1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74 #include <linux/zswapd.h>
75
76 #include <trace/events/vmscan.h>
77
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
80
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
82
83 /* Active memory cgroup to use from an interrupt context */
84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
86
87 /* Socket memory accounting disabled? */
88 static bool cgroup_memory_nosocket __ro_after_init;
89
90 /* Kernel memory accounting disabled? */
91 static bool cgroup_memory_nokmem = true;
92
93 /* BPF memory accounting disabled? */
94 static bool cgroup_memory_nobpf __ro_after_init;
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_memcg(struct vmpressure * vmpr)248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
249 {
250 return container_of(vmpr, struct mem_cgroup, vmpressure);
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
mem_cgroup_kmem_disabled(void)256 bool mem_cgroup_kmem_disabled(void)
257 {
258 return cgroup_memory_nokmem;
259 }
260
261 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
262 unsigned int nr_pages);
263
obj_cgroup_release(struct percpu_ref * ref)264 static void obj_cgroup_release(struct percpu_ref *ref)
265 {
266 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 if (nr_pages)
296 obj_cgroup_uncharge_pages(objcg, nr_pages);
297
298 spin_lock_irqsave(&objcg_lock, flags);
299 list_del(&objcg->list);
300 spin_unlock_irqrestore(&objcg_lock, flags);
301
302 percpu_ref_exit(ref);
303 kfree_rcu(objcg, rcu);
304 }
305
obj_cgroup_alloc(void)306 static struct obj_cgroup *obj_cgroup_alloc(void)
307 {
308 struct obj_cgroup *objcg;
309 int ret;
310
311 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
312 if (!objcg)
313 return NULL;
314
315 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
316 GFP_KERNEL);
317 if (ret) {
318 kfree(objcg);
319 return NULL;
320 }
321 INIT_LIST_HEAD(&objcg->list);
322 return objcg;
323 }
324
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)325 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
326 struct mem_cgroup *parent)
327 {
328 struct obj_cgroup *objcg, *iter;
329
330 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331
332 spin_lock_irq(&objcg_lock);
333
334 /* 1) Ready to reparent active objcg. */
335 list_add(&objcg->list, &memcg->objcg_list);
336 /* 2) Reparent active objcg and already reparented objcgs to parent. */
337 list_for_each_entry(iter, &memcg->objcg_list, list)
338 WRITE_ONCE(iter->memcg, parent);
339 /* 3) Move already reparented objcgs to the parent's list */
340 list_splice(&memcg->objcg_list, &parent->objcg_list);
341
342 spin_unlock_irq(&objcg_lock);
343
344 percpu_ref_kill(&objcg->refcnt);
345 }
346
347 /*
348 * A lot of the calls to the cache allocation functions are expected to be
349 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
350 * conditional to this static branch, we'll have to allow modules that does
351 * kmem_cache_alloc and the such to see this symbol as well
352 */
353 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
354 EXPORT_SYMBOL(memcg_kmem_online_key);
355
356 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
357 EXPORT_SYMBOL(memcg_bpf_enabled_key);
358 #endif
359
360 /**
361 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
362 * @folio: folio of interest
363 *
364 * If memcg is bound to the default hierarchy, css of the memcg associated
365 * with @folio is returned. The returned css remains associated with @folio
366 * until it is released.
367 *
368 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
369 * is returned.
370 */
mem_cgroup_css_from_folio(struct folio * folio)371 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
372 {
373 struct mem_cgroup *memcg = folio_memcg(folio);
374
375 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
376 memcg = root_mem_cgroup;
377
378 return &memcg->css;
379 }
380
381 /**
382 * page_cgroup_ino - return inode number of the memcg a page is charged to
383 * @page: the page
384 *
385 * Look up the closest online ancestor of the memory cgroup @page is charged to
386 * and return its inode number or 0 if @page is not charged to any cgroup. It
387 * is safe to call this function without holding a reference to @page.
388 *
389 * Note, this function is inherently racy, because there is nothing to prevent
390 * the cgroup inode from getting torn down and potentially reallocated a moment
391 * after page_cgroup_ino() returns, so it only should be used by callers that
392 * do not care (such as procfs interfaces).
393 */
page_cgroup_ino(struct page * page)394 ino_t page_cgroup_ino(struct page *page)
395 {
396 struct mem_cgroup *memcg;
397 unsigned long ino = 0;
398
399 rcu_read_lock();
400 /* page_folio() is racy here, but the entire function is racy anyway */
401 memcg = folio_memcg_check(page_folio(page));
402
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409 }
410
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
413 unsigned long new_usage_in_excess)
414 {
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct mem_cgroup_per_node *mz_node;
418 bool rightmost = true;
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 tree_node);
430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 p = &(*p)->rb_left;
432 rightmost = false;
433 } else {
434 p = &(*p)->rb_right;
435 }
436 }
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444 }
445
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
448 {
449 if (!mz->on_tree)
450 return;
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457 }
458
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
465 __mem_cgroup_remove_exceeded(mz, mctz);
466 spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
soft_limit_excess(struct mem_cgroup * memcg)469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 #ifdef CONFIG_HYPERHOLD_FILE_LRU
472 struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
473 struct lruvec *lruvec = &mz->lruvec;
474 unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
475 MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
476 MAX_NR_ZONES);
477 #else
478 unsigned long nr_pages = page_counter_read(&memcg->memory);
479 #endif
480 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
481 unsigned long excess = 0;
482
483 if (nr_pages > soft_limit)
484 excess = nr_pages - soft_limit;
485
486 return excess;
487 }
488
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)489 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
490 {
491 unsigned long excess;
492 struct mem_cgroup_per_node *mz;
493 struct mem_cgroup_tree_per_node *mctz;
494
495 if (lru_gen_enabled()) {
496 if (soft_limit_excess(memcg))
497 lru_gen_soft_reclaim(memcg, nid);
498 return;
499 }
500
501 mctz = soft_limit_tree.rb_tree_per_node[nid];
502 if (!mctz)
503 return;
504 /*
505 * Necessary to update all ancestors when hierarchy is used.
506 * because their event counter is not touched.
507 */
508 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
509 mz = memcg->nodeinfo[nid];
510 excess = soft_limit_excess(memcg);
511 /*
512 * We have to update the tree if mz is on RB-tree or
513 * mem is over its softlimit.
514 */
515 if (excess || mz->on_tree) {
516 unsigned long flags;
517
518 spin_lock_irqsave(&mctz->lock, flags);
519 /* if on-tree, remove it */
520 if (mz->on_tree)
521 __mem_cgroup_remove_exceeded(mz, mctz);
522 /*
523 * Insert again. mz->usage_in_excess will be updated.
524 * If excess is 0, no tree ops.
525 */
526 __mem_cgroup_insert_exceeded(mz, mctz, excess);
527 spin_unlock_irqrestore(&mctz->lock, flags);
528 }
529 }
530 }
531
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)532 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
533 {
534 struct mem_cgroup_tree_per_node *mctz;
535 struct mem_cgroup_per_node *mz;
536 int nid;
537
538 for_each_node(nid) {
539 mz = memcg->nodeinfo[nid];
540 mctz = soft_limit_tree.rb_tree_per_node[nid];
541 if (mctz)
542 mem_cgroup_remove_exceeded(mz, mctz);
543 }
544 }
545
546 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)547 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
548 {
549 struct mem_cgroup_per_node *mz;
550
551 retry:
552 mz = NULL;
553 if (!mctz->rb_rightmost)
554 goto done; /* Nothing to reclaim from */
555
556 mz = rb_entry(mctz->rb_rightmost,
557 struct mem_cgroup_per_node, tree_node);
558 /*
559 * Remove the node now but someone else can add it back,
560 * we will to add it back at the end of reclaim to its correct
561 * position in the tree.
562 */
563 __mem_cgroup_remove_exceeded(mz, mctz);
564 if (!soft_limit_excess(mz->memcg) ||
565 !css_tryget(&mz->memcg->css))
566 goto retry;
567 done:
568 return mz;
569 }
570
571 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)572 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
573 {
574 struct mem_cgroup_per_node *mz;
575
576 spin_lock_irq(&mctz->lock);
577 mz = __mem_cgroup_largest_soft_limit_node(mctz);
578 spin_unlock_irq(&mctz->lock);
579 return mz;
580 }
581
582 /*
583 * memcg and lruvec stats flushing
584 *
585 * Many codepaths leading to stats update or read are performance sensitive and
586 * adding stats flushing in such codepaths is not desirable. So, to optimize the
587 * flushing the kernel does:
588 *
589 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
590 * rstat update tree grow unbounded.
591 *
592 * 2) Flush the stats synchronously on reader side only when there are more than
593 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
594 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
595 * only for 2 seconds due to (1).
596 */
597 static void flush_memcg_stats_dwork(struct work_struct *w);
598 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
599 static DEFINE_PER_CPU(unsigned int, stats_updates);
600 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
601 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
602 static u64 flush_next_time;
603
604 #define FLUSH_TIME (2UL*HZ)
605
606 /*
607 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
608 * not rely on this as part of an acquired spinlock_t lock. These functions are
609 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
610 * is sufficient.
611 */
memcg_stats_lock(void)612 static void memcg_stats_lock(void)
613 {
614 preempt_disable_nested();
615 VM_WARN_ON_IRQS_ENABLED();
616 }
617
__memcg_stats_lock(void)618 static void __memcg_stats_lock(void)
619 {
620 preempt_disable_nested();
621 }
622
memcg_stats_unlock(void)623 static void memcg_stats_unlock(void)
624 {
625 preempt_enable_nested();
626 }
627
memcg_rstat_updated(struct mem_cgroup * memcg,int val)628 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
629 {
630 unsigned int x;
631
632 if (!val)
633 return;
634
635 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
636
637 x = __this_cpu_add_return(stats_updates, abs(val));
638 if (x > MEMCG_CHARGE_BATCH) {
639 /*
640 * If stats_flush_threshold exceeds the threshold
641 * (>num_online_cpus()), cgroup stats update will be triggered
642 * in __mem_cgroup_flush_stats(). Increasing this var further
643 * is redundant and simply adds overhead in atomic update.
644 */
645 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
646 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
647 __this_cpu_write(stats_updates, 0);
648 }
649 }
650
do_flush_stats(void)651 static void do_flush_stats(void)
652 {
653 /*
654 * We always flush the entire tree, so concurrent flushers can just
655 * skip. This avoids a thundering herd problem on the rstat global lock
656 * from memcg flushers (e.g. reclaim, refault, etc).
657 */
658 if (atomic_read(&stats_flush_ongoing) ||
659 atomic_xchg(&stats_flush_ongoing, 1))
660 return;
661
662 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
663
664 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
665
666 atomic_set(&stats_flush_threshold, 0);
667 atomic_set(&stats_flush_ongoing, 0);
668 }
669
mem_cgroup_flush_stats(void)670 void mem_cgroup_flush_stats(void)
671 {
672 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
673 do_flush_stats();
674 }
675
mem_cgroup_flush_stats_ratelimited(void)676 void mem_cgroup_flush_stats_ratelimited(void)
677 {
678 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
679 mem_cgroup_flush_stats();
680 }
681
flush_memcg_stats_dwork(struct work_struct * w)682 static void flush_memcg_stats_dwork(struct work_struct *w)
683 {
684 /*
685 * Always flush here so that flushing in latency-sensitive paths is
686 * as cheap as possible.
687 */
688 do_flush_stats();
689 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
690 }
691
692 /* Subset of vm_event_item to report for memcg event stats */
693 static const unsigned int memcg_vm_event_stat[] = {
694 PGPGIN,
695 PGPGOUT,
696 PGSCAN_KSWAPD,
697 PGSCAN_DIRECT,
698 PGSCAN_KHUGEPAGED,
699 PGSTEAL_KSWAPD,
700 PGSTEAL_DIRECT,
701 PGSTEAL_KHUGEPAGED,
702 PGFAULT,
703 PGMAJFAULT,
704 PGREFILL,
705 PGACTIVATE,
706 PGDEACTIVATE,
707 PGLAZYFREE,
708 PGLAZYFREED,
709 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
710 ZSWPIN,
711 ZSWPOUT,
712 #endif
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 THP_FAULT_ALLOC,
715 THP_COLLAPSE_ALLOC,
716 #endif
717 };
718
719 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
720 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
721
init_memcg_events(void)722 static void init_memcg_events(void)
723 {
724 int i;
725
726 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
727 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
728 }
729
memcg_events_index(enum vm_event_item idx)730 static inline int memcg_events_index(enum vm_event_item idx)
731 {
732 return mem_cgroup_events_index[idx] - 1;
733 }
734
735 struct memcg_vmstats_percpu {
736 /* Local (CPU and cgroup) page state & events */
737 long state[MEMCG_NR_STAT];
738 unsigned long events[NR_MEMCG_EVENTS];
739
740 /* Delta calculation for lockless upward propagation */
741 long state_prev[MEMCG_NR_STAT];
742 unsigned long events_prev[NR_MEMCG_EVENTS];
743
744 /* Cgroup1: threshold notifications & softlimit tree updates */
745 unsigned long nr_page_events;
746 unsigned long targets[MEM_CGROUP_NTARGETS];
747 };
748
749 struct memcg_vmstats {
750 /* Aggregated (CPU and subtree) page state & events */
751 long state[MEMCG_NR_STAT];
752 unsigned long events[NR_MEMCG_EVENTS];
753
754 /* Non-hierarchical (CPU aggregated) page state & events */
755 long state_local[MEMCG_NR_STAT];
756 unsigned long events_local[NR_MEMCG_EVENTS];
757
758 /* Pending child counts during tree propagation */
759 long state_pending[MEMCG_NR_STAT];
760 unsigned long events_pending[NR_MEMCG_EVENTS];
761 };
762
memcg_page_state(struct mem_cgroup * memcg,int idx)763 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
764 {
765 long x = READ_ONCE(memcg->vmstats->state[idx]);
766 #ifdef CONFIG_SMP
767 if (x < 0)
768 x = 0;
769 #endif
770 return x;
771 }
772
773 /**
774 * __mod_memcg_state - update cgroup memory statistics
775 * @memcg: the memory cgroup
776 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777 * @val: delta to add to the counter, can be negative
778 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)779 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780 {
781 if (mem_cgroup_disabled())
782 return;
783
784 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
785 memcg_rstat_updated(memcg, val);
786 }
787
788 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)789 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
790 {
791 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
792
793 #ifdef CONFIG_SMP
794 if (x < 0)
795 x = 0;
796 #endif
797 return x;
798 }
799
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)800 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 int val)
802 {
803 struct mem_cgroup_per_node *pn;
804 struct mem_cgroup *memcg;
805
806 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
807 memcg = pn->memcg;
808
809 /*
810 * The caller from rmap relay on disabled preemption becase they never
811 * update their counter from in-interrupt context. For these two
812 * counters we check that the update is never performed from an
813 * interrupt context while other caller need to have disabled interrupt.
814 */
815 __memcg_stats_lock();
816 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
817 switch (idx) {
818 case NR_ANON_MAPPED:
819 case NR_FILE_MAPPED:
820 case NR_ANON_THPS:
821 case NR_SHMEM_PMDMAPPED:
822 case NR_FILE_PMDMAPPED:
823 WARN_ON_ONCE(!in_task());
824 break;
825 default:
826 VM_WARN_ON_IRQS_ENABLED();
827 }
828 }
829
830 /* Update memcg */
831 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
832
833 /* Update lruvec */
834 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
835
836 memcg_rstat_updated(memcg, val);
837 memcg_stats_unlock();
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled()) {
858 #ifdef CONFIG_HYPERHOLD_FILE_LRU
859 if (is_node_lruvec(lruvec))
860 return;
861 #endif
862 __mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864 }
865
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)866 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
867 int val)
868 {
869 struct page *head = compound_head(page); /* rmap on tail pages */
870 struct mem_cgroup *memcg;
871 pg_data_t *pgdat = page_pgdat(page);
872 struct lruvec *lruvec;
873
874 #ifdef CONFIG_HYPERHOLD_FILE_LRU
875 if (is_file_page(page) && !is_prot_page(page)) {
876 __mod_node_page_state(pgdat, idx, val);
877 return;
878 }
879 #endif
880
881 rcu_read_lock();
882 memcg = page_memcg(head);
883 /* Untracked pages have no memcg, no lruvec. Update only the node */
884 if (!memcg) {
885 rcu_read_unlock();
886 __mod_node_page_state(pgdat, idx, val);
887 return;
888 }
889
890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
891 __mod_lruvec_state(lruvec, idx, val);
892 rcu_read_unlock();
893 }
894 EXPORT_SYMBOL(__mod_lruvec_page_state);
895
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)896 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
897 {
898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
903 memcg = mem_cgroup_from_slab_obj(p);
904
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
912 __mod_node_page_state(pgdat, idx, val);
913 } else {
914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918 }
919
920 /**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
924 * @count: the number of events that occurred
925 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)926 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928 {
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
932 return;
933 #ifdef CONFIG_HYPERHOLD_FILE_LRU
934 if (!memcg)
935 return;
936 #endif
937
938 memcg_stats_lock();
939 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
940 memcg_rstat_updated(memcg, count);
941 memcg_stats_unlock();
942 }
943
memcg_events(struct mem_cgroup * memcg,int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 int index = memcg_events_index(event);
947
948 if (index < 0)
949 return 0;
950 return READ_ONCE(memcg->vmstats->events[index]);
951 }
952
memcg_events_local(struct mem_cgroup * memcg,int event)953 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
954 {
955 int index = memcg_events_index(event);
956
957 if (index < 0)
958 return 0;
959
960 return READ_ONCE(memcg->vmstats->events_local[index]);
961 }
962
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)963 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
964 int nr_pages)
965 {
966 /* pagein of a big page is an event. So, ignore page size */
967 if (nr_pages > 0)
968 __count_memcg_events(memcg, PGPGIN, 1);
969 else {
970 __count_memcg_events(memcg, PGPGOUT, 1);
971 nr_pages = -nr_pages; /* for event */
972 }
973
974 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
975 }
976
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
983 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)(next - val) < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 default:
994 break;
995 }
996 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
997 return true;
998 }
999 return false;
1000 }
1001
1002 /*
1003 * Check events in order.
1004 *
1005 */
memcg_check_events(struct mem_cgroup * memcg,int nid)1006 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1007 {
1008 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1009 return;
1010
1011 /* threshold event is triggered in finer grain than soft limit */
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
1014 bool do_softlimit;
1015
1016 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_SOFTLIMIT);
1018 mem_cgroup_threshold(memcg);
1019 if (unlikely(do_softlimit))
1020 mem_cgroup_update_tree(memcg, nid);
1021 }
1022 }
1023
mem_cgroup_from_task(struct task_struct * p)1024 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025 {
1026 /*
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1030 */
1031 if (unlikely(!p))
1032 return NULL;
1033
1034 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1035 }
1036 EXPORT_SYMBOL(mem_cgroup_from_task);
1037
active_memcg(void)1038 static __always_inline struct mem_cgroup *active_memcg(void)
1039 {
1040 if (!in_task())
1041 return this_cpu_read(int_active_memcg);
1042 else
1043 return current->active_memcg;
1044 }
1045
1046 /**
1047 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1048 * @mm: mm from which memcg should be extracted. It can be NULL.
1049 *
1050 * Obtain a reference on mm->memcg and returns it if successful. If mm
1051 * is NULL, then the memcg is chosen as follows:
1052 * 1) The active memcg, if set.
1053 * 2) current->mm->memcg, if available
1054 * 3) root memcg
1055 * If mem_cgroup is disabled, NULL is returned.
1056 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1057 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1058 {
1059 struct mem_cgroup *memcg;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 /*
1065 * Page cache insertions can happen without an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1068 *
1069 * No need to css_get on root memcg as the reference
1070 * counting is disabled on the root level in the
1071 * cgroup core. See CSS_NO_REF.
1072 */
1073 if (unlikely(!mm)) {
1074 memcg = active_memcg();
1075 if (unlikely(memcg)) {
1076 /* remote memcg must hold a ref */
1077 css_get(&memcg->css);
1078 return memcg;
1079 }
1080 mm = current->mm;
1081 if (unlikely(!mm))
1082 return root_mem_cgroup;
1083 }
1084
1085 rcu_read_lock();
1086 do {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 } while (!css_tryget(&memcg->css));
1091 rcu_read_unlock();
1092 return memcg;
1093 }
1094 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1095
memcg_kmem_bypass(void)1096 static __always_inline bool memcg_kmem_bypass(void)
1097 {
1098 /* Allow remote memcg charging from any context. */
1099 if (unlikely(active_memcg()))
1100 return false;
1101
1102 /* Memcg to charge can't be determined. */
1103 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1104 return true;
1105
1106 return false;
1107 }
1108
1109 /**
1110 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1111 * @root: hierarchy root
1112 * @prev: previously returned memcg, NULL on first invocation
1113 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1114 *
1115 * Returns references to children of the hierarchy below @root, or
1116 * @root itself, or %NULL after a full round-trip.
1117 *
1118 * Caller must pass the return value in @prev on subsequent
1119 * invocations for reference counting, or use mem_cgroup_iter_break()
1120 * to cancel a hierarchy walk before the round-trip is complete.
1121 *
1122 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1123 * in the hierarchy among all concurrent reclaimers operating on the
1124 * same node.
1125 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1126 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1127 struct mem_cgroup *prev,
1128 struct mem_cgroup_reclaim_cookie *reclaim)
1129 {
1130 struct mem_cgroup_reclaim_iter *iter;
1131 struct cgroup_subsys_state *css = NULL;
1132 struct mem_cgroup *memcg = NULL;
1133 struct mem_cgroup *pos = NULL;
1134
1135 if (mem_cgroup_disabled())
1136 return NULL;
1137
1138 if (!root)
1139 root = root_mem_cgroup;
1140
1141 rcu_read_lock();
1142
1143 if (reclaim) {
1144 struct mem_cgroup_per_node *mz;
1145
1146 mz = root->nodeinfo[reclaim->pgdat->node_id];
1147 iter = &mz->iter;
1148
1149 /*
1150 * On start, join the current reclaim iteration cycle.
1151 * Exit when a concurrent walker completes it.
1152 */
1153 if (!prev)
1154 reclaim->generation = iter->generation;
1155 else if (reclaim->generation != iter->generation)
1156 goto out_unlock;
1157
1158 while (1) {
1159 pos = READ_ONCE(iter->position);
1160 if (!pos || css_tryget(&pos->css))
1161 break;
1162 /*
1163 * css reference reached zero, so iter->position will
1164 * be cleared by ->css_released. However, we should not
1165 * rely on this happening soon, because ->css_released
1166 * is called from a work queue, and by busy-waiting we
1167 * might block it. So we clear iter->position right
1168 * away.
1169 */
1170 (void)cmpxchg(&iter->position, pos, NULL);
1171 }
1172 } else if (prev) {
1173 pos = prev;
1174 }
1175
1176 if (pos)
1177 css = &pos->css;
1178
1179 for (;;) {
1180 css = css_next_descendant_pre(css, &root->css);
1181 if (!css) {
1182 /*
1183 * Reclaimers share the hierarchy walk, and a
1184 * new one might jump in right at the end of
1185 * the hierarchy - make sure they see at least
1186 * one group and restart from the beginning.
1187 */
1188 if (!prev)
1189 continue;
1190 break;
1191 }
1192
1193 /*
1194 * Verify the css and acquire a reference. The root
1195 * is provided by the caller, so we know it's alive
1196 * and kicking, and don't take an extra reference.
1197 */
1198 if (css == &root->css || css_tryget(css)) {
1199 memcg = mem_cgroup_from_css(css);
1200 break;
1201 }
1202 }
1203
1204 if (reclaim) {
1205 /*
1206 * The position could have already been updated by a competing
1207 * thread, so check that the value hasn't changed since we read
1208 * it to avoid reclaiming from the same cgroup twice.
1209 */
1210 (void)cmpxchg(&iter->position, pos, memcg);
1211
1212 if (pos)
1213 css_put(&pos->css);
1214
1215 if (!memcg)
1216 iter->generation++;
1217 }
1218
1219 out_unlock:
1220 rcu_read_unlock();
1221 if (prev && prev != root)
1222 css_put(&prev->css);
1223
1224 return memcg;
1225 }
1226
1227 /**
1228 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1229 * @root: hierarchy root
1230 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1231 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1232 void mem_cgroup_iter_break(struct mem_cgroup *root,
1233 struct mem_cgroup *prev)
1234 {
1235 if (!root)
1236 root = root_mem_cgroup;
1237 if (prev && prev != root)
1238 css_put(&prev->css);
1239 }
1240
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1241 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1242 struct mem_cgroup *dead_memcg)
1243 {
1244 struct mem_cgroup_reclaim_iter *iter;
1245 struct mem_cgroup_per_node *mz;
1246 int nid;
1247
1248 for_each_node(nid) {
1249 mz = from->nodeinfo[nid];
1250 iter = &mz->iter;
1251 cmpxchg(&iter->position, dead_memcg, NULL);
1252 }
1253 }
1254
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1255 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1256 {
1257 struct mem_cgroup *memcg = dead_memcg;
1258 struct mem_cgroup *last;
1259
1260 do {
1261 __invalidate_reclaim_iterators(memcg, dead_memcg);
1262 last = memcg;
1263 } while ((memcg = parent_mem_cgroup(memcg)));
1264
1265 /*
1266 * When cgroup1 non-hierarchy mode is used,
1267 * parent_mem_cgroup() does not walk all the way up to the
1268 * cgroup root (root_mem_cgroup). So we have to handle
1269 * dead_memcg from cgroup root separately.
1270 */
1271 if (!mem_cgroup_is_root(last))
1272 __invalidate_reclaim_iterators(root_mem_cgroup,
1273 dead_memcg);
1274 }
1275
1276 /**
1277 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1278 * @memcg: hierarchy root
1279 * @fn: function to call for each task
1280 * @arg: argument passed to @fn
1281 *
1282 * This function iterates over tasks attached to @memcg or to any of its
1283 * descendants and calls @fn for each task. If @fn returns a non-zero
1284 * value, the function breaks the iteration loop. Otherwise, it will iterate
1285 * over all tasks and return 0.
1286 *
1287 * This function must not be called for the root memory cgroup.
1288 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1289 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1290 int (*fn)(struct task_struct *, void *), void *arg)
1291 {
1292 struct mem_cgroup *iter;
1293 int ret = 0;
1294
1295 BUG_ON(mem_cgroup_is_root(memcg));
1296
1297 for_each_mem_cgroup_tree(iter, memcg) {
1298 struct css_task_iter it;
1299 struct task_struct *task;
1300
1301 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1302 while (!ret && (task = css_task_iter_next(&it))) {
1303 ret = fn(task, arg);
1304 /* Avoid potential softlockup warning */
1305 cond_resched();
1306 }
1307 css_task_iter_end(&it);
1308 if (ret) {
1309 mem_cgroup_iter_break(memcg, iter);
1310 break;
1311 }
1312 }
1313 }
1314
1315 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1316 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1317 {
1318 struct mem_cgroup *memcg;
1319
1320 if (mem_cgroup_disabled())
1321 return;
1322
1323 memcg = folio_memcg(folio);
1324
1325 if (!memcg)
1326 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1327 else
1328 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1329 }
1330 #endif
1331
1332 /**
1333 * folio_lruvec_lock - Lock the lruvec for a folio.
1334 * @folio: Pointer to the folio.
1335 *
1336 * These functions are safe to use under any of the following conditions:
1337 * - folio locked
1338 * - folio_test_lru false
1339 * - folio_memcg_lock()
1340 * - folio frozen (refcount of 0)
1341 *
1342 * Return: The lruvec this folio is on with its lock held.
1343 */
folio_lruvec_lock(struct folio * folio)1344 struct lruvec *folio_lruvec_lock(struct folio *folio)
1345 {
1346 struct lruvec *lruvec = folio_lruvec(folio);
1347
1348 spin_lock(&lruvec->lru_lock);
1349 lruvec_memcg_debug(lruvec, folio);
1350
1351 return lruvec;
1352 }
1353
1354 /**
1355 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1356 * @folio: Pointer to the folio.
1357 *
1358 * These functions are safe to use under any of the following conditions:
1359 * - folio locked
1360 * - folio_test_lru false
1361 * - folio_memcg_lock()
1362 * - folio frozen (refcount of 0)
1363 *
1364 * Return: The lruvec this folio is on with its lock held and interrupts
1365 * disabled.
1366 */
folio_lruvec_lock_irq(struct folio * folio)1367 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1368 {
1369 struct lruvec *lruvec = folio_lruvec(folio);
1370
1371 spin_lock_irq(&lruvec->lru_lock);
1372 lruvec_memcg_debug(lruvec, folio);
1373
1374 return lruvec;
1375 }
1376
1377 /**
1378 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1379 * @folio: Pointer to the folio.
1380 * @flags: Pointer to irqsave flags.
1381 *
1382 * These functions are safe to use under any of the following conditions:
1383 * - folio locked
1384 * - folio_test_lru false
1385 * - folio_memcg_lock()
1386 * - folio frozen (refcount of 0)
1387 *
1388 * Return: The lruvec this folio is on with its lock held and interrupts
1389 * disabled.
1390 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1391 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1392 unsigned long *flags)
1393 {
1394 struct lruvec *lruvec = folio_lruvec(folio);
1395
1396 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1397 lruvec_memcg_debug(lruvec, folio);
1398
1399 return lruvec;
1400 }
1401
1402 /**
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @zid: zone id of the accounted pages
1407 * @nr_pages: positive when adding or negative when removing
1408 *
1409 * This function must be called under lru_lock, just before a page is added
1410 * to or just after a page is removed from an lru list.
1411 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1412 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1413 int zid, int nr_pages)
1414 {
1415 struct mem_cgroup_per_node *mz;
1416 unsigned long *lru_size;
1417 long size;
1418
1419 if (mem_cgroup_disabled())
1420 return;
1421
1422 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1423 if (is_node_lruvec(lruvec))
1424 return;
1425 #endif
1426
1427 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1428 lru_size = &mz->lru_zone_size[zid][lru];
1429
1430 if (nr_pages < 0)
1431 *lru_size += nr_pages;
1432
1433 size = *lru_size;
1434 if (WARN_ONCE(size < 0,
1435 "%s(%p, %d, %d): lru_size %ld\n",
1436 __func__, lruvec, lru, nr_pages, size)) {
1437 VM_BUG_ON(1);
1438 *lru_size = 0;
1439 }
1440
1441 if (nr_pages > 0)
1442 *lru_size += nr_pages;
1443 }
1444
1445 /**
1446 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1447 * @memcg: the memory cgroup
1448 *
1449 * Returns the maximum amount of memory @mem can be charged with, in
1450 * pages.
1451 */
mem_cgroup_margin(struct mem_cgroup * memcg)1452 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1453 {
1454 unsigned long margin = 0;
1455 unsigned long count;
1456 unsigned long limit;
1457
1458 count = page_counter_read(&memcg->memory);
1459 limit = READ_ONCE(memcg->memory.max);
1460 if (count < limit)
1461 margin = limit - count;
1462
1463 if (do_memsw_account()) {
1464 count = page_counter_read(&memcg->memsw);
1465 limit = READ_ONCE(memcg->memsw.max);
1466 if (count < limit)
1467 margin = min(margin, limit - count);
1468 else
1469 margin = 0;
1470 }
1471
1472 return margin;
1473 }
1474
1475 /*
1476 * A routine for checking "mem" is under move_account() or not.
1477 *
1478 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1479 * moving cgroups. This is for waiting at high-memory pressure
1480 * caused by "move".
1481 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1482 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1483 {
1484 struct mem_cgroup *from;
1485 struct mem_cgroup *to;
1486 bool ret = false;
1487 /*
1488 * Unlike task_move routines, we access mc.to, mc.from not under
1489 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1490 */
1491 spin_lock(&mc.lock);
1492 from = mc.from;
1493 to = mc.to;
1494 if (!from)
1495 goto unlock;
1496
1497 ret = mem_cgroup_is_descendant(from, memcg) ||
1498 mem_cgroup_is_descendant(to, memcg);
1499 unlock:
1500 spin_unlock(&mc.lock);
1501 return ret;
1502 }
1503
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1504 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1505 {
1506 if (mc.moving_task && current != mc.moving_task) {
1507 if (mem_cgroup_under_move(memcg)) {
1508 DEFINE_WAIT(wait);
1509 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1510 /* moving charge context might have finished. */
1511 if (mc.moving_task)
1512 schedule();
1513 finish_wait(&mc.waitq, &wait);
1514 return true;
1515 }
1516 }
1517 return false;
1518 }
1519
1520 struct memory_stat {
1521 const char *name;
1522 unsigned int idx;
1523 };
1524
1525 static const struct memory_stat memory_stats[] = {
1526 { "anon", NR_ANON_MAPPED },
1527 { "file", NR_FILE_PAGES },
1528 { "kernel", MEMCG_KMEM },
1529 { "kernel_stack", NR_KERNEL_STACK_KB },
1530 { "pagetables", NR_PAGETABLE },
1531 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1532 { "percpu", MEMCG_PERCPU_B },
1533 { "sock", MEMCG_SOCK },
1534 { "vmalloc", MEMCG_VMALLOC },
1535 { "shmem", NR_SHMEM },
1536 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1537 { "zswap", MEMCG_ZSWAP_B },
1538 { "zswapped", MEMCG_ZSWAPPED },
1539 #endif
1540 { "file_mapped", NR_FILE_MAPPED },
1541 { "file_dirty", NR_FILE_DIRTY },
1542 { "file_writeback", NR_WRITEBACK },
1543 #ifdef CONFIG_SWAP
1544 { "swapcached", NR_SWAPCACHE },
1545 #endif
1546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1547 { "anon_thp", NR_ANON_THPS },
1548 { "file_thp", NR_FILE_THPS },
1549 { "shmem_thp", NR_SHMEM_THPS },
1550 #endif
1551 { "inactive_anon", NR_INACTIVE_ANON },
1552 { "active_anon", NR_ACTIVE_ANON },
1553 { "inactive_file", NR_INACTIVE_FILE },
1554 { "active_file", NR_ACTIVE_FILE },
1555 { "unevictable", NR_UNEVICTABLE },
1556 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1557 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1558
1559 /* The memory events */
1560 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1561 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1562 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1563 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1564 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1565 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1566 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1567 };
1568
1569 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1570 static int memcg_page_state_unit(int item)
1571 {
1572 switch (item) {
1573 case MEMCG_PERCPU_B:
1574 case MEMCG_ZSWAP_B:
1575 case NR_SLAB_RECLAIMABLE_B:
1576 case NR_SLAB_UNRECLAIMABLE_B:
1577 case WORKINGSET_REFAULT_ANON:
1578 case WORKINGSET_REFAULT_FILE:
1579 case WORKINGSET_ACTIVATE_ANON:
1580 case WORKINGSET_ACTIVATE_FILE:
1581 case WORKINGSET_RESTORE_ANON:
1582 case WORKINGSET_RESTORE_FILE:
1583 case WORKINGSET_NODERECLAIM:
1584 return 1;
1585 case NR_KERNEL_STACK_KB:
1586 return SZ_1K;
1587 default:
1588 return PAGE_SIZE;
1589 }
1590 }
1591
memcg_page_state_output(struct mem_cgroup * memcg,int item)1592 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1593 int item)
1594 {
1595 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1596 }
1597
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1598 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1599 {
1600 int i;
1601
1602 /*
1603 * Provide statistics on the state of the memory subsystem as
1604 * well as cumulative event counters that show past behavior.
1605 *
1606 * This list is ordered following a combination of these gradients:
1607 * 1) generic big picture -> specifics and details
1608 * 2) reflecting userspace activity -> reflecting kernel heuristics
1609 *
1610 * Current memory state:
1611 */
1612 mem_cgroup_flush_stats();
1613
1614 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1615 u64 size;
1616
1617 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1618 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1619
1620 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1621 size += memcg_page_state_output(memcg,
1622 NR_SLAB_RECLAIMABLE_B);
1623 seq_buf_printf(s, "slab %llu\n", size);
1624 }
1625 }
1626
1627 /* Accumulated memory events */
1628 seq_buf_printf(s, "pgscan %lu\n",
1629 memcg_events(memcg, PGSCAN_KSWAPD) +
1630 memcg_events(memcg, PGSCAN_DIRECT) +
1631 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1632 seq_buf_printf(s, "pgsteal %lu\n",
1633 memcg_events(memcg, PGSTEAL_KSWAPD) +
1634 memcg_events(memcg, PGSTEAL_DIRECT) +
1635 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1636
1637 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1638 if (memcg_vm_event_stat[i] == PGPGIN ||
1639 memcg_vm_event_stat[i] == PGPGOUT)
1640 continue;
1641
1642 seq_buf_printf(s, "%s %lu\n",
1643 vm_event_name(memcg_vm_event_stat[i]),
1644 memcg_events(memcg, memcg_vm_event_stat[i]));
1645 }
1646
1647 /* The above should easily fit into one page */
1648 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1649 }
1650
1651 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1652
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1653 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1654 {
1655 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1656 memcg_stat_format(memcg, s);
1657 else
1658 memcg1_stat_format(memcg, s);
1659 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1660 }
1661
1662 /**
1663 * mem_cgroup_print_oom_context: Print OOM information relevant to
1664 * memory controller.
1665 * @memcg: The memory cgroup that went over limit
1666 * @p: Task that is going to be killed
1667 *
1668 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1669 * enabled
1670 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1671 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1672 {
1673 rcu_read_lock();
1674
1675 if (memcg) {
1676 pr_cont(",oom_memcg=");
1677 pr_cont_cgroup_path(memcg->css.cgroup);
1678 } else
1679 pr_cont(",global_oom");
1680 if (p) {
1681 pr_cont(",task_memcg=");
1682 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1683 }
1684 rcu_read_unlock();
1685 }
1686
1687 /**
1688 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1689 * memory controller.
1690 * @memcg: The memory cgroup that went over limit
1691 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1692 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1693 {
1694 /* Use static buffer, for the caller is holding oom_lock. */
1695 static char buf[PAGE_SIZE];
1696 struct seq_buf s;
1697
1698 lockdep_assert_held(&oom_lock);
1699
1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1701 K((u64)page_counter_read(&memcg->memory)),
1702 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1703 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1704 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1705 K((u64)page_counter_read(&memcg->swap)),
1706 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1707 else {
1708 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1709 K((u64)page_counter_read(&memcg->memsw)),
1710 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1711 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1712 K((u64)page_counter_read(&memcg->kmem)),
1713 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1714 }
1715
1716 pr_info("Memory cgroup stats for ");
1717 pr_cont_cgroup_path(memcg->css.cgroup);
1718 pr_cont(":");
1719 seq_buf_init(&s, buf, sizeof(buf));
1720 memory_stat_format(memcg, &s);
1721 seq_buf_do_printk(&s, KERN_INFO);
1722 }
1723
1724 /*
1725 * Return the memory (and swap, if configured) limit for a memcg.
1726 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1727 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1728 {
1729 unsigned long max = READ_ONCE(memcg->memory.max);
1730
1731 if (do_memsw_account()) {
1732 if (mem_cgroup_swappiness(memcg)) {
1733 /* Calculate swap excess capacity from memsw limit */
1734 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1735
1736 max += min(swap, (unsigned long)total_swap_pages);
1737 }
1738 } else {
1739 if (mem_cgroup_swappiness(memcg))
1740 max += min(READ_ONCE(memcg->swap.max),
1741 (unsigned long)total_swap_pages);
1742 }
1743 return max;
1744 }
1745
mem_cgroup_size(struct mem_cgroup * memcg)1746 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1747 {
1748 return page_counter_read(&memcg->memory);
1749 }
1750
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1751 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1752 int order)
1753 {
1754 struct oom_control oc = {
1755 .zonelist = NULL,
1756 .nodemask = NULL,
1757 .memcg = memcg,
1758 .gfp_mask = gfp_mask,
1759 .order = order,
1760 };
1761 bool ret = true;
1762
1763 if (mutex_lock_killable(&oom_lock))
1764 return true;
1765
1766 if (mem_cgroup_margin(memcg) >= (1 << order))
1767 goto unlock;
1768
1769 /*
1770 * A few threads which were not waiting at mutex_lock_killable() can
1771 * fail to bail out. Therefore, check again after holding oom_lock.
1772 */
1773 ret = task_is_dying() || out_of_memory(&oc);
1774
1775 unlock:
1776 mutex_unlock(&oom_lock);
1777 return ret;
1778 }
1779
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1780 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1781 pg_data_t *pgdat,
1782 gfp_t gfp_mask,
1783 unsigned long *total_scanned)
1784 {
1785 struct mem_cgroup *victim = NULL;
1786 int total = 0;
1787 int loop = 0;
1788 unsigned long excess;
1789 unsigned long nr_scanned;
1790 struct mem_cgroup_reclaim_cookie reclaim = {
1791 .pgdat = pgdat,
1792 };
1793
1794 excess = soft_limit_excess(root_memcg);
1795
1796 while (1) {
1797 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1798 if (!victim) {
1799 loop++;
1800 if (loop >= 2) {
1801 /*
1802 * If we have not been able to reclaim
1803 * anything, it might because there are
1804 * no reclaimable pages under this hierarchy
1805 */
1806 if (!total)
1807 break;
1808 /*
1809 * We want to do more targeted reclaim.
1810 * excess >> 2 is not to excessive so as to
1811 * reclaim too much, nor too less that we keep
1812 * coming back to reclaim from this cgroup
1813 */
1814 if (total >= (excess >> 2) ||
1815 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1816 break;
1817 }
1818 continue;
1819 }
1820 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1821 pgdat, &nr_scanned);
1822 *total_scanned += nr_scanned;
1823 if (!soft_limit_excess(root_memcg))
1824 break;
1825 }
1826 mem_cgroup_iter_break(root_memcg, victim);
1827 return total;
1828 }
1829
1830 #ifdef CONFIG_LOCKDEP
1831 static struct lockdep_map memcg_oom_lock_dep_map = {
1832 .name = "memcg_oom_lock",
1833 };
1834 #endif
1835
1836 static DEFINE_SPINLOCK(memcg_oom_lock);
1837
1838 /*
1839 * Check OOM-Killer is already running under our hierarchy.
1840 * If someone is running, return false.
1841 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1842 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1843 {
1844 struct mem_cgroup *iter, *failed = NULL;
1845
1846 spin_lock(&memcg_oom_lock);
1847
1848 for_each_mem_cgroup_tree(iter, memcg) {
1849 if (iter->oom_lock) {
1850 /*
1851 * this subtree of our hierarchy is already locked
1852 * so we cannot give a lock.
1853 */
1854 failed = iter;
1855 mem_cgroup_iter_break(memcg, iter);
1856 break;
1857 } else
1858 iter->oom_lock = true;
1859 }
1860
1861 if (failed) {
1862 /*
1863 * OK, we failed to lock the whole subtree so we have
1864 * to clean up what we set up to the failing subtree
1865 */
1866 for_each_mem_cgroup_tree(iter, memcg) {
1867 if (iter == failed) {
1868 mem_cgroup_iter_break(memcg, iter);
1869 break;
1870 }
1871 iter->oom_lock = false;
1872 }
1873 } else
1874 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1875
1876 spin_unlock(&memcg_oom_lock);
1877
1878 return !failed;
1879 }
1880
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1881 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1882 {
1883 struct mem_cgroup *iter;
1884
1885 spin_lock(&memcg_oom_lock);
1886 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1887 for_each_mem_cgroup_tree(iter, memcg)
1888 iter->oom_lock = false;
1889 spin_unlock(&memcg_oom_lock);
1890 }
1891
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1892 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1893 {
1894 struct mem_cgroup *iter;
1895
1896 spin_lock(&memcg_oom_lock);
1897 for_each_mem_cgroup_tree(iter, memcg)
1898 iter->under_oom++;
1899 spin_unlock(&memcg_oom_lock);
1900 }
1901
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1902 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1903 {
1904 struct mem_cgroup *iter;
1905
1906 /*
1907 * Be careful about under_oom underflows because a child memcg
1908 * could have been added after mem_cgroup_mark_under_oom.
1909 */
1910 spin_lock(&memcg_oom_lock);
1911 for_each_mem_cgroup_tree(iter, memcg)
1912 if (iter->under_oom > 0)
1913 iter->under_oom--;
1914 spin_unlock(&memcg_oom_lock);
1915 }
1916
1917 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1918
1919 struct oom_wait_info {
1920 struct mem_cgroup *memcg;
1921 wait_queue_entry_t wait;
1922 };
1923
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1924 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1925 unsigned mode, int sync, void *arg)
1926 {
1927 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1928 struct mem_cgroup *oom_wait_memcg;
1929 struct oom_wait_info *oom_wait_info;
1930
1931 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1932 oom_wait_memcg = oom_wait_info->memcg;
1933
1934 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1935 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1936 return 0;
1937 return autoremove_wake_function(wait, mode, sync, arg);
1938 }
1939
memcg_oom_recover(struct mem_cgroup * memcg)1940 static void memcg_oom_recover(struct mem_cgroup *memcg)
1941 {
1942 /*
1943 * For the following lockless ->under_oom test, the only required
1944 * guarantee is that it must see the state asserted by an OOM when
1945 * this function is called as a result of userland actions
1946 * triggered by the notification of the OOM. This is trivially
1947 * achieved by invoking mem_cgroup_mark_under_oom() before
1948 * triggering notification.
1949 */
1950 if (memcg && memcg->under_oom)
1951 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1952 }
1953
1954 /*
1955 * Returns true if successfully killed one or more processes. Though in some
1956 * corner cases it can return true even without killing any process.
1957 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1958 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1959 {
1960 bool locked, ret;
1961
1962 if (order > PAGE_ALLOC_COSTLY_ORDER)
1963 return false;
1964
1965 memcg_memory_event(memcg, MEMCG_OOM);
1966
1967 /*
1968 * We are in the middle of the charge context here, so we
1969 * don't want to block when potentially sitting on a callstack
1970 * that holds all kinds of filesystem and mm locks.
1971 *
1972 * cgroup1 allows disabling the OOM killer and waiting for outside
1973 * handling until the charge can succeed; remember the context and put
1974 * the task to sleep at the end of the page fault when all locks are
1975 * released.
1976 *
1977 * On the other hand, in-kernel OOM killer allows for an async victim
1978 * memory reclaim (oom_reaper) and that means that we are not solely
1979 * relying on the oom victim to make a forward progress and we can
1980 * invoke the oom killer here.
1981 *
1982 * Please note that mem_cgroup_out_of_memory might fail to find a
1983 * victim and then we have to bail out from the charge path.
1984 */
1985 if (READ_ONCE(memcg->oom_kill_disable)) {
1986 if (current->in_user_fault) {
1987 css_get(&memcg->css);
1988 current->memcg_in_oom = memcg;
1989 current->memcg_oom_gfp_mask = mask;
1990 current->memcg_oom_order = order;
1991 }
1992 return false;
1993 }
1994
1995 mem_cgroup_mark_under_oom(memcg);
1996
1997 locked = mem_cgroup_oom_trylock(memcg);
1998
1999 if (locked)
2000 mem_cgroup_oom_notify(memcg);
2001
2002 mem_cgroup_unmark_under_oom(memcg);
2003 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2004
2005 if (locked)
2006 mem_cgroup_oom_unlock(memcg);
2007
2008 return ret;
2009 }
2010
2011 /**
2012 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2013 * @handle: actually kill/wait or just clean up the OOM state
2014 *
2015 * This has to be called at the end of a page fault if the memcg OOM
2016 * handler was enabled.
2017 *
2018 * Memcg supports userspace OOM handling where failed allocations must
2019 * sleep on a waitqueue until the userspace task resolves the
2020 * situation. Sleeping directly in the charge context with all kinds
2021 * of locks held is not a good idea, instead we remember an OOM state
2022 * in the task and mem_cgroup_oom_synchronize() has to be called at
2023 * the end of the page fault to complete the OOM handling.
2024 *
2025 * Returns %true if an ongoing memcg OOM situation was detected and
2026 * completed, %false otherwise.
2027 */
mem_cgroup_oom_synchronize(bool handle)2028 bool mem_cgroup_oom_synchronize(bool handle)
2029 {
2030 struct mem_cgroup *memcg = current->memcg_in_oom;
2031 struct oom_wait_info owait;
2032 bool locked;
2033
2034 /* OOM is global, do not handle */
2035 if (!memcg)
2036 return false;
2037
2038 if (!handle)
2039 goto cleanup;
2040
2041 owait.memcg = memcg;
2042 owait.wait.flags = 0;
2043 owait.wait.func = memcg_oom_wake_function;
2044 owait.wait.private = current;
2045 INIT_LIST_HEAD(&owait.wait.entry);
2046
2047 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2048 mem_cgroup_mark_under_oom(memcg);
2049
2050 locked = mem_cgroup_oom_trylock(memcg);
2051
2052 if (locked)
2053 mem_cgroup_oom_notify(memcg);
2054
2055 schedule();
2056 mem_cgroup_unmark_under_oom(memcg);
2057 finish_wait(&memcg_oom_waitq, &owait.wait);
2058
2059 if (locked)
2060 mem_cgroup_oom_unlock(memcg);
2061 cleanup:
2062 current->memcg_in_oom = NULL;
2063 css_put(&memcg->css);
2064 return true;
2065 }
2066
2067 /**
2068 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2069 * @victim: task to be killed by the OOM killer
2070 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2071 *
2072 * Returns a pointer to a memory cgroup, which has to be cleaned up
2073 * by killing all belonging OOM-killable tasks.
2074 *
2075 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2076 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2077 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2078 struct mem_cgroup *oom_domain)
2079 {
2080 struct mem_cgroup *oom_group = NULL;
2081 struct mem_cgroup *memcg;
2082
2083 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2084 return NULL;
2085
2086 if (!oom_domain)
2087 oom_domain = root_mem_cgroup;
2088
2089 rcu_read_lock();
2090
2091 memcg = mem_cgroup_from_task(victim);
2092 if (mem_cgroup_is_root(memcg))
2093 goto out;
2094
2095 /*
2096 * If the victim task has been asynchronously moved to a different
2097 * memory cgroup, we might end up killing tasks outside oom_domain.
2098 * In this case it's better to ignore memory.group.oom.
2099 */
2100 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2101 goto out;
2102
2103 /*
2104 * Traverse the memory cgroup hierarchy from the victim task's
2105 * cgroup up to the OOMing cgroup (or root) to find the
2106 * highest-level memory cgroup with oom.group set.
2107 */
2108 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2109 if (READ_ONCE(memcg->oom_group))
2110 oom_group = memcg;
2111
2112 if (memcg == oom_domain)
2113 break;
2114 }
2115
2116 if (oom_group)
2117 css_get(&oom_group->css);
2118 out:
2119 rcu_read_unlock();
2120
2121 return oom_group;
2122 }
2123
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2124 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2125 {
2126 pr_info("Tasks in ");
2127 pr_cont_cgroup_path(memcg->css.cgroup);
2128 pr_cont(" are going to be killed due to memory.oom.group set\n");
2129 }
2130
2131 /**
2132 * folio_memcg_lock - Bind a folio to its memcg.
2133 * @folio: The folio.
2134 *
2135 * This function prevents unlocked LRU folios from being moved to
2136 * another cgroup.
2137 *
2138 * It ensures lifetime of the bound memcg. The caller is responsible
2139 * for the lifetime of the folio.
2140 */
folio_memcg_lock(struct folio * folio)2141 void folio_memcg_lock(struct folio *folio)
2142 {
2143 struct mem_cgroup *memcg;
2144 unsigned long flags;
2145
2146 /*
2147 * The RCU lock is held throughout the transaction. The fast
2148 * path can get away without acquiring the memcg->move_lock
2149 * because page moving starts with an RCU grace period.
2150 */
2151 rcu_read_lock();
2152
2153 if (mem_cgroup_disabled())
2154 return;
2155 again:
2156 memcg = folio_memcg(folio);
2157 if (unlikely(!memcg))
2158 return;
2159
2160 #ifdef CONFIG_PROVE_LOCKING
2161 local_irq_save(flags);
2162 might_lock(&memcg->move_lock);
2163 local_irq_restore(flags);
2164 #endif
2165
2166 if (atomic_read(&memcg->moving_account) <= 0)
2167 return;
2168
2169 spin_lock_irqsave(&memcg->move_lock, flags);
2170 if (memcg != folio_memcg(folio)) {
2171 spin_unlock_irqrestore(&memcg->move_lock, flags);
2172 goto again;
2173 }
2174
2175 /*
2176 * When charge migration first begins, we can have multiple
2177 * critical sections holding the fast-path RCU lock and one
2178 * holding the slowpath move_lock. Track the task who has the
2179 * move_lock for folio_memcg_unlock().
2180 */
2181 memcg->move_lock_task = current;
2182 memcg->move_lock_flags = flags;
2183 }
2184
__folio_memcg_unlock(struct mem_cgroup * memcg)2185 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2186 {
2187 if (memcg && memcg->move_lock_task == current) {
2188 unsigned long flags = memcg->move_lock_flags;
2189
2190 memcg->move_lock_task = NULL;
2191 memcg->move_lock_flags = 0;
2192
2193 spin_unlock_irqrestore(&memcg->move_lock, flags);
2194 }
2195
2196 rcu_read_unlock();
2197 }
2198
2199 /**
2200 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2201 * @folio: The folio.
2202 *
2203 * This releases the binding created by folio_memcg_lock(). This does
2204 * not change the accounting of this folio to its memcg, but it does
2205 * permit others to change it.
2206 */
folio_memcg_unlock(struct folio * folio)2207 void folio_memcg_unlock(struct folio *folio)
2208 {
2209 __folio_memcg_unlock(folio_memcg(folio));
2210 }
2211
2212 struct memcg_stock_pcp {
2213 local_lock_t stock_lock;
2214 struct mem_cgroup *cached; /* this never be root cgroup */
2215 unsigned int nr_pages;
2216
2217 #ifdef CONFIG_MEMCG_KMEM
2218 struct obj_cgroup *cached_objcg;
2219 struct pglist_data *cached_pgdat;
2220 unsigned int nr_bytes;
2221 int nr_slab_reclaimable_b;
2222 int nr_slab_unreclaimable_b;
2223 #endif
2224
2225 struct work_struct work;
2226 unsigned long flags;
2227 #define FLUSHING_CACHED_CHARGE 0
2228 };
2229 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2230 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2231 };
2232 static DEFINE_MUTEX(percpu_charge_mutex);
2233
2234 #ifdef CONFIG_MEMCG_KMEM
2235 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2236 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2237 struct mem_cgroup *root_memcg);
2238 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2239
2240 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2241 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2242 {
2243 return NULL;
2244 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2246 struct mem_cgroup *root_memcg)
2247 {
2248 return false;
2249 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2250 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2251 {
2252 }
2253 #endif
2254
2255 /**
2256 * consume_stock: Try to consume stocked charge on this cpu.
2257 * @memcg: memcg to consume from.
2258 * @nr_pages: how many pages to charge.
2259 *
2260 * The charges will only happen if @memcg matches the current cpu's memcg
2261 * stock, and at least @nr_pages are available in that stock. Failure to
2262 * service an allocation will refill the stock.
2263 *
2264 * returns true if successful, false otherwise.
2265 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2266 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2267 {
2268 struct memcg_stock_pcp *stock;
2269 unsigned long flags;
2270 bool ret = false;
2271
2272 if (nr_pages > MEMCG_CHARGE_BATCH)
2273 return ret;
2274
2275 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2276
2277 stock = this_cpu_ptr(&memcg_stock);
2278 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2279 stock->nr_pages -= nr_pages;
2280 ret = true;
2281 }
2282
2283 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2284
2285 return ret;
2286 }
2287
2288 /*
2289 * Returns stocks cached in percpu and reset cached information.
2290 */
drain_stock(struct memcg_stock_pcp * stock)2291 static void drain_stock(struct memcg_stock_pcp *stock)
2292 {
2293 struct mem_cgroup *old = READ_ONCE(stock->cached);
2294
2295 if (!old)
2296 return;
2297
2298 if (stock->nr_pages) {
2299 page_counter_uncharge(&old->memory, stock->nr_pages);
2300 if (do_memsw_account())
2301 page_counter_uncharge(&old->memsw, stock->nr_pages);
2302 stock->nr_pages = 0;
2303 }
2304
2305 css_put(&old->css);
2306 WRITE_ONCE(stock->cached, NULL);
2307 }
2308
drain_local_stock(struct work_struct * dummy)2309 static void drain_local_stock(struct work_struct *dummy)
2310 {
2311 struct memcg_stock_pcp *stock;
2312 struct obj_cgroup *old = NULL;
2313 unsigned long flags;
2314
2315 /*
2316 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2317 * drain_stock races is that we always operate on local CPU stock
2318 * here with IRQ disabled
2319 */
2320 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2321
2322 stock = this_cpu_ptr(&memcg_stock);
2323 old = drain_obj_stock(stock);
2324 drain_stock(stock);
2325 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2326
2327 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328 if (old)
2329 obj_cgroup_put(old);
2330 }
2331
2332 /*
2333 * Cache charges(val) to local per_cpu area.
2334 * This will be consumed by consume_stock() function, later.
2335 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2336 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2337 {
2338 struct memcg_stock_pcp *stock;
2339
2340 stock = this_cpu_ptr(&memcg_stock);
2341 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2342 drain_stock(stock);
2343 css_get(&memcg->css);
2344 WRITE_ONCE(stock->cached, memcg);
2345 }
2346 stock->nr_pages += nr_pages;
2347
2348 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2349 drain_stock(stock);
2350 }
2351
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2352 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 {
2354 unsigned long flags;
2355
2356 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2357 __refill_stock(memcg, nr_pages);
2358 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2359 }
2360
2361 /*
2362 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363 * of the hierarchy under it.
2364 */
drain_all_stock(struct mem_cgroup * root_memcg)2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367 int cpu, curcpu;
2368
2369 /* If someone's already draining, avoid adding running more workers. */
2370 if (!mutex_trylock(&percpu_charge_mutex))
2371 return;
2372 /*
2373 * Notify other cpus that system-wide "drain" is running
2374 * We do not care about races with the cpu hotplug because cpu down
2375 * as well as workers from this path always operate on the local
2376 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377 */
2378 migrate_disable();
2379 curcpu = smp_processor_id();
2380 for_each_online_cpu(cpu) {
2381 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2382 struct mem_cgroup *memcg;
2383 bool flush = false;
2384
2385 rcu_read_lock();
2386 memcg = READ_ONCE(stock->cached);
2387 if (memcg && stock->nr_pages &&
2388 mem_cgroup_is_descendant(memcg, root_memcg))
2389 flush = true;
2390 else if (obj_stock_flush_required(stock, root_memcg))
2391 flush = true;
2392 rcu_read_unlock();
2393
2394 if (flush &&
2395 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2396 if (cpu == curcpu)
2397 drain_local_stock(&stock->work);
2398 else if (!cpu_is_isolated(cpu))
2399 schedule_work_on(cpu, &stock->work);
2400 }
2401 }
2402 migrate_enable();
2403 mutex_unlock(&percpu_charge_mutex);
2404 }
2405
memcg_hotplug_cpu_dead(unsigned int cpu)2406 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2407 {
2408 struct memcg_stock_pcp *stock;
2409
2410 stock = &per_cpu(memcg_stock, cpu);
2411 drain_stock(stock);
2412
2413 return 0;
2414 }
2415
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2416 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2417 unsigned int nr_pages,
2418 gfp_t gfp_mask)
2419 {
2420 unsigned long nr_reclaimed = 0;
2421
2422 do {
2423 unsigned long pflags;
2424
2425 if (page_counter_read(&memcg->memory) <=
2426 READ_ONCE(memcg->memory.high))
2427 continue;
2428
2429 memcg_memory_event(memcg, MEMCG_HIGH);
2430
2431 psi_memstall_enter(&pflags);
2432 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2433 gfp_mask,
2434 MEMCG_RECLAIM_MAY_SWAP);
2435 psi_memstall_leave(&pflags);
2436 } while ((memcg = parent_mem_cgroup(memcg)) &&
2437 !mem_cgroup_is_root(memcg));
2438
2439 return nr_reclaimed;
2440 }
2441
high_work_func(struct work_struct * work)2442 static void high_work_func(struct work_struct *work)
2443 {
2444 struct mem_cgroup *memcg;
2445
2446 memcg = container_of(work, struct mem_cgroup, high_work);
2447 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2448 }
2449
2450 /*
2451 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2452 * enough to still cause a significant slowdown in most cases, while still
2453 * allowing diagnostics and tracing to proceed without becoming stuck.
2454 */
2455 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2456
2457 /*
2458 * When calculating the delay, we use these either side of the exponentiation to
2459 * maintain precision and scale to a reasonable number of jiffies (see the table
2460 * below.
2461 *
2462 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2463 * overage ratio to a delay.
2464 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2465 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2466 * to produce a reasonable delay curve.
2467 *
2468 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2469 * reasonable delay curve compared to precision-adjusted overage, not
2470 * penalising heavily at first, but still making sure that growth beyond the
2471 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2472 * example, with a high of 100 megabytes:
2473 *
2474 * +-------+------------------------+
2475 * | usage | time to allocate in ms |
2476 * +-------+------------------------+
2477 * | 100M | 0 |
2478 * | 101M | 6 |
2479 * | 102M | 25 |
2480 * | 103M | 57 |
2481 * | 104M | 102 |
2482 * | 105M | 159 |
2483 * | 106M | 230 |
2484 * | 107M | 313 |
2485 * | 108M | 409 |
2486 * | 109M | 518 |
2487 * | 110M | 639 |
2488 * | 111M | 774 |
2489 * | 112M | 921 |
2490 * | 113M | 1081 |
2491 * | 114M | 1254 |
2492 * | 115M | 1439 |
2493 * | 116M | 1638 |
2494 * | 117M | 1849 |
2495 * | 118M | 2000 |
2496 * | 119M | 2000 |
2497 * | 120M | 2000 |
2498 * +-------+------------------------+
2499 */
2500 #define MEMCG_DELAY_PRECISION_SHIFT 20
2501 #define MEMCG_DELAY_SCALING_SHIFT 14
2502
calculate_overage(unsigned long usage,unsigned long high)2503 static u64 calculate_overage(unsigned long usage, unsigned long high)
2504 {
2505 u64 overage;
2506
2507 if (usage <= high)
2508 return 0;
2509
2510 /*
2511 * Prevent division by 0 in overage calculation by acting as if
2512 * it was a threshold of 1 page
2513 */
2514 high = max(high, 1UL);
2515
2516 overage = usage - high;
2517 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2518 return div64_u64(overage, high);
2519 }
2520
mem_find_max_overage(struct mem_cgroup * memcg)2521 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2522 {
2523 u64 overage, max_overage = 0;
2524
2525 do {
2526 overage = calculate_overage(page_counter_read(&memcg->memory),
2527 READ_ONCE(memcg->memory.high));
2528 max_overage = max(overage, max_overage);
2529 } while ((memcg = parent_mem_cgroup(memcg)) &&
2530 !mem_cgroup_is_root(memcg));
2531
2532 return max_overage;
2533 }
2534
swap_find_max_overage(struct mem_cgroup * memcg)2535 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2536 {
2537 u64 overage, max_overage = 0;
2538
2539 do {
2540 overage = calculate_overage(page_counter_read(&memcg->swap),
2541 READ_ONCE(memcg->swap.high));
2542 if (overage)
2543 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2544 max_overage = max(overage, max_overage);
2545 } while ((memcg = parent_mem_cgroup(memcg)) &&
2546 !mem_cgroup_is_root(memcg));
2547
2548 return max_overage;
2549 }
2550
2551 /*
2552 * Get the number of jiffies that we should penalise a mischievous cgroup which
2553 * is exceeding its memory.high by checking both it and its ancestors.
2554 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2555 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2556 unsigned int nr_pages,
2557 u64 max_overage)
2558 {
2559 unsigned long penalty_jiffies;
2560
2561 if (!max_overage)
2562 return 0;
2563
2564 /*
2565 * We use overage compared to memory.high to calculate the number of
2566 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2567 * fairly lenient on small overages, and increasingly harsh when the
2568 * memcg in question makes it clear that it has no intention of stopping
2569 * its crazy behaviour, so we exponentially increase the delay based on
2570 * overage amount.
2571 */
2572 penalty_jiffies = max_overage * max_overage * HZ;
2573 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2574 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2575
2576 /*
2577 * Factor in the task's own contribution to the overage, such that four
2578 * N-sized allocations are throttled approximately the same as one
2579 * 4N-sized allocation.
2580 *
2581 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2582 * larger the current charge patch is than that.
2583 */
2584 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2585 }
2586
2587 /*
2588 * Scheduled by try_charge() to be executed from the userland return path
2589 * and reclaims memory over the high limit.
2590 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2591 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2592 {
2593 unsigned long penalty_jiffies;
2594 unsigned long pflags;
2595 unsigned long nr_reclaimed;
2596 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2597 int nr_retries = MAX_RECLAIM_RETRIES;
2598 struct mem_cgroup *memcg;
2599 bool in_retry = false;
2600
2601 if (likely(!nr_pages))
2602 return;
2603
2604 memcg = get_mem_cgroup_from_mm(current->mm);
2605 current->memcg_nr_pages_over_high = 0;
2606
2607 retry_reclaim:
2608 /*
2609 * The allocating task should reclaim at least the batch size, but for
2610 * subsequent retries we only want to do what's necessary to prevent oom
2611 * or breaching resource isolation.
2612 *
2613 * This is distinct from memory.max or page allocator behaviour because
2614 * memory.high is currently batched, whereas memory.max and the page
2615 * allocator run every time an allocation is made.
2616 */
2617 nr_reclaimed = reclaim_high(memcg,
2618 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2619 gfp_mask);
2620
2621 /*
2622 * memory.high is breached and reclaim is unable to keep up. Throttle
2623 * allocators proactively to slow down excessive growth.
2624 */
2625 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2626 mem_find_max_overage(memcg));
2627
2628 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2629 swap_find_max_overage(memcg));
2630
2631 /*
2632 * Clamp the max delay per usermode return so as to still keep the
2633 * application moving forwards and also permit diagnostics, albeit
2634 * extremely slowly.
2635 */
2636 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2637
2638 /*
2639 * Don't sleep if the amount of jiffies this memcg owes us is so low
2640 * that it's not even worth doing, in an attempt to be nice to those who
2641 * go only a small amount over their memory.high value and maybe haven't
2642 * been aggressively reclaimed enough yet.
2643 */
2644 if (penalty_jiffies <= HZ / 100)
2645 goto out;
2646
2647 /*
2648 * If reclaim is making forward progress but we're still over
2649 * memory.high, we want to encourage that rather than doing allocator
2650 * throttling.
2651 */
2652 if (nr_reclaimed || nr_retries--) {
2653 in_retry = true;
2654 goto retry_reclaim;
2655 }
2656
2657 /*
2658 * If we exit early, we're guaranteed to die (since
2659 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2660 * need to account for any ill-begotten jiffies to pay them off later.
2661 */
2662 psi_memstall_enter(&pflags);
2663 schedule_timeout_killable(penalty_jiffies);
2664 psi_memstall_leave(&pflags);
2665
2666 out:
2667 css_put(&memcg->css);
2668 }
2669
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2670 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2671 unsigned int nr_pages)
2672 {
2673 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2674 int nr_retries = MAX_RECLAIM_RETRIES;
2675 struct mem_cgroup *mem_over_limit;
2676 struct page_counter *counter;
2677 unsigned long nr_reclaimed;
2678 bool passed_oom = false;
2679 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2680 bool drained = false;
2681 bool raised_max_event = false;
2682 unsigned long pflags;
2683
2684 retry:
2685 if (consume_stock(memcg, nr_pages))
2686 return 0;
2687
2688 if (!do_memsw_account() ||
2689 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2690 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691 goto done_restock;
2692 if (do_memsw_account())
2693 page_counter_uncharge(&memcg->memsw, batch);
2694 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695 } else {
2696 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2698 }
2699
2700 if (batch > nr_pages) {
2701 batch = nr_pages;
2702 goto retry;
2703 }
2704
2705 /*
2706 * Prevent unbounded recursion when reclaim operations need to
2707 * allocate memory. This might exceed the limits temporarily,
2708 * but we prefer facilitating memory reclaim and getting back
2709 * under the limit over triggering OOM kills in these cases.
2710 */
2711 if (unlikely(current->flags & PF_MEMALLOC))
2712 goto force;
2713
2714 if (unlikely(task_in_memcg_oom(current)))
2715 goto nomem;
2716
2717 if (!gfpflags_allow_blocking(gfp_mask))
2718 goto nomem;
2719
2720 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2721 raised_max_event = true;
2722
2723 psi_memstall_enter(&pflags);
2724 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2725 gfp_mask, reclaim_options);
2726 psi_memstall_leave(&pflags);
2727
2728 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2729 goto retry;
2730
2731 if (!drained) {
2732 drain_all_stock(mem_over_limit);
2733 drained = true;
2734 goto retry;
2735 }
2736
2737 if (gfp_mask & __GFP_NORETRY)
2738 goto nomem;
2739 /*
2740 * Even though the limit is exceeded at this point, reclaim
2741 * may have been able to free some pages. Retry the charge
2742 * before killing the task.
2743 *
2744 * Only for regular pages, though: huge pages are rather
2745 * unlikely to succeed so close to the limit, and we fall back
2746 * to regular pages anyway in case of failure.
2747 */
2748 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2749 goto retry;
2750 /*
2751 * At task move, charge accounts can be doubly counted. So, it's
2752 * better to wait until the end of task_move if something is going on.
2753 */
2754 if (mem_cgroup_wait_acct_move(mem_over_limit))
2755 goto retry;
2756
2757 if (nr_retries--)
2758 goto retry;
2759
2760 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2761 goto nomem;
2762
2763 /* Avoid endless loop for tasks bypassed by the oom killer */
2764 if (passed_oom && task_is_dying())
2765 goto nomem;
2766
2767 /*
2768 * keep retrying as long as the memcg oom killer is able to make
2769 * a forward progress or bypass the charge if the oom killer
2770 * couldn't make any progress.
2771 */
2772 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2773 get_order(nr_pages * PAGE_SIZE))) {
2774 passed_oom = true;
2775 nr_retries = MAX_RECLAIM_RETRIES;
2776 goto retry;
2777 }
2778 nomem:
2779 /*
2780 * Memcg doesn't have a dedicated reserve for atomic
2781 * allocations. But like the global atomic pool, we need to
2782 * put the burden of reclaim on regular allocation requests
2783 * and let these go through as privileged allocations.
2784 */
2785 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2786 return -ENOMEM;
2787 force:
2788 /*
2789 * If the allocation has to be enforced, don't forget to raise
2790 * a MEMCG_MAX event.
2791 */
2792 if (!raised_max_event)
2793 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2794
2795 /*
2796 * The allocation either can't fail or will lead to more memory
2797 * being freed very soon. Allow memory usage go over the limit
2798 * temporarily by force charging it.
2799 */
2800 page_counter_charge(&memcg->memory, nr_pages);
2801 if (do_memsw_account())
2802 page_counter_charge(&memcg->memsw, nr_pages);
2803
2804 return 0;
2805
2806 done_restock:
2807 if (batch > nr_pages)
2808 refill_stock(memcg, batch - nr_pages);
2809
2810 /*
2811 * If the hierarchy is above the normal consumption range, schedule
2812 * reclaim on returning to userland. We can perform reclaim here
2813 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2814 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2815 * not recorded as it most likely matches current's and won't
2816 * change in the meantime. As high limit is checked again before
2817 * reclaim, the cost of mismatch is negligible.
2818 */
2819 do {
2820 bool mem_high, swap_high;
2821
2822 mem_high = page_counter_read(&memcg->memory) >
2823 READ_ONCE(memcg->memory.high);
2824 swap_high = page_counter_read(&memcg->swap) >
2825 READ_ONCE(memcg->swap.high);
2826
2827 /* Don't bother a random interrupted task */
2828 if (!in_task()) {
2829 if (mem_high) {
2830 schedule_work(&memcg->high_work);
2831 break;
2832 }
2833 continue;
2834 }
2835
2836 if (mem_high || swap_high) {
2837 /*
2838 * The allocating tasks in this cgroup will need to do
2839 * reclaim or be throttled to prevent further growth
2840 * of the memory or swap footprints.
2841 *
2842 * Target some best-effort fairness between the tasks,
2843 * and distribute reclaim work and delay penalties
2844 * based on how much each task is actually allocating.
2845 */
2846 current->memcg_nr_pages_over_high += batch;
2847 set_notify_resume(current);
2848 break;
2849 }
2850 } while ((memcg = parent_mem_cgroup(memcg)));
2851
2852 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2853 !(current->flags & PF_MEMALLOC) &&
2854 gfpflags_allow_blocking(gfp_mask)) {
2855 mem_cgroup_handle_over_high(gfp_mask);
2856 }
2857 return 0;
2858 }
2859
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2860 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2861 unsigned int nr_pages)
2862 {
2863 if (mem_cgroup_is_root(memcg))
2864 return 0;
2865
2866 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2867 }
2868
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2869 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2870 {
2871 if (mem_cgroup_is_root(memcg))
2872 return;
2873
2874 page_counter_uncharge(&memcg->memory, nr_pages);
2875 if (do_memsw_account())
2876 page_counter_uncharge(&memcg->memsw, nr_pages);
2877 }
2878
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2879 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2880 {
2881 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2882 /*
2883 * Any of the following ensures page's memcg stability:
2884 *
2885 * - the page lock
2886 * - LRU isolation
2887 * - folio_memcg_lock()
2888 * - exclusive reference
2889 * - mem_cgroup_trylock_pages()
2890 */
2891 folio->memcg_data = (unsigned long)memcg;
2892 }
2893
2894 #ifdef CONFIG_MEMCG_KMEM
2895 /*
2896 * The allocated objcg pointers array is not accounted directly.
2897 * Moreover, it should not come from DMA buffer and is not readily
2898 * reclaimable. So those GFP bits should be masked off.
2899 */
2900 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2901 __GFP_ACCOUNT | __GFP_NOFAIL)
2902
2903 /*
2904 * mod_objcg_mlstate() may be called with irq enabled, so
2905 * mod_memcg_lruvec_state() should be used.
2906 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2907 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2908 struct pglist_data *pgdat,
2909 enum node_stat_item idx, int nr)
2910 {
2911 struct mem_cgroup *memcg;
2912 struct lruvec *lruvec;
2913
2914 rcu_read_lock();
2915 memcg = obj_cgroup_memcg(objcg);
2916 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2917 mod_memcg_lruvec_state(lruvec, idx, nr);
2918 rcu_read_unlock();
2919 }
2920
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2921 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2922 gfp_t gfp, bool new_slab)
2923 {
2924 unsigned int objects = objs_per_slab(s, slab);
2925 unsigned long memcg_data;
2926 void *vec;
2927
2928 gfp &= ~OBJCGS_CLEAR_MASK;
2929 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2930 slab_nid(slab));
2931 if (!vec)
2932 return -ENOMEM;
2933
2934 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2935 if (new_slab) {
2936 /*
2937 * If the slab is brand new and nobody can yet access its
2938 * memcg_data, no synchronization is required and memcg_data can
2939 * be simply assigned.
2940 */
2941 slab->memcg_data = memcg_data;
2942 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2943 /*
2944 * If the slab is already in use, somebody can allocate and
2945 * assign obj_cgroups in parallel. In this case the existing
2946 * objcg vector should be reused.
2947 */
2948 kfree(vec);
2949 return 0;
2950 }
2951
2952 kmemleak_not_leak(vec);
2953 return 0;
2954 }
2955
2956 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2957 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2958 {
2959 /*
2960 * Slab objects are accounted individually, not per-page.
2961 * Memcg membership data for each individual object is saved in
2962 * slab->memcg_data.
2963 */
2964 if (folio_test_slab(folio)) {
2965 struct obj_cgroup **objcgs;
2966 struct slab *slab;
2967 unsigned int off;
2968
2969 slab = folio_slab(folio);
2970 objcgs = slab_objcgs(slab);
2971 if (!objcgs)
2972 return NULL;
2973
2974 off = obj_to_index(slab->slab_cache, slab, p);
2975 if (objcgs[off])
2976 return obj_cgroup_memcg(objcgs[off]);
2977
2978 return NULL;
2979 }
2980
2981 /*
2982 * folio_memcg_check() is used here, because in theory we can encounter
2983 * a folio where the slab flag has been cleared already, but
2984 * slab->memcg_data has not been freed yet
2985 * folio_memcg_check() will guarantee that a proper memory
2986 * cgroup pointer or NULL will be returned.
2987 */
2988 return folio_memcg_check(folio);
2989 }
2990
2991 /*
2992 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2993 *
2994 * A passed kernel object can be a slab object, vmalloc object or a generic
2995 * kernel page, so different mechanisms for getting the memory cgroup pointer
2996 * should be used.
2997 *
2998 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2999 * can not know for sure how the kernel object is implemented.
3000 * mem_cgroup_from_obj() can be safely used in such cases.
3001 *
3002 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3003 * cgroup_mutex, etc.
3004 */
mem_cgroup_from_obj(void * p)3005 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3006 {
3007 struct folio *folio;
3008
3009 if (mem_cgroup_disabled())
3010 return NULL;
3011
3012 if (unlikely(is_vmalloc_addr(p)))
3013 folio = page_folio(vmalloc_to_page(p));
3014 else
3015 folio = virt_to_folio(p);
3016
3017 return mem_cgroup_from_obj_folio(folio, p);
3018 }
3019
3020 /*
3021 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3022 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3023 * allocated using vmalloc().
3024 *
3025 * A passed kernel object must be a slab object or a generic kernel page.
3026 *
3027 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3028 * cgroup_mutex, etc.
3029 */
mem_cgroup_from_slab_obj(void * p)3030 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3031 {
3032 if (mem_cgroup_disabled())
3033 return NULL;
3034
3035 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3036 }
3037
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3038 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3039 {
3040 struct obj_cgroup *objcg = NULL;
3041
3042 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3043 objcg = rcu_dereference(memcg->objcg);
3044 if (objcg && obj_cgroup_tryget(objcg))
3045 break;
3046 objcg = NULL;
3047 }
3048 return objcg;
3049 }
3050
get_obj_cgroup_from_current(void)3051 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3052 {
3053 struct obj_cgroup *objcg = NULL;
3054 struct mem_cgroup *memcg;
3055
3056 if (memcg_kmem_bypass())
3057 return NULL;
3058
3059 rcu_read_lock();
3060 if (unlikely(active_memcg()))
3061 memcg = active_memcg();
3062 else
3063 memcg = mem_cgroup_from_task(current);
3064 objcg = __get_obj_cgroup_from_memcg(memcg);
3065 rcu_read_unlock();
3066 return objcg;
3067 }
3068
get_obj_cgroup_from_folio(struct folio * folio)3069 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3070 {
3071 struct obj_cgroup *objcg;
3072
3073 if (!memcg_kmem_online())
3074 return NULL;
3075
3076 if (folio_memcg_kmem(folio)) {
3077 objcg = __folio_objcg(folio);
3078 obj_cgroup_get(objcg);
3079 } else {
3080 struct mem_cgroup *memcg;
3081
3082 rcu_read_lock();
3083 memcg = __folio_memcg(folio);
3084 if (memcg)
3085 objcg = __get_obj_cgroup_from_memcg(memcg);
3086 else
3087 objcg = NULL;
3088 rcu_read_unlock();
3089 }
3090 return objcg;
3091 }
3092
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3093 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3094 {
3095 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3097 if (nr_pages > 0)
3098 page_counter_charge(&memcg->kmem, nr_pages);
3099 else
3100 page_counter_uncharge(&memcg->kmem, -nr_pages);
3101 }
3102 }
3103
3104
3105 /*
3106 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3107 * @objcg: object cgroup to uncharge
3108 * @nr_pages: number of pages to uncharge
3109 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3110 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3111 unsigned int nr_pages)
3112 {
3113 struct mem_cgroup *memcg;
3114
3115 memcg = get_mem_cgroup_from_objcg(objcg);
3116
3117 memcg_account_kmem(memcg, -nr_pages);
3118 refill_stock(memcg, nr_pages);
3119
3120 css_put(&memcg->css);
3121 }
3122
3123 /*
3124 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3125 * @objcg: object cgroup to charge
3126 * @gfp: reclaim mode
3127 * @nr_pages: number of pages to charge
3128 *
3129 * Returns 0 on success, an error code on failure.
3130 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3131 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3132 unsigned int nr_pages)
3133 {
3134 struct mem_cgroup *memcg;
3135 int ret;
3136
3137 memcg = get_mem_cgroup_from_objcg(objcg);
3138
3139 ret = try_charge_memcg(memcg, gfp, nr_pages);
3140 if (ret)
3141 goto out;
3142
3143 memcg_account_kmem(memcg, nr_pages);
3144 out:
3145 css_put(&memcg->css);
3146
3147 return ret;
3148 }
3149
3150 /**
3151 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3152 * @page: page to charge
3153 * @gfp: reclaim mode
3154 * @order: allocation order
3155 *
3156 * Returns 0 on success, an error code on failure.
3157 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3158 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3159 {
3160 struct obj_cgroup *objcg;
3161 int ret = 0;
3162
3163 objcg = get_obj_cgroup_from_current();
3164 if (objcg) {
3165 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3166 if (!ret) {
3167 page->memcg_data = (unsigned long)objcg |
3168 MEMCG_DATA_KMEM;
3169 return 0;
3170 }
3171 obj_cgroup_put(objcg);
3172 }
3173 return ret;
3174 }
3175
3176 /**
3177 * __memcg_kmem_uncharge_page: uncharge a kmem page
3178 * @page: page to uncharge
3179 * @order: allocation order
3180 */
__memcg_kmem_uncharge_page(struct page * page,int order)3181 void __memcg_kmem_uncharge_page(struct page *page, int order)
3182 {
3183 struct folio *folio = page_folio(page);
3184 struct obj_cgroup *objcg;
3185 unsigned int nr_pages = 1 << order;
3186
3187 if (!folio_memcg_kmem(folio))
3188 return;
3189
3190 objcg = __folio_objcg(folio);
3191 obj_cgroup_uncharge_pages(objcg, nr_pages);
3192 folio->memcg_data = 0;
3193 obj_cgroup_put(objcg);
3194 }
3195
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3196 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3197 enum node_stat_item idx, int nr)
3198 {
3199 struct memcg_stock_pcp *stock;
3200 struct obj_cgroup *old = NULL;
3201 unsigned long flags;
3202 int *bytes;
3203
3204 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3205 stock = this_cpu_ptr(&memcg_stock);
3206
3207 /*
3208 * Save vmstat data in stock and skip vmstat array update unless
3209 * accumulating over a page of vmstat data or when pgdat or idx
3210 * changes.
3211 */
3212 if (READ_ONCE(stock->cached_objcg) != objcg) {
3213 old = drain_obj_stock(stock);
3214 obj_cgroup_get(objcg);
3215 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3216 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3217 WRITE_ONCE(stock->cached_objcg, objcg);
3218 stock->cached_pgdat = pgdat;
3219 } else if (stock->cached_pgdat != pgdat) {
3220 /* Flush the existing cached vmstat data */
3221 struct pglist_data *oldpg = stock->cached_pgdat;
3222
3223 if (stock->nr_slab_reclaimable_b) {
3224 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3225 stock->nr_slab_reclaimable_b);
3226 stock->nr_slab_reclaimable_b = 0;
3227 }
3228 if (stock->nr_slab_unreclaimable_b) {
3229 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3230 stock->nr_slab_unreclaimable_b);
3231 stock->nr_slab_unreclaimable_b = 0;
3232 }
3233 stock->cached_pgdat = pgdat;
3234 }
3235
3236 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3237 : &stock->nr_slab_unreclaimable_b;
3238 /*
3239 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3240 * cached locally at least once before pushing it out.
3241 */
3242 if (!*bytes) {
3243 *bytes = nr;
3244 nr = 0;
3245 } else {
3246 *bytes += nr;
3247 if (abs(*bytes) > PAGE_SIZE) {
3248 nr = *bytes;
3249 *bytes = 0;
3250 } else {
3251 nr = 0;
3252 }
3253 }
3254 if (nr)
3255 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3256
3257 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3258 if (old)
3259 obj_cgroup_put(old);
3260 }
3261
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3262 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3263 {
3264 struct memcg_stock_pcp *stock;
3265 unsigned long flags;
3266 bool ret = false;
3267
3268 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3269
3270 stock = this_cpu_ptr(&memcg_stock);
3271 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3272 stock->nr_bytes -= nr_bytes;
3273 ret = true;
3274 }
3275
3276 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3277
3278 return ret;
3279 }
3280
drain_obj_stock(struct memcg_stock_pcp * stock)3281 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3282 {
3283 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3284
3285 if (!old)
3286 return NULL;
3287
3288 if (stock->nr_bytes) {
3289 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3290 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3291
3292 if (nr_pages) {
3293 struct mem_cgroup *memcg;
3294
3295 memcg = get_mem_cgroup_from_objcg(old);
3296
3297 memcg_account_kmem(memcg, -nr_pages);
3298 __refill_stock(memcg, nr_pages);
3299
3300 css_put(&memcg->css);
3301 }
3302
3303 /*
3304 * The leftover is flushed to the centralized per-memcg value.
3305 * On the next attempt to refill obj stock it will be moved
3306 * to a per-cpu stock (probably, on an other CPU), see
3307 * refill_obj_stock().
3308 *
3309 * How often it's flushed is a trade-off between the memory
3310 * limit enforcement accuracy and potential CPU contention,
3311 * so it might be changed in the future.
3312 */
3313 atomic_add(nr_bytes, &old->nr_charged_bytes);
3314 stock->nr_bytes = 0;
3315 }
3316
3317 /*
3318 * Flush the vmstat data in current stock
3319 */
3320 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3321 if (stock->nr_slab_reclaimable_b) {
3322 mod_objcg_mlstate(old, stock->cached_pgdat,
3323 NR_SLAB_RECLAIMABLE_B,
3324 stock->nr_slab_reclaimable_b);
3325 stock->nr_slab_reclaimable_b = 0;
3326 }
3327 if (stock->nr_slab_unreclaimable_b) {
3328 mod_objcg_mlstate(old, stock->cached_pgdat,
3329 NR_SLAB_UNRECLAIMABLE_B,
3330 stock->nr_slab_unreclaimable_b);
3331 stock->nr_slab_unreclaimable_b = 0;
3332 }
3333 stock->cached_pgdat = NULL;
3334 }
3335
3336 WRITE_ONCE(stock->cached_objcg, NULL);
3337 /*
3338 * The `old' objects needs to be released by the caller via
3339 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3340 */
3341 return old;
3342 }
3343
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3344 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3345 struct mem_cgroup *root_memcg)
3346 {
3347 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3348 struct mem_cgroup *memcg;
3349
3350 if (objcg) {
3351 memcg = obj_cgroup_memcg(objcg);
3352 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3353 return true;
3354 }
3355
3356 return false;
3357 }
3358
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3359 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3360 bool allow_uncharge)
3361 {
3362 struct memcg_stock_pcp *stock;
3363 struct obj_cgroup *old = NULL;
3364 unsigned long flags;
3365 unsigned int nr_pages = 0;
3366
3367 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368
3369 stock = this_cpu_ptr(&memcg_stock);
3370 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3371 old = drain_obj_stock(stock);
3372 obj_cgroup_get(objcg);
3373 WRITE_ONCE(stock->cached_objcg, objcg);
3374 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3375 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3376 allow_uncharge = true; /* Allow uncharge when objcg changes */
3377 }
3378 stock->nr_bytes += nr_bytes;
3379
3380 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3381 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3382 stock->nr_bytes &= (PAGE_SIZE - 1);
3383 }
3384
3385 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3386 if (old)
3387 obj_cgroup_put(old);
3388
3389 if (nr_pages)
3390 obj_cgroup_uncharge_pages(objcg, nr_pages);
3391 }
3392
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3393 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3394 {
3395 unsigned int nr_pages, nr_bytes;
3396 int ret;
3397
3398 if (consume_obj_stock(objcg, size))
3399 return 0;
3400
3401 /*
3402 * In theory, objcg->nr_charged_bytes can have enough
3403 * pre-charged bytes to satisfy the allocation. However,
3404 * flushing objcg->nr_charged_bytes requires two atomic
3405 * operations, and objcg->nr_charged_bytes can't be big.
3406 * The shared objcg->nr_charged_bytes can also become a
3407 * performance bottleneck if all tasks of the same memcg are
3408 * trying to update it. So it's better to ignore it and try
3409 * grab some new pages. The stock's nr_bytes will be flushed to
3410 * objcg->nr_charged_bytes later on when objcg changes.
3411 *
3412 * The stock's nr_bytes may contain enough pre-charged bytes
3413 * to allow one less page from being charged, but we can't rely
3414 * on the pre-charged bytes not being changed outside of
3415 * consume_obj_stock() or refill_obj_stock(). So ignore those
3416 * pre-charged bytes as well when charging pages. To avoid a
3417 * page uncharge right after a page charge, we set the
3418 * allow_uncharge flag to false when calling refill_obj_stock()
3419 * to temporarily allow the pre-charged bytes to exceed the page
3420 * size limit. The maximum reachable value of the pre-charged
3421 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3422 * race.
3423 */
3424 nr_pages = size >> PAGE_SHIFT;
3425 nr_bytes = size & (PAGE_SIZE - 1);
3426
3427 if (nr_bytes)
3428 nr_pages += 1;
3429
3430 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3431 if (!ret && nr_bytes)
3432 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3433
3434 return ret;
3435 }
3436
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3437 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3438 {
3439 refill_obj_stock(objcg, size, true);
3440 }
3441
3442 #endif /* CONFIG_MEMCG_KMEM */
3443
3444 /*
3445 * Because page_memcg(head) is not set on tails, set it now.
3446 */
split_page_memcg(struct page * head,unsigned int nr)3447 void split_page_memcg(struct page *head, unsigned int nr)
3448 {
3449 struct folio *folio = page_folio(head);
3450 struct mem_cgroup *memcg = folio_memcg(folio);
3451 int i;
3452
3453 if (mem_cgroup_disabled() || !memcg)
3454 return;
3455
3456 for (i = 1; i < nr; i++)
3457 folio_page(folio, i)->memcg_data = folio->memcg_data;
3458
3459 if (folio_memcg_kmem(folio))
3460 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3461 else
3462 css_get_many(&memcg->css, nr - 1);
3463 }
3464
3465 #ifdef CONFIG_SWAP
3466 /**
3467 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3468 * @entry: swap entry to be moved
3469 * @from: mem_cgroup which the entry is moved from
3470 * @to: mem_cgroup which the entry is moved to
3471 *
3472 * It succeeds only when the swap_cgroup's record for this entry is the same
3473 * as the mem_cgroup's id of @from.
3474 *
3475 * Returns 0 on success, -EINVAL on failure.
3476 *
3477 * The caller must have charged to @to, IOW, called page_counter_charge() about
3478 * both res and memsw, and called css_get().
3479 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3480 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3481 struct mem_cgroup *from, struct mem_cgroup *to)
3482 {
3483 unsigned short old_id, new_id;
3484
3485 old_id = mem_cgroup_id(from);
3486 new_id = mem_cgroup_id(to);
3487
3488 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3489 mod_memcg_state(from, MEMCG_SWAP, -1);
3490 mod_memcg_state(to, MEMCG_SWAP, 1);
3491 return 0;
3492 }
3493 return -EINVAL;
3494 }
3495 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3496 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3497 struct mem_cgroup *from, struct mem_cgroup *to)
3498 {
3499 return -EINVAL;
3500 }
3501 #endif
3502
3503 static DEFINE_MUTEX(memcg_max_mutex);
3504
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3505 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3506 unsigned long max, bool memsw)
3507 {
3508 bool enlarge = false;
3509 bool drained = false;
3510 int ret;
3511 bool limits_invariant;
3512 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3513
3514 do {
3515 if (signal_pending(current)) {
3516 ret = -EINTR;
3517 break;
3518 }
3519
3520 mutex_lock(&memcg_max_mutex);
3521 /*
3522 * Make sure that the new limit (memsw or memory limit) doesn't
3523 * break our basic invariant rule memory.max <= memsw.max.
3524 */
3525 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3526 max <= memcg->memsw.max;
3527 if (!limits_invariant) {
3528 mutex_unlock(&memcg_max_mutex);
3529 ret = -EINVAL;
3530 break;
3531 }
3532 if (max > counter->max)
3533 enlarge = true;
3534 ret = page_counter_set_max(counter, max);
3535 mutex_unlock(&memcg_max_mutex);
3536
3537 if (!ret)
3538 break;
3539
3540 if (!drained) {
3541 drain_all_stock(memcg);
3542 drained = true;
3543 continue;
3544 }
3545
3546 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3547 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3548 ret = -EBUSY;
3549 break;
3550 }
3551 } while (true);
3552
3553 if (!ret && enlarge)
3554 memcg_oom_recover(memcg);
3555
3556 return ret;
3557 }
3558
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3559 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3560 gfp_t gfp_mask,
3561 unsigned long *total_scanned)
3562 {
3563 unsigned long nr_reclaimed = 0;
3564 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3565 unsigned long reclaimed;
3566 int loop = 0;
3567 struct mem_cgroup_tree_per_node *mctz;
3568 unsigned long excess;
3569
3570 if (lru_gen_enabled())
3571 return 0;
3572
3573 if (order > 0)
3574 return 0;
3575
3576 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3577
3578 /*
3579 * Do not even bother to check the largest node if the root
3580 * is empty. Do it lockless to prevent lock bouncing. Races
3581 * are acceptable as soft limit is best effort anyway.
3582 */
3583 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3584 return 0;
3585
3586 /*
3587 * This loop can run a while, specially if mem_cgroup's continuously
3588 * keep exceeding their soft limit and putting the system under
3589 * pressure
3590 */
3591 do {
3592 if (next_mz)
3593 mz = next_mz;
3594 else
3595 mz = mem_cgroup_largest_soft_limit_node(mctz);
3596 if (!mz)
3597 break;
3598
3599 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3600 gfp_mask, total_scanned);
3601 nr_reclaimed += reclaimed;
3602 spin_lock_irq(&mctz->lock);
3603
3604 /*
3605 * If we failed to reclaim anything from this memory cgroup
3606 * it is time to move on to the next cgroup
3607 */
3608 next_mz = NULL;
3609 if (!reclaimed)
3610 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3611
3612 excess = soft_limit_excess(mz->memcg);
3613 /*
3614 * One school of thought says that we should not add
3615 * back the node to the tree if reclaim returns 0.
3616 * But our reclaim could return 0, simply because due
3617 * to priority we are exposing a smaller subset of
3618 * memory to reclaim from. Consider this as a longer
3619 * term TODO.
3620 */
3621 /* If excess == 0, no tree ops */
3622 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3623 spin_unlock_irq(&mctz->lock);
3624 css_put(&mz->memcg->css);
3625 loop++;
3626 /*
3627 * Could not reclaim anything and there are no more
3628 * mem cgroups to try or we seem to be looping without
3629 * reclaiming anything.
3630 */
3631 if (!nr_reclaimed &&
3632 (next_mz == NULL ||
3633 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3634 break;
3635 } while (!nr_reclaimed);
3636 if (next_mz)
3637 css_put(&next_mz->memcg->css);
3638 return nr_reclaimed;
3639 }
3640
3641 /*
3642 * Reclaims as many pages from the given memcg as possible.
3643 *
3644 * Caller is responsible for holding css reference for memcg.
3645 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3646 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3647 {
3648 int nr_retries = MAX_RECLAIM_RETRIES;
3649
3650 /* we call try-to-free pages for make this cgroup empty */
3651 lru_add_drain_all();
3652
3653 drain_all_stock(memcg);
3654
3655 /* try to free all pages in this cgroup */
3656 while (nr_retries && page_counter_read(&memcg->memory)) {
3657 if (signal_pending(current))
3658 return -EINTR;
3659
3660 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3661 MEMCG_RECLAIM_MAY_SWAP))
3662 nr_retries--;
3663 }
3664
3665 return 0;
3666 }
3667
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3668 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3669 char *buf, size_t nbytes,
3670 loff_t off)
3671 {
3672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3673
3674 if (mem_cgroup_is_root(memcg))
3675 return -EINVAL;
3676 return mem_cgroup_force_empty(memcg) ?: nbytes;
3677 }
3678
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3679 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3680 struct cftype *cft)
3681 {
3682 return 1;
3683 }
3684
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3685 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3686 struct cftype *cft, u64 val)
3687 {
3688 if (val == 1)
3689 return 0;
3690
3691 pr_warn_once("Non-hierarchical mode is deprecated. "
3692 "Please report your usecase to linux-mm@kvack.org if you "
3693 "depend on this functionality.\n");
3694
3695 return -EINVAL;
3696 }
3697
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3698 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3699 {
3700 unsigned long val;
3701
3702 if (mem_cgroup_is_root(memcg)) {
3703 /*
3704 * Approximate root's usage from global state. This isn't
3705 * perfect, but the root usage was always an approximation.
3706 */
3707 val = global_node_page_state(NR_FILE_PAGES) +
3708 global_node_page_state(NR_ANON_MAPPED);
3709 if (swap)
3710 val += total_swap_pages - get_nr_swap_pages();
3711 } else {
3712 if (!swap)
3713 val = page_counter_read(&memcg->memory);
3714 else
3715 val = page_counter_read(&memcg->memsw);
3716 }
3717 return val;
3718 }
3719
3720 enum {
3721 RES_USAGE,
3722 RES_LIMIT,
3723 RES_MAX_USAGE,
3724 RES_FAILCNT,
3725 RES_SOFT_LIMIT,
3726 };
3727
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3728 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3729 struct cftype *cft)
3730 {
3731 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3732 struct page_counter *counter;
3733
3734 switch (MEMFILE_TYPE(cft->private)) {
3735 case _MEM:
3736 counter = &memcg->memory;
3737 break;
3738 case _MEMSWAP:
3739 counter = &memcg->memsw;
3740 break;
3741 case _KMEM:
3742 counter = &memcg->kmem;
3743 break;
3744 case _TCP:
3745 counter = &memcg->tcpmem;
3746 break;
3747 default:
3748 BUG();
3749 }
3750
3751 switch (MEMFILE_ATTR(cft->private)) {
3752 case RES_USAGE:
3753 if (counter == &memcg->memory)
3754 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3755 if (counter == &memcg->memsw)
3756 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3757 return (u64)page_counter_read(counter) * PAGE_SIZE;
3758 case RES_LIMIT:
3759 return (u64)counter->max * PAGE_SIZE;
3760 case RES_MAX_USAGE:
3761 return (u64)counter->watermark * PAGE_SIZE;
3762 case RES_FAILCNT:
3763 return counter->failcnt;
3764 case RES_SOFT_LIMIT:
3765 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3766 default:
3767 BUG();
3768 }
3769 }
3770
3771 /*
3772 * This function doesn't do anything useful. Its only job is to provide a read
3773 * handler for a file so that cgroup_file_mode() will add read permissions.
3774 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)3775 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3776 __always_unused void *v)
3777 {
3778 return -EINVAL;
3779 }
3780
3781 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3782 static int memcg_online_kmem(struct mem_cgroup *memcg)
3783 {
3784 struct obj_cgroup *objcg;
3785
3786 if (mem_cgroup_kmem_disabled())
3787 return 0;
3788
3789 if (unlikely(mem_cgroup_is_root(memcg)))
3790 return 0;
3791
3792 objcg = obj_cgroup_alloc();
3793 if (!objcg)
3794 return -ENOMEM;
3795
3796 objcg->memcg = memcg;
3797 rcu_assign_pointer(memcg->objcg, objcg);
3798
3799 static_branch_enable(&memcg_kmem_online_key);
3800
3801 memcg->kmemcg_id = memcg->id.id;
3802
3803 return 0;
3804 }
3805
memcg_offline_kmem(struct mem_cgroup * memcg)3806 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3807 {
3808 struct mem_cgroup *parent;
3809
3810 if (mem_cgroup_kmem_disabled())
3811 return;
3812
3813 if (unlikely(mem_cgroup_is_root(memcg)))
3814 return;
3815
3816 parent = parent_mem_cgroup(memcg);
3817 if (!parent)
3818 parent = root_mem_cgroup;
3819
3820 memcg_reparent_objcgs(memcg, parent);
3821
3822 /*
3823 * After we have finished memcg_reparent_objcgs(), all list_lrus
3824 * corresponding to this cgroup are guaranteed to remain empty.
3825 * The ordering is imposed by list_lru_node->lock taken by
3826 * memcg_reparent_list_lrus().
3827 */
3828 memcg_reparent_list_lrus(memcg, parent);
3829 }
3830 #else
memcg_online_kmem(struct mem_cgroup * memcg)3831 static int memcg_online_kmem(struct mem_cgroup *memcg)
3832 {
3833 return 0;
3834 }
memcg_offline_kmem(struct mem_cgroup * memcg)3835 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3836 {
3837 }
3838 #endif /* CONFIG_MEMCG_KMEM */
3839
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3840 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3841 {
3842 int ret;
3843
3844 mutex_lock(&memcg_max_mutex);
3845
3846 ret = page_counter_set_max(&memcg->tcpmem, max);
3847 if (ret)
3848 goto out;
3849
3850 if (!memcg->tcpmem_active) {
3851 /*
3852 * The active flag needs to be written after the static_key
3853 * update. This is what guarantees that the socket activation
3854 * function is the last one to run. See mem_cgroup_sk_alloc()
3855 * for details, and note that we don't mark any socket as
3856 * belonging to this memcg until that flag is up.
3857 *
3858 * We need to do this, because static_keys will span multiple
3859 * sites, but we can't control their order. If we mark a socket
3860 * as accounted, but the accounting functions are not patched in
3861 * yet, we'll lose accounting.
3862 *
3863 * We never race with the readers in mem_cgroup_sk_alloc(),
3864 * because when this value change, the code to process it is not
3865 * patched in yet.
3866 */
3867 static_branch_inc(&memcg_sockets_enabled_key);
3868 memcg->tcpmem_active = true;
3869 }
3870 out:
3871 mutex_unlock(&memcg_max_mutex);
3872 return ret;
3873 }
3874
3875 /*
3876 * The user of this function is...
3877 * RES_LIMIT.
3878 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3879 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3880 char *buf, size_t nbytes, loff_t off)
3881 {
3882 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3883 unsigned long nr_pages;
3884 int ret;
3885
3886 buf = strstrip(buf);
3887 ret = page_counter_memparse(buf, "-1", &nr_pages);
3888 if (ret)
3889 return ret;
3890
3891 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892 case RES_LIMIT:
3893 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3894 ret = -EINVAL;
3895 break;
3896 }
3897 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3898 case _MEM:
3899 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3900 break;
3901 case _MEMSWAP:
3902 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3903 break;
3904 case _KMEM:
3905 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3906 "Writing any value to this file has no effect. "
3907 "Please report your usecase to linux-mm@kvack.org if you "
3908 "depend on this functionality.\n");
3909 ret = 0;
3910 break;
3911 case _TCP:
3912 ret = memcg_update_tcp_max(memcg, nr_pages);
3913 break;
3914 }
3915 break;
3916 case RES_SOFT_LIMIT:
3917 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3918 ret = -EOPNOTSUPP;
3919 } else {
3920 WRITE_ONCE(memcg->soft_limit, nr_pages);
3921 ret = 0;
3922 }
3923 break;
3924 }
3925 return ret ?: nbytes;
3926 }
3927
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3928 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3929 size_t nbytes, loff_t off)
3930 {
3931 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3932 struct page_counter *counter;
3933
3934 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3935 case _MEM:
3936 counter = &memcg->memory;
3937 break;
3938 case _MEMSWAP:
3939 counter = &memcg->memsw;
3940 break;
3941 case _KMEM:
3942 counter = &memcg->kmem;
3943 break;
3944 case _TCP:
3945 counter = &memcg->tcpmem;
3946 break;
3947 default:
3948 BUG();
3949 }
3950
3951 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3952 case RES_MAX_USAGE:
3953 page_counter_reset_watermark(counter);
3954 break;
3955 case RES_FAILCNT:
3956 counter->failcnt = 0;
3957 break;
3958 default:
3959 BUG();
3960 }
3961
3962 return nbytes;
3963 }
3964
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3965 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3966 struct cftype *cft)
3967 {
3968 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3969 }
3970
3971 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3972 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3973 struct cftype *cft, u64 val)
3974 {
3975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3976
3977 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3978 "Please report your usecase to linux-mm@kvack.org if you "
3979 "depend on this functionality.\n");
3980
3981 if (val & ~MOVE_MASK)
3982 return -EINVAL;
3983
3984 /*
3985 * No kind of locking is needed in here, because ->can_attach() will
3986 * check this value once in the beginning of the process, and then carry
3987 * on with stale data. This means that changes to this value will only
3988 * affect task migrations starting after the change.
3989 */
3990 memcg->move_charge_at_immigrate = val;
3991 return 0;
3992 }
3993 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3994 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3995 struct cftype *cft, u64 val)
3996 {
3997 return -ENOSYS;
3998 }
3999 #endif
4000
4001 #ifdef CONFIG_NUMA
4002
4003 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4004 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4005 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4006
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)4007 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4008 int nid, unsigned int lru_mask, bool tree)
4009 {
4010 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4011 unsigned long nr = 0;
4012 enum lru_list lru;
4013
4014 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4015
4016 for_each_lru(lru) {
4017 if (!(BIT(lru) & lru_mask))
4018 continue;
4019 if (tree)
4020 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4021 else
4022 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4023 }
4024 return nr;
4025 }
4026
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4027 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4028 unsigned int lru_mask,
4029 bool tree)
4030 {
4031 unsigned long nr = 0;
4032 enum lru_list lru;
4033
4034 for_each_lru(lru) {
4035 if (!(BIT(lru) & lru_mask))
4036 continue;
4037 if (tree)
4038 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4039 else
4040 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4041 }
4042 return nr;
4043 }
4044
memcg_numa_stat_show(struct seq_file * m,void * v)4045 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4046 {
4047 struct numa_stat {
4048 const char *name;
4049 unsigned int lru_mask;
4050 };
4051
4052 static const struct numa_stat stats[] = {
4053 { "total", LRU_ALL },
4054 { "file", LRU_ALL_FILE },
4055 { "anon", LRU_ALL_ANON },
4056 { "unevictable", BIT(LRU_UNEVICTABLE) },
4057 };
4058 const struct numa_stat *stat;
4059 int nid;
4060 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4061
4062 mem_cgroup_flush_stats();
4063
4064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4065 seq_printf(m, "%s=%lu", stat->name,
4066 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4067 false));
4068 for_each_node_state(nid, N_MEMORY)
4069 seq_printf(m, " N%d=%lu", nid,
4070 mem_cgroup_node_nr_lru_pages(memcg, nid,
4071 stat->lru_mask, false));
4072 seq_putc(m, '\n');
4073 }
4074
4075 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4076
4077 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4078 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4079 true));
4080 for_each_node_state(nid, N_MEMORY)
4081 seq_printf(m, " N%d=%lu", nid,
4082 mem_cgroup_node_nr_lru_pages(memcg, nid,
4083 stat->lru_mask, true));
4084 seq_putc(m, '\n');
4085 }
4086
4087 return 0;
4088 }
4089 #endif /* CONFIG_NUMA */
4090
4091 static const unsigned int memcg1_stats[] = {
4092 NR_FILE_PAGES,
4093 NR_ANON_MAPPED,
4094 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4095 NR_ANON_THPS,
4096 #endif
4097 NR_SHMEM,
4098 NR_FILE_MAPPED,
4099 NR_FILE_DIRTY,
4100 NR_WRITEBACK,
4101 WORKINGSET_REFAULT_ANON,
4102 WORKINGSET_REFAULT_FILE,
4103 MEMCG_SWAP,
4104 };
4105
4106 static const char *const memcg1_stat_names[] = {
4107 "cache",
4108 "rss",
4109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4110 "rss_huge",
4111 #endif
4112 "shmem",
4113 "mapped_file",
4114 "dirty",
4115 "writeback",
4116 "workingset_refault_anon",
4117 "workingset_refault_file",
4118 "swap",
4119 };
4120
4121 /* Universal VM events cgroup1 shows, original sort order */
4122 static const unsigned int memcg1_events[] = {
4123 PGPGIN,
4124 PGPGOUT,
4125 PGFAULT,
4126 PGMAJFAULT,
4127 };
4128
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)4129 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4130 {
4131 unsigned long memory, memsw;
4132 struct mem_cgroup *mi;
4133 unsigned int i;
4134
4135 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4136
4137 mem_cgroup_flush_stats();
4138
4139 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4140 unsigned long nr;
4141
4142 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4143 continue;
4144 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4145 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4146 nr * memcg_page_state_unit(memcg1_stats[i]));
4147 }
4148
4149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4150 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4151 memcg_events_local(memcg, memcg1_events[i]));
4152
4153 for (i = 0; i < NR_LRU_LISTS; i++)
4154 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4155 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4156 PAGE_SIZE);
4157
4158 /* Hierarchical information */
4159 memory = memsw = PAGE_COUNTER_MAX;
4160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4161 memory = min(memory, READ_ONCE(mi->memory.max));
4162 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4163 }
4164 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4165 (u64)memory * PAGE_SIZE);
4166 if (do_memsw_account())
4167 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4168 (u64)memsw * PAGE_SIZE);
4169
4170 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4171 unsigned long nr;
4172
4173 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4174 continue;
4175 nr = memcg_page_state(memcg, memcg1_stats[i]);
4176 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4177 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4178 }
4179
4180 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4181 seq_buf_printf(s, "total_%s %llu\n",
4182 vm_event_name(memcg1_events[i]),
4183 (u64)memcg_events(memcg, memcg1_events[i]));
4184
4185 for (i = 0; i < NR_LRU_LISTS; i++)
4186 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4187 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4188 PAGE_SIZE);
4189
4190 #ifdef CONFIG_DEBUG_VM
4191 {
4192 pg_data_t *pgdat;
4193 struct mem_cgroup_per_node *mz;
4194 unsigned long anon_cost = 0;
4195 unsigned long file_cost = 0;
4196
4197 for_each_online_pgdat(pgdat) {
4198 mz = memcg->nodeinfo[pgdat->node_id];
4199
4200 anon_cost += mz->lruvec.anon_cost;
4201 file_cost += mz->lruvec.file_cost;
4202 }
4203 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4204 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4205 }
4206 #endif
4207 }
4208
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4209 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4210 struct cftype *cft)
4211 {
4212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4213
4214 return mem_cgroup_swappiness(memcg);
4215 }
4216
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4217 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4218 struct cftype *cft, u64 val)
4219 {
4220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4221
4222 if (val > 200)
4223 return -EINVAL;
4224
4225 if (!mem_cgroup_is_root(memcg))
4226 WRITE_ONCE(memcg->swappiness, val);
4227 else
4228 WRITE_ONCE(vm_swappiness, val);
4229
4230 return 0;
4231 }
4232
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4233 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4234 {
4235 struct mem_cgroup_threshold_ary *t;
4236 unsigned long usage;
4237 int i;
4238
4239 rcu_read_lock();
4240 if (!swap)
4241 t = rcu_dereference(memcg->thresholds.primary);
4242 else
4243 t = rcu_dereference(memcg->memsw_thresholds.primary);
4244
4245 if (!t)
4246 goto unlock;
4247
4248 usage = mem_cgroup_usage(memcg, swap);
4249
4250 /*
4251 * current_threshold points to threshold just below or equal to usage.
4252 * If it's not true, a threshold was crossed after last
4253 * call of __mem_cgroup_threshold().
4254 */
4255 i = t->current_threshold;
4256
4257 /*
4258 * Iterate backward over array of thresholds starting from
4259 * current_threshold and check if a threshold is crossed.
4260 * If none of thresholds below usage is crossed, we read
4261 * only one element of the array here.
4262 */
4263 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4264 eventfd_signal(t->entries[i].eventfd, 1);
4265
4266 /* i = current_threshold + 1 */
4267 i++;
4268
4269 /*
4270 * Iterate forward over array of thresholds starting from
4271 * current_threshold+1 and check if a threshold is crossed.
4272 * If none of thresholds above usage is crossed, we read
4273 * only one element of the array here.
4274 */
4275 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4276 eventfd_signal(t->entries[i].eventfd, 1);
4277
4278 /* Update current_threshold */
4279 t->current_threshold = i - 1;
4280 unlock:
4281 rcu_read_unlock();
4282 }
4283
mem_cgroup_threshold(struct mem_cgroup * memcg)4284 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4285 {
4286 while (memcg) {
4287 __mem_cgroup_threshold(memcg, false);
4288 if (do_memsw_account())
4289 __mem_cgroup_threshold(memcg, true);
4290
4291 memcg = parent_mem_cgroup(memcg);
4292 }
4293 }
4294
compare_thresholds(const void * a,const void * b)4295 static int compare_thresholds(const void *a, const void *b)
4296 {
4297 const struct mem_cgroup_threshold *_a = a;
4298 const struct mem_cgroup_threshold *_b = b;
4299
4300 if (_a->threshold > _b->threshold)
4301 return 1;
4302
4303 if (_a->threshold < _b->threshold)
4304 return -1;
4305
4306 return 0;
4307 }
4308
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4309 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4310 {
4311 struct mem_cgroup_eventfd_list *ev;
4312
4313 spin_lock(&memcg_oom_lock);
4314
4315 list_for_each_entry(ev, &memcg->oom_notify, list)
4316 eventfd_signal(ev->eventfd, 1);
4317
4318 spin_unlock(&memcg_oom_lock);
4319 return 0;
4320 }
4321
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4322 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4323 {
4324 struct mem_cgroup *iter;
4325
4326 for_each_mem_cgroup_tree(iter, memcg)
4327 mem_cgroup_oom_notify_cb(iter);
4328 }
4329
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4330 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4331 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4332 {
4333 struct mem_cgroup_thresholds *thresholds;
4334 struct mem_cgroup_threshold_ary *new;
4335 unsigned long threshold;
4336 unsigned long usage;
4337 int i, size, ret;
4338
4339 ret = page_counter_memparse(args, "-1", &threshold);
4340 if (ret)
4341 return ret;
4342
4343 mutex_lock(&memcg->thresholds_lock);
4344
4345 if (type == _MEM) {
4346 thresholds = &memcg->thresholds;
4347 usage = mem_cgroup_usage(memcg, false);
4348 } else if (type == _MEMSWAP) {
4349 thresholds = &memcg->memsw_thresholds;
4350 usage = mem_cgroup_usage(memcg, true);
4351 } else
4352 BUG();
4353
4354 /* Check if a threshold crossed before adding a new one */
4355 if (thresholds->primary)
4356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4357
4358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4359
4360 /* Allocate memory for new array of thresholds */
4361 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4362 if (!new) {
4363 ret = -ENOMEM;
4364 goto unlock;
4365 }
4366 new->size = size;
4367
4368 /* Copy thresholds (if any) to new array */
4369 if (thresholds->primary)
4370 memcpy(new->entries, thresholds->primary->entries,
4371 flex_array_size(new, entries, size - 1));
4372
4373 /* Add new threshold */
4374 new->entries[size - 1].eventfd = eventfd;
4375 new->entries[size - 1].threshold = threshold;
4376
4377 /* Sort thresholds. Registering of new threshold isn't time-critical */
4378 sort(new->entries, size, sizeof(*new->entries),
4379 compare_thresholds, NULL);
4380
4381 /* Find current threshold */
4382 new->current_threshold = -1;
4383 for (i = 0; i < size; i++) {
4384 if (new->entries[i].threshold <= usage) {
4385 /*
4386 * new->current_threshold will not be used until
4387 * rcu_assign_pointer(), so it's safe to increment
4388 * it here.
4389 */
4390 ++new->current_threshold;
4391 } else
4392 break;
4393 }
4394
4395 /* Free old spare buffer and save old primary buffer as spare */
4396 kfree(thresholds->spare);
4397 thresholds->spare = thresholds->primary;
4398
4399 rcu_assign_pointer(thresholds->primary, new);
4400
4401 /* To be sure that nobody uses thresholds */
4402 synchronize_rcu();
4403
4404 unlock:
4405 mutex_unlock(&memcg->thresholds_lock);
4406
4407 return ret;
4408 }
4409
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4410 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4411 struct eventfd_ctx *eventfd, const char *args)
4412 {
4413 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4414 }
4415
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4416 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd, const char *args)
4418 {
4419 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4420 }
4421
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4422 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4423 struct eventfd_ctx *eventfd, enum res_type type)
4424 {
4425 struct mem_cgroup_thresholds *thresholds;
4426 struct mem_cgroup_threshold_ary *new;
4427 unsigned long usage;
4428 int i, j, size, entries;
4429
4430 mutex_lock(&memcg->thresholds_lock);
4431
4432 if (type == _MEM) {
4433 thresholds = &memcg->thresholds;
4434 usage = mem_cgroup_usage(memcg, false);
4435 } else if (type == _MEMSWAP) {
4436 thresholds = &memcg->memsw_thresholds;
4437 usage = mem_cgroup_usage(memcg, true);
4438 } else
4439 BUG();
4440
4441 if (!thresholds->primary)
4442 goto unlock;
4443
4444 /* Check if a threshold crossed before removing */
4445 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4446
4447 /* Calculate new number of threshold */
4448 size = entries = 0;
4449 for (i = 0; i < thresholds->primary->size; i++) {
4450 if (thresholds->primary->entries[i].eventfd != eventfd)
4451 size++;
4452 else
4453 entries++;
4454 }
4455
4456 new = thresholds->spare;
4457
4458 /* If no items related to eventfd have been cleared, nothing to do */
4459 if (!entries)
4460 goto unlock;
4461
4462 /* Set thresholds array to NULL if we don't have thresholds */
4463 if (!size) {
4464 kfree(new);
4465 new = NULL;
4466 goto swap_buffers;
4467 }
4468
4469 new->size = size;
4470
4471 /* Copy thresholds and find current threshold */
4472 new->current_threshold = -1;
4473 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4474 if (thresholds->primary->entries[i].eventfd == eventfd)
4475 continue;
4476
4477 new->entries[j] = thresholds->primary->entries[i];
4478 if (new->entries[j].threshold <= usage) {
4479 /*
4480 * new->current_threshold will not be used
4481 * until rcu_assign_pointer(), so it's safe to increment
4482 * it here.
4483 */
4484 ++new->current_threshold;
4485 }
4486 j++;
4487 }
4488
4489 swap_buffers:
4490 /* Swap primary and spare array */
4491 thresholds->spare = thresholds->primary;
4492
4493 rcu_assign_pointer(thresholds->primary, new);
4494
4495 /* To be sure that nobody uses thresholds */
4496 synchronize_rcu();
4497
4498 /* If all events are unregistered, free the spare array */
4499 if (!new) {
4500 kfree(thresholds->spare);
4501 thresholds->spare = NULL;
4502 }
4503 unlock:
4504 mutex_unlock(&memcg->thresholds_lock);
4505 }
4506
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4507 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4508 struct eventfd_ctx *eventfd)
4509 {
4510 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4511 }
4512
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4513 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4514 struct eventfd_ctx *eventfd)
4515 {
4516 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4517 }
4518
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4519 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4520 struct eventfd_ctx *eventfd, const char *args)
4521 {
4522 struct mem_cgroup_eventfd_list *event;
4523
4524 event = kmalloc(sizeof(*event), GFP_KERNEL);
4525 if (!event)
4526 return -ENOMEM;
4527
4528 spin_lock(&memcg_oom_lock);
4529
4530 event->eventfd = eventfd;
4531 list_add(&event->list, &memcg->oom_notify);
4532
4533 /* already in OOM ? */
4534 if (memcg->under_oom)
4535 eventfd_signal(eventfd, 1);
4536 spin_unlock(&memcg_oom_lock);
4537
4538 return 0;
4539 }
4540
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4541 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4542 struct eventfd_ctx *eventfd)
4543 {
4544 struct mem_cgroup_eventfd_list *ev, *tmp;
4545
4546 spin_lock(&memcg_oom_lock);
4547
4548 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4549 if (ev->eventfd == eventfd) {
4550 list_del(&ev->list);
4551 kfree(ev);
4552 }
4553 }
4554
4555 spin_unlock(&memcg_oom_lock);
4556 }
4557
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4558 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4559 {
4560 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4561
4562 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4563 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4564 seq_printf(sf, "oom_kill %lu\n",
4565 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4566 return 0;
4567 }
4568
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4569 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4570 struct cftype *cft, u64 val)
4571 {
4572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4573
4574 /* cannot set to root cgroup and only 0 and 1 are allowed */
4575 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4576 return -EINVAL;
4577
4578 WRITE_ONCE(memcg->oom_kill_disable, val);
4579 if (!val)
4580 memcg_oom_recover(memcg);
4581
4582 return 0;
4583 }
4584
4585 #ifdef CONFIG_CGROUP_WRITEBACK
4586
4587 #include <trace/events/writeback.h>
4588
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4589 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4590 {
4591 return wb_domain_init(&memcg->cgwb_domain, gfp);
4592 }
4593
memcg_wb_domain_exit(struct mem_cgroup * memcg)4594 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4595 {
4596 wb_domain_exit(&memcg->cgwb_domain);
4597 }
4598
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4599 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4600 {
4601 wb_domain_size_changed(&memcg->cgwb_domain);
4602 }
4603
mem_cgroup_wb_domain(struct bdi_writeback * wb)4604 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4605 {
4606 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4607
4608 if (!memcg->css.parent)
4609 return NULL;
4610
4611 return &memcg->cgwb_domain;
4612 }
4613
4614 /**
4615 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4616 * @wb: bdi_writeback in question
4617 * @pfilepages: out parameter for number of file pages
4618 * @pheadroom: out parameter for number of allocatable pages according to memcg
4619 * @pdirty: out parameter for number of dirty pages
4620 * @pwriteback: out parameter for number of pages under writeback
4621 *
4622 * Determine the numbers of file, headroom, dirty, and writeback pages in
4623 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4624 * is a bit more involved.
4625 *
4626 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4627 * headroom is calculated as the lowest headroom of itself and the
4628 * ancestors. Note that this doesn't consider the actual amount of
4629 * available memory in the system. The caller should further cap
4630 * *@pheadroom accordingly.
4631 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4632 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4633 unsigned long *pheadroom, unsigned long *pdirty,
4634 unsigned long *pwriteback)
4635 {
4636 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4637 struct mem_cgroup *parent;
4638
4639 mem_cgroup_flush_stats();
4640
4641 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4642 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4643 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4644 memcg_page_state(memcg, NR_ACTIVE_FILE);
4645
4646 *pheadroom = PAGE_COUNTER_MAX;
4647 while ((parent = parent_mem_cgroup(memcg))) {
4648 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4649 READ_ONCE(memcg->memory.high));
4650 unsigned long used = page_counter_read(&memcg->memory);
4651
4652 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4653 memcg = parent;
4654 }
4655 }
4656
4657 /*
4658 * Foreign dirty flushing
4659 *
4660 * There's an inherent mismatch between memcg and writeback. The former
4661 * tracks ownership per-page while the latter per-inode. This was a
4662 * deliberate design decision because honoring per-page ownership in the
4663 * writeback path is complicated, may lead to higher CPU and IO overheads
4664 * and deemed unnecessary given that write-sharing an inode across
4665 * different cgroups isn't a common use-case.
4666 *
4667 * Combined with inode majority-writer ownership switching, this works well
4668 * enough in most cases but there are some pathological cases. For
4669 * example, let's say there are two cgroups A and B which keep writing to
4670 * different but confined parts of the same inode. B owns the inode and
4671 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4672 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4673 * triggering background writeback. A will be slowed down without a way to
4674 * make writeback of the dirty pages happen.
4675 *
4676 * Conditions like the above can lead to a cgroup getting repeatedly and
4677 * severely throttled after making some progress after each
4678 * dirty_expire_interval while the underlying IO device is almost
4679 * completely idle.
4680 *
4681 * Solving this problem completely requires matching the ownership tracking
4682 * granularities between memcg and writeback in either direction. However,
4683 * the more egregious behaviors can be avoided by simply remembering the
4684 * most recent foreign dirtying events and initiating remote flushes on
4685 * them when local writeback isn't enough to keep the memory clean enough.
4686 *
4687 * The following two functions implement such mechanism. When a foreign
4688 * page - a page whose memcg and writeback ownerships don't match - is
4689 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4690 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4691 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4692 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4693 * foreign bdi_writebacks which haven't expired. Both the numbers of
4694 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4695 * limited to MEMCG_CGWB_FRN_CNT.
4696 *
4697 * The mechanism only remembers IDs and doesn't hold any object references.
4698 * As being wrong occasionally doesn't matter, updates and accesses to the
4699 * records are lockless and racy.
4700 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4701 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4702 struct bdi_writeback *wb)
4703 {
4704 struct mem_cgroup *memcg = folio_memcg(folio);
4705 struct memcg_cgwb_frn *frn;
4706 u64 now = get_jiffies_64();
4707 u64 oldest_at = now;
4708 int oldest = -1;
4709 int i;
4710
4711 trace_track_foreign_dirty(folio, wb);
4712
4713 /*
4714 * Pick the slot to use. If there is already a slot for @wb, keep
4715 * using it. If not replace the oldest one which isn't being
4716 * written out.
4717 */
4718 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4719 frn = &memcg->cgwb_frn[i];
4720 if (frn->bdi_id == wb->bdi->id &&
4721 frn->memcg_id == wb->memcg_css->id)
4722 break;
4723 if (time_before64(frn->at, oldest_at) &&
4724 atomic_read(&frn->done.cnt) == 1) {
4725 oldest = i;
4726 oldest_at = frn->at;
4727 }
4728 }
4729
4730 if (i < MEMCG_CGWB_FRN_CNT) {
4731 /*
4732 * Re-using an existing one. Update timestamp lazily to
4733 * avoid making the cacheline hot. We want them to be
4734 * reasonably up-to-date and significantly shorter than
4735 * dirty_expire_interval as that's what expires the record.
4736 * Use the shorter of 1s and dirty_expire_interval / 8.
4737 */
4738 unsigned long update_intv =
4739 min_t(unsigned long, HZ,
4740 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4741
4742 if (time_before64(frn->at, now - update_intv))
4743 frn->at = now;
4744 } else if (oldest >= 0) {
4745 /* replace the oldest free one */
4746 frn = &memcg->cgwb_frn[oldest];
4747 frn->bdi_id = wb->bdi->id;
4748 frn->memcg_id = wb->memcg_css->id;
4749 frn->at = now;
4750 }
4751 }
4752
4753 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4754 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4755 {
4756 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4757 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4758 u64 now = jiffies_64;
4759 int i;
4760
4761 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4762 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4763
4764 /*
4765 * If the record is older than dirty_expire_interval,
4766 * writeback on it has already started. No need to kick it
4767 * off again. Also, don't start a new one if there's
4768 * already one in flight.
4769 */
4770 if (time_after64(frn->at, now - intv) &&
4771 atomic_read(&frn->done.cnt) == 1) {
4772 frn->at = 0;
4773 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4774 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4775 WB_REASON_FOREIGN_FLUSH,
4776 &frn->done);
4777 }
4778 }
4779 }
4780
4781 #else /* CONFIG_CGROUP_WRITEBACK */
4782
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4783 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4784 {
4785 return 0;
4786 }
4787
memcg_wb_domain_exit(struct mem_cgroup * memcg)4788 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4789 {
4790 }
4791
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4792 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4793 {
4794 }
4795
4796 #endif /* CONFIG_CGROUP_WRITEBACK */
4797
4798 /*
4799 * DO NOT USE IN NEW FILES.
4800 *
4801 * "cgroup.event_control" implementation.
4802 *
4803 * This is way over-engineered. It tries to support fully configurable
4804 * events for each user. Such level of flexibility is completely
4805 * unnecessary especially in the light of the planned unified hierarchy.
4806 *
4807 * Please deprecate this and replace with something simpler if at all
4808 * possible.
4809 */
4810
4811 /*
4812 * Unregister event and free resources.
4813 *
4814 * Gets called from workqueue.
4815 */
memcg_event_remove(struct work_struct * work)4816 static void memcg_event_remove(struct work_struct *work)
4817 {
4818 struct mem_cgroup_event *event =
4819 container_of(work, struct mem_cgroup_event, remove);
4820 struct mem_cgroup *memcg = event->memcg;
4821
4822 remove_wait_queue(event->wqh, &event->wait);
4823
4824 event->unregister_event(memcg, event->eventfd);
4825
4826 /* Notify userspace the event is going away. */
4827 eventfd_signal(event->eventfd, 1);
4828
4829 eventfd_ctx_put(event->eventfd);
4830 kfree(event);
4831 css_put(&memcg->css);
4832 }
4833
4834 /*
4835 * Gets called on EPOLLHUP on eventfd when user closes it.
4836 *
4837 * Called with wqh->lock held and interrupts disabled.
4838 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4839 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4840 int sync, void *key)
4841 {
4842 struct mem_cgroup_event *event =
4843 container_of(wait, struct mem_cgroup_event, wait);
4844 struct mem_cgroup *memcg = event->memcg;
4845 __poll_t flags = key_to_poll(key);
4846
4847 if (flags & EPOLLHUP) {
4848 /*
4849 * If the event has been detached at cgroup removal, we
4850 * can simply return knowing the other side will cleanup
4851 * for us.
4852 *
4853 * We can't race against event freeing since the other
4854 * side will require wqh->lock via remove_wait_queue(),
4855 * which we hold.
4856 */
4857 spin_lock(&memcg->event_list_lock);
4858 if (!list_empty(&event->list)) {
4859 list_del_init(&event->list);
4860 /*
4861 * We are in atomic context, but cgroup_event_remove()
4862 * may sleep, so we have to call it in workqueue.
4863 */
4864 schedule_work(&event->remove);
4865 }
4866 spin_unlock(&memcg->event_list_lock);
4867 }
4868
4869 return 0;
4870 }
4871
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4872 static void memcg_event_ptable_queue_proc(struct file *file,
4873 wait_queue_head_t *wqh, poll_table *pt)
4874 {
4875 struct mem_cgroup_event *event =
4876 container_of(pt, struct mem_cgroup_event, pt);
4877
4878 event->wqh = wqh;
4879 add_wait_queue(wqh, &event->wait);
4880 }
4881
4882 /*
4883 * DO NOT USE IN NEW FILES.
4884 *
4885 * Parse input and register new cgroup event handler.
4886 *
4887 * Input must be in format '<event_fd> <control_fd> <args>'.
4888 * Interpretation of args is defined by control file implementation.
4889 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4890 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4891 char *buf, size_t nbytes, loff_t off)
4892 {
4893 struct cgroup_subsys_state *css = of_css(of);
4894 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4895 struct mem_cgroup_event *event;
4896 struct cgroup_subsys_state *cfile_css;
4897 unsigned int efd, cfd;
4898 struct fd efile;
4899 struct fd cfile;
4900 struct dentry *cdentry;
4901 const char *name;
4902 char *endp;
4903 int ret;
4904
4905 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4906 return -EOPNOTSUPP;
4907
4908 buf = strstrip(buf);
4909
4910 efd = simple_strtoul(buf, &endp, 10);
4911 if (*endp != ' ')
4912 return -EINVAL;
4913 buf = endp + 1;
4914
4915 cfd = simple_strtoul(buf, &endp, 10);
4916 if (*endp == '\0')
4917 buf = endp;
4918 else if (*endp == ' ')
4919 buf = endp + 1;
4920 else
4921 return -EINVAL;
4922
4923 event = kzalloc(sizeof(*event), GFP_KERNEL);
4924 if (!event)
4925 return -ENOMEM;
4926
4927 event->memcg = memcg;
4928 INIT_LIST_HEAD(&event->list);
4929 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4930 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4931 INIT_WORK(&event->remove, memcg_event_remove);
4932
4933 efile = fdget(efd);
4934 if (!efile.file) {
4935 ret = -EBADF;
4936 goto out_kfree;
4937 }
4938
4939 event->eventfd = eventfd_ctx_fileget(efile.file);
4940 if (IS_ERR(event->eventfd)) {
4941 ret = PTR_ERR(event->eventfd);
4942 goto out_put_efile;
4943 }
4944
4945 cfile = fdget(cfd);
4946 if (!cfile.file) {
4947 ret = -EBADF;
4948 goto out_put_eventfd;
4949 }
4950
4951 /* the process need read permission on control file */
4952 /* AV: shouldn't we check that it's been opened for read instead? */
4953 ret = file_permission(cfile.file, MAY_READ);
4954 if (ret < 0)
4955 goto out_put_cfile;
4956
4957 /*
4958 * The control file must be a regular cgroup1 file. As a regular cgroup
4959 * file can't be renamed, it's safe to access its name afterwards.
4960 */
4961 cdentry = cfile.file->f_path.dentry;
4962 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4963 ret = -EINVAL;
4964 goto out_put_cfile;
4965 }
4966
4967 /*
4968 * Determine the event callbacks and set them in @event. This used
4969 * to be done via struct cftype but cgroup core no longer knows
4970 * about these events. The following is crude but the whole thing
4971 * is for compatibility anyway.
4972 *
4973 * DO NOT ADD NEW FILES.
4974 */
4975 name = cdentry->d_name.name;
4976
4977 if (!strcmp(name, "memory.usage_in_bytes")) {
4978 event->register_event = mem_cgroup_usage_register_event;
4979 event->unregister_event = mem_cgroup_usage_unregister_event;
4980 } else if (!strcmp(name, "memory.oom_control")) {
4981 event->register_event = mem_cgroup_oom_register_event;
4982 event->unregister_event = mem_cgroup_oom_unregister_event;
4983 } else if (!strcmp(name, "memory.pressure_level")) {
4984 event->register_event = vmpressure_register_event;
4985 event->unregister_event = vmpressure_unregister_event;
4986 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4987 event->register_event = memsw_cgroup_usage_register_event;
4988 event->unregister_event = memsw_cgroup_usage_unregister_event;
4989 } else {
4990 ret = -EINVAL;
4991 goto out_put_cfile;
4992 }
4993
4994 /*
4995 * Verify @cfile should belong to @css. Also, remaining events are
4996 * automatically removed on cgroup destruction but the removal is
4997 * asynchronous, so take an extra ref on @css.
4998 */
4999 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5000 &memory_cgrp_subsys);
5001 ret = -EINVAL;
5002 if (IS_ERR(cfile_css))
5003 goto out_put_cfile;
5004 if (cfile_css != css) {
5005 css_put(cfile_css);
5006 goto out_put_cfile;
5007 }
5008
5009 ret = event->register_event(memcg, event->eventfd, buf);
5010 if (ret)
5011 goto out_put_css;
5012
5013 vfs_poll(efile.file, &event->pt);
5014
5015 spin_lock_irq(&memcg->event_list_lock);
5016 list_add(&event->list, &memcg->event_list);
5017 spin_unlock_irq(&memcg->event_list_lock);
5018
5019 fdput(cfile);
5020 fdput(efile);
5021
5022 return nbytes;
5023
5024 out_put_css:
5025 css_put(css);
5026 out_put_cfile:
5027 fdput(cfile);
5028 out_put_eventfd:
5029 eventfd_ctx_put(event->eventfd);
5030 out_put_efile:
5031 fdput(efile);
5032 out_kfree:
5033 kfree(event);
5034
5035 return ret;
5036 }
5037
5038 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)5039 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5040 {
5041 /*
5042 * Deprecated.
5043 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5044 */
5045 return 0;
5046 }
5047 #endif
5048
5049 static int memory_stat_show(struct seq_file *m, void *v);
5050
5051 static struct cftype mem_cgroup_legacy_files[] = {
5052 {
5053 .name = "usage_in_bytes",
5054 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5055 .read_u64 = mem_cgroup_read_u64,
5056 },
5057 {
5058 .name = "max_usage_in_bytes",
5059 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5060 .write = mem_cgroup_reset,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "limit_in_bytes",
5065 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5066 .write = mem_cgroup_write,
5067 .read_u64 = mem_cgroup_read_u64,
5068 },
5069 {
5070 .name = "soft_limit_in_bytes",
5071 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5072 .write = mem_cgroup_write,
5073 .read_u64 = mem_cgroup_read_u64,
5074 },
5075 {
5076 .name = "failcnt",
5077 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5078 .write = mem_cgroup_reset,
5079 .read_u64 = mem_cgroup_read_u64,
5080 },
5081 {
5082 .name = "stat",
5083 .seq_show = memory_stat_show,
5084 },
5085 {
5086 .name = "force_empty",
5087 .write = mem_cgroup_force_empty_write,
5088 },
5089 {
5090 .name = "use_hierarchy",
5091 .write_u64 = mem_cgroup_hierarchy_write,
5092 .read_u64 = mem_cgroup_hierarchy_read,
5093 },
5094 {
5095 .name = "cgroup.event_control", /* XXX: for compat */
5096 .write = memcg_write_event_control,
5097 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5098 },
5099 {
5100 .name = "swappiness",
5101 .read_u64 = mem_cgroup_swappiness_read,
5102 .write_u64 = mem_cgroup_swappiness_write,
5103 },
5104 {
5105 .name = "move_charge_at_immigrate",
5106 .read_u64 = mem_cgroup_move_charge_read,
5107 .write_u64 = mem_cgroup_move_charge_write,
5108 },
5109 {
5110 .name = "oom_control",
5111 .seq_show = mem_cgroup_oom_control_read,
5112 .write_u64 = mem_cgroup_oom_control_write,
5113 },
5114 {
5115 .name = "pressure_level",
5116 .seq_show = mem_cgroup_dummy_seq_show,
5117 },
5118 #ifdef CONFIG_NUMA
5119 {
5120 .name = "numa_stat",
5121 .seq_show = memcg_numa_stat_show,
5122 },
5123 #endif
5124 {
5125 .name = "kmem.limit_in_bytes",
5126 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5127 .write = mem_cgroup_write,
5128 .read_u64 = mem_cgroup_read_u64,
5129 },
5130 {
5131 .name = "kmem.usage_in_bytes",
5132 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5133 .read_u64 = mem_cgroup_read_u64,
5134 },
5135 {
5136 .name = "kmem.failcnt",
5137 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5138 .write = mem_cgroup_reset,
5139 .read_u64 = mem_cgroup_read_u64,
5140 },
5141 {
5142 .name = "kmem.max_usage_in_bytes",
5143 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5144 .write = mem_cgroup_reset,
5145 .read_u64 = mem_cgroup_read_u64,
5146 },
5147 #if defined(CONFIG_MEMCG_KMEM) && \
5148 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5149 {
5150 .name = "kmem.slabinfo",
5151 .seq_show = mem_cgroup_slab_show,
5152 },
5153 #endif
5154 {
5155 .name = "kmem.tcp.limit_in_bytes",
5156 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5157 .write = mem_cgroup_write,
5158 .read_u64 = mem_cgroup_read_u64,
5159 },
5160 {
5161 .name = "kmem.tcp.usage_in_bytes",
5162 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5163 .read_u64 = mem_cgroup_read_u64,
5164 },
5165 {
5166 .name = "kmem.tcp.failcnt",
5167 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5168 .write = mem_cgroup_reset,
5169 .read_u64 = mem_cgroup_read_u64,
5170 },
5171 {
5172 .name = "kmem.tcp.max_usage_in_bytes",
5173 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5174 .write = mem_cgroup_reset,
5175 .read_u64 = mem_cgroup_read_u64,
5176 },
5177 { }, /* terminate */
5178 };
5179
5180 /*
5181 * Private memory cgroup IDR
5182 *
5183 * Swap-out records and page cache shadow entries need to store memcg
5184 * references in constrained space, so we maintain an ID space that is
5185 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5186 * memory-controlled cgroups to 64k.
5187 *
5188 * However, there usually are many references to the offline CSS after
5189 * the cgroup has been destroyed, such as page cache or reclaimable
5190 * slab objects, that don't need to hang on to the ID. We want to keep
5191 * those dead CSS from occupying IDs, or we might quickly exhaust the
5192 * relatively small ID space and prevent the creation of new cgroups
5193 * even when there are much fewer than 64k cgroups - possibly none.
5194 *
5195 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5196 * be freed and recycled when it's no longer needed, which is usually
5197 * when the CSS is offlined.
5198 *
5199 * The only exception to that are records of swapped out tmpfs/shmem
5200 * pages that need to be attributed to live ancestors on swapin. But
5201 * those references are manageable from userspace.
5202 */
5203
5204 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5205 static DEFINE_IDR(mem_cgroup_idr);
5206 static DEFINE_SPINLOCK(memcg_idr_lock);
5207
mem_cgroup_alloc_id(void)5208 static int mem_cgroup_alloc_id(void)
5209 {
5210 int ret;
5211
5212 idr_preload(GFP_KERNEL);
5213 spin_lock(&memcg_idr_lock);
5214 ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1,
5215 GFP_NOWAIT);
5216 spin_unlock(&memcg_idr_lock);
5217 idr_preload_end();
5218 return ret;
5219 }
5220
mem_cgroup_id_remove(struct mem_cgroup * memcg)5221 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5222 {
5223 if (memcg->id.id > 0) {
5224 spin_lock(&memcg_idr_lock);
5225 idr_remove(&mem_cgroup_idr, memcg->id.id);
5226 spin_unlock(&memcg_idr_lock);
5227
5228 memcg->id.id = 0;
5229 }
5230 }
5231
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5232 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5233 unsigned int n)
5234 {
5235 refcount_add(n, &memcg->id.ref);
5236 }
5237
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5238 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5239 {
5240 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5241 mem_cgroup_id_remove(memcg);
5242
5243 /* Memcg ID pins CSS */
5244 css_put(&memcg->css);
5245 }
5246 }
5247
mem_cgroup_id_put(struct mem_cgroup * memcg)5248 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5249 {
5250 mem_cgroup_id_put_many(memcg, 1);
5251 }
5252
5253 /**
5254 * mem_cgroup_from_id - look up a memcg from a memcg id
5255 * @id: the memcg id to look up
5256 *
5257 * Caller must hold rcu_read_lock().
5258 */
mem_cgroup_from_id(unsigned short id)5259 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5260 {
5261 WARN_ON_ONCE(!rcu_read_lock_held());
5262 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5263 if (id == -1)
5264 return NULL;
5265 #endif
5266 return idr_find(&mem_cgroup_idr, id);
5267 }
5268
5269 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5270 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5271 {
5272 struct cgroup *cgrp;
5273 struct cgroup_subsys_state *css;
5274 struct mem_cgroup *memcg;
5275
5276 cgrp = cgroup_get_from_id(ino);
5277 if (IS_ERR(cgrp))
5278 return ERR_CAST(cgrp);
5279
5280 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5281 if (css)
5282 memcg = container_of(css, struct mem_cgroup, css);
5283 else
5284 memcg = ERR_PTR(-ENOENT);
5285
5286 cgroup_put(cgrp);
5287
5288 return memcg;
5289 }
5290 #endif
5291
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5292 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5293 {
5294 struct mem_cgroup_per_node *pn;
5295
5296 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5297 if (!pn)
5298 return 1;
5299
5300 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5301 GFP_KERNEL_ACCOUNT);
5302 if (!pn->lruvec_stats_percpu) {
5303 kfree(pn);
5304 return 1;
5305 }
5306
5307 lruvec_init(&pn->lruvec);
5308 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
5309 pn->lruvec.pgdat = NODE_DATA(node);
5310 #endif
5311 pn->memcg = memcg;
5312
5313 memcg->nodeinfo[node] = pn;
5314 return 0;
5315 }
5316
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5317 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5318 {
5319 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5320
5321 if (!pn)
5322 return;
5323
5324 free_percpu(pn->lruvec_stats_percpu);
5325 kfree(pn);
5326 }
5327
__mem_cgroup_free(struct mem_cgroup * memcg)5328 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5329 {
5330 int node;
5331
5332 for_each_node(node)
5333 free_mem_cgroup_per_node_info(memcg, node);
5334 kfree(memcg->vmstats);
5335 free_percpu(memcg->vmstats_percpu);
5336 kfree(memcg);
5337 }
5338
mem_cgroup_free(struct mem_cgroup * memcg)5339 static void mem_cgroup_free(struct mem_cgroup *memcg)
5340 {
5341 lru_gen_exit_memcg(memcg);
5342 memcg_wb_domain_exit(memcg);
5343 __mem_cgroup_free(memcg);
5344 }
5345
mem_cgroup_alloc(void)5346 static struct mem_cgroup *mem_cgroup_alloc(void)
5347 {
5348 struct mem_cgroup *memcg;
5349 int node;
5350 int __maybe_unused i;
5351 long error = -ENOMEM;
5352
5353 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5354 if (!memcg)
5355 return ERR_PTR(error);
5356
5357 memcg->id.id = mem_cgroup_alloc_id();
5358 if (memcg->id.id < 0) {
5359 error = memcg->id.id;
5360 goto fail;
5361 }
5362
5363 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5364 if (!memcg->vmstats)
5365 goto fail;
5366
5367 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5368 GFP_KERNEL_ACCOUNT);
5369 if (!memcg->vmstats_percpu)
5370 goto fail;
5371
5372 for_each_node(node)
5373 if (alloc_mem_cgroup_per_node_info(memcg, node))
5374 goto fail;
5375
5376 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5377 goto fail;
5378
5379 INIT_WORK(&memcg->high_work, high_work_func);
5380 INIT_LIST_HEAD(&memcg->oom_notify);
5381 mutex_init(&memcg->thresholds_lock);
5382 spin_lock_init(&memcg->move_lock);
5383 vmpressure_init(&memcg->vmpressure);
5384 INIT_LIST_HEAD(&memcg->event_list);
5385 spin_lock_init(&memcg->event_list_lock);
5386 memcg->socket_pressure = jiffies;
5387 #ifdef CONFIG_MEMCG_KMEM
5388 memcg->kmemcg_id = -1;
5389 INIT_LIST_HEAD(&memcg->objcg_list);
5390 #endif
5391 #ifdef CONFIG_CGROUP_WRITEBACK
5392 INIT_LIST_HEAD(&memcg->cgwb_list);
5393 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5394 memcg->cgwb_frn[i].done =
5395 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5396 #endif
5397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5398 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5399 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5400 memcg->deferred_split_queue.split_queue_len = 0;
5401 #endif
5402
5403 #ifdef CONFIG_HYPERHOLD_MEMCG
5404 if (unlikely(!score_head_inited)) {
5405 INIT_LIST_HEAD(&score_head);
5406 score_head_inited = true;
5407 }
5408 #endif
5409
5410 #ifdef CONFIG_HYPERHOLD_MEMCG
5411 INIT_LIST_HEAD(&memcg->score_node);
5412 #endif
5413
5414 lru_gen_init_memcg(memcg);
5415 return memcg;
5416 fail:
5417 mem_cgroup_id_remove(memcg);
5418 __mem_cgroup_free(memcg);
5419 return ERR_PTR(error);
5420 }
5421
5422 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5423 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5424 {
5425 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5426 struct mem_cgroup *memcg, *old_memcg;
5427
5428 old_memcg = set_active_memcg(parent);
5429 memcg = mem_cgroup_alloc();
5430 set_active_memcg(old_memcg);
5431 if (IS_ERR(memcg))
5432 return ERR_CAST(memcg);
5433
5434 #ifdef CONFIG_HYPERHOLD_MEMCG
5435 atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5436 #endif
5437 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5438 atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5439 atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5440 atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5441 #endif
5442 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5443 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5444 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5445 memcg->zswap_max = PAGE_COUNTER_MAX;
5446 #endif
5447 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5448 if (parent) {
5449 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5450 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5451
5452 page_counter_init(&memcg->memory, &parent->memory);
5453 page_counter_init(&memcg->swap, &parent->swap);
5454 page_counter_init(&memcg->kmem, &parent->kmem);
5455 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5456 } else {
5457 init_memcg_events();
5458 page_counter_init(&memcg->memory, NULL);
5459 page_counter_init(&memcg->swap, NULL);
5460 page_counter_init(&memcg->kmem, NULL);
5461 page_counter_init(&memcg->tcpmem, NULL);
5462
5463 root_mem_cgroup = memcg;
5464 return &memcg->css;
5465 }
5466
5467 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5468 static_branch_inc(&memcg_sockets_enabled_key);
5469
5470 #if defined(CONFIG_MEMCG_KMEM)
5471 if (!cgroup_memory_nobpf)
5472 static_branch_inc(&memcg_bpf_enabled_key);
5473 #endif
5474
5475 return &memcg->css;
5476 }
5477
mem_cgroup_css_online(struct cgroup_subsys_state * css)5478 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5479 {
5480 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5481
5482 if (memcg_online_kmem(memcg))
5483 goto remove_id;
5484
5485 /*
5486 * A memcg must be visible for expand_shrinker_info()
5487 * by the time the maps are allocated. So, we allocate maps
5488 * here, when for_each_mem_cgroup() can't skip it.
5489 */
5490 if (alloc_shrinker_info(memcg))
5491 goto offline_kmem;
5492
5493 if (unlikely(mem_cgroup_is_root(memcg)))
5494 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5495 FLUSH_TIME);
5496 lru_gen_online_memcg(memcg);
5497
5498 #ifdef CONFIG_HYPERHOLD_MEMCG
5499 memcg_app_score_update(memcg);
5500 css_get(css);
5501 #endif
5502
5503 /* Online state pins memcg ID, memcg ID pins CSS */
5504 refcount_set(&memcg->id.ref, 1);
5505 css_get(css);
5506
5507 /*
5508 * Ensure mem_cgroup_from_id() works once we're fully online.
5509 *
5510 * We could do this earlier and require callers to filter with
5511 * css_tryget_online(). But right now there are no users that
5512 * need earlier access, and the workingset code relies on the
5513 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5514 * publish it here at the end of onlining. This matches the
5515 * regular ID destruction during offlining.
5516 */
5517 spin_lock(&memcg_idr_lock);
5518 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5519 spin_unlock(&memcg_idr_lock);
5520
5521 return 0;
5522 offline_kmem:
5523 memcg_offline_kmem(memcg);
5524 remove_id:
5525 mem_cgroup_id_remove(memcg);
5526 return -ENOMEM;
5527 }
5528
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5530 {
5531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5532 struct mem_cgroup_event *event, *tmp;
5533
5534 #ifdef CONFIG_HYPERHOLD_MEMCG
5535 unsigned long flags;
5536
5537 write_lock_irqsave(&score_list_lock, flags);
5538 list_del_init(&memcg->score_node);
5539 write_unlock_irqrestore(&score_list_lock, flags);
5540 css_put(css);
5541 #endif
5542
5543 /*
5544 * Unregister events and notify userspace.
5545 * Notify userspace about cgroup removing only after rmdir of cgroup
5546 * directory to avoid race between userspace and kernelspace.
5547 */
5548 spin_lock_irq(&memcg->event_list_lock);
5549 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5550 list_del_init(&event->list);
5551 schedule_work(&event->remove);
5552 }
5553 spin_unlock_irq(&memcg->event_list_lock);
5554
5555 page_counter_set_min(&memcg->memory, 0);
5556 page_counter_set_low(&memcg->memory, 0);
5557
5558 memcg_offline_kmem(memcg);
5559 reparent_shrinker_deferred(memcg);
5560 wb_memcg_offline(memcg);
5561 lru_gen_offline_memcg(memcg);
5562
5563 drain_all_stock(memcg);
5564
5565 mem_cgroup_id_put(memcg);
5566 }
5567
mem_cgroup_css_released(struct cgroup_subsys_state * css)5568 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5569 {
5570 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5571
5572 invalidate_reclaim_iterators(memcg);
5573 lru_gen_release_memcg(memcg);
5574 }
5575
mem_cgroup_css_free(struct cgroup_subsys_state * css)5576 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5577 {
5578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5579 int __maybe_unused i;
5580
5581 #ifdef CONFIG_CGROUP_WRITEBACK
5582 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5583 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5584 #endif
5585 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5586 static_branch_dec(&memcg_sockets_enabled_key);
5587
5588 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5589 static_branch_dec(&memcg_sockets_enabled_key);
5590
5591 #if defined(CONFIG_MEMCG_KMEM)
5592 if (!cgroup_memory_nobpf)
5593 static_branch_dec(&memcg_bpf_enabled_key);
5594 #endif
5595
5596 vmpressure_cleanup(&memcg->vmpressure);
5597 cancel_work_sync(&memcg->high_work);
5598 mem_cgroup_remove_from_trees(memcg);
5599 free_shrinker_info(memcg);
5600 mem_cgroup_free(memcg);
5601 }
5602
5603 /**
5604 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5605 * @css: the target css
5606 *
5607 * Reset the states of the mem_cgroup associated with @css. This is
5608 * invoked when the userland requests disabling on the default hierarchy
5609 * but the memcg is pinned through dependency. The memcg should stop
5610 * applying policies and should revert to the vanilla state as it may be
5611 * made visible again.
5612 *
5613 * The current implementation only resets the essential configurations.
5614 * This needs to be expanded to cover all the visible parts.
5615 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5616 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5617 {
5618 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5619
5620 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5621 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5622 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5623 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5624 page_counter_set_min(&memcg->memory, 0);
5625 page_counter_set_low(&memcg->memory, 0);
5626 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5627 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5628 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5629 memcg_wb_domain_size_changed(memcg);
5630 }
5631
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5632 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5633 {
5634 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5635 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5636 struct memcg_vmstats_percpu *statc;
5637 long delta, delta_cpu, v;
5638 int i, nid;
5639
5640 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5641
5642 for (i = 0; i < MEMCG_NR_STAT; i++) {
5643 /*
5644 * Collect the aggregated propagation counts of groups
5645 * below us. We're in a per-cpu loop here and this is
5646 * a global counter, so the first cycle will get them.
5647 */
5648 delta = memcg->vmstats->state_pending[i];
5649 if (delta)
5650 memcg->vmstats->state_pending[i] = 0;
5651
5652 /* Add CPU changes on this level since the last flush */
5653 delta_cpu = 0;
5654 v = READ_ONCE(statc->state[i]);
5655 if (v != statc->state_prev[i]) {
5656 delta_cpu = v - statc->state_prev[i];
5657 delta += delta_cpu;
5658 statc->state_prev[i] = v;
5659 }
5660
5661 /* Aggregate counts on this level and propagate upwards */
5662 if (delta_cpu)
5663 memcg->vmstats->state_local[i] += delta_cpu;
5664
5665 if (delta) {
5666 memcg->vmstats->state[i] += delta;
5667 if (parent)
5668 parent->vmstats->state_pending[i] += delta;
5669 }
5670 }
5671
5672 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5673 delta = memcg->vmstats->events_pending[i];
5674 if (delta)
5675 memcg->vmstats->events_pending[i] = 0;
5676
5677 delta_cpu = 0;
5678 v = READ_ONCE(statc->events[i]);
5679 if (v != statc->events_prev[i]) {
5680 delta_cpu = v - statc->events_prev[i];
5681 delta += delta_cpu;
5682 statc->events_prev[i] = v;
5683 }
5684
5685 if (delta_cpu)
5686 memcg->vmstats->events_local[i] += delta_cpu;
5687
5688 if (delta) {
5689 memcg->vmstats->events[i] += delta;
5690 if (parent)
5691 parent->vmstats->events_pending[i] += delta;
5692 }
5693 }
5694
5695 for_each_node_state(nid, N_MEMORY) {
5696 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5697 struct mem_cgroup_per_node *ppn = NULL;
5698 struct lruvec_stats_percpu *lstatc;
5699
5700 if (parent)
5701 ppn = parent->nodeinfo[nid];
5702
5703 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5704
5705 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5706 delta = pn->lruvec_stats.state_pending[i];
5707 if (delta)
5708 pn->lruvec_stats.state_pending[i] = 0;
5709
5710 delta_cpu = 0;
5711 v = READ_ONCE(lstatc->state[i]);
5712 if (v != lstatc->state_prev[i]) {
5713 delta_cpu = v - lstatc->state_prev[i];
5714 delta += delta_cpu;
5715 lstatc->state_prev[i] = v;
5716 }
5717
5718 if (delta_cpu)
5719 pn->lruvec_stats.state_local[i] += delta_cpu;
5720
5721 if (delta) {
5722 pn->lruvec_stats.state[i] += delta;
5723 if (ppn)
5724 ppn->lruvec_stats.state_pending[i] += delta;
5725 }
5726 }
5727 }
5728 }
5729
5730 #ifdef CONFIG_MMU
5731 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5732 static int mem_cgroup_do_precharge(unsigned long count)
5733 {
5734 int ret;
5735
5736 /* Try a single bulk charge without reclaim first, kswapd may wake */
5737 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5738 if (!ret) {
5739 mc.precharge += count;
5740 return ret;
5741 }
5742
5743 /* Try charges one by one with reclaim, but do not retry */
5744 while (count--) {
5745 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5746 if (ret)
5747 return ret;
5748 mc.precharge++;
5749 cond_resched();
5750 }
5751 return 0;
5752 }
5753
5754 union mc_target {
5755 struct page *page;
5756 swp_entry_t ent;
5757 };
5758
5759 enum mc_target_type {
5760 MC_TARGET_NONE = 0,
5761 MC_TARGET_PAGE,
5762 MC_TARGET_SWAP,
5763 MC_TARGET_DEVICE,
5764 };
5765
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5766 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5767 unsigned long addr, pte_t ptent)
5768 {
5769 struct page *page = vm_normal_page(vma, addr, ptent);
5770
5771 if (!page)
5772 return NULL;
5773 if (PageAnon(page)) {
5774 if (!(mc.flags & MOVE_ANON))
5775 return NULL;
5776 } else {
5777 if (!(mc.flags & MOVE_FILE))
5778 return NULL;
5779 }
5780 get_page(page);
5781
5782 return page;
5783 }
5784
5785 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5786 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5787 pte_t ptent, swp_entry_t *entry)
5788 {
5789 struct page *page = NULL;
5790 swp_entry_t ent = pte_to_swp_entry(ptent);
5791
5792 if (!(mc.flags & MOVE_ANON))
5793 return NULL;
5794
5795 /*
5796 * Handle device private pages that are not accessible by the CPU, but
5797 * stored as special swap entries in the page table.
5798 */
5799 if (is_device_private_entry(ent)) {
5800 page = pfn_swap_entry_to_page(ent);
5801 if (!get_page_unless_zero(page))
5802 return NULL;
5803 return page;
5804 }
5805
5806 if (non_swap_entry(ent))
5807 return NULL;
5808
5809 /*
5810 * Because swap_cache_get_folio() updates some statistics counter,
5811 * we call find_get_page() with swapper_space directly.
5812 */
5813 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5814 entry->val = ent.val;
5815
5816 return page;
5817 }
5818 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5819 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5820 pte_t ptent, swp_entry_t *entry)
5821 {
5822 return NULL;
5823 }
5824 #endif
5825
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5826 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5827 unsigned long addr, pte_t ptent)
5828 {
5829 unsigned long index;
5830 struct folio *folio;
5831
5832 if (!vma->vm_file) /* anonymous vma */
5833 return NULL;
5834 if (!(mc.flags & MOVE_FILE))
5835 return NULL;
5836
5837 /* folio is moved even if it's not RSS of this task(page-faulted). */
5838 /* shmem/tmpfs may report page out on swap: account for that too. */
5839 index = linear_page_index(vma, addr);
5840 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5841 if (IS_ERR(folio))
5842 return NULL;
5843 return folio_file_page(folio, index);
5844 }
5845
5846 /**
5847 * mem_cgroup_move_account - move account of the page
5848 * @page: the page
5849 * @compound: charge the page as compound or small page
5850 * @from: mem_cgroup which the page is moved from.
5851 * @to: mem_cgroup which the page is moved to. @from != @to.
5852 *
5853 * The page must be locked and not on the LRU.
5854 *
5855 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5856 * from old cgroup.
5857 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5858 static int mem_cgroup_move_account(struct page *page,
5859 bool compound,
5860 struct mem_cgroup *from,
5861 struct mem_cgroup *to)
5862 {
5863 struct folio *folio = page_folio(page);
5864 struct lruvec *from_vec, *to_vec;
5865 struct pglist_data *pgdat;
5866 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5867 int nid, ret;
5868
5869 VM_BUG_ON(from == to);
5870 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5871 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5872 VM_BUG_ON(compound && !folio_test_large(folio));
5873
5874 ret = -EINVAL;
5875 if (folio_memcg(folio) != from)
5876 goto out;
5877
5878 pgdat = folio_pgdat(folio);
5879 from_vec = mem_cgroup_lruvec(from, pgdat);
5880 to_vec = mem_cgroup_lruvec(to, pgdat);
5881
5882 folio_memcg_lock(folio);
5883
5884 if (folio_test_anon(folio)) {
5885 if (folio_mapped(folio)) {
5886 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5887 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5888 if (folio_test_pmd_mappable(folio)) {
5889 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5890 -nr_pages);
5891 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5892 nr_pages);
5893 }
5894 }
5895 } else {
5896 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5897 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5898
5899 if (folio_test_swapbacked(folio)) {
5900 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5901 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5902 }
5903
5904 if (folio_mapped(folio)) {
5905 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5906 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5907 }
5908
5909 if (folio_test_dirty(folio)) {
5910 struct address_space *mapping = folio_mapping(folio);
5911
5912 if (mapping_can_writeback(mapping)) {
5913 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5914 -nr_pages);
5915 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5916 nr_pages);
5917 }
5918 }
5919 }
5920
5921 #ifdef CONFIG_SWAP
5922 if (folio_test_swapcache(folio)) {
5923 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5924 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5925 }
5926 #endif
5927 if (folio_test_writeback(folio)) {
5928 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5929 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5930 }
5931
5932 /*
5933 * All state has been migrated, let's switch to the new memcg.
5934 *
5935 * It is safe to change page's memcg here because the page
5936 * is referenced, charged, isolated, and locked: we can't race
5937 * with (un)charging, migration, LRU putback, or anything else
5938 * that would rely on a stable page's memory cgroup.
5939 *
5940 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5941 * to save space. As soon as we switch page's memory cgroup to a
5942 * new memcg that isn't locked, the above state can change
5943 * concurrently again. Make sure we're truly done with it.
5944 */
5945 smp_mb();
5946
5947 css_get(&to->css);
5948 css_put(&from->css);
5949
5950 /* Warning should never happen, so don't worry about refcount non-0 */
5951 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
5952 folio->memcg_data = (unsigned long)to;
5953
5954 __folio_memcg_unlock(from);
5955
5956 ret = 0;
5957 nid = folio_nid(folio);
5958
5959 local_irq_disable();
5960 mem_cgroup_charge_statistics(to, nr_pages);
5961 memcg_check_events(to, nid);
5962 mem_cgroup_charge_statistics(from, -nr_pages);
5963 memcg_check_events(from, nid);
5964 local_irq_enable();
5965 out:
5966 return ret;
5967 }
5968
5969 /**
5970 * get_mctgt_type - get target type of moving charge
5971 * @vma: the vma the pte to be checked belongs
5972 * @addr: the address corresponding to the pte to be checked
5973 * @ptent: the pte to be checked
5974 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5975 *
5976 * Context: Called with pte lock held.
5977 * Return:
5978 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5979 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5980 * move charge. If @target is not NULL, the page is stored in target->page
5981 * with extra refcnt taken (Caller should release it).
5982 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5983 * target for charge migration. If @target is not NULL, the entry is
5984 * stored in target->ent.
5985 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5986 * thus not on the lru. For now such page is charged like a regular page
5987 * would be as it is just special memory taking the place of a regular page.
5988 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5989 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5990 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5991 unsigned long addr, pte_t ptent, union mc_target *target)
5992 {
5993 struct page *page = NULL;
5994 enum mc_target_type ret = MC_TARGET_NONE;
5995 swp_entry_t ent = { .val = 0 };
5996
5997 if (pte_present(ptent))
5998 page = mc_handle_present_pte(vma, addr, ptent);
5999 else if (pte_none_mostly(ptent))
6000 /*
6001 * PTE markers should be treated as a none pte here, separated
6002 * from other swap handling below.
6003 */
6004 page = mc_handle_file_pte(vma, addr, ptent);
6005 else if (is_swap_pte(ptent))
6006 page = mc_handle_swap_pte(vma, ptent, &ent);
6007
6008 if (target && page) {
6009 if (!trylock_page(page)) {
6010 put_page(page);
6011 return ret;
6012 }
6013 /*
6014 * page_mapped() must be stable during the move. This
6015 * pte is locked, so if it's present, the page cannot
6016 * become unmapped. If it isn't, we have only partial
6017 * control over the mapped state: the page lock will
6018 * prevent new faults against pagecache and swapcache,
6019 * so an unmapped page cannot become mapped. However,
6020 * if the page is already mapped elsewhere, it can
6021 * unmap, and there is nothing we can do about it.
6022 * Alas, skip moving the page in this case.
6023 */
6024 if (!pte_present(ptent) && page_mapped(page)) {
6025 unlock_page(page);
6026 put_page(page);
6027 return ret;
6028 }
6029 }
6030
6031 if (!page && !ent.val)
6032 return ret;
6033 if (page) {
6034 /*
6035 * Do only loose check w/o serialization.
6036 * mem_cgroup_move_account() checks the page is valid or
6037 * not under LRU exclusion.
6038 */
6039 if (page_memcg(page) == mc.from) {
6040 ret = MC_TARGET_PAGE;
6041 if (is_device_private_page(page) ||
6042 is_device_coherent_page(page))
6043 ret = MC_TARGET_DEVICE;
6044 if (target)
6045 target->page = page;
6046 }
6047 if (!ret || !target) {
6048 if (target)
6049 unlock_page(page);
6050 put_page(page);
6051 }
6052 }
6053 /*
6054 * There is a swap entry and a page doesn't exist or isn't charged.
6055 * But we cannot move a tail-page in a THP.
6056 */
6057 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6058 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6059 ret = MC_TARGET_SWAP;
6060 if (target)
6061 target->ent = ent;
6062 }
6063 return ret;
6064 }
6065
6066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6067 /*
6068 * We don't consider PMD mapped swapping or file mapped pages because THP does
6069 * not support them for now.
6070 * Caller should make sure that pmd_trans_huge(pmd) is true.
6071 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6072 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6073 unsigned long addr, pmd_t pmd, union mc_target *target)
6074 {
6075 struct page *page = NULL;
6076 enum mc_target_type ret = MC_TARGET_NONE;
6077
6078 if (unlikely(is_swap_pmd(pmd))) {
6079 VM_BUG_ON(thp_migration_supported() &&
6080 !is_pmd_migration_entry(pmd));
6081 return ret;
6082 }
6083 page = pmd_page(pmd);
6084 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6085 if (!(mc.flags & MOVE_ANON))
6086 return ret;
6087 if (page_memcg(page) == mc.from) {
6088 ret = MC_TARGET_PAGE;
6089 if (target) {
6090 get_page(page);
6091 if (!trylock_page(page)) {
6092 put_page(page);
6093 return MC_TARGET_NONE;
6094 }
6095 target->page = page;
6096 }
6097 }
6098 return ret;
6099 }
6100 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6101 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6102 unsigned long addr, pmd_t pmd, union mc_target *target)
6103 {
6104 return MC_TARGET_NONE;
6105 }
6106 #endif
6107
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6108 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6109 unsigned long addr, unsigned long end,
6110 struct mm_walk *walk)
6111 {
6112 struct vm_area_struct *vma = walk->vma;
6113 pte_t *pte;
6114 spinlock_t *ptl;
6115
6116 ptl = pmd_trans_huge_lock(pmd, vma);
6117 if (ptl) {
6118 /*
6119 * Note their can not be MC_TARGET_DEVICE for now as we do not
6120 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6121 * this might change.
6122 */
6123 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6124 mc.precharge += HPAGE_PMD_NR;
6125 spin_unlock(ptl);
6126 return 0;
6127 }
6128
6129 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6130 if (!pte)
6131 return 0;
6132 for (; addr != end; pte++, addr += PAGE_SIZE)
6133 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6134 mc.precharge++; /* increment precharge temporarily */
6135 pte_unmap_unlock(pte - 1, ptl);
6136 cond_resched();
6137
6138 return 0;
6139 }
6140
6141 static const struct mm_walk_ops precharge_walk_ops = {
6142 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6143 .walk_lock = PGWALK_RDLOCK,
6144 };
6145
mem_cgroup_count_precharge(struct mm_struct * mm)6146 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6147 {
6148 unsigned long precharge;
6149
6150 mmap_read_lock(mm);
6151 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6152 mmap_read_unlock(mm);
6153
6154 precharge = mc.precharge;
6155 mc.precharge = 0;
6156
6157 return precharge;
6158 }
6159
mem_cgroup_precharge_mc(struct mm_struct * mm)6160 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6161 {
6162 unsigned long precharge = mem_cgroup_count_precharge(mm);
6163
6164 VM_BUG_ON(mc.moving_task);
6165 mc.moving_task = current;
6166 return mem_cgroup_do_precharge(precharge);
6167 }
6168
6169 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6170 static void __mem_cgroup_clear_mc(void)
6171 {
6172 struct mem_cgroup *from = mc.from;
6173 struct mem_cgroup *to = mc.to;
6174
6175 /* we must uncharge all the leftover precharges from mc.to */
6176 if (mc.precharge) {
6177 cancel_charge(mc.to, mc.precharge);
6178 mc.precharge = 0;
6179 }
6180 /*
6181 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6182 * we must uncharge here.
6183 */
6184 if (mc.moved_charge) {
6185 cancel_charge(mc.from, mc.moved_charge);
6186 mc.moved_charge = 0;
6187 }
6188 /* we must fixup refcnts and charges */
6189 if (mc.moved_swap) {
6190 /* uncharge swap account from the old cgroup */
6191 if (!mem_cgroup_is_root(mc.from))
6192 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6193
6194 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6195
6196 /*
6197 * we charged both to->memory and to->memsw, so we
6198 * should uncharge to->memory.
6199 */
6200 if (!mem_cgroup_is_root(mc.to))
6201 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6202
6203 mc.moved_swap = 0;
6204 }
6205 memcg_oom_recover(from);
6206 memcg_oom_recover(to);
6207 wake_up_all(&mc.waitq);
6208 }
6209
mem_cgroup_clear_mc(void)6210 static void mem_cgroup_clear_mc(void)
6211 {
6212 struct mm_struct *mm = mc.mm;
6213
6214 /*
6215 * we must clear moving_task before waking up waiters at the end of
6216 * task migration.
6217 */
6218 mc.moving_task = NULL;
6219 __mem_cgroup_clear_mc();
6220 spin_lock(&mc.lock);
6221 mc.from = NULL;
6222 mc.to = NULL;
6223 mc.mm = NULL;
6224 spin_unlock(&mc.lock);
6225
6226 mmput(mm);
6227 }
6228
mem_cgroup_can_attach(struct cgroup_taskset * tset)6229 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6230 {
6231 struct cgroup_subsys_state *css;
6232 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6233 struct mem_cgroup *from;
6234 struct task_struct *leader, *p;
6235 struct mm_struct *mm;
6236 unsigned long move_flags;
6237 int ret = 0;
6238
6239 /* charge immigration isn't supported on the default hierarchy */
6240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6241 return 0;
6242
6243 /*
6244 * Multi-process migrations only happen on the default hierarchy
6245 * where charge immigration is not used. Perform charge
6246 * immigration if @tset contains a leader and whine if there are
6247 * multiple.
6248 */
6249 p = NULL;
6250 cgroup_taskset_for_each_leader(leader, css, tset) {
6251 WARN_ON_ONCE(p);
6252 p = leader;
6253 memcg = mem_cgroup_from_css(css);
6254 }
6255 if (!p)
6256 return 0;
6257
6258 /*
6259 * We are now committed to this value whatever it is. Changes in this
6260 * tunable will only affect upcoming migrations, not the current one.
6261 * So we need to save it, and keep it going.
6262 */
6263 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6264 if (!move_flags)
6265 return 0;
6266
6267 from = mem_cgroup_from_task(p);
6268
6269 VM_BUG_ON(from == memcg);
6270
6271 mm = get_task_mm(p);
6272 if (!mm)
6273 return 0;
6274 /* We move charges only when we move a owner of the mm */
6275 if (mm->owner == p) {
6276 VM_BUG_ON(mc.from);
6277 VM_BUG_ON(mc.to);
6278 VM_BUG_ON(mc.precharge);
6279 VM_BUG_ON(mc.moved_charge);
6280 VM_BUG_ON(mc.moved_swap);
6281
6282 spin_lock(&mc.lock);
6283 mc.mm = mm;
6284 mc.from = from;
6285 mc.to = memcg;
6286 mc.flags = move_flags;
6287 spin_unlock(&mc.lock);
6288 /* We set mc.moving_task later */
6289
6290 ret = mem_cgroup_precharge_mc(mm);
6291 if (ret)
6292 mem_cgroup_clear_mc();
6293 } else {
6294 mmput(mm);
6295 }
6296 return ret;
6297 }
6298
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6299 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6300 {
6301 if (mc.to)
6302 mem_cgroup_clear_mc();
6303 }
6304
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6305 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6306 unsigned long addr, unsigned long end,
6307 struct mm_walk *walk)
6308 {
6309 int ret = 0;
6310 struct vm_area_struct *vma = walk->vma;
6311 pte_t *pte;
6312 spinlock_t *ptl;
6313 enum mc_target_type target_type;
6314 union mc_target target;
6315 struct page *page;
6316 struct folio *folio;
6317 bool tried_split_before = false;
6318
6319 retry_pmd:
6320 ptl = pmd_trans_huge_lock(pmd, vma);
6321 if (ptl) {
6322 if (mc.precharge < HPAGE_PMD_NR) {
6323 spin_unlock(ptl);
6324 return 0;
6325 }
6326 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6327 if (target_type == MC_TARGET_PAGE) {
6328 page = target.page;
6329 folio = page_folio(page);
6330 /*
6331 * Deferred split queue locking depends on memcg,
6332 * and unqueue is unsafe unless folio refcount is 0:
6333 * split or skip if on the queue? first try to split.
6334 */
6335 if (!list_empty(&folio->_deferred_list)) {
6336 spin_unlock(ptl);
6337 if (!tried_split_before)
6338 split_folio(folio);
6339 folio_unlock(folio);
6340 folio_put(folio);
6341 if (tried_split_before)
6342 return 0;
6343 tried_split_before = true;
6344 goto retry_pmd;
6345 }
6346 /*
6347 * So long as that pmd lock is held, the folio cannot
6348 * be racily added to the _deferred_list, because
6349 * page_remove_rmap() will find it still pmdmapped.
6350 */
6351 if (isolate_lru_page(page)) {
6352 if (!mem_cgroup_move_account(page, true,
6353 mc.from, mc.to)) {
6354 mc.precharge -= HPAGE_PMD_NR;
6355 mc.moved_charge += HPAGE_PMD_NR;
6356 }
6357 putback_lru_page(page);
6358 }
6359 unlock_page(page);
6360 put_page(page);
6361 } else if (target_type == MC_TARGET_DEVICE) {
6362 page = target.page;
6363 if (!mem_cgroup_move_account(page, true,
6364 mc.from, mc.to)) {
6365 mc.precharge -= HPAGE_PMD_NR;
6366 mc.moved_charge += HPAGE_PMD_NR;
6367 }
6368 unlock_page(page);
6369 put_page(page);
6370 }
6371 spin_unlock(ptl);
6372 return 0;
6373 }
6374
6375 retry:
6376 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6377 if (!pte)
6378 return 0;
6379 for (; addr != end; addr += PAGE_SIZE) {
6380 pte_t ptent = ptep_get(pte++);
6381 bool device = false;
6382 swp_entry_t ent;
6383
6384 if (!mc.precharge)
6385 break;
6386
6387 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6388 case MC_TARGET_DEVICE:
6389 device = true;
6390 fallthrough;
6391 case MC_TARGET_PAGE:
6392 page = target.page;
6393 /*
6394 * We can have a part of the split pmd here. Moving it
6395 * can be done but it would be too convoluted so simply
6396 * ignore such a partial THP and keep it in original
6397 * memcg. There should be somebody mapping the head.
6398 */
6399 if (PageTransCompound(page))
6400 goto put;
6401 if (!device && !isolate_lru_page(page))
6402 goto put;
6403 if (!mem_cgroup_move_account(page, false,
6404 mc.from, mc.to)) {
6405 mc.precharge--;
6406 /* we uncharge from mc.from later. */
6407 mc.moved_charge++;
6408 }
6409 if (!device)
6410 putback_lru_page(page);
6411 put: /* get_mctgt_type() gets & locks the page */
6412 unlock_page(page);
6413 put_page(page);
6414 break;
6415 case MC_TARGET_SWAP:
6416 ent = target.ent;
6417 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6418 mc.precharge--;
6419 mem_cgroup_id_get_many(mc.to, 1);
6420 /* we fixup other refcnts and charges later. */
6421 mc.moved_swap++;
6422 }
6423 break;
6424 default:
6425 break;
6426 }
6427 }
6428 pte_unmap_unlock(pte - 1, ptl);
6429 cond_resched();
6430
6431 if (addr != end) {
6432 /*
6433 * We have consumed all precharges we got in can_attach().
6434 * We try charge one by one, but don't do any additional
6435 * charges to mc.to if we have failed in charge once in attach()
6436 * phase.
6437 */
6438 ret = mem_cgroup_do_precharge(1);
6439 if (!ret)
6440 goto retry;
6441 }
6442
6443 return ret;
6444 }
6445
6446 static const struct mm_walk_ops charge_walk_ops = {
6447 .pmd_entry = mem_cgroup_move_charge_pte_range,
6448 .walk_lock = PGWALK_RDLOCK,
6449 };
6450
mem_cgroup_move_charge(void)6451 static void mem_cgroup_move_charge(void)
6452 {
6453 lru_add_drain_all();
6454 /*
6455 * Signal folio_memcg_lock() to take the memcg's move_lock
6456 * while we're moving its pages to another memcg. Then wait
6457 * for already started RCU-only updates to finish.
6458 */
6459 atomic_inc(&mc.from->moving_account);
6460 synchronize_rcu();
6461 retry:
6462 if (unlikely(!mmap_read_trylock(mc.mm))) {
6463 /*
6464 * Someone who are holding the mmap_lock might be waiting in
6465 * waitq. So we cancel all extra charges, wake up all waiters,
6466 * and retry. Because we cancel precharges, we might not be able
6467 * to move enough charges, but moving charge is a best-effort
6468 * feature anyway, so it wouldn't be a big problem.
6469 */
6470 __mem_cgroup_clear_mc();
6471 cond_resched();
6472 goto retry;
6473 }
6474 /*
6475 * When we have consumed all precharges and failed in doing
6476 * additional charge, the page walk just aborts.
6477 */
6478 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6479 mmap_read_unlock(mc.mm);
6480 atomic_dec(&mc.from->moving_account);
6481 }
6482
mem_cgroup_move_task(void)6483 static void mem_cgroup_move_task(void)
6484 {
6485 if (mc.to) {
6486 mem_cgroup_move_charge();
6487 mem_cgroup_clear_mc();
6488 }
6489 }
6490 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6491 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6492 {
6493 return 0;
6494 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6495 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6496 {
6497 }
mem_cgroup_move_task(void)6498 static void mem_cgroup_move_task(void)
6499 {
6500 }
6501 #endif
6502
6503 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6504 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6505 {
6506 struct task_struct *task;
6507 struct cgroup_subsys_state *css;
6508
6509 /* find the first leader if there is any */
6510 cgroup_taskset_for_each_leader(task, css, tset)
6511 break;
6512
6513 if (!task)
6514 return;
6515
6516 task_lock(task);
6517 if (task->mm && READ_ONCE(task->mm->owner) == task)
6518 lru_gen_migrate_mm(task->mm);
6519 task_unlock(task);
6520 }
6521 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6522 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6523 {
6524 }
6525 #endif /* CONFIG_LRU_GEN */
6526
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6527 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6528 {
6529 if (value == PAGE_COUNTER_MAX)
6530 seq_puts(m, "max\n");
6531 else
6532 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6533
6534 return 0;
6535 }
6536
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6537 static u64 memory_current_read(struct cgroup_subsys_state *css,
6538 struct cftype *cft)
6539 {
6540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6541
6542 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6543 }
6544
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6545 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6546 struct cftype *cft)
6547 {
6548 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6549
6550 return (u64)memcg->memory.watermark * PAGE_SIZE;
6551 }
6552
memory_min_show(struct seq_file * m,void * v)6553 static int memory_min_show(struct seq_file *m, void *v)
6554 {
6555 return seq_puts_memcg_tunable(m,
6556 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6557 }
6558
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6559 static ssize_t memory_min_write(struct kernfs_open_file *of,
6560 char *buf, size_t nbytes, loff_t off)
6561 {
6562 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6563 unsigned long min;
6564 int err;
6565
6566 buf = strstrip(buf);
6567 err = page_counter_memparse(buf, "max", &min);
6568 if (err)
6569 return err;
6570
6571 page_counter_set_min(&memcg->memory, min);
6572
6573 return nbytes;
6574 }
6575
memory_low_show(struct seq_file * m,void * v)6576 static int memory_low_show(struct seq_file *m, void *v)
6577 {
6578 return seq_puts_memcg_tunable(m,
6579 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6580 }
6581
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6582 static ssize_t memory_low_write(struct kernfs_open_file *of,
6583 char *buf, size_t nbytes, loff_t off)
6584 {
6585 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6586 unsigned long low;
6587 int err;
6588
6589 buf = strstrip(buf);
6590 err = page_counter_memparse(buf, "max", &low);
6591 if (err)
6592 return err;
6593
6594 page_counter_set_low(&memcg->memory, low);
6595
6596 return nbytes;
6597 }
6598
memory_high_show(struct seq_file * m,void * v)6599 static int memory_high_show(struct seq_file *m, void *v)
6600 {
6601 return seq_puts_memcg_tunable(m,
6602 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6603 }
6604
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6605 static ssize_t memory_high_write(struct kernfs_open_file *of,
6606 char *buf, size_t nbytes, loff_t off)
6607 {
6608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6609 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6610 bool drained = false;
6611 unsigned long high;
6612 int err;
6613
6614 buf = strstrip(buf);
6615 err = page_counter_memparse(buf, "max", &high);
6616 if (err)
6617 return err;
6618
6619 page_counter_set_high(&memcg->memory, high);
6620
6621 for (;;) {
6622 unsigned long nr_pages = page_counter_read(&memcg->memory);
6623 unsigned long reclaimed;
6624
6625 if (nr_pages <= high)
6626 break;
6627
6628 if (signal_pending(current))
6629 break;
6630
6631 if (!drained) {
6632 drain_all_stock(memcg);
6633 drained = true;
6634 continue;
6635 }
6636
6637 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6638 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6639
6640 if (!reclaimed && !nr_retries--)
6641 break;
6642 }
6643
6644 memcg_wb_domain_size_changed(memcg);
6645 return nbytes;
6646 }
6647
memory_max_show(struct seq_file * m,void * v)6648 static int memory_max_show(struct seq_file *m, void *v)
6649 {
6650 return seq_puts_memcg_tunable(m,
6651 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6652 }
6653
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6654 static ssize_t memory_max_write(struct kernfs_open_file *of,
6655 char *buf, size_t nbytes, loff_t off)
6656 {
6657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6658 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6659 bool drained = false;
6660 unsigned long max;
6661 int err;
6662
6663 buf = strstrip(buf);
6664 err = page_counter_memparse(buf, "max", &max);
6665 if (err)
6666 return err;
6667
6668 xchg(&memcg->memory.max, max);
6669
6670 for (;;) {
6671 unsigned long nr_pages = page_counter_read(&memcg->memory);
6672
6673 if (nr_pages <= max)
6674 break;
6675
6676 if (signal_pending(current))
6677 break;
6678
6679 if (!drained) {
6680 drain_all_stock(memcg);
6681 drained = true;
6682 continue;
6683 }
6684
6685 if (nr_reclaims) {
6686 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6687 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6688 nr_reclaims--;
6689 continue;
6690 }
6691
6692 memcg_memory_event(memcg, MEMCG_OOM);
6693 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6694 break;
6695 }
6696
6697 memcg_wb_domain_size_changed(memcg);
6698 return nbytes;
6699 }
6700
__memory_events_show(struct seq_file * m,atomic_long_t * events)6701 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6702 {
6703 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6704 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6705 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6706 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6707 seq_printf(m, "oom_kill %lu\n",
6708 atomic_long_read(&events[MEMCG_OOM_KILL]));
6709 seq_printf(m, "oom_group_kill %lu\n",
6710 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6711 }
6712
memory_events_show(struct seq_file * m,void * v)6713 static int memory_events_show(struct seq_file *m, void *v)
6714 {
6715 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6716
6717 __memory_events_show(m, memcg->memory_events);
6718 return 0;
6719 }
6720
memory_events_local_show(struct seq_file * m,void * v)6721 static int memory_events_local_show(struct seq_file *m, void *v)
6722 {
6723 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6724
6725 __memory_events_show(m, memcg->memory_events_local);
6726 return 0;
6727 }
6728
memory_stat_show(struct seq_file * m,void * v)6729 static int memory_stat_show(struct seq_file *m, void *v)
6730 {
6731 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6732 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6733 struct seq_buf s;
6734
6735 if (!buf)
6736 return -ENOMEM;
6737 seq_buf_init(&s, buf, PAGE_SIZE);
6738 memory_stat_format(memcg, &s);
6739 seq_puts(m, buf);
6740 kfree(buf);
6741 #ifdef CONFIG_HYPERHOLD_DEBUG
6742 memcg_eswap_info_show(m);
6743 #endif
6744 return 0;
6745 }
6746
6747 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6748 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6749 int item)
6750 {
6751 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6752 }
6753
memory_numa_stat_show(struct seq_file * m,void * v)6754 static int memory_numa_stat_show(struct seq_file *m, void *v)
6755 {
6756 int i;
6757 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6758
6759 mem_cgroup_flush_stats();
6760
6761 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6762 int nid;
6763
6764 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6765 continue;
6766
6767 seq_printf(m, "%s", memory_stats[i].name);
6768 for_each_node_state(nid, N_MEMORY) {
6769 u64 size;
6770 struct lruvec *lruvec;
6771
6772 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6773 size = lruvec_page_state_output(lruvec,
6774 memory_stats[i].idx);
6775 seq_printf(m, " N%d=%llu", nid, size);
6776 }
6777 seq_putc(m, '\n');
6778 }
6779
6780 return 0;
6781 }
6782 #endif
6783
memory_oom_group_show(struct seq_file * m,void * v)6784 static int memory_oom_group_show(struct seq_file *m, void *v)
6785 {
6786 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6787
6788 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6789
6790 return 0;
6791 }
6792
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6793 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6794 char *buf, size_t nbytes, loff_t off)
6795 {
6796 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6797 int ret, oom_group;
6798
6799 buf = strstrip(buf);
6800 if (!buf)
6801 return -EINVAL;
6802
6803 ret = kstrtoint(buf, 0, &oom_group);
6804 if (ret)
6805 return ret;
6806
6807 if (oom_group != 0 && oom_group != 1)
6808 return -EINVAL;
6809
6810 WRITE_ONCE(memcg->oom_group, oom_group);
6811
6812 return nbytes;
6813 }
6814
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6815 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6816 size_t nbytes, loff_t off)
6817 {
6818 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6819 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6820 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6821 unsigned int reclaim_options;
6822 int err;
6823
6824 buf = strstrip(buf);
6825 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6826 if (err)
6827 return err;
6828
6829 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6830 while (nr_reclaimed < nr_to_reclaim) {
6831 unsigned long reclaimed;
6832
6833 if (signal_pending(current))
6834 return -EINTR;
6835
6836 /*
6837 * This is the final attempt, drain percpu lru caches in the
6838 * hope of introducing more evictable pages for
6839 * try_to_free_mem_cgroup_pages().
6840 */
6841 if (!nr_retries)
6842 lru_add_drain_all();
6843
6844 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6845 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6846 GFP_KERNEL, reclaim_options);
6847
6848 if (!reclaimed && !nr_retries--)
6849 return -EAGAIN;
6850
6851 nr_reclaimed += reclaimed;
6852 }
6853
6854 return nbytes;
6855 }
6856
6857 static struct cftype memory_files[] = {
6858 {
6859 .name = "current",
6860 .flags = CFTYPE_NOT_ON_ROOT,
6861 .read_u64 = memory_current_read,
6862 },
6863 {
6864 .name = "peak",
6865 .flags = CFTYPE_NOT_ON_ROOT,
6866 .read_u64 = memory_peak_read,
6867 },
6868 {
6869 .name = "min",
6870 .flags = CFTYPE_NOT_ON_ROOT,
6871 .seq_show = memory_min_show,
6872 .write = memory_min_write,
6873 },
6874 {
6875 .name = "low",
6876 .flags = CFTYPE_NOT_ON_ROOT,
6877 .seq_show = memory_low_show,
6878 .write = memory_low_write,
6879 },
6880 {
6881 .name = "high",
6882 .flags = CFTYPE_NOT_ON_ROOT,
6883 .seq_show = memory_high_show,
6884 .write = memory_high_write,
6885 },
6886 {
6887 .name = "max",
6888 .flags = CFTYPE_NOT_ON_ROOT,
6889 .seq_show = memory_max_show,
6890 .write = memory_max_write,
6891 },
6892 {
6893 .name = "events",
6894 .flags = CFTYPE_NOT_ON_ROOT,
6895 .file_offset = offsetof(struct mem_cgroup, events_file),
6896 .seq_show = memory_events_show,
6897 },
6898 {
6899 .name = "events.local",
6900 .flags = CFTYPE_NOT_ON_ROOT,
6901 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6902 .seq_show = memory_events_local_show,
6903 },
6904 {
6905 .name = "stat",
6906 .seq_show = memory_stat_show,
6907 },
6908 #ifdef CONFIG_NUMA
6909 {
6910 .name = "numa_stat",
6911 .seq_show = memory_numa_stat_show,
6912 },
6913 #endif
6914 {
6915 .name = "oom.group",
6916 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6917 .seq_show = memory_oom_group_show,
6918 .write = memory_oom_group_write,
6919 },
6920 {
6921 .name = "reclaim",
6922 .flags = CFTYPE_NS_DELEGATABLE,
6923 .write = memory_reclaim,
6924 },
6925 { } /* terminate */
6926 };
6927
6928 struct cgroup_subsys memory_cgrp_subsys = {
6929 .css_alloc = mem_cgroup_css_alloc,
6930 .css_online = mem_cgroup_css_online,
6931 .css_offline = mem_cgroup_css_offline,
6932 .css_released = mem_cgroup_css_released,
6933 .css_free = mem_cgroup_css_free,
6934 .css_reset = mem_cgroup_css_reset,
6935 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6936 .can_attach = mem_cgroup_can_attach,
6937 .attach = mem_cgroup_attach,
6938 .cancel_attach = mem_cgroup_cancel_attach,
6939 .post_attach = mem_cgroup_move_task,
6940 .dfl_cftypes = memory_files,
6941 .legacy_cftypes = mem_cgroup_legacy_files,
6942 .early_init = 0,
6943 };
6944
6945 /*
6946 * This function calculates an individual cgroup's effective
6947 * protection which is derived from its own memory.min/low, its
6948 * parent's and siblings' settings, as well as the actual memory
6949 * distribution in the tree.
6950 *
6951 * The following rules apply to the effective protection values:
6952 *
6953 * 1. At the first level of reclaim, effective protection is equal to
6954 * the declared protection in memory.min and memory.low.
6955 *
6956 * 2. To enable safe delegation of the protection configuration, at
6957 * subsequent levels the effective protection is capped to the
6958 * parent's effective protection.
6959 *
6960 * 3. To make complex and dynamic subtrees easier to configure, the
6961 * user is allowed to overcommit the declared protection at a given
6962 * level. If that is the case, the parent's effective protection is
6963 * distributed to the children in proportion to how much protection
6964 * they have declared and how much of it they are utilizing.
6965 *
6966 * This makes distribution proportional, but also work-conserving:
6967 * if one cgroup claims much more protection than it uses memory,
6968 * the unused remainder is available to its siblings.
6969 *
6970 * 4. Conversely, when the declared protection is undercommitted at a
6971 * given level, the distribution of the larger parental protection
6972 * budget is NOT proportional. A cgroup's protection from a sibling
6973 * is capped to its own memory.min/low setting.
6974 *
6975 * 5. However, to allow protecting recursive subtrees from each other
6976 * without having to declare each individual cgroup's fixed share
6977 * of the ancestor's claim to protection, any unutilized -
6978 * "floating" - protection from up the tree is distributed in
6979 * proportion to each cgroup's *usage*. This makes the protection
6980 * neutral wrt sibling cgroups and lets them compete freely over
6981 * the shared parental protection budget, but it protects the
6982 * subtree as a whole from neighboring subtrees.
6983 *
6984 * Note that 4. and 5. are not in conflict: 4. is about protecting
6985 * against immediate siblings whereas 5. is about protecting against
6986 * neighboring subtrees.
6987 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6988 static unsigned long effective_protection(unsigned long usage,
6989 unsigned long parent_usage,
6990 unsigned long setting,
6991 unsigned long parent_effective,
6992 unsigned long siblings_protected)
6993 {
6994 unsigned long protected;
6995 unsigned long ep;
6996
6997 protected = min(usage, setting);
6998 /*
6999 * If all cgroups at this level combined claim and use more
7000 * protection than what the parent affords them, distribute
7001 * shares in proportion to utilization.
7002 *
7003 * We are using actual utilization rather than the statically
7004 * claimed protection in order to be work-conserving: claimed
7005 * but unused protection is available to siblings that would
7006 * otherwise get a smaller chunk than what they claimed.
7007 */
7008 if (siblings_protected > parent_effective)
7009 return protected * parent_effective / siblings_protected;
7010
7011 /*
7012 * Ok, utilized protection of all children is within what the
7013 * parent affords them, so we know whatever this child claims
7014 * and utilizes is effectively protected.
7015 *
7016 * If there is unprotected usage beyond this value, reclaim
7017 * will apply pressure in proportion to that amount.
7018 *
7019 * If there is unutilized protection, the cgroup will be fully
7020 * shielded from reclaim, but we do return a smaller value for
7021 * protection than what the group could enjoy in theory. This
7022 * is okay. With the overcommit distribution above, effective
7023 * protection is always dependent on how memory is actually
7024 * consumed among the siblings anyway.
7025 */
7026 ep = protected;
7027
7028 /*
7029 * If the children aren't claiming (all of) the protection
7030 * afforded to them by the parent, distribute the remainder in
7031 * proportion to the (unprotected) memory of each cgroup. That
7032 * way, cgroups that aren't explicitly prioritized wrt each
7033 * other compete freely over the allowance, but they are
7034 * collectively protected from neighboring trees.
7035 *
7036 * We're using unprotected memory for the weight so that if
7037 * some cgroups DO claim explicit protection, we don't protect
7038 * the same bytes twice.
7039 *
7040 * Check both usage and parent_usage against the respective
7041 * protected values. One should imply the other, but they
7042 * aren't read atomically - make sure the division is sane.
7043 */
7044 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7045 return ep;
7046 if (parent_effective > siblings_protected &&
7047 parent_usage > siblings_protected &&
7048 usage > protected) {
7049 unsigned long unclaimed;
7050
7051 unclaimed = parent_effective - siblings_protected;
7052 unclaimed *= usage - protected;
7053 unclaimed /= parent_usage - siblings_protected;
7054
7055 ep += unclaimed;
7056 }
7057
7058 return ep;
7059 }
7060
7061 /**
7062 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7063 * @root: the top ancestor of the sub-tree being checked
7064 * @memcg: the memory cgroup to check
7065 *
7066 * WARNING: This function is not stateless! It can only be used as part
7067 * of a top-down tree iteration, not for isolated queries.
7068 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)7069 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7070 struct mem_cgroup *memcg)
7071 {
7072 unsigned long usage, parent_usage;
7073 struct mem_cgroup *parent;
7074
7075 if (mem_cgroup_disabled())
7076 return;
7077
7078 if (!root)
7079 root = root_mem_cgroup;
7080
7081 /*
7082 * Effective values of the reclaim targets are ignored so they
7083 * can be stale. Have a look at mem_cgroup_protection for more
7084 * details.
7085 * TODO: calculation should be more robust so that we do not need
7086 * that special casing.
7087 */
7088 if (memcg == root)
7089 return;
7090
7091 usage = page_counter_read(&memcg->memory);
7092 if (!usage)
7093 return;
7094
7095 parent = parent_mem_cgroup(memcg);
7096
7097 if (parent == root) {
7098 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7099 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7100 return;
7101 }
7102
7103 parent_usage = page_counter_read(&parent->memory);
7104
7105 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7106 READ_ONCE(memcg->memory.min),
7107 READ_ONCE(parent->memory.emin),
7108 atomic_long_read(&parent->memory.children_min_usage)));
7109
7110 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7111 READ_ONCE(memcg->memory.low),
7112 READ_ONCE(parent->memory.elow),
7113 atomic_long_read(&parent->memory.children_low_usage)));
7114 }
7115
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)7116 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7117 gfp_t gfp)
7118 {
7119 long nr_pages = folio_nr_pages(folio);
7120 int ret;
7121
7122 ret = try_charge(memcg, gfp, nr_pages);
7123 if (ret)
7124 goto out;
7125
7126 css_get(&memcg->css);
7127 commit_charge(folio, memcg);
7128
7129 local_irq_disable();
7130 mem_cgroup_charge_statistics(memcg, nr_pages);
7131 memcg_check_events(memcg, folio_nid(folio));
7132 local_irq_enable();
7133 out:
7134 return ret;
7135 }
7136
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)7137 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7138 {
7139 struct mem_cgroup *memcg;
7140 int ret;
7141
7142 memcg = get_mem_cgroup_from_mm(mm);
7143 ret = charge_memcg(folio, memcg, gfp);
7144 css_put(&memcg->css);
7145
7146 return ret;
7147 }
7148
7149 /**
7150 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7151 * @folio: folio to charge.
7152 * @mm: mm context of the victim
7153 * @gfp: reclaim mode
7154 * @entry: swap entry for which the folio is allocated
7155 *
7156 * This function charges a folio allocated for swapin. Please call this before
7157 * adding the folio to the swapcache.
7158 *
7159 * Returns 0 on success. Otherwise, an error code is returned.
7160 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)7161 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7162 gfp_t gfp, swp_entry_t entry)
7163 {
7164 struct mem_cgroup *memcg;
7165 unsigned short id;
7166 int ret;
7167
7168 if (mem_cgroup_disabled())
7169 return 0;
7170
7171 id = lookup_swap_cgroup_id(entry);
7172 rcu_read_lock();
7173 memcg = mem_cgroup_from_id(id);
7174 if (!memcg || !css_tryget_online(&memcg->css))
7175 memcg = get_mem_cgroup_from_mm(mm);
7176 rcu_read_unlock();
7177
7178 ret = charge_memcg(folio, memcg, gfp);
7179
7180 css_put(&memcg->css);
7181 return ret;
7182 }
7183
7184 /*
7185 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7186 * @entry: swap entry for which the page is charged
7187 *
7188 * Call this function after successfully adding the charged page to swapcache.
7189 *
7190 * Note: This function assumes the page for which swap slot is being uncharged
7191 * is order 0 page.
7192 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7193 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7194 {
7195 /*
7196 * Cgroup1's unified memory+swap counter has been charged with the
7197 * new swapcache page, finish the transfer by uncharging the swap
7198 * slot. The swap slot would also get uncharged when it dies, but
7199 * it can stick around indefinitely and we'd count the page twice
7200 * the entire time.
7201 *
7202 * Cgroup2 has separate resource counters for memory and swap,
7203 * so this is a non-issue here. Memory and swap charge lifetimes
7204 * correspond 1:1 to page and swap slot lifetimes: we charge the
7205 * page to memory here, and uncharge swap when the slot is freed.
7206 */
7207 if (!mem_cgroup_disabled() && do_memsw_account()) {
7208 /*
7209 * The swap entry might not get freed for a long time,
7210 * let's not wait for it. The page already received a
7211 * memory+swap charge, drop the swap entry duplicate.
7212 */
7213 mem_cgroup_uncharge_swap(entry, 1);
7214 }
7215 }
7216
7217 struct uncharge_gather {
7218 struct mem_cgroup *memcg;
7219 unsigned long nr_memory;
7220 unsigned long pgpgout;
7221 unsigned long nr_kmem;
7222 int nid;
7223 };
7224
uncharge_gather_clear(struct uncharge_gather * ug)7225 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7226 {
7227 memset(ug, 0, sizeof(*ug));
7228 }
7229
uncharge_batch(const struct uncharge_gather * ug)7230 static void uncharge_batch(const struct uncharge_gather *ug)
7231 {
7232 unsigned long flags;
7233
7234 if (ug->nr_memory) {
7235 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7236 if (do_memsw_account())
7237 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7238 if (ug->nr_kmem)
7239 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7240 memcg_oom_recover(ug->memcg);
7241 }
7242
7243 local_irq_save(flags);
7244 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7245 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7246 memcg_check_events(ug->memcg, ug->nid);
7247 local_irq_restore(flags);
7248
7249 /* drop reference from uncharge_folio */
7250 css_put(&ug->memcg->css);
7251 }
7252
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7253 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7254 {
7255 long nr_pages;
7256 struct mem_cgroup *memcg;
7257 struct obj_cgroup *objcg;
7258
7259 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7260
7261 /*
7262 * Nobody should be changing or seriously looking at
7263 * folio memcg or objcg at this point, we have fully
7264 * exclusive access to the folio.
7265 */
7266 if (folio_memcg_kmem(folio)) {
7267 objcg = __folio_objcg(folio);
7268 /*
7269 * This get matches the put at the end of the function and
7270 * kmem pages do not hold memcg references anymore.
7271 */
7272 memcg = get_mem_cgroup_from_objcg(objcg);
7273 } else {
7274 memcg = __folio_memcg(folio);
7275 }
7276
7277 if (!memcg)
7278 return;
7279
7280 if (ug->memcg != memcg) {
7281 if (ug->memcg) {
7282 uncharge_batch(ug);
7283 uncharge_gather_clear(ug);
7284 }
7285 ug->memcg = memcg;
7286 ug->nid = folio_nid(folio);
7287
7288 /* pairs with css_put in uncharge_batch */
7289 css_get(&memcg->css);
7290 }
7291
7292 nr_pages = folio_nr_pages(folio);
7293
7294 if (folio_memcg_kmem(folio)) {
7295 ug->nr_memory += nr_pages;
7296 ug->nr_kmem += nr_pages;
7297
7298 folio->memcg_data = 0;
7299 obj_cgroup_put(objcg);
7300 } else {
7301 /* LRU pages aren't accounted at the root level */
7302 if (!mem_cgroup_is_root(memcg))
7303 ug->nr_memory += nr_pages;
7304 ug->pgpgout++;
7305
7306 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
7307 folio->memcg_data = 0;
7308 }
7309
7310 css_put(&memcg->css);
7311 }
7312
__mem_cgroup_uncharge(struct folio * folio)7313 void __mem_cgroup_uncharge(struct folio *folio)
7314 {
7315 struct uncharge_gather ug;
7316
7317 /* Don't touch folio->lru of any random page, pre-check: */
7318 if (!folio_memcg(folio))
7319 return;
7320
7321 uncharge_gather_clear(&ug);
7322 uncharge_folio(folio, &ug);
7323 uncharge_batch(&ug);
7324 }
7325
7326 /**
7327 * __mem_cgroup_uncharge_list - uncharge a list of page
7328 * @page_list: list of pages to uncharge
7329 *
7330 * Uncharge a list of pages previously charged with
7331 * __mem_cgroup_charge().
7332 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7333 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7334 {
7335 struct uncharge_gather ug;
7336 struct folio *folio;
7337
7338 uncharge_gather_clear(&ug);
7339 list_for_each_entry(folio, page_list, lru)
7340 uncharge_folio(folio, &ug);
7341 if (ug.memcg)
7342 uncharge_batch(&ug);
7343 }
7344
7345 /**
7346 * mem_cgroup_migrate - Charge a folio's replacement.
7347 * @old: Currently circulating folio.
7348 * @new: Replacement folio.
7349 *
7350 * Charge @new as a replacement folio for @old. @old will
7351 * be uncharged upon free.
7352 *
7353 * Both folios must be locked, @new->mapping must be set up.
7354 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7355 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7356 {
7357 struct mem_cgroup *memcg;
7358 long nr_pages = folio_nr_pages(new);
7359 unsigned long flags;
7360
7361 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7362 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7363 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7364 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7365
7366 if (mem_cgroup_disabled())
7367 return;
7368
7369 /* Page cache replacement: new folio already charged? */
7370 if (folio_memcg(new))
7371 return;
7372
7373 memcg = folio_memcg(old);
7374 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7375 if (!memcg)
7376 return;
7377
7378 /* Force-charge the new page. The old one will be freed soon */
7379 if (!mem_cgroup_is_root(memcg)) {
7380 page_counter_charge(&memcg->memory, nr_pages);
7381 if (do_memsw_account())
7382 page_counter_charge(&memcg->memsw, nr_pages);
7383 }
7384
7385 css_get(&memcg->css);
7386 commit_charge(new, memcg);
7387
7388 local_irq_save(flags);
7389 mem_cgroup_charge_statistics(memcg, nr_pages);
7390 memcg_check_events(memcg, folio_nid(new));
7391 local_irq_restore(flags);
7392 }
7393
7394 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7395 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7396
mem_cgroup_sk_alloc(struct sock * sk)7397 void mem_cgroup_sk_alloc(struct sock *sk)
7398 {
7399 struct mem_cgroup *memcg;
7400
7401 if (!mem_cgroup_sockets_enabled)
7402 return;
7403
7404 /* Do not associate the sock with unrelated interrupted task's memcg. */
7405 if (!in_task())
7406 return;
7407
7408 rcu_read_lock();
7409 memcg = mem_cgroup_from_task(current);
7410 if (mem_cgroup_is_root(memcg))
7411 goto out;
7412 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7413 goto out;
7414 if (css_tryget(&memcg->css))
7415 sk->sk_memcg = memcg;
7416 out:
7417 rcu_read_unlock();
7418 }
7419
mem_cgroup_sk_free(struct sock * sk)7420 void mem_cgroup_sk_free(struct sock *sk)
7421 {
7422 if (sk->sk_memcg)
7423 css_put(&sk->sk_memcg->css);
7424 }
7425
7426 /**
7427 * mem_cgroup_charge_skmem - charge socket memory
7428 * @memcg: memcg to charge
7429 * @nr_pages: number of pages to charge
7430 * @gfp_mask: reclaim mode
7431 *
7432 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7433 * @memcg's configured limit, %false if it doesn't.
7434 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7435 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7436 gfp_t gfp_mask)
7437 {
7438 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7439 struct page_counter *fail;
7440
7441 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7442 memcg->tcpmem_pressure = 0;
7443 return true;
7444 }
7445 memcg->tcpmem_pressure = 1;
7446 if (gfp_mask & __GFP_NOFAIL) {
7447 page_counter_charge(&memcg->tcpmem, nr_pages);
7448 return true;
7449 }
7450 return false;
7451 }
7452
7453 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7454 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7455 return true;
7456 }
7457
7458 return false;
7459 }
7460
7461 /**
7462 * mem_cgroup_uncharge_skmem - uncharge socket memory
7463 * @memcg: memcg to uncharge
7464 * @nr_pages: number of pages to uncharge
7465 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7466 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7467 {
7468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7469 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7470 return;
7471 }
7472
7473 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7474
7475 refill_stock(memcg, nr_pages);
7476 }
7477
cgroup_memory(char * s)7478 static int __init cgroup_memory(char *s)
7479 {
7480 char *token;
7481
7482 while ((token = strsep(&s, ",")) != NULL) {
7483 if (!*token)
7484 continue;
7485 if (!strcmp(token, "nosocket"))
7486 cgroup_memory_nosocket = true;
7487 if (!strcmp(token, "nokmem"))
7488 cgroup_memory_nokmem = true;
7489 if (!strcmp(token, "nobpf"))
7490 cgroup_memory_nobpf = true;
7491 if (!strcmp(token, "kmem"))
7492 cgroup_memory_nokmem = false;
7493 }
7494 return 1;
7495 }
7496 __setup("cgroup.memory=", cgroup_memory);
7497
7498 /*
7499 * subsys_initcall() for memory controller.
7500 *
7501 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7502 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7503 * basically everything that doesn't depend on a specific mem_cgroup structure
7504 * should be initialized from here.
7505 */
mem_cgroup_init(void)7506 static int __init mem_cgroup_init(void)
7507 {
7508 int cpu, node;
7509
7510 /*
7511 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7512 * used for per-memcg-per-cpu caching of per-node statistics. In order
7513 * to work fine, we should make sure that the overfill threshold can't
7514 * exceed S32_MAX / PAGE_SIZE.
7515 */
7516 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7517
7518 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7519 memcg_hotplug_cpu_dead);
7520
7521 for_each_possible_cpu(cpu)
7522 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7523 drain_local_stock);
7524
7525 for_each_node(node) {
7526 struct mem_cgroup_tree_per_node *rtpn;
7527
7528 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7529
7530 rtpn->rb_root = RB_ROOT;
7531 rtpn->rb_rightmost = NULL;
7532 spin_lock_init(&rtpn->lock);
7533 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7534 }
7535
7536 return 0;
7537 }
7538 subsys_initcall(mem_cgroup_init);
7539
7540 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7541 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7542 {
7543 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7544 /*
7545 * The root cgroup cannot be destroyed, so it's refcount must
7546 * always be >= 1.
7547 */
7548 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7549 VM_BUG_ON(1);
7550 break;
7551 }
7552 memcg = parent_mem_cgroup(memcg);
7553 if (!memcg)
7554 memcg = root_mem_cgroup;
7555 }
7556 return memcg;
7557 }
7558
7559 /**
7560 * mem_cgroup_swapout - transfer a memsw charge to swap
7561 * @folio: folio whose memsw charge to transfer
7562 * @entry: swap entry to move the charge to
7563 *
7564 * Transfer the memsw charge of @folio to @entry.
7565 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7566 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7567 {
7568 struct mem_cgroup *memcg, *swap_memcg;
7569 unsigned int nr_entries;
7570 unsigned short oldid;
7571
7572 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7573 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7574
7575 if (mem_cgroup_disabled())
7576 return;
7577
7578 if (!do_memsw_account())
7579 return;
7580
7581 memcg = folio_memcg(folio);
7582
7583 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7584 if (!memcg)
7585 return;
7586
7587 /*
7588 * In case the memcg owning these pages has been offlined and doesn't
7589 * have an ID allocated to it anymore, charge the closest online
7590 * ancestor for the swap instead and transfer the memory+swap charge.
7591 */
7592 swap_memcg = mem_cgroup_id_get_online(memcg);
7593 nr_entries = folio_nr_pages(folio);
7594 /* Get references for the tail pages, too */
7595 if (nr_entries > 1)
7596 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7597 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7598 nr_entries);
7599 VM_BUG_ON_FOLIO(oldid, folio);
7600 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7601
7602 folio_unqueue_deferred_split(folio);
7603 folio->memcg_data = 0;
7604
7605 if (!mem_cgroup_is_root(memcg))
7606 page_counter_uncharge(&memcg->memory, nr_entries);
7607
7608 if (memcg != swap_memcg) {
7609 if (!mem_cgroup_is_root(swap_memcg))
7610 page_counter_charge(&swap_memcg->memsw, nr_entries);
7611 page_counter_uncharge(&memcg->memsw, nr_entries);
7612 }
7613
7614 /*
7615 * Interrupts should be disabled here because the caller holds the
7616 * i_pages lock which is taken with interrupts-off. It is
7617 * important here to have the interrupts disabled because it is the
7618 * only synchronisation we have for updating the per-CPU variables.
7619 */
7620 memcg_stats_lock();
7621 mem_cgroup_charge_statistics(memcg, -nr_entries);
7622 memcg_stats_unlock();
7623 memcg_check_events(memcg, folio_nid(folio));
7624
7625 css_put(&memcg->css);
7626 }
7627
7628 /**
7629 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7630 * @folio: folio being added to swap
7631 * @entry: swap entry to charge
7632 *
7633 * Try to charge @folio's memcg for the swap space at @entry.
7634 *
7635 * Returns 0 on success, -ENOMEM on failure.
7636 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7637 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7638 {
7639 unsigned int nr_pages = folio_nr_pages(folio);
7640 struct page_counter *counter;
7641 struct mem_cgroup *memcg;
7642 unsigned short oldid;
7643
7644 if (do_memsw_account())
7645 return 0;
7646
7647 memcg = folio_memcg(folio);
7648
7649 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7650 if (!memcg)
7651 return 0;
7652
7653 if (!entry.val) {
7654 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7655 return 0;
7656 }
7657
7658 memcg = mem_cgroup_id_get_online(memcg);
7659
7660 if (!mem_cgroup_is_root(memcg) &&
7661 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7662 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7663 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7664 mem_cgroup_id_put(memcg);
7665 return -ENOMEM;
7666 }
7667
7668 /* Get references for the tail pages, too */
7669 if (nr_pages > 1)
7670 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7671 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7672 VM_BUG_ON_FOLIO(oldid, folio);
7673 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7674
7675 return 0;
7676 }
7677
7678 /**
7679 * __mem_cgroup_uncharge_swap - uncharge swap space
7680 * @entry: swap entry to uncharge
7681 * @nr_pages: the amount of swap space to uncharge
7682 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7683 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7684 {
7685 struct mem_cgroup *memcg;
7686 unsigned short id;
7687
7688 id = swap_cgroup_record(entry, 0, nr_pages);
7689 rcu_read_lock();
7690 memcg = mem_cgroup_from_id(id);
7691 if (memcg) {
7692 if (!mem_cgroup_is_root(memcg)) {
7693 if (do_memsw_account())
7694 page_counter_uncharge(&memcg->memsw, nr_pages);
7695 else
7696 page_counter_uncharge(&memcg->swap, nr_pages);
7697 }
7698 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7699 mem_cgroup_id_put_many(memcg, nr_pages);
7700 }
7701 rcu_read_unlock();
7702 }
7703
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7704 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7705 {
7706 long nr_swap_pages = get_nr_swap_pages();
7707
7708 if (mem_cgroup_disabled() || do_memsw_account())
7709 return nr_swap_pages;
7710 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7711 nr_swap_pages = min_t(long, nr_swap_pages,
7712 READ_ONCE(memcg->swap.max) -
7713 page_counter_read(&memcg->swap));
7714 return nr_swap_pages;
7715 }
7716
mem_cgroup_swap_full(struct folio * folio)7717 bool mem_cgroup_swap_full(struct folio *folio)
7718 {
7719 struct mem_cgroup *memcg;
7720
7721 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7722
7723 if (vm_swap_full())
7724 return true;
7725 if (do_memsw_account())
7726 return false;
7727
7728 memcg = folio_memcg(folio);
7729 if (!memcg)
7730 return false;
7731
7732 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7733 unsigned long usage = page_counter_read(&memcg->swap);
7734
7735 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7736 usage * 2 >= READ_ONCE(memcg->swap.max))
7737 return true;
7738 }
7739
7740 return false;
7741 }
7742
setup_swap_account(char * s)7743 static int __init setup_swap_account(char *s)
7744 {
7745 bool res;
7746
7747 if (!kstrtobool(s, &res) && !res)
7748 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7749 "in favor of configuring swap control via cgroupfs. "
7750 "Please report your usecase to linux-mm@kvack.org if you "
7751 "depend on this functionality.\n");
7752 return 1;
7753 }
7754 __setup("swapaccount=", setup_swap_account);
7755
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7756 static u64 swap_current_read(struct cgroup_subsys_state *css,
7757 struct cftype *cft)
7758 {
7759 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7760
7761 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7762 }
7763
swap_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)7764 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7765 struct cftype *cft)
7766 {
7767 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7768
7769 return (u64)memcg->swap.watermark * PAGE_SIZE;
7770 }
7771
swap_high_show(struct seq_file * m,void * v)7772 static int swap_high_show(struct seq_file *m, void *v)
7773 {
7774 return seq_puts_memcg_tunable(m,
7775 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7776 }
7777
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7778 static ssize_t swap_high_write(struct kernfs_open_file *of,
7779 char *buf, size_t nbytes, loff_t off)
7780 {
7781 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7782 unsigned long high;
7783 int err;
7784
7785 buf = strstrip(buf);
7786 err = page_counter_memparse(buf, "max", &high);
7787 if (err)
7788 return err;
7789
7790 page_counter_set_high(&memcg->swap, high);
7791
7792 return nbytes;
7793 }
7794
swap_max_show(struct seq_file * m,void * v)7795 static int swap_max_show(struct seq_file *m, void *v)
7796 {
7797 return seq_puts_memcg_tunable(m,
7798 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7799 }
7800
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7801 static ssize_t swap_max_write(struct kernfs_open_file *of,
7802 char *buf, size_t nbytes, loff_t off)
7803 {
7804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7805 unsigned long max;
7806 int err;
7807
7808 buf = strstrip(buf);
7809 err = page_counter_memparse(buf, "max", &max);
7810 if (err)
7811 return err;
7812
7813 xchg(&memcg->swap.max, max);
7814
7815 return nbytes;
7816 }
7817
swap_events_show(struct seq_file * m,void * v)7818 static int swap_events_show(struct seq_file *m, void *v)
7819 {
7820 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7821
7822 seq_printf(m, "high %lu\n",
7823 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7824 seq_printf(m, "max %lu\n",
7825 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7826 seq_printf(m, "fail %lu\n",
7827 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7828
7829 return 0;
7830 }
7831
7832 static struct cftype swap_files[] = {
7833 {
7834 .name = "swap.current",
7835 .flags = CFTYPE_NOT_ON_ROOT,
7836 .read_u64 = swap_current_read,
7837 },
7838 {
7839 .name = "swap.high",
7840 .flags = CFTYPE_NOT_ON_ROOT,
7841 .seq_show = swap_high_show,
7842 .write = swap_high_write,
7843 },
7844 {
7845 .name = "swap.max",
7846 .flags = CFTYPE_NOT_ON_ROOT,
7847 .seq_show = swap_max_show,
7848 .write = swap_max_write,
7849 },
7850 {
7851 .name = "swap.peak",
7852 .flags = CFTYPE_NOT_ON_ROOT,
7853 .read_u64 = swap_peak_read,
7854 },
7855 {
7856 .name = "swap.events",
7857 .flags = CFTYPE_NOT_ON_ROOT,
7858 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7859 .seq_show = swap_events_show,
7860 },
7861 { } /* terminate */
7862 };
7863
7864 static struct cftype memsw_files[] = {
7865 {
7866 .name = "memsw.usage_in_bytes",
7867 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7868 .read_u64 = mem_cgroup_read_u64,
7869 },
7870 {
7871 .name = "memsw.max_usage_in_bytes",
7872 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7873 .write = mem_cgroup_reset,
7874 .read_u64 = mem_cgroup_read_u64,
7875 },
7876 {
7877 .name = "memsw.limit_in_bytes",
7878 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7879 .write = mem_cgroup_write,
7880 .read_u64 = mem_cgroup_read_u64,
7881 },
7882 {
7883 .name = "memsw.failcnt",
7884 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7885 .write = mem_cgroup_reset,
7886 .read_u64 = mem_cgroup_read_u64,
7887 },
7888 { }, /* terminate */
7889 };
7890
7891 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7892 /**
7893 * obj_cgroup_may_zswap - check if this cgroup can zswap
7894 * @objcg: the object cgroup
7895 *
7896 * Check if the hierarchical zswap limit has been reached.
7897 *
7898 * This doesn't check for specific headroom, and it is not atomic
7899 * either. But with zswap, the size of the allocation is only known
7900 * once compression has occured, and this optimistic pre-check avoids
7901 * spending cycles on compression when there is already no room left
7902 * or zswap is disabled altogether somewhere in the hierarchy.
7903 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7904 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7905 {
7906 struct mem_cgroup *memcg, *original_memcg;
7907 bool ret = true;
7908
7909 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7910 return true;
7911
7912 original_memcg = get_mem_cgroup_from_objcg(objcg);
7913 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7914 memcg = parent_mem_cgroup(memcg)) {
7915 unsigned long max = READ_ONCE(memcg->zswap_max);
7916 unsigned long pages;
7917
7918 if (max == PAGE_COUNTER_MAX)
7919 continue;
7920 if (max == 0) {
7921 ret = false;
7922 break;
7923 }
7924
7925 cgroup_rstat_flush(memcg->css.cgroup);
7926 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7927 if (pages < max)
7928 continue;
7929 ret = false;
7930 break;
7931 }
7932 mem_cgroup_put(original_memcg);
7933 return ret;
7934 }
7935
7936 /**
7937 * obj_cgroup_charge_zswap - charge compression backend memory
7938 * @objcg: the object cgroup
7939 * @size: size of compressed object
7940 *
7941 * This forces the charge after obj_cgroup_may_zswap() allowed
7942 * compression and storage in zwap for this cgroup to go ahead.
7943 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7944 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7945 {
7946 struct mem_cgroup *memcg;
7947
7948 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7949 return;
7950
7951 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7952
7953 /* PF_MEMALLOC context, charging must succeed */
7954 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7955 VM_WARN_ON_ONCE(1);
7956
7957 rcu_read_lock();
7958 memcg = obj_cgroup_memcg(objcg);
7959 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7960 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7961 rcu_read_unlock();
7962 }
7963
7964 /**
7965 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7966 * @objcg: the object cgroup
7967 * @size: size of compressed object
7968 *
7969 * Uncharges zswap memory on page in.
7970 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7971 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7972 {
7973 struct mem_cgroup *memcg;
7974
7975 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7976 return;
7977
7978 obj_cgroup_uncharge(objcg, size);
7979
7980 rcu_read_lock();
7981 memcg = obj_cgroup_memcg(objcg);
7982 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7983 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7984 rcu_read_unlock();
7985 }
7986
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7987 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7988 struct cftype *cft)
7989 {
7990 cgroup_rstat_flush(css->cgroup);
7991 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7992 }
7993
zswap_max_show(struct seq_file * m,void * v)7994 static int zswap_max_show(struct seq_file *m, void *v)
7995 {
7996 return seq_puts_memcg_tunable(m,
7997 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7998 }
7999
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8000 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8001 char *buf, size_t nbytes, loff_t off)
8002 {
8003 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8004 unsigned long max;
8005 int err;
8006
8007 buf = strstrip(buf);
8008 err = page_counter_memparse(buf, "max", &max);
8009 if (err)
8010 return err;
8011
8012 xchg(&memcg->zswap_max, max);
8013
8014 return nbytes;
8015 }
8016
8017 static struct cftype zswap_files[] = {
8018 {
8019 .name = "zswap.current",
8020 .flags = CFTYPE_NOT_ON_ROOT,
8021 .read_u64 = zswap_current_read,
8022 },
8023 {
8024 .name = "zswap.max",
8025 .flags = CFTYPE_NOT_ON_ROOT,
8026 .seq_show = zswap_max_show,
8027 .write = zswap_max_write,
8028 },
8029 { } /* terminate */
8030 };
8031 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8032
mem_cgroup_swap_init(void)8033 static int __init mem_cgroup_swap_init(void)
8034 {
8035 if (mem_cgroup_disabled())
8036 return 0;
8037
8038 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8039 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8040 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8041 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8042 #endif
8043 return 0;
8044 }
8045 subsys_initcall(mem_cgroup_swap_init);
8046
8047 #endif /* CONFIG_SWAP */
8048