• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io, bool simu_fail)
165 {
166 	if (simu_fail) {
167 		clear_buffer_uptodate(bh);
168 		unlock_buffer(bh);
169 		return;
170 	}
171 
172 	/*
173 	 * buffer's verified bit is no longer valid after reading from
174 	 * disk again due to write out error, clear it to make sure we
175 	 * recheck the buffer contents.
176 	 */
177 	clear_buffer_verified(bh);
178 
179 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 	get_bh(bh);
181 	submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 			 bh_end_io_t *end_io, bool simu_fail)
186 {
187 	BUG_ON(!buffer_locked(bh));
188 
189 	if (ext4_buffer_uptodate(bh)) {
190 		unlock_buffer(bh);
191 		return;
192 	}
193 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 		 bh_end_io_t *end_io, bool simu_fail)
198 {
199 	BUG_ON(!buffer_locked(bh));
200 
201 	if (ext4_buffer_uptodate(bh)) {
202 		unlock_buffer(bh);
203 		return 0;
204 	}
205 
206 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
207 
208 	wait_on_buffer(bh);
209 	if (buffer_uptodate(bh))
210 		return 0;
211 	return -EIO;
212 }
213 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 	lock_buffer(bh);
217 	if (!wait) {
218 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 		return 0;
220 	}
221 	return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223 
224 /*
225  * This works like __bread_gfp() except it uses ERR_PTR for error
226  * returns.  Currently with sb_bread it's impossible to distinguish
227  * between ENOMEM and EIO situations (since both result in a NULL
228  * return.
229  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 					       sector_t block,
232 					       blk_opf_t op_flags, gfp_t gfp)
233 {
234 	struct buffer_head *bh;
235 	int ret;
236 
237 	bh = sb_getblk_gfp(sb, block, gfp);
238 	if (bh == NULL)
239 		return ERR_PTR(-ENOMEM);
240 	if (ext4_buffer_uptodate(bh))
241 		return bh;
242 
243 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 	if (ret) {
245 		put_bh(bh);
246 		return ERR_PTR(ret);
247 	}
248 	return bh;
249 }
250 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 				   blk_opf_t op_flags)
253 {
254 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
255 }
256 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)257 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
258 					    sector_t block)
259 {
260 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
261 }
262 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)263 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 {
265 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
266 
267 	if (likely(bh)) {
268 		if (trylock_buffer(bh))
269 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
270 		brelse(bh);
271 	}
272 }
273 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)274 static int ext4_verify_csum_type(struct super_block *sb,
275 				 struct ext4_super_block *es)
276 {
277 	if (!ext4_has_feature_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)283 __le32 ext4_superblock_csum(struct super_block *sb,
284 			    struct ext4_super_block *es)
285 {
286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
287 	int offset = offsetof(struct ext4_super_block, s_checksum);
288 	__u32 csum;
289 
290 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292 	return cpu_to_le32(csum);
293 }
294 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 				       struct ext4_super_block *es)
297 {
298 	if (!ext4_has_metadata_csum(sb))
299 		return 1;
300 
301 	return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
ext4_superblock_csum_set(struct super_block * sb)304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308 	if (!ext4_has_metadata_csum(sb))
309 		return;
310 
311 	es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 			       struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le32_to_cpu(bg->bg_inode_table_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 			       struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
352 }
353 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 			      struct ext4_group_desc *bg)
364 {
365 	return le16_to_cpu(bg->bg_itable_unused_lo) |
366 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_block_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_bitmap_set(struct super_block *sb,
379 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)386 void ext4_inode_table_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_group_clusters_set(struct super_block *sb,
395 				  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_free_inodes_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
408 }
409 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_used_dirs_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)418 void ext4_itable_unused_set(struct super_block *sb,
419 			  struct ext4_group_desc *bg, __u32 count)
420 {
421 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 	now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430 	*lo = cpu_to_le32(lower_32_bits(now));
431 	*hi = upper_32_bits(now);
432 }
433 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 			     ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
ext4_maybe_update_superblock(struct super_block * sb)459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
462 	struct ext4_super_block *es = sbi->s_es;
463 	journal_t *journal = sbi->s_journal;
464 	time64_t now;
465 	__u64 last_update;
466 	__u64 lifetime_write_kbytes;
467 	__u64 diff_size;
468 
469 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
471 		return;
472 
473 	now = ktime_get_real_seconds();
474 	last_update = ext4_get_tstamp(es, s_wtime);
475 
476 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 		return;
478 
479 	lifetime_write_kbytes = sbi->s_kbytes_written +
480 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 		  sbi->s_sectors_written_start) >> 1);
482 
483 	/* Get the number of kilobytes not written to disk to account
484 	 * for statistics and compare with a multiple of 16 MB. This
485 	 * is used to determine when the next superblock commit should
486 	 * occur (i.e. not more often than once per 16MB if there was
487 	 * less written in an hour).
488 	 */
489 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 /*
496  * The del_gendisk() function uninitializes the disk-specific data
497  * structures, including the bdi structure, without telling anyone
498  * else.  Once this happens, any attempt to call mark_buffer_dirty()
499  * (for example, by ext4_commit_super), will cause a kernel OOPS.
500  * This is a kludge to prevent these oops until we can put in a proper
501  * hook in del_gendisk() to inform the VFS and file system layers.
502  */
block_device_ejected(struct super_block * sb)503 static int block_device_ejected(struct super_block *sb)
504 {
505 	struct inode *bd_inode = sb->s_bdev->bd_inode;
506 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507 
508 	return bdi->dev == NULL;
509 }
510 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 	struct super_block		*sb = journal->j_private;
514 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
515 	int				error = is_journal_aborted(journal);
516 	struct ext4_journal_cb_entry	*jce;
517 
518 	BUG_ON(txn->t_state == T_FINISHED);
519 
520 	ext4_process_freed_data(sb, txn->t_tid);
521 	ext4_maybe_update_superblock(sb);
522 
523 	spin_lock(&sbi->s_md_lock);
524 	while (!list_empty(&txn->t_private_list)) {
525 		jce = list_entry(txn->t_private_list.next,
526 				 struct ext4_journal_cb_entry, jce_list);
527 		list_del_init(&jce->jce_list);
528 		spin_unlock(&sbi->s_md_lock);
529 		jce->jce_func(sb, jce, error);
530 		spin_lock(&sbi->s_md_lock);
531 	}
532 	spin_unlock(&sbi->s_md_lock);
533 }
534 
535 /*
536  * This writepage callback for write_cache_pages()
537  * takes care of a few cases after page cleaning.
538  *
539  * write_cache_pages() already checks for dirty pages
540  * and calls clear_page_dirty_for_io(), which we want,
541  * to write protect the pages.
542  *
543  * However, we may have to redirty a page (see below.)
544  */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 					      struct writeback_control *wbc,
547 					      void *data)
548 {
549 	transaction_t *transaction = (transaction_t *) data;
550 	struct buffer_head *bh, *head;
551 	struct journal_head *jh;
552 
553 	bh = head = folio_buffers(folio);
554 	do {
555 		/*
556 		 * We have to redirty a page in these cases:
557 		 * 1) If buffer is dirty, it means the page was dirty because it
558 		 * contains a buffer that needs checkpointing. So the dirty bit
559 		 * needs to be preserved so that checkpointing writes the buffer
560 		 * properly.
561 		 * 2) If buffer is not part of the committing transaction
562 		 * (we may have just accidentally come across this buffer because
563 		 * inode range tracking is not exact) or if the currently running
564 		 * transaction already contains this buffer as well, dirty bit
565 		 * needs to be preserved so that the buffer gets writeprotected
566 		 * properly on running transaction's commit.
567 		 */
568 		jh = bh2jh(bh);
569 		if (buffer_dirty(bh) ||
570 		    (jh && (jh->b_transaction != transaction ||
571 			    jh->b_next_transaction))) {
572 			folio_redirty_for_writepage(wbc, folio);
573 			goto out;
574 		}
575 	} while ((bh = bh->b_this_page) != head);
576 
577 out:
578 	return AOP_WRITEPAGE_ACTIVATE;
579 }
580 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 	struct writeback_control wbc = {
585 		.sync_mode =  WB_SYNC_ALL,
586 		.nr_to_write = LONG_MAX,
587 		.range_start = jinode->i_dirty_start,
588 		.range_end = jinode->i_dirty_end,
589         };
590 
591 	return write_cache_pages(mapping, &wbc,
592 				 ext4_journalled_writepage_callback,
593 				 jinode->i_transaction);
594 }
595 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 	int ret;
599 
600 	if (ext4_should_journal_data(jinode->i_vfs_inode))
601 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 	else
603 		ret = ext4_normal_submit_inode_data_buffers(jinode);
604 	return ret;
605 }
606 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 	int ret = 0;
610 
611 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
613 
614 	return ret;
615 }
616 
system_going_down(void)617 static bool system_going_down(void)
618 {
619 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 		|| system_state == SYSTEM_RESTART;
621 }
622 
623 struct ext4_err_translation {
624 	int code;
625 	int errno;
626 };
627 
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629 
630 static struct ext4_err_translation err_translation[] = {
631 	EXT4_ERR_TRANSLATE(EIO),
632 	EXT4_ERR_TRANSLATE(ENOMEM),
633 	EXT4_ERR_TRANSLATE(EFSBADCRC),
634 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 	EXT4_ERR_TRANSLATE(ENOSPC),
636 	EXT4_ERR_TRANSLATE(ENOKEY),
637 	EXT4_ERR_TRANSLATE(EROFS),
638 	EXT4_ERR_TRANSLATE(EFBIG),
639 	EXT4_ERR_TRANSLATE(EEXIST),
640 	EXT4_ERR_TRANSLATE(ERANGE),
641 	EXT4_ERR_TRANSLATE(EOVERFLOW),
642 	EXT4_ERR_TRANSLATE(EBUSY),
643 	EXT4_ERR_TRANSLATE(ENOTDIR),
644 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 	EXT4_ERR_TRANSLATE(EFAULT),
647 };
648 
ext4_errno_to_code(int errno)649 static int ext4_errno_to_code(int errno)
650 {
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 		if (err_translation[i].errno == errno)
655 			return err_translation[i].code;
656 	return EXT4_ERR_UNKNOWN;
657 }
658 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)659 static void save_error_info(struct super_block *sb, int error,
660 			    __u32 ino, __u64 block,
661 			    const char *func, unsigned int line)
662 {
663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
664 
665 	/* We default to EFSCORRUPTED error... */
666 	if (error == 0)
667 		error = EFSCORRUPTED;
668 
669 	spin_lock(&sbi->s_error_lock);
670 	sbi->s_add_error_count++;
671 	sbi->s_last_error_code = error;
672 	sbi->s_last_error_line = line;
673 	sbi->s_last_error_ino = ino;
674 	sbi->s_last_error_block = block;
675 	sbi->s_last_error_func = func;
676 	sbi->s_last_error_time = ktime_get_real_seconds();
677 	if (!sbi->s_first_error_time) {
678 		sbi->s_first_error_code = error;
679 		sbi->s_first_error_line = line;
680 		sbi->s_first_error_ino = ino;
681 		sbi->s_first_error_block = block;
682 		sbi->s_first_error_func = func;
683 		sbi->s_first_error_time = sbi->s_last_error_time;
684 	}
685 	spin_unlock(&sbi->s_error_lock);
686 }
687 
688 /* Deal with the reporting of failure conditions on a filesystem such as
689  * inconsistencies detected or read IO failures.
690  *
691  * On ext2, we can store the error state of the filesystem in the
692  * superblock.  That is not possible on ext4, because we may have other
693  * write ordering constraints on the superblock which prevent us from
694  * writing it out straight away; and given that the journal is about to
695  * be aborted, we can't rely on the current, or future, transactions to
696  * write out the superblock safely.
697  *
698  * We'll just use the jbd2_journal_abort() error code to record an error in
699  * the journal instead.  On recovery, the journal will complain about
700  * that error until we've noted it down and cleared it.
701  *
702  * If force_ro is set, we unconditionally force the filesystem into an
703  * ABORT|READONLY state, unless the error response on the fs has been set to
704  * panic in which case we take the easy way out and panic immediately. This is
705  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706  * at a critical moment in log management.
707  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 			      __u32 ino, __u64 block,
710 			      const char *func, unsigned int line)
711 {
712 	journal_t *journal = EXT4_SB(sb)->s_journal;
713 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714 
715 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 	if (test_opt(sb, WARN_ON_ERROR))
717 		WARN_ON_ONCE(1);
718 
719 	if (!continue_fs && !sb_rdonly(sb)) {
720 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 		if (journal)
722 			jbd2_journal_abort(journal, -EIO);
723 	}
724 
725 	if (!bdev_read_only(sb->s_bdev)) {
726 		save_error_info(sb, error, ino, block, func, line);
727 		/*
728 		 * In case the fs should keep running, we need to writeout
729 		 * superblock through the journal. Due to lock ordering
730 		 * constraints, it may not be safe to do it right here so we
731 		 * defer superblock flushing to a workqueue. We just need to be
732 		 * careful when the journal is already shutting down. If we get
733 		 * here in that case, just update the sb directly as the last
734 		 * transaction won't commit anyway.
735 		 */
736 		if (continue_fs && journal &&
737 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
738 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
739 		else
740 			ext4_commit_super(sb);
741 	}
742 
743 	/*
744 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
745 	 * could panic during 'reboot -f' as the underlying device got already
746 	 * disabled.
747 	 */
748 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
749 		panic("EXT4-fs (device %s): panic forced after error\n",
750 			sb->s_id);
751 	}
752 
753 	if (sb_rdonly(sb) || continue_fs)
754 		return;
755 
756 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
757 	/*
758 	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
759 	 * modifications. We don't set SB_RDONLY because that requires
760 	 * sb->s_umount semaphore and setting it without proper remount
761 	 * procedure is confusing code such as freeze_super() leading to
762 	 * deadlocks and other problems.
763 	 */
764 }
765 
update_super_work(struct work_struct * work)766 static void update_super_work(struct work_struct *work)
767 {
768 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
769 						s_sb_upd_work);
770 	journal_t *journal = sbi->s_journal;
771 	handle_t *handle;
772 
773 	/*
774 	 * If the journal is still running, we have to write out superblock
775 	 * through the journal to avoid collisions of other journalled sb
776 	 * updates.
777 	 *
778 	 * We use directly jbd2 functions here to avoid recursing back into
779 	 * ext4 error handling code during handling of previous errors.
780 	 */
781 	if (!sb_rdonly(sbi->s_sb) && journal) {
782 		struct buffer_head *sbh = sbi->s_sbh;
783 		bool call_notify_err = false;
784 
785 		handle = jbd2_journal_start(journal, 1);
786 		if (IS_ERR(handle))
787 			goto write_directly;
788 		if (jbd2_journal_get_write_access(handle, sbh)) {
789 			jbd2_journal_stop(handle);
790 			goto write_directly;
791 		}
792 
793 		if (sbi->s_add_error_count > 0)
794 			call_notify_err = true;
795 
796 		ext4_update_super(sbi->s_sb);
797 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
798 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
799 				 "superblock detected");
800 			clear_buffer_write_io_error(sbh);
801 			set_buffer_uptodate(sbh);
802 		}
803 
804 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
805 			jbd2_journal_stop(handle);
806 			goto write_directly;
807 		}
808 		jbd2_journal_stop(handle);
809 
810 		if (call_notify_err)
811 			ext4_notify_error_sysfs(sbi);
812 
813 		return;
814 	}
815 write_directly:
816 	/*
817 	 * Write through journal failed. Write sb directly to get error info
818 	 * out and hope for the best.
819 	 */
820 	ext4_commit_super(sbi->s_sb);
821 	ext4_notify_error_sysfs(sbi);
822 }
823 
824 #define ext4_error_ratelimit(sb)					\
825 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
826 			     "EXT4-fs error")
827 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)828 void __ext4_error(struct super_block *sb, const char *function,
829 		  unsigned int line, bool force_ro, int error, __u64 block,
830 		  const char *fmt, ...)
831 {
832 	struct va_format vaf;
833 	va_list args;
834 
835 	if (unlikely(ext4_forced_shutdown(sb)))
836 		return;
837 
838 	trace_ext4_error(sb, function, line);
839 	if (ext4_error_ratelimit(sb)) {
840 		va_start(args, fmt);
841 		vaf.fmt = fmt;
842 		vaf.va = &args;
843 		printk(KERN_CRIT
844 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
845 		       sb->s_id, function, line, current->comm, &vaf);
846 		va_end(args);
847 	}
848 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
849 
850 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
851 }
852 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)853 void __ext4_error_inode(struct inode *inode, const char *function,
854 			unsigned int line, ext4_fsblk_t block, int error,
855 			const char *fmt, ...)
856 {
857 	va_list args;
858 	struct va_format vaf;
859 
860 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
861 		return;
862 
863 	trace_ext4_error(inode->i_sb, function, line);
864 	if (ext4_error_ratelimit(inode->i_sb)) {
865 		va_start(args, fmt);
866 		vaf.fmt = fmt;
867 		vaf.va = &args;
868 		if (block)
869 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 			       "inode #%lu: block %llu: comm %s: %pV\n",
871 			       inode->i_sb->s_id, function, line, inode->i_ino,
872 			       block, current->comm, &vaf);
873 		else
874 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
875 			       "inode #%lu: comm %s: %pV\n",
876 			       inode->i_sb->s_id, function, line, inode->i_ino,
877 			       current->comm, &vaf);
878 		va_end(args);
879 	}
880 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
881 
882 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
883 			  function, line);
884 }
885 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)886 void __ext4_error_file(struct file *file, const char *function,
887 		       unsigned int line, ext4_fsblk_t block,
888 		       const char *fmt, ...)
889 {
890 	va_list args;
891 	struct va_format vaf;
892 	struct inode *inode = file_inode(file);
893 	char pathname[80], *path;
894 
895 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
896 		return;
897 
898 	trace_ext4_error(inode->i_sb, function, line);
899 	if (ext4_error_ratelimit(inode->i_sb)) {
900 		path = file_path(file, pathname, sizeof(pathname));
901 		if (IS_ERR(path))
902 			path = "(unknown)";
903 		va_start(args, fmt);
904 		vaf.fmt = fmt;
905 		vaf.va = &args;
906 		if (block)
907 			printk(KERN_CRIT
908 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
909 			       "block %llu: comm %s: path %s: %pV\n",
910 			       inode->i_sb->s_id, function, line, inode->i_ino,
911 			       block, current->comm, path, &vaf);
912 		else
913 			printk(KERN_CRIT
914 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
915 			       "comm %s: path %s: %pV\n",
916 			       inode->i_sb->s_id, function, line, inode->i_ino,
917 			       current->comm, path, &vaf);
918 		va_end(args);
919 	}
920 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
921 
922 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
923 			  function, line);
924 }
925 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])926 const char *ext4_decode_error(struct super_block *sb, int errno,
927 			      char nbuf[16])
928 {
929 	char *errstr = NULL;
930 
931 	switch (errno) {
932 	case -EFSCORRUPTED:
933 		errstr = "Corrupt filesystem";
934 		break;
935 	case -EFSBADCRC:
936 		errstr = "Filesystem failed CRC";
937 		break;
938 	case -EIO:
939 		errstr = "IO failure";
940 		break;
941 	case -ENOMEM:
942 		errstr = "Out of memory";
943 		break;
944 	case -EROFS:
945 		if (!sb || (EXT4_SB(sb)->s_journal &&
946 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
947 			errstr = "Journal has aborted";
948 		else
949 			errstr = "Readonly filesystem";
950 		break;
951 	default:
952 		/* If the caller passed in an extra buffer for unknown
953 		 * errors, textualise them now.  Else we just return
954 		 * NULL. */
955 		if (nbuf) {
956 			/* Check for truncated error codes... */
957 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
958 				errstr = nbuf;
959 		}
960 		break;
961 	}
962 
963 	return errstr;
964 }
965 
966 /* __ext4_std_error decodes expected errors from journaling functions
967  * automatically and invokes the appropriate error response.  */
968 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)969 void __ext4_std_error(struct super_block *sb, const char *function,
970 		      unsigned int line, int errno)
971 {
972 	char nbuf[16];
973 	const char *errstr;
974 
975 	if (unlikely(ext4_forced_shutdown(sb)))
976 		return;
977 
978 	/* Special case: if the error is EROFS, and we're not already
979 	 * inside a transaction, then there's really no point in logging
980 	 * an error. */
981 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
982 		return;
983 
984 	if (ext4_error_ratelimit(sb)) {
985 		errstr = ext4_decode_error(sb, errno, nbuf);
986 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
987 		       sb->s_id, function, line, errstr);
988 	}
989 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
990 
991 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
992 }
993 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)994 void __ext4_msg(struct super_block *sb,
995 		const char *prefix, const char *fmt, ...)
996 {
997 	struct va_format vaf;
998 	va_list args;
999 
1000 	if (sb) {
1001 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
1002 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
1003 				  "EXT4-fs"))
1004 			return;
1005 	}
1006 
1007 	va_start(args, fmt);
1008 	vaf.fmt = fmt;
1009 	vaf.va = &args;
1010 	if (sb)
1011 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1012 	else
1013 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1014 	va_end(args);
1015 }
1016 
ext4_warning_ratelimit(struct super_block * sb)1017 static int ext4_warning_ratelimit(struct super_block *sb)
1018 {
1019 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1020 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1021 			    "EXT4-fs warning");
1022 }
1023 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1024 void __ext4_warning(struct super_block *sb, const char *function,
1025 		    unsigned int line, const char *fmt, ...)
1026 {
1027 	struct va_format vaf;
1028 	va_list args;
1029 
1030 	if (!ext4_warning_ratelimit(sb))
1031 		return;
1032 
1033 	va_start(args, fmt);
1034 	vaf.fmt = fmt;
1035 	vaf.va = &args;
1036 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1037 	       sb->s_id, function, line, &vaf);
1038 	va_end(args);
1039 }
1040 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1041 void __ext4_warning_inode(const struct inode *inode, const char *function,
1042 			  unsigned int line, const char *fmt, ...)
1043 {
1044 	struct va_format vaf;
1045 	va_list args;
1046 
1047 	if (!ext4_warning_ratelimit(inode->i_sb))
1048 		return;
1049 
1050 	va_start(args, fmt);
1051 	vaf.fmt = fmt;
1052 	vaf.va = &args;
1053 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1054 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1055 	       function, line, inode->i_ino, current->comm, &vaf);
1056 	va_end(args);
1057 }
1058 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1059 void __ext4_grp_locked_error(const char *function, unsigned int line,
1060 			     struct super_block *sb, ext4_group_t grp,
1061 			     unsigned long ino, ext4_fsblk_t block,
1062 			     const char *fmt, ...)
1063 __releases(bitlock)
1064 __acquires(bitlock)
1065 {
1066 	struct va_format vaf;
1067 	va_list args;
1068 
1069 	if (unlikely(ext4_forced_shutdown(sb)))
1070 		return;
1071 
1072 	trace_ext4_error(sb, function, line);
1073 	if (ext4_error_ratelimit(sb)) {
1074 		va_start(args, fmt);
1075 		vaf.fmt = fmt;
1076 		vaf.va = &args;
1077 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1078 		       sb->s_id, function, line, grp);
1079 		if (ino)
1080 			printk(KERN_CONT "inode %lu: ", ino);
1081 		if (block)
1082 			printk(KERN_CONT "block %llu:",
1083 			       (unsigned long long) block);
1084 		printk(KERN_CONT "%pV\n", &vaf);
1085 		va_end(args);
1086 	}
1087 
1088 	if (test_opt(sb, ERRORS_CONT)) {
1089 		if (test_opt(sb, WARN_ON_ERROR))
1090 			WARN_ON_ONCE(1);
1091 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1092 		if (!bdev_read_only(sb->s_bdev)) {
1093 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1094 					line);
1095 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1096 		}
1097 		return;
1098 	}
1099 	ext4_unlock_group(sb, grp);
1100 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1101 	/*
1102 	 * We only get here in the ERRORS_RO case; relocking the group
1103 	 * may be dangerous, but nothing bad will happen since the
1104 	 * filesystem will have already been marked read/only and the
1105 	 * journal has been aborted.  We return 1 as a hint to callers
1106 	 * who might what to use the return value from
1107 	 * ext4_grp_locked_error() to distinguish between the
1108 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1109 	 * aggressively from the ext4 function in question, with a
1110 	 * more appropriate error code.
1111 	 */
1112 	ext4_lock_group(sb, grp);
1113 	return;
1114 }
1115 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1116 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1117 				     ext4_group_t group,
1118 				     unsigned int flags)
1119 {
1120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1122 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1123 	int ret;
1124 
1125 	if (!grp || !gdp)
1126 		return;
1127 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1128 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1129 					    &grp->bb_state);
1130 		if (!ret)
1131 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1132 					   grp->bb_free);
1133 	}
1134 
1135 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1136 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1137 					    &grp->bb_state);
1138 		if (!ret && gdp) {
1139 			int count;
1140 
1141 			count = ext4_free_inodes_count(sb, gdp);
1142 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1143 					   count);
1144 		}
1145 	}
1146 }
1147 
ext4_update_dynamic_rev(struct super_block * sb)1148 void ext4_update_dynamic_rev(struct super_block *sb)
1149 {
1150 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1151 
1152 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1153 		return;
1154 
1155 	ext4_warning(sb,
1156 		     "updating to rev %d because of new feature flag, "
1157 		     "running e2fsck is recommended",
1158 		     EXT4_DYNAMIC_REV);
1159 
1160 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1161 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1162 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1163 	/* leave es->s_feature_*compat flags alone */
1164 	/* es->s_uuid will be set by e2fsck if empty */
1165 
1166 	/*
1167 	 * The rest of the superblock fields should be zero, and if not it
1168 	 * means they are likely already in use, so leave them alone.  We
1169 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1170 	 */
1171 }
1172 
orphan_list_entry(struct list_head * l)1173 static inline struct inode *orphan_list_entry(struct list_head *l)
1174 {
1175 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1176 }
1177 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1178 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1179 {
1180 	struct list_head *l;
1181 
1182 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1183 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1184 
1185 	printk(KERN_ERR "sb_info orphan list:\n");
1186 	list_for_each(l, &sbi->s_orphan) {
1187 		struct inode *inode = orphan_list_entry(l);
1188 		printk(KERN_ERR "  "
1189 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1190 		       inode->i_sb->s_id, inode->i_ino, inode,
1191 		       inode->i_mode, inode->i_nlink,
1192 		       NEXT_ORPHAN(inode));
1193 	}
1194 }
1195 
1196 #ifdef CONFIG_QUOTA
1197 static int ext4_quota_off(struct super_block *sb, int type);
1198 
ext4_quotas_off(struct super_block * sb,int type)1199 static inline void ext4_quotas_off(struct super_block *sb, int type)
1200 {
1201 	BUG_ON(type > EXT4_MAXQUOTAS);
1202 
1203 	/* Use our quota_off function to clear inode flags etc. */
1204 	for (type--; type >= 0; type--)
1205 		ext4_quota_off(sb, type);
1206 }
1207 
1208 /*
1209  * This is a helper function which is used in the mount/remount
1210  * codepaths (which holds s_umount) to fetch the quota file name.
1211  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1212 static inline char *get_qf_name(struct super_block *sb,
1213 				struct ext4_sb_info *sbi,
1214 				int type)
1215 {
1216 	return rcu_dereference_protected(sbi->s_qf_names[type],
1217 					 lockdep_is_held(&sb->s_umount));
1218 }
1219 #else
ext4_quotas_off(struct super_block * sb,int type)1220 static inline void ext4_quotas_off(struct super_block *sb, int type)
1221 {
1222 }
1223 #endif
1224 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1225 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1226 {
1227 	ext4_fsblk_t block;
1228 	int err;
1229 
1230 	block = ext4_count_free_clusters(sbi->s_sb);
1231 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1232 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1233 				  GFP_KERNEL);
1234 	if (!err) {
1235 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1236 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1237 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1238 					  GFP_KERNEL);
1239 	}
1240 	if (!err)
1241 		err = percpu_counter_init(&sbi->s_dirs_counter,
1242 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1243 	if (!err)
1244 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1245 					  GFP_KERNEL);
1246 	if (!err)
1247 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1248 					  GFP_KERNEL);
1249 	if (!err)
1250 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1251 
1252 	if (err)
1253 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1254 
1255 	return err;
1256 }
1257 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1258 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1259 {
1260 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1261 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1262 	percpu_counter_destroy(&sbi->s_dirs_counter);
1263 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1264 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1265 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1266 }
1267 
ext4_group_desc_free(struct ext4_sb_info * sbi)1268 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1269 {
1270 	struct buffer_head **group_desc;
1271 	int i;
1272 
1273 	rcu_read_lock();
1274 	group_desc = rcu_dereference(sbi->s_group_desc);
1275 	for (i = 0; i < sbi->s_gdb_count; i++)
1276 		brelse(group_desc[i]);
1277 	kvfree(group_desc);
1278 	rcu_read_unlock();
1279 }
1280 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1281 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1282 {
1283 	struct flex_groups **flex_groups;
1284 	int i;
1285 
1286 	rcu_read_lock();
1287 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1288 	if (flex_groups) {
1289 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1290 			kvfree(flex_groups[i]);
1291 		kvfree(flex_groups);
1292 	}
1293 	rcu_read_unlock();
1294 }
1295 
ext4_put_super(struct super_block * sb)1296 static void ext4_put_super(struct super_block *sb)
1297 {
1298 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1299 	struct ext4_super_block *es = sbi->s_es;
1300 	int aborted = 0;
1301 	int err;
1302 
1303 	/*
1304 	 * Unregister sysfs before destroying jbd2 journal.
1305 	 * Since we could still access attr_journal_task attribute via sysfs
1306 	 * path which could have sbi->s_journal->j_task as NULL
1307 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1308 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1309 	 * read metadata verify failed then will queue error work.
1310 	 * update_super_work will call start_this_handle may trigger
1311 	 * BUG_ON.
1312 	 */
1313 	ext4_unregister_sysfs(sb);
1314 
1315 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1316 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1317 			 &sb->s_uuid);
1318 
1319 	ext4_unregister_li_request(sb);
1320 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1321 
1322 	destroy_workqueue(sbi->rsv_conversion_wq);
1323 	ext4_release_orphan_info(sb);
1324 
1325 	if (sbi->s_journal) {
1326 		aborted = is_journal_aborted(sbi->s_journal);
1327 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1328 		if ((err < 0) && !aborted) {
1329 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1330 		}
1331 	} else
1332 		flush_work(&sbi->s_sb_upd_work);
1333 
1334 	ext4_es_unregister_shrinker(sbi);
1335 	timer_shutdown_sync(&sbi->s_err_report);
1336 	ext4_release_system_zone(sb);
1337 	ext4_mb_release(sb);
1338 	ext4_ext_release(sb);
1339 
1340 	if (!sb_rdonly(sb) && !aborted) {
1341 		ext4_clear_feature_journal_needs_recovery(sb);
1342 		ext4_clear_feature_orphan_present(sb);
1343 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1344 	}
1345 	if (!sb_rdonly(sb))
1346 		ext4_commit_super(sb);
1347 
1348 	ext4_group_desc_free(sbi);
1349 	ext4_flex_groups_free(sbi);
1350 	ext4_percpu_param_destroy(sbi);
1351 #ifdef CONFIG_QUOTA
1352 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1353 		kfree(get_qf_name(sb, sbi, i));
1354 #endif
1355 
1356 	/* Debugging code just in case the in-memory inode orphan list
1357 	 * isn't empty.  The on-disk one can be non-empty if we've
1358 	 * detected an error and taken the fs readonly, but the
1359 	 * in-memory list had better be clean by this point. */
1360 	if (!list_empty(&sbi->s_orphan))
1361 		dump_orphan_list(sb, sbi);
1362 	ASSERT(list_empty(&sbi->s_orphan));
1363 
1364 	sync_blockdev(sb->s_bdev);
1365 	invalidate_bdev(sb->s_bdev);
1366 	if (sbi->s_journal_bdev) {
1367 		/*
1368 		 * Invalidate the journal device's buffers.  We don't want them
1369 		 * floating about in memory - the physical journal device may
1370 		 * hotswapped, and it breaks the `ro-after' testing code.
1371 		 */
1372 		sync_blockdev(sbi->s_journal_bdev);
1373 		invalidate_bdev(sbi->s_journal_bdev);
1374 	}
1375 
1376 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1377 	sbi->s_ea_inode_cache = NULL;
1378 
1379 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1380 	sbi->s_ea_block_cache = NULL;
1381 
1382 	ext4_stop_mmpd(sbi);
1383 
1384 	brelse(sbi->s_sbh);
1385 	sb->s_fs_info = NULL;
1386 	/*
1387 	 * Now that we are completely done shutting down the
1388 	 * superblock, we need to actually destroy the kobject.
1389 	 */
1390 	kobject_put(&sbi->s_kobj);
1391 	wait_for_completion(&sbi->s_kobj_unregister);
1392 	if (sbi->s_chksum_driver)
1393 		crypto_free_shash(sbi->s_chksum_driver);
1394 	kfree(sbi->s_blockgroup_lock);
1395 	fs_put_dax(sbi->s_daxdev, NULL);
1396 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1397 #if IS_ENABLED(CONFIG_UNICODE)
1398 	utf8_unload(sb->s_encoding);
1399 #endif
1400 	kfree(sbi);
1401 }
1402 
1403 static struct kmem_cache *ext4_inode_cachep;
1404 
1405 /*
1406  * Called inside transaction, so use GFP_NOFS
1407  */
ext4_alloc_inode(struct super_block * sb)1408 static struct inode *ext4_alloc_inode(struct super_block *sb)
1409 {
1410 	struct ext4_inode_info *ei;
1411 
1412 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1413 	if (!ei)
1414 		return NULL;
1415 
1416 	inode_set_iversion(&ei->vfs_inode, 1);
1417 	ei->i_flags = 0;
1418 	spin_lock_init(&ei->i_raw_lock);
1419 	ei->i_prealloc_node = RB_ROOT;
1420 	atomic_set(&ei->i_prealloc_active, 0);
1421 	rwlock_init(&ei->i_prealloc_lock);
1422 	ext4_es_init_tree(&ei->i_es_tree);
1423 	rwlock_init(&ei->i_es_lock);
1424 	INIT_LIST_HEAD(&ei->i_es_list);
1425 	ei->i_es_all_nr = 0;
1426 	ei->i_es_shk_nr = 0;
1427 	ei->i_es_shrink_lblk = 0;
1428 	ei->i_reserved_data_blocks = 0;
1429 	spin_lock_init(&(ei->i_block_reservation_lock));
1430 	ext4_init_pending_tree(&ei->i_pending_tree);
1431 #ifdef CONFIG_QUOTA
1432 	ei->i_reserved_quota = 0;
1433 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1434 #endif
1435 	ei->jinode = NULL;
1436 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1437 	spin_lock_init(&ei->i_completed_io_lock);
1438 	ei->i_sync_tid = 0;
1439 	ei->i_datasync_tid = 0;
1440 	atomic_set(&ei->i_unwritten, 0);
1441 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1442 	ext4_fc_init_inode(&ei->vfs_inode);
1443 	mutex_init(&ei->i_fc_lock);
1444 	return &ei->vfs_inode;
1445 }
1446 
ext4_drop_inode(struct inode * inode)1447 static int ext4_drop_inode(struct inode *inode)
1448 {
1449 	int drop = generic_drop_inode(inode);
1450 
1451 	if (!drop)
1452 		drop = fscrypt_drop_inode(inode);
1453 
1454 	trace_ext4_drop_inode(inode, drop);
1455 	return drop;
1456 }
1457 
ext4_free_in_core_inode(struct inode * inode)1458 static void ext4_free_in_core_inode(struct inode *inode)
1459 {
1460 	fscrypt_free_inode(inode);
1461 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1462 		pr_warn("%s: inode %ld still in fc list",
1463 			__func__, inode->i_ino);
1464 	}
1465 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1466 }
1467 
ext4_destroy_inode(struct inode * inode)1468 static void ext4_destroy_inode(struct inode *inode)
1469 {
1470 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1471 		ext4_msg(inode->i_sb, KERN_ERR,
1472 			 "Inode %lu (%p): orphan list check failed!",
1473 			 inode->i_ino, EXT4_I(inode));
1474 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1475 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1476 				true);
1477 		dump_stack();
1478 	}
1479 
1480 	if (EXT4_I(inode)->i_reserved_data_blocks)
1481 		ext4_msg(inode->i_sb, KERN_ERR,
1482 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1483 			 inode->i_ino, EXT4_I(inode),
1484 			 EXT4_I(inode)->i_reserved_data_blocks);
1485 }
1486 
ext4_shutdown(struct super_block * sb)1487 static void ext4_shutdown(struct super_block *sb)
1488 {
1489        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1490 }
1491 
init_once(void * foo)1492 static void init_once(void *foo)
1493 {
1494 	struct ext4_inode_info *ei = foo;
1495 
1496 	INIT_LIST_HEAD(&ei->i_orphan);
1497 	init_rwsem(&ei->xattr_sem);
1498 	init_rwsem(&ei->i_data_sem);
1499 	inode_init_once(&ei->vfs_inode);
1500 	ext4_fc_init_inode(&ei->vfs_inode);
1501 }
1502 
init_inodecache(void)1503 static int __init init_inodecache(void)
1504 {
1505 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1506 				sizeof(struct ext4_inode_info), 0,
1507 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1508 					SLAB_ACCOUNT),
1509 				offsetof(struct ext4_inode_info, i_data),
1510 				sizeof_field(struct ext4_inode_info, i_data),
1511 				init_once);
1512 	if (ext4_inode_cachep == NULL)
1513 		return -ENOMEM;
1514 	return 0;
1515 }
1516 
destroy_inodecache(void)1517 static void destroy_inodecache(void)
1518 {
1519 	/*
1520 	 * Make sure all delayed rcu free inodes are flushed before we
1521 	 * destroy cache.
1522 	 */
1523 	rcu_barrier();
1524 	kmem_cache_destroy(ext4_inode_cachep);
1525 }
1526 
ext4_clear_inode(struct inode * inode)1527 void ext4_clear_inode(struct inode *inode)
1528 {
1529 	ext4_fc_del(inode);
1530 	invalidate_inode_buffers(inode);
1531 	clear_inode(inode);
1532 	ext4_discard_preallocations(inode, 0);
1533 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1534 	dquot_drop(inode);
1535 	if (EXT4_I(inode)->jinode) {
1536 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1537 					       EXT4_I(inode)->jinode);
1538 		jbd2_free_inode(EXT4_I(inode)->jinode);
1539 		EXT4_I(inode)->jinode = NULL;
1540 	}
1541 	fscrypt_put_encryption_info(inode);
1542 	fsverity_cleanup_inode(inode);
1543 }
1544 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1545 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1546 					u64 ino, u32 generation)
1547 {
1548 	struct inode *inode;
1549 
1550 	/*
1551 	 * Currently we don't know the generation for parent directory, so
1552 	 * a generation of 0 means "accept any"
1553 	 */
1554 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1555 	if (IS_ERR(inode))
1556 		return ERR_CAST(inode);
1557 	if (generation && inode->i_generation != generation) {
1558 		iput(inode);
1559 		return ERR_PTR(-ESTALE);
1560 	}
1561 
1562 	return inode;
1563 }
1564 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1565 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1566 					int fh_len, int fh_type)
1567 {
1568 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1569 				    ext4_nfs_get_inode);
1570 }
1571 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1572 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1573 					int fh_len, int fh_type)
1574 {
1575 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1576 				    ext4_nfs_get_inode);
1577 }
1578 
ext4_nfs_commit_metadata(struct inode * inode)1579 static int ext4_nfs_commit_metadata(struct inode *inode)
1580 {
1581 	struct writeback_control wbc = {
1582 		.sync_mode = WB_SYNC_ALL
1583 	};
1584 
1585 	trace_ext4_nfs_commit_metadata(inode);
1586 	return ext4_write_inode(inode, &wbc);
1587 }
1588 
1589 #ifdef CONFIG_QUOTA
1590 static const char * const quotatypes[] = INITQFNAMES;
1591 #define QTYPE2NAME(t) (quotatypes[t])
1592 
1593 static int ext4_write_dquot(struct dquot *dquot);
1594 static int ext4_acquire_dquot(struct dquot *dquot);
1595 static int ext4_release_dquot(struct dquot *dquot);
1596 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1597 static int ext4_write_info(struct super_block *sb, int type);
1598 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1599 			 const struct path *path);
1600 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1601 			       size_t len, loff_t off);
1602 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1603 				const char *data, size_t len, loff_t off);
1604 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1605 			     unsigned int flags);
1606 
ext4_get_dquots(struct inode * inode)1607 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1608 {
1609 	return EXT4_I(inode)->i_dquot;
1610 }
1611 
1612 static const struct dquot_operations ext4_quota_operations = {
1613 	.get_reserved_space	= ext4_get_reserved_space,
1614 	.write_dquot		= ext4_write_dquot,
1615 	.acquire_dquot		= ext4_acquire_dquot,
1616 	.release_dquot		= ext4_release_dquot,
1617 	.mark_dirty		= ext4_mark_dquot_dirty,
1618 	.write_info		= ext4_write_info,
1619 	.alloc_dquot		= dquot_alloc,
1620 	.destroy_dquot		= dquot_destroy,
1621 	.get_projid		= ext4_get_projid,
1622 	.get_inode_usage	= ext4_get_inode_usage,
1623 	.get_next_id		= dquot_get_next_id,
1624 };
1625 
1626 static const struct quotactl_ops ext4_qctl_operations = {
1627 	.quota_on	= ext4_quota_on,
1628 	.quota_off	= ext4_quota_off,
1629 	.quota_sync	= dquot_quota_sync,
1630 	.get_state	= dquot_get_state,
1631 	.set_info	= dquot_set_dqinfo,
1632 	.get_dqblk	= dquot_get_dqblk,
1633 	.set_dqblk	= dquot_set_dqblk,
1634 	.get_nextdqblk	= dquot_get_next_dqblk,
1635 };
1636 #endif
1637 
1638 static const struct super_operations ext4_sops = {
1639 	.alloc_inode	= ext4_alloc_inode,
1640 	.free_inode	= ext4_free_in_core_inode,
1641 	.destroy_inode	= ext4_destroy_inode,
1642 	.write_inode	= ext4_write_inode,
1643 	.dirty_inode	= ext4_dirty_inode,
1644 	.drop_inode	= ext4_drop_inode,
1645 	.evict_inode	= ext4_evict_inode,
1646 	.put_super	= ext4_put_super,
1647 	.sync_fs	= ext4_sync_fs,
1648 	.freeze_fs	= ext4_freeze,
1649 	.unfreeze_fs	= ext4_unfreeze,
1650 	.statfs		= ext4_statfs,
1651 	.show_options	= ext4_show_options,
1652 	.shutdown	= ext4_shutdown,
1653 #ifdef CONFIG_QUOTA
1654 	.quota_read	= ext4_quota_read,
1655 	.quota_write	= ext4_quota_write,
1656 	.get_dquots	= ext4_get_dquots,
1657 #endif
1658 };
1659 
1660 static const struct export_operations ext4_export_ops = {
1661 	.fh_to_dentry = ext4_fh_to_dentry,
1662 	.fh_to_parent = ext4_fh_to_parent,
1663 	.get_parent = ext4_get_parent,
1664 	.commit_metadata = ext4_nfs_commit_metadata,
1665 };
1666 
1667 enum {
1668 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1669 	Opt_resgid, Opt_resuid, Opt_sb,
1670 	Opt_nouid32, Opt_debug, Opt_removed,
1671 	Opt_user_xattr, Opt_acl,
1672 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1673 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1674 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1675 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1676 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1677 	Opt_inlinecrypt,
1678 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1679 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1680 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1681 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1682 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1683 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1684 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1685 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1686 	Opt_dioread_nolock, Opt_dioread_lock,
1687 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1688 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1689 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1690 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1691 #ifdef CONFIG_EXT4_DEBUG
1692 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1693 #endif
1694 };
1695 
1696 static const struct constant_table ext4_param_errors[] = {
1697 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1698 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1699 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1700 	{}
1701 };
1702 
1703 static const struct constant_table ext4_param_data[] = {
1704 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1705 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1706 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1707 	{}
1708 };
1709 
1710 static const struct constant_table ext4_param_data_err[] = {
1711 	{"abort",	Opt_data_err_abort},
1712 	{"ignore",	Opt_data_err_ignore},
1713 	{}
1714 };
1715 
1716 static const struct constant_table ext4_param_jqfmt[] = {
1717 	{"vfsold",	QFMT_VFS_OLD},
1718 	{"vfsv0",	QFMT_VFS_V0},
1719 	{"vfsv1",	QFMT_VFS_V1},
1720 	{}
1721 };
1722 
1723 static const struct constant_table ext4_param_dax[] = {
1724 	{"always",	Opt_dax_always},
1725 	{"inode",	Opt_dax_inode},
1726 	{"never",	Opt_dax_never},
1727 	{}
1728 };
1729 
1730 /* String parameter that allows empty argument */
1731 #define fsparam_string_empty(NAME, OPT) \
1732 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1733 
1734 /*
1735  * Mount option specification
1736  * We don't use fsparam_flag_no because of the way we set the
1737  * options and the way we show them in _ext4_show_options(). To
1738  * keep the changes to a minimum, let's keep the negative options
1739  * separate for now.
1740  */
1741 static const struct fs_parameter_spec ext4_param_specs[] = {
1742 	fsparam_flag	("bsddf",		Opt_bsd_df),
1743 	fsparam_flag	("minixdf",		Opt_minix_df),
1744 	fsparam_flag	("grpid",		Opt_grpid),
1745 	fsparam_flag	("bsdgroups",		Opt_grpid),
1746 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1747 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1748 	fsparam_u32	("resgid",		Opt_resgid),
1749 	fsparam_u32	("resuid",		Opt_resuid),
1750 	fsparam_u32	("sb",			Opt_sb),
1751 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1752 	fsparam_flag	("nouid32",		Opt_nouid32),
1753 	fsparam_flag	("debug",		Opt_debug),
1754 	fsparam_flag	("oldalloc",		Opt_removed),
1755 	fsparam_flag	("orlov",		Opt_removed),
1756 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1757 	fsparam_flag	("acl",			Opt_acl),
1758 	fsparam_flag	("norecovery",		Opt_noload),
1759 	fsparam_flag	("noload",		Opt_noload),
1760 	fsparam_flag	("bh",			Opt_removed),
1761 	fsparam_flag	("nobh",		Opt_removed),
1762 	fsparam_u32	("commit",		Opt_commit),
1763 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1764 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1765 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1766 	fsparam_bdev	("journal_path",	Opt_journal_path),
1767 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1768 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1769 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1770 	fsparam_flag	("abort",		Opt_abort),
1771 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1772 	fsparam_enum	("data_err",		Opt_data_err,
1773 						ext4_param_data_err),
1774 	fsparam_string_empty
1775 			("usrjquota",		Opt_usrjquota),
1776 	fsparam_string_empty
1777 			("grpjquota",		Opt_grpjquota),
1778 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1779 	fsparam_flag	("grpquota",		Opt_grpquota),
1780 	fsparam_flag	("quota",		Opt_quota),
1781 	fsparam_flag	("noquota",		Opt_noquota),
1782 	fsparam_flag	("usrquota",		Opt_usrquota),
1783 	fsparam_flag	("prjquota",		Opt_prjquota),
1784 	fsparam_flag	("barrier",		Opt_barrier),
1785 	fsparam_u32	("barrier",		Opt_barrier),
1786 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1787 	fsparam_flag	("i_version",		Opt_removed),
1788 	fsparam_flag	("dax",			Opt_dax),
1789 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1790 	fsparam_u32	("stripe",		Opt_stripe),
1791 	fsparam_flag	("delalloc",		Opt_delalloc),
1792 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1793 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1794 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1795 	fsparam_u32	("debug_want_extra_isize",
1796 						Opt_debug_want_extra_isize),
1797 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1798 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1799 	fsparam_flag	("block_validity",	Opt_block_validity),
1800 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1801 	fsparam_u32	("inode_readahead_blks",
1802 						Opt_inode_readahead_blks),
1803 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1804 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1805 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1806 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1807 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1808 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1809 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1810 	fsparam_flag	("discard",		Opt_discard),
1811 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1812 	fsparam_u32	("init_itable",		Opt_init_itable),
1813 	fsparam_flag	("init_itable",		Opt_init_itable),
1814 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1815 #ifdef CONFIG_EXT4_DEBUG
1816 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1817 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1818 #endif
1819 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1820 	fsparam_flag	("test_dummy_encryption",
1821 						Opt_test_dummy_encryption),
1822 	fsparam_string	("test_dummy_encryption",
1823 						Opt_test_dummy_encryption),
1824 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1825 	fsparam_flag	("nombcache",		Opt_nombcache),
1826 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1827 	fsparam_flag	("prefetch_block_bitmaps",
1828 						Opt_removed),
1829 	fsparam_flag	("no_prefetch_block_bitmaps",
1830 						Opt_no_prefetch_block_bitmaps),
1831 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1832 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1833 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1834 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1835 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1836 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1837 	{}
1838 };
1839 
1840 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1841 
1842 #define MOPT_SET	0x0001
1843 #define MOPT_CLEAR	0x0002
1844 #define MOPT_NOSUPPORT	0x0004
1845 #define MOPT_EXPLICIT	0x0008
1846 #ifdef CONFIG_QUOTA
1847 #define MOPT_Q		0
1848 #define MOPT_QFMT	0x0010
1849 #else
1850 #define MOPT_Q		MOPT_NOSUPPORT
1851 #define MOPT_QFMT	MOPT_NOSUPPORT
1852 #endif
1853 #define MOPT_NO_EXT2	0x0020
1854 #define MOPT_NO_EXT3	0x0040
1855 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1856 #define MOPT_SKIP	0x0080
1857 #define	MOPT_2		0x0100
1858 
1859 static const struct mount_opts {
1860 	int	token;
1861 	int	mount_opt;
1862 	int	flags;
1863 } ext4_mount_opts[] = {
1864 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1865 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1866 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1867 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1868 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1869 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1870 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1871 	 MOPT_EXT4_ONLY | MOPT_SET},
1872 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1873 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1874 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1875 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1876 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1877 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1879 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1880 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1881 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1882 	{Opt_commit, 0, MOPT_NO_EXT2},
1883 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1884 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1885 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1886 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1888 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1889 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1890 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1891 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1892 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1893 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1894 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1895 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1896 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1897 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1898 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1899 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1900 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1901 	{Opt_data, 0, MOPT_NO_EXT2},
1902 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1903 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1904 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1905 #else
1906 	{Opt_acl, 0, MOPT_NOSUPPORT},
1907 #endif
1908 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1909 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1910 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1911 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1912 							MOPT_SET | MOPT_Q},
1913 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1914 							MOPT_SET | MOPT_Q},
1915 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1916 							MOPT_SET | MOPT_Q},
1917 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1918 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1919 							MOPT_CLEAR | MOPT_Q},
1920 	{Opt_usrjquota, 0, MOPT_Q},
1921 	{Opt_grpjquota, 0, MOPT_Q},
1922 	{Opt_jqfmt, 0, MOPT_QFMT},
1923 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1924 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1925 	 MOPT_SET},
1926 #ifdef CONFIG_EXT4_DEBUG
1927 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1928 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1929 #endif
1930 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1931 	{Opt_err, 0, 0}
1932 };
1933 
1934 #if IS_ENABLED(CONFIG_UNICODE)
1935 static const struct ext4_sb_encodings {
1936 	__u16 magic;
1937 	char *name;
1938 	unsigned int version;
1939 } ext4_sb_encoding_map[] = {
1940 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1941 };
1942 
1943 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1944 ext4_sb_read_encoding(const struct ext4_super_block *es)
1945 {
1946 	__u16 magic = le16_to_cpu(es->s_encoding);
1947 	int i;
1948 
1949 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1950 		if (magic == ext4_sb_encoding_map[i].magic)
1951 			return &ext4_sb_encoding_map[i];
1952 
1953 	return NULL;
1954 }
1955 #endif
1956 
1957 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1958 #define EXT4_SPEC_JQFMT				(1 <<  1)
1959 #define EXT4_SPEC_DATAJ				(1 <<  2)
1960 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1961 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1962 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1963 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1964 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1965 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1966 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1967 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1968 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1969 #define EXT4_SPEC_s_stripe			(1 << 13)
1970 #define EXT4_SPEC_s_resuid			(1 << 14)
1971 #define EXT4_SPEC_s_resgid			(1 << 15)
1972 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1973 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1974 #define EXT4_SPEC_s_sb_block			(1 << 18)
1975 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1976 
1977 struct ext4_fs_context {
1978 	char		*s_qf_names[EXT4_MAXQUOTAS];
1979 	struct fscrypt_dummy_policy dummy_enc_policy;
1980 	int		s_jquota_fmt;	/* Format of quota to use */
1981 #ifdef CONFIG_EXT4_DEBUG
1982 	int s_fc_debug_max_replay;
1983 #endif
1984 	unsigned short	qname_spec;
1985 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1986 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1987 	unsigned long	journal_devnum;
1988 	unsigned long	s_commit_interval;
1989 	unsigned long	s_stripe;
1990 	unsigned int	s_inode_readahead_blks;
1991 	unsigned int	s_want_extra_isize;
1992 	unsigned int	s_li_wait_mult;
1993 	unsigned int	s_max_dir_size_kb;
1994 	unsigned int	journal_ioprio;
1995 	unsigned int	vals_s_mount_opt;
1996 	unsigned int	mask_s_mount_opt;
1997 	unsigned int	vals_s_mount_opt2;
1998 	unsigned int	mask_s_mount_opt2;
1999 	unsigned int	opt_flags;	/* MOPT flags */
2000 	unsigned int	spec;
2001 	u32		s_max_batch_time;
2002 	u32		s_min_batch_time;
2003 	kuid_t		s_resuid;
2004 	kgid_t		s_resgid;
2005 	ext4_fsblk_t	s_sb_block;
2006 };
2007 
ext4_fc_free(struct fs_context * fc)2008 static void ext4_fc_free(struct fs_context *fc)
2009 {
2010 	struct ext4_fs_context *ctx = fc->fs_private;
2011 	int i;
2012 
2013 	if (!ctx)
2014 		return;
2015 
2016 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2017 		kfree(ctx->s_qf_names[i]);
2018 
2019 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2020 	kfree(ctx);
2021 }
2022 
ext4_init_fs_context(struct fs_context * fc)2023 int ext4_init_fs_context(struct fs_context *fc)
2024 {
2025 	struct ext4_fs_context *ctx;
2026 
2027 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2028 	if (!ctx)
2029 		return -ENOMEM;
2030 
2031 	fc->fs_private = ctx;
2032 	fc->ops = &ext4_context_ops;
2033 
2034 	return 0;
2035 }
2036 
2037 #ifdef CONFIG_QUOTA
2038 /*
2039  * Note the name of the specified quota file.
2040  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2041 static int note_qf_name(struct fs_context *fc, int qtype,
2042 		       struct fs_parameter *param)
2043 {
2044 	struct ext4_fs_context *ctx = fc->fs_private;
2045 	char *qname;
2046 
2047 	if (param->size < 1) {
2048 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2049 		return -EINVAL;
2050 	}
2051 	if (strchr(param->string, '/')) {
2052 		ext4_msg(NULL, KERN_ERR,
2053 			 "quotafile must be on filesystem root");
2054 		return -EINVAL;
2055 	}
2056 	if (ctx->s_qf_names[qtype]) {
2057 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2058 			ext4_msg(NULL, KERN_ERR,
2059 				 "%s quota file already specified",
2060 				 QTYPE2NAME(qtype));
2061 			return -EINVAL;
2062 		}
2063 		return 0;
2064 	}
2065 
2066 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2067 	if (!qname) {
2068 		ext4_msg(NULL, KERN_ERR,
2069 			 "Not enough memory for storing quotafile name");
2070 		return -ENOMEM;
2071 	}
2072 	ctx->s_qf_names[qtype] = qname;
2073 	ctx->qname_spec |= 1 << qtype;
2074 	ctx->spec |= EXT4_SPEC_JQUOTA;
2075 	return 0;
2076 }
2077 
2078 /*
2079  * Clear the name of the specified quota file.
2080  */
unnote_qf_name(struct fs_context * fc,int qtype)2081 static int unnote_qf_name(struct fs_context *fc, int qtype)
2082 {
2083 	struct ext4_fs_context *ctx = fc->fs_private;
2084 
2085 	if (ctx->s_qf_names[qtype])
2086 		kfree(ctx->s_qf_names[qtype]);
2087 
2088 	ctx->s_qf_names[qtype] = NULL;
2089 	ctx->qname_spec |= 1 << qtype;
2090 	ctx->spec |= EXT4_SPEC_JQUOTA;
2091 	return 0;
2092 }
2093 #endif
2094 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2095 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2096 					    struct ext4_fs_context *ctx)
2097 {
2098 	int err;
2099 
2100 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2101 		ext4_msg(NULL, KERN_WARNING,
2102 			 "test_dummy_encryption option not supported");
2103 		return -EINVAL;
2104 	}
2105 	err = fscrypt_parse_test_dummy_encryption(param,
2106 						  &ctx->dummy_enc_policy);
2107 	if (err == -EINVAL) {
2108 		ext4_msg(NULL, KERN_WARNING,
2109 			 "Value of option \"%s\" is unrecognized", param->key);
2110 	} else if (err == -EEXIST) {
2111 		ext4_msg(NULL, KERN_WARNING,
2112 			 "Conflicting test_dummy_encryption options");
2113 		return -EINVAL;
2114 	}
2115 	return err;
2116 }
2117 
2118 #define EXT4_SET_CTX(name)						\
2119 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2120 				  unsigned long flag)			\
2121 {									\
2122 	ctx->mask_s_##name |= flag;					\
2123 	ctx->vals_s_##name |= flag;					\
2124 }
2125 
2126 #define EXT4_CLEAR_CTX(name)						\
2127 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2128 				    unsigned long flag)			\
2129 {									\
2130 	ctx->mask_s_##name |= flag;					\
2131 	ctx->vals_s_##name &= ~flag;					\
2132 }
2133 
2134 #define EXT4_TEST_CTX(name)						\
2135 static inline unsigned long						\
2136 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2137 {									\
2138 	return (ctx->vals_s_##name & flag);				\
2139 }
2140 
2141 EXT4_SET_CTX(flags); /* set only */
2142 EXT4_SET_CTX(mount_opt);
2143 EXT4_CLEAR_CTX(mount_opt);
2144 EXT4_TEST_CTX(mount_opt);
2145 EXT4_SET_CTX(mount_opt2);
2146 EXT4_CLEAR_CTX(mount_opt2);
2147 EXT4_TEST_CTX(mount_opt2);
2148 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2149 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2150 {
2151 	struct ext4_fs_context *ctx = fc->fs_private;
2152 	struct fs_parse_result result;
2153 	const struct mount_opts *m;
2154 	int is_remount;
2155 	kuid_t uid;
2156 	kgid_t gid;
2157 	int token;
2158 
2159 	token = fs_parse(fc, ext4_param_specs, param, &result);
2160 	if (token < 0)
2161 		return token;
2162 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2163 
2164 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2165 		if (token == m->token)
2166 			break;
2167 
2168 	ctx->opt_flags |= m->flags;
2169 
2170 	if (m->flags & MOPT_EXPLICIT) {
2171 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2172 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2173 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2174 			ctx_set_mount_opt2(ctx,
2175 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2176 		} else
2177 			return -EINVAL;
2178 	}
2179 
2180 	if (m->flags & MOPT_NOSUPPORT) {
2181 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2182 			 param->key);
2183 		return 0;
2184 	}
2185 
2186 	switch (token) {
2187 #ifdef CONFIG_QUOTA
2188 	case Opt_usrjquota:
2189 		if (!*param->string)
2190 			return unnote_qf_name(fc, USRQUOTA);
2191 		else
2192 			return note_qf_name(fc, USRQUOTA, param);
2193 	case Opt_grpjquota:
2194 		if (!*param->string)
2195 			return unnote_qf_name(fc, GRPQUOTA);
2196 		else
2197 			return note_qf_name(fc, GRPQUOTA, param);
2198 #endif
2199 	case Opt_sb:
2200 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2201 			ext4_msg(NULL, KERN_WARNING,
2202 				 "Ignoring %s option on remount", param->key);
2203 		} else {
2204 			ctx->s_sb_block = result.uint_32;
2205 			ctx->spec |= EXT4_SPEC_s_sb_block;
2206 		}
2207 		return 0;
2208 	case Opt_removed:
2209 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2210 			 param->key);
2211 		return 0;
2212 	case Opt_inlinecrypt:
2213 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2214 		ctx_set_flags(ctx, SB_INLINECRYPT);
2215 #else
2216 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2217 #endif
2218 		return 0;
2219 	case Opt_errors:
2220 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2221 		ctx_set_mount_opt(ctx, result.uint_32);
2222 		return 0;
2223 #ifdef CONFIG_QUOTA
2224 	case Opt_jqfmt:
2225 		ctx->s_jquota_fmt = result.uint_32;
2226 		ctx->spec |= EXT4_SPEC_JQFMT;
2227 		return 0;
2228 #endif
2229 	case Opt_data:
2230 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2231 		ctx_set_mount_opt(ctx, result.uint_32);
2232 		ctx->spec |= EXT4_SPEC_DATAJ;
2233 		return 0;
2234 	case Opt_commit:
2235 		if (result.uint_32 == 0)
2236 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2237 		else if (result.uint_32 > INT_MAX / HZ) {
2238 			ext4_msg(NULL, KERN_ERR,
2239 				 "Invalid commit interval %d, "
2240 				 "must be smaller than %d",
2241 				 result.uint_32, INT_MAX / HZ);
2242 			return -EINVAL;
2243 		}
2244 		ctx->s_commit_interval = HZ * result.uint_32;
2245 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2246 		return 0;
2247 	case Opt_debug_want_extra_isize:
2248 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2249 			ext4_msg(NULL, KERN_ERR,
2250 				 "Invalid want_extra_isize %d", result.uint_32);
2251 			return -EINVAL;
2252 		}
2253 		ctx->s_want_extra_isize = result.uint_32;
2254 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2255 		return 0;
2256 	case Opt_max_batch_time:
2257 		ctx->s_max_batch_time = result.uint_32;
2258 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2259 		return 0;
2260 	case Opt_min_batch_time:
2261 		ctx->s_min_batch_time = result.uint_32;
2262 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2263 		return 0;
2264 	case Opt_inode_readahead_blks:
2265 		if (result.uint_32 &&
2266 		    (result.uint_32 > (1 << 30) ||
2267 		     !is_power_of_2(result.uint_32))) {
2268 			ext4_msg(NULL, KERN_ERR,
2269 				 "EXT4-fs: inode_readahead_blks must be "
2270 				 "0 or a power of 2 smaller than 2^31");
2271 			return -EINVAL;
2272 		}
2273 		ctx->s_inode_readahead_blks = result.uint_32;
2274 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2275 		return 0;
2276 	case Opt_init_itable:
2277 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2278 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2279 		if (param->type == fs_value_is_string)
2280 			ctx->s_li_wait_mult = result.uint_32;
2281 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2282 		return 0;
2283 	case Opt_max_dir_size_kb:
2284 		ctx->s_max_dir_size_kb = result.uint_32;
2285 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2286 		return 0;
2287 #ifdef CONFIG_EXT4_DEBUG
2288 	case Opt_fc_debug_max_replay:
2289 		ctx->s_fc_debug_max_replay = result.uint_32;
2290 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2291 		return 0;
2292 #endif
2293 	case Opt_stripe:
2294 		ctx->s_stripe = result.uint_32;
2295 		ctx->spec |= EXT4_SPEC_s_stripe;
2296 		return 0;
2297 	case Opt_resuid:
2298 		uid = make_kuid(current_user_ns(), result.uint_32);
2299 		if (!uid_valid(uid)) {
2300 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2301 				 result.uint_32);
2302 			return -EINVAL;
2303 		}
2304 		ctx->s_resuid = uid;
2305 		ctx->spec |= EXT4_SPEC_s_resuid;
2306 		return 0;
2307 	case Opt_resgid:
2308 		gid = make_kgid(current_user_ns(), result.uint_32);
2309 		if (!gid_valid(gid)) {
2310 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2311 				 result.uint_32);
2312 			return -EINVAL;
2313 		}
2314 		ctx->s_resgid = gid;
2315 		ctx->spec |= EXT4_SPEC_s_resgid;
2316 		return 0;
2317 	case Opt_journal_dev:
2318 		if (is_remount) {
2319 			ext4_msg(NULL, KERN_ERR,
2320 				 "Cannot specify journal on remount");
2321 			return -EINVAL;
2322 		}
2323 		ctx->journal_devnum = result.uint_32;
2324 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2325 		return 0;
2326 	case Opt_journal_path:
2327 	{
2328 		struct inode *journal_inode;
2329 		struct path path;
2330 		int error;
2331 
2332 		if (is_remount) {
2333 			ext4_msg(NULL, KERN_ERR,
2334 				 "Cannot specify journal on remount");
2335 			return -EINVAL;
2336 		}
2337 
2338 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2339 		if (error) {
2340 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2341 				 "journal device path");
2342 			return -EINVAL;
2343 		}
2344 
2345 		journal_inode = d_inode(path.dentry);
2346 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2347 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2348 		path_put(&path);
2349 		return 0;
2350 	}
2351 	case Opt_journal_ioprio:
2352 		if (result.uint_32 > 7) {
2353 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2354 				 " (must be 0-7)");
2355 			return -EINVAL;
2356 		}
2357 		ctx->journal_ioprio =
2358 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2359 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2360 		return 0;
2361 	case Opt_test_dummy_encryption:
2362 		return ext4_parse_test_dummy_encryption(param, ctx);
2363 	case Opt_dax:
2364 	case Opt_dax_type:
2365 #ifdef CONFIG_FS_DAX
2366 	{
2367 		int type = (token == Opt_dax) ?
2368 			   Opt_dax : result.uint_32;
2369 
2370 		switch (type) {
2371 		case Opt_dax:
2372 		case Opt_dax_always:
2373 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2374 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375 			break;
2376 		case Opt_dax_never:
2377 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2378 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379 			break;
2380 		case Opt_dax_inode:
2381 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2382 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2383 			/* Strictly for printing options */
2384 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2385 			break;
2386 		}
2387 		return 0;
2388 	}
2389 #else
2390 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2391 		return -EINVAL;
2392 #endif
2393 	case Opt_data_err:
2394 		if (result.uint_32 == Opt_data_err_abort)
2395 			ctx_set_mount_opt(ctx, m->mount_opt);
2396 		else if (result.uint_32 == Opt_data_err_ignore)
2397 			ctx_clear_mount_opt(ctx, m->mount_opt);
2398 		return 0;
2399 	case Opt_mb_optimize_scan:
2400 		if (result.int_32 == 1) {
2401 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403 		} else if (result.int_32 == 0) {
2404 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2405 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2406 		} else {
2407 			ext4_msg(NULL, KERN_WARNING,
2408 				 "mb_optimize_scan should be set to 0 or 1.");
2409 			return -EINVAL;
2410 		}
2411 		return 0;
2412 	}
2413 
2414 	/*
2415 	 * At this point we should only be getting options requiring MOPT_SET,
2416 	 * or MOPT_CLEAR. Anything else is a bug
2417 	 */
2418 	if (m->token == Opt_err) {
2419 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2420 			 param->key);
2421 		WARN_ON(1);
2422 		return -EINVAL;
2423 	}
2424 
2425 	else {
2426 		unsigned int set = 0;
2427 
2428 		if ((param->type == fs_value_is_flag) ||
2429 		    result.uint_32 > 0)
2430 			set = 1;
2431 
2432 		if (m->flags & MOPT_CLEAR)
2433 			set = !set;
2434 		else if (unlikely(!(m->flags & MOPT_SET))) {
2435 			ext4_msg(NULL, KERN_WARNING,
2436 				 "buggy handling of option %s",
2437 				 param->key);
2438 			WARN_ON(1);
2439 			return -EINVAL;
2440 		}
2441 		if (m->flags & MOPT_2) {
2442 			if (set != 0)
2443 				ctx_set_mount_opt2(ctx, m->mount_opt);
2444 			else
2445 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2446 		} else {
2447 			if (set != 0)
2448 				ctx_set_mount_opt(ctx, m->mount_opt);
2449 			else
2450 				ctx_clear_mount_opt(ctx, m->mount_opt);
2451 		}
2452 	}
2453 
2454 	return 0;
2455 }
2456 
parse_options(struct fs_context * fc,char * options)2457 static int parse_options(struct fs_context *fc, char *options)
2458 {
2459 	struct fs_parameter param;
2460 	int ret;
2461 	char *key;
2462 
2463 	if (!options)
2464 		return 0;
2465 
2466 	while ((key = strsep(&options, ",")) != NULL) {
2467 		if (*key) {
2468 			size_t v_len = 0;
2469 			char *value = strchr(key, '=');
2470 
2471 			param.type = fs_value_is_flag;
2472 			param.string = NULL;
2473 
2474 			if (value) {
2475 				if (value == key)
2476 					continue;
2477 
2478 				*value++ = 0;
2479 				v_len = strlen(value);
2480 				param.string = kmemdup_nul(value, v_len,
2481 							   GFP_KERNEL);
2482 				if (!param.string)
2483 					return -ENOMEM;
2484 				param.type = fs_value_is_string;
2485 			}
2486 
2487 			param.key = key;
2488 			param.size = v_len;
2489 
2490 			ret = ext4_parse_param(fc, &param);
2491 			if (param.string)
2492 				kfree(param.string);
2493 			if (ret < 0)
2494 				return ret;
2495 		}
2496 	}
2497 
2498 	ret = ext4_validate_options(fc);
2499 	if (ret < 0)
2500 		return ret;
2501 
2502 	return 0;
2503 }
2504 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2505 static int parse_apply_sb_mount_options(struct super_block *sb,
2506 					struct ext4_fs_context *m_ctx)
2507 {
2508 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2509 	char *s_mount_opts = NULL;
2510 	struct ext4_fs_context *s_ctx = NULL;
2511 	struct fs_context *fc = NULL;
2512 	int ret = -ENOMEM;
2513 
2514 	if (!sbi->s_es->s_mount_opts[0])
2515 		return 0;
2516 
2517 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2518 				sizeof(sbi->s_es->s_mount_opts),
2519 				GFP_KERNEL);
2520 	if (!s_mount_opts)
2521 		return ret;
2522 
2523 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2524 	if (!fc)
2525 		goto out_free;
2526 
2527 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2528 	if (!s_ctx)
2529 		goto out_free;
2530 
2531 	fc->fs_private = s_ctx;
2532 	fc->s_fs_info = sbi;
2533 
2534 	ret = parse_options(fc, s_mount_opts);
2535 	if (ret < 0)
2536 		goto parse_failed;
2537 
2538 	ret = ext4_check_opt_consistency(fc, sb);
2539 	if (ret < 0) {
2540 parse_failed:
2541 		ext4_msg(sb, KERN_WARNING,
2542 			 "failed to parse options in superblock: %s",
2543 			 s_mount_opts);
2544 		ret = 0;
2545 		goto out_free;
2546 	}
2547 
2548 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2549 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2550 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2551 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2552 
2553 	ext4_apply_options(fc, sb);
2554 	ret = 0;
2555 
2556 out_free:
2557 	if (fc) {
2558 		ext4_fc_free(fc);
2559 		kfree(fc);
2560 	}
2561 	kfree(s_mount_opts);
2562 	return ret;
2563 }
2564 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2565 static void ext4_apply_quota_options(struct fs_context *fc,
2566 				     struct super_block *sb)
2567 {
2568 #ifdef CONFIG_QUOTA
2569 	bool quota_feature = ext4_has_feature_quota(sb);
2570 	struct ext4_fs_context *ctx = fc->fs_private;
2571 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2572 	char *qname;
2573 	int i;
2574 
2575 	if (quota_feature)
2576 		return;
2577 
2578 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2579 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2580 			if (!(ctx->qname_spec & (1 << i)))
2581 				continue;
2582 
2583 			qname = ctx->s_qf_names[i]; /* May be NULL */
2584 			if (qname)
2585 				set_opt(sb, QUOTA);
2586 			ctx->s_qf_names[i] = NULL;
2587 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2588 						lockdep_is_held(&sb->s_umount));
2589 			if (qname)
2590 				kfree_rcu_mightsleep(qname);
2591 		}
2592 	}
2593 
2594 	if (ctx->spec & EXT4_SPEC_JQFMT)
2595 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2596 #endif
2597 }
2598 
2599 /*
2600  * Check quota settings consistency.
2601  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2602 static int ext4_check_quota_consistency(struct fs_context *fc,
2603 					struct super_block *sb)
2604 {
2605 #ifdef CONFIG_QUOTA
2606 	struct ext4_fs_context *ctx = fc->fs_private;
2607 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2608 	bool quota_feature = ext4_has_feature_quota(sb);
2609 	bool quota_loaded = sb_any_quota_loaded(sb);
2610 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2611 	int quota_flags, i;
2612 
2613 	/*
2614 	 * We do the test below only for project quotas. 'usrquota' and
2615 	 * 'grpquota' mount options are allowed even without quota feature
2616 	 * to support legacy quotas in quota files.
2617 	 */
2618 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2619 	    !ext4_has_feature_project(sb)) {
2620 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2621 			 "Cannot enable project quota enforcement.");
2622 		return -EINVAL;
2623 	}
2624 
2625 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2626 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2627 	if (quota_loaded &&
2628 	    ctx->mask_s_mount_opt & quota_flags &&
2629 	    !ctx_test_mount_opt(ctx, quota_flags))
2630 		goto err_quota_change;
2631 
2632 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2633 
2634 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2635 			if (!(ctx->qname_spec & (1 << i)))
2636 				continue;
2637 
2638 			if (quota_loaded &&
2639 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2640 				goto err_jquota_change;
2641 
2642 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2643 			    strcmp(get_qf_name(sb, sbi, i),
2644 				   ctx->s_qf_names[i]) != 0)
2645 				goto err_jquota_specified;
2646 		}
2647 
2648 		if (quota_feature) {
2649 			ext4_msg(NULL, KERN_INFO,
2650 				 "Journaled quota options ignored when "
2651 				 "QUOTA feature is enabled");
2652 			return 0;
2653 		}
2654 	}
2655 
2656 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2657 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2658 			goto err_jquota_change;
2659 		if (quota_feature) {
2660 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2661 				 "ignored when QUOTA feature is enabled");
2662 			return 0;
2663 		}
2664 	}
2665 
2666 	/* Make sure we don't mix old and new quota format */
2667 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2668 		       ctx->s_qf_names[USRQUOTA]);
2669 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2670 		       ctx->s_qf_names[GRPQUOTA]);
2671 
2672 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2673 		    test_opt(sb, USRQUOTA));
2674 
2675 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2676 		    test_opt(sb, GRPQUOTA));
2677 
2678 	if (usr_qf_name) {
2679 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2680 		usrquota = false;
2681 	}
2682 	if (grp_qf_name) {
2683 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2684 		grpquota = false;
2685 	}
2686 
2687 	if (usr_qf_name || grp_qf_name) {
2688 		if (usrquota || grpquota) {
2689 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2690 				 "format mixing");
2691 			return -EINVAL;
2692 		}
2693 
2694 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2695 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2696 				 "not specified");
2697 			return -EINVAL;
2698 		}
2699 	}
2700 
2701 	return 0;
2702 
2703 err_quota_change:
2704 	ext4_msg(NULL, KERN_ERR,
2705 		 "Cannot change quota options when quota turned on");
2706 	return -EINVAL;
2707 err_jquota_change:
2708 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2709 		 "options when quota turned on");
2710 	return -EINVAL;
2711 err_jquota_specified:
2712 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2713 		 QTYPE2NAME(i));
2714 	return -EINVAL;
2715 #else
2716 	return 0;
2717 #endif
2718 }
2719 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2720 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2721 					    struct super_block *sb)
2722 {
2723 	const struct ext4_fs_context *ctx = fc->fs_private;
2724 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2725 
2726 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2727 		return 0;
2728 
2729 	if (!ext4_has_feature_encrypt(sb)) {
2730 		ext4_msg(NULL, KERN_WARNING,
2731 			 "test_dummy_encryption requires encrypt feature");
2732 		return -EINVAL;
2733 	}
2734 	/*
2735 	 * This mount option is just for testing, and it's not worthwhile to
2736 	 * implement the extra complexity (e.g. RCU protection) that would be
2737 	 * needed to allow it to be set or changed during remount.  We do allow
2738 	 * it to be specified during remount, but only if there is no change.
2739 	 */
2740 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2741 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2742 						 &ctx->dummy_enc_policy))
2743 			return 0;
2744 		ext4_msg(NULL, KERN_WARNING,
2745 			 "Can't set or change test_dummy_encryption on remount");
2746 		return -EINVAL;
2747 	}
2748 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2749 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2750 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2751 						 &ctx->dummy_enc_policy))
2752 			return 0;
2753 		ext4_msg(NULL, KERN_WARNING,
2754 			 "Conflicting test_dummy_encryption options");
2755 		return -EINVAL;
2756 	}
2757 	return 0;
2758 }
2759 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2760 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2761 					     struct super_block *sb)
2762 {
2763 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2764 	    /* if already set, it was already verified to be the same */
2765 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2766 		return;
2767 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2768 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2769 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2770 }
2771 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2772 static int ext4_check_opt_consistency(struct fs_context *fc,
2773 				      struct super_block *sb)
2774 {
2775 	struct ext4_fs_context *ctx = fc->fs_private;
2776 	struct ext4_sb_info *sbi = fc->s_fs_info;
2777 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2778 	int err;
2779 
2780 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2781 		ext4_msg(NULL, KERN_ERR,
2782 			 "Mount option(s) incompatible with ext2");
2783 		return -EINVAL;
2784 	}
2785 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2786 		ext4_msg(NULL, KERN_ERR,
2787 			 "Mount option(s) incompatible with ext3");
2788 		return -EINVAL;
2789 	}
2790 
2791 	if (ctx->s_want_extra_isize >
2792 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2793 		ext4_msg(NULL, KERN_ERR,
2794 			 "Invalid want_extra_isize %d",
2795 			 ctx->s_want_extra_isize);
2796 		return -EINVAL;
2797 	}
2798 
2799 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2800 		int blocksize =
2801 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2802 		if (blocksize < PAGE_SIZE)
2803 			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2804 				 "experimental mount option 'dioread_nolock' "
2805 				 "for blocksize < PAGE_SIZE");
2806 	}
2807 
2808 	err = ext4_check_test_dummy_encryption(fc, sb);
2809 	if (err)
2810 		return err;
2811 
2812 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2813 		if (!sbi->s_journal) {
2814 			ext4_msg(NULL, KERN_WARNING,
2815 				 "Remounting file system with no journal "
2816 				 "so ignoring journalled data option");
2817 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2818 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2819 			   test_opt(sb, DATA_FLAGS)) {
2820 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2821 				 "on remount");
2822 			return -EINVAL;
2823 		}
2824 	}
2825 
2826 	if (is_remount) {
2827 		if (!sbi->s_journal &&
2828 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2829 			ext4_msg(NULL, KERN_WARNING,
2830 				 "Remounting fs w/o journal so ignoring data_err option");
2831 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2832 		}
2833 
2834 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2835 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2836 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2837 				 "both data=journal and dax");
2838 			return -EINVAL;
2839 		}
2840 
2841 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2842 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2843 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2844 fail_dax_change_remount:
2845 			ext4_msg(NULL, KERN_ERR, "can't change "
2846 				 "dax mount option while remounting");
2847 			return -EINVAL;
2848 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2849 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2850 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2851 			goto fail_dax_change_remount;
2852 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2853 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2854 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2855 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2856 			goto fail_dax_change_remount;
2857 		}
2858 	}
2859 
2860 	return ext4_check_quota_consistency(fc, sb);
2861 }
2862 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2863 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2864 {
2865 	struct ext4_fs_context *ctx = fc->fs_private;
2866 	struct ext4_sb_info *sbi = fc->s_fs_info;
2867 
2868 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2869 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2870 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2871 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2872 	sb->s_flags &= ~ctx->mask_s_flags;
2873 	sb->s_flags |= ctx->vals_s_flags;
2874 
2875 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2876 	APPLY(s_commit_interval);
2877 	APPLY(s_stripe);
2878 	APPLY(s_max_batch_time);
2879 	APPLY(s_min_batch_time);
2880 	APPLY(s_want_extra_isize);
2881 	APPLY(s_inode_readahead_blks);
2882 	APPLY(s_max_dir_size_kb);
2883 	APPLY(s_li_wait_mult);
2884 	APPLY(s_resgid);
2885 	APPLY(s_resuid);
2886 
2887 #ifdef CONFIG_EXT4_DEBUG
2888 	APPLY(s_fc_debug_max_replay);
2889 #endif
2890 
2891 	ext4_apply_quota_options(fc, sb);
2892 	ext4_apply_test_dummy_encryption(ctx, sb);
2893 }
2894 
2895 
ext4_validate_options(struct fs_context * fc)2896 static int ext4_validate_options(struct fs_context *fc)
2897 {
2898 #ifdef CONFIG_QUOTA
2899 	struct ext4_fs_context *ctx = fc->fs_private;
2900 	char *usr_qf_name, *grp_qf_name;
2901 
2902 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2903 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2904 
2905 	if (usr_qf_name || grp_qf_name) {
2906 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2907 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2908 
2909 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2910 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2911 
2912 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2913 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2914 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2915 				 "format mixing");
2916 			return -EINVAL;
2917 		}
2918 	}
2919 #endif
2920 	return 1;
2921 }
2922 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2923 static inline void ext4_show_quota_options(struct seq_file *seq,
2924 					   struct super_block *sb)
2925 {
2926 #if defined(CONFIG_QUOTA)
2927 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2928 	char *usr_qf_name, *grp_qf_name;
2929 
2930 	if (sbi->s_jquota_fmt) {
2931 		char *fmtname = "";
2932 
2933 		switch (sbi->s_jquota_fmt) {
2934 		case QFMT_VFS_OLD:
2935 			fmtname = "vfsold";
2936 			break;
2937 		case QFMT_VFS_V0:
2938 			fmtname = "vfsv0";
2939 			break;
2940 		case QFMT_VFS_V1:
2941 			fmtname = "vfsv1";
2942 			break;
2943 		}
2944 		seq_printf(seq, ",jqfmt=%s", fmtname);
2945 	}
2946 
2947 	rcu_read_lock();
2948 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2949 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2950 	if (usr_qf_name)
2951 		seq_show_option(seq, "usrjquota", usr_qf_name);
2952 	if (grp_qf_name)
2953 		seq_show_option(seq, "grpjquota", grp_qf_name);
2954 	rcu_read_unlock();
2955 #endif
2956 }
2957 
token2str(int token)2958 static const char *token2str(int token)
2959 {
2960 	const struct fs_parameter_spec *spec;
2961 
2962 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2963 		if (spec->opt == token && !spec->type)
2964 			break;
2965 	return spec->name;
2966 }
2967 
2968 /*
2969  * Show an option if
2970  *  - it's set to a non-default value OR
2971  *  - if the per-sb default is different from the global default
2972  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2973 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2974 			      int nodefs)
2975 {
2976 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2977 	struct ext4_super_block *es = sbi->s_es;
2978 	int def_errors;
2979 	const struct mount_opts *m;
2980 	char sep = nodefs ? '\n' : ',';
2981 
2982 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2983 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2984 
2985 	if (sbi->s_sb_block != 1)
2986 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2987 
2988 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2989 		int want_set = m->flags & MOPT_SET;
2990 		int opt_2 = m->flags & MOPT_2;
2991 		unsigned int mount_opt, def_mount_opt;
2992 
2993 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2994 		    m->flags & MOPT_SKIP)
2995 			continue;
2996 
2997 		if (opt_2) {
2998 			mount_opt = sbi->s_mount_opt2;
2999 			def_mount_opt = sbi->s_def_mount_opt2;
3000 		} else {
3001 			mount_opt = sbi->s_mount_opt;
3002 			def_mount_opt = sbi->s_def_mount_opt;
3003 		}
3004 		/* skip if same as the default */
3005 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
3006 			continue;
3007 		/* select Opt_noFoo vs Opt_Foo */
3008 		if ((want_set &&
3009 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
3010 		    (!want_set && (mount_opt & m->mount_opt)))
3011 			continue;
3012 		SEQ_OPTS_PRINT("%s", token2str(m->token));
3013 	}
3014 
3015 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3016 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3017 		SEQ_OPTS_PRINT("resuid=%u",
3018 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
3019 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3020 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3021 		SEQ_OPTS_PRINT("resgid=%u",
3022 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3023 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3024 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3025 		SEQ_OPTS_PUTS("errors=remount-ro");
3026 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3027 		SEQ_OPTS_PUTS("errors=continue");
3028 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3029 		SEQ_OPTS_PUTS("errors=panic");
3030 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3031 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3032 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3033 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3034 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3035 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3036 	if (nodefs || sbi->s_stripe)
3037 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3038 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3039 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3040 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3041 			SEQ_OPTS_PUTS("data=journal");
3042 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3043 			SEQ_OPTS_PUTS("data=ordered");
3044 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3045 			SEQ_OPTS_PUTS("data=writeback");
3046 	}
3047 	if (nodefs ||
3048 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3049 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3050 			       sbi->s_inode_readahead_blks);
3051 
3052 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3053 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3054 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3055 	if (nodefs || sbi->s_max_dir_size_kb)
3056 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3057 	if (test_opt(sb, DATA_ERR_ABORT))
3058 		SEQ_OPTS_PUTS("data_err=abort");
3059 
3060 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3061 
3062 	if (sb->s_flags & SB_INLINECRYPT)
3063 		SEQ_OPTS_PUTS("inlinecrypt");
3064 
3065 	if (test_opt(sb, DAX_ALWAYS)) {
3066 		if (IS_EXT2_SB(sb))
3067 			SEQ_OPTS_PUTS("dax");
3068 		else
3069 			SEQ_OPTS_PUTS("dax=always");
3070 	} else if (test_opt2(sb, DAX_NEVER)) {
3071 		SEQ_OPTS_PUTS("dax=never");
3072 	} else if (test_opt2(sb, DAX_INODE)) {
3073 		SEQ_OPTS_PUTS("dax=inode");
3074 	}
3075 
3076 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3077 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3078 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3079 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3080 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3081 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3082 	}
3083 
3084 	ext4_show_quota_options(seq, sb);
3085 	return 0;
3086 }
3087 
ext4_show_options(struct seq_file * seq,struct dentry * root)3088 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3089 {
3090 	return _ext4_show_options(seq, root->d_sb, 0);
3091 }
3092 
ext4_seq_options_show(struct seq_file * seq,void * offset)3093 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3094 {
3095 	struct super_block *sb = seq->private;
3096 	int rc;
3097 
3098 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3099 	rc = _ext4_show_options(seq, sb, 1);
3100 	seq_puts(seq, "\n");
3101 	return rc;
3102 }
3103 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3104 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3105 			    int read_only)
3106 {
3107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3108 	int err = 0;
3109 
3110 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3111 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3112 			 "forcing read-only mode");
3113 		err = -EROFS;
3114 		goto done;
3115 	}
3116 	if (read_only)
3117 		goto done;
3118 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3119 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3120 			 "running e2fsck is recommended");
3121 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3122 		ext4_msg(sb, KERN_WARNING,
3123 			 "warning: mounting fs with errors, "
3124 			 "running e2fsck is recommended");
3125 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3126 		 le16_to_cpu(es->s_mnt_count) >=
3127 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3128 		ext4_msg(sb, KERN_WARNING,
3129 			 "warning: maximal mount count reached, "
3130 			 "running e2fsck is recommended");
3131 	else if (le32_to_cpu(es->s_checkinterval) &&
3132 		 (ext4_get_tstamp(es, s_lastcheck) +
3133 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3134 		ext4_msg(sb, KERN_WARNING,
3135 			 "warning: checktime reached, "
3136 			 "running e2fsck is recommended");
3137 	if (!sbi->s_journal)
3138 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3139 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3140 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3141 	le16_add_cpu(&es->s_mnt_count, 1);
3142 	ext4_update_tstamp(es, s_mtime);
3143 	if (sbi->s_journal) {
3144 		ext4_set_feature_journal_needs_recovery(sb);
3145 		if (ext4_has_feature_orphan_file(sb))
3146 			ext4_set_feature_orphan_present(sb);
3147 	}
3148 
3149 	err = ext4_commit_super(sb);
3150 done:
3151 	if (test_opt(sb, DEBUG))
3152 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3153 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3154 			sb->s_blocksize,
3155 			sbi->s_groups_count,
3156 			EXT4_BLOCKS_PER_GROUP(sb),
3157 			EXT4_INODES_PER_GROUP(sb),
3158 			sbi->s_mount_opt, sbi->s_mount_opt2);
3159 	return err;
3160 }
3161 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3162 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3163 {
3164 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3165 	struct flex_groups **old_groups, **new_groups;
3166 	int size, i, j;
3167 
3168 	if (!sbi->s_log_groups_per_flex)
3169 		return 0;
3170 
3171 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3172 	if (size <= sbi->s_flex_groups_allocated)
3173 		return 0;
3174 
3175 	new_groups = kvzalloc(roundup_pow_of_two(size *
3176 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3177 	if (!new_groups) {
3178 		ext4_msg(sb, KERN_ERR,
3179 			 "not enough memory for %d flex group pointers", size);
3180 		return -ENOMEM;
3181 	}
3182 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3183 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3184 					 sizeof(struct flex_groups)),
3185 					 GFP_KERNEL);
3186 		if (!new_groups[i]) {
3187 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3188 				kvfree(new_groups[j]);
3189 			kvfree(new_groups);
3190 			ext4_msg(sb, KERN_ERR,
3191 				 "not enough memory for %d flex groups", size);
3192 			return -ENOMEM;
3193 		}
3194 	}
3195 	rcu_read_lock();
3196 	old_groups = rcu_dereference(sbi->s_flex_groups);
3197 	if (old_groups)
3198 		memcpy(new_groups, old_groups,
3199 		       (sbi->s_flex_groups_allocated *
3200 			sizeof(struct flex_groups *)));
3201 	rcu_read_unlock();
3202 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3203 	sbi->s_flex_groups_allocated = size;
3204 	if (old_groups)
3205 		ext4_kvfree_array_rcu(old_groups);
3206 	return 0;
3207 }
3208 
ext4_fill_flex_info(struct super_block * sb)3209 static int ext4_fill_flex_info(struct super_block *sb)
3210 {
3211 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3212 	struct ext4_group_desc *gdp = NULL;
3213 	struct flex_groups *fg;
3214 	ext4_group_t flex_group;
3215 	int i, err;
3216 
3217 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3218 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3219 		sbi->s_log_groups_per_flex = 0;
3220 		return 1;
3221 	}
3222 
3223 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3224 	if (err)
3225 		goto failed;
3226 
3227 	for (i = 0; i < sbi->s_groups_count; i++) {
3228 		gdp = ext4_get_group_desc(sb, i, NULL);
3229 
3230 		flex_group = ext4_flex_group(sbi, i);
3231 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3232 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3233 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3234 			     &fg->free_clusters);
3235 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3236 	}
3237 
3238 	return 1;
3239 failed:
3240 	return 0;
3241 }
3242 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3243 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3244 				   struct ext4_group_desc *gdp)
3245 {
3246 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3247 	__u16 crc = 0;
3248 	__le32 le_group = cpu_to_le32(block_group);
3249 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3250 
3251 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3252 		/* Use new metadata_csum algorithm */
3253 		__u32 csum32;
3254 		__u16 dummy_csum = 0;
3255 
3256 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3257 				     sizeof(le_group));
3258 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3259 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3260 				     sizeof(dummy_csum));
3261 		offset += sizeof(dummy_csum);
3262 		if (offset < sbi->s_desc_size)
3263 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3264 					     sbi->s_desc_size - offset);
3265 
3266 		crc = csum32 & 0xFFFF;
3267 		goto out;
3268 	}
3269 
3270 	/* old crc16 code */
3271 	if (!ext4_has_feature_gdt_csum(sb))
3272 		return 0;
3273 
3274 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3275 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3276 	crc = crc16(crc, (__u8 *)gdp, offset);
3277 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3278 	/* for checksum of struct ext4_group_desc do the rest...*/
3279 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3280 		crc = crc16(crc, (__u8 *)gdp + offset,
3281 			    sbi->s_desc_size - offset);
3282 
3283 out:
3284 	return cpu_to_le16(crc);
3285 }
3286 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3287 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3288 				struct ext4_group_desc *gdp)
3289 {
3290 	if (ext4_has_group_desc_csum(sb) &&
3291 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3292 		return 0;
3293 
3294 	return 1;
3295 }
3296 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3297 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3298 			      struct ext4_group_desc *gdp)
3299 {
3300 	if (!ext4_has_group_desc_csum(sb))
3301 		return;
3302 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3303 }
3304 
3305 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3306 static int ext4_check_descriptors(struct super_block *sb,
3307 				  ext4_fsblk_t sb_block,
3308 				  ext4_group_t *first_not_zeroed)
3309 {
3310 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3311 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3312 	ext4_fsblk_t last_block;
3313 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3314 	ext4_fsblk_t block_bitmap;
3315 	ext4_fsblk_t inode_bitmap;
3316 	ext4_fsblk_t inode_table;
3317 	int flexbg_flag = 0;
3318 	ext4_group_t i, grp = sbi->s_groups_count;
3319 
3320 	if (ext4_has_feature_flex_bg(sb))
3321 		flexbg_flag = 1;
3322 
3323 	ext4_debug("Checking group descriptors");
3324 
3325 	for (i = 0; i < sbi->s_groups_count; i++) {
3326 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3327 
3328 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3329 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3330 		else
3331 			last_block = first_block +
3332 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3333 
3334 		if ((grp == sbi->s_groups_count) &&
3335 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3336 			grp = i;
3337 
3338 		block_bitmap = ext4_block_bitmap(sb, gdp);
3339 		if (block_bitmap == sb_block) {
3340 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3341 				 "Block bitmap for group %u overlaps "
3342 				 "superblock", i);
3343 			if (!sb_rdonly(sb))
3344 				return 0;
3345 		}
3346 		if (block_bitmap >= sb_block + 1 &&
3347 		    block_bitmap <= last_bg_block) {
3348 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 				 "Block bitmap for group %u overlaps "
3350 				 "block group descriptors", i);
3351 			if (!sb_rdonly(sb))
3352 				return 0;
3353 		}
3354 		if (block_bitmap < first_block || block_bitmap > last_block) {
3355 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3356 			       "Block bitmap for group %u not in group "
3357 			       "(block %llu)!", i, block_bitmap);
3358 			return 0;
3359 		}
3360 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3361 		if (inode_bitmap == sb_block) {
3362 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3363 				 "Inode bitmap for group %u overlaps "
3364 				 "superblock", i);
3365 			if (!sb_rdonly(sb))
3366 				return 0;
3367 		}
3368 		if (inode_bitmap >= sb_block + 1 &&
3369 		    inode_bitmap <= last_bg_block) {
3370 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3371 				 "Inode bitmap for group %u overlaps "
3372 				 "block group descriptors", i);
3373 			if (!sb_rdonly(sb))
3374 				return 0;
3375 		}
3376 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3377 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3378 			       "Inode bitmap for group %u not in group "
3379 			       "(block %llu)!", i, inode_bitmap);
3380 			return 0;
3381 		}
3382 		inode_table = ext4_inode_table(sb, gdp);
3383 		if (inode_table == sb_block) {
3384 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3385 				 "Inode table for group %u overlaps "
3386 				 "superblock", i);
3387 			if (!sb_rdonly(sb))
3388 				return 0;
3389 		}
3390 		if (inode_table >= sb_block + 1 &&
3391 		    inode_table <= last_bg_block) {
3392 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3393 				 "Inode table for group %u overlaps "
3394 				 "block group descriptors", i);
3395 			if (!sb_rdonly(sb))
3396 				return 0;
3397 		}
3398 		if (inode_table < first_block ||
3399 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3400 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3401 			       "Inode table for group %u not in group "
3402 			       "(block %llu)!", i, inode_table);
3403 			return 0;
3404 		}
3405 		ext4_lock_group(sb, i);
3406 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3407 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3408 				 "Checksum for group %u failed (%u!=%u)",
3409 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3410 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3411 			if (!sb_rdonly(sb)) {
3412 				ext4_unlock_group(sb, i);
3413 				return 0;
3414 			}
3415 		}
3416 		ext4_unlock_group(sb, i);
3417 		if (!flexbg_flag)
3418 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3419 	}
3420 	if (NULL != first_not_zeroed)
3421 		*first_not_zeroed = grp;
3422 	return 1;
3423 }
3424 
3425 /*
3426  * Maximal extent format file size.
3427  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3428  * extent format containers, within a sector_t, and within i_blocks
3429  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3430  * so that won't be a limiting factor.
3431  *
3432  * However there is other limiting factor. We do store extents in the form
3433  * of starting block and length, hence the resulting length of the extent
3434  * covering maximum file size must fit into on-disk format containers as
3435  * well. Given that length is always by 1 unit bigger than max unit (because
3436  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3437  *
3438  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3439  */
ext4_max_size(int blkbits,int has_huge_files)3440 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3441 {
3442 	loff_t res;
3443 	loff_t upper_limit = MAX_LFS_FILESIZE;
3444 
3445 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3446 
3447 	if (!has_huge_files) {
3448 		upper_limit = (1LL << 32) - 1;
3449 
3450 		/* total blocks in file system block size */
3451 		upper_limit >>= (blkbits - 9);
3452 		upper_limit <<= blkbits;
3453 	}
3454 
3455 	/*
3456 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3457 	 * by one fs block, so ee_len can cover the extent of maximum file
3458 	 * size
3459 	 */
3460 	res = (1LL << 32) - 1;
3461 	res <<= blkbits;
3462 
3463 	/* Sanity check against vm- & vfs- imposed limits */
3464 	if (res > upper_limit)
3465 		res = upper_limit;
3466 
3467 	return res;
3468 }
3469 
3470 /*
3471  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3472  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3473  * We need to be 1 filesystem block less than the 2^48 sector limit.
3474  */
ext4_max_bitmap_size(int bits,int has_huge_files)3475 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3476 {
3477 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3478 	int meta_blocks;
3479 	unsigned int ppb = 1 << (bits - 2);
3480 
3481 	/*
3482 	 * This is calculated to be the largest file size for a dense, block
3483 	 * mapped file such that the file's total number of 512-byte sectors,
3484 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3485 	 *
3486 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3487 	 * number of 512-byte sectors of the file.
3488 	 */
3489 	if (!has_huge_files) {
3490 		/*
3491 		 * !has_huge_files or implies that the inode i_block field
3492 		 * represents total file blocks in 2^32 512-byte sectors ==
3493 		 * size of vfs inode i_blocks * 8
3494 		 */
3495 		upper_limit = (1LL << 32) - 1;
3496 
3497 		/* total blocks in file system block size */
3498 		upper_limit >>= (bits - 9);
3499 
3500 	} else {
3501 		/*
3502 		 * We use 48 bit ext4_inode i_blocks
3503 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3504 		 * represent total number of blocks in
3505 		 * file system block size
3506 		 */
3507 		upper_limit = (1LL << 48) - 1;
3508 
3509 	}
3510 
3511 	/* Compute how many blocks we can address by block tree */
3512 	res += ppb;
3513 	res += ppb * ppb;
3514 	res += ((loff_t)ppb) * ppb * ppb;
3515 	/* Compute how many metadata blocks are needed */
3516 	meta_blocks = 1;
3517 	meta_blocks += 1 + ppb;
3518 	meta_blocks += 1 + ppb + ppb * ppb;
3519 	/* Does block tree limit file size? */
3520 	if (res + meta_blocks <= upper_limit)
3521 		goto check_lfs;
3522 
3523 	res = upper_limit;
3524 	/* How many metadata blocks are needed for addressing upper_limit? */
3525 	upper_limit -= EXT4_NDIR_BLOCKS;
3526 	/* indirect blocks */
3527 	meta_blocks = 1;
3528 	upper_limit -= ppb;
3529 	/* double indirect blocks */
3530 	if (upper_limit < ppb * ppb) {
3531 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3532 		res -= meta_blocks;
3533 		goto check_lfs;
3534 	}
3535 	meta_blocks += 1 + ppb;
3536 	upper_limit -= ppb * ppb;
3537 	/* tripple indirect blocks for the rest */
3538 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3539 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3540 	res -= meta_blocks;
3541 check_lfs:
3542 	res <<= bits;
3543 	if (res > MAX_LFS_FILESIZE)
3544 		res = MAX_LFS_FILESIZE;
3545 
3546 	return res;
3547 }
3548 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3549 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3550 				   ext4_fsblk_t logical_sb_block, int nr)
3551 {
3552 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3553 	ext4_group_t bg, first_meta_bg;
3554 	int has_super = 0;
3555 
3556 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3557 
3558 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3559 		return logical_sb_block + nr + 1;
3560 	bg = sbi->s_desc_per_block * nr;
3561 	if (ext4_bg_has_super(sb, bg))
3562 		has_super = 1;
3563 
3564 	/*
3565 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3566 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3567 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3568 	 * compensate.
3569 	 */
3570 	if (sb->s_blocksize == 1024 && nr == 0 &&
3571 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3572 		has_super++;
3573 
3574 	return (has_super + ext4_group_first_block_no(sb, bg));
3575 }
3576 
3577 /**
3578  * ext4_get_stripe_size: Get the stripe size.
3579  * @sbi: In memory super block info
3580  *
3581  * If we have specified it via mount option, then
3582  * use the mount option value. If the value specified at mount time is
3583  * greater than the blocks per group use the super block value.
3584  * If the super block value is greater than blocks per group return 0.
3585  * Allocator needs it be less than blocks per group.
3586  *
3587  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3588 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3589 {
3590 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3591 	unsigned long stripe_width =
3592 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3593 	int ret;
3594 
3595 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3596 		ret = sbi->s_stripe;
3597 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3598 		ret = stripe_width;
3599 	else if (stride && stride <= sbi->s_blocks_per_group)
3600 		ret = stride;
3601 	else
3602 		ret = 0;
3603 
3604 	/*
3605 	 * If the stripe width is 1, this makes no sense and
3606 	 * we set it to 0 to turn off stripe handling code.
3607 	 */
3608 	if (ret <= 1)
3609 		ret = 0;
3610 
3611 	return ret;
3612 }
3613 
3614 /*
3615  * Check whether this filesystem can be mounted based on
3616  * the features present and the RDONLY/RDWR mount requested.
3617  * Returns 1 if this filesystem can be mounted as requested,
3618  * 0 if it cannot be.
3619  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3620 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3621 {
3622 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3623 		ext4_msg(sb, KERN_ERR,
3624 			"Couldn't mount because of "
3625 			"unsupported optional features (%x)",
3626 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3627 			~EXT4_FEATURE_INCOMPAT_SUPP));
3628 		return 0;
3629 	}
3630 
3631 #if !IS_ENABLED(CONFIG_UNICODE)
3632 	if (ext4_has_feature_casefold(sb)) {
3633 		ext4_msg(sb, KERN_ERR,
3634 			 "Filesystem with casefold feature cannot be "
3635 			 "mounted without CONFIG_UNICODE");
3636 		return 0;
3637 	}
3638 #endif
3639 	if (EXT4_SB(sb)->s_es->s_def_hash_version == DX_HASH_SIPHASH &&
3640 	    !ext4_has_feature_casefold(sb)) {
3641 		ext4_msg(sb, KERN_ERR,
3642 			 "Filesystem without casefold feature cannot be "
3643 			 "mounted with siphash");
3644 		return 0;
3645 	}
3646 
3647 	if (readonly)
3648 		return 1;
3649 
3650 	if (ext4_has_feature_readonly(sb)) {
3651 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3652 		sb->s_flags |= SB_RDONLY;
3653 		return 1;
3654 	}
3655 
3656 	/* Check that feature set is OK for a read-write mount */
3657 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3658 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3659 			 "unsupported optional features (%x)",
3660 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3661 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3662 		return 0;
3663 	}
3664 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3665 		ext4_msg(sb, KERN_ERR,
3666 			 "Can't support bigalloc feature without "
3667 			 "extents feature\n");
3668 		return 0;
3669 	}
3670 
3671 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3672 	if (!readonly && (ext4_has_feature_quota(sb) ||
3673 			  ext4_has_feature_project(sb))) {
3674 		ext4_msg(sb, KERN_ERR,
3675 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3676 		return 0;
3677 	}
3678 #endif  /* CONFIG_QUOTA */
3679 	return 1;
3680 }
3681 
3682 /*
3683  * This function is called once a day if we have errors logged
3684  * on the file system
3685  */
print_daily_error_info(struct timer_list * t)3686 static void print_daily_error_info(struct timer_list *t)
3687 {
3688 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3689 	struct super_block *sb = sbi->s_sb;
3690 	struct ext4_super_block *es = sbi->s_es;
3691 
3692 	if (es->s_error_count)
3693 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3694 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3695 			 le32_to_cpu(es->s_error_count));
3696 	if (es->s_first_error_time) {
3697 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3698 		       sb->s_id,
3699 		       ext4_get_tstamp(es, s_first_error_time),
3700 		       (int) sizeof(es->s_first_error_func),
3701 		       es->s_first_error_func,
3702 		       le32_to_cpu(es->s_first_error_line));
3703 		if (es->s_first_error_ino)
3704 			printk(KERN_CONT ": inode %u",
3705 			       le32_to_cpu(es->s_first_error_ino));
3706 		if (es->s_first_error_block)
3707 			printk(KERN_CONT ": block %llu", (unsigned long long)
3708 			       le64_to_cpu(es->s_first_error_block));
3709 		printk(KERN_CONT "\n");
3710 	}
3711 	if (es->s_last_error_time) {
3712 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3713 		       sb->s_id,
3714 		       ext4_get_tstamp(es, s_last_error_time),
3715 		       (int) sizeof(es->s_last_error_func),
3716 		       es->s_last_error_func,
3717 		       le32_to_cpu(es->s_last_error_line));
3718 		if (es->s_last_error_ino)
3719 			printk(KERN_CONT ": inode %u",
3720 			       le32_to_cpu(es->s_last_error_ino));
3721 		if (es->s_last_error_block)
3722 			printk(KERN_CONT ": block %llu", (unsigned long long)
3723 			       le64_to_cpu(es->s_last_error_block));
3724 		printk(KERN_CONT "\n");
3725 	}
3726 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3727 }
3728 
3729 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3730 static int ext4_run_li_request(struct ext4_li_request *elr)
3731 {
3732 	struct ext4_group_desc *gdp = NULL;
3733 	struct super_block *sb = elr->lr_super;
3734 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3735 	ext4_group_t group = elr->lr_next_group;
3736 	unsigned int prefetch_ios = 0;
3737 	int ret = 0;
3738 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3739 	u64 start_time;
3740 
3741 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3742 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3743 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3744 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3745 		if (group >= elr->lr_next_group) {
3746 			ret = 1;
3747 			if (elr->lr_first_not_zeroed != ngroups &&
3748 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3749 				elr->lr_next_group = elr->lr_first_not_zeroed;
3750 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3751 				ret = 0;
3752 			}
3753 		}
3754 		return ret;
3755 	}
3756 
3757 	for (; group < ngroups; group++) {
3758 		gdp = ext4_get_group_desc(sb, group, NULL);
3759 		if (!gdp) {
3760 			ret = 1;
3761 			break;
3762 		}
3763 
3764 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3765 			break;
3766 	}
3767 
3768 	if (group >= ngroups)
3769 		ret = 1;
3770 
3771 	if (!ret) {
3772 		start_time = ktime_get_real_ns();
3773 		ret = ext4_init_inode_table(sb, group,
3774 					    elr->lr_timeout ? 0 : 1);
3775 		trace_ext4_lazy_itable_init(sb, group);
3776 		if (elr->lr_timeout == 0) {
3777 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3778 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3779 		}
3780 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3781 		elr->lr_next_group = group + 1;
3782 	}
3783 	return ret;
3784 }
3785 
3786 /*
3787  * Remove lr_request from the list_request and free the
3788  * request structure. Should be called with li_list_mtx held
3789  */
ext4_remove_li_request(struct ext4_li_request * elr)3790 static void ext4_remove_li_request(struct ext4_li_request *elr)
3791 {
3792 	if (!elr)
3793 		return;
3794 
3795 	list_del(&elr->lr_request);
3796 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3797 	kfree(elr);
3798 }
3799 
ext4_unregister_li_request(struct super_block * sb)3800 static void ext4_unregister_li_request(struct super_block *sb)
3801 {
3802 	mutex_lock(&ext4_li_mtx);
3803 	if (!ext4_li_info) {
3804 		mutex_unlock(&ext4_li_mtx);
3805 		return;
3806 	}
3807 
3808 	mutex_lock(&ext4_li_info->li_list_mtx);
3809 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3810 	mutex_unlock(&ext4_li_info->li_list_mtx);
3811 	mutex_unlock(&ext4_li_mtx);
3812 }
3813 
3814 static struct task_struct *ext4_lazyinit_task;
3815 
3816 /*
3817  * This is the function where ext4lazyinit thread lives. It walks
3818  * through the request list searching for next scheduled filesystem.
3819  * When such a fs is found, run the lazy initialization request
3820  * (ext4_rn_li_request) and keep track of the time spend in this
3821  * function. Based on that time we compute next schedule time of
3822  * the request. When walking through the list is complete, compute
3823  * next waking time and put itself into sleep.
3824  */
ext4_lazyinit_thread(void * arg)3825 static int ext4_lazyinit_thread(void *arg)
3826 {
3827 	struct ext4_lazy_init *eli = arg;
3828 	struct list_head *pos, *n;
3829 	struct ext4_li_request *elr;
3830 	unsigned long next_wakeup, cur;
3831 
3832 	BUG_ON(NULL == eli);
3833 	set_freezable();
3834 
3835 cont_thread:
3836 	while (true) {
3837 		next_wakeup = MAX_JIFFY_OFFSET;
3838 
3839 		mutex_lock(&eli->li_list_mtx);
3840 		if (list_empty(&eli->li_request_list)) {
3841 			mutex_unlock(&eli->li_list_mtx);
3842 			goto exit_thread;
3843 		}
3844 		list_for_each_safe(pos, n, &eli->li_request_list) {
3845 			int err = 0;
3846 			int progress = 0;
3847 			elr = list_entry(pos, struct ext4_li_request,
3848 					 lr_request);
3849 
3850 			if (time_before(jiffies, elr->lr_next_sched)) {
3851 				if (time_before(elr->lr_next_sched, next_wakeup))
3852 					next_wakeup = elr->lr_next_sched;
3853 				continue;
3854 			}
3855 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3856 				if (sb_start_write_trylock(elr->lr_super)) {
3857 					progress = 1;
3858 					/*
3859 					 * We hold sb->s_umount, sb can not
3860 					 * be removed from the list, it is
3861 					 * now safe to drop li_list_mtx
3862 					 */
3863 					mutex_unlock(&eli->li_list_mtx);
3864 					err = ext4_run_li_request(elr);
3865 					sb_end_write(elr->lr_super);
3866 					mutex_lock(&eli->li_list_mtx);
3867 					n = pos->next;
3868 				}
3869 				up_read((&elr->lr_super->s_umount));
3870 			}
3871 			/* error, remove the lazy_init job */
3872 			if (err) {
3873 				ext4_remove_li_request(elr);
3874 				continue;
3875 			}
3876 			if (!progress) {
3877 				elr->lr_next_sched = jiffies +
3878 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3879 			}
3880 			if (time_before(elr->lr_next_sched, next_wakeup))
3881 				next_wakeup = elr->lr_next_sched;
3882 		}
3883 		mutex_unlock(&eli->li_list_mtx);
3884 
3885 		try_to_freeze();
3886 
3887 		cur = jiffies;
3888 		if ((time_after_eq(cur, next_wakeup)) ||
3889 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3890 			cond_resched();
3891 			continue;
3892 		}
3893 
3894 		schedule_timeout_interruptible(next_wakeup - cur);
3895 
3896 		if (kthread_should_stop()) {
3897 			ext4_clear_request_list();
3898 			goto exit_thread;
3899 		}
3900 	}
3901 
3902 exit_thread:
3903 	/*
3904 	 * It looks like the request list is empty, but we need
3905 	 * to check it under the li_list_mtx lock, to prevent any
3906 	 * additions into it, and of course we should lock ext4_li_mtx
3907 	 * to atomically free the list and ext4_li_info, because at
3908 	 * this point another ext4 filesystem could be registering
3909 	 * new one.
3910 	 */
3911 	mutex_lock(&ext4_li_mtx);
3912 	mutex_lock(&eli->li_list_mtx);
3913 	if (!list_empty(&eli->li_request_list)) {
3914 		mutex_unlock(&eli->li_list_mtx);
3915 		mutex_unlock(&ext4_li_mtx);
3916 		goto cont_thread;
3917 	}
3918 	mutex_unlock(&eli->li_list_mtx);
3919 	kfree(ext4_li_info);
3920 	ext4_li_info = NULL;
3921 	mutex_unlock(&ext4_li_mtx);
3922 
3923 	return 0;
3924 }
3925 
ext4_clear_request_list(void)3926 static void ext4_clear_request_list(void)
3927 {
3928 	struct list_head *pos, *n;
3929 	struct ext4_li_request *elr;
3930 
3931 	mutex_lock(&ext4_li_info->li_list_mtx);
3932 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3933 		elr = list_entry(pos, struct ext4_li_request,
3934 				 lr_request);
3935 		ext4_remove_li_request(elr);
3936 	}
3937 	mutex_unlock(&ext4_li_info->li_list_mtx);
3938 }
3939 
ext4_run_lazyinit_thread(void)3940 static int ext4_run_lazyinit_thread(void)
3941 {
3942 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3943 					 ext4_li_info, "ext4lazyinit");
3944 	if (IS_ERR(ext4_lazyinit_task)) {
3945 		int err = PTR_ERR(ext4_lazyinit_task);
3946 		ext4_clear_request_list();
3947 		kfree(ext4_li_info);
3948 		ext4_li_info = NULL;
3949 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3950 				 "initialization thread\n",
3951 				 err);
3952 		return err;
3953 	}
3954 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3955 	return 0;
3956 }
3957 
3958 /*
3959  * Check whether it make sense to run itable init. thread or not.
3960  * If there is at least one uninitialized inode table, return
3961  * corresponding group number, else the loop goes through all
3962  * groups and return total number of groups.
3963  */
ext4_has_uninit_itable(struct super_block * sb)3964 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3965 {
3966 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3967 	struct ext4_group_desc *gdp = NULL;
3968 
3969 	if (!ext4_has_group_desc_csum(sb))
3970 		return ngroups;
3971 
3972 	for (group = 0; group < ngroups; group++) {
3973 		gdp = ext4_get_group_desc(sb, group, NULL);
3974 		if (!gdp)
3975 			continue;
3976 
3977 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3978 			break;
3979 	}
3980 
3981 	return group;
3982 }
3983 
ext4_li_info_new(void)3984 static int ext4_li_info_new(void)
3985 {
3986 	struct ext4_lazy_init *eli = NULL;
3987 
3988 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3989 	if (!eli)
3990 		return -ENOMEM;
3991 
3992 	INIT_LIST_HEAD(&eli->li_request_list);
3993 	mutex_init(&eli->li_list_mtx);
3994 
3995 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3996 
3997 	ext4_li_info = eli;
3998 
3999 	return 0;
4000 }
4001 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)4002 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
4003 					    ext4_group_t start)
4004 {
4005 	struct ext4_li_request *elr;
4006 
4007 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
4008 	if (!elr)
4009 		return NULL;
4010 
4011 	elr->lr_super = sb;
4012 	elr->lr_first_not_zeroed = start;
4013 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
4014 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
4015 		elr->lr_next_group = start;
4016 	} else {
4017 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4018 	}
4019 
4020 	/*
4021 	 * Randomize first schedule time of the request to
4022 	 * spread the inode table initialization requests
4023 	 * better.
4024 	 */
4025 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4026 	return elr;
4027 }
4028 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4029 int ext4_register_li_request(struct super_block *sb,
4030 			     ext4_group_t first_not_zeroed)
4031 {
4032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4033 	struct ext4_li_request *elr = NULL;
4034 	ext4_group_t ngroups = sbi->s_groups_count;
4035 	int ret = 0;
4036 
4037 	mutex_lock(&ext4_li_mtx);
4038 	if (sbi->s_li_request != NULL) {
4039 		/*
4040 		 * Reset timeout so it can be computed again, because
4041 		 * s_li_wait_mult might have changed.
4042 		 */
4043 		sbi->s_li_request->lr_timeout = 0;
4044 		goto out;
4045 	}
4046 
4047 	if (sb_rdonly(sb) ||
4048 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4049 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4050 		goto out;
4051 
4052 	elr = ext4_li_request_new(sb, first_not_zeroed);
4053 	if (!elr) {
4054 		ret = -ENOMEM;
4055 		goto out;
4056 	}
4057 
4058 	if (NULL == ext4_li_info) {
4059 		ret = ext4_li_info_new();
4060 		if (ret)
4061 			goto out;
4062 	}
4063 
4064 	mutex_lock(&ext4_li_info->li_list_mtx);
4065 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4066 	mutex_unlock(&ext4_li_info->li_list_mtx);
4067 
4068 	sbi->s_li_request = elr;
4069 	/*
4070 	 * set elr to NULL here since it has been inserted to
4071 	 * the request_list and the removal and free of it is
4072 	 * handled by ext4_clear_request_list from now on.
4073 	 */
4074 	elr = NULL;
4075 
4076 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4077 		ret = ext4_run_lazyinit_thread();
4078 		if (ret)
4079 			goto out;
4080 	}
4081 out:
4082 	mutex_unlock(&ext4_li_mtx);
4083 	if (ret)
4084 		kfree(elr);
4085 	return ret;
4086 }
4087 
4088 /*
4089  * We do not need to lock anything since this is called on
4090  * module unload.
4091  */
ext4_destroy_lazyinit_thread(void)4092 static void ext4_destroy_lazyinit_thread(void)
4093 {
4094 	/*
4095 	 * If thread exited earlier
4096 	 * there's nothing to be done.
4097 	 */
4098 	if (!ext4_li_info || !ext4_lazyinit_task)
4099 		return;
4100 
4101 	kthread_stop(ext4_lazyinit_task);
4102 }
4103 
set_journal_csum_feature_set(struct super_block * sb)4104 static int set_journal_csum_feature_set(struct super_block *sb)
4105 {
4106 	int ret = 1;
4107 	int compat, incompat;
4108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4109 
4110 	if (ext4_has_metadata_csum(sb)) {
4111 		/* journal checksum v3 */
4112 		compat = 0;
4113 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4114 	} else {
4115 		/* journal checksum v1 */
4116 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4117 		incompat = 0;
4118 	}
4119 
4120 	jbd2_journal_clear_features(sbi->s_journal,
4121 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4122 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4123 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4124 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4125 		ret = jbd2_journal_set_features(sbi->s_journal,
4126 				compat, 0,
4127 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4128 				incompat);
4129 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4130 		ret = jbd2_journal_set_features(sbi->s_journal,
4131 				compat, 0,
4132 				incompat);
4133 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4134 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4135 	} else {
4136 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4137 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4138 	}
4139 
4140 	return ret;
4141 }
4142 
4143 /*
4144  * Note: calculating the overhead so we can be compatible with
4145  * historical BSD practice is quite difficult in the face of
4146  * clusters/bigalloc.  This is because multiple metadata blocks from
4147  * different block group can end up in the same allocation cluster.
4148  * Calculating the exact overhead in the face of clustered allocation
4149  * requires either O(all block bitmaps) in memory or O(number of block
4150  * groups**2) in time.  We will still calculate the superblock for
4151  * older file systems --- and if we come across with a bigalloc file
4152  * system with zero in s_overhead_clusters the estimate will be close to
4153  * correct especially for very large cluster sizes --- but for newer
4154  * file systems, it's better to calculate this figure once at mkfs
4155  * time, and store it in the superblock.  If the superblock value is
4156  * present (even for non-bigalloc file systems), we will use it.
4157  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4158 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4159 			  char *buf)
4160 {
4161 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4162 	struct ext4_group_desc	*gdp;
4163 	ext4_fsblk_t		first_block, last_block, b;
4164 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4165 	int			s, j, count = 0;
4166 	int			has_super = ext4_bg_has_super(sb, grp);
4167 
4168 	if (!ext4_has_feature_bigalloc(sb))
4169 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4170 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4171 			sbi->s_itb_per_group + 2);
4172 
4173 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4174 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4175 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4176 	for (i = 0; i < ngroups; i++) {
4177 		gdp = ext4_get_group_desc(sb, i, NULL);
4178 		b = ext4_block_bitmap(sb, gdp);
4179 		if (b >= first_block && b <= last_block) {
4180 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4181 			count++;
4182 		}
4183 		b = ext4_inode_bitmap(sb, gdp);
4184 		if (b >= first_block && b <= last_block) {
4185 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4186 			count++;
4187 		}
4188 		b = ext4_inode_table(sb, gdp);
4189 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4190 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4191 				int c = EXT4_B2C(sbi, b - first_block);
4192 				ext4_set_bit(c, buf);
4193 				count++;
4194 			}
4195 		if (i != grp)
4196 			continue;
4197 		s = 0;
4198 		if (ext4_bg_has_super(sb, grp)) {
4199 			ext4_set_bit(s++, buf);
4200 			count++;
4201 		}
4202 		j = ext4_bg_num_gdb(sb, grp);
4203 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4204 			ext4_error(sb, "Invalid number of block group "
4205 				   "descriptor blocks: %d", j);
4206 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4207 		}
4208 		count += j;
4209 		for (; j > 0; j--)
4210 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4211 	}
4212 	if (!count)
4213 		return 0;
4214 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4215 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4216 }
4217 
4218 /*
4219  * Compute the overhead and stash it in sbi->s_overhead
4220  */
ext4_calculate_overhead(struct super_block * sb)4221 int ext4_calculate_overhead(struct super_block *sb)
4222 {
4223 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4224 	struct ext4_super_block *es = sbi->s_es;
4225 	struct inode *j_inode;
4226 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4227 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4228 	ext4_fsblk_t overhead = 0;
4229 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4230 
4231 	if (!buf)
4232 		return -ENOMEM;
4233 
4234 	/*
4235 	 * Compute the overhead (FS structures).  This is constant
4236 	 * for a given filesystem unless the number of block groups
4237 	 * changes so we cache the previous value until it does.
4238 	 */
4239 
4240 	/*
4241 	 * All of the blocks before first_data_block are overhead
4242 	 */
4243 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4244 
4245 	/*
4246 	 * Add the overhead found in each block group
4247 	 */
4248 	for (i = 0; i < ngroups; i++) {
4249 		int blks;
4250 
4251 		blks = count_overhead(sb, i, buf);
4252 		overhead += blks;
4253 		if (blks)
4254 			memset(buf, 0, PAGE_SIZE);
4255 		cond_resched();
4256 	}
4257 
4258 	/*
4259 	 * Add the internal journal blocks whether the journal has been
4260 	 * loaded or not
4261 	 */
4262 	if (sbi->s_journal && !sbi->s_journal_bdev)
4263 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4264 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4265 		/* j_inum for internal journal is non-zero */
4266 		j_inode = ext4_get_journal_inode(sb, j_inum);
4267 		if (!IS_ERR(j_inode)) {
4268 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4269 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4270 			iput(j_inode);
4271 		} else {
4272 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4273 		}
4274 	}
4275 	sbi->s_overhead = overhead;
4276 	smp_wmb();
4277 	free_page((unsigned long) buf);
4278 	return 0;
4279 }
4280 
ext4_set_resv_clusters(struct super_block * sb)4281 static void ext4_set_resv_clusters(struct super_block *sb)
4282 {
4283 	ext4_fsblk_t resv_clusters;
4284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4285 
4286 	/*
4287 	 * There's no need to reserve anything when we aren't using extents.
4288 	 * The space estimates are exact, there are no unwritten extents,
4289 	 * hole punching doesn't need new metadata... This is needed especially
4290 	 * to keep ext2/3 backward compatibility.
4291 	 */
4292 	if (!ext4_has_feature_extents(sb))
4293 		return;
4294 	/*
4295 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4296 	 * This should cover the situations where we can not afford to run
4297 	 * out of space like for example punch hole, or converting
4298 	 * unwritten extents in delalloc path. In most cases such
4299 	 * allocation would require 1, or 2 blocks, higher numbers are
4300 	 * very rare.
4301 	 */
4302 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4303 			 sbi->s_cluster_bits);
4304 
4305 	do_div(resv_clusters, 50);
4306 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4307 
4308 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4309 }
4310 
ext4_quota_mode(struct super_block * sb)4311 static const char *ext4_quota_mode(struct super_block *sb)
4312 {
4313 #ifdef CONFIG_QUOTA
4314 	if (!ext4_quota_capable(sb))
4315 		return "none";
4316 
4317 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4318 		return "journalled";
4319 	else
4320 		return "writeback";
4321 #else
4322 	return "disabled";
4323 #endif
4324 }
4325 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4326 static void ext4_setup_csum_trigger(struct super_block *sb,
4327 				    enum ext4_journal_trigger_type type,
4328 				    void (*trigger)(
4329 					struct jbd2_buffer_trigger_type *type,
4330 					struct buffer_head *bh,
4331 					void *mapped_data,
4332 					size_t size))
4333 {
4334 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4335 
4336 	sbi->s_journal_triggers[type].sb = sb;
4337 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4338 }
4339 
ext4_free_sbi(struct ext4_sb_info * sbi)4340 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4341 {
4342 	if (!sbi)
4343 		return;
4344 
4345 	kfree(sbi->s_blockgroup_lock);
4346 	fs_put_dax(sbi->s_daxdev, NULL);
4347 	kfree(sbi);
4348 }
4349 
ext4_alloc_sbi(struct super_block * sb)4350 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4351 {
4352 	struct ext4_sb_info *sbi;
4353 
4354 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4355 	if (!sbi)
4356 		return NULL;
4357 
4358 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4359 					   NULL, NULL);
4360 
4361 	sbi->s_blockgroup_lock =
4362 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4363 
4364 	if (!sbi->s_blockgroup_lock)
4365 		goto err_out;
4366 
4367 	sb->s_fs_info = sbi;
4368 	sbi->s_sb = sb;
4369 	return sbi;
4370 err_out:
4371 	fs_put_dax(sbi->s_daxdev, NULL);
4372 	kfree(sbi);
4373 	return NULL;
4374 }
4375 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4376 static void ext4_set_def_opts(struct super_block *sb,
4377 			      struct ext4_super_block *es)
4378 {
4379 	unsigned long def_mount_opts;
4380 
4381 	/* Set defaults before we parse the mount options */
4382 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4383 	set_opt(sb, INIT_INODE_TABLE);
4384 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4385 		set_opt(sb, DEBUG);
4386 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4387 		set_opt(sb, GRPID);
4388 	if (def_mount_opts & EXT4_DEFM_UID16)
4389 		set_opt(sb, NO_UID32);
4390 	/* xattr user namespace & acls are now defaulted on */
4391 	set_opt(sb, XATTR_USER);
4392 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4393 	set_opt(sb, POSIX_ACL);
4394 #endif
4395 	if (ext4_has_feature_fast_commit(sb))
4396 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4397 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4398 	if (ext4_has_metadata_csum(sb))
4399 		set_opt(sb, JOURNAL_CHECKSUM);
4400 
4401 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4402 		set_opt(sb, JOURNAL_DATA);
4403 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4404 		set_opt(sb, ORDERED_DATA);
4405 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4406 		set_opt(sb, WRITEBACK_DATA);
4407 
4408 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4409 		set_opt(sb, ERRORS_PANIC);
4410 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4411 		set_opt(sb, ERRORS_CONT);
4412 	else
4413 		set_opt(sb, ERRORS_RO);
4414 	/* block_validity enabled by default; disable with noblock_validity */
4415 	set_opt(sb, BLOCK_VALIDITY);
4416 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4417 		set_opt(sb, DISCARD);
4418 
4419 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4420 		set_opt(sb, BARRIER);
4421 
4422 	/*
4423 	 * enable delayed allocation by default
4424 	 * Use -o nodelalloc to turn it off
4425 	 */
4426 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4427 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4428 		set_opt(sb, DELALLOC);
4429 
4430 	if (sb->s_blocksize == PAGE_SIZE)
4431 		set_opt(sb, DIOREAD_NOLOCK);
4432 }
4433 
ext4_handle_clustersize(struct super_block * sb)4434 static int ext4_handle_clustersize(struct super_block *sb)
4435 {
4436 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4437 	struct ext4_super_block *es = sbi->s_es;
4438 	int clustersize;
4439 
4440 	/* Handle clustersize */
4441 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4442 	if (ext4_has_feature_bigalloc(sb)) {
4443 		if (clustersize < sb->s_blocksize) {
4444 			ext4_msg(sb, KERN_ERR,
4445 				 "cluster size (%d) smaller than "
4446 				 "block size (%lu)", clustersize, sb->s_blocksize);
4447 			return -EINVAL;
4448 		}
4449 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4450 			le32_to_cpu(es->s_log_block_size);
4451 		sbi->s_clusters_per_group =
4452 			le32_to_cpu(es->s_clusters_per_group);
4453 		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4454 			ext4_msg(sb, KERN_ERR,
4455 				 "#clusters per group too big: %lu",
4456 				 sbi->s_clusters_per_group);
4457 			return -EINVAL;
4458 		}
4459 		if (sbi->s_blocks_per_group !=
4460 		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4461 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4462 				 "clusters per group (%lu) inconsistent",
4463 				 sbi->s_blocks_per_group,
4464 				 sbi->s_clusters_per_group);
4465 			return -EINVAL;
4466 		}
4467 	} else {
4468 		if (clustersize != sb->s_blocksize) {
4469 			ext4_msg(sb, KERN_ERR,
4470 				 "fragment/cluster size (%d) != "
4471 				 "block size (%lu)", clustersize, sb->s_blocksize);
4472 			return -EINVAL;
4473 		}
4474 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4475 			ext4_msg(sb, KERN_ERR,
4476 				 "#blocks per group too big: %lu",
4477 				 sbi->s_blocks_per_group);
4478 			return -EINVAL;
4479 		}
4480 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4481 		sbi->s_cluster_bits = 0;
4482 	}
4483 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4484 
4485 	/* Do we have standard group size of clustersize * 8 blocks ? */
4486 	if (sbi->s_blocks_per_group == clustersize << 3)
4487 		set_opt2(sb, STD_GROUP_SIZE);
4488 
4489 	return 0;
4490 }
4491 
ext4_fast_commit_init(struct super_block * sb)4492 static void ext4_fast_commit_init(struct super_block *sb)
4493 {
4494 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4495 
4496 	/* Initialize fast commit stuff */
4497 	atomic_set(&sbi->s_fc_subtid, 0);
4498 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4499 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4500 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4501 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4502 	sbi->s_fc_bytes = 0;
4503 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4504 	sbi->s_fc_ineligible_tid = 0;
4505 	spin_lock_init(&sbi->s_fc_lock);
4506 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4507 	sbi->s_fc_replay_state.fc_regions = NULL;
4508 	sbi->s_fc_replay_state.fc_regions_size = 0;
4509 	sbi->s_fc_replay_state.fc_regions_used = 0;
4510 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4511 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4512 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4513 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4514 }
4515 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4516 static int ext4_inode_info_init(struct super_block *sb,
4517 				struct ext4_super_block *es)
4518 {
4519 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4520 
4521 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4522 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4523 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4524 	} else {
4525 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4526 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4527 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4528 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4529 				 sbi->s_first_ino);
4530 			return -EINVAL;
4531 		}
4532 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4533 		    (!is_power_of_2(sbi->s_inode_size)) ||
4534 		    (sbi->s_inode_size > sb->s_blocksize)) {
4535 			ext4_msg(sb, KERN_ERR,
4536 			       "unsupported inode size: %d",
4537 			       sbi->s_inode_size);
4538 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4539 			return -EINVAL;
4540 		}
4541 		/*
4542 		 * i_atime_extra is the last extra field available for
4543 		 * [acm]times in struct ext4_inode. Checking for that
4544 		 * field should suffice to ensure we have extra space
4545 		 * for all three.
4546 		 */
4547 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4548 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4549 			sb->s_time_gran = 1;
4550 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4551 		} else {
4552 			sb->s_time_gran = NSEC_PER_SEC;
4553 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4554 		}
4555 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4556 	}
4557 
4558 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4559 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4560 			EXT4_GOOD_OLD_INODE_SIZE;
4561 		if (ext4_has_feature_extra_isize(sb)) {
4562 			unsigned v, max = (sbi->s_inode_size -
4563 					   EXT4_GOOD_OLD_INODE_SIZE);
4564 
4565 			v = le16_to_cpu(es->s_want_extra_isize);
4566 			if (v > max) {
4567 				ext4_msg(sb, KERN_ERR,
4568 					 "bad s_want_extra_isize: %d", v);
4569 				return -EINVAL;
4570 			}
4571 			if (sbi->s_want_extra_isize < v)
4572 				sbi->s_want_extra_isize = v;
4573 
4574 			v = le16_to_cpu(es->s_min_extra_isize);
4575 			if (v > max) {
4576 				ext4_msg(sb, KERN_ERR,
4577 					 "bad s_min_extra_isize: %d", v);
4578 				return -EINVAL;
4579 			}
4580 			if (sbi->s_want_extra_isize < v)
4581 				sbi->s_want_extra_isize = v;
4582 		}
4583 	}
4584 
4585 	return 0;
4586 }
4587 
4588 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4589 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4590 {
4591 	const struct ext4_sb_encodings *encoding_info;
4592 	struct unicode_map *encoding;
4593 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4594 
4595 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4596 		return 0;
4597 
4598 	encoding_info = ext4_sb_read_encoding(es);
4599 	if (!encoding_info) {
4600 		ext4_msg(sb, KERN_ERR,
4601 			"Encoding requested by superblock is unknown");
4602 		return -EINVAL;
4603 	}
4604 
4605 	encoding = utf8_load(encoding_info->version);
4606 	if (IS_ERR(encoding)) {
4607 		ext4_msg(sb, KERN_ERR,
4608 			"can't mount with superblock charset: %s-%u.%u.%u "
4609 			"not supported by the kernel. flags: 0x%x.",
4610 			encoding_info->name,
4611 			unicode_major(encoding_info->version),
4612 			unicode_minor(encoding_info->version),
4613 			unicode_rev(encoding_info->version),
4614 			encoding_flags);
4615 		return -EINVAL;
4616 	}
4617 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4618 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4619 		unicode_major(encoding_info->version),
4620 		unicode_minor(encoding_info->version),
4621 		unicode_rev(encoding_info->version),
4622 		encoding_flags);
4623 
4624 	sb->s_encoding = encoding;
4625 	sb->s_encoding_flags = encoding_flags;
4626 
4627 	return 0;
4628 }
4629 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4630 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4631 {
4632 	return 0;
4633 }
4634 #endif
4635 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4636 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4637 {
4638 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4639 
4640 	/* Warn if metadata_csum and gdt_csum are both set. */
4641 	if (ext4_has_feature_metadata_csum(sb) &&
4642 	    ext4_has_feature_gdt_csum(sb))
4643 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4644 			     "redundant flags; please run fsck.");
4645 
4646 	/* Check for a known checksum algorithm */
4647 	if (!ext4_verify_csum_type(sb, es)) {
4648 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 			 "unknown checksum algorithm.");
4650 		return -EINVAL;
4651 	}
4652 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4653 				ext4_orphan_file_block_trigger);
4654 
4655 	/* Load the checksum driver */
4656 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4657 	if (IS_ERR(sbi->s_chksum_driver)) {
4658 		int ret = PTR_ERR(sbi->s_chksum_driver);
4659 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4660 		sbi->s_chksum_driver = NULL;
4661 		return ret;
4662 	}
4663 
4664 	/* Check superblock checksum */
4665 	if (!ext4_superblock_csum_verify(sb, es)) {
4666 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4667 			 "invalid superblock checksum.  Run e2fsck?");
4668 		return -EFSBADCRC;
4669 	}
4670 
4671 	/* Precompute checksum seed for all metadata */
4672 	if (ext4_has_feature_csum_seed(sb))
4673 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4674 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4675 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4676 					       sizeof(es->s_uuid));
4677 	return 0;
4678 }
4679 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4680 static int ext4_check_feature_compatibility(struct super_block *sb,
4681 					    struct ext4_super_block *es,
4682 					    int silent)
4683 {
4684 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4685 
4686 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4687 	    (ext4_has_compat_features(sb) ||
4688 	     ext4_has_ro_compat_features(sb) ||
4689 	     ext4_has_incompat_features(sb)))
4690 		ext4_msg(sb, KERN_WARNING,
4691 		       "feature flags set on rev 0 fs, "
4692 		       "running e2fsck is recommended");
4693 
4694 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4695 		set_opt2(sb, HURD_COMPAT);
4696 		if (ext4_has_feature_64bit(sb)) {
4697 			ext4_msg(sb, KERN_ERR,
4698 				 "The Hurd can't support 64-bit file systems");
4699 			return -EINVAL;
4700 		}
4701 
4702 		/*
4703 		 * ea_inode feature uses l_i_version field which is not
4704 		 * available in HURD_COMPAT mode.
4705 		 */
4706 		if (ext4_has_feature_ea_inode(sb)) {
4707 			ext4_msg(sb, KERN_ERR,
4708 				 "ea_inode feature is not supported for Hurd");
4709 			return -EINVAL;
4710 		}
4711 	}
4712 
4713 	if (IS_EXT2_SB(sb)) {
4714 		if (ext2_feature_set_ok(sb))
4715 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4716 				 "using the ext4 subsystem");
4717 		else {
4718 			/*
4719 			 * If we're probing be silent, if this looks like
4720 			 * it's actually an ext[34] filesystem.
4721 			 */
4722 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4723 				return -EINVAL;
4724 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4725 				 "to feature incompatibilities");
4726 			return -EINVAL;
4727 		}
4728 	}
4729 
4730 	if (IS_EXT3_SB(sb)) {
4731 		if (ext3_feature_set_ok(sb))
4732 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4733 				 "using the ext4 subsystem");
4734 		else {
4735 			/*
4736 			 * If we're probing be silent, if this looks like
4737 			 * it's actually an ext4 filesystem.
4738 			 */
4739 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4740 				return -EINVAL;
4741 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4742 				 "to feature incompatibilities");
4743 			return -EINVAL;
4744 		}
4745 	}
4746 
4747 	/*
4748 	 * Check feature flags regardless of the revision level, since we
4749 	 * previously didn't change the revision level when setting the flags,
4750 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4751 	 */
4752 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4753 		return -EINVAL;
4754 
4755 	if (sbi->s_daxdev) {
4756 		if (sb->s_blocksize == PAGE_SIZE)
4757 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4758 		else
4759 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4760 	}
4761 
4762 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4763 		if (ext4_has_feature_inline_data(sb)) {
4764 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4765 					" that may contain inline data");
4766 			return -EINVAL;
4767 		}
4768 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4769 			ext4_msg(sb, KERN_ERR,
4770 				"DAX unsupported by block device.");
4771 			return -EINVAL;
4772 		}
4773 	}
4774 
4775 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4776 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4777 			 es->s_encryption_level);
4778 		return -EINVAL;
4779 	}
4780 
4781 	return 0;
4782 }
4783 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4784 static int ext4_check_geometry(struct super_block *sb,
4785 			       struct ext4_super_block *es)
4786 {
4787 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4788 	__u64 blocks_count;
4789 	int err;
4790 
4791 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4792 		ext4_msg(sb, KERN_ERR,
4793 			 "Number of reserved GDT blocks insanely large: %d",
4794 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4795 		return -EINVAL;
4796 	}
4797 	/*
4798 	 * Test whether we have more sectors than will fit in sector_t,
4799 	 * and whether the max offset is addressable by the page cache.
4800 	 */
4801 	err = generic_check_addressable(sb->s_blocksize_bits,
4802 					ext4_blocks_count(es));
4803 	if (err) {
4804 		ext4_msg(sb, KERN_ERR, "filesystem"
4805 			 " too large to mount safely on this system");
4806 		return err;
4807 	}
4808 
4809 	/* check blocks count against device size */
4810 	blocks_count = sb_bdev_nr_blocks(sb);
4811 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4812 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4813 		       "exceeds size of device (%llu blocks)",
4814 		       ext4_blocks_count(es), blocks_count);
4815 		return -EINVAL;
4816 	}
4817 
4818 	/*
4819 	 * It makes no sense for the first data block to be beyond the end
4820 	 * of the filesystem.
4821 	 */
4822 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4823 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4824 			 "block %u is beyond end of filesystem (%llu)",
4825 			 le32_to_cpu(es->s_first_data_block),
4826 			 ext4_blocks_count(es));
4827 		return -EINVAL;
4828 	}
4829 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4830 	    (sbi->s_cluster_ratio == 1)) {
4831 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4832 			 "block is 0 with a 1k block and cluster size");
4833 		return -EINVAL;
4834 	}
4835 
4836 	blocks_count = (ext4_blocks_count(es) -
4837 			le32_to_cpu(es->s_first_data_block) +
4838 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4839 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4840 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4841 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4842 		       "(block count %llu, first data block %u, "
4843 		       "blocks per group %lu)", blocks_count,
4844 		       ext4_blocks_count(es),
4845 		       le32_to_cpu(es->s_first_data_block),
4846 		       EXT4_BLOCKS_PER_GROUP(sb));
4847 		return -EINVAL;
4848 	}
4849 	sbi->s_groups_count = blocks_count;
4850 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4851 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4852 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4853 	    le32_to_cpu(es->s_inodes_count)) {
4854 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4855 			 le32_to_cpu(es->s_inodes_count),
4856 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4857 		return -EINVAL;
4858 	}
4859 
4860 	return 0;
4861 }
4862 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4863 static int ext4_group_desc_init(struct super_block *sb,
4864 				struct ext4_super_block *es,
4865 				ext4_fsblk_t logical_sb_block,
4866 				ext4_group_t *first_not_zeroed)
4867 {
4868 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4869 	unsigned int db_count;
4870 	ext4_fsblk_t block;
4871 	int i;
4872 
4873 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4874 		   EXT4_DESC_PER_BLOCK(sb);
4875 	if (ext4_has_feature_meta_bg(sb)) {
4876 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4877 			ext4_msg(sb, KERN_WARNING,
4878 				 "first meta block group too large: %u "
4879 				 "(group descriptor block count %u)",
4880 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4881 			return -EINVAL;
4882 		}
4883 	}
4884 	rcu_assign_pointer(sbi->s_group_desc,
4885 			   kvmalloc_array(db_count,
4886 					  sizeof(struct buffer_head *),
4887 					  GFP_KERNEL));
4888 	if (sbi->s_group_desc == NULL) {
4889 		ext4_msg(sb, KERN_ERR, "not enough memory");
4890 		return -ENOMEM;
4891 	}
4892 
4893 	bgl_lock_init(sbi->s_blockgroup_lock);
4894 
4895 	/* Pre-read the descriptors into the buffer cache */
4896 	for (i = 0; i < db_count; i++) {
4897 		block = descriptor_loc(sb, logical_sb_block, i);
4898 		ext4_sb_breadahead_unmovable(sb, block);
4899 	}
4900 
4901 	for (i = 0; i < db_count; i++) {
4902 		struct buffer_head *bh;
4903 
4904 		block = descriptor_loc(sb, logical_sb_block, i);
4905 		bh = ext4_sb_bread_unmovable(sb, block);
4906 		if (IS_ERR(bh)) {
4907 			ext4_msg(sb, KERN_ERR,
4908 			       "can't read group descriptor %d", i);
4909 			sbi->s_gdb_count = i;
4910 			return PTR_ERR(bh);
4911 		}
4912 		rcu_read_lock();
4913 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4914 		rcu_read_unlock();
4915 	}
4916 	sbi->s_gdb_count = db_count;
4917 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4918 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4919 		return -EFSCORRUPTED;
4920 	}
4921 
4922 	return 0;
4923 }
4924 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4925 static int ext4_load_and_init_journal(struct super_block *sb,
4926 				      struct ext4_super_block *es,
4927 				      struct ext4_fs_context *ctx)
4928 {
4929 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4930 	int err;
4931 
4932 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4933 	if (err)
4934 		return err;
4935 
4936 	if (ext4_has_feature_64bit(sb) &&
4937 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4938 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4939 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4940 		goto out;
4941 	}
4942 
4943 	if (!set_journal_csum_feature_set(sb)) {
4944 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4945 			 "feature set");
4946 		goto out;
4947 	}
4948 
4949 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4950 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4951 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4952 		ext4_msg(sb, KERN_ERR,
4953 			"Failed to set fast commit journal feature");
4954 		goto out;
4955 	}
4956 
4957 	/* We have now updated the journal if required, so we can
4958 	 * validate the data journaling mode. */
4959 	switch (test_opt(sb, DATA_FLAGS)) {
4960 	case 0:
4961 		/* No mode set, assume a default based on the journal
4962 		 * capabilities: ORDERED_DATA if the journal can
4963 		 * cope, else JOURNAL_DATA
4964 		 */
4965 		if (jbd2_journal_check_available_features
4966 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4967 			set_opt(sb, ORDERED_DATA);
4968 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4969 		} else {
4970 			set_opt(sb, JOURNAL_DATA);
4971 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4972 		}
4973 		break;
4974 
4975 	case EXT4_MOUNT_ORDERED_DATA:
4976 	case EXT4_MOUNT_WRITEBACK_DATA:
4977 		if (!jbd2_journal_check_available_features
4978 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4979 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4980 			       "requested data journaling mode");
4981 			goto out;
4982 		}
4983 		break;
4984 	default:
4985 		break;
4986 	}
4987 
4988 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4989 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4990 		ext4_msg(sb, KERN_ERR, "can't mount with "
4991 			"journal_async_commit in data=ordered mode");
4992 		goto out;
4993 	}
4994 
4995 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4996 
4997 	sbi->s_journal->j_submit_inode_data_buffers =
4998 		ext4_journal_submit_inode_data_buffers;
4999 	sbi->s_journal->j_finish_inode_data_buffers =
5000 		ext4_journal_finish_inode_data_buffers;
5001 
5002 	return 0;
5003 
5004 out:
5005 	ext4_journal_destroy(sbi, sbi->s_journal);
5006 	return -EINVAL;
5007 }
5008 
ext4_check_journal_data_mode(struct super_block * sb)5009 static int ext4_check_journal_data_mode(struct super_block *sb)
5010 {
5011 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5012 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
5013 			    "data=journal disables delayed allocation, "
5014 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
5015 		/* can't mount with both data=journal and dioread_nolock. */
5016 		clear_opt(sb, DIOREAD_NOLOCK);
5017 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5018 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5019 			ext4_msg(sb, KERN_ERR, "can't mount with "
5020 				 "both data=journal and delalloc");
5021 			return -EINVAL;
5022 		}
5023 		if (test_opt(sb, DAX_ALWAYS)) {
5024 			ext4_msg(sb, KERN_ERR, "can't mount with "
5025 				 "both data=journal and dax");
5026 			return -EINVAL;
5027 		}
5028 		if (ext4_has_feature_encrypt(sb)) {
5029 			ext4_msg(sb, KERN_WARNING,
5030 				 "encrypted files will use data=ordered "
5031 				 "instead of data journaling mode");
5032 		}
5033 		if (test_opt(sb, DELALLOC))
5034 			clear_opt(sb, DELALLOC);
5035 	} else {
5036 		sb->s_iflags |= SB_I_CGROUPWB;
5037 	}
5038 
5039 	return 0;
5040 }
5041 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5042 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5043 			   int silent)
5044 {
5045 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5046 	struct ext4_super_block *es;
5047 	ext4_fsblk_t logical_sb_block;
5048 	unsigned long offset = 0;
5049 	struct buffer_head *bh;
5050 	int ret = -EINVAL;
5051 	int blocksize;
5052 
5053 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5054 	if (!blocksize) {
5055 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5056 		return -EINVAL;
5057 	}
5058 
5059 	/*
5060 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5061 	 * block sizes.  We need to calculate the offset from buffer start.
5062 	 */
5063 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5064 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5065 		offset = do_div(logical_sb_block, blocksize);
5066 	} else {
5067 		logical_sb_block = sbi->s_sb_block;
5068 	}
5069 
5070 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5071 	if (IS_ERR(bh)) {
5072 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5073 		return PTR_ERR(bh);
5074 	}
5075 	/*
5076 	 * Note: s_es must be initialized as soon as possible because
5077 	 *       some ext4 macro-instructions depend on its value
5078 	 */
5079 	es = (struct ext4_super_block *) (bh->b_data + offset);
5080 	sbi->s_es = es;
5081 	sb->s_magic = le16_to_cpu(es->s_magic);
5082 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5083 		if (!silent)
5084 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5085 		goto out;
5086 	}
5087 
5088 	if (le32_to_cpu(es->s_log_block_size) >
5089 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5090 		ext4_msg(sb, KERN_ERR,
5091 			 "Invalid log block size: %u",
5092 			 le32_to_cpu(es->s_log_block_size));
5093 		goto out;
5094 	}
5095 	if (le32_to_cpu(es->s_log_cluster_size) >
5096 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5097 		ext4_msg(sb, KERN_ERR,
5098 			 "Invalid log cluster size: %u",
5099 			 le32_to_cpu(es->s_log_cluster_size));
5100 		goto out;
5101 	}
5102 
5103 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5104 
5105 	/*
5106 	 * If the default block size is not the same as the real block size,
5107 	 * we need to reload it.
5108 	 */
5109 	if (sb->s_blocksize == blocksize) {
5110 		*lsb = logical_sb_block;
5111 		sbi->s_sbh = bh;
5112 		return 0;
5113 	}
5114 
5115 	/*
5116 	 * bh must be released before kill_bdev(), otherwise
5117 	 * it won't be freed and its page also. kill_bdev()
5118 	 * is called by sb_set_blocksize().
5119 	 */
5120 	brelse(bh);
5121 	/* Validate the filesystem blocksize */
5122 	if (!sb_set_blocksize(sb, blocksize)) {
5123 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5124 				blocksize);
5125 		bh = NULL;
5126 		goto out;
5127 	}
5128 
5129 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5130 	offset = do_div(logical_sb_block, blocksize);
5131 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5132 	if (IS_ERR(bh)) {
5133 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5134 		ret = PTR_ERR(bh);
5135 		bh = NULL;
5136 		goto out;
5137 	}
5138 	es = (struct ext4_super_block *)(bh->b_data + offset);
5139 	sbi->s_es = es;
5140 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5141 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5142 		goto out;
5143 	}
5144 	*lsb = logical_sb_block;
5145 	sbi->s_sbh = bh;
5146 	return 0;
5147 out:
5148 	brelse(bh);
5149 	return ret;
5150 }
5151 
ext4_hash_info_init(struct super_block * sb)5152 static void ext4_hash_info_init(struct super_block *sb)
5153 {
5154 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5155 	struct ext4_super_block *es = sbi->s_es;
5156 	unsigned int i;
5157 
5158 	for (i = 0; i < 4; i++)
5159 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5160 
5161 	sbi->s_def_hash_version = es->s_def_hash_version;
5162 	if (ext4_has_feature_dir_index(sb)) {
5163 		i = le32_to_cpu(es->s_flags);
5164 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5165 			sbi->s_hash_unsigned = 3;
5166 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5167 #ifdef __CHAR_UNSIGNED__
5168 			if (!sb_rdonly(sb))
5169 				es->s_flags |=
5170 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5171 			sbi->s_hash_unsigned = 3;
5172 #else
5173 			if (!sb_rdonly(sb))
5174 				es->s_flags |=
5175 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5176 #endif
5177 		}
5178 	}
5179 }
5180 
ext4_block_group_meta_init(struct super_block * sb,int silent)5181 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5182 {
5183 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5184 	struct ext4_super_block *es = sbi->s_es;
5185 	int has_huge_files;
5186 
5187 	has_huge_files = ext4_has_feature_huge_file(sb);
5188 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5189 						      has_huge_files);
5190 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5191 
5192 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5193 	if (ext4_has_feature_64bit(sb)) {
5194 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5195 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5196 		    !is_power_of_2(sbi->s_desc_size)) {
5197 			ext4_msg(sb, KERN_ERR,
5198 			       "unsupported descriptor size %lu",
5199 			       sbi->s_desc_size);
5200 			return -EINVAL;
5201 		}
5202 	} else
5203 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5204 
5205 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5206 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5207 
5208 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5209 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5210 		if (!silent)
5211 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5212 		return -EINVAL;
5213 	}
5214 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5215 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5216 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5217 			 sbi->s_inodes_per_group);
5218 		return -EINVAL;
5219 	}
5220 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5221 					sbi->s_inodes_per_block;
5222 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5223 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5224 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5225 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5226 
5227 	return 0;
5228 }
5229 
5230 /*
5231  * It's hard to get stripe aligned blocks if stripe is not aligned with
5232  * cluster, just disable stripe and alert user to simplify code and avoid
5233  * stripe aligned allocation which will rarely succeed.
5234  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5235 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5236 {
5237 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5238 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5239 		stripe % sbi->s_cluster_ratio != 0);
5240 }
5241 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5242 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5243 {
5244 	struct ext4_super_block *es = NULL;
5245 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5246 	ext4_fsblk_t logical_sb_block;
5247 	struct inode *root;
5248 	int needs_recovery;
5249 	int err;
5250 	ext4_group_t first_not_zeroed;
5251 	struct ext4_fs_context *ctx = fc->fs_private;
5252 	int silent = fc->sb_flags & SB_SILENT;
5253 
5254 	/* Set defaults for the variables that will be set during parsing */
5255 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5256 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5257 
5258 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5259 	sbi->s_sectors_written_start =
5260 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5261 
5262 	err = ext4_load_super(sb, &logical_sb_block, silent);
5263 	if (err)
5264 		goto out_fail;
5265 
5266 	es = sbi->s_es;
5267 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5268 
5269 	err = ext4_init_metadata_csum(sb, es);
5270 	if (err)
5271 		goto failed_mount;
5272 
5273 	ext4_set_def_opts(sb, es);
5274 
5275 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5276 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5277 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5278 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5279 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5280 
5281 	/*
5282 	 * set default s_li_wait_mult for lazyinit, for the case there is
5283 	 * no mount option specified.
5284 	 */
5285 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5286 
5287 	err = ext4_inode_info_init(sb, es);
5288 	if (err)
5289 		goto failed_mount;
5290 
5291 	err = parse_apply_sb_mount_options(sb, ctx);
5292 	if (err < 0)
5293 		goto failed_mount;
5294 
5295 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5296 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5297 
5298 	err = ext4_check_opt_consistency(fc, sb);
5299 	if (err < 0)
5300 		goto failed_mount;
5301 
5302 	ext4_apply_options(fc, sb);
5303 
5304 	err = ext4_encoding_init(sb, es);
5305 	if (err)
5306 		goto failed_mount;
5307 
5308 	err = ext4_check_journal_data_mode(sb);
5309 	if (err)
5310 		goto failed_mount;
5311 
5312 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5313 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5314 
5315 	/* i_version is always enabled now */
5316 	sb->s_flags |= SB_I_VERSION;
5317 
5318 	err = ext4_check_feature_compatibility(sb, es, silent);
5319 	if (err)
5320 		goto failed_mount;
5321 
5322 	err = ext4_block_group_meta_init(sb, silent);
5323 	if (err)
5324 		goto failed_mount;
5325 
5326 	ext4_hash_info_init(sb);
5327 
5328 	err = ext4_handle_clustersize(sb);
5329 	if (err)
5330 		goto failed_mount;
5331 
5332 	err = ext4_check_geometry(sb, es);
5333 	if (err)
5334 		goto failed_mount;
5335 
5336 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5337 	spin_lock_init(&sbi->s_error_lock);
5338 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5339 
5340 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5341 	if (err)
5342 		goto failed_mount3;
5343 
5344 	err = ext4_es_register_shrinker(sbi);
5345 	if (err)
5346 		goto failed_mount3;
5347 
5348 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5349 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5350 		ext4_msg(sb, KERN_WARNING,
5351 			 "stripe (%lu) is not aligned with cluster size (%u), "
5352 			 "stripe is disabled",
5353 			 sbi->s_stripe, sbi->s_cluster_ratio);
5354 		sbi->s_stripe = 0;
5355 	}
5356 	sbi->s_extent_max_zeroout_kb = 32;
5357 
5358 	/*
5359 	 * set up enough so that it can read an inode
5360 	 */
5361 	sb->s_op = &ext4_sops;
5362 	sb->s_export_op = &ext4_export_ops;
5363 	sb->s_xattr = ext4_xattr_handlers;
5364 #ifdef CONFIG_FS_ENCRYPTION
5365 	sb->s_cop = &ext4_cryptops;
5366 #endif
5367 #ifdef CONFIG_FS_VERITY
5368 	sb->s_vop = &ext4_verityops;
5369 #endif
5370 #ifdef CONFIG_QUOTA
5371 	sb->dq_op = &ext4_quota_operations;
5372 	if (ext4_has_feature_quota(sb))
5373 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5374 	else
5375 		sb->s_qcop = &ext4_qctl_operations;
5376 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5377 #endif
5378 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5379 
5380 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5381 	mutex_init(&sbi->s_orphan_lock);
5382 
5383 	spin_lock_init(&sbi->s_bdev_wb_lock);
5384 
5385 	ext4_fast_commit_init(sb);
5386 
5387 	sb->s_root = NULL;
5388 
5389 	needs_recovery = (es->s_last_orphan != 0 ||
5390 			  ext4_has_feature_orphan_present(sb) ||
5391 			  ext4_has_feature_journal_needs_recovery(sb));
5392 
5393 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5394 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5395 		if (err)
5396 			goto failed_mount3a;
5397 	}
5398 
5399 	err = -EINVAL;
5400 	/*
5401 	 * The first inode we look at is the journal inode.  Don't try
5402 	 * root first: it may be modified in the journal!
5403 	 */
5404 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5405 		err = ext4_load_and_init_journal(sb, es, ctx);
5406 		if (err)
5407 			goto failed_mount3a;
5408 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5409 		   ext4_has_feature_journal_needs_recovery(sb)) {
5410 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5411 		       "suppressed and not mounted read-only");
5412 		goto failed_mount3a;
5413 	} else {
5414 		/* Nojournal mode, all journal mount options are illegal */
5415 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5416 			ext4_msg(sb, KERN_ERR, "can't mount with "
5417 				 "journal_async_commit, fs mounted w/o journal");
5418 			goto failed_mount3a;
5419 		}
5420 
5421 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5422 			ext4_msg(sb, KERN_ERR, "can't mount with "
5423 				 "journal_checksum, fs mounted w/o journal");
5424 			goto failed_mount3a;
5425 		}
5426 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5427 			ext4_msg(sb, KERN_ERR, "can't mount with "
5428 				 "commit=%lu, fs mounted w/o journal",
5429 				 sbi->s_commit_interval / HZ);
5430 			goto failed_mount3a;
5431 		}
5432 		if (EXT4_MOUNT_DATA_FLAGS &
5433 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5434 			ext4_msg(sb, KERN_ERR, "can't mount with "
5435 				 "data=, fs mounted w/o journal");
5436 			goto failed_mount3a;
5437 		}
5438 		if (test_opt(sb, DATA_ERR_ABORT)) {
5439 			ext4_msg(sb, KERN_ERR,
5440 				 "can't mount with data_err=abort, fs mounted w/o journal");
5441 			goto failed_mount3a;
5442 		}
5443 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5444 		clear_opt(sb, JOURNAL_CHECKSUM);
5445 		clear_opt(sb, DATA_FLAGS);
5446 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5447 		sbi->s_journal = NULL;
5448 		needs_recovery = 0;
5449 	}
5450 
5451 	if (!test_opt(sb, NO_MBCACHE)) {
5452 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5453 		if (!sbi->s_ea_block_cache) {
5454 			ext4_msg(sb, KERN_ERR,
5455 				 "Failed to create ea_block_cache");
5456 			err = -EINVAL;
5457 			goto failed_mount_wq;
5458 		}
5459 
5460 		if (ext4_has_feature_ea_inode(sb)) {
5461 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5462 			if (!sbi->s_ea_inode_cache) {
5463 				ext4_msg(sb, KERN_ERR,
5464 					 "Failed to create ea_inode_cache");
5465 				err = -EINVAL;
5466 				goto failed_mount_wq;
5467 			}
5468 		}
5469 	}
5470 
5471 	/*
5472 	 * Get the # of file system overhead blocks from the
5473 	 * superblock if present.
5474 	 */
5475 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5476 	/* ignore the precalculated value if it is ridiculous */
5477 	if (sbi->s_overhead > ext4_blocks_count(es))
5478 		sbi->s_overhead = 0;
5479 	/*
5480 	 * If the bigalloc feature is not enabled recalculating the
5481 	 * overhead doesn't take long, so we might as well just redo
5482 	 * it to make sure we are using the correct value.
5483 	 */
5484 	if (!ext4_has_feature_bigalloc(sb))
5485 		sbi->s_overhead = 0;
5486 	if (sbi->s_overhead == 0) {
5487 		err = ext4_calculate_overhead(sb);
5488 		if (err)
5489 			goto failed_mount_wq;
5490 	}
5491 
5492 	/*
5493 	 * The maximum number of concurrent works can be high and
5494 	 * concurrency isn't really necessary.  Limit it to 1.
5495 	 */
5496 	EXT4_SB(sb)->rsv_conversion_wq =
5497 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5498 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5499 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5500 		err = -ENOMEM;
5501 		goto failed_mount4;
5502 	}
5503 
5504 	/*
5505 	 * The jbd2_journal_load will have done any necessary log recovery,
5506 	 * so we can safely mount the rest of the filesystem now.
5507 	 */
5508 
5509 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5510 	if (IS_ERR(root)) {
5511 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5512 		err = PTR_ERR(root);
5513 		root = NULL;
5514 		goto failed_mount4;
5515 	}
5516 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5517 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5518 		iput(root);
5519 		err = -EFSCORRUPTED;
5520 		goto failed_mount4;
5521 	}
5522 
5523 	sb->s_root = d_make_root(root);
5524 	if (!sb->s_root) {
5525 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5526 		err = -ENOMEM;
5527 		goto failed_mount4;
5528 	}
5529 
5530 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5531 	if (err == -EROFS) {
5532 		sb->s_flags |= SB_RDONLY;
5533 	} else if (err)
5534 		goto failed_mount4a;
5535 
5536 	ext4_set_resv_clusters(sb);
5537 
5538 	if (test_opt(sb, BLOCK_VALIDITY)) {
5539 		err = ext4_setup_system_zone(sb);
5540 		if (err) {
5541 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5542 				 "zone (%d)", err);
5543 			goto failed_mount4a;
5544 		}
5545 	}
5546 	ext4_fc_replay_cleanup(sb);
5547 
5548 	ext4_ext_init(sb);
5549 
5550 	/*
5551 	 * Enable optimize_scan if number of groups is > threshold. This can be
5552 	 * turned off by passing "mb_optimize_scan=0". This can also be
5553 	 * turned on forcefully by passing "mb_optimize_scan=1".
5554 	 */
5555 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5556 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5557 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5558 		else
5559 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5560 	}
5561 
5562 	err = ext4_mb_init(sb);
5563 	if (err) {
5564 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5565 			 err);
5566 		goto failed_mount5;
5567 	}
5568 
5569 	/*
5570 	 * We can only set up the journal commit callback once
5571 	 * mballoc is initialized
5572 	 */
5573 	if (sbi->s_journal)
5574 		sbi->s_journal->j_commit_callback =
5575 			ext4_journal_commit_callback;
5576 
5577 	err = ext4_percpu_param_init(sbi);
5578 	if (err)
5579 		goto failed_mount6;
5580 
5581 	if (ext4_has_feature_flex_bg(sb))
5582 		if (!ext4_fill_flex_info(sb)) {
5583 			ext4_msg(sb, KERN_ERR,
5584 			       "unable to initialize "
5585 			       "flex_bg meta info!");
5586 			err = -ENOMEM;
5587 			goto failed_mount6;
5588 		}
5589 
5590 	err = ext4_register_li_request(sb, first_not_zeroed);
5591 	if (err)
5592 		goto failed_mount6;
5593 
5594 	err = ext4_init_orphan_info(sb);
5595 	if (err)
5596 		goto failed_mount7;
5597 #ifdef CONFIG_QUOTA
5598 	/* Enable quota usage during mount. */
5599 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5600 		err = ext4_enable_quotas(sb);
5601 		if (err)
5602 			goto failed_mount8;
5603 	}
5604 #endif  /* CONFIG_QUOTA */
5605 
5606 	/*
5607 	 * Save the original bdev mapping's wb_err value which could be
5608 	 * used to detect the metadata async write error.
5609 	 */
5610 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5611 				 &sbi->s_bdev_wb_err);
5612 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5613 	ext4_orphan_cleanup(sb, es);
5614 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5615 	/*
5616 	 * Update the checksum after updating free space/inode counters and
5617 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5618 	 * checksum in the buffer cache until it is written out and
5619 	 * e2fsprogs programs trying to open a file system immediately
5620 	 * after it is mounted can fail.
5621 	 */
5622 	ext4_superblock_csum_set(sb);
5623 	if (needs_recovery) {
5624 		ext4_msg(sb, KERN_INFO, "recovery complete");
5625 		err = ext4_mark_recovery_complete(sb, es);
5626 		if (err)
5627 			goto failed_mount9;
5628 	}
5629 
5630 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5631 		ext4_msg(sb, KERN_WARNING,
5632 			 "mounting with \"discard\" option, but the device does not support discard");
5633 
5634 	if (es->s_error_count)
5635 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5636 
5637 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5638 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5639 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5640 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5641 	atomic_set(&sbi->s_warning_count, 0);
5642 	atomic_set(&sbi->s_msg_count, 0);
5643 
5644 	/* Register sysfs after all initializations are complete. */
5645 	err = ext4_register_sysfs(sb);
5646 	if (err)
5647 		goto failed_mount9;
5648 
5649 	return 0;
5650 
5651 failed_mount9:
5652 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5653 failed_mount8: __maybe_unused
5654 	ext4_release_orphan_info(sb);
5655 failed_mount7:
5656 	ext4_unregister_li_request(sb);
5657 failed_mount6:
5658 	ext4_mb_release(sb);
5659 	ext4_flex_groups_free(sbi);
5660 	ext4_percpu_param_destroy(sbi);
5661 failed_mount5:
5662 	ext4_ext_release(sb);
5663 	ext4_release_system_zone(sb);
5664 failed_mount4a:
5665 	dput(sb->s_root);
5666 	sb->s_root = NULL;
5667 failed_mount4:
5668 	ext4_msg(sb, KERN_ERR, "mount failed");
5669 	if (EXT4_SB(sb)->rsv_conversion_wq)
5670 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5671 failed_mount_wq:
5672 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5673 	sbi->s_ea_inode_cache = NULL;
5674 
5675 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5676 	sbi->s_ea_block_cache = NULL;
5677 
5678 	if (sbi->s_journal) {
5679 		ext4_journal_destroy(sbi, sbi->s_journal);
5680 	}
5681 failed_mount3a:
5682 	ext4_es_unregister_shrinker(sbi);
5683 failed_mount3:
5684 	/* flush s_sb_upd_work before sbi destroy */
5685 	flush_work(&sbi->s_sb_upd_work);
5686 	ext4_stop_mmpd(sbi);
5687 	del_timer_sync(&sbi->s_err_report);
5688 	ext4_group_desc_free(sbi);
5689 failed_mount:
5690 	if (sbi->s_chksum_driver)
5691 		crypto_free_shash(sbi->s_chksum_driver);
5692 
5693 #if IS_ENABLED(CONFIG_UNICODE)
5694 	utf8_unload(sb->s_encoding);
5695 #endif
5696 
5697 #ifdef CONFIG_QUOTA
5698 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5699 		kfree(get_qf_name(sb, sbi, i));
5700 #endif
5701 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5702 	brelse(sbi->s_sbh);
5703 	if (sbi->s_journal_bdev) {
5704 		invalidate_bdev(sbi->s_journal_bdev);
5705 		blkdev_put(sbi->s_journal_bdev, sb);
5706 	}
5707 out_fail:
5708 	invalidate_bdev(sb->s_bdev);
5709 	sb->s_fs_info = NULL;
5710 	return err;
5711 }
5712 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5713 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5714 {
5715 	struct ext4_fs_context *ctx = fc->fs_private;
5716 	struct ext4_sb_info *sbi;
5717 	const char *descr;
5718 	int ret;
5719 
5720 	sbi = ext4_alloc_sbi(sb);
5721 	if (!sbi)
5722 		return -ENOMEM;
5723 
5724 	fc->s_fs_info = sbi;
5725 
5726 	/* Cleanup superblock name */
5727 	strreplace(sb->s_id, '/', '!');
5728 
5729 	sbi->s_sb_block = 1;	/* Default super block location */
5730 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5731 		sbi->s_sb_block = ctx->s_sb_block;
5732 
5733 	ret = __ext4_fill_super(fc, sb);
5734 	if (ret < 0)
5735 		goto free_sbi;
5736 
5737 	if (sbi->s_journal) {
5738 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5739 			descr = " journalled data mode";
5740 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5741 			descr = " ordered data mode";
5742 		else
5743 			descr = " writeback data mode";
5744 	} else
5745 		descr = "out journal";
5746 
5747 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5748 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5749 			 "Quota mode: %s.", &sb->s_uuid,
5750 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5751 			 ext4_quota_mode(sb));
5752 
5753 	/* Update the s_overhead_clusters if necessary */
5754 	ext4_update_overhead(sb, false);
5755 	return 0;
5756 
5757 free_sbi:
5758 	ext4_free_sbi(sbi);
5759 	fc->s_fs_info = NULL;
5760 	return ret;
5761 }
5762 
ext4_get_tree(struct fs_context * fc)5763 static int ext4_get_tree(struct fs_context *fc)
5764 {
5765 	return get_tree_bdev(fc, ext4_fill_super);
5766 }
5767 
5768 /*
5769  * Setup any per-fs journal parameters now.  We'll do this both on
5770  * initial mount, once the journal has been initialised but before we've
5771  * done any recovery; and again on any subsequent remount.
5772  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5773 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5774 {
5775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5776 
5777 	journal->j_commit_interval = sbi->s_commit_interval;
5778 	journal->j_min_batch_time = sbi->s_min_batch_time;
5779 	journal->j_max_batch_time = sbi->s_max_batch_time;
5780 	ext4_fc_init(sb, journal);
5781 
5782 	write_lock(&journal->j_state_lock);
5783 	if (test_opt(sb, BARRIER))
5784 		journal->j_flags |= JBD2_BARRIER;
5785 	else
5786 		journal->j_flags &= ~JBD2_BARRIER;
5787 	if (test_opt(sb, DATA_ERR_ABORT))
5788 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5789 	else
5790 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5791 	/*
5792 	 * Always enable journal cycle record option, letting the journal
5793 	 * records log transactions continuously between each mount.
5794 	 */
5795 	journal->j_flags |= JBD2_CYCLE_RECORD;
5796 	write_unlock(&journal->j_state_lock);
5797 }
5798 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5799 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5800 					     unsigned int journal_inum)
5801 {
5802 	struct inode *journal_inode;
5803 
5804 	/*
5805 	 * Test for the existence of a valid inode on disk.  Bad things
5806 	 * happen if we iget() an unused inode, as the subsequent iput()
5807 	 * will try to delete it.
5808 	 */
5809 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5810 	if (IS_ERR(journal_inode)) {
5811 		ext4_msg(sb, KERN_ERR, "no journal found");
5812 		return ERR_CAST(journal_inode);
5813 	}
5814 	if (!journal_inode->i_nlink) {
5815 		make_bad_inode(journal_inode);
5816 		iput(journal_inode);
5817 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5818 		return ERR_PTR(-EFSCORRUPTED);
5819 	}
5820 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5821 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5822 		iput(journal_inode);
5823 		return ERR_PTR(-EFSCORRUPTED);
5824 	}
5825 
5826 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5827 		  journal_inode, journal_inode->i_size);
5828 	return journal_inode;
5829 }
5830 
ext4_journal_bmap(journal_t * journal,sector_t * block)5831 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5832 {
5833 	struct ext4_map_blocks map;
5834 	int ret;
5835 
5836 	if (journal->j_inode == NULL)
5837 		return 0;
5838 
5839 	map.m_lblk = *block;
5840 	map.m_len = 1;
5841 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5842 	if (ret <= 0) {
5843 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5844 			 "journal bmap failed: block %llu ret %d\n",
5845 			 *block, ret);
5846 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5847 		return ret;
5848 	}
5849 	*block = map.m_pblk;
5850 	return 0;
5851 }
5852 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5853 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5854 					  unsigned int journal_inum)
5855 {
5856 	struct inode *journal_inode;
5857 	journal_t *journal;
5858 
5859 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5860 	if (IS_ERR(journal_inode))
5861 		return ERR_CAST(journal_inode);
5862 
5863 	journal = jbd2_journal_init_inode(journal_inode);
5864 	if (IS_ERR(journal)) {
5865 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5866 		iput(journal_inode);
5867 		return ERR_CAST(journal);
5868 	}
5869 	journal->j_private = sb;
5870 	journal->j_bmap = ext4_journal_bmap;
5871 	ext4_init_journal_params(sb, journal);
5872 	return journal;
5873 }
5874 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5875 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5876 					dev_t j_dev, ext4_fsblk_t *j_start,
5877 					ext4_fsblk_t *j_len)
5878 {
5879 	struct buffer_head *bh;
5880 	struct block_device *bdev;
5881 	int hblock, blocksize;
5882 	ext4_fsblk_t sb_block;
5883 	unsigned long offset;
5884 	struct ext4_super_block *es;
5885 	int errno;
5886 
5887 	/* see get_tree_bdev why this is needed and safe */
5888 	up_write(&sb->s_umount);
5889 	bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5890 				 &fs_holder_ops);
5891 	down_write(&sb->s_umount);
5892 	if (IS_ERR(bdev)) {
5893 		ext4_msg(sb, KERN_ERR,
5894 			 "failed to open journal device unknown-block(%u,%u) %ld",
5895 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5896 		return ERR_CAST(bdev);
5897 	}
5898 
5899 	blocksize = sb->s_blocksize;
5900 	hblock = bdev_logical_block_size(bdev);
5901 	if (blocksize < hblock) {
5902 		ext4_msg(sb, KERN_ERR,
5903 			"blocksize too small for journal device");
5904 		errno = -EINVAL;
5905 		goto out_bdev;
5906 	}
5907 
5908 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5909 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5910 	set_blocksize(bdev, blocksize);
5911 	bh = __bread(bdev, sb_block, blocksize);
5912 	if (!bh) {
5913 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5914 		       "external journal");
5915 		errno = -EINVAL;
5916 		goto out_bdev;
5917 	}
5918 
5919 	es = (struct ext4_super_block *) (bh->b_data + offset);
5920 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5921 	    !(le32_to_cpu(es->s_feature_incompat) &
5922 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5923 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5924 		errno = -EFSCORRUPTED;
5925 		goto out_bh;
5926 	}
5927 
5928 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5929 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5930 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5931 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5932 		errno = -EFSCORRUPTED;
5933 		goto out_bh;
5934 	}
5935 
5936 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5937 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5938 		errno = -EFSCORRUPTED;
5939 		goto out_bh;
5940 	}
5941 
5942 	*j_start = sb_block + 1;
5943 	*j_len = ext4_blocks_count(es);
5944 	brelse(bh);
5945 	return bdev;
5946 
5947 out_bh:
5948 	brelse(bh);
5949 out_bdev:
5950 	blkdev_put(bdev, sb);
5951 	return ERR_PTR(errno);
5952 }
5953 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5954 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5955 					dev_t j_dev)
5956 {
5957 	journal_t *journal;
5958 	ext4_fsblk_t j_start;
5959 	ext4_fsblk_t j_len;
5960 	struct block_device *journal_bdev;
5961 	int errno = 0;
5962 
5963 	journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5964 	if (IS_ERR(journal_bdev))
5965 		return ERR_CAST(journal_bdev);
5966 
5967 	journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5968 					j_len, sb->s_blocksize);
5969 	if (IS_ERR(journal)) {
5970 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5971 		errno = PTR_ERR(journal);
5972 		goto out_bdev;
5973 	}
5974 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5975 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5976 					"user (unsupported) - %d",
5977 			be32_to_cpu(journal->j_superblock->s_nr_users));
5978 		errno = -EINVAL;
5979 		goto out_journal;
5980 	}
5981 	journal->j_private = sb;
5982 	EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5983 	ext4_init_journal_params(sb, journal);
5984 	return journal;
5985 
5986 out_journal:
5987 	ext4_journal_destroy(EXT4_SB(sb), journal);
5988 out_bdev:
5989 	blkdev_put(journal_bdev, sb);
5990 	return ERR_PTR(errno);
5991 }
5992 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5993 static int ext4_load_journal(struct super_block *sb,
5994 			     struct ext4_super_block *es,
5995 			     unsigned long journal_devnum)
5996 {
5997 	journal_t *journal;
5998 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5999 	dev_t journal_dev;
6000 	int err = 0;
6001 	int really_read_only;
6002 	int journal_dev_ro;
6003 
6004 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6005 		return -EFSCORRUPTED;
6006 
6007 	if (journal_devnum &&
6008 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6009 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6010 			"numbers have changed");
6011 		journal_dev = new_decode_dev(journal_devnum);
6012 	} else
6013 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6014 
6015 	if (journal_inum && journal_dev) {
6016 		ext4_msg(sb, KERN_ERR,
6017 			 "filesystem has both journal inode and journal device!");
6018 		return -EINVAL;
6019 	}
6020 
6021 	if (journal_inum) {
6022 		journal = ext4_open_inode_journal(sb, journal_inum);
6023 		if (IS_ERR(journal))
6024 			return PTR_ERR(journal);
6025 	} else {
6026 		journal = ext4_open_dev_journal(sb, journal_dev);
6027 		if (IS_ERR(journal))
6028 			return PTR_ERR(journal);
6029 	}
6030 
6031 	journal_dev_ro = bdev_read_only(journal->j_dev);
6032 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6033 
6034 	if (journal_dev_ro && !sb_rdonly(sb)) {
6035 		ext4_msg(sb, KERN_ERR,
6036 			 "journal device read-only, try mounting with '-o ro'");
6037 		err = -EROFS;
6038 		goto err_out;
6039 	}
6040 
6041 	/*
6042 	 * Are we loading a blank journal or performing recovery after a
6043 	 * crash?  For recovery, we need to check in advance whether we
6044 	 * can get read-write access to the device.
6045 	 */
6046 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6047 		if (sb_rdonly(sb)) {
6048 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6049 					"required on readonly filesystem");
6050 			if (really_read_only) {
6051 				ext4_msg(sb, KERN_ERR, "write access "
6052 					"unavailable, cannot proceed "
6053 					"(try mounting with noload)");
6054 				err = -EROFS;
6055 				goto err_out;
6056 			}
6057 			ext4_msg(sb, KERN_INFO, "write access will "
6058 			       "be enabled during recovery");
6059 		}
6060 	}
6061 
6062 	if (!(journal->j_flags & JBD2_BARRIER))
6063 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6064 
6065 	if (!ext4_has_feature_journal_needs_recovery(sb))
6066 		err = jbd2_journal_wipe(journal, !really_read_only);
6067 	if (!err) {
6068 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6069 		__le16 orig_state;
6070 		bool changed = false;
6071 
6072 		if (save)
6073 			memcpy(save, ((char *) es) +
6074 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6075 		err = jbd2_journal_load(journal);
6076 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6077 				   save, EXT4_S_ERR_LEN)) {
6078 			memcpy(((char *) es) + EXT4_S_ERR_START,
6079 			       save, EXT4_S_ERR_LEN);
6080 			changed = true;
6081 		}
6082 		kfree(save);
6083 		orig_state = es->s_state;
6084 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6085 					   EXT4_ERROR_FS);
6086 		if (orig_state != es->s_state)
6087 			changed = true;
6088 		/* Write out restored error information to the superblock */
6089 		if (changed && !really_read_only) {
6090 			int err2;
6091 			err2 = ext4_commit_super(sb);
6092 			err = err ? : err2;
6093 		}
6094 	}
6095 
6096 	if (err) {
6097 		ext4_msg(sb, KERN_ERR, "error loading journal");
6098 		goto err_out;
6099 	}
6100 
6101 	EXT4_SB(sb)->s_journal = journal;
6102 	err = ext4_clear_journal_err(sb, es);
6103 	if (err) {
6104 		ext4_journal_destroy(EXT4_SB(sb), journal);
6105 		return err;
6106 	}
6107 
6108 	if (!really_read_only && journal_devnum &&
6109 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6110 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6111 		ext4_commit_super(sb);
6112 	}
6113 	if (!really_read_only && journal_inum &&
6114 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6115 		es->s_journal_inum = cpu_to_le32(journal_inum);
6116 		ext4_commit_super(sb);
6117 	}
6118 
6119 	return 0;
6120 
6121 err_out:
6122 	ext4_journal_destroy(EXT4_SB(sb), journal);
6123 	return err;
6124 }
6125 
6126 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6127 static void ext4_update_super(struct super_block *sb)
6128 {
6129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6130 	struct ext4_super_block *es = sbi->s_es;
6131 	struct buffer_head *sbh = sbi->s_sbh;
6132 
6133 	lock_buffer(sbh);
6134 	/*
6135 	 * If the file system is mounted read-only, don't update the
6136 	 * superblock write time.  This avoids updating the superblock
6137 	 * write time when we are mounting the root file system
6138 	 * read/only but we need to replay the journal; at that point,
6139 	 * for people who are east of GMT and who make their clock
6140 	 * tick in localtime for Windows bug-for-bug compatibility,
6141 	 * the clock is set in the future, and this will cause e2fsck
6142 	 * to complain and force a full file system check.
6143 	 */
6144 	if (!sb_rdonly(sb))
6145 		ext4_update_tstamp(es, s_wtime);
6146 	es->s_kbytes_written =
6147 		cpu_to_le64(sbi->s_kbytes_written +
6148 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6149 		      sbi->s_sectors_written_start) >> 1));
6150 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6151 		ext4_free_blocks_count_set(es,
6152 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6153 				&sbi->s_freeclusters_counter)));
6154 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6155 		es->s_free_inodes_count =
6156 			cpu_to_le32(percpu_counter_sum_positive(
6157 				&sbi->s_freeinodes_counter));
6158 	/* Copy error information to the on-disk superblock */
6159 	spin_lock(&sbi->s_error_lock);
6160 	if (sbi->s_add_error_count > 0) {
6161 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6162 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6163 			__ext4_update_tstamp(&es->s_first_error_time,
6164 					     &es->s_first_error_time_hi,
6165 					     sbi->s_first_error_time);
6166 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6167 				sizeof(es->s_first_error_func));
6168 			es->s_first_error_line =
6169 				cpu_to_le32(sbi->s_first_error_line);
6170 			es->s_first_error_ino =
6171 				cpu_to_le32(sbi->s_first_error_ino);
6172 			es->s_first_error_block =
6173 				cpu_to_le64(sbi->s_first_error_block);
6174 			es->s_first_error_errcode =
6175 				ext4_errno_to_code(sbi->s_first_error_code);
6176 		}
6177 		__ext4_update_tstamp(&es->s_last_error_time,
6178 				     &es->s_last_error_time_hi,
6179 				     sbi->s_last_error_time);
6180 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6181 			sizeof(es->s_last_error_func));
6182 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6183 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6184 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6185 		es->s_last_error_errcode =
6186 				ext4_errno_to_code(sbi->s_last_error_code);
6187 		/*
6188 		 * Start the daily error reporting function if it hasn't been
6189 		 * started already
6190 		 */
6191 		if (!es->s_error_count)
6192 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6193 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6194 		sbi->s_add_error_count = 0;
6195 	}
6196 	spin_unlock(&sbi->s_error_lock);
6197 
6198 	ext4_superblock_csum_set(sb);
6199 	unlock_buffer(sbh);
6200 }
6201 
ext4_commit_super(struct super_block * sb)6202 static int ext4_commit_super(struct super_block *sb)
6203 {
6204 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6205 
6206 	if (!sbh)
6207 		return -EINVAL;
6208 	if (block_device_ejected(sb))
6209 		return -ENODEV;
6210 
6211 	ext4_update_super(sb);
6212 
6213 	lock_buffer(sbh);
6214 	/* Buffer got discarded which means block device got invalidated */
6215 	if (!buffer_mapped(sbh)) {
6216 		unlock_buffer(sbh);
6217 		return -EIO;
6218 	}
6219 
6220 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6221 		/*
6222 		 * Oh, dear.  A previous attempt to write the
6223 		 * superblock failed.  This could happen because the
6224 		 * USB device was yanked out.  Or it could happen to
6225 		 * be a transient write error and maybe the block will
6226 		 * be remapped.  Nothing we can do but to retry the
6227 		 * write and hope for the best.
6228 		 */
6229 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6230 		       "superblock detected");
6231 		clear_buffer_write_io_error(sbh);
6232 		set_buffer_uptodate(sbh);
6233 	}
6234 	get_bh(sbh);
6235 	/* Clear potential dirty bit if it was journalled update */
6236 	clear_buffer_dirty(sbh);
6237 	sbh->b_end_io = end_buffer_write_sync;
6238 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6239 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6240 	wait_on_buffer(sbh);
6241 	if (buffer_write_io_error(sbh)) {
6242 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6243 		       "superblock");
6244 		clear_buffer_write_io_error(sbh);
6245 		set_buffer_uptodate(sbh);
6246 		return -EIO;
6247 	}
6248 	return 0;
6249 }
6250 
6251 /*
6252  * Have we just finished recovery?  If so, and if we are mounting (or
6253  * remounting) the filesystem readonly, then we will end up with a
6254  * consistent fs on disk.  Record that fact.
6255  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6256 static int ext4_mark_recovery_complete(struct super_block *sb,
6257 				       struct ext4_super_block *es)
6258 {
6259 	int err;
6260 	journal_t *journal = EXT4_SB(sb)->s_journal;
6261 
6262 	if (!ext4_has_feature_journal(sb)) {
6263 		if (journal != NULL) {
6264 			ext4_error(sb, "Journal got removed while the fs was "
6265 				   "mounted!");
6266 			return -EFSCORRUPTED;
6267 		}
6268 		return 0;
6269 	}
6270 	jbd2_journal_lock_updates(journal);
6271 	err = jbd2_journal_flush(journal, 0);
6272 	if (err < 0)
6273 		goto out;
6274 
6275 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6276 	    ext4_has_feature_orphan_present(sb))) {
6277 		if (!ext4_orphan_file_empty(sb)) {
6278 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6279 			err = -EFSCORRUPTED;
6280 			goto out;
6281 		}
6282 		ext4_clear_feature_journal_needs_recovery(sb);
6283 		ext4_clear_feature_orphan_present(sb);
6284 		ext4_commit_super(sb);
6285 	}
6286 out:
6287 	jbd2_journal_unlock_updates(journal);
6288 	return err;
6289 }
6290 
6291 /*
6292  * If we are mounting (or read-write remounting) a filesystem whose journal
6293  * has recorded an error from a previous lifetime, move that error to the
6294  * main filesystem now.
6295  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6296 static int ext4_clear_journal_err(struct super_block *sb,
6297 				   struct ext4_super_block *es)
6298 {
6299 	journal_t *journal;
6300 	int j_errno;
6301 	const char *errstr;
6302 
6303 	if (!ext4_has_feature_journal(sb)) {
6304 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6305 		return -EFSCORRUPTED;
6306 	}
6307 
6308 	journal = EXT4_SB(sb)->s_journal;
6309 
6310 	/*
6311 	 * Now check for any error status which may have been recorded in the
6312 	 * journal by a prior ext4_error() or ext4_abort()
6313 	 */
6314 
6315 	j_errno = jbd2_journal_errno(journal);
6316 	if (j_errno) {
6317 		char nbuf[16];
6318 
6319 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6320 		ext4_warning(sb, "Filesystem error recorded "
6321 			     "from previous mount: %s", errstr);
6322 
6323 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6324 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6325 		j_errno = ext4_commit_super(sb);
6326 		if (j_errno)
6327 			return j_errno;
6328 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6329 
6330 		jbd2_journal_clear_err(journal);
6331 		jbd2_journal_update_sb_errno(journal);
6332 	}
6333 	return 0;
6334 }
6335 
6336 /*
6337  * Force the running and committing transactions to commit,
6338  * and wait on the commit.
6339  */
ext4_force_commit(struct super_block * sb)6340 int ext4_force_commit(struct super_block *sb)
6341 {
6342 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6343 }
6344 
ext4_sync_fs(struct super_block * sb,int wait)6345 static int ext4_sync_fs(struct super_block *sb, int wait)
6346 {
6347 	int ret = 0;
6348 	tid_t target;
6349 	bool needs_barrier = false;
6350 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6351 
6352 	if (unlikely(ext4_forced_shutdown(sb)))
6353 		return 0;
6354 
6355 	trace_ext4_sync_fs(sb, wait);
6356 	flush_workqueue(sbi->rsv_conversion_wq);
6357 	/*
6358 	 * Writeback quota in non-journalled quota case - journalled quota has
6359 	 * no dirty dquots
6360 	 */
6361 	dquot_writeback_dquots(sb, -1);
6362 	/*
6363 	 * Data writeback is possible w/o journal transaction, so barrier must
6364 	 * being sent at the end of the function. But we can skip it if
6365 	 * transaction_commit will do it for us.
6366 	 */
6367 	if (sbi->s_journal) {
6368 		target = jbd2_get_latest_transaction(sbi->s_journal);
6369 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6370 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6371 			needs_barrier = true;
6372 
6373 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6374 			if (wait)
6375 				ret = jbd2_log_wait_commit(sbi->s_journal,
6376 							   target);
6377 		}
6378 	} else if (wait && test_opt(sb, BARRIER))
6379 		needs_barrier = true;
6380 	if (needs_barrier) {
6381 		int err;
6382 		err = blkdev_issue_flush(sb->s_bdev);
6383 		if (!ret)
6384 			ret = err;
6385 	}
6386 
6387 	return ret;
6388 }
6389 
6390 /*
6391  * LVM calls this function before a (read-only) snapshot is created.  This
6392  * gives us a chance to flush the journal completely and mark the fs clean.
6393  *
6394  * Note that only this function cannot bring a filesystem to be in a clean
6395  * state independently. It relies on upper layer to stop all data & metadata
6396  * modifications.
6397  */
ext4_freeze(struct super_block * sb)6398 static int ext4_freeze(struct super_block *sb)
6399 {
6400 	int error = 0;
6401 	journal_t *journal = EXT4_SB(sb)->s_journal;
6402 
6403 	if (journal) {
6404 		/* Now we set up the journal barrier. */
6405 		jbd2_journal_lock_updates(journal);
6406 
6407 		/*
6408 		 * Don't clear the needs_recovery flag if we failed to
6409 		 * flush the journal.
6410 		 */
6411 		error = jbd2_journal_flush(journal, 0);
6412 		if (error < 0)
6413 			goto out;
6414 
6415 		/* Journal blocked and flushed, clear needs_recovery flag. */
6416 		ext4_clear_feature_journal_needs_recovery(sb);
6417 		if (ext4_orphan_file_empty(sb))
6418 			ext4_clear_feature_orphan_present(sb);
6419 	}
6420 
6421 	error = ext4_commit_super(sb);
6422 out:
6423 	if (journal)
6424 		/* we rely on upper layer to stop further updates */
6425 		jbd2_journal_unlock_updates(journal);
6426 	return error;
6427 }
6428 
6429 /*
6430  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6431  * flag here, even though the filesystem is not technically dirty yet.
6432  */
ext4_unfreeze(struct super_block * sb)6433 static int ext4_unfreeze(struct super_block *sb)
6434 {
6435 	if (ext4_forced_shutdown(sb))
6436 		return 0;
6437 
6438 	if (EXT4_SB(sb)->s_journal) {
6439 		/* Reset the needs_recovery flag before the fs is unlocked. */
6440 		ext4_set_feature_journal_needs_recovery(sb);
6441 		if (ext4_has_feature_orphan_file(sb))
6442 			ext4_set_feature_orphan_present(sb);
6443 	}
6444 
6445 	ext4_commit_super(sb);
6446 	return 0;
6447 }
6448 
6449 /*
6450  * Structure to save mount options for ext4_remount's benefit
6451  */
6452 struct ext4_mount_options {
6453 	unsigned long s_mount_opt;
6454 	unsigned long s_mount_opt2;
6455 	kuid_t s_resuid;
6456 	kgid_t s_resgid;
6457 	unsigned long s_commit_interval;
6458 	u32 s_min_batch_time, s_max_batch_time;
6459 #ifdef CONFIG_QUOTA
6460 	int s_jquota_fmt;
6461 	char *s_qf_names[EXT4_MAXQUOTAS];
6462 #endif
6463 };
6464 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6465 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6466 {
6467 	struct ext4_fs_context *ctx = fc->fs_private;
6468 	struct ext4_super_block *es;
6469 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6470 	unsigned long old_sb_flags;
6471 	struct ext4_mount_options old_opts;
6472 	ext4_group_t g;
6473 	int err = 0;
6474 	int alloc_ctx;
6475 #ifdef CONFIG_QUOTA
6476 	int enable_quota = 0;
6477 	int i, j;
6478 	char *to_free[EXT4_MAXQUOTAS];
6479 #endif
6480 
6481 
6482 	/* Store the original options */
6483 	old_sb_flags = sb->s_flags;
6484 	old_opts.s_mount_opt = sbi->s_mount_opt;
6485 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6486 	old_opts.s_resuid = sbi->s_resuid;
6487 	old_opts.s_resgid = sbi->s_resgid;
6488 	old_opts.s_commit_interval = sbi->s_commit_interval;
6489 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6490 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6491 #ifdef CONFIG_QUOTA
6492 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6493 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6494 		if (sbi->s_qf_names[i]) {
6495 			char *qf_name = get_qf_name(sb, sbi, i);
6496 
6497 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6498 			if (!old_opts.s_qf_names[i]) {
6499 				for (j = 0; j < i; j++)
6500 					kfree(old_opts.s_qf_names[j]);
6501 				return -ENOMEM;
6502 			}
6503 		} else
6504 			old_opts.s_qf_names[i] = NULL;
6505 #endif
6506 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6507 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6508 			ctx->journal_ioprio =
6509 				sbi->s_journal->j_task->io_context->ioprio;
6510 		else
6511 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6512 
6513 	}
6514 
6515 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6516 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6517 		ext4_msg(sb, KERN_WARNING,
6518 			 "stripe (%lu) is not aligned with cluster size (%u), "
6519 			 "stripe is disabled",
6520 			 ctx->s_stripe, sbi->s_cluster_ratio);
6521 		ctx->s_stripe = 0;
6522 	}
6523 
6524 	/*
6525 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6526 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6527 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6528 	 * here s_writepages_rwsem to avoid race between writepages ops and
6529 	 * remount.
6530 	 */
6531 	alloc_ctx = ext4_writepages_down_write(sb);
6532 	ext4_apply_options(fc, sb);
6533 	ext4_writepages_up_write(sb, alloc_ctx);
6534 
6535 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6536 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6537 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6538 			 "during remount not supported; ignoring");
6539 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6540 	}
6541 
6542 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6543 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6544 			ext4_msg(sb, KERN_ERR, "can't mount with "
6545 				 "both data=journal and delalloc");
6546 			err = -EINVAL;
6547 			goto restore_opts;
6548 		}
6549 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6550 			ext4_msg(sb, KERN_ERR, "can't mount with "
6551 				 "both data=journal and dioread_nolock");
6552 			err = -EINVAL;
6553 			goto restore_opts;
6554 		}
6555 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6556 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6557 			ext4_msg(sb, KERN_ERR, "can't mount with "
6558 				"journal_async_commit in data=ordered mode");
6559 			err = -EINVAL;
6560 			goto restore_opts;
6561 		}
6562 	}
6563 
6564 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6565 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6566 		err = -EINVAL;
6567 		goto restore_opts;
6568 	}
6569 
6570 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6571 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6572 
6573 	es = sbi->s_es;
6574 
6575 	if (sbi->s_journal) {
6576 		ext4_init_journal_params(sb, sbi->s_journal);
6577 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6578 	}
6579 
6580 	/* Flush outstanding errors before changing fs state */
6581 	flush_work(&sbi->s_sb_upd_work);
6582 
6583 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6584 		if (ext4_forced_shutdown(sb)) {
6585 			err = -EROFS;
6586 			goto restore_opts;
6587 		}
6588 
6589 		if (fc->sb_flags & SB_RDONLY) {
6590 			err = sync_filesystem(sb);
6591 			if (err < 0)
6592 				goto restore_opts;
6593 			err = dquot_suspend(sb, -1);
6594 			if (err < 0)
6595 				goto restore_opts;
6596 
6597 			/*
6598 			 * First of all, the unconditional stuff we have to do
6599 			 * to disable replay of the journal when we next remount
6600 			 */
6601 			sb->s_flags |= SB_RDONLY;
6602 
6603 			/*
6604 			 * OK, test if we are remounting a valid rw partition
6605 			 * readonly, and if so set the rdonly flag and then
6606 			 * mark the partition as valid again.
6607 			 */
6608 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6609 			    (sbi->s_mount_state & EXT4_VALID_FS))
6610 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6611 
6612 			if (sbi->s_journal) {
6613 				/*
6614 				 * We let remount-ro finish even if marking fs
6615 				 * as clean failed...
6616 				 */
6617 				ext4_mark_recovery_complete(sb, es);
6618 			}
6619 		} else {
6620 			/* Make sure we can mount this feature set readwrite */
6621 			if (ext4_has_feature_readonly(sb) ||
6622 			    !ext4_feature_set_ok(sb, 0)) {
6623 				err = -EROFS;
6624 				goto restore_opts;
6625 			}
6626 			/*
6627 			 * Make sure the group descriptor checksums
6628 			 * are sane.  If they aren't, refuse to remount r/w.
6629 			 */
6630 			for (g = 0; g < sbi->s_groups_count; g++) {
6631 				struct ext4_group_desc *gdp =
6632 					ext4_get_group_desc(sb, g, NULL);
6633 
6634 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6635 					ext4_msg(sb, KERN_ERR,
6636 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6637 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6638 					       le16_to_cpu(gdp->bg_checksum));
6639 					err = -EFSBADCRC;
6640 					goto restore_opts;
6641 				}
6642 			}
6643 
6644 			/*
6645 			 * If we have an unprocessed orphan list hanging
6646 			 * around from a previously readonly bdev mount,
6647 			 * require a full umount/remount for now.
6648 			 */
6649 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6650 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6651 				       "remount RDWR because of unprocessed "
6652 				       "orphan inode list.  Please "
6653 				       "umount/remount instead");
6654 				err = -EINVAL;
6655 				goto restore_opts;
6656 			}
6657 
6658 			/*
6659 			 * Mounting a RDONLY partition read-write, so reread
6660 			 * and store the current valid flag.  (It may have
6661 			 * been changed by e2fsck since we originally mounted
6662 			 * the partition.)
6663 			 */
6664 			if (sbi->s_journal) {
6665 				err = ext4_clear_journal_err(sb, es);
6666 				if (err)
6667 					goto restore_opts;
6668 			}
6669 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6670 					      ~EXT4_FC_REPLAY);
6671 
6672 			err = ext4_setup_super(sb, es, 0);
6673 			if (err)
6674 				goto restore_opts;
6675 
6676 			sb->s_flags &= ~SB_RDONLY;
6677 			if (ext4_has_feature_mmp(sb)) {
6678 				err = ext4_multi_mount_protect(sb,
6679 						le64_to_cpu(es->s_mmp_block));
6680 				if (err)
6681 					goto restore_opts;
6682 			}
6683 #ifdef CONFIG_QUOTA
6684 			enable_quota = 1;
6685 #endif
6686 		}
6687 	}
6688 
6689 	/*
6690 	 * Handle creation of system zone data early because it can fail.
6691 	 * Releasing of existing data is done when we are sure remount will
6692 	 * succeed.
6693 	 */
6694 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6695 		err = ext4_setup_system_zone(sb);
6696 		if (err)
6697 			goto restore_opts;
6698 	}
6699 
6700 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6701 		err = ext4_commit_super(sb);
6702 		if (err)
6703 			goto restore_opts;
6704 	}
6705 
6706 #ifdef CONFIG_QUOTA
6707 	if (enable_quota) {
6708 		if (sb_any_quota_suspended(sb))
6709 			dquot_resume(sb, -1);
6710 		else if (ext4_has_feature_quota(sb)) {
6711 			err = ext4_enable_quotas(sb);
6712 			if (err)
6713 				goto restore_opts;
6714 		}
6715 	}
6716 	/* Release old quota file names */
6717 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6718 		kfree(old_opts.s_qf_names[i]);
6719 #endif
6720 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6721 		ext4_release_system_zone(sb);
6722 
6723 	/*
6724 	 * Reinitialize lazy itable initialization thread based on
6725 	 * current settings
6726 	 */
6727 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6728 		ext4_unregister_li_request(sb);
6729 	else {
6730 		ext4_group_t first_not_zeroed;
6731 		first_not_zeroed = ext4_has_uninit_itable(sb);
6732 		ext4_register_li_request(sb, first_not_zeroed);
6733 	}
6734 
6735 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6736 		ext4_stop_mmpd(sbi);
6737 
6738 	/*
6739 	 * Handle aborting the filesystem as the last thing during remount to
6740 	 * avoid obsure errors during remount when some option changes fail to
6741 	 * apply due to shutdown filesystem.
6742 	 */
6743 	if (test_opt2(sb, ABORT))
6744 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6745 
6746 	return 0;
6747 
6748 restore_opts:
6749 	/*
6750 	 * If there was a failing r/w to ro transition, we may need to
6751 	 * re-enable quota
6752 	 */
6753 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6754 	    sb_any_quota_suspended(sb))
6755 		dquot_resume(sb, -1);
6756 
6757 	alloc_ctx = ext4_writepages_down_write(sb);
6758 	sb->s_flags = old_sb_flags;
6759 	sbi->s_mount_opt = old_opts.s_mount_opt;
6760 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6761 	sbi->s_resuid = old_opts.s_resuid;
6762 	sbi->s_resgid = old_opts.s_resgid;
6763 	sbi->s_commit_interval = old_opts.s_commit_interval;
6764 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6765 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6766 	ext4_writepages_up_write(sb, alloc_ctx);
6767 
6768 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6769 		ext4_release_system_zone(sb);
6770 #ifdef CONFIG_QUOTA
6771 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6772 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6773 		to_free[i] = get_qf_name(sb, sbi, i);
6774 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6775 	}
6776 	synchronize_rcu();
6777 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6778 		kfree(to_free[i]);
6779 #endif
6780 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6781 		ext4_stop_mmpd(sbi);
6782 	return err;
6783 }
6784 
ext4_reconfigure(struct fs_context * fc)6785 static int ext4_reconfigure(struct fs_context *fc)
6786 {
6787 	struct super_block *sb = fc->root->d_sb;
6788 	int ret;
6789 	bool old_ro = sb_rdonly(sb);
6790 
6791 	fc->s_fs_info = EXT4_SB(sb);
6792 
6793 	ret = ext4_check_opt_consistency(fc, sb);
6794 	if (ret < 0)
6795 		return ret;
6796 
6797 	ret = __ext4_remount(fc, sb);
6798 	if (ret < 0)
6799 		return ret;
6800 
6801 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6802 		 &sb->s_uuid,
6803 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6804 
6805 	return 0;
6806 }
6807 
6808 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6809 static int ext4_statfs_project(struct super_block *sb,
6810 			       kprojid_t projid, struct kstatfs *buf)
6811 {
6812 	struct kqid qid;
6813 	struct dquot *dquot;
6814 	u64 limit;
6815 	u64 curblock;
6816 
6817 	qid = make_kqid_projid(projid);
6818 	dquot = dqget(sb, qid);
6819 	if (IS_ERR(dquot))
6820 		return PTR_ERR(dquot);
6821 	spin_lock(&dquot->dq_dqb_lock);
6822 
6823 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6824 			     dquot->dq_dqb.dqb_bhardlimit);
6825 	limit >>= sb->s_blocksize_bits;
6826 
6827 	if (limit) {
6828 		uint64_t	remaining = 0;
6829 
6830 		curblock = (dquot->dq_dqb.dqb_curspace +
6831 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6832 		if (limit > curblock)
6833 			remaining = limit - curblock;
6834 
6835 		buf->f_blocks = min(buf->f_blocks, limit);
6836 		buf->f_bfree = min(buf->f_bfree, remaining);
6837 		buf->f_bavail = min(buf->f_bavail, remaining);
6838 	}
6839 
6840 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6841 			     dquot->dq_dqb.dqb_ihardlimit);
6842 	if (limit) {
6843 		uint64_t	remaining = 0;
6844 
6845 		if (limit > dquot->dq_dqb.dqb_curinodes)
6846 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6847 
6848 		buf->f_files = min(buf->f_files, limit);
6849 		buf->f_ffree = min(buf->f_ffree, remaining);
6850 	}
6851 
6852 	spin_unlock(&dquot->dq_dqb_lock);
6853 	dqput(dquot);
6854 	return 0;
6855 }
6856 #endif
6857 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6858 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6859 {
6860 	struct super_block *sb = dentry->d_sb;
6861 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6862 	struct ext4_super_block *es = sbi->s_es;
6863 	ext4_fsblk_t overhead = 0, resv_blocks;
6864 	s64 bfree;
6865 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6866 
6867 	if (!test_opt(sb, MINIX_DF))
6868 		overhead = sbi->s_overhead;
6869 
6870 	buf->f_type = EXT4_SUPER_MAGIC;
6871 	buf->f_bsize = sb->s_blocksize;
6872 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6873 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6874 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6875 	/* prevent underflow in case that few free space is available */
6876 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6877 	buf->f_bavail = buf->f_bfree -
6878 			(ext4_r_blocks_count(es) + resv_blocks);
6879 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6880 		buf->f_bavail = 0;
6881 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6882 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6883 	buf->f_namelen = EXT4_NAME_LEN;
6884 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6885 
6886 #ifdef CONFIG_QUOTA
6887 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6888 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6889 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6890 #endif
6891 	return 0;
6892 }
6893 
6894 
6895 #ifdef CONFIG_QUOTA
6896 
6897 /*
6898  * Helper functions so that transaction is started before we acquire dqio_sem
6899  * to keep correct lock ordering of transaction > dqio_sem
6900  */
dquot_to_inode(struct dquot * dquot)6901 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6902 {
6903 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6904 }
6905 
ext4_write_dquot(struct dquot * dquot)6906 static int ext4_write_dquot(struct dquot *dquot)
6907 {
6908 	int ret, err;
6909 	handle_t *handle;
6910 	struct inode *inode;
6911 
6912 	inode = dquot_to_inode(dquot);
6913 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6914 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6915 	if (IS_ERR(handle))
6916 		return PTR_ERR(handle);
6917 	ret = dquot_commit(dquot);
6918 	if (ret < 0)
6919 		ext4_error_err(dquot->dq_sb, -ret,
6920 			       "Failed to commit dquot type %d",
6921 			       dquot->dq_id.type);
6922 	err = ext4_journal_stop(handle);
6923 	if (!ret)
6924 		ret = err;
6925 	return ret;
6926 }
6927 
ext4_acquire_dquot(struct dquot * dquot)6928 static int ext4_acquire_dquot(struct dquot *dquot)
6929 {
6930 	int ret, err;
6931 	handle_t *handle;
6932 
6933 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6934 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6935 	if (IS_ERR(handle))
6936 		return PTR_ERR(handle);
6937 	ret = dquot_acquire(dquot);
6938 	if (ret < 0)
6939 		ext4_error_err(dquot->dq_sb, -ret,
6940 			      "Failed to acquire dquot type %d",
6941 			      dquot->dq_id.type);
6942 	err = ext4_journal_stop(handle);
6943 	if (!ret)
6944 		ret = err;
6945 	return ret;
6946 }
6947 
ext4_release_dquot(struct dquot * dquot)6948 static int ext4_release_dquot(struct dquot *dquot)
6949 {
6950 	int ret, err;
6951 	handle_t *handle;
6952 	bool freeze_protected = false;
6953 
6954 	/*
6955 	 * Trying to sb_start_intwrite() in a running transaction
6956 	 * can result in a deadlock. Further, running transactions
6957 	 * are already protected from freezing.
6958 	 */
6959 	if (!ext4_journal_current_handle()) {
6960 		sb_start_intwrite(dquot->dq_sb);
6961 		freeze_protected = true;
6962 	}
6963 
6964 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6965 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6966 	if (IS_ERR(handle)) {
6967 		/* Release dquot anyway to avoid endless cycle in dqput() */
6968 		dquot_release(dquot);
6969 		if (freeze_protected)
6970 			sb_end_intwrite(dquot->dq_sb);
6971 		return PTR_ERR(handle);
6972 	}
6973 	ret = dquot_release(dquot);
6974 	if (ret < 0)
6975 		ext4_error_err(dquot->dq_sb, -ret,
6976 			       "Failed to release dquot type %d",
6977 			       dquot->dq_id.type);
6978 	err = ext4_journal_stop(handle);
6979 	if (!ret)
6980 		ret = err;
6981 
6982 	if (freeze_protected)
6983 		sb_end_intwrite(dquot->dq_sb);
6984 
6985 	return ret;
6986 }
6987 
ext4_mark_dquot_dirty(struct dquot * dquot)6988 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6989 {
6990 	struct super_block *sb = dquot->dq_sb;
6991 
6992 	if (ext4_is_quota_journalled(sb)) {
6993 		dquot_mark_dquot_dirty(dquot);
6994 		return ext4_write_dquot(dquot);
6995 	} else {
6996 		return dquot_mark_dquot_dirty(dquot);
6997 	}
6998 }
6999 
ext4_write_info(struct super_block * sb,int type)7000 static int ext4_write_info(struct super_block *sb, int type)
7001 {
7002 	int ret, err;
7003 	handle_t *handle;
7004 
7005 	/* Data block + inode block */
7006 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7007 	if (IS_ERR(handle))
7008 		return PTR_ERR(handle);
7009 	ret = dquot_commit_info(sb, type);
7010 	err = ext4_journal_stop(handle);
7011 	if (!ret)
7012 		ret = err;
7013 	return ret;
7014 }
7015 
lockdep_set_quota_inode(struct inode * inode,int subclass)7016 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7017 {
7018 	struct ext4_inode_info *ei = EXT4_I(inode);
7019 
7020 	/* The first argument of lockdep_set_subclass has to be
7021 	 * *exactly* the same as the argument to init_rwsem() --- in
7022 	 * this case, in init_once() --- or lockdep gets unhappy
7023 	 * because the name of the lock is set using the
7024 	 * stringification of the argument to init_rwsem().
7025 	 */
7026 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7027 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7028 }
7029 
7030 /*
7031  * Standard function to be called on quota_on
7032  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7033 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7034 			 const struct path *path)
7035 {
7036 	int err;
7037 
7038 	if (!test_opt(sb, QUOTA))
7039 		return -EINVAL;
7040 
7041 	/* Quotafile not on the same filesystem? */
7042 	if (path->dentry->d_sb != sb)
7043 		return -EXDEV;
7044 
7045 	/* Quota already enabled for this file? */
7046 	if (IS_NOQUOTA(d_inode(path->dentry)))
7047 		return -EBUSY;
7048 
7049 	/* Journaling quota? */
7050 	if (EXT4_SB(sb)->s_qf_names[type]) {
7051 		/* Quotafile not in fs root? */
7052 		if (path->dentry->d_parent != sb->s_root)
7053 			ext4_msg(sb, KERN_WARNING,
7054 				"Quota file not on filesystem root. "
7055 				"Journaled quota will not work");
7056 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7057 	} else {
7058 		/*
7059 		 * Clear the flag just in case mount options changed since
7060 		 * last time.
7061 		 */
7062 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7063 	}
7064 
7065 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7066 	err = dquot_quota_on(sb, type, format_id, path);
7067 	if (!err) {
7068 		struct inode *inode = d_inode(path->dentry);
7069 		handle_t *handle;
7070 
7071 		/*
7072 		 * Set inode flags to prevent userspace from messing with quota
7073 		 * files. If this fails, we return success anyway since quotas
7074 		 * are already enabled and this is not a hard failure.
7075 		 */
7076 		inode_lock(inode);
7077 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7078 		if (IS_ERR(handle))
7079 			goto unlock_inode;
7080 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7081 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7082 				S_NOATIME | S_IMMUTABLE);
7083 		err = ext4_mark_inode_dirty(handle, inode);
7084 		ext4_journal_stop(handle);
7085 	unlock_inode:
7086 		inode_unlock(inode);
7087 		if (err)
7088 			dquot_quota_off(sb, type);
7089 	}
7090 	if (err)
7091 		lockdep_set_quota_inode(path->dentry->d_inode,
7092 					     I_DATA_SEM_NORMAL);
7093 	return err;
7094 }
7095 
ext4_check_quota_inum(int type,unsigned long qf_inum)7096 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7097 {
7098 	switch (type) {
7099 	case USRQUOTA:
7100 		return qf_inum == EXT4_USR_QUOTA_INO;
7101 	case GRPQUOTA:
7102 		return qf_inum == EXT4_GRP_QUOTA_INO;
7103 	case PRJQUOTA:
7104 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7105 	default:
7106 		BUG();
7107 	}
7108 }
7109 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7110 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7111 			     unsigned int flags)
7112 {
7113 	int err;
7114 	struct inode *qf_inode;
7115 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7116 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7117 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7118 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7119 	};
7120 
7121 	BUG_ON(!ext4_has_feature_quota(sb));
7122 
7123 	if (!qf_inums[type])
7124 		return -EPERM;
7125 
7126 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7127 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7128 				qf_inums[type], type);
7129 		return -EUCLEAN;
7130 	}
7131 
7132 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7133 	if (IS_ERR(qf_inode)) {
7134 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7135 				qf_inums[type], type);
7136 		return PTR_ERR(qf_inode);
7137 	}
7138 
7139 	/* Don't account quota for quota files to avoid recursion */
7140 	qf_inode->i_flags |= S_NOQUOTA;
7141 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7142 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7143 	if (err)
7144 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7145 	iput(qf_inode);
7146 
7147 	return err;
7148 }
7149 
7150 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7151 int ext4_enable_quotas(struct super_block *sb)
7152 {
7153 	int type, err = 0;
7154 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7155 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7156 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7157 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7158 	};
7159 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7160 		test_opt(sb, USRQUOTA),
7161 		test_opt(sb, GRPQUOTA),
7162 		test_opt(sb, PRJQUOTA),
7163 	};
7164 
7165 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7166 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7167 		if (qf_inums[type]) {
7168 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7169 				DQUOT_USAGE_ENABLED |
7170 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7171 			if (err) {
7172 				ext4_warning(sb,
7173 					"Failed to enable quota tracking "
7174 					"(type=%d, err=%d, ino=%lu). "
7175 					"Please run e2fsck to fix.", type,
7176 					err, qf_inums[type]);
7177 
7178 				ext4_quotas_off(sb, type);
7179 				return err;
7180 			}
7181 		}
7182 	}
7183 	return 0;
7184 }
7185 
ext4_quota_off(struct super_block * sb,int type)7186 static int ext4_quota_off(struct super_block *sb, int type)
7187 {
7188 	struct inode *inode = sb_dqopt(sb)->files[type];
7189 	handle_t *handle;
7190 	int err;
7191 
7192 	/* Force all delayed allocation blocks to be allocated.
7193 	 * Caller already holds s_umount sem */
7194 	if (test_opt(sb, DELALLOC))
7195 		sync_filesystem(sb);
7196 
7197 	if (!inode || !igrab(inode))
7198 		goto out;
7199 
7200 	err = dquot_quota_off(sb, type);
7201 	if (err || ext4_has_feature_quota(sb))
7202 		goto out_put;
7203 	/*
7204 	 * When the filesystem was remounted read-only first, we cannot cleanup
7205 	 * inode flags here. Bad luck but people should be using QUOTA feature
7206 	 * these days anyway.
7207 	 */
7208 	if (sb_rdonly(sb))
7209 		goto out_put;
7210 
7211 	inode_lock(inode);
7212 	/*
7213 	 * Update modification times of quota files when userspace can
7214 	 * start looking at them. If we fail, we return success anyway since
7215 	 * this is not a hard failure and quotas are already disabled.
7216 	 */
7217 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7218 	if (IS_ERR(handle)) {
7219 		err = PTR_ERR(handle);
7220 		goto out_unlock;
7221 	}
7222 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7223 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7224 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7225 	err = ext4_mark_inode_dirty(handle, inode);
7226 	ext4_journal_stop(handle);
7227 out_unlock:
7228 	inode_unlock(inode);
7229 out_put:
7230 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7231 	iput(inode);
7232 	return err;
7233 out:
7234 	return dquot_quota_off(sb, type);
7235 }
7236 
7237 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7238  * acquiring the locks... As quota files are never truncated and quota code
7239  * itself serializes the operations (and no one else should touch the files)
7240  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7241 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7242 			       size_t len, loff_t off)
7243 {
7244 	struct inode *inode = sb_dqopt(sb)->files[type];
7245 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7246 	int offset = off & (sb->s_blocksize - 1);
7247 	int tocopy;
7248 	size_t toread;
7249 	struct buffer_head *bh;
7250 	loff_t i_size = i_size_read(inode);
7251 
7252 	if (off > i_size)
7253 		return 0;
7254 	if (off+len > i_size)
7255 		len = i_size-off;
7256 	toread = len;
7257 	while (toread > 0) {
7258 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7259 		bh = ext4_bread(NULL, inode, blk, 0);
7260 		if (IS_ERR(bh))
7261 			return PTR_ERR(bh);
7262 		if (!bh)	/* A hole? */
7263 			memset(data, 0, tocopy);
7264 		else
7265 			memcpy(data, bh->b_data+offset, tocopy);
7266 		brelse(bh);
7267 		offset = 0;
7268 		toread -= tocopy;
7269 		data += tocopy;
7270 		blk++;
7271 	}
7272 	return len;
7273 }
7274 
7275 /* Write to quotafile (we know the transaction is already started and has
7276  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7277 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7278 				const char *data, size_t len, loff_t off)
7279 {
7280 	struct inode *inode = sb_dqopt(sb)->files[type];
7281 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7282 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7283 	int retries = 0;
7284 	struct buffer_head *bh;
7285 	handle_t *handle = journal_current_handle();
7286 
7287 	if (!handle) {
7288 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7289 			" cancelled because transaction is not started",
7290 			(unsigned long long)off, (unsigned long long)len);
7291 		return -EIO;
7292 	}
7293 	/*
7294 	 * Since we account only one data block in transaction credits,
7295 	 * then it is impossible to cross a block boundary.
7296 	 */
7297 	if (sb->s_blocksize - offset < len) {
7298 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7299 			" cancelled because not block aligned",
7300 			(unsigned long long)off, (unsigned long long)len);
7301 		return -EIO;
7302 	}
7303 
7304 	do {
7305 		bh = ext4_bread(handle, inode, blk,
7306 				EXT4_GET_BLOCKS_CREATE |
7307 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7308 	} while (PTR_ERR(bh) == -ENOSPC &&
7309 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7310 	if (IS_ERR(bh))
7311 		return PTR_ERR(bh);
7312 	if (!bh)
7313 		goto out;
7314 	BUFFER_TRACE(bh, "get write access");
7315 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7316 	if (err) {
7317 		brelse(bh);
7318 		return err;
7319 	}
7320 	lock_buffer(bh);
7321 	memcpy(bh->b_data+offset, data, len);
7322 	flush_dcache_page(bh->b_page);
7323 	unlock_buffer(bh);
7324 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7325 	brelse(bh);
7326 out:
7327 	if (inode->i_size < off + len) {
7328 		i_size_write(inode, off + len);
7329 		EXT4_I(inode)->i_disksize = inode->i_size;
7330 		err2 = ext4_mark_inode_dirty(handle, inode);
7331 		if (unlikely(err2 && !err))
7332 			err = err2;
7333 	}
7334 	return err ? err : len;
7335 }
7336 #endif
7337 
7338 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7339 static inline void register_as_ext2(void)
7340 {
7341 	int err = register_filesystem(&ext2_fs_type);
7342 	if (err)
7343 		printk(KERN_WARNING
7344 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7345 }
7346 
unregister_as_ext2(void)7347 static inline void unregister_as_ext2(void)
7348 {
7349 	unregister_filesystem(&ext2_fs_type);
7350 }
7351 
ext2_feature_set_ok(struct super_block * sb)7352 static inline int ext2_feature_set_ok(struct super_block *sb)
7353 {
7354 	if (ext4_has_unknown_ext2_incompat_features(sb))
7355 		return 0;
7356 	if (sb_rdonly(sb))
7357 		return 1;
7358 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7359 		return 0;
7360 	return 1;
7361 }
7362 #else
register_as_ext2(void)7363 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7364 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7365 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7366 #endif
7367 
register_as_ext3(void)7368 static inline void register_as_ext3(void)
7369 {
7370 	int err = register_filesystem(&ext3_fs_type);
7371 	if (err)
7372 		printk(KERN_WARNING
7373 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7374 }
7375 
unregister_as_ext3(void)7376 static inline void unregister_as_ext3(void)
7377 {
7378 	unregister_filesystem(&ext3_fs_type);
7379 }
7380 
ext3_feature_set_ok(struct super_block * sb)7381 static inline int ext3_feature_set_ok(struct super_block *sb)
7382 {
7383 	if (ext4_has_unknown_ext3_incompat_features(sb))
7384 		return 0;
7385 	if (!ext4_has_feature_journal(sb))
7386 		return 0;
7387 	if (sb_rdonly(sb))
7388 		return 1;
7389 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7390 		return 0;
7391 	return 1;
7392 }
7393 
ext4_kill_sb(struct super_block * sb)7394 static void ext4_kill_sb(struct super_block *sb)
7395 {
7396 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7397 	struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7398 
7399 	kill_block_super(sb);
7400 
7401 	if (journal_bdev)
7402 		blkdev_put(journal_bdev, sb);
7403 }
7404 
7405 static struct file_system_type ext4_fs_type = {
7406 	.owner			= THIS_MODULE,
7407 	.name			= "ext4",
7408 	.init_fs_context	= ext4_init_fs_context,
7409 	.parameters		= ext4_param_specs,
7410 	.kill_sb		= ext4_kill_sb,
7411 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7412 };
7413 MODULE_ALIAS_FS("ext4");
7414 
7415 /* Shared across all ext4 file systems */
7416 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7417 
ext4_init_fs(void)7418 static int __init ext4_init_fs(void)
7419 {
7420 	int i, err;
7421 
7422 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7423 	ext4_li_info = NULL;
7424 
7425 	/* Build-time check for flags consistency */
7426 	ext4_check_flag_values();
7427 
7428 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7429 		init_waitqueue_head(&ext4__ioend_wq[i]);
7430 
7431 	err = ext4_init_es();
7432 	if (err)
7433 		return err;
7434 
7435 	err = ext4_init_pending();
7436 	if (err)
7437 		goto out7;
7438 
7439 	err = ext4_init_post_read_processing();
7440 	if (err)
7441 		goto out6;
7442 
7443 	err = ext4_init_pageio();
7444 	if (err)
7445 		goto out5;
7446 
7447 	err = ext4_init_system_zone();
7448 	if (err)
7449 		goto out4;
7450 
7451 	err = ext4_init_sysfs();
7452 	if (err)
7453 		goto out3;
7454 
7455 	err = ext4_init_mballoc();
7456 	if (err)
7457 		goto out2;
7458 	err = init_inodecache();
7459 	if (err)
7460 		goto out1;
7461 
7462 	err = ext4_fc_init_dentry_cache();
7463 	if (err)
7464 		goto out05;
7465 
7466 	register_as_ext3();
7467 	register_as_ext2();
7468 	err = register_filesystem(&ext4_fs_type);
7469 	if (err)
7470 		goto out;
7471 
7472 	return 0;
7473 out:
7474 	unregister_as_ext2();
7475 	unregister_as_ext3();
7476 	ext4_fc_destroy_dentry_cache();
7477 out05:
7478 	destroy_inodecache();
7479 out1:
7480 	ext4_exit_mballoc();
7481 out2:
7482 	ext4_exit_sysfs();
7483 out3:
7484 	ext4_exit_system_zone();
7485 out4:
7486 	ext4_exit_pageio();
7487 out5:
7488 	ext4_exit_post_read_processing();
7489 out6:
7490 	ext4_exit_pending();
7491 out7:
7492 	ext4_exit_es();
7493 
7494 	return err;
7495 }
7496 
ext4_exit_fs(void)7497 static void __exit ext4_exit_fs(void)
7498 {
7499 	ext4_destroy_lazyinit_thread();
7500 	unregister_as_ext2();
7501 	unregister_as_ext3();
7502 	unregister_filesystem(&ext4_fs_type);
7503 	ext4_fc_destroy_dentry_cache();
7504 	destroy_inodecache();
7505 	ext4_exit_mballoc();
7506 	ext4_exit_sysfs();
7507 	ext4_exit_system_zone();
7508 	ext4_exit_pageio();
7509 	ext4_exit_post_read_processing();
7510 	ext4_exit_es();
7511 	ext4_exit_pending();
7512 }
7513 
7514 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7515 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7516 MODULE_LICENSE("GPL");
7517 MODULE_SOFTDEP("pre: crc32c");
7518 module_init(ext4_init_fs)
7519 module_exit(ext4_exit_fs)
7520