struct super_block * sb,int wait)6345 static int ext4_sync_fs(struct super_block *sb, int wait)
6346 {
6347 int ret = 0;
6348 tid_t target;
6349 bool needs_barrier = false;
6350 struct ext4_sb_info *sbi = EXT4_SB(sb);
6351
6352 if (unlikely(ext4_forced_shutdown(sb)))
6353 return 0;
6354
6355 trace_ext4_sync_fs(sb, wait);
6356 flush_workqueue(sbi->rsv_conversion_wq);
6357 /*
6358 * Writeback quota in non-journalled quota case - journalled quota has
6359 * no dirty dquots
6360 */
6361 dquot_writeback_dquots(sb, -1);
6362 /*
6363 * Data writeback is possible w/o journal transaction, so barrier must
6364 * being sent at the end of the function. But we can skip it if
6365 * transaction_commit will do it for us.
6366 */
6367 if (sbi->s_journal) {
6368 target = jbd2_get_latest_transaction(sbi->s_journal);
6369 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6370 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6371 needs_barrier = true;
6372
6373 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6374 if (wait)
6375 ret = jbd2_log_wait_commit(sbi->s_journal,
6376 target);
6377 }
6378 } else if (wait && test_opt(sb, BARRIER))
6379 needs_barrier = true;
6380 if (needs_barrier) {
6381 int err;
6382 err = blkdev_issue_flush(sb->s_bdev);
6383 if (!ret)
6384 ret = err;
6385 }
6386
6387 return ret;
6388 }
6389
6390 /*
6391 * LVM calls this function before a (read-only) snapshot is created. This
6392 * gives us a chance to flush the journal completely and mark the fs clean.
6393 *
6394 * Note that only this function cannot bring a filesystem to be in a clean
6395 * state independently. It relies on upper layer to stop all data & metadata
6396 * modifications.
6397 */
ext4_freeze(struct super_block * sb)6398 static int ext4_freeze(struct super_block *sb)
6399 {
6400 int error = 0;
6401 journal_t *journal = EXT4_SB(sb)->s_journal;
6402
6403 if (journal) {
6404 /* Now we set up the journal barrier. */
6405 jbd2_journal_lock_updates(journal);
6406
6407 /*
6408 * Don't clear the needs_recovery flag if we failed to
6409 * flush the journal.
6410 */
6411 error = jbd2_journal_flush(journal, 0);
6412 if (error < 0)
6413 goto out;
6414
6415 /* Journal blocked and flushed, clear needs_recovery flag. */
6416 ext4_clear_feature_journal_needs_recovery(sb);
6417 if (ext4_orphan_file_empty(sb))
6418 ext4_clear_feature_orphan_present(sb);
6419 }
6420
6421 error = ext4_commit_super(sb);
6422 out:
6423 if (journal)
6424 /* we rely on upper layer to stop further updates */
6425 jbd2_journal_unlock_updates(journal);
6426 return error;
6427 }
6428
6429 /*
6430 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6431 * flag here, even though the filesystem is not technically dirty yet.
6432 */
ext4_unfreeze(struct super_block * sb)6433 static int ext4_unfreeze(struct super_block *sb)
6434 {
6435 if (ext4_forced_shutdown(sb))
6436 return 0;
6437
6438 if (EXT4_SB(sb)->s_journal) {
6439 /* Reset the needs_recovery flag before the fs is unlocked. */
6440 ext4_set_feature_journal_needs_recovery(sb);
6441 if (ext4_has_feature_orphan_file(sb))
6442 ext4_set_feature_orphan_present(sb);
6443 }
6444
6445 ext4_commit_super(sb);
6446 return 0;
6447 }
6448
6449 /*
6450 * Structure to save mount options for ext4_remount's benefit
6451 */
6452 struct ext4_mount_options {
6453 unsigned long s_mount_opt;
6454 unsigned long s_mount_opt2;
6455 kuid_t s_resuid;
6456 kgid_t s_resgid;
6457 unsigned long s_commit_interval;
6458 u32 s_min_batch_time, s_max_batch_time;
6459 #ifdef CONFIG_QUOTA
6460 int s_jquota_fmt;
6461 char *s_qf_names[EXT4_MAXQUOTAS];
6462 #endif
6463 };
6464
__ext4_remount(struct fs_context * fc,struct super_block * sb)6465 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6466 {
6467 struct ext4_fs_context *ctx = fc->fs_private;
6468 struct ext4_super_block *es;
6469 struct ext4_sb_info *sbi = EXT4_SB(sb);
6470 unsigned long old_sb_flags;
6471 struct ext4_mount_options old_opts;
6472 ext4_group_t g;
6473 int err = 0;
6474 int alloc_ctx;
6475 #ifdef CONFIG_QUOTA
6476 int enable_quota = 0;
6477 int i, j;
6478 char *to_free[EXT4_MAXQUOTAS];
6479 #endif
6480
6481
6482 /* Store the original options */
6483 old_sb_flags = sb->s_flags;
6484 old_opts.s_mount_opt = sbi->s_mount_opt;
6485 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6486 old_opts.s_resuid = sbi->s_resuid;
6487 old_opts.s_resgid = sbi->s_resgid;
6488 old_opts.s_commit_interval = sbi->s_commit_interval;
6489 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6490 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6491 #ifdef CONFIG_QUOTA
6492 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6493 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6494 if (sbi->s_qf_names[i]) {
6495 char *qf_name = get_qf_name(sb, sbi, i);
6496
6497 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6498 if (!old_opts.s_qf_names[i]) {
6499 for (j = 0; j < i; j++)
6500 kfree(old_opts.s_qf_names[j]);
6501 return -ENOMEM;
6502 }
6503 } else
6504 old_opts.s_qf_names[i] = NULL;
6505 #endif
6506 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6507 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6508 ctx->journal_ioprio =
6509 sbi->s_journal->j_task->io_context->ioprio;
6510 else
6511 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6512
6513 }
6514
6515 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6516 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6517 ext4_msg(sb, KERN_WARNING,
6518 "stripe (%lu) is not aligned with cluster size (%u), "
6519 "stripe is disabled",
6520 ctx->s_stripe, sbi->s_cluster_ratio);
6521 ctx->s_stripe = 0;
6522 }
6523
6524 /*
6525 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6526 * two calls to ext4_should_dioread_nolock() to return inconsistent
6527 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6528 * here s_writepages_rwsem to avoid race between writepages ops and
6529 * remount.
6530 */
6531 alloc_ctx = ext4_writepages_down_write(sb);
6532 ext4_apply_options(fc, sb);
6533 ext4_writepages_up_write(sb, alloc_ctx);
6534
6535 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6536 test_opt(sb, JOURNAL_CHECKSUM)) {
6537 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6538 "during remount not supported; ignoring");
6539 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6540 }
6541
6542 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6543 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6544 ext4_msg(sb, KERN_ERR, "can't mount with "
6545 "both data=journal and delalloc");
6546 err = -EINVAL;
6547 goto restore_opts;
6548 }
6549 if (test_opt(sb, DIOREAD_NOLOCK)) {
6550 ext4_msg(sb, KERN_ERR, "can't mount with "
6551 "both data=journal and dioread_nolock");
6552 err = -EINVAL;
6553 goto restore_opts;
6554 }
6555 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6556 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6557 ext4_msg(sb, KERN_ERR, "can't mount with "
6558 "journal_async_commit in data=ordered mode");
6559 err = -EINVAL;
6560 goto restore_opts;
6561 }
6562 }
6563
6564 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6565 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6566 err = -EINVAL;
6567 goto restore_opts;
6568 }
6569
6570 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6571 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6572
6573 es = sbi->s_es;
6574
6575 if (sbi->s_journal) {
6576 ext4_init_journal_params(sb, sbi->s_journal);
6577 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6578 }
6579
6580 /* Flush outstanding errors before changing fs state */
6581 flush_work(&sbi->s_sb_upd_work);
6582
6583 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6584 if (ext4_forced_shutdown(sb)) {
6585 err = -EROFS;
6586 goto restore_opts;
6587 }
6588
6589 if (fc->sb_flags & SB_RDONLY) {
6590 err = sync_filesystem(sb);
6591 if (err < 0)
6592 goto restore_opts;
6593 err = dquot_suspend(sb, -1);
6594 if (err < 0)
6595 goto restore_opts;
6596
6597 /*
6598 * First of all, the unconditional stuff we have to do
6599 * to disable replay of the journal when we next remount
6600 */
6601 sb->s_flags |= SB_RDONLY;
6602
6603 /*
6604 * OK, test if we are remounting a valid rw partition
6605 * readonly, and if so set the rdonly flag and then
6606 * mark the partition as valid again.
6607 */
6608 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6609 (sbi->s_mount_state & EXT4_VALID_FS))
6610 es->s_state = cpu_to_le16(sbi->s_mount_state);
6611
6612 if (sbi->s_journal) {
6613 /*
6614 * We let remount-ro finish even if marking fs
6615 * as clean failed...
6616 */
6617 ext4_mark_recovery_complete(sb, es);
6618 }
6619 } else {
6620 /* Make sure we can mount this feature set readwrite */
6621 if (ext4_has_feature_readonly(sb) ||
6622 !ext4_feature_set_ok(sb, 0)) {
6623 err = -EROFS;
6624 goto restore_opts;
6625 }
6626 /*
6627 * Make sure the group descriptor checksums
6628 * are sane. If they aren't, refuse to remount r/w.
6629 */
6630 for (g = 0; g < sbi->s_groups_count; g++) {
6631 struct ext4_group_desc *gdp =
6632 ext4_get_group_desc(sb, g, NULL);
6633
6634 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6635 ext4_msg(sb, KERN_ERR,
6636 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6637 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6638 le16_to_cpu(gdp->bg_checksum));
6639 err = -EFSBADCRC;
6640 goto restore_opts;
6641 }
6642 }
6643
6644 /*
6645 * If we have an unprocessed orphan list hanging
6646 * around from a previously readonly bdev mount,
6647 * require a full umount/remount for now.
6648 */
6649 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6650 ext4_msg(sb, KERN_WARNING, "Couldn't "
6651 "remount RDWR because of unprocessed "
6652 "orphan inode list. Please "
6653 "umount/remount instead");
6654 err = -EINVAL;
6655 goto restore_opts;
6656 }
6657
6658 /*
6659 * Mounting a RDONLY partition read-write, so reread
6660 * and store the current valid flag. (It may have
6661 * been changed by e2fsck since we originally mounted
6662 * the partition.)
6663 */
6664 if (sbi->s_journal) {
6665 err = ext4_clear_journal_err(sb, es);
6666 if (err)
6667 goto restore_opts;
6668 }
6669 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6670 ~EXT4_FC_REPLAY);
6671
6672 err = ext4_setup_super(sb, es, 0);
6673 if (err)
6674 goto restore_opts;
6675
6676 sb->s_flags &= ~SB_RDONLY;
6677 if (ext4_has_feature_mmp(sb)) {
6678 err = ext4_multi_mount_protect(sb,
6679 le64_to_cpu(es->s_mmp_block));
6680 if (err)
6681 goto restore_opts;
6682 }
6683 #ifdef CONFIG_QUOTA
6684 enable_quota = 1;
6685 #endif
6686 }
6687 }
6688
6689 /*
6690 * Handle creation of system zone data early because it can fail.
6691 * Releasing of existing data is done when we are sure remount will
6692 * succeed.
6693 */
6694 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6695 err = ext4_setup_system_zone(sb);
6696 if (err)
6697 goto restore_opts;
6698 }
6699
6700 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6701 err = ext4_commit_super(sb);
6702 if (err)
6703 goto restore_opts;
6704 }
6705
6706 #ifdef CONFIG_QUOTA
6707 if (enable_quota) {
6708 if (sb_any_quota_suspended(sb))
6709 dquot_resume(sb, -1);
6710 else if (ext4_has_feature_quota(sb)) {
6711 err = ext4_enable_quotas(sb);
6712 if (err)
6713 goto restore_opts;
6714 }
6715 }
6716 /* Release old quota file names */
6717 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6718 kfree(old_opts.s_qf_names[i]);
6719 #endif
6720 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6721 ext4_release_system_zone(sb);
6722
6723 /*
6724 * Reinitialize lazy itable initialization thread based on
6725 * current settings
6726 */
6727 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6728 ext4_unregister_li_request(sb);
6729 else {
6730 ext4_group_t first_not_zeroed;
6731 first_not_zeroed = ext4_has_uninit_itable(sb);
6732 ext4_register_li_request(sb, first_not_zeroed);
6733 }
6734
6735 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6736 ext4_stop_mmpd(sbi);
6737
6738 /*
6739 * Handle aborting the filesystem as the last thing during remount to
6740 * avoid obsure errors during remount when some option changes fail to
6741 * apply due to shutdown filesystem.
6742 */
6743 if (test_opt2(sb, ABORT))
6744 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6745
6746 return 0;
6747
6748 restore_opts:
6749 /*
6750 * If there was a failing r/w to ro transition, we may need to
6751 * re-enable quota
6752 */
6753 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6754 sb_any_quota_suspended(sb))
6755 dquot_resume(sb, -1);
6756
6757 alloc_ctx = ext4_writepages_down_write(sb);
6758 sb->s_flags = old_sb_flags;
6759 sbi->s_mount_opt = old_opts.s_mount_opt;
6760 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6761 sbi->s_resuid = old_opts.s_resuid;
6762 sbi->s_resgid = old_opts.s_resgid;
6763 sbi->s_commit_interval = old_opts.s_commit_interval;
6764 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6765 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6766 ext4_writepages_up_write(sb, alloc_ctx);
6767
6768 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6769 ext4_release_system_zone(sb);
6770 #ifdef CONFIG_QUOTA
6771 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6772 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6773 to_free[i] = get_qf_name(sb, sbi, i);
6774 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6775 }
6776 synchronize_rcu();
6777 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6778 kfree(to_free[i]);
6779 #endif
6780 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6781 ext4_stop_mmpd(sbi);
6782 return err;
6783 }
6784
ext4_reconfigure(struct fs_context * fc)6785 static int ext4_reconfigure(struct fs_context *fc)
6786 {
6787 struct super_block *sb = fc->root->d_sb;
6788 int ret;
6789 bool old_ro = sb_rdonly(sb);
6790
6791 fc->s_fs_info = EXT4_SB(sb);
6792
6793 ret = ext4_check_opt_consistency(fc, sb);
6794 if (ret < 0)
6795 return ret;
6796
6797 ret = __ext4_remount(fc, sb);
6798 if (ret < 0)
6799 return ret;
6800
6801 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6802 &sb->s_uuid,
6803 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6804
6805 return 0;
6806 }
6807
6808 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6809 static int ext4_statfs_project(struct super_block *sb,
6810 kprojid_t projid, struct kstatfs *buf)
6811 {
6812 struct kqid qid;
6813 struct dquot *dquot;
6814 u64 limit;
6815 u64 curblock;
6816
6817 qid = make_kqid_projid(projid);
6818 dquot = dqget(sb, qid);
6819 if (IS_ERR(dquot))
6820 return PTR_ERR(dquot);
6821 spin_lock(&dquot->dq_dqb_lock);
6822
6823 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6824 dquot->dq_dqb.dqb_bhardlimit);
6825 limit >>= sb->s_blocksize_bits;
6826
6827 if (limit) {
6828 uint64_t remaining = 0;
6829
6830 curblock = (dquot->dq_dqb.dqb_curspace +
6831 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6832 if (limit > curblock)
6833 remaining = limit - curblock;
6834
6835 buf->f_blocks = min(buf->f_blocks, limit);
6836 buf->f_bfree = min(buf->f_bfree, remaining);
6837 buf->f_bavail = min(buf->f_bavail, remaining);
6838 }
6839
6840 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6841 dquot->dq_dqb.dqb_ihardlimit);
6842 if (limit) {
6843 uint64_t remaining = 0;
6844
6845 if (limit > dquot->dq_dqb.dqb_curinodes)
6846 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6847
6848 buf->f_files = min(buf->f_files, limit);
6849 buf->f_ffree = min(buf->f_ffree, remaining);
6850 }
6851
6852 spin_unlock(&dquot->dq_dqb_lock);
6853 dqput(dquot);
6854 return 0;
6855 }
6856 #endif
6857
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6858 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6859 {
6860 struct super_block *sb = dentry->d_sb;
6861 struct ext4_sb_info *sbi = EXT4_SB(sb);
6862 struct ext4_super_block *es = sbi->s_es;
6863 ext4_fsblk_t overhead = 0, resv_blocks;
6864 s64 bfree;
6865 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6866
6867 if (!test_opt(sb, MINIX_DF))
6868 overhead = sbi->s_overhead;
6869
6870 buf->f_type = EXT4_SUPER_MAGIC;
6871 buf->f_bsize = sb->s_blocksize;
6872 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6873 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6874 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6875 /* prevent underflow in case that few free space is available */
6876 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6877 buf->f_bavail = buf->f_bfree -
6878 (ext4_r_blocks_count(es) + resv_blocks);
6879 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6880 buf->f_bavail = 0;
6881 buf->f_files = le32_to_cpu(es->s_inodes_count);
6882 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6883 buf->f_namelen = EXT4_NAME_LEN;
6884 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6885
6886 #ifdef CONFIG_QUOTA
6887 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6888 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6889 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6890 #endif
6891 return 0;
6892 }
6893
6894
6895 #ifdef CONFIG_QUOTA
6896
6897 /*
6898 * Helper functions so that transaction is started before we acquire dqio_sem
6899 * to keep correct lock ordering of transaction > dqio_sem
6900 */
dquot_to_inode(struct dquot * dquot)6901 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6902 {
6903 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6904 }
6905
ext4_write_dquot(struct dquot * dquot)6906 static int ext4_write_dquot(struct dquot *dquot)
6907 {
6908 int ret, err;
6909 handle_t *handle;
6910 struct inode *inode;
6911
6912 inode = dquot_to_inode(dquot);
6913 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6914 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6915 if (IS_ERR(handle))
6916 return PTR_ERR(handle);
6917 ret = dquot_commit(dquot);
6918 if (ret < 0)
6919 ext4_error_err(dquot->dq_sb, -ret,
6920 "Failed to commit dquot type %d",
6921 dquot->dq_id.type);
6922 err = ext4_journal_stop(handle);
6923 if (!ret)
6924 ret = err;
6925 return ret;
6926 }
6927
ext4_acquire_dquot(struct dquot * dquot)6928 static int ext4_acquire_dquot(struct dquot *dquot)
6929 {
6930 int ret, err;
6931 handle_t *handle;
6932
6933 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6934 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6935 if (IS_ERR(handle))
6936 return PTR_ERR(handle);
6937 ret = dquot_acquire(dquot);
6938 if (ret < 0)
6939 ext4_error_err(dquot->dq_sb, -ret,
6940 "Failed to acquire dquot type %d",
6941 dquot->dq_id.type);
6942 err = ext4_journal_stop(handle);
6943 if (!ret)
6944 ret = err;
6945 return ret;
6946 }
6947
ext4_release_dquot(struct dquot * dquot)6948 static int ext4_release_dquot(struct dquot *dquot)
6949 {
6950 int ret, err;
6951 handle_t *handle;
6952 bool freeze_protected = false;
6953
6954 /*
6955 * Trying to sb_start_intwrite() in a running transaction
6956 * can result in a deadlock. Further, running transactions
6957 * are already protected from freezing.
6958 */
6959 if (!ext4_journal_current_handle()) {
6960 sb_start_intwrite(dquot->dq_sb);
6961 freeze_protected = true;
6962 }
6963
6964 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6965 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6966 if (IS_ERR(handle)) {
6967 /* Release dquot anyway to avoid endless cycle in dqput() */
6968 dquot_release(dquot);
6969 if (freeze_protected)
6970 sb_end_intwrite(dquot->dq_sb);
6971 return PTR_ERR(handle);
6972 }
6973 ret = dquot_release(dquot);
6974 if (ret < 0)
6975 ext4_error_err(dquot->dq_sb, -ret,
6976 "Failed to release dquot type %d",
6977 dquot->dq_id.type);
6978 err = ext4_journal_stop(handle);
6979 if (!ret)
6980 ret = err;
6981
6982 if (freeze_protected)
6983 sb_end_intwrite(dquot->dq_sb);
6984
6985 return ret;
6986 }
6987
ext4_mark_dquot_dirty(struct dquot * dquot)6988 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6989 {
6990 struct super_block *sb = dquot->dq_sb;
6991
6992 if (ext4_is_quota_journalled(sb)) {
6993 dquot_mark_dquot_dirty(dquot);
6994 return ext4_write_dquot(dquot);
6995 } else {
6996 return dquot_mark_dquot_dirty(dquot);
6997 }
6998 }
6999
ext4_write_info(struct super_block * sb,int type)7000 static int ext4_write_info(struct super_block *sb, int type)
7001 {
7002 int ret, err;
7003 handle_t *handle;
7004
7005 /* Data block + inode block */
7006 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7007 if (IS_ERR(handle))
7008 return PTR_ERR(handle);
7009 ret = dquot_commit_info(sb, type);
7010 err = ext4_journal_stop(handle);
7011 if (!ret)
7012 ret = err;
7013 return ret;
7014 }
7015
lockdep_set_quota_inode(struct inode * inode,int subclass)7016 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7017 {
7018 struct ext4_inode_info *ei = EXT4_I(inode);
7019
7020 /* The first argument of lockdep_set_subclass has to be
7021 * *exactly* the same as the argument to init_rwsem() --- in
7022 * this case, in init_once() --- or lockdep gets unhappy
7023 * because the name of the lock is set using the
7024 * stringification of the argument to init_rwsem().
7025 */
7026 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7027 lockdep_set_subclass(&ei->i_data_sem, subclass);
7028 }
7029
7030 /*
7031 * Standard function to be called on quota_on
7032 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7033 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7034 const struct path *path)
7035 {
7036 int err;
7037
7038 if (!test_opt(sb, QUOTA))
7039 return -EINVAL;
7040
7041 /* Quotafile not on the same filesystem? */
7042 if (path->dentry->d_sb != sb)
7043 return -EXDEV;
7044
7045 /* Quota already enabled for this file? */
7046 if (IS_NOQUOTA(d_inode(path->dentry)))
7047 return -EBUSY;
7048
7049 /* Journaling quota? */
7050 if (EXT4_SB(sb)->s_qf_names[type]) {
7051 /* Quotafile not in fs root? */
7052 if (path->dentry->d_parent != sb->s_root)
7053 ext4_msg(sb, KERN_WARNING,
7054 "Quota file not on filesystem root. "
7055 "Journaled quota will not work");
7056 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7057 } else {
7058 /*
7059 * Clear the flag just in case mount options changed since
7060 * last time.
7061 */
7062 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7063 }
7064
7065 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7066 err = dquot_quota_on(sb, type, format_id, path);
7067 if (!err) {
7068 struct inode *inode = d_inode(path->dentry);
7069 handle_t *handle;
7070
7071 /*
7072 * Set inode flags to prevent userspace from messing with quota
7073 * files. If this fails, we return success anyway since quotas
7074 * are already enabled and this is not a hard failure.
7075 */
7076 inode_lock(inode);
7077 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7078 if (IS_ERR(handle))
7079 goto unlock_inode;
7080 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7081 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7082 S_NOATIME | S_IMMUTABLE);
7083 err = ext4_mark_inode_dirty(handle, inode);
7084 ext4_journal_stop(handle);
7085 unlock_inode:
7086 inode_unlock(inode);
7087 if (err)
7088 dquot_quota_off(sb, type);
7089 }
7090 if (err)
7091 lockdep_set_quota_inode(path->dentry->d_inode,
7092 I_DATA_SEM_NORMAL);
7093 return err;
7094 }
7095
ext4_check_quota_inum(int type,unsigned long qf_inum)7096 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7097 {
7098 switch (type) {
7099 case USRQUOTA:
7100 return qf_inum == EXT4_USR_QUOTA_INO;
7101 case GRPQUOTA:
7102 return qf_inum == EXT4_GRP_QUOTA_INO;
7103 case PRJQUOTA:
7104 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7105 default:
7106 BUG();
7107 }
7108 }
7109
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7110 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7111 unsigned int flags)
7112 {
7113 int err;
7114 struct inode *qf_inode;
7115 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7116 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7117 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7118 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7119 };
7120
7121 BUG_ON(!ext4_has_feature_quota(sb));
7122
7123 if (!qf_inums[type])
7124 return -EPERM;
7125
7126 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7127 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7128 qf_inums[type], type);
7129 return -EUCLEAN;
7130 }
7131
7132 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7133 if (IS_ERR(qf_inode)) {
7134 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7135 qf_inums[type], type);
7136 return PTR_ERR(qf_inode);
7137 }
7138
7139 /* Don't account quota for quota files to avoid recursion */
7140 qf_inode->i_flags |= S_NOQUOTA;
7141 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7142 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7143 if (err)
7144 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7145 iput(qf_inode);
7146
7147 return err;
7148 }
7149
7150 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7151 int ext4_enable_quotas(struct super_block *sb)
7152 {
7153 int type, err = 0;
7154 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7155 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7156 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7157 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7158 };
7159 bool quota_mopt[EXT4_MAXQUOTAS] = {
7160 test_opt(sb, USRQUOTA),
7161 test_opt(sb, GRPQUOTA),
7162 test_opt(sb, PRJQUOTA),
7163 };
7164
7165 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7166 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7167 if (qf_inums[type]) {
7168 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7169 DQUOT_USAGE_ENABLED |
7170 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7171 if (err) {
7172 ext4_warning(sb,
7173 "Failed to enable quota tracking "
7174 "(type=%d, err=%d, ino=%lu). "
7175 "Please run e2fsck to fix.", type,
7176 err, qf_inums[type]);
7177
7178 ext4_quotas_off(sb, type);
7179 return err;
7180 }
7181 }
7182 }
7183 return 0;
7184 }
7185
ext4_quota_off(struct super_block * sb,int type)7186 static int ext4_quota_off(struct super_block *sb, int type)
7187 {
7188 struct inode *inode = sb_dqopt(sb)->files[type];
7189 handle_t *handle;
7190 int err;
7191
7192 /* Force all delayed allocation blocks to be allocated.
7193 * Caller already holds s_umount sem */
7194 if (test_opt(sb, DELALLOC))
7195 sync_filesystem(sb);
7196
7197 if (!inode || !igrab(inode))
7198 goto out;
7199
7200 err = dquot_quota_off(sb, type);
7201 if (err || ext4_has_feature_quota(sb))
7202 goto out_put;
7203 /*
7204 * When the filesystem was remounted read-only first, we cannot cleanup
7205 * inode flags here. Bad luck but people should be using QUOTA feature
7206 * these days anyway.
7207 */
7208 if (sb_rdonly(sb))
7209 goto out_put;
7210
7211 inode_lock(inode);
7212 /*
7213 * Update modification times of quota files when userspace can
7214 * start looking at them. If we fail, we return success anyway since
7215 * this is not a hard failure and quotas are already disabled.
7216 */
7217 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7218 if (IS_ERR(handle)) {
7219 err = PTR_ERR(handle);
7220 goto out_unlock;
7221 }
7222 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7223 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7224 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7225 err = ext4_mark_inode_dirty(handle, inode);
7226 ext4_journal_stop(handle);
7227 out_unlock:
7228 inode_unlock(inode);
7229 out_put:
7230 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7231 iput(inode);
7232 return err;
7233 out:
7234 return dquot_quota_off(sb, type);
7235 }
7236
7237 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7238 * acquiring the locks... As quota files are never truncated and quota code
7239 * itself serializes the operations (and no one else should touch the files)
7240 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7241 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7242 size_t len, loff_t off)
7243 {
7244 struct inode *inode = sb_dqopt(sb)->files[type];
7245 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7246 int offset = off & (sb->s_blocksize - 1);
7247 int tocopy;
7248 size_t toread;
7249 struct buffer_head *bh;
7250 loff_t i_size = i_size_read(inode);
7251
7252 if (off > i_size)
7253 return 0;
7254 if (off+len > i_size)
7255 len = i_size-off;
7256 toread = len;
7257 while (toread > 0) {
7258 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7259 bh = ext4_bread(NULL, inode, blk, 0);
7260 if (IS_ERR(bh))
7261 return PTR_ERR(bh);
7262 if (!bh) /* A hole? */
7263 memset(data, 0, tocopy);
7264 else
7265 memcpy(data, bh->b_data+offset, tocopy);
7266 brelse(bh);
7267 offset = 0;
7268 toread -= tocopy;
7269 data += tocopy;
7270 blk++;
7271 }
7272 return len;
7273 }
7274
7275 /* Write to quotafile (we know the transaction is already started and has
7276 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7277 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7278 const char *data, size_t len, loff_t off)
7279 {
7280 struct inode *inode = sb_dqopt(sb)->files[type];
7281 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7282 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7283 int retries = 0;
7284 struct buffer_head *bh;
7285 handle_t *handle = journal_current_handle();
7286
7287 if (!handle) {
7288 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7289 " cancelled because transaction is not started",
7290 (unsigned long long)off, (unsigned long long)len);
7291 return -EIO;
7292 }
7293 /*
7294 * Since we account only one data block in transaction credits,
7295 * then it is impossible to cross a block boundary.
7296 */
7297 if (sb->s_blocksize - offset < len) {
7298 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7299 " cancelled because not block aligned",
7300 (unsigned long long)off, (unsigned long long)len);
7301 return -EIO;
7302 }
7303
7304 do {
7305 bh = ext4_bread(handle, inode, blk,
7306 EXT4_GET_BLOCKS_CREATE |
7307 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7308 } while (PTR_ERR(bh) == -ENOSPC &&
7309 ext4_should_retry_alloc(inode->i_sb, &retries));
7310 if (IS_ERR(bh))
7311 return PTR_ERR(bh);
7312 if (!bh)
7313 goto out;
7314 BUFFER_TRACE(bh, "get write access");
7315 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7316 if (err) {
7317 brelse(bh);
7318 return err;
7319 }
7320 lock_buffer(bh);
7321 memcpy(bh->b_data+offset, data, len);
7322 flush_dcache_page(bh->b_page);
7323 unlock_buffer(bh);
7324 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7325 brelse(bh);
7326 out:
7327 if (inode->i_size < off + len) {
7328 i_size_write(inode, off + len);
7329 EXT4_I(inode)->i_disksize = inode->i_size;
7330 err2 = ext4_mark_inode_dirty(handle, inode);
7331 if (unlikely(err2 && !err))
7332 err = err2;
7333 }
7334 return err ? err : len;
7335 }
7336 #endif
7337
7338 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7339 static inline void register_as_ext2(void)
7340 {
7341 int err = register_filesystem(&ext2_fs_type);
7342 if (err)
7343 printk(KERN_WARNING
7344 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7345 }
7346
unregister_as_ext2(void)7347 static inline void unregister_as_ext2(void)
7348 {
7349 unregister_filesystem(&ext2_fs_type);
7350 }
7351
ext2_feature_set_ok(struct super_block * sb)7352 static inline int ext2_feature_set_ok(struct super_block *sb)
7353 {
7354 if (ext4_has_unknown_ext2_incompat_features(sb))
7355 return 0;
7356 if (sb_rdonly(sb))
7357 return 1;
7358 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7359 return 0;
7360 return 1;
7361 }
7362 #else
register_as_ext2(void)7363 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7364 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7365 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7366 #endif
7367
register_as_ext3(void)7368 static inline void register_as_ext3(void)
7369 {
7370 int err = register_filesystem(&ext3_fs_type);
7371 if (err)
7372 printk(KERN_WARNING
7373 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7374 }
7375
unregister_as_ext3(void)7376 static inline void unregister_as_ext3(void)
7377 {
7378 unregister_filesystem(&ext3_fs_type);
7379 }
7380
ext3_feature_set_ok(struct super_block * sb)7381 static inline int ext3_feature_set_ok(struct super_block *sb)
7382 {
7383 if (ext4_has_unknown_ext3_incompat_features(sb))
7384 return 0;
7385 if (!ext4_has_feature_journal(sb))
7386 return 0;
7387 if (sb_rdonly(sb))
7388 return 1;
7389 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7390 return 0;
7391 return 1;
7392 }
7393
ext4_kill_sb(struct super_block * sb)7394 static void ext4_kill_sb(struct super_block *sb)
7395 {
7396 struct ext4_sb_info *sbi = EXT4_SB(sb);
7397 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7398
7399 kill_block_super(sb);
7400
7401 if (journal_bdev)
7402 blkdev_put(journal_bdev, sb);
7403 }
7404
7405 static struct file_system_type ext4_fs_type = {
7406 .owner = THIS_MODULE,
7407 .name = "ext4",
7408 .init_fs_context = ext4_init_fs_context,
7409 .parameters = ext4_param_specs,
7410 .kill_sb = ext4_kill_sb,
7411 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7412 };
7413 MODULE_ALIAS_FS("ext4");
7414
7415 /* Shared across all ext4 file systems */
7416 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7417
ext4_init_fs(void)7418 static int __init ext4_init_fs(void)
7419 {
7420 int i, err;
7421
7422 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7423 ext4_li_info = NULL;
7424
7425 /* Build-time check for flags consistency */
7426 ext4_check_flag_values();
7427
7428 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7429 init_waitqueue_head(&ext4__ioend_wq[i]);
7430
7431 err = ext4_init_es();
7432 if (err)
7433 return err;
7434
7435 err = ext4_init_pending();
7436 if (err)
7437 goto out7;
7438
7439 err = ext4_init_post_read_processing();
7440 if (err)
7441 goto out6;
7442
7443 err = ext4_init_pageio();
7444 if (err)
7445 goto out5;
7446
7447 err = ext4_init_system_zone();
7448 if (err)
7449 goto out4;
7450
7451 err = ext4_init_sysfs();
7452 if (err)
7453 goto out3;
7454
7455 err = ext4_init_mballoc();
7456 if (err)
7457 goto out2;
7458 err = init_inodecache();
7459 if (err)
7460 goto out1;
7461
7462 err = ext4_fc_init_dentry_cache();
7463 if (err)
7464 goto out05;
7465
7466 register_as_ext3();
7467 register_as_ext2();
7468 err = register_filesystem(&ext4_fs_type);
7469 if (err)
7470 goto out;
7471
7472 return 0;
7473 out:
7474 unregister_as_ext2();
7475 unregister_as_ext3();
7476 ext4_fc_destroy_dentry_cache();
7477 out05:
7478 destroy_inodecache();
7479 out1:
7480 ext4_exit_mballoc();
7481 out2:
7482 ext4_exit_sysfs();
7483 out3:
7484 ext4_exit_system_zone();
7485 out4:
7486 ext4_exit_pageio();
7487 out5:
7488 ext4_exit_post_read_processing();
7489 out6:
7490 ext4_exit_pending();
7491 out7:
7492 ext4_exit_es();
7493
7494 return err;
7495 }
7496
ext4_exit_fs(void)7497 static void __exit ext4_exit_fs(void)
7498 {
7499 ext4_destroy_lazyinit_thread();
7500 unregister_as_ext2();
7501 unregister_as_ext3();
7502 unregister_filesystem(&ext4_fs_type);
7503 ext4_fc_destroy_dentry_cache();
7504 destroy_inodecache();
7505 ext4_exit_mballoc();
7506 ext4_exit_sysfs();
7507 ext4_exit_system_zone();
7508 ext4_exit_pageio();
7509 ext4_exit_post_read_processing();
7510 ext4_exit_es();
7511 ext4_exit_pending();
7512 }
7513
7514 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7515 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7516 MODULE_LICENSE("GPL");
7517 MODULE_SOFTDEP("pre: crc32c");
7518 module_init(ext4_init_fs)
7519 module_exit(ext4_exit_fs)
7520