1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57
58 #ifdef CONFIG_QOS_CTRL
59 #include <linux/sched/qos_ctrl.h>
60 #endif
61
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/init.h>
64 #include <linux/capability.h>
65 #include <linux/file.h>
66 #include <linux/fdtable.h>
67 #include <linux/generic-radix-tree.h>
68 #include <linux/string.h>
69 #include <linux/seq_file.h>
70 #include <linux/namei.h>
71 #include <linux/mnt_namespace.h>
72 #include <linux/mm.h>
73 #include <linux/swap.h>
74 #include <linux/rcupdate.h>
75 #include <linux/kallsyms.h>
76 #include <linux/stacktrace.h>
77 #include <linux/resource.h>
78 #include <linux/module.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/ptrace.h>
82 #include <linux/printk.h>
83 #include <linux/cache.h>
84 #include <linux/cgroup.h>
85 #include <linux/cpuset.h>
86 #include <linux/audit.h>
87 #include <linux/poll.h>
88 #include <linux/nsproxy.h>
89 #include <linux/oom.h>
90 #include <linux/elf.h>
91 #include <linux/pid_namespace.h>
92 #include <linux/user_namespace.h>
93 #include <linux/fs_parser.h>
94 #include <linux/fs_struct.h>
95 #include <linux/slab.h>
96 #include <linux/sched.h>
97 #ifdef CONFIG_SCHED_RTG
98 #include <linux/sched/rtg_ctrl.h>
99 #endif
100 #include <linux/sched/autogroup.h>
101 #include <linux/sched/mm.h>
102 #include <linux/sched/coredump.h>
103 #include <linux/sched/debug.h>
104 #include <linux/sched/stat.h>
105 #include <linux/posix-timers.h>
106 #include <linux/time_namespace.h>
107 #include <linux/resctrl.h>
108 #include <linux/cn_proc.h>
109 #include <linux/ksm.h>
110 #include <trace/events/oom.h>
111 #ifdef CONFIG_SCHED_RTG
112 #include <linux/sched/rtg.h>
113 #endif
114 #include "internal.h"
115 #include "fd.h"
116
117 #include "../../lib/kstrtox.h"
118
119 /* NOTE:
120 * Implementing inode permission operations in /proc is almost
121 * certainly an error. Permission checks need to happen during
122 * each system call not at open time. The reason is that most of
123 * what we wish to check for permissions in /proc varies at runtime.
124 *
125 * The classic example of a problem is opening file descriptors
126 * in /proc for a task before it execs a suid executable.
127 */
128
129 static u8 nlink_tid __ro_after_init;
130 static u8 nlink_tgid __ro_after_init;
131
132 enum proc_mem_force {
133 PROC_MEM_FORCE_ALWAYS,
134 PROC_MEM_FORCE_PTRACE,
135 PROC_MEM_FORCE_NEVER
136 };
137
138 static enum proc_mem_force proc_mem_force_override __ro_after_init =
139 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
140 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
141 PROC_MEM_FORCE_ALWAYS;
142
143 static const struct constant_table proc_mem_force_table[] __initconst = {
144 { "always", PROC_MEM_FORCE_ALWAYS },
145 { "ptrace", PROC_MEM_FORCE_PTRACE },
146 { "never", PROC_MEM_FORCE_NEVER },
147 { }
148 };
149
early_proc_mem_force_override(char * buf)150 static int __init early_proc_mem_force_override(char *buf)
151 {
152 if (!buf)
153 return -EINVAL;
154
155 /*
156 * lookup_constant() defaults to proc_mem_force_override to preseve
157 * the initial Kconfig choice in case an invalid param gets passed.
158 */
159 proc_mem_force_override = lookup_constant(proc_mem_force_table,
160 buf, proc_mem_force_override);
161
162 return 0;
163 }
164 early_param("proc_mem.force_override", early_proc_mem_force_override);
165
166 struct pid_entry {
167 const char *name;
168 unsigned int len;
169 umode_t mode;
170 const struct inode_operations *iop;
171 const struct file_operations *fop;
172 union proc_op op;
173 };
174
175 #define NOD(NAME, MODE, IOP, FOP, OP) { \
176 .name = (NAME), \
177 .len = sizeof(NAME) - 1, \
178 .mode = MODE, \
179 .iop = IOP, \
180 .fop = FOP, \
181 .op = OP, \
182 }
183
184 #define DIR(NAME, MODE, iops, fops) \
185 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
186 #define LNK(NAME, get_link) \
187 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
188 &proc_pid_link_inode_operations, NULL, \
189 { .proc_get_link = get_link } )
190 #define REG(NAME, MODE, fops) \
191 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
192 #define ONE(NAME, MODE, show) \
193 NOD(NAME, (S_IFREG|(MODE)), \
194 NULL, &proc_single_file_operations, \
195 { .proc_show = show } )
196 #define ATTR(LSM, NAME, MODE) \
197 NOD(NAME, (S_IFREG|(MODE)), \
198 NULL, &proc_pid_attr_operations, \
199 { .lsm = LSM })
200
201 /*
202 * Count the number of hardlinks for the pid_entry table, excluding the .
203 * and .. links.
204 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)205 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
206 unsigned int n)
207 {
208 unsigned int i;
209 unsigned int count;
210
211 count = 2;
212 for (i = 0; i < n; ++i) {
213 if (S_ISDIR(entries[i].mode))
214 ++count;
215 }
216
217 return count;
218 }
219
get_task_root(struct task_struct * task,struct path * root)220 static int get_task_root(struct task_struct *task, struct path *root)
221 {
222 int result = -ENOENT;
223
224 task_lock(task);
225 if (task->fs) {
226 get_fs_root(task->fs, root);
227 result = 0;
228 }
229 task_unlock(task);
230 return result;
231 }
232
proc_cwd_link(struct dentry * dentry,struct path * path)233 static int proc_cwd_link(struct dentry *dentry, struct path *path)
234 {
235 struct task_struct *task = get_proc_task(d_inode(dentry));
236 int result = -ENOENT;
237
238 if (task) {
239 task_lock(task);
240 if (task->fs) {
241 get_fs_pwd(task->fs, path);
242 result = 0;
243 }
244 task_unlock(task);
245 put_task_struct(task);
246 }
247 return result;
248 }
249
proc_root_link(struct dentry * dentry,struct path * path)250 static int proc_root_link(struct dentry *dentry, struct path *path)
251 {
252 struct task_struct *task = get_proc_task(d_inode(dentry));
253 int result = -ENOENT;
254
255 if (task) {
256 result = get_task_root(task, path);
257 put_task_struct(task);
258 }
259 return result;
260 }
261
262 /*
263 * If the user used setproctitle(), we just get the string from
264 * user space at arg_start, and limit it to a maximum of one page.
265 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)266 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
267 size_t count, unsigned long pos,
268 unsigned long arg_start)
269 {
270 char *page;
271 int ret, got;
272
273 if (pos >= PAGE_SIZE)
274 return 0;
275
276 page = (char *)__get_free_page(GFP_KERNEL);
277 if (!page)
278 return -ENOMEM;
279
280 ret = 0;
281 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
282 if (got > 0) {
283 int len = strnlen(page, got);
284
285 /* Include the NUL character if it was found */
286 if (len < got)
287 len++;
288
289 if (len > pos) {
290 len -= pos;
291 if (len > count)
292 len = count;
293 len -= copy_to_user(buf, page+pos, len);
294 if (!len)
295 len = -EFAULT;
296 ret = len;
297 }
298 }
299 free_page((unsigned long)page);
300 return ret;
301 }
302
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)303 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
304 size_t count, loff_t *ppos)
305 {
306 unsigned long arg_start, arg_end, env_start, env_end;
307 unsigned long pos, len;
308 char *page, c;
309
310 /* Check if process spawned far enough to have cmdline. */
311 if (!mm->env_end)
312 return 0;
313
314 spin_lock(&mm->arg_lock);
315 arg_start = mm->arg_start;
316 arg_end = mm->arg_end;
317 env_start = mm->env_start;
318 env_end = mm->env_end;
319 spin_unlock(&mm->arg_lock);
320
321 if (arg_start >= arg_end)
322 return 0;
323
324 /*
325 * We allow setproctitle() to overwrite the argument
326 * strings, and overflow past the original end. But
327 * only when it overflows into the environment area.
328 */
329 if (env_start != arg_end || env_end < env_start)
330 env_start = env_end = arg_end;
331 len = env_end - arg_start;
332
333 /* We're not going to care if "*ppos" has high bits set */
334 pos = *ppos;
335 if (pos >= len)
336 return 0;
337 if (count > len - pos)
338 count = len - pos;
339 if (!count)
340 return 0;
341
342 /*
343 * Magical special case: if the argv[] end byte is not
344 * zero, the user has overwritten it with setproctitle(3).
345 *
346 * Possible future enhancement: do this only once when
347 * pos is 0, and set a flag in the 'struct file'.
348 */
349 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
350 return get_mm_proctitle(mm, buf, count, pos, arg_start);
351
352 /*
353 * For the non-setproctitle() case we limit things strictly
354 * to the [arg_start, arg_end[ range.
355 */
356 pos += arg_start;
357 if (pos < arg_start || pos >= arg_end)
358 return 0;
359 if (count > arg_end - pos)
360 count = arg_end - pos;
361
362 page = (char *)__get_free_page(GFP_KERNEL);
363 if (!page)
364 return -ENOMEM;
365
366 len = 0;
367 while (count) {
368 int got;
369 size_t size = min_t(size_t, PAGE_SIZE, count);
370
371 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
372 if (got <= 0)
373 break;
374 got -= copy_to_user(buf, page, got);
375 if (unlikely(!got)) {
376 if (!len)
377 len = -EFAULT;
378 break;
379 }
380 pos += got;
381 buf += got;
382 len += got;
383 count -= got;
384 }
385
386 free_page((unsigned long)page);
387 return len;
388 }
389
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)390 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
391 size_t count, loff_t *pos)
392 {
393 struct mm_struct *mm;
394 ssize_t ret;
395
396 mm = get_task_mm(tsk);
397 if (!mm)
398 return 0;
399
400 ret = get_mm_cmdline(mm, buf, count, pos);
401 mmput(mm);
402 return ret;
403 }
404
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)405 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
406 size_t count, loff_t *pos)
407 {
408 struct task_struct *tsk;
409 ssize_t ret;
410
411 BUG_ON(*pos < 0);
412
413 tsk = get_proc_task(file_inode(file));
414 if (!tsk)
415 return -ESRCH;
416 ret = get_task_cmdline(tsk, buf, count, pos);
417 put_task_struct(tsk);
418 if (ret > 0)
419 *pos += ret;
420 return ret;
421 }
422
423 static const struct file_operations proc_pid_cmdline_ops = {
424 .read = proc_pid_cmdline_read,
425 .llseek = generic_file_llseek,
426 };
427
428 #ifdef CONFIG_KALLSYMS
429 /*
430 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
431 * Returns the resolved symbol to user space.
432 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)433 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
434 struct pid *pid, struct task_struct *task)
435 {
436 unsigned long wchan;
437 char symname[KSYM_NAME_LEN];
438
439 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
440 goto print0;
441
442 wchan = get_wchan(task);
443 if (wchan && !lookup_symbol_name(wchan, symname)) {
444 seq_puts(m, symname);
445 return 0;
446 }
447
448 print0:
449 seq_putc(m, '0');
450 return 0;
451 }
452 #endif /* CONFIG_KALLSYMS */
453
lock_trace(struct task_struct * task)454 static int lock_trace(struct task_struct *task)
455 {
456 int err = down_read_killable(&task->signal->exec_update_lock);
457 if (err)
458 return err;
459 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
460 up_read(&task->signal->exec_update_lock);
461 return -EPERM;
462 }
463 return 0;
464 }
465
unlock_trace(struct task_struct * task)466 static void unlock_trace(struct task_struct *task)
467 {
468 up_read(&task->signal->exec_update_lock);
469 }
470
471 #ifdef CONFIG_STACKTRACE
472
473 #define MAX_STACK_TRACE_DEPTH 64
474
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)475 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477 {
478 unsigned long *entries;
479 int err;
480
481 /*
482 * The ability to racily run the kernel stack unwinder on a running task
483 * and then observe the unwinder output is scary; while it is useful for
484 * debugging kernel issues, it can also allow an attacker to leak kernel
485 * stack contents.
486 * Doing this in a manner that is at least safe from races would require
487 * some work to ensure that the remote task can not be scheduled; and
488 * even then, this would still expose the unwinder as local attack
489 * surface.
490 * Therefore, this interface is restricted to root.
491 */
492 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
493 return -EACCES;
494
495 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
496 GFP_KERNEL);
497 if (!entries)
498 return -ENOMEM;
499
500 err = lock_trace(task);
501 if (!err) {
502 unsigned int i, nr_entries;
503
504 nr_entries = stack_trace_save_tsk(task, entries,
505 MAX_STACK_TRACE_DEPTH, 0);
506
507 for (i = 0; i < nr_entries; i++) {
508 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
509 }
510
511 unlock_trace(task);
512 }
513 kfree(entries);
514
515 return err;
516 }
517 #endif
518
519 #ifdef CONFIG_SCHED_INFO
520 /*
521 * Provides /proc/PID/schedstat
522 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)523 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
524 struct pid *pid, struct task_struct *task)
525 {
526 if (unlikely(!sched_info_on()))
527 seq_puts(m, "0 0 0\n");
528 else
529 seq_printf(m, "%llu %llu %lu\n",
530 (unsigned long long)task->se.sum_exec_runtime,
531 (unsigned long long)task->sched_info.run_delay,
532 task->sched_info.pcount);
533
534 return 0;
535 }
536 #endif
537
538 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)539 static int lstats_show_proc(struct seq_file *m, void *v)
540 {
541 int i;
542 struct inode *inode = m->private;
543 struct task_struct *task = get_proc_task(inode);
544
545 if (!task)
546 return -ESRCH;
547 seq_puts(m, "Latency Top version : v0.1\n");
548 for (i = 0; i < LT_SAVECOUNT; i++) {
549 struct latency_record *lr = &task->latency_record[i];
550 if (lr->backtrace[0]) {
551 int q;
552 seq_printf(m, "%i %li %li",
553 lr->count, lr->time, lr->max);
554 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
555 unsigned long bt = lr->backtrace[q];
556
557 if (!bt)
558 break;
559 seq_printf(m, " %ps", (void *)bt);
560 }
561 seq_putc(m, '\n');
562 }
563
564 }
565 put_task_struct(task);
566 return 0;
567 }
568
lstats_open(struct inode * inode,struct file * file)569 static int lstats_open(struct inode *inode, struct file *file)
570 {
571 return single_open(file, lstats_show_proc, inode);
572 }
573
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)574 static ssize_t lstats_write(struct file *file, const char __user *buf,
575 size_t count, loff_t *offs)
576 {
577 struct task_struct *task = get_proc_task(file_inode(file));
578
579 if (!task)
580 return -ESRCH;
581 clear_tsk_latency_tracing(task);
582 put_task_struct(task);
583
584 return count;
585 }
586
587 static const struct file_operations proc_lstats_operations = {
588 .open = lstats_open,
589 .read = seq_read,
590 .write = lstats_write,
591 .llseek = seq_lseek,
592 .release = single_release,
593 };
594
595 #endif
596
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)597 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
598 struct pid *pid, struct task_struct *task)
599 {
600 unsigned long totalpages = totalram_pages() + total_swap_pages;
601 unsigned long points = 0;
602 long badness;
603
604 badness = oom_badness(task, totalpages);
605 /*
606 * Special case OOM_SCORE_ADJ_MIN for all others scale the
607 * badness value into [0, 2000] range which we have been
608 * exporting for a long time so userspace might depend on it.
609 */
610 if (badness != LONG_MIN)
611 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
612
613 seq_printf(m, "%lu\n", points);
614
615 return 0;
616 }
617
618 struct limit_names {
619 const char *name;
620 const char *unit;
621 };
622
623 static const struct limit_names lnames[RLIM_NLIMITS] = {
624 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
625 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
626 [RLIMIT_DATA] = {"Max data size", "bytes"},
627 [RLIMIT_STACK] = {"Max stack size", "bytes"},
628 [RLIMIT_CORE] = {"Max core file size", "bytes"},
629 [RLIMIT_RSS] = {"Max resident set", "bytes"},
630 [RLIMIT_NPROC] = {"Max processes", "processes"},
631 [RLIMIT_NOFILE] = {"Max open files", "files"},
632 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
633 [RLIMIT_AS] = {"Max address space", "bytes"},
634 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
635 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
636 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
637 [RLIMIT_NICE] = {"Max nice priority", NULL},
638 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
639 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
640 };
641
642 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)643 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
644 struct pid *pid, struct task_struct *task)
645 {
646 unsigned int i;
647 unsigned long flags;
648
649 struct rlimit rlim[RLIM_NLIMITS];
650
651 if (!lock_task_sighand(task, &flags))
652 return 0;
653 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
654 unlock_task_sighand(task, &flags);
655
656 /*
657 * print the file header
658 */
659 seq_puts(m, "Limit "
660 "Soft Limit "
661 "Hard Limit "
662 "Units \n");
663
664 for (i = 0; i < RLIM_NLIMITS; i++) {
665 if (rlim[i].rlim_cur == RLIM_INFINITY)
666 seq_printf(m, "%-25s %-20s ",
667 lnames[i].name, "unlimited");
668 else
669 seq_printf(m, "%-25s %-20lu ",
670 lnames[i].name, rlim[i].rlim_cur);
671
672 if (rlim[i].rlim_max == RLIM_INFINITY)
673 seq_printf(m, "%-20s ", "unlimited");
674 else
675 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
676
677 if (lnames[i].unit)
678 seq_printf(m, "%-10s\n", lnames[i].unit);
679 else
680 seq_putc(m, '\n');
681 }
682
683 return 0;
684 }
685
686 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)687 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
688 struct pid *pid, struct task_struct *task)
689 {
690 struct syscall_info info;
691 u64 *args = &info.data.args[0];
692 int res;
693
694 res = lock_trace(task);
695 if (res)
696 return res;
697
698 if (task_current_syscall(task, &info))
699 seq_puts(m, "running\n");
700 else if (info.data.nr < 0)
701 seq_printf(m, "%d 0x%llx 0x%llx\n",
702 info.data.nr, info.sp, info.data.instruction_pointer);
703 else
704 seq_printf(m,
705 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
706 info.data.nr,
707 args[0], args[1], args[2], args[3], args[4], args[5],
708 info.sp, info.data.instruction_pointer);
709 unlock_trace(task);
710
711 return 0;
712 }
713 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
714
715 /************************************************************************/
716 /* Here the fs part begins */
717 /************************************************************************/
718
719 /* permission checks */
proc_fd_access_allowed(struct inode * inode)720 static bool proc_fd_access_allowed(struct inode *inode)
721 {
722 struct task_struct *task;
723 bool allowed = false;
724 /* Allow access to a task's file descriptors if it is us or we
725 * may use ptrace attach to the process and find out that
726 * information.
727 */
728 task = get_proc_task(inode);
729 if (task) {
730 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
731 put_task_struct(task);
732 }
733 return allowed;
734 }
735
proc_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)736 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
737 struct iattr *attr)
738 {
739 int error;
740 struct inode *inode = d_inode(dentry);
741
742 if (attr->ia_valid & ATTR_MODE)
743 return -EPERM;
744
745 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
746 if (error)
747 return error;
748
749 setattr_copy(&nop_mnt_idmap, inode, attr);
750 return 0;
751 }
752
753 /*
754 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
755 * or euid/egid (for hide_pid_min=2)?
756 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)757 static bool has_pid_permissions(struct proc_fs_info *fs_info,
758 struct task_struct *task,
759 enum proc_hidepid hide_pid_min)
760 {
761 /*
762 * If 'hidpid' mount option is set force a ptrace check,
763 * we indicate that we are using a filesystem syscall
764 * by passing PTRACE_MODE_READ_FSCREDS
765 */
766 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
767 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
768
769 if (fs_info->hide_pid < hide_pid_min)
770 return true;
771 if (in_group_p(fs_info->pid_gid))
772 return true;
773 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
774 }
775
776
proc_pid_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)777 static int proc_pid_permission(struct mnt_idmap *idmap,
778 struct inode *inode, int mask)
779 {
780 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
781 struct task_struct *task;
782 bool has_perms;
783
784 task = get_proc_task(inode);
785 if (!task)
786 return -ESRCH;
787 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
788 put_task_struct(task);
789
790 if (!has_perms) {
791 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
792 /*
793 * Let's make getdents(), stat(), and open()
794 * consistent with each other. If a process
795 * may not stat() a file, it shouldn't be seen
796 * in procfs at all.
797 */
798 return -ENOENT;
799 }
800
801 return -EPERM;
802 }
803 return generic_permission(&nop_mnt_idmap, inode, mask);
804 }
805
806
807
808 static const struct inode_operations proc_def_inode_operations = {
809 .setattr = proc_setattr,
810 };
811
proc_single_show(struct seq_file * m,void * v)812 static int proc_single_show(struct seq_file *m, void *v)
813 {
814 struct inode *inode = m->private;
815 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
816 struct pid *pid = proc_pid(inode);
817 struct task_struct *task;
818 int ret;
819
820 task = get_pid_task(pid, PIDTYPE_PID);
821 if (!task)
822 return -ESRCH;
823
824 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
825
826 put_task_struct(task);
827 return ret;
828 }
829
proc_single_open(struct inode * inode,struct file * filp)830 static int proc_single_open(struct inode *inode, struct file *filp)
831 {
832 return single_open(filp, proc_single_show, inode);
833 }
834
835 static const struct file_operations proc_single_file_operations = {
836 .open = proc_single_open,
837 .read = seq_read,
838 .llseek = seq_lseek,
839 .release = single_release,
840 };
841
842
proc_mem_open(struct inode * inode,unsigned int mode)843 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
844 {
845 struct task_struct *task = get_proc_task(inode);
846 struct mm_struct *mm = ERR_PTR(-ESRCH);
847
848 if (task) {
849 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
850 put_task_struct(task);
851
852 if (!IS_ERR_OR_NULL(mm)) {
853 /* ensure this mm_struct can't be freed */
854 mmgrab(mm);
855 /* but do not pin its memory */
856 mmput(mm);
857 }
858 }
859
860 return mm;
861 }
862
__mem_open(struct inode * inode,struct file * file,unsigned int mode)863 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
864 {
865 struct mm_struct *mm = proc_mem_open(inode, mode);
866
867 if (IS_ERR(mm))
868 return PTR_ERR(mm);
869
870 file->private_data = mm;
871 return 0;
872 }
873
mem_open(struct inode * inode,struct file * file)874 static int mem_open(struct inode *inode, struct file *file)
875 {
876 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
877
878 /* OK to pass negative loff_t, we can catch out-of-range */
879 file->f_mode |= FMODE_UNSIGNED_OFFSET;
880
881 return ret;
882 }
883
proc_mem_foll_force(struct file * file,struct mm_struct * mm)884 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
885 {
886 struct task_struct *task;
887 bool ptrace_active = false;
888
889 switch (proc_mem_force_override) {
890 case PROC_MEM_FORCE_NEVER:
891 return false;
892 case PROC_MEM_FORCE_PTRACE:
893 task = get_proc_task(file_inode(file));
894 if (task) {
895 ptrace_active = READ_ONCE(task->ptrace) &&
896 READ_ONCE(task->mm) == mm &&
897 READ_ONCE(task->parent) == current;
898 put_task_struct(task);
899 }
900 return ptrace_active;
901 default:
902 return true;
903 }
904 }
905
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)906 static ssize_t mem_rw(struct file *file, char __user *buf,
907 size_t count, loff_t *ppos, int write)
908 {
909 struct mm_struct *mm = file->private_data;
910 unsigned long addr = *ppos;
911 ssize_t copied;
912 char *page;
913 unsigned int flags;
914
915 if (!mm)
916 return 0;
917
918 page = (char *)__get_free_page(GFP_KERNEL);
919 if (!page)
920 return -ENOMEM;
921
922 copied = 0;
923 if (!mmget_not_zero(mm))
924 goto free;
925
926 flags = write ? FOLL_WRITE : 0;
927 if (proc_mem_foll_force(file, mm))
928 flags |= FOLL_FORCE;
929
930 while (count > 0) {
931 size_t this_len = min_t(size_t, count, PAGE_SIZE);
932
933 if (write && copy_from_user(page, buf, this_len)) {
934 copied = -EFAULT;
935 break;
936 }
937
938 this_len = access_remote_vm(mm, addr, page, this_len, flags);
939 if (!this_len) {
940 if (!copied)
941 copied = -EIO;
942 break;
943 }
944
945 if (!write && copy_to_user(buf, page, this_len)) {
946 copied = -EFAULT;
947 break;
948 }
949
950 buf += this_len;
951 addr += this_len;
952 copied += this_len;
953 count -= this_len;
954 }
955 *ppos = addr;
956
957 mmput(mm);
958 free:
959 free_page((unsigned long) page);
960 return copied;
961 }
962
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)963 static ssize_t mem_read(struct file *file, char __user *buf,
964 size_t count, loff_t *ppos)
965 {
966 return mem_rw(file, buf, count, ppos, 0);
967 }
968
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)969 static ssize_t mem_write(struct file *file, const char __user *buf,
970 size_t count, loff_t *ppos)
971 {
972 return mem_rw(file, (char __user*)buf, count, ppos, 1);
973 }
974
mem_lseek(struct file * file,loff_t offset,int orig)975 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
976 {
977 switch (orig) {
978 case 0:
979 file->f_pos = offset;
980 break;
981 case 1:
982 file->f_pos += offset;
983 break;
984 default:
985 return -EINVAL;
986 }
987 force_successful_syscall_return();
988 return file->f_pos;
989 }
990
mem_release(struct inode * inode,struct file * file)991 static int mem_release(struct inode *inode, struct file *file)
992 {
993 struct mm_struct *mm = file->private_data;
994 if (mm)
995 mmdrop(mm);
996 return 0;
997 }
998
999 static const struct file_operations proc_mem_operations = {
1000 .llseek = mem_lseek,
1001 .read = mem_read,
1002 .write = mem_write,
1003 .open = mem_open,
1004 .release = mem_release,
1005 };
1006
environ_open(struct inode * inode,struct file * file)1007 static int environ_open(struct inode *inode, struct file *file)
1008 {
1009 return __mem_open(inode, file, PTRACE_MODE_READ);
1010 }
1011
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1012 static ssize_t environ_read(struct file *file, char __user *buf,
1013 size_t count, loff_t *ppos)
1014 {
1015 char *page;
1016 unsigned long src = *ppos;
1017 int ret = 0;
1018 struct mm_struct *mm = file->private_data;
1019 unsigned long env_start, env_end;
1020
1021 /* Ensure the process spawned far enough to have an environment. */
1022 if (!mm || !mm->env_end)
1023 return 0;
1024
1025 page = (char *)__get_free_page(GFP_KERNEL);
1026 if (!page)
1027 return -ENOMEM;
1028
1029 ret = 0;
1030 if (!mmget_not_zero(mm))
1031 goto free;
1032
1033 spin_lock(&mm->arg_lock);
1034 env_start = mm->env_start;
1035 env_end = mm->env_end;
1036 spin_unlock(&mm->arg_lock);
1037
1038 while (count > 0) {
1039 size_t this_len, max_len;
1040 int retval;
1041
1042 if (src >= (env_end - env_start))
1043 break;
1044
1045 this_len = env_end - (env_start + src);
1046
1047 max_len = min_t(size_t, PAGE_SIZE, count);
1048 this_len = min(max_len, this_len);
1049
1050 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1051
1052 if (retval <= 0) {
1053 ret = retval;
1054 break;
1055 }
1056
1057 if (copy_to_user(buf, page, retval)) {
1058 ret = -EFAULT;
1059 break;
1060 }
1061
1062 ret += retval;
1063 src += retval;
1064 buf += retval;
1065 count -= retval;
1066 }
1067 *ppos = src;
1068 mmput(mm);
1069
1070 free:
1071 free_page((unsigned long) page);
1072 return ret;
1073 }
1074
1075 static const struct file_operations proc_environ_operations = {
1076 .open = environ_open,
1077 .read = environ_read,
1078 .llseek = generic_file_llseek,
1079 .release = mem_release,
1080 };
1081
auxv_open(struct inode * inode,struct file * file)1082 static int auxv_open(struct inode *inode, struct file *file)
1083 {
1084 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1085 }
1086
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1087 static ssize_t auxv_read(struct file *file, char __user *buf,
1088 size_t count, loff_t *ppos)
1089 {
1090 struct mm_struct *mm = file->private_data;
1091 unsigned int nwords = 0;
1092
1093 if (!mm)
1094 return 0;
1095 do {
1096 nwords += 2;
1097 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1098 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1099 nwords * sizeof(mm->saved_auxv[0]));
1100 }
1101
1102 static const struct file_operations proc_auxv_operations = {
1103 .open = auxv_open,
1104 .read = auxv_read,
1105 .llseek = generic_file_llseek,
1106 .release = mem_release,
1107 };
1108
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1109 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1110 loff_t *ppos)
1111 {
1112 struct task_struct *task = get_proc_task(file_inode(file));
1113 char buffer[PROC_NUMBUF];
1114 int oom_adj = OOM_ADJUST_MIN;
1115 size_t len;
1116
1117 if (!task)
1118 return -ESRCH;
1119 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1120 oom_adj = OOM_ADJUST_MAX;
1121 else
1122 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1123 OOM_SCORE_ADJ_MAX;
1124 put_task_struct(task);
1125 if (oom_adj > OOM_ADJUST_MAX)
1126 oom_adj = OOM_ADJUST_MAX;
1127 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1128 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1129 }
1130
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1131 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1132 {
1133 struct mm_struct *mm = NULL;
1134 struct task_struct *task;
1135 int err = 0;
1136
1137 task = get_proc_task(file_inode(file));
1138 if (!task)
1139 return -ESRCH;
1140
1141 mutex_lock(&oom_adj_mutex);
1142 if (legacy) {
1143 if (oom_adj < task->signal->oom_score_adj &&
1144 !capable(CAP_SYS_RESOURCE)) {
1145 err = -EACCES;
1146 goto err_unlock;
1147 }
1148 /*
1149 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1150 * /proc/pid/oom_score_adj instead.
1151 */
1152 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1153 current->comm, task_pid_nr(current), task_pid_nr(task),
1154 task_pid_nr(task));
1155 } else {
1156 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1157 !capable(CAP_SYS_RESOURCE)) {
1158 err = -EACCES;
1159 goto err_unlock;
1160 }
1161 }
1162
1163 /*
1164 * Make sure we will check other processes sharing the mm if this is
1165 * not vfrok which wants its own oom_score_adj.
1166 * pin the mm so it doesn't go away and get reused after task_unlock
1167 */
1168 if (!task->vfork_done) {
1169 struct task_struct *p = find_lock_task_mm(task);
1170
1171 if (p) {
1172 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1173 mm = p->mm;
1174 mmgrab(mm);
1175 }
1176 task_unlock(p);
1177 }
1178 }
1179
1180 task->signal->oom_score_adj = oom_adj;
1181 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1182 task->signal->oom_score_adj_min = (short)oom_adj;
1183 trace_oom_score_adj_update(task);
1184
1185 if (mm) {
1186 struct task_struct *p;
1187
1188 rcu_read_lock();
1189 for_each_process(p) {
1190 if (same_thread_group(task, p))
1191 continue;
1192
1193 /* do not touch kernel threads or the global init */
1194 if (p->flags & PF_KTHREAD || is_global_init(p))
1195 continue;
1196
1197 task_lock(p);
1198 if (!p->vfork_done && process_shares_mm(p, mm)) {
1199 p->signal->oom_score_adj = oom_adj;
1200 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1201 p->signal->oom_score_adj_min = (short)oom_adj;
1202 }
1203 task_unlock(p);
1204 }
1205 rcu_read_unlock();
1206 mmdrop(mm);
1207 }
1208 err_unlock:
1209 mutex_unlock(&oom_adj_mutex);
1210 put_task_struct(task);
1211 return err;
1212 }
1213
1214 /*
1215 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1216 * kernels. The effective policy is defined by oom_score_adj, which has a
1217 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1218 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1219 * Processes that become oom disabled via oom_adj will still be oom disabled
1220 * with this implementation.
1221 *
1222 * oom_adj cannot be removed since existing userspace binaries use it.
1223 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1224 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1225 size_t count, loff_t *ppos)
1226 {
1227 char buffer[PROC_NUMBUF];
1228 int oom_adj;
1229 int err;
1230
1231 memset(buffer, 0, sizeof(buffer));
1232 if (count > sizeof(buffer) - 1)
1233 count = sizeof(buffer) - 1;
1234 if (copy_from_user(buffer, buf, count)) {
1235 err = -EFAULT;
1236 goto out;
1237 }
1238
1239 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1240 if (err)
1241 goto out;
1242 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1243 oom_adj != OOM_DISABLE) {
1244 err = -EINVAL;
1245 goto out;
1246 }
1247
1248 /*
1249 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1250 * value is always attainable.
1251 */
1252 if (oom_adj == OOM_ADJUST_MAX)
1253 oom_adj = OOM_SCORE_ADJ_MAX;
1254 else
1255 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1256
1257 err = __set_oom_adj(file, oom_adj, true);
1258 out:
1259 return err < 0 ? err : count;
1260 }
1261
1262 static const struct file_operations proc_oom_adj_operations = {
1263 .read = oom_adj_read,
1264 .write = oom_adj_write,
1265 .llseek = generic_file_llseek,
1266 };
1267
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1268 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1269 size_t count, loff_t *ppos)
1270 {
1271 struct task_struct *task = get_proc_task(file_inode(file));
1272 char buffer[PROC_NUMBUF];
1273 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1274 size_t len;
1275
1276 if (!task)
1277 return -ESRCH;
1278 oom_score_adj = task->signal->oom_score_adj;
1279 put_task_struct(task);
1280 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1281 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1282 }
1283
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1284 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1285 size_t count, loff_t *ppos)
1286 {
1287 char buffer[PROC_NUMBUF];
1288 int oom_score_adj;
1289 int err;
1290
1291 memset(buffer, 0, sizeof(buffer));
1292 if (count > sizeof(buffer) - 1)
1293 count = sizeof(buffer) - 1;
1294 if (copy_from_user(buffer, buf, count)) {
1295 err = -EFAULT;
1296 goto out;
1297 }
1298
1299 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1300 if (err)
1301 goto out;
1302 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1303 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1304 err = -EINVAL;
1305 goto out;
1306 }
1307
1308 err = __set_oom_adj(file, oom_score_adj, false);
1309 out:
1310 return err < 0 ? err : count;
1311 }
1312
1313 static const struct file_operations proc_oom_score_adj_operations = {
1314 .read = oom_score_adj_read,
1315 .write = oom_score_adj_write,
1316 .llseek = default_llseek,
1317 };
1318
1319 #ifdef CONFIG_AUDIT
1320 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1321 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1322 size_t count, loff_t *ppos)
1323 {
1324 struct inode * inode = file_inode(file);
1325 struct task_struct *task = get_proc_task(inode);
1326 ssize_t length;
1327 char tmpbuf[TMPBUFLEN];
1328
1329 if (!task)
1330 return -ESRCH;
1331 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1332 from_kuid(file->f_cred->user_ns,
1333 audit_get_loginuid(task)));
1334 put_task_struct(task);
1335 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1336 }
1337
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1338 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1339 size_t count, loff_t *ppos)
1340 {
1341 struct inode * inode = file_inode(file);
1342 uid_t loginuid;
1343 kuid_t kloginuid;
1344 int rv;
1345
1346 /* Don't let kthreads write their own loginuid */
1347 if (current->flags & PF_KTHREAD)
1348 return -EPERM;
1349
1350 rcu_read_lock();
1351 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1352 rcu_read_unlock();
1353 return -EPERM;
1354 }
1355 rcu_read_unlock();
1356
1357 if (*ppos != 0) {
1358 /* No partial writes. */
1359 return -EINVAL;
1360 }
1361
1362 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1363 if (rv < 0)
1364 return rv;
1365
1366 /* is userspace tring to explicitly UNSET the loginuid? */
1367 if (loginuid == AUDIT_UID_UNSET) {
1368 kloginuid = INVALID_UID;
1369 } else {
1370 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1371 if (!uid_valid(kloginuid))
1372 return -EINVAL;
1373 }
1374
1375 rv = audit_set_loginuid(kloginuid);
1376 if (rv < 0)
1377 return rv;
1378 return count;
1379 }
1380
1381 static const struct file_operations proc_loginuid_operations = {
1382 .read = proc_loginuid_read,
1383 .write = proc_loginuid_write,
1384 .llseek = generic_file_llseek,
1385 };
1386
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1387 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1388 size_t count, loff_t *ppos)
1389 {
1390 struct inode * inode = file_inode(file);
1391 struct task_struct *task = get_proc_task(inode);
1392 ssize_t length;
1393 char tmpbuf[TMPBUFLEN];
1394
1395 if (!task)
1396 return -ESRCH;
1397 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1398 audit_get_sessionid(task));
1399 put_task_struct(task);
1400 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1401 }
1402
1403 static const struct file_operations proc_sessionid_operations = {
1404 .read = proc_sessionid_read,
1405 .llseek = generic_file_llseek,
1406 };
1407 #endif
1408
1409 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1410 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1411 size_t count, loff_t *ppos)
1412 {
1413 struct task_struct *task = get_proc_task(file_inode(file));
1414 char buffer[PROC_NUMBUF];
1415 size_t len;
1416 int make_it_fail;
1417
1418 if (!task)
1419 return -ESRCH;
1420 make_it_fail = task->make_it_fail;
1421 put_task_struct(task);
1422
1423 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1424
1425 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1426 }
1427
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1428 static ssize_t proc_fault_inject_write(struct file * file,
1429 const char __user * buf, size_t count, loff_t *ppos)
1430 {
1431 struct task_struct *task;
1432 char buffer[PROC_NUMBUF];
1433 int make_it_fail;
1434 int rv;
1435
1436 if (!capable(CAP_SYS_RESOURCE))
1437 return -EPERM;
1438 memset(buffer, 0, sizeof(buffer));
1439 if (count > sizeof(buffer) - 1)
1440 count = sizeof(buffer) - 1;
1441 if (copy_from_user(buffer, buf, count))
1442 return -EFAULT;
1443 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1444 if (rv < 0)
1445 return rv;
1446 if (make_it_fail < 0 || make_it_fail > 1)
1447 return -EINVAL;
1448
1449 task = get_proc_task(file_inode(file));
1450 if (!task)
1451 return -ESRCH;
1452 task->make_it_fail = make_it_fail;
1453 put_task_struct(task);
1454
1455 return count;
1456 }
1457
1458 static const struct file_operations proc_fault_inject_operations = {
1459 .read = proc_fault_inject_read,
1460 .write = proc_fault_inject_write,
1461 .llseek = generic_file_llseek,
1462 };
1463
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1464 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1465 size_t count, loff_t *ppos)
1466 {
1467 struct task_struct *task;
1468 int err;
1469 unsigned int n;
1470
1471 err = kstrtouint_from_user(buf, count, 0, &n);
1472 if (err)
1473 return err;
1474
1475 task = get_proc_task(file_inode(file));
1476 if (!task)
1477 return -ESRCH;
1478 task->fail_nth = n;
1479 put_task_struct(task);
1480
1481 return count;
1482 }
1483
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1484 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1485 size_t count, loff_t *ppos)
1486 {
1487 struct task_struct *task;
1488 char numbuf[PROC_NUMBUF];
1489 ssize_t len;
1490
1491 task = get_proc_task(file_inode(file));
1492 if (!task)
1493 return -ESRCH;
1494 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1495 put_task_struct(task);
1496 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1497 }
1498
1499 static const struct file_operations proc_fail_nth_operations = {
1500 .read = proc_fail_nth_read,
1501 .write = proc_fail_nth_write,
1502 };
1503 #endif
1504
1505
1506 #ifdef CONFIG_SCHED_DEBUG
1507 /*
1508 * Print out various scheduling related per-task fields:
1509 */
sched_show(struct seq_file * m,void * v)1510 static int sched_show(struct seq_file *m, void *v)
1511 {
1512 struct inode *inode = m->private;
1513 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1514 struct task_struct *p;
1515
1516 p = get_proc_task(inode);
1517 if (!p)
1518 return -ESRCH;
1519 proc_sched_show_task(p, ns, m);
1520
1521 put_task_struct(p);
1522
1523 return 0;
1524 }
1525
1526 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1527 sched_write(struct file *file, const char __user *buf,
1528 size_t count, loff_t *offset)
1529 {
1530 struct inode *inode = file_inode(file);
1531 struct task_struct *p;
1532
1533 p = get_proc_task(inode);
1534 if (!p)
1535 return -ESRCH;
1536 proc_sched_set_task(p);
1537
1538 put_task_struct(p);
1539
1540 return count;
1541 }
1542
sched_open(struct inode * inode,struct file * filp)1543 static int sched_open(struct inode *inode, struct file *filp)
1544 {
1545 return single_open(filp, sched_show, inode);
1546 }
1547
1548 static const struct file_operations proc_pid_sched_operations = {
1549 .open = sched_open,
1550 .read = seq_read,
1551 .write = sched_write,
1552 .llseek = seq_lseek,
1553 .release = single_release,
1554 };
1555
1556 #endif
1557
1558 #ifdef CONFIG_QOS_CTRL
proc_qos_ctrl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1559 long proc_qos_ctrl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1560 {
1561 return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_AARCH64, file, cmd, arg);
1562 }
1563
1564 #ifdef CONFIG_COMPAT
proc_qos_ctrl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1565 long proc_qos_ctrl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1566 {
1567 return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_ARM32, file, cmd,
1568 (unsigned long)(compat_ptr((compat_uptr_t)arg)));
1569 }
1570 #endif
1571
proc_qos_ctrl_open(struct inode * inode,struct file * filp)1572 int proc_qos_ctrl_open(struct inode *inode, struct file *filp)
1573 {
1574 return 0;
1575 }
1576
1577 static const struct file_operations proc_qos_ctrl_operations = {
1578 .open = proc_qos_ctrl_open,
1579 .unlocked_ioctl = proc_qos_ctrl_ioctl,
1580 #ifdef CONFIG_COMPAT
1581 .compat_ioctl = proc_qos_ctrl_compat_ioctl,
1582 #endif
1583 };
1584 #endif
1585
1586 #ifdef CONFIG_SCHED_RTG
1587 static const struct file_operations proc_rtg_operations = {
1588 .open = proc_rtg_open,
1589 .unlocked_ioctl = proc_rtg_ioctl,
1590 #ifdef CONFIG_COMPAT
1591 .compat_ioctl = proc_rtg_compat_ioctl,
1592 #endif
1593 };
1594 #endif
1595
1596 #ifdef CONFIG_SCHED_RTG_DEBUG
sched_group_id_show(struct seq_file * m,void * v)1597 static int sched_group_id_show(struct seq_file *m, void *v)
1598 {
1599 struct inode *inode = m->private;
1600 struct task_struct *p;
1601
1602 p = get_proc_task(inode);
1603 if (!p)
1604 return -ESRCH;
1605
1606 seq_printf(m, "%d\n", sched_get_group_id(p));
1607
1608 put_task_struct(p);
1609
1610 return 0;
1611 }
1612
1613 static ssize_t
sched_group_id_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1614 sched_group_id_write(struct file *file, const char __user *buf,
1615 size_t count, loff_t *offset)
1616 {
1617 struct inode *inode = file_inode(file);
1618 struct task_struct *p;
1619 char buffer[PROC_NUMBUF];
1620 int group_id, err;
1621
1622 memset(buffer, 0, sizeof(buffer));
1623 if (count > sizeof(buffer) - 1)
1624 count = sizeof(buffer) - 1;
1625 if (copy_from_user(buffer, buf, count)) {
1626 err = -EFAULT;
1627 goto out;
1628 }
1629
1630 err = kstrtoint(strstrip(buffer), 0, &group_id);
1631 if (err)
1632 goto out;
1633
1634 p = get_proc_task(inode);
1635 if (!p)
1636 return -ESRCH;
1637
1638 err = sched_set_group_id(p, group_id);
1639
1640 put_task_struct(p);
1641
1642 out:
1643 return err < 0 ? err : count;
1644 }
1645
sched_group_id_open(struct inode * inode,struct file * filp)1646 static int sched_group_id_open(struct inode *inode, struct file *filp)
1647 {
1648 return single_open(filp, sched_group_id_show, inode);
1649 }
1650
1651 static const struct file_operations proc_pid_sched_group_id_operations = {
1652 .open = sched_group_id_open,
1653 .read = seq_read,
1654 .write = sched_group_id_write,
1655 .llseek = seq_lseek,
1656 .release = single_release,
1657 };
1658 #endif /* CONFIG_SCHED_RTG_DEBUG */
1659
1660 #ifdef CONFIG_SCHED_AUTOGROUP
1661 /*
1662 * Print out autogroup related information:
1663 */
sched_autogroup_show(struct seq_file * m,void * v)1664 static int sched_autogroup_show(struct seq_file *m, void *v)
1665 {
1666 struct inode *inode = m->private;
1667 struct task_struct *p;
1668
1669 p = get_proc_task(inode);
1670 if (!p)
1671 return -ESRCH;
1672 proc_sched_autogroup_show_task(p, m);
1673
1674 put_task_struct(p);
1675
1676 return 0;
1677 }
1678
1679 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1680 sched_autogroup_write(struct file *file, const char __user *buf,
1681 size_t count, loff_t *offset)
1682 {
1683 struct inode *inode = file_inode(file);
1684 struct task_struct *p;
1685 char buffer[PROC_NUMBUF];
1686 int nice;
1687 int err;
1688
1689 memset(buffer, 0, sizeof(buffer));
1690 if (count > sizeof(buffer) - 1)
1691 count = sizeof(buffer) - 1;
1692 if (copy_from_user(buffer, buf, count))
1693 return -EFAULT;
1694
1695 err = kstrtoint(strstrip(buffer), 0, &nice);
1696 if (err < 0)
1697 return err;
1698
1699 p = get_proc_task(inode);
1700 if (!p)
1701 return -ESRCH;
1702
1703 err = proc_sched_autogroup_set_nice(p, nice);
1704 if (err)
1705 count = err;
1706
1707 put_task_struct(p);
1708
1709 return count;
1710 }
1711
sched_autogroup_open(struct inode * inode,struct file * filp)1712 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1713 {
1714 int ret;
1715
1716 ret = single_open(filp, sched_autogroup_show, NULL);
1717 if (!ret) {
1718 struct seq_file *m = filp->private_data;
1719
1720 m->private = inode;
1721 }
1722 return ret;
1723 }
1724
1725 static const struct file_operations proc_pid_sched_autogroup_operations = {
1726 .open = sched_autogroup_open,
1727 .read = seq_read,
1728 .write = sched_autogroup_write,
1729 .llseek = seq_lseek,
1730 .release = single_release,
1731 };
1732
1733 #endif /* CONFIG_SCHED_AUTOGROUP */
1734
1735 #ifdef CONFIG_SCHED_WALT
sched_init_task_load_show(struct seq_file * m,void * v)1736 static int sched_init_task_load_show(struct seq_file *m, void *v)
1737 {
1738 struct inode *inode = m->private;
1739 struct task_struct *p;
1740
1741 p = get_proc_task(inode);
1742 if (!p)
1743 return -ESRCH;
1744
1745 seq_printf(m, "%d\n", sched_get_init_task_load(p));
1746
1747 put_task_struct(p);
1748
1749 return 0;
1750 }
1751
1752 static ssize_t
sched_init_task_load_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1753 sched_init_task_load_write(struct file *file, const char __user *buf,
1754 size_t count, loff_t *offset)
1755 {
1756 struct inode *inode = file_inode(file);
1757 struct task_struct *p;
1758 char buffer[PROC_NUMBUF];
1759 int init_task_load, err;
1760
1761 memset(buffer, 0, sizeof(buffer));
1762 if (count > sizeof(buffer) - 1)
1763 count = sizeof(buffer) - 1;
1764 if (copy_from_user(buffer, buf, count)) {
1765 err = -EFAULT;
1766 goto out;
1767 }
1768
1769 err = kstrtoint(strstrip(buffer), 0, &init_task_load);
1770 if (err)
1771 goto out;
1772
1773 p = get_proc_task(inode);
1774 if (!p)
1775 return -ESRCH;
1776
1777 err = sched_set_init_task_load(p, init_task_load);
1778
1779 put_task_struct(p);
1780
1781 out:
1782 return err < 0 ? err : count;
1783 }
1784
sched_init_task_load_open(struct inode * inode,struct file * filp)1785 static int sched_init_task_load_open(struct inode *inode, struct file *filp)
1786 {
1787 return single_open(filp, sched_init_task_load_show, inode);
1788 }
1789
1790 static const struct file_operations proc_pid_sched_init_task_load_operations = {
1791 .open = sched_init_task_load_open,
1792 .read = seq_read,
1793 .write = sched_init_task_load_write,
1794 .llseek = seq_lseek,
1795 .release = single_release,
1796 };
1797 #endif /* CONFIG_SCHED_WALT */
1798
1799 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1800 static int timens_offsets_show(struct seq_file *m, void *v)
1801 {
1802 struct task_struct *p;
1803
1804 p = get_proc_task(file_inode(m->file));
1805 if (!p)
1806 return -ESRCH;
1807 proc_timens_show_offsets(p, m);
1808
1809 put_task_struct(p);
1810
1811 return 0;
1812 }
1813
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1814 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1815 size_t count, loff_t *ppos)
1816 {
1817 struct inode *inode = file_inode(file);
1818 struct proc_timens_offset offsets[2];
1819 char *kbuf = NULL, *pos, *next_line;
1820 struct task_struct *p;
1821 int ret, noffsets;
1822
1823 /* Only allow < page size writes at the beginning of the file */
1824 if ((*ppos != 0) || (count >= PAGE_SIZE))
1825 return -EINVAL;
1826
1827 /* Slurp in the user data */
1828 kbuf = memdup_user_nul(buf, count);
1829 if (IS_ERR(kbuf))
1830 return PTR_ERR(kbuf);
1831
1832 /* Parse the user data */
1833 ret = -EINVAL;
1834 noffsets = 0;
1835 for (pos = kbuf; pos; pos = next_line) {
1836 struct proc_timens_offset *off = &offsets[noffsets];
1837 char clock[10];
1838 int err;
1839
1840 /* Find the end of line and ensure we don't look past it */
1841 next_line = strchr(pos, '\n');
1842 if (next_line) {
1843 *next_line = '\0';
1844 next_line++;
1845 if (*next_line == '\0')
1846 next_line = NULL;
1847 }
1848
1849 err = sscanf(pos, "%9s %lld %lu", clock,
1850 &off->val.tv_sec, &off->val.tv_nsec);
1851 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1852 goto out;
1853
1854 clock[sizeof(clock) - 1] = 0;
1855 if (strcmp(clock, "monotonic") == 0 ||
1856 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1857 off->clockid = CLOCK_MONOTONIC;
1858 else if (strcmp(clock, "boottime") == 0 ||
1859 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1860 off->clockid = CLOCK_BOOTTIME;
1861 else
1862 goto out;
1863
1864 noffsets++;
1865 if (noffsets == ARRAY_SIZE(offsets)) {
1866 if (next_line)
1867 count = next_line - kbuf;
1868 break;
1869 }
1870 }
1871
1872 ret = -ESRCH;
1873 p = get_proc_task(inode);
1874 if (!p)
1875 goto out;
1876 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1877 put_task_struct(p);
1878 if (ret)
1879 goto out;
1880
1881 ret = count;
1882 out:
1883 kfree(kbuf);
1884 return ret;
1885 }
1886
timens_offsets_open(struct inode * inode,struct file * filp)1887 static int timens_offsets_open(struct inode *inode, struct file *filp)
1888 {
1889 return single_open(filp, timens_offsets_show, inode);
1890 }
1891
1892 static const struct file_operations proc_timens_offsets_operations = {
1893 .open = timens_offsets_open,
1894 .read = seq_read,
1895 .write = timens_offsets_write,
1896 .llseek = seq_lseek,
1897 .release = single_release,
1898 };
1899 #endif /* CONFIG_TIME_NS */
1900
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1901 static ssize_t comm_write(struct file *file, const char __user *buf,
1902 size_t count, loff_t *offset)
1903 {
1904 struct inode *inode = file_inode(file);
1905 struct task_struct *p;
1906 char buffer[TASK_COMM_LEN];
1907 const size_t maxlen = sizeof(buffer) - 1;
1908
1909 memset(buffer, 0, sizeof(buffer));
1910 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1911 return -EFAULT;
1912
1913 p = get_proc_task(inode);
1914 if (!p)
1915 return -ESRCH;
1916
1917 if (same_thread_group(current, p)) {
1918 set_task_comm(p, buffer);
1919 proc_comm_connector(p);
1920 }
1921 else
1922 count = -EINVAL;
1923
1924 put_task_struct(p);
1925
1926 return count;
1927 }
1928
comm_show(struct seq_file * m,void * v)1929 static int comm_show(struct seq_file *m, void *v)
1930 {
1931 struct inode *inode = m->private;
1932 struct task_struct *p;
1933
1934 p = get_proc_task(inode);
1935 if (!p)
1936 return -ESRCH;
1937
1938 proc_task_name(m, p, false);
1939 seq_putc(m, '\n');
1940
1941 put_task_struct(p);
1942
1943 return 0;
1944 }
1945
comm_open(struct inode * inode,struct file * filp)1946 static int comm_open(struct inode *inode, struct file *filp)
1947 {
1948 return single_open(filp, comm_show, inode);
1949 }
1950
1951 static const struct file_operations proc_pid_set_comm_operations = {
1952 .open = comm_open,
1953 .read = seq_read,
1954 .write = comm_write,
1955 .llseek = seq_lseek,
1956 .release = single_release,
1957 };
1958
proc_exe_link(struct dentry * dentry,struct path * exe_path)1959 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1960 {
1961 struct task_struct *task;
1962 struct file *exe_file;
1963
1964 task = get_proc_task(d_inode(dentry));
1965 if (!task)
1966 return -ENOENT;
1967 exe_file = get_task_exe_file(task);
1968 put_task_struct(task);
1969 if (exe_file) {
1970 *exe_path = exe_file->f_path;
1971 path_get(&exe_file->f_path);
1972 fput(exe_file);
1973 return 0;
1974 } else
1975 return -ENOENT;
1976 }
1977
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1978 static const char *proc_pid_get_link(struct dentry *dentry,
1979 struct inode *inode,
1980 struct delayed_call *done)
1981 {
1982 struct path path;
1983 int error = -EACCES;
1984
1985 if (!dentry)
1986 return ERR_PTR(-ECHILD);
1987
1988 /* Are we allowed to snoop on the tasks file descriptors? */
1989 if (!proc_fd_access_allowed(inode))
1990 goto out;
1991
1992 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1993 if (error)
1994 goto out;
1995
1996 error = nd_jump_link(&path);
1997 out:
1998 return ERR_PTR(error);
1999 }
2000
do_proc_readlink(const struct path * path,char __user * buffer,int buflen)2001 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
2002 {
2003 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
2004 char *pathname;
2005 int len;
2006
2007 if (!tmp)
2008 return -ENOMEM;
2009
2010 pathname = d_path(path, tmp, PATH_MAX);
2011 len = PTR_ERR(pathname);
2012 if (IS_ERR(pathname))
2013 goto out;
2014 len = tmp + PATH_MAX - 1 - pathname;
2015
2016 if (len > buflen)
2017 len = buflen;
2018 if (copy_to_user(buffer, pathname, len))
2019 len = -EFAULT;
2020 out:
2021 kfree(tmp);
2022 return len;
2023 }
2024
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)2025 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
2026 {
2027 int error = -EACCES;
2028 struct inode *inode = d_inode(dentry);
2029 struct path path;
2030
2031 /* Are we allowed to snoop on the tasks file descriptors? */
2032 if (!proc_fd_access_allowed(inode))
2033 goto out;
2034
2035 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
2036 if (error)
2037 goto out;
2038
2039 error = do_proc_readlink(&path, buffer, buflen);
2040 path_put(&path);
2041 out:
2042 return error;
2043 }
2044
2045 const struct inode_operations proc_pid_link_inode_operations = {
2046 .readlink = proc_pid_readlink,
2047 .get_link = proc_pid_get_link,
2048 .setattr = proc_setattr,
2049 };
2050
2051
2052 /* building an inode */
2053
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)2054 void task_dump_owner(struct task_struct *task, umode_t mode,
2055 kuid_t *ruid, kgid_t *rgid)
2056 {
2057 /* Depending on the state of dumpable compute who should own a
2058 * proc file for a task.
2059 */
2060 const struct cred *cred;
2061 kuid_t uid;
2062 kgid_t gid;
2063
2064 if (unlikely(task->flags & PF_KTHREAD)) {
2065 *ruid = GLOBAL_ROOT_UID;
2066 *rgid = GLOBAL_ROOT_GID;
2067 return;
2068 }
2069
2070 /* Default to the tasks effective ownership */
2071 rcu_read_lock();
2072 cred = __task_cred(task);
2073 uid = cred->euid;
2074 gid = cred->egid;
2075 rcu_read_unlock();
2076
2077 /*
2078 * Before the /proc/pid/status file was created the only way to read
2079 * the effective uid of a /process was to stat /proc/pid. Reading
2080 * /proc/pid/status is slow enough that procps and other packages
2081 * kept stating /proc/pid. To keep the rules in /proc simple I have
2082 * made this apply to all per process world readable and executable
2083 * directories.
2084 */
2085 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
2086 struct mm_struct *mm;
2087 task_lock(task);
2088 mm = task->mm;
2089 /* Make non-dumpable tasks owned by some root */
2090 if (mm) {
2091 if (get_dumpable(mm) != SUID_DUMP_USER) {
2092 struct user_namespace *user_ns = mm->user_ns;
2093
2094 uid = make_kuid(user_ns, 0);
2095 if (!uid_valid(uid))
2096 uid = GLOBAL_ROOT_UID;
2097
2098 gid = make_kgid(user_ns, 0);
2099 if (!gid_valid(gid))
2100 gid = GLOBAL_ROOT_GID;
2101 }
2102 } else {
2103 uid = GLOBAL_ROOT_UID;
2104 gid = GLOBAL_ROOT_GID;
2105 }
2106 task_unlock(task);
2107 }
2108 *ruid = uid;
2109 *rgid = gid;
2110 }
2111
proc_pid_evict_inode(struct proc_inode * ei)2112 void proc_pid_evict_inode(struct proc_inode *ei)
2113 {
2114 struct pid *pid = ei->pid;
2115
2116 if (S_ISDIR(ei->vfs_inode.i_mode)) {
2117 spin_lock(&pid->lock);
2118 hlist_del_init_rcu(&ei->sibling_inodes);
2119 spin_unlock(&pid->lock);
2120 }
2121
2122 put_pid(pid);
2123 }
2124
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2125 struct inode *proc_pid_make_inode(struct super_block *sb,
2126 struct task_struct *task, umode_t mode)
2127 {
2128 struct inode * inode;
2129 struct proc_inode *ei;
2130 struct pid *pid;
2131
2132 /* We need a new inode */
2133
2134 inode = new_inode(sb);
2135 if (!inode)
2136 goto out;
2137
2138 /* Common stuff */
2139 ei = PROC_I(inode);
2140 inode->i_mode = mode;
2141 inode->i_ino = get_next_ino();
2142 inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
2143 inode->i_op = &proc_def_inode_operations;
2144
2145 /*
2146 * grab the reference to task.
2147 */
2148 pid = get_task_pid(task, PIDTYPE_PID);
2149 if (!pid)
2150 goto out_unlock;
2151
2152 /* Let the pid remember us for quick removal */
2153 ei->pid = pid;
2154
2155 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2156 security_task_to_inode(task, inode);
2157
2158 out:
2159 return inode;
2160
2161 out_unlock:
2162 iput(inode);
2163 return NULL;
2164 }
2165
2166 /*
2167 * Generating an inode and adding it into @pid->inodes, so that task will
2168 * invalidate inode's dentry before being released.
2169 *
2170 * This helper is used for creating dir-type entries under '/proc' and
2171 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
2172 * can be released by invalidating '/proc/<tgid>' dentry.
2173 * In theory, dentries under '/proc/<tgid>/task' can also be released by
2174 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
2175 * thread exiting situation: Any one of threads should invalidate its
2176 * '/proc/<tgid>/task/<pid>' dentry before released.
2177 */
proc_pid_make_base_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2178 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
2179 struct task_struct *task, umode_t mode)
2180 {
2181 struct inode *inode;
2182 struct proc_inode *ei;
2183 struct pid *pid;
2184
2185 inode = proc_pid_make_inode(sb, task, mode);
2186 if (!inode)
2187 return NULL;
2188
2189 /* Let proc_flush_pid find this directory inode */
2190 ei = PROC_I(inode);
2191 pid = ei->pid;
2192 spin_lock(&pid->lock);
2193 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2194 spin_unlock(&pid->lock);
2195
2196 return inode;
2197 }
2198
pid_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2199 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2200 struct kstat *stat, u32 request_mask, unsigned int query_flags)
2201 {
2202 struct inode *inode = d_inode(path->dentry);
2203 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2204 struct task_struct *task;
2205
2206 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2207
2208 stat->uid = GLOBAL_ROOT_UID;
2209 stat->gid = GLOBAL_ROOT_GID;
2210 rcu_read_lock();
2211 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2212 if (task) {
2213 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2214 rcu_read_unlock();
2215 /*
2216 * This doesn't prevent learning whether PID exists,
2217 * it only makes getattr() consistent with readdir().
2218 */
2219 return -ENOENT;
2220 }
2221 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2222 }
2223 rcu_read_unlock();
2224 return 0;
2225 }
2226
2227 /* dentry stuff */
2228
2229 /*
2230 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2231 */
pid_update_inode(struct task_struct * task,struct inode * inode)2232 void pid_update_inode(struct task_struct *task, struct inode *inode)
2233 {
2234 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2235
2236 inode->i_mode &= ~(S_ISUID | S_ISGID);
2237 security_task_to_inode(task, inode);
2238 }
2239
2240 /*
2241 * Rewrite the inode's ownerships here because the owning task may have
2242 * performed a setuid(), etc.
2243 *
2244 */
pid_revalidate(struct dentry * dentry,unsigned int flags)2245 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2246 {
2247 struct inode *inode;
2248 struct task_struct *task;
2249 int ret = 0;
2250
2251 rcu_read_lock();
2252 inode = d_inode_rcu(dentry);
2253 if (!inode)
2254 goto out;
2255 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2256
2257 if (task) {
2258 pid_update_inode(task, inode);
2259 ret = 1;
2260 }
2261 out:
2262 rcu_read_unlock();
2263 return ret;
2264 }
2265
proc_inode_is_dead(struct inode * inode)2266 static inline bool proc_inode_is_dead(struct inode *inode)
2267 {
2268 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2269 }
2270
pid_delete_dentry(const struct dentry * dentry)2271 int pid_delete_dentry(const struct dentry *dentry)
2272 {
2273 /* Is the task we represent dead?
2274 * If so, then don't put the dentry on the lru list,
2275 * kill it immediately.
2276 */
2277 return proc_inode_is_dead(d_inode(dentry));
2278 }
2279
2280 const struct dentry_operations pid_dentry_operations =
2281 {
2282 .d_revalidate = pid_revalidate,
2283 .d_delete = pid_delete_dentry,
2284 };
2285
2286 /* Lookups */
2287
2288 /*
2289 * Fill a directory entry.
2290 *
2291 * If possible create the dcache entry and derive our inode number and
2292 * file type from dcache entry.
2293 *
2294 * Since all of the proc inode numbers are dynamically generated, the inode
2295 * numbers do not exist until the inode is cache. This means creating
2296 * the dcache entry in readdir is necessary to keep the inode numbers
2297 * reported by readdir in sync with the inode numbers reported
2298 * by stat.
2299 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2300 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2301 const char *name, unsigned int len,
2302 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2303 {
2304 struct dentry *child, *dir = file->f_path.dentry;
2305 struct qstr qname = QSTR_INIT(name, len);
2306 struct inode *inode;
2307 unsigned type = DT_UNKNOWN;
2308 ino_t ino = 1;
2309
2310 child = d_hash_and_lookup(dir, &qname);
2311 if (!child) {
2312 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2313 child = d_alloc_parallel(dir, &qname, &wq);
2314 if (IS_ERR(child))
2315 goto end_instantiate;
2316 if (d_in_lookup(child)) {
2317 struct dentry *res;
2318 res = instantiate(child, task, ptr);
2319 d_lookup_done(child);
2320 if (unlikely(res)) {
2321 dput(child);
2322 child = res;
2323 if (IS_ERR(child))
2324 goto end_instantiate;
2325 }
2326 }
2327 }
2328 inode = d_inode(child);
2329 ino = inode->i_ino;
2330 type = inode->i_mode >> 12;
2331 dput(child);
2332 end_instantiate:
2333 return dir_emit(ctx, name, len, ino, type);
2334 }
2335
2336 /*
2337 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2338 * which represent vma start and end addresses.
2339 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2340 static int dname_to_vma_addr(struct dentry *dentry,
2341 unsigned long *start, unsigned long *end)
2342 {
2343 const char *str = dentry->d_name.name;
2344 unsigned long long sval, eval;
2345 unsigned int len;
2346
2347 if (str[0] == '0' && str[1] != '-')
2348 return -EINVAL;
2349 len = _parse_integer(str, 16, &sval);
2350 if (len & KSTRTOX_OVERFLOW)
2351 return -EINVAL;
2352 if (sval != (unsigned long)sval)
2353 return -EINVAL;
2354 str += len;
2355
2356 if (*str != '-')
2357 return -EINVAL;
2358 str++;
2359
2360 if (str[0] == '0' && str[1])
2361 return -EINVAL;
2362 len = _parse_integer(str, 16, &eval);
2363 if (len & KSTRTOX_OVERFLOW)
2364 return -EINVAL;
2365 if (eval != (unsigned long)eval)
2366 return -EINVAL;
2367 str += len;
2368
2369 if (*str != '\0')
2370 return -EINVAL;
2371
2372 *start = sval;
2373 *end = eval;
2374
2375 return 0;
2376 }
2377
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2378 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2379 {
2380 unsigned long vm_start, vm_end;
2381 bool exact_vma_exists = false;
2382 struct mm_struct *mm = NULL;
2383 struct task_struct *task;
2384 struct inode *inode;
2385 int status = 0;
2386
2387 if (flags & LOOKUP_RCU)
2388 return -ECHILD;
2389
2390 inode = d_inode(dentry);
2391 task = get_proc_task(inode);
2392 if (!task)
2393 goto out_notask;
2394
2395 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2396 if (IS_ERR_OR_NULL(mm))
2397 goto out;
2398
2399 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2400 status = mmap_read_lock_killable(mm);
2401 if (!status) {
2402 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2403 vm_end);
2404 mmap_read_unlock(mm);
2405 }
2406 }
2407
2408 mmput(mm);
2409
2410 if (exact_vma_exists) {
2411 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2412
2413 security_task_to_inode(task, inode);
2414 status = 1;
2415 }
2416
2417 out:
2418 put_task_struct(task);
2419
2420 out_notask:
2421 return status;
2422 }
2423
2424 static const struct dentry_operations tid_map_files_dentry_operations = {
2425 .d_revalidate = map_files_d_revalidate,
2426 .d_delete = pid_delete_dentry,
2427 };
2428
map_files_get_link(struct dentry * dentry,struct path * path)2429 static int map_files_get_link(struct dentry *dentry, struct path *path)
2430 {
2431 unsigned long vm_start, vm_end;
2432 struct vm_area_struct *vma;
2433 struct task_struct *task;
2434 struct mm_struct *mm;
2435 int rc;
2436
2437 rc = -ENOENT;
2438 task = get_proc_task(d_inode(dentry));
2439 if (!task)
2440 goto out;
2441
2442 mm = get_task_mm(task);
2443 put_task_struct(task);
2444 if (!mm)
2445 goto out;
2446
2447 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2448 if (rc)
2449 goto out_mmput;
2450
2451 rc = mmap_read_lock_killable(mm);
2452 if (rc)
2453 goto out_mmput;
2454
2455 rc = -ENOENT;
2456 vma = find_exact_vma(mm, vm_start, vm_end);
2457 if (vma && vma->vm_file) {
2458 *path = vma->vm_file->f_path;
2459 path_get(path);
2460 rc = 0;
2461 }
2462 mmap_read_unlock(mm);
2463
2464 out_mmput:
2465 mmput(mm);
2466 out:
2467 return rc;
2468 }
2469
2470 struct map_files_info {
2471 unsigned long start;
2472 unsigned long end;
2473 fmode_t mode;
2474 };
2475
2476 /*
2477 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2478 * to concerns about how the symlinks may be used to bypass permissions on
2479 * ancestor directories in the path to the file in question.
2480 */
2481 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2482 proc_map_files_get_link(struct dentry *dentry,
2483 struct inode *inode,
2484 struct delayed_call *done)
2485 {
2486 if (!checkpoint_restore_ns_capable(&init_user_ns))
2487 return ERR_PTR(-EPERM);
2488
2489 return proc_pid_get_link(dentry, inode, done);
2490 }
2491
2492 /*
2493 * Identical to proc_pid_link_inode_operations except for get_link()
2494 */
2495 static const struct inode_operations proc_map_files_link_inode_operations = {
2496 .readlink = proc_pid_readlink,
2497 .get_link = proc_map_files_get_link,
2498 .setattr = proc_setattr,
2499 };
2500
2501 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2502 proc_map_files_instantiate(struct dentry *dentry,
2503 struct task_struct *task, const void *ptr)
2504 {
2505 fmode_t mode = (fmode_t)(unsigned long)ptr;
2506 struct proc_inode *ei;
2507 struct inode *inode;
2508
2509 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2510 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2511 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2512 if (!inode)
2513 return ERR_PTR(-ENOENT);
2514
2515 ei = PROC_I(inode);
2516 ei->op.proc_get_link = map_files_get_link;
2517
2518 inode->i_op = &proc_map_files_link_inode_operations;
2519 inode->i_size = 64;
2520
2521 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2522 return d_splice_alias(inode, dentry);
2523 }
2524
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2525 static struct dentry *proc_map_files_lookup(struct inode *dir,
2526 struct dentry *dentry, unsigned int flags)
2527 {
2528 unsigned long vm_start, vm_end;
2529 struct vm_area_struct *vma;
2530 struct task_struct *task;
2531 struct dentry *result;
2532 struct mm_struct *mm;
2533
2534 result = ERR_PTR(-ENOENT);
2535 task = get_proc_task(dir);
2536 if (!task)
2537 goto out;
2538
2539 result = ERR_PTR(-EACCES);
2540 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2541 goto out_put_task;
2542
2543 result = ERR_PTR(-ENOENT);
2544 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2545 goto out_put_task;
2546
2547 mm = get_task_mm(task);
2548 if (!mm)
2549 goto out_put_task;
2550
2551 result = ERR_PTR(-EINTR);
2552 if (mmap_read_lock_killable(mm))
2553 goto out_put_mm;
2554
2555 result = ERR_PTR(-ENOENT);
2556 vma = find_exact_vma(mm, vm_start, vm_end);
2557 if (!vma)
2558 goto out_no_vma;
2559
2560 if (vma->vm_file)
2561 result = proc_map_files_instantiate(dentry, task,
2562 (void *)(unsigned long)vma->vm_file->f_mode);
2563
2564 out_no_vma:
2565 mmap_read_unlock(mm);
2566 out_put_mm:
2567 mmput(mm);
2568 out_put_task:
2569 put_task_struct(task);
2570 out:
2571 return result;
2572 }
2573
2574 static const struct inode_operations proc_map_files_inode_operations = {
2575 .lookup = proc_map_files_lookup,
2576 .permission = proc_fd_permission,
2577 .setattr = proc_setattr,
2578 };
2579
2580 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2581 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2582 {
2583 struct vm_area_struct *vma;
2584 struct task_struct *task;
2585 struct mm_struct *mm;
2586 unsigned long nr_files, pos, i;
2587 GENRADIX(struct map_files_info) fa;
2588 struct map_files_info *p;
2589 int ret;
2590 struct vma_iterator vmi;
2591
2592 genradix_init(&fa);
2593
2594 ret = -ENOENT;
2595 task = get_proc_task(file_inode(file));
2596 if (!task)
2597 goto out;
2598
2599 ret = -EACCES;
2600 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2601 goto out_put_task;
2602
2603 ret = 0;
2604 if (!dir_emit_dots(file, ctx))
2605 goto out_put_task;
2606
2607 mm = get_task_mm(task);
2608 if (!mm)
2609 goto out_put_task;
2610
2611 ret = mmap_read_lock_killable(mm);
2612 if (ret) {
2613 mmput(mm);
2614 goto out_put_task;
2615 }
2616
2617 nr_files = 0;
2618
2619 /*
2620 * We need two passes here:
2621 *
2622 * 1) Collect vmas of mapped files with mmap_lock taken
2623 * 2) Release mmap_lock and instantiate entries
2624 *
2625 * otherwise we get lockdep complained, since filldir()
2626 * routine might require mmap_lock taken in might_fault().
2627 */
2628
2629 pos = 2;
2630 vma_iter_init(&vmi, mm, 0);
2631 for_each_vma(vmi, vma) {
2632 if (!vma->vm_file)
2633 continue;
2634 if (++pos <= ctx->pos)
2635 continue;
2636
2637 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2638 if (!p) {
2639 ret = -ENOMEM;
2640 mmap_read_unlock(mm);
2641 mmput(mm);
2642 goto out_put_task;
2643 }
2644
2645 p->start = vma->vm_start;
2646 p->end = vma->vm_end;
2647 p->mode = vma->vm_file->f_mode;
2648 }
2649 mmap_read_unlock(mm);
2650 mmput(mm);
2651
2652 for (i = 0; i < nr_files; i++) {
2653 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2654 unsigned int len;
2655
2656 p = genradix_ptr(&fa, i);
2657 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2658 if (!proc_fill_cache(file, ctx,
2659 buf, len,
2660 proc_map_files_instantiate,
2661 task,
2662 (void *)(unsigned long)p->mode))
2663 break;
2664 ctx->pos++;
2665 }
2666
2667 out_put_task:
2668 put_task_struct(task);
2669 out:
2670 genradix_free(&fa);
2671 return ret;
2672 }
2673
2674 static const struct file_operations proc_map_files_operations = {
2675 .read = generic_read_dir,
2676 .iterate_shared = proc_map_files_readdir,
2677 .llseek = generic_file_llseek,
2678 };
2679
2680 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2681 struct timers_private {
2682 struct pid *pid;
2683 struct task_struct *task;
2684 struct sighand_struct *sighand;
2685 struct pid_namespace *ns;
2686 unsigned long flags;
2687 };
2688
timers_start(struct seq_file * m,loff_t * pos)2689 static void *timers_start(struct seq_file *m, loff_t *pos)
2690 {
2691 struct timers_private *tp = m->private;
2692
2693 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2694 if (!tp->task)
2695 return ERR_PTR(-ESRCH);
2696
2697 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2698 if (!tp->sighand)
2699 return ERR_PTR(-ESRCH);
2700
2701 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2702 }
2703
timers_next(struct seq_file * m,void * v,loff_t * pos)2704 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2705 {
2706 struct timers_private *tp = m->private;
2707 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2708 }
2709
timers_stop(struct seq_file * m,void * v)2710 static void timers_stop(struct seq_file *m, void *v)
2711 {
2712 struct timers_private *tp = m->private;
2713
2714 if (tp->sighand) {
2715 unlock_task_sighand(tp->task, &tp->flags);
2716 tp->sighand = NULL;
2717 }
2718
2719 if (tp->task) {
2720 put_task_struct(tp->task);
2721 tp->task = NULL;
2722 }
2723 }
2724
show_timer(struct seq_file * m,void * v)2725 static int show_timer(struct seq_file *m, void *v)
2726 {
2727 struct k_itimer *timer;
2728 struct timers_private *tp = m->private;
2729 int notify;
2730 static const char * const nstr[] = {
2731 [SIGEV_SIGNAL] = "signal",
2732 [SIGEV_NONE] = "none",
2733 [SIGEV_THREAD] = "thread",
2734 };
2735
2736 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2737 notify = timer->it_sigev_notify;
2738
2739 seq_printf(m, "ID: %d\n", timer->it_id);
2740 seq_printf(m, "signal: %d/%px\n",
2741 timer->sigq->info.si_signo,
2742 timer->sigq->info.si_value.sival_ptr);
2743 seq_printf(m, "notify: %s/%s.%d\n",
2744 nstr[notify & ~SIGEV_THREAD_ID],
2745 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2746 pid_nr_ns(timer->it_pid, tp->ns));
2747 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2748
2749 return 0;
2750 }
2751
2752 static const struct seq_operations proc_timers_seq_ops = {
2753 .start = timers_start,
2754 .next = timers_next,
2755 .stop = timers_stop,
2756 .show = show_timer,
2757 };
2758
proc_timers_open(struct inode * inode,struct file * file)2759 static int proc_timers_open(struct inode *inode, struct file *file)
2760 {
2761 struct timers_private *tp;
2762
2763 tp = __seq_open_private(file, &proc_timers_seq_ops,
2764 sizeof(struct timers_private));
2765 if (!tp)
2766 return -ENOMEM;
2767
2768 tp->pid = proc_pid(inode);
2769 tp->ns = proc_pid_ns(inode->i_sb);
2770 return 0;
2771 }
2772
2773 static const struct file_operations proc_timers_operations = {
2774 .open = proc_timers_open,
2775 .read = seq_read,
2776 .llseek = seq_lseek,
2777 .release = seq_release_private,
2778 };
2779 #endif
2780
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2781 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2782 size_t count, loff_t *offset)
2783 {
2784 struct inode *inode = file_inode(file);
2785 struct task_struct *p;
2786 u64 slack_ns;
2787 int err;
2788
2789 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2790 if (err < 0)
2791 return err;
2792
2793 p = get_proc_task(inode);
2794 if (!p)
2795 return -ESRCH;
2796
2797 if (p != current) {
2798 rcu_read_lock();
2799 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2800 rcu_read_unlock();
2801 count = -EPERM;
2802 goto out;
2803 }
2804 rcu_read_unlock();
2805
2806 err = security_task_setscheduler(p);
2807 if (err) {
2808 count = err;
2809 goto out;
2810 }
2811 }
2812
2813 task_lock(p);
2814 if (task_is_realtime(p))
2815 slack_ns = 0;
2816 else if (slack_ns == 0)
2817 slack_ns = p->default_timer_slack_ns;
2818 p->timer_slack_ns = slack_ns;
2819 task_unlock(p);
2820
2821 out:
2822 put_task_struct(p);
2823
2824 return count;
2825 }
2826
timerslack_ns_show(struct seq_file * m,void * v)2827 static int timerslack_ns_show(struct seq_file *m, void *v)
2828 {
2829 struct inode *inode = m->private;
2830 struct task_struct *p;
2831 int err = 0;
2832
2833 p = get_proc_task(inode);
2834 if (!p)
2835 return -ESRCH;
2836
2837 if (p != current) {
2838 rcu_read_lock();
2839 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2840 rcu_read_unlock();
2841 err = -EPERM;
2842 goto out;
2843 }
2844 rcu_read_unlock();
2845
2846 err = security_task_getscheduler(p);
2847 if (err)
2848 goto out;
2849 }
2850
2851 task_lock(p);
2852 seq_printf(m, "%llu\n", p->timer_slack_ns);
2853 task_unlock(p);
2854
2855 out:
2856 put_task_struct(p);
2857
2858 return err;
2859 }
2860
timerslack_ns_open(struct inode * inode,struct file * filp)2861 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2862 {
2863 return single_open(filp, timerslack_ns_show, inode);
2864 }
2865
2866 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2867 .open = timerslack_ns_open,
2868 .read = seq_read,
2869 .write = timerslack_ns_write,
2870 .llseek = seq_lseek,
2871 .release = single_release,
2872 };
2873
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2874 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2875 struct task_struct *task, const void *ptr)
2876 {
2877 const struct pid_entry *p = ptr;
2878 struct inode *inode;
2879 struct proc_inode *ei;
2880
2881 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2882 if (!inode)
2883 return ERR_PTR(-ENOENT);
2884
2885 ei = PROC_I(inode);
2886 if (S_ISDIR(inode->i_mode))
2887 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2888 if (p->iop)
2889 inode->i_op = p->iop;
2890 if (p->fop)
2891 inode->i_fop = p->fop;
2892 ei->op = p->op;
2893 pid_update_inode(task, inode);
2894 d_set_d_op(dentry, &pid_dentry_operations);
2895 return d_splice_alias(inode, dentry);
2896 }
2897
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2898 static struct dentry *proc_pident_lookup(struct inode *dir,
2899 struct dentry *dentry,
2900 const struct pid_entry *p,
2901 const struct pid_entry *end)
2902 {
2903 struct task_struct *task = get_proc_task(dir);
2904 struct dentry *res = ERR_PTR(-ENOENT);
2905
2906 if (!task)
2907 goto out_no_task;
2908
2909 /*
2910 * Yes, it does not scale. And it should not. Don't add
2911 * new entries into /proc/<tgid>/ without very good reasons.
2912 */
2913 for (; p < end; p++) {
2914 if (p->len != dentry->d_name.len)
2915 continue;
2916 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2917 res = proc_pident_instantiate(dentry, task, p);
2918 break;
2919 }
2920 }
2921 put_task_struct(task);
2922 out_no_task:
2923 return res;
2924 }
2925
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2926 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2927 const struct pid_entry *ents, unsigned int nents)
2928 {
2929 struct task_struct *task = get_proc_task(file_inode(file));
2930 const struct pid_entry *p;
2931
2932 if (!task)
2933 return -ENOENT;
2934
2935 if (!dir_emit_dots(file, ctx))
2936 goto out;
2937
2938 if (ctx->pos >= nents + 2)
2939 goto out;
2940
2941 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2942 if (!proc_fill_cache(file, ctx, p->name, p->len,
2943 proc_pident_instantiate, task, p))
2944 break;
2945 ctx->pos++;
2946 }
2947 out:
2948 put_task_struct(task);
2949 return 0;
2950 }
2951
2952 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2953 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2954 {
2955 file->private_data = NULL;
2956 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2957 return 0;
2958 }
2959
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2960 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2961 size_t count, loff_t *ppos)
2962 {
2963 struct inode * inode = file_inode(file);
2964 char *p = NULL;
2965 ssize_t length;
2966 struct task_struct *task = get_proc_task(inode);
2967
2968 if (!task)
2969 return -ESRCH;
2970
2971 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2972 file->f_path.dentry->d_name.name,
2973 &p);
2974 put_task_struct(task);
2975 if (length > 0)
2976 length = simple_read_from_buffer(buf, count, ppos, p, length);
2977 kfree(p);
2978 return length;
2979 }
2980
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2981 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2982 size_t count, loff_t *ppos)
2983 {
2984 struct inode * inode = file_inode(file);
2985 struct task_struct *task;
2986 void *page;
2987 int rv;
2988
2989 /* A task may only write when it was the opener. */
2990 if (file->private_data != current->mm)
2991 return -EPERM;
2992
2993 rcu_read_lock();
2994 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2995 if (!task) {
2996 rcu_read_unlock();
2997 return -ESRCH;
2998 }
2999 /* A task may only write its own attributes. */
3000 if (current != task) {
3001 rcu_read_unlock();
3002 return -EACCES;
3003 }
3004 /* Prevent changes to overridden credentials. */
3005 if (current_cred() != current_real_cred()) {
3006 rcu_read_unlock();
3007 return -EBUSY;
3008 }
3009 rcu_read_unlock();
3010
3011 if (count > PAGE_SIZE)
3012 count = PAGE_SIZE;
3013
3014 /* No partial writes. */
3015 if (*ppos != 0)
3016 return -EINVAL;
3017
3018 page = memdup_user(buf, count);
3019 if (IS_ERR(page)) {
3020 rv = PTR_ERR(page);
3021 goto out;
3022 }
3023
3024 /* Guard against adverse ptrace interaction */
3025 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
3026 if (rv < 0)
3027 goto out_free;
3028
3029 rv = security_setprocattr(PROC_I(inode)->op.lsm,
3030 file->f_path.dentry->d_name.name, page,
3031 count);
3032 mutex_unlock(¤t->signal->cred_guard_mutex);
3033 out_free:
3034 kfree(page);
3035 out:
3036 return rv;
3037 }
3038
3039 static const struct file_operations proc_pid_attr_operations = {
3040 .open = proc_pid_attr_open,
3041 .read = proc_pid_attr_read,
3042 .write = proc_pid_attr_write,
3043 .llseek = generic_file_llseek,
3044 .release = mem_release,
3045 };
3046
3047 #define LSM_DIR_OPS(LSM) \
3048 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
3049 struct dir_context *ctx) \
3050 { \
3051 return proc_pident_readdir(filp, ctx, \
3052 LSM##_attr_dir_stuff, \
3053 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
3054 } \
3055 \
3056 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
3057 .read = generic_read_dir, \
3058 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
3059 .llseek = default_llseek, \
3060 }; \
3061 \
3062 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
3063 struct dentry *dentry, unsigned int flags) \
3064 { \
3065 return proc_pident_lookup(dir, dentry, \
3066 LSM##_attr_dir_stuff, \
3067 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
3068 } \
3069 \
3070 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
3071 .lookup = proc_##LSM##_attr_dir_lookup, \
3072 .getattr = pid_getattr, \
3073 .setattr = proc_setattr, \
3074 }
3075
3076 #ifdef CONFIG_SECURITY_SMACK
3077 static const struct pid_entry smack_attr_dir_stuff[] = {
3078 ATTR("smack", "current", 0666),
3079 };
3080 LSM_DIR_OPS(smack);
3081 #endif
3082
3083 #ifdef CONFIG_SECURITY_APPARMOR
3084 static const struct pid_entry apparmor_attr_dir_stuff[] = {
3085 ATTR("apparmor", "current", 0666),
3086 ATTR("apparmor", "prev", 0444),
3087 ATTR("apparmor", "exec", 0666),
3088 };
3089 LSM_DIR_OPS(apparmor);
3090 #endif
3091
3092 static const struct pid_entry attr_dir_stuff[] = {
3093 ATTR(NULL, "current", 0666),
3094 ATTR(NULL, "prev", 0444),
3095 ATTR(NULL, "exec", 0666),
3096 ATTR(NULL, "fscreate", 0666),
3097 ATTR(NULL, "keycreate", 0666),
3098 ATTR(NULL, "sockcreate", 0666),
3099 #ifdef CONFIG_SECURITY_SMACK
3100 DIR("smack", 0555,
3101 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
3102 #endif
3103 #ifdef CONFIG_SECURITY_APPARMOR
3104 DIR("apparmor", 0555,
3105 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
3106 #endif
3107 };
3108
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)3109 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
3110 {
3111 return proc_pident_readdir(file, ctx,
3112 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
3113 }
3114
3115 static const struct file_operations proc_attr_dir_operations = {
3116 .read = generic_read_dir,
3117 .iterate_shared = proc_attr_dir_readdir,
3118 .llseek = generic_file_llseek,
3119 };
3120
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3121 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
3122 struct dentry *dentry, unsigned int flags)
3123 {
3124 return proc_pident_lookup(dir, dentry,
3125 attr_dir_stuff,
3126 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
3127 }
3128
3129 static const struct inode_operations proc_attr_dir_inode_operations = {
3130 .lookup = proc_attr_dir_lookup,
3131 .getattr = pid_getattr,
3132 .setattr = proc_setattr,
3133 };
3134
3135 #endif
3136
3137 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3138 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
3139 size_t count, loff_t *ppos)
3140 {
3141 struct task_struct *task = get_proc_task(file_inode(file));
3142 struct mm_struct *mm;
3143 char buffer[PROC_NUMBUF];
3144 size_t len;
3145 int ret;
3146
3147 if (!task)
3148 return -ESRCH;
3149
3150 ret = 0;
3151 mm = get_task_mm(task);
3152 if (mm) {
3153 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
3154 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
3155 MMF_DUMP_FILTER_SHIFT));
3156 mmput(mm);
3157 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
3158 }
3159
3160 put_task_struct(task);
3161
3162 return ret;
3163 }
3164
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)3165 static ssize_t proc_coredump_filter_write(struct file *file,
3166 const char __user *buf,
3167 size_t count,
3168 loff_t *ppos)
3169 {
3170 struct task_struct *task;
3171 struct mm_struct *mm;
3172 unsigned int val;
3173 int ret;
3174 int i;
3175 unsigned long mask;
3176
3177 ret = kstrtouint_from_user(buf, count, 0, &val);
3178 if (ret < 0)
3179 return ret;
3180
3181 ret = -ESRCH;
3182 task = get_proc_task(file_inode(file));
3183 if (!task)
3184 goto out_no_task;
3185
3186 mm = get_task_mm(task);
3187 if (!mm)
3188 goto out_no_mm;
3189 ret = 0;
3190
3191 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3192 if (val & mask)
3193 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3194 else
3195 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3196 }
3197
3198 mmput(mm);
3199 out_no_mm:
3200 put_task_struct(task);
3201 out_no_task:
3202 if (ret < 0)
3203 return ret;
3204 return count;
3205 }
3206
3207 static const struct file_operations proc_coredump_filter_operations = {
3208 .read = proc_coredump_filter_read,
3209 .write = proc_coredump_filter_write,
3210 .llseek = generic_file_llseek,
3211 };
3212 #endif
3213
3214 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3215 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3216 {
3217 struct task_io_accounting acct = task->ioac;
3218 unsigned long flags;
3219 int result;
3220
3221 result = down_read_killable(&task->signal->exec_update_lock);
3222 if (result)
3223 return result;
3224
3225 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3226 result = -EACCES;
3227 goto out_unlock;
3228 }
3229
3230 if (whole && lock_task_sighand(task, &flags)) {
3231 struct task_struct *t = task;
3232
3233 task_io_accounting_add(&acct, &task->signal->ioac);
3234 while_each_thread(task, t)
3235 task_io_accounting_add(&acct, &t->ioac);
3236
3237 unlock_task_sighand(task, &flags);
3238 }
3239 seq_printf(m,
3240 "rchar: %llu\n"
3241 "wchar: %llu\n"
3242 "syscr: %llu\n"
3243 "syscw: %llu\n"
3244 "read_bytes: %llu\n"
3245 "write_bytes: %llu\n"
3246 "cancelled_write_bytes: %llu\n",
3247 (unsigned long long)acct.rchar,
3248 (unsigned long long)acct.wchar,
3249 (unsigned long long)acct.syscr,
3250 (unsigned long long)acct.syscw,
3251 (unsigned long long)acct.read_bytes,
3252 (unsigned long long)acct.write_bytes,
3253 (unsigned long long)acct.cancelled_write_bytes);
3254 result = 0;
3255
3256 out_unlock:
3257 up_read(&task->signal->exec_update_lock);
3258 return result;
3259 }
3260
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3261 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3262 struct pid *pid, struct task_struct *task)
3263 {
3264 return do_io_accounting(task, m, 0);
3265 }
3266
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3267 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3268 struct pid *pid, struct task_struct *task)
3269 {
3270 return do_io_accounting(task, m, 1);
3271 }
3272 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3273
3274 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3275 static int proc_id_map_open(struct inode *inode, struct file *file,
3276 const struct seq_operations *seq_ops)
3277 {
3278 struct user_namespace *ns = NULL;
3279 struct task_struct *task;
3280 struct seq_file *seq;
3281 int ret = -EINVAL;
3282
3283 task = get_proc_task(inode);
3284 if (task) {
3285 rcu_read_lock();
3286 ns = get_user_ns(task_cred_xxx(task, user_ns));
3287 rcu_read_unlock();
3288 put_task_struct(task);
3289 }
3290 if (!ns)
3291 goto err;
3292
3293 ret = seq_open(file, seq_ops);
3294 if (ret)
3295 goto err_put_ns;
3296
3297 seq = file->private_data;
3298 seq->private = ns;
3299
3300 return 0;
3301 err_put_ns:
3302 put_user_ns(ns);
3303 err:
3304 return ret;
3305 }
3306
proc_id_map_release(struct inode * inode,struct file * file)3307 static int proc_id_map_release(struct inode *inode, struct file *file)
3308 {
3309 struct seq_file *seq = file->private_data;
3310 struct user_namespace *ns = seq->private;
3311 put_user_ns(ns);
3312 return seq_release(inode, file);
3313 }
3314
proc_uid_map_open(struct inode * inode,struct file * file)3315 static int proc_uid_map_open(struct inode *inode, struct file *file)
3316 {
3317 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3318 }
3319
proc_gid_map_open(struct inode * inode,struct file * file)3320 static int proc_gid_map_open(struct inode *inode, struct file *file)
3321 {
3322 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3323 }
3324
proc_projid_map_open(struct inode * inode,struct file * file)3325 static int proc_projid_map_open(struct inode *inode, struct file *file)
3326 {
3327 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3328 }
3329
3330 static const struct file_operations proc_uid_map_operations = {
3331 .open = proc_uid_map_open,
3332 .write = proc_uid_map_write,
3333 .read = seq_read,
3334 .llseek = seq_lseek,
3335 .release = proc_id_map_release,
3336 };
3337
3338 static const struct file_operations proc_gid_map_operations = {
3339 .open = proc_gid_map_open,
3340 .write = proc_gid_map_write,
3341 .read = seq_read,
3342 .llseek = seq_lseek,
3343 .release = proc_id_map_release,
3344 };
3345
3346 static const struct file_operations proc_projid_map_operations = {
3347 .open = proc_projid_map_open,
3348 .write = proc_projid_map_write,
3349 .read = seq_read,
3350 .llseek = seq_lseek,
3351 .release = proc_id_map_release,
3352 };
3353
proc_setgroups_open(struct inode * inode,struct file * file)3354 static int proc_setgroups_open(struct inode *inode, struct file *file)
3355 {
3356 struct user_namespace *ns = NULL;
3357 struct task_struct *task;
3358 int ret;
3359
3360 ret = -ESRCH;
3361 task = get_proc_task(inode);
3362 if (task) {
3363 rcu_read_lock();
3364 ns = get_user_ns(task_cred_xxx(task, user_ns));
3365 rcu_read_unlock();
3366 put_task_struct(task);
3367 }
3368 if (!ns)
3369 goto err;
3370
3371 if (file->f_mode & FMODE_WRITE) {
3372 ret = -EACCES;
3373 if (!ns_capable(ns, CAP_SYS_ADMIN))
3374 goto err_put_ns;
3375 }
3376
3377 ret = single_open(file, &proc_setgroups_show, ns);
3378 if (ret)
3379 goto err_put_ns;
3380
3381 return 0;
3382 err_put_ns:
3383 put_user_ns(ns);
3384 err:
3385 return ret;
3386 }
3387
proc_setgroups_release(struct inode * inode,struct file * file)3388 static int proc_setgroups_release(struct inode *inode, struct file *file)
3389 {
3390 struct seq_file *seq = file->private_data;
3391 struct user_namespace *ns = seq->private;
3392 int ret = single_release(inode, file);
3393 put_user_ns(ns);
3394 return ret;
3395 }
3396
3397 static const struct file_operations proc_setgroups_operations = {
3398 .open = proc_setgroups_open,
3399 .write = proc_setgroups_write,
3400 .read = seq_read,
3401 .llseek = seq_lseek,
3402 .release = proc_setgroups_release,
3403 };
3404 #endif /* CONFIG_USER_NS */
3405
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3406 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3407 struct pid *pid, struct task_struct *task)
3408 {
3409 int err = lock_trace(task);
3410 if (!err) {
3411 seq_printf(m, "%08x\n", task->personality);
3412 unlock_trace(task);
3413 }
3414 return err;
3415 }
3416
3417 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3418 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3419 struct pid *pid, struct task_struct *task)
3420 {
3421 seq_printf(m, "%d\n", task->patch_state);
3422 return 0;
3423 }
3424 #endif /* CONFIG_LIVEPATCH */
3425
3426 #ifdef CONFIG_KSM
proc_pid_ksm_merging_pages(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3427 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3428 struct pid *pid, struct task_struct *task)
3429 {
3430 struct mm_struct *mm;
3431
3432 mm = get_task_mm(task);
3433 if (mm) {
3434 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3435 mmput(mm);
3436 }
3437
3438 return 0;
3439 }
proc_pid_ksm_stat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3440 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3441 struct pid *pid, struct task_struct *task)
3442 {
3443 struct mm_struct *mm;
3444
3445 mm = get_task_mm(task);
3446 if (mm) {
3447 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3448 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3449 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3450 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3451 mmput(mm);
3452 }
3453
3454 return 0;
3455 }
3456 #endif /* CONFIG_KSM */
3457
3458 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3459 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3460 struct pid *pid, struct task_struct *task)
3461 {
3462 unsigned long prev_depth = THREAD_SIZE -
3463 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3464 unsigned long depth = THREAD_SIZE -
3465 (task->lowest_stack & (THREAD_SIZE - 1));
3466
3467 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3468 prev_depth, depth);
3469 return 0;
3470 }
3471 #endif /* CONFIG_STACKLEAK_METRICS */
3472
3473 #ifdef CONFIG_ACCESS_TOKENID
proc_token_operations(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3474 static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns,
3475 struct pid *pid, struct task_struct *task)
3476 {
3477 seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken);
3478 return 0;
3479 }
3480 #endif /* CONFIG_ACCESS_TOKENID */
3481
3482 /*
3483 * Thread groups
3484 */
3485 static const struct file_operations proc_task_operations;
3486 static const struct inode_operations proc_task_inode_operations;
3487
3488 static const struct pid_entry tgid_base_stuff[] = {
3489 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3490 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3491 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3492 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3493 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3494 #ifdef CONFIG_NET
3495 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3496 #endif
3497 REG("environ", S_IRUSR, proc_environ_operations),
3498 REG("auxv", S_IRUSR, proc_auxv_operations),
3499 ONE("status", S_IRUGO, proc_pid_status),
3500 ONE("personality", S_IRUSR, proc_pid_personality),
3501 ONE("limits", S_IRUGO, proc_pid_limits),
3502 #ifdef CONFIG_SCHED_WALT
3503 REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations),
3504 #endif
3505 #ifdef CONFIG_SCHED_DEBUG
3506 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3507 #endif
3508 #ifdef CONFIG_SCHED_AUTOGROUP
3509 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3510 #endif
3511 #ifdef CONFIG_TIME_NS
3512 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3513 #endif
3514 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3515 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3516 ONE("syscall", S_IRUSR, proc_pid_syscall),
3517 #endif
3518 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3519 ONE("stat", S_IRUGO, proc_tgid_stat),
3520 ONE("statm", S_IRUGO, proc_pid_statm),
3521 REG("maps", S_IRUGO, proc_pid_maps_operations),
3522 #ifdef CONFIG_NUMA
3523 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3524 #endif
3525 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3526 LNK("cwd", proc_cwd_link),
3527 LNK("root", proc_root_link),
3528 LNK("exe", proc_exe_link),
3529 REG("mounts", S_IRUGO, proc_mounts_operations),
3530 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3531 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3532 #ifdef CONFIG_PROC_PAGE_MONITOR
3533 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3534 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3535 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3536 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3537 #endif
3538 #ifdef CONFIG_SECURITY
3539 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3540 #endif
3541 #ifdef CONFIG_KALLSYMS
3542 ONE("wchan", S_IRUGO, proc_pid_wchan),
3543 #endif
3544 #ifdef CONFIG_STACKTRACE
3545 ONE("stack", S_IRUSR, proc_pid_stack),
3546 #endif
3547 #ifdef CONFIG_SCHED_INFO
3548 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3549 #endif
3550 #ifdef CONFIG_LATENCYTOP
3551 REG("latency", S_IRUGO, proc_lstats_operations),
3552 #endif
3553 #ifdef CONFIG_PROC_PID_CPUSET
3554 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3555 #endif
3556 #ifdef CONFIG_CGROUPS
3557 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3558 #endif
3559 #ifdef CONFIG_PROC_CPU_RESCTRL
3560 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3561 #endif
3562 ONE("oom_score", S_IRUGO, proc_oom_score),
3563 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3564 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3565 #ifdef CONFIG_AUDIT
3566 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3567 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3568 #endif
3569 #ifdef CONFIG_FAULT_INJECTION
3570 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3571 REG("fail-nth", 0644, proc_fail_nth_operations),
3572 #endif
3573 #ifdef CONFIG_ELF_CORE
3574 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3575 #endif
3576 #ifdef CONFIG_TASK_IO_ACCOUNTING
3577 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3578 #endif
3579 #ifdef CONFIG_USER_NS
3580 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3581 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3582 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3583 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3584 #endif
3585 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3586 REG("timers", S_IRUGO, proc_timers_operations),
3587 #endif
3588 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3589 #ifdef CONFIG_LIVEPATCH
3590 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3591 #endif
3592 #ifdef CONFIG_STACKLEAK_METRICS
3593 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3594 #endif
3595 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3596 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3597 #endif
3598 #ifdef CONFIG_ACCESS_TOKENID
3599 ONE("tokenid", S_IRUSR, proc_token_operations),
3600 #endif
3601 #ifdef CONFIG_SCHED_RTG
3602 REG("sched_rtg_ctrl", S_IRUGO|S_IWUGO, proc_rtg_operations),
3603 #endif
3604 #ifdef CONFIG_SCHED_RTG_DEBUG
3605 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3606 #endif
3607 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3608 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3609 #endif
3610 #ifdef CONFIG_KSM
3611 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3612 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3613 #endif
3614 };
3615
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3616 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3617 {
3618 return proc_pident_readdir(file, ctx,
3619 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3620 }
3621
3622 static const struct file_operations proc_tgid_base_operations = {
3623 .read = generic_read_dir,
3624 .iterate_shared = proc_tgid_base_readdir,
3625 .llseek = generic_file_llseek,
3626 };
3627
tgid_pidfd_to_pid(const struct file * file)3628 struct pid *tgid_pidfd_to_pid(const struct file *file)
3629 {
3630 if (file->f_op != &proc_tgid_base_operations)
3631 return ERR_PTR(-EBADF);
3632
3633 return proc_pid(file_inode(file));
3634 }
3635
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3636 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3637 {
3638 return proc_pident_lookup(dir, dentry,
3639 tgid_base_stuff,
3640 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3641 }
3642
3643 static const struct inode_operations proc_tgid_base_inode_operations = {
3644 .lookup = proc_tgid_base_lookup,
3645 .getattr = pid_getattr,
3646 .setattr = proc_setattr,
3647 .permission = proc_pid_permission,
3648 };
3649
3650 /**
3651 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3652 * @pid: pid that should be flushed.
3653 *
3654 * This function walks a list of inodes (that belong to any proc
3655 * filesystem) that are attached to the pid and flushes them from
3656 * the dentry cache.
3657 *
3658 * It is safe and reasonable to cache /proc entries for a task until
3659 * that task exits. After that they just clog up the dcache with
3660 * useless entries, possibly causing useful dcache entries to be
3661 * flushed instead. This routine is provided to flush those useless
3662 * dcache entries when a process is reaped.
3663 *
3664 * NOTE: This routine is just an optimization so it does not guarantee
3665 * that no dcache entries will exist after a process is reaped
3666 * it just makes it very unlikely that any will persist.
3667 */
3668
proc_flush_pid(struct pid * pid)3669 void proc_flush_pid(struct pid *pid)
3670 {
3671 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3672 }
3673
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3674 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3675 struct task_struct *task, const void *ptr)
3676 {
3677 struct inode *inode;
3678
3679 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3680 S_IFDIR | S_IRUGO | S_IXUGO);
3681 if (!inode)
3682 return ERR_PTR(-ENOENT);
3683
3684 inode->i_op = &proc_tgid_base_inode_operations;
3685 inode->i_fop = &proc_tgid_base_operations;
3686 inode->i_flags|=S_IMMUTABLE;
3687
3688 set_nlink(inode, nlink_tgid);
3689 pid_update_inode(task, inode);
3690
3691 d_set_d_op(dentry, &pid_dentry_operations);
3692 return d_splice_alias(inode, dentry);
3693 }
3694
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3695 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3696 {
3697 struct task_struct *task;
3698 unsigned tgid;
3699 struct proc_fs_info *fs_info;
3700 struct pid_namespace *ns;
3701 struct dentry *result = ERR_PTR(-ENOENT);
3702
3703 tgid = name_to_int(&dentry->d_name);
3704 if (tgid == ~0U)
3705 goto out;
3706
3707 fs_info = proc_sb_info(dentry->d_sb);
3708 ns = fs_info->pid_ns;
3709 rcu_read_lock();
3710 task = find_task_by_pid_ns(tgid, ns);
3711 if (task)
3712 get_task_struct(task);
3713 rcu_read_unlock();
3714 if (!task)
3715 goto out;
3716
3717 /* Limit procfs to only ptraceable tasks */
3718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3719 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3720 goto out_put_task;
3721 }
3722
3723 result = proc_pid_instantiate(dentry, task, NULL);
3724 out_put_task:
3725 put_task_struct(task);
3726 out:
3727 return result;
3728 }
3729
3730 /*
3731 * Find the first task with tgid >= tgid
3732 *
3733 */
3734 struct tgid_iter {
3735 unsigned int tgid;
3736 struct task_struct *task;
3737 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3738 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3739 {
3740 struct pid *pid;
3741
3742 if (iter.task)
3743 put_task_struct(iter.task);
3744 rcu_read_lock();
3745 retry:
3746 iter.task = NULL;
3747 pid = find_ge_pid(iter.tgid, ns);
3748 if (pid) {
3749 iter.tgid = pid_nr_ns(pid, ns);
3750 iter.task = pid_task(pid, PIDTYPE_TGID);
3751 if (!iter.task) {
3752 iter.tgid += 1;
3753 goto retry;
3754 }
3755 get_task_struct(iter.task);
3756 }
3757 rcu_read_unlock();
3758 return iter;
3759 }
3760
3761 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3762
3763 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3764 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3765 {
3766 struct tgid_iter iter;
3767 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3768 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3769 loff_t pos = ctx->pos;
3770
3771 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3772 return 0;
3773
3774 if (pos == TGID_OFFSET - 2) {
3775 struct inode *inode = d_inode(fs_info->proc_self);
3776 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3777 return 0;
3778 ctx->pos = pos = pos + 1;
3779 }
3780 if (pos == TGID_OFFSET - 1) {
3781 struct inode *inode = d_inode(fs_info->proc_thread_self);
3782 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3783 return 0;
3784 ctx->pos = pos = pos + 1;
3785 }
3786 iter.tgid = pos - TGID_OFFSET;
3787 iter.task = NULL;
3788 for (iter = next_tgid(ns, iter);
3789 iter.task;
3790 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3791 char name[10 + 1];
3792 unsigned int len;
3793
3794 cond_resched();
3795 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3796 continue;
3797
3798 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3799 ctx->pos = iter.tgid + TGID_OFFSET;
3800 if (!proc_fill_cache(file, ctx, name, len,
3801 proc_pid_instantiate, iter.task, NULL)) {
3802 put_task_struct(iter.task);
3803 return 0;
3804 }
3805 }
3806 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3807 return 0;
3808 }
3809
3810 /*
3811 * proc_tid_comm_permission is a special permission function exclusively
3812 * used for the node /proc/<pid>/task/<tid>/comm.
3813 * It bypasses generic permission checks in the case where a task of the same
3814 * task group attempts to access the node.
3815 * The rationale behind this is that glibc and bionic access this node for
3816 * cross thread naming (pthread_set/getname_np(!self)). However, if
3817 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3818 * which locks out the cross thread naming implementation.
3819 * This function makes sure that the node is always accessible for members of
3820 * same thread group.
3821 */
proc_tid_comm_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3822 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3823 struct inode *inode, int mask)
3824 {
3825 bool is_same_tgroup;
3826 struct task_struct *task;
3827
3828 task = get_proc_task(inode);
3829 if (!task)
3830 return -ESRCH;
3831 is_same_tgroup = same_thread_group(current, task);
3832 put_task_struct(task);
3833
3834 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3835 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3836 * read or written by the members of the corresponding
3837 * thread group.
3838 */
3839 return 0;
3840 }
3841
3842 return generic_permission(&nop_mnt_idmap, inode, mask);
3843 }
3844
3845 static const struct inode_operations proc_tid_comm_inode_operations = {
3846 .setattr = proc_setattr,
3847 .permission = proc_tid_comm_permission,
3848 };
3849
3850 /*
3851 * Tasks
3852 */
3853 static const struct pid_entry tid_base_stuff[] = {
3854 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3855 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3856 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3857 #ifdef CONFIG_NET
3858 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3859 #endif
3860 REG("environ", S_IRUSR, proc_environ_operations),
3861 REG("auxv", S_IRUSR, proc_auxv_operations),
3862 ONE("status", S_IRUGO, proc_pid_status),
3863 ONE("personality", S_IRUSR, proc_pid_personality),
3864 ONE("limits", S_IRUGO, proc_pid_limits),
3865 #ifdef CONFIG_SCHED_DEBUG
3866 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3867 #endif
3868 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3869 &proc_tid_comm_inode_operations,
3870 &proc_pid_set_comm_operations, {}),
3871 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3872 ONE("syscall", S_IRUSR, proc_pid_syscall),
3873 #endif
3874 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3875 ONE("stat", S_IRUGO, proc_tid_stat),
3876 ONE("statm", S_IRUGO, proc_pid_statm),
3877 REG("maps", S_IRUGO, proc_pid_maps_operations),
3878 #ifdef CONFIG_PROC_CHILDREN
3879 REG("children", S_IRUGO, proc_tid_children_operations),
3880 #endif
3881 #ifdef CONFIG_NUMA
3882 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3883 #endif
3884 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3885 LNK("cwd", proc_cwd_link),
3886 LNK("root", proc_root_link),
3887 LNK("exe", proc_exe_link),
3888 REG("mounts", S_IRUGO, proc_mounts_operations),
3889 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3890 #ifdef CONFIG_PROC_PAGE_MONITOR
3891 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3892 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3893 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3894 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3895 #endif
3896 #ifdef CONFIG_SECURITY
3897 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3898 #endif
3899 #ifdef CONFIG_KALLSYMS
3900 ONE("wchan", S_IRUGO, proc_pid_wchan),
3901 #endif
3902 #ifdef CONFIG_STACKTRACE
3903 ONE("stack", S_IRUSR, proc_pid_stack),
3904 #endif
3905 #ifdef CONFIG_SCHED_INFO
3906 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3907 #endif
3908 #ifdef CONFIG_LATENCYTOP
3909 REG("latency", S_IRUGO, proc_lstats_operations),
3910 #endif
3911 #ifdef CONFIG_PROC_PID_CPUSET
3912 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3913 #endif
3914 #ifdef CONFIG_CGROUPS
3915 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3916 #endif
3917 #ifdef CONFIG_PROC_CPU_RESCTRL
3918 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3919 #endif
3920 ONE("oom_score", S_IRUGO, proc_oom_score),
3921 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3922 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3923 #ifdef CONFIG_AUDIT
3924 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3925 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3926 #endif
3927 #ifdef CONFIG_FAULT_INJECTION
3928 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3929 REG("fail-nth", 0644, proc_fail_nth_operations),
3930 #endif
3931 #ifdef CONFIG_TASK_IO_ACCOUNTING
3932 ONE("io", S_IRUSR, proc_tid_io_accounting),
3933 #endif
3934 #ifdef CONFIG_USER_NS
3935 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3936 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3937 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3938 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3939 #endif
3940 #ifdef CONFIG_LIVEPATCH
3941 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3942 #endif
3943 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3944 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3945 #endif
3946 #ifdef CONFIG_ACCESS_TOKENID
3947 ONE("tokenid", S_IRUSR, proc_token_operations),
3948 #endif
3949 #ifdef CONFIG_QOS_CTRL
3950 REG("sched_qos_ctrl", S_IRUGO|S_IWUGO, proc_qos_ctrl_operations),
3951 #endif
3952 #ifdef CONFIG_SCHED_RTG_DEBUG
3953 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3954 #endif
3955 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3956 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3957 #endif
3958 #ifdef CONFIG_KSM
3959 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3960 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3961 #endif
3962 };
3963
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3964 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3965 {
3966 return proc_pident_readdir(file, ctx,
3967 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3968 }
3969
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3970 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3971 {
3972 return proc_pident_lookup(dir, dentry,
3973 tid_base_stuff,
3974 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3975 }
3976
3977 static const struct file_operations proc_tid_base_operations = {
3978 .read = generic_read_dir,
3979 .iterate_shared = proc_tid_base_readdir,
3980 .llseek = generic_file_llseek,
3981 };
3982
3983 static const struct inode_operations proc_tid_base_inode_operations = {
3984 .lookup = proc_tid_base_lookup,
3985 .getattr = pid_getattr,
3986 .setattr = proc_setattr,
3987 };
3988
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3989 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3990 struct task_struct *task, const void *ptr)
3991 {
3992 struct inode *inode;
3993 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3994 S_IFDIR | S_IRUGO | S_IXUGO);
3995 if (!inode)
3996 return ERR_PTR(-ENOENT);
3997
3998 inode->i_op = &proc_tid_base_inode_operations;
3999 inode->i_fop = &proc_tid_base_operations;
4000 inode->i_flags |= S_IMMUTABLE;
4001
4002 set_nlink(inode, nlink_tid);
4003 pid_update_inode(task, inode);
4004
4005 d_set_d_op(dentry, &pid_dentry_operations);
4006 return d_splice_alias(inode, dentry);
4007 }
4008
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)4009 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
4010 {
4011 struct task_struct *task;
4012 struct task_struct *leader = get_proc_task(dir);
4013 unsigned tid;
4014 struct proc_fs_info *fs_info;
4015 struct pid_namespace *ns;
4016 struct dentry *result = ERR_PTR(-ENOENT);
4017
4018 if (!leader)
4019 goto out_no_task;
4020
4021 tid = name_to_int(&dentry->d_name);
4022 if (tid == ~0U)
4023 goto out;
4024
4025 fs_info = proc_sb_info(dentry->d_sb);
4026 ns = fs_info->pid_ns;
4027 rcu_read_lock();
4028 task = find_task_by_pid_ns(tid, ns);
4029 if (task)
4030 get_task_struct(task);
4031 rcu_read_unlock();
4032 if (!task)
4033 goto out;
4034 if (!same_thread_group(leader, task))
4035 goto out_drop_task;
4036
4037 result = proc_task_instantiate(dentry, task, NULL);
4038 out_drop_task:
4039 put_task_struct(task);
4040 out:
4041 put_task_struct(leader);
4042 out_no_task:
4043 return result;
4044 }
4045
4046 /*
4047 * Find the first tid of a thread group to return to user space.
4048 *
4049 * Usually this is just the thread group leader, but if the users
4050 * buffer was too small or there was a seek into the middle of the
4051 * directory we have more work todo.
4052 *
4053 * In the case of a short read we start with find_task_by_pid.
4054 *
4055 * In the case of a seek we start with the leader and walk nr
4056 * threads past it.
4057 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)4058 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
4059 struct pid_namespace *ns)
4060 {
4061 struct task_struct *pos, *task;
4062 unsigned long nr = f_pos;
4063
4064 if (nr != f_pos) /* 32bit overflow? */
4065 return NULL;
4066
4067 rcu_read_lock();
4068 task = pid_task(pid, PIDTYPE_PID);
4069 if (!task)
4070 goto fail;
4071
4072 /* Attempt to start with the tid of a thread */
4073 if (tid && nr) {
4074 pos = find_task_by_pid_ns(tid, ns);
4075 if (pos && same_thread_group(pos, task))
4076 goto found;
4077 }
4078
4079 /* If nr exceeds the number of threads there is nothing todo */
4080 if (nr >= get_nr_threads(task))
4081 goto fail;
4082
4083 /* If we haven't found our starting place yet start
4084 * with the leader and walk nr threads forward.
4085 */
4086 for_each_thread(task, pos) {
4087 if (!nr--)
4088 goto found;
4089 };
4090 fail:
4091 pos = NULL;
4092 goto out;
4093 found:
4094 get_task_struct(pos);
4095 out:
4096 rcu_read_unlock();
4097 return pos;
4098 }
4099
4100 /*
4101 * Find the next thread in the thread list.
4102 * Return NULL if there is an error or no next thread.
4103 *
4104 * The reference to the input task_struct is released.
4105 */
next_tid(struct task_struct * start)4106 static struct task_struct *next_tid(struct task_struct *start)
4107 {
4108 struct task_struct *pos = NULL;
4109 rcu_read_lock();
4110 if (pid_alive(start)) {
4111 pos = next_thread(start);
4112 if (thread_group_leader(pos))
4113 pos = NULL;
4114 else
4115 get_task_struct(pos);
4116 }
4117 rcu_read_unlock();
4118 put_task_struct(start);
4119 return pos;
4120 }
4121
4122 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)4123 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
4124 {
4125 struct inode *inode = file_inode(file);
4126 struct task_struct *task;
4127 struct pid_namespace *ns;
4128 int tid;
4129
4130 if (proc_inode_is_dead(inode))
4131 return -ENOENT;
4132
4133 if (!dir_emit_dots(file, ctx))
4134 return 0;
4135
4136 /* f_version caches the tgid value that the last readdir call couldn't
4137 * return. lseek aka telldir automagically resets f_version to 0.
4138 */
4139 ns = proc_pid_ns(inode->i_sb);
4140 tid = (int)file->f_version;
4141 file->f_version = 0;
4142 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
4143 task;
4144 task = next_tid(task), ctx->pos++) {
4145 char name[10 + 1];
4146 unsigned int len;
4147
4148 tid = task_pid_nr_ns(task, ns);
4149 if (!tid)
4150 continue; /* The task has just exited. */
4151 len = snprintf(name, sizeof(name), "%u", tid);
4152 if (!proc_fill_cache(file, ctx, name, len,
4153 proc_task_instantiate, task, NULL)) {
4154 /* returning this tgid failed, save it as the first
4155 * pid for the next readir call */
4156 file->f_version = (u64)tid;
4157 put_task_struct(task);
4158 break;
4159 }
4160 }
4161
4162 return 0;
4163 }
4164
proc_task_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)4165 static int proc_task_getattr(struct mnt_idmap *idmap,
4166 const struct path *path, struct kstat *stat,
4167 u32 request_mask, unsigned int query_flags)
4168 {
4169 struct inode *inode = d_inode(path->dentry);
4170 struct task_struct *p = get_proc_task(inode);
4171 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
4172
4173 if (p) {
4174 stat->nlink += get_nr_threads(p);
4175 put_task_struct(p);
4176 }
4177
4178 return 0;
4179 }
4180
4181 static const struct inode_operations proc_task_inode_operations = {
4182 .lookup = proc_task_lookup,
4183 .getattr = proc_task_getattr,
4184 .setattr = proc_setattr,
4185 .permission = proc_pid_permission,
4186 };
4187
4188 static const struct file_operations proc_task_operations = {
4189 .read = generic_read_dir,
4190 .iterate_shared = proc_task_readdir,
4191 .llseek = generic_file_llseek,
4192 };
4193
set_proc_pid_nlink(void)4194 void __init set_proc_pid_nlink(void)
4195 {
4196 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4197 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4198 }
4199