1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #ifdef CONFIG_MEM_PURGEABLE
81 #include <linux/mm_purgeable.h>
82 #endif
83 #include <trace/events/kmem.h>
84
85 #include <asm/io.h>
86 #include <asm/mmu_context.h>
87 #include <asm/pgalloc.h>
88 #include <linux/uaccess.h>
89 #include <asm/tlb.h>
90 #include <asm/tlbflush.h>
91
92 #include "pgalloc-track.h"
93 #include "internal.h"
94 #include "swap.h"
95
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99
100 #ifndef CONFIG_NUMA
101 unsigned long max_mapnr;
102 EXPORT_SYMBOL(max_mapnr);
103
104 struct page *mem_map;
105 EXPORT_SYMBOL(mem_map);
106 #endif
107
108 static vm_fault_t do_fault(struct vm_fault *vmf);
109 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
110 static bool vmf_pte_changed(struct vm_fault *vmf);
111
112 /*
113 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 * wr-protected).
115 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)116 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 {
118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return false;
120
121 return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123
124 /*
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
127 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
128 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
129 * and ZONE_HIGHMEM.
130 */
131 void *high_memory;
132 EXPORT_SYMBOL(high_memory);
133
134 /*
135 * Randomize the address space (stacks, mmaps, brk, etc.).
136 *
137 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
138 * as ancient (libc5 based) binaries can segfault. )
139 */
140 int randomize_va_space __read_mostly =
141 #ifdef CONFIG_COMPAT_BRK
142 1;
143 #else
144 2;
145 #endif
146
147 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)148 static inline bool arch_wants_old_prefaulted_pte(void)
149 {
150 /*
151 * Transitioning a PTE from 'old' to 'young' can be expensive on
152 * some architectures, even if it's performed in hardware. By
153 * default, "false" means prefaulted entries will be 'young'.
154 */
155 return false;
156 }
157 #endif
158
disable_randmaps(char * s)159 static int __init disable_randmaps(char *s)
160 {
161 randomize_va_space = 0;
162 return 1;
163 }
164 __setup("norandmaps", disable_randmaps);
165
166 unsigned long zero_pfn __read_mostly;
167 EXPORT_SYMBOL(zero_pfn);
168
169 unsigned long highest_memmap_pfn __read_mostly;
170
171 /*
172 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 */
init_zero_pfn(void)174 static int __init init_zero_pfn(void)
175 {
176 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 return 0;
178 }
179 early_initcall(init_zero_pfn);
180
mm_trace_rss_stat(struct mm_struct * mm,int member)181 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 {
183 trace_rss_stat(mm, member);
184 }
185
186 /*
187 * Note: this doesn't free the actual pages themselves. That
188 * has been handled earlier when unmapping all the memory regions.
189 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)190 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 unsigned long addr)
192 {
193 pgtable_t token = pmd_pgtable(*pmd);
194 pmd_clear(pmd);
195 pte_free_tlb(tlb, token, addr);
196 mm_dec_nr_ptes(tlb->mm);
197 }
198
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)199 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
200 unsigned long addr, unsigned long end,
201 unsigned long floor, unsigned long ceiling)
202 {
203 pmd_t *pmd;
204 unsigned long next;
205 unsigned long start;
206
207 start = addr;
208 pmd = pmd_offset(pud, addr);
209 do {
210 next = pmd_addr_end(addr, end);
211 if (pmd_none_or_clear_bad(pmd))
212 continue;
213 free_pte_range(tlb, pmd, addr);
214 } while (pmd++, addr = next, addr != end);
215
216 start &= PUD_MASK;
217 if (start < floor)
218 return;
219 if (ceiling) {
220 ceiling &= PUD_MASK;
221 if (!ceiling)
222 return;
223 }
224 if (end - 1 > ceiling - 1)
225 return;
226
227 pmd = pmd_offset(pud, start);
228 pud_clear(pud);
229 pmd_free_tlb(tlb, pmd, start);
230 mm_dec_nr_pmds(tlb->mm);
231 }
232
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)233 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
236 {
237 pud_t *pud;
238 unsigned long next;
239 unsigned long start;
240
241 start = addr;
242 pud = pud_offset(p4d, addr);
243 do {
244 next = pud_addr_end(addr, end);
245 if (pud_none_or_clear_bad(pud))
246 continue;
247 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
248 } while (pud++, addr = next, addr != end);
249
250 start &= P4D_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= P4D_MASK;
255 if (!ceiling)
256 return;
257 }
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pud = pud_offset(p4d, start);
262 p4d_clear(p4d);
263 pud_free_tlb(tlb, pud, start);
264 mm_dec_nr_puds(tlb->mm);
265 }
266
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)267 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
268 unsigned long addr, unsigned long end,
269 unsigned long floor, unsigned long ceiling)
270 {
271 p4d_t *p4d;
272 unsigned long next;
273 unsigned long start;
274
275 start = addr;
276 p4d = p4d_offset(pgd, addr);
277 do {
278 next = p4d_addr_end(addr, end);
279 if (p4d_none_or_clear_bad(p4d))
280 continue;
281 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
282 } while (p4d++, addr = next, addr != end);
283
284 start &= PGDIR_MASK;
285 if (start < floor)
286 return;
287 if (ceiling) {
288 ceiling &= PGDIR_MASK;
289 if (!ceiling)
290 return;
291 }
292 if (end - 1 > ceiling - 1)
293 return;
294
295 p4d = p4d_offset(pgd, start);
296 pgd_clear(pgd);
297 p4d_free_tlb(tlb, p4d, start);
298 }
299
300 /*
301 * This function frees user-level page tables of a process.
302 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 void free_pgd_range(struct mmu_gather *tlb,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 pgd_t *pgd;
308 unsigned long next;
309
310 /*
311 * The next few lines have given us lots of grief...
312 *
313 * Why are we testing PMD* at this top level? Because often
314 * there will be no work to do at all, and we'd prefer not to
315 * go all the way down to the bottom just to discover that.
316 *
317 * Why all these "- 1"s? Because 0 represents both the bottom
318 * of the address space and the top of it (using -1 for the
319 * top wouldn't help much: the masks would do the wrong thing).
320 * The rule is that addr 0 and floor 0 refer to the bottom of
321 * the address space, but end 0 and ceiling 0 refer to the top
322 * Comparisons need to use "end - 1" and "ceiling - 1" (though
323 * that end 0 case should be mythical).
324 *
325 * Wherever addr is brought up or ceiling brought down, we must
326 * be careful to reject "the opposite 0" before it confuses the
327 * subsequent tests. But what about where end is brought down
328 * by PMD_SIZE below? no, end can't go down to 0 there.
329 *
330 * Whereas we round start (addr) and ceiling down, by different
331 * masks at different levels, in order to test whether a table
332 * now has no other vmas using it, so can be freed, we don't
333 * bother to round floor or end up - the tests don't need that.
334 */
335
336 addr &= PMD_MASK;
337 if (addr < floor) {
338 addr += PMD_SIZE;
339 if (!addr)
340 return;
341 }
342 if (ceiling) {
343 ceiling &= PMD_MASK;
344 if (!ceiling)
345 return;
346 }
347 if (end - 1 > ceiling - 1)
348 end -= PMD_SIZE;
349 if (addr > end - 1)
350 return;
351 /*
352 * We add page table cache pages with PAGE_SIZE,
353 * (see pte_free_tlb()), flush the tlb if we need
354 */
355 tlb_change_page_size(tlb, PAGE_SIZE);
356 pgd = pgd_offset(tlb->mm, addr);
357 do {
358 next = pgd_addr_end(addr, end);
359 if (pgd_none_or_clear_bad(pgd))
360 continue;
361 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
362 } while (pgd++, addr = next, addr != end);
363 }
364
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)365 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
366 struct vm_area_struct *vma, unsigned long floor,
367 unsigned long ceiling, bool mm_wr_locked)
368 {
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(mas, ceiling - 1);
378
379 /*
380 * Hide vma from rmap and truncate_pagecache before freeing
381 * pgtables
382 */
383 if (mm_wr_locked)
384 vma_start_write(vma);
385 unlink_anon_vmas(vma);
386 unlink_file_vma(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 floor, next ? next->vm_start : ceiling);
391 } else {
392 /*
393 * Optimization: gather nearby vmas into one call down
394 */
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 && !is_vm_hugetlb_page(next)) {
397 vma = next;
398 next = mas_find(mas, ceiling - 1);
399 if (mm_wr_locked)
400 vma_start_write(vma);
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403 }
404 free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 }
407 vma = next;
408 } while (vma);
409 }
410
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 spinlock_t *ptl = pmd_lock(mm, pmd);
414
415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 mm_inc_nr_ptes(mm);
417 /*
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
421 *
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
429 */
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 pmd_populate(mm, pmd, *pte);
432 *pte = NULL;
433 }
434 spin_unlock(ptl);
435 }
436
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 pmd_install(mm, pmd, &new);
444 if (new)
445 pte_free(mm, new);
446 return 0;
447 }
448
__pte_alloc_kernel(pmd_t * pmd)449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 pte_t *new = pte_alloc_one_kernel(&init_mm);
452 if (!new)
453 return -ENOMEM;
454
455 spin_lock(&init_mm.page_table_lock);
456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
457 smp_wmb(); /* See comment in pmd_install() */
458 pmd_populate_kernel(&init_mm, pmd, new);
459 new = NULL;
460 }
461 spin_unlock(&init_mm.page_table_lock);
462 if (new)
463 pte_free_kernel(&init_mm, new);
464 return 0;
465 }
466
init_rss_vec(int * rss)467 static inline void init_rss_vec(int *rss)
468 {
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471
add_mm_rss_vec(struct mm_struct * mm,int * rss)472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 int i;
475
476 if (current->mm == mm)
477 sync_mm_rss(mm);
478 for (i = 0; i < NR_MM_COUNTERS; i++)
479 if (rss[i])
480 add_mm_counter(mm, i, rss[i]);
481 }
482
483 /*
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
487 *
488 * The calling function must still handle the error.
489 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
492 {
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
498 pgoff_t index;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
502
503 /*
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
506 */
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
509 nr_unshown++;
510 return;
511 }
512 if (nr_unshown) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 nr_unshown);
515 nr_unshown = 0;
516 }
517 nr_shown = 0;
518 }
519 if (nr_shown++ == 0)
520 resume = jiffies + 60 * HZ;
521
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
524
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 current->comm,
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 if (page)
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 mapping ? mapping->a_ops->read_folio : NULL);
537 dump_stack();
538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540
541 /*
542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
543 *
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
547 *
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
551 * described below.
552 *
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
556 *
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
561 *
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 *
564 * And for normal mappings this is false.
565 *
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
570 *
571 *
572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573 *
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
581 *
582 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 pte_t pte)
585 {
586 unsigned long pfn = pte_pfn(pte);
587
588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 if (likely(!pte_special(pte)))
590 goto check_pfn;
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 return NULL;
595 if (is_zero_pfn(pfn))
596 return NULL;
597 if (pte_devmap(pte))
598 /*
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 */
606 return NULL;
607
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
610 }
611
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
627 }
628
629 if (is_zero_pfn(pfn))
630 return NULL;
631
632 check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642 out:
643 return pfn_to_page(pfn);
644 }
645
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte)
648 {
649 struct page *page = vm_normal_page(vma, addr, pte);
650
651 if (page)
652 return page_folio(page);
653 return NULL;
654 }
655
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t pmd)
659 {
660 unsigned long pfn = pmd_pfn(pmd);
661
662 /*
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 */
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
669 if (!pfn_valid(pfn))
670 return NULL;
671 goto out;
672 } else {
673 unsigned long off;
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
676 return NULL;
677 if (!is_cow_mapping(vma->vm_flags))
678 return NULL;
679 }
680 }
681
682 if (pmd_devmap(pmd))
683 return NULL;
684 if (is_huge_zero_pmd(pmd))
685 return NULL;
686 if (unlikely(pfn > highest_memmap_pfn))
687 return NULL;
688
689 /*
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
692 */
693 out:
694 return pfn_to_page(pfn);
695 }
696 #endif
697
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
700 pte_t *ptep)
701 {
702 pte_t orig_pte;
703 pte_t pte;
704 swp_entry_t entry;
705
706 orig_pte = ptep_get(ptep);
707 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 if (pte_swp_soft_dirty(orig_pte))
709 pte = pte_mksoft_dirty(pte);
710
711 entry = pte_to_swp_entry(orig_pte);
712 if (pte_swp_uffd_wp(orig_pte))
713 pte = pte_mkuffd_wp(pte);
714 else if (is_writable_device_exclusive_entry(entry))
715 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716
717 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718
719 /*
720 * No need to take a page reference as one was already
721 * created when the swap entry was made.
722 */
723 if (PageAnon(page))
724 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 else
726 /*
727 * Currently device exclusive access only supports anonymous
728 * memory so the entry shouldn't point to a filebacked page.
729 */
730 WARN_ON_ONCE(1);
731
732 set_pte_at(vma->vm_mm, address, ptep, pte);
733
734 /*
735 * No need to invalidate - it was non-present before. However
736 * secondary CPUs may have mappings that need invalidating.
737 */
738 update_mmu_cache(vma, address, ptep);
739 }
740
741 /*
742 * Tries to restore an exclusive pte if the page lock can be acquired without
743 * sleeping.
744 */
745 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 unsigned long addr)
748 {
749 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 struct page *page = pfn_swap_entry_to_page(entry);
751
752 if (trylock_page(page)) {
753 restore_exclusive_pte(vma, page, addr, src_pte);
754 unlock_page(page);
755 return 0;
756 }
757
758 return -EBUSY;
759 }
760
761 /*
762 * copy one vm_area from one task to the other. Assumes the page tables
763 * already present in the new task to be cleared in the whole range
764 * covered by this vma.
765 */
766
767 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 unsigned long vm_flags = dst_vma->vm_flags;
773 pte_t orig_pte = ptep_get(src_pte);
774 pte_t pte = orig_pte;
775 struct page *page;
776 swp_entry_t entry = pte_to_swp_entry(orig_pte);
777
778 if (likely(!non_swap_entry(entry))) {
779 if (swap_duplicate(entry) < 0)
780 return -EIO;
781
782 /* make sure dst_mm is on swapoff's mmlist. */
783 if (unlikely(list_empty(&dst_mm->mmlist))) {
784 spin_lock(&mmlist_lock);
785 if (list_empty(&dst_mm->mmlist))
786 list_add(&dst_mm->mmlist,
787 &src_mm->mmlist);
788 spin_unlock(&mmlist_lock);
789 }
790 /* Mark the swap entry as shared. */
791 if (pte_swp_exclusive(orig_pte)) {
792 pte = pte_swp_clear_exclusive(orig_pte);
793 set_pte_at(src_mm, addr, src_pte, pte);
794 }
795 rss[MM_SWAPENTS]++;
796 } else if (is_migration_entry(entry)) {
797 page = pfn_swap_entry_to_page(entry);
798
799 rss[mm_counter(page)]++;
800
801 if (!is_readable_migration_entry(entry) &&
802 is_cow_mapping(vm_flags)) {
803 /*
804 * COW mappings require pages in both parent and child
805 * to be set to read. A previously exclusive entry is
806 * now shared.
807 */
808 entry = make_readable_migration_entry(
809 swp_offset(entry));
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(orig_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(orig_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
816 }
817 } else if (is_device_private_entry(entry)) {
818 page = pfn_swap_entry_to_page(entry);
819
820 /*
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
823 * respect.
824 *
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
828 */
829 get_page(page);
830 rss[mm_counter(page)]++;
831 /* Cannot fail as these pages cannot get pinned. */
832 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833
834 /*
835 * We do not preserve soft-dirty information, because so
836 * far, checkpoint/restore is the only feature that
837 * requires that. And checkpoint/restore does not work
838 * when a device driver is involved (you cannot easily
839 * save and restore device driver state).
840 */
841 if (is_writable_device_private_entry(entry) &&
842 is_cow_mapping(vm_flags)) {
843 entry = make_readable_device_private_entry(
844 swp_offset(entry));
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_uffd_wp(orig_pte))
847 pte = pte_swp_mkuffd_wp(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
850 } else if (is_device_exclusive_entry(entry)) {
851 /*
852 * Make device exclusive entries present by restoring the
853 * original entry then copying as for a present pte. Device
854 * exclusive entries currently only support private writable
855 * (ie. COW) mappings.
856 */
857 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 return -EBUSY;
860 return -ENOENT;
861 } else if (is_pte_marker_entry(entry)) {
862 pte_marker marker = copy_pte_marker(entry, dst_vma);
863
864 if (marker)
865 set_pte_at(dst_mm, addr, dst_pte,
866 make_pte_marker(marker));
867 return 0;
868 }
869 if (!userfaultfd_wp(dst_vma))
870 pte = pte_swp_clear_uffd_wp(pte);
871 set_pte_at(dst_mm, addr, dst_pte, pte);
872 return 0;
873 }
874
875 /*
876 * Copy a present and normal page.
877 *
878 * NOTE! The usual case is that this isn't required;
879 * instead, the caller can just increase the page refcount
880 * and re-use the pte the traditional way.
881 *
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
885 * lock.
886 */
887 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct folio **prealloc, struct page *page)
891 {
892 struct folio *new_folio;
893 pte_t pte;
894
895 new_folio = *prealloc;
896 if (!new_folio)
897 return -EAGAIN;
898
899 /*
900 * We have a prealloc page, all good! Take it
901 * over and copy the page & arm it.
902 */
903 *prealloc = NULL;
904 copy_user_highpage(&new_folio->page, page, addr, src_vma);
905 __folio_mark_uptodate(new_folio);
906 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
907 folio_add_lru_vma(new_folio, dst_vma);
908 rss[MM_ANONPAGES]++;
909
910 /* All done, just insert the new page copy in the child */
911 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
912 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
913 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
914 /* Uffd-wp needs to be delivered to dest pte as well */
915 pte = pte_mkuffd_wp(pte);
916 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
917 return 0;
918 }
919
920 /*
921 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
922 * is required to copy this pte.
923 */
924 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)925 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
926 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
927 struct folio **prealloc)
928 {
929 struct mm_struct *src_mm = src_vma->vm_mm;
930 unsigned long vm_flags = src_vma->vm_flags;
931 pte_t pte = ptep_get(src_pte);
932 struct page *page;
933 struct folio *folio;
934
935 page = vm_normal_page(src_vma, addr, pte);
936 if (page)
937 folio = page_folio(page);
938 if (page && folio_test_anon(folio)) {
939 /*
940 * If this page may have been pinned by the parent process,
941 * copy the page immediately for the child so that we'll always
942 * guarantee the pinned page won't be randomly replaced in the
943 * future.
944 */
945 folio_get(folio);
946 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
947 /* Page may be pinned, we have to copy. */
948 folio_put(folio);
949 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, page);
951 }
952 rss[MM_ANONPAGES]++;
953 } else if (page) {
954 folio_get(folio);
955 page_dup_file_rmap(page, false);
956 rss[mm_counter_file(page)]++;
957 }
958
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 ptep_set_wrprotect(src_mm, addr, src_pte);
965 pte = pte_wrprotect(pte);
966 }
967 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
976
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
979
980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 return 0;
982 }
983
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)984 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
985 struct vm_area_struct *vma, unsigned long addr)
986 {
987 struct folio *new_folio;
988
989 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
990 if (!new_folio)
991 return NULL;
992
993 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
994 folio_put(new_folio);
995 return NULL;
996 }
997 folio_throttle_swaprate(new_folio, GFP_KERNEL);
998
999 return new_folio;
1000 }
1001
1002 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1006 {
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
1009 pte_t *orig_src_pte, *orig_dst_pte;
1010 pte_t *src_pte, *dst_pte;
1011 pte_t ptent;
1012 spinlock_t *src_ptl, *dst_ptl;
1013 int progress, ret = 0;
1014 int rss[NR_MM_COUNTERS];
1015 swp_entry_t entry = (swp_entry_t){0};
1016 struct folio *prealloc = NULL;
1017
1018 again:
1019 progress = 0;
1020 init_rss_vec(rss);
1021
1022 /*
1023 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1024 * error handling here, assume that exclusive mmap_lock on dst and src
1025 * protects anon from unexpected THP transitions; with shmem and file
1026 * protected by mmap_lock-less collapse skipping areas with anon_vma
1027 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1028 * can remove such assumptions later, but this is good enough for now.
1029 */
1030 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1031 if (!dst_pte) {
1032 ret = -ENOMEM;
1033 goto out;
1034 }
1035 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1036 if (!src_pte) {
1037 pte_unmap_unlock(dst_pte, dst_ptl);
1038 /* ret == 0 */
1039 goto out;
1040 }
1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 orig_src_pte = src_pte;
1043 orig_dst_pte = dst_pte;
1044 arch_enter_lazy_mmu_mode();
1045
1046 do {
1047 /*
1048 * We are holding two locks at this point - either of them
1049 * could generate latencies in another task on another CPU.
1050 */
1051 if (progress >= 32) {
1052 progress = 0;
1053 if (need_resched() ||
1054 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 break;
1056 }
1057 ptent = ptep_get(src_pte);
1058 if (pte_none(ptent)) {
1059 progress++;
1060 continue;
1061 }
1062 if (unlikely(!pte_present(ptent))) {
1063 ret = copy_nonpresent_pte(dst_mm, src_mm,
1064 dst_pte, src_pte,
1065 dst_vma, src_vma,
1066 addr, rss);
1067 if (ret == -EIO) {
1068 entry = pte_to_swp_entry(ptep_get(src_pte));
1069 break;
1070 } else if (ret == -EBUSY) {
1071 break;
1072 } else if (!ret) {
1073 progress += 8;
1074 continue;
1075 }
1076
1077 /*
1078 * Device exclusive entry restored, continue by copying
1079 * the now present pte.
1080 */
1081 WARN_ON_ONCE(ret != -ENOENT);
1082 }
1083 /* copy_present_pte() will clear `*prealloc' if consumed */
1084 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 addr, rss, &prealloc);
1086 /*
1087 * If we need a pre-allocated page for this pte, drop the
1088 * locks, allocate, and try again.
1089 */
1090 if (unlikely(ret == -EAGAIN))
1091 break;
1092 if (unlikely(prealloc)) {
1093 /*
1094 * pre-alloc page cannot be reused by next time so as
1095 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 * will allocate page according to address). This
1097 * could only happen if one pinned pte changed.
1098 */
1099 folio_put(prealloc);
1100 prealloc = NULL;
1101 }
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105 arch_leave_lazy_mmu_mode();
1106 pte_unmap_unlock(orig_src_pte, src_ptl);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1110
1111 if (ret == -EIO) {
1112 VM_WARN_ON_ONCE(!entry.val);
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1114 ret = -ENOMEM;
1115 goto out;
1116 }
1117 entry.val = 0;
1118 } else if (ret == -EBUSY) {
1119 goto out;
1120 } else if (ret == -EAGAIN) {
1121 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1122 if (!prealloc)
1123 return -ENOMEM;
1124 } else if (ret) {
1125 VM_WARN_ON_ONCE(1);
1126 }
1127
1128 /* We've captured and resolved the error. Reset, try again. */
1129 ret = 0;
1130
1131 if (addr != end)
1132 goto again;
1133 out:
1134 if (unlikely(prealloc))
1135 folio_put(prealloc);
1136 return ret;
1137 }
1138
1139 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1140 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 unsigned long end)
1143 {
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1146 pmd_t *src_pmd, *dst_pmd;
1147 unsigned long next;
1148
1149 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 if (!dst_pmd)
1151 return -ENOMEM;
1152 src_pmd = pmd_offset(src_pud, addr);
1153 do {
1154 next = pmd_addr_end(addr, end);
1155 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156 || pmd_devmap(*src_pmd)) {
1157 int err;
1158 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1159 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1160 addr, dst_vma, src_vma);
1161 if (err == -ENOMEM)
1162 return -ENOMEM;
1163 if (!err)
1164 continue;
1165 /* fall through */
1166 }
1167 if (pmd_none_or_clear_bad(src_pmd))
1168 continue;
1169 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 addr, next))
1171 return -ENOMEM;
1172 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173 return 0;
1174 }
1175
1176 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1177 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 unsigned long end)
1180 {
1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 struct mm_struct *src_mm = src_vma->vm_mm;
1183 pud_t *src_pud, *dst_pud;
1184 unsigned long next;
1185
1186 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 if (!dst_pud)
1188 return -ENOMEM;
1189 src_pud = pud_offset(src_p4d, addr);
1190 do {
1191 next = pud_addr_end(addr, end);
1192 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 int err;
1194
1195 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1196 err = copy_huge_pud(dst_mm, src_mm,
1197 dst_pud, src_pud, addr, src_vma);
1198 if (err == -ENOMEM)
1199 return -ENOMEM;
1200 if (!err)
1201 continue;
1202 /* fall through */
1203 }
1204 if (pud_none_or_clear_bad(src_pud))
1205 continue;
1206 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 addr, next))
1208 return -ENOMEM;
1209 } while (dst_pud++, src_pud++, addr = next, addr != end);
1210 return 0;
1211 }
1212
1213 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1214 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1215 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 unsigned long end)
1217 {
1218 struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 p4d_t *src_p4d, *dst_p4d;
1220 unsigned long next;
1221
1222 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 if (!dst_p4d)
1224 return -ENOMEM;
1225 src_p4d = p4d_offset(src_pgd, addr);
1226 do {
1227 next = p4d_addr_end(addr, end);
1228 if (p4d_none_or_clear_bad(src_p4d))
1229 continue;
1230 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 addr, next))
1232 return -ENOMEM;
1233 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 return 0;
1235 }
1236
1237 /*
1238 * Return true if the vma needs to copy the pgtable during this fork(). Return
1239 * false when we can speed up fork() by allowing lazy page faults later until
1240 * when the child accesses the memory range.
1241 */
1242 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1243 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 {
1245 /*
1246 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1247 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1248 * contains uffd-wp protection information, that's something we can't
1249 * retrieve from page cache, and skip copying will lose those info.
1250 */
1251 if (userfaultfd_wp(dst_vma))
1252 return true;
1253
1254 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 return true;
1256
1257 if (src_vma->anon_vma)
1258 return true;
1259
1260 /*
1261 * Don't copy ptes where a page fault will fill them correctly. Fork
1262 * becomes much lighter when there are big shared or private readonly
1263 * mappings. The tradeoff is that copy_page_range is more efficient
1264 * than faulting.
1265 */
1266 return false;
1267 }
1268
1269 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1270 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1271 {
1272 pgd_t *src_pgd, *dst_pgd;
1273 unsigned long addr = src_vma->vm_start;
1274 unsigned long end = src_vma->vm_end;
1275 struct mm_struct *dst_mm = dst_vma->vm_mm;
1276 struct mm_struct *src_mm = src_vma->vm_mm;
1277 struct mmu_notifier_range range;
1278 unsigned long next, pfn;
1279 bool is_cow;
1280 int ret;
1281
1282 if (!vma_needs_copy(dst_vma, src_vma))
1283 return 0;
1284
1285 if (is_vm_hugetlb_page(src_vma))
1286 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1287
1288 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1289 ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1290 if (ret)
1291 return ret;
1292 }
1293
1294 /*
1295 * We need to invalidate the secondary MMU mappings only when
1296 * there could be a permission downgrade on the ptes of the
1297 * parent mm. And a permission downgrade will only happen if
1298 * is_cow_mapping() returns true.
1299 */
1300 is_cow = is_cow_mapping(src_vma->vm_flags);
1301
1302 if (is_cow) {
1303 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1304 0, src_mm, addr, end);
1305 mmu_notifier_invalidate_range_start(&range);
1306 /*
1307 * Disabling preemption is not needed for the write side, as
1308 * the read side doesn't spin, but goes to the mmap_lock.
1309 *
1310 * Use the raw variant of the seqcount_t write API to avoid
1311 * lockdep complaining about preemptibility.
1312 */
1313 vma_assert_write_locked(src_vma);
1314 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1315 }
1316
1317 ret = 0;
1318 dst_pgd = pgd_offset(dst_mm, addr);
1319 src_pgd = pgd_offset(src_mm, addr);
1320 do {
1321 next = pgd_addr_end(addr, end);
1322 if (pgd_none_or_clear_bad(src_pgd))
1323 continue;
1324 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1325 addr, next))) {
1326 ret = -ENOMEM;
1327 break;
1328 }
1329 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1330
1331 if (is_cow) {
1332 raw_write_seqcount_end(&src_mm->write_protect_seq);
1333 mmu_notifier_invalidate_range_end(&range);
1334 }
1335 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1336 untrack_pfn_copy(dst_vma, pfn);
1337 return ret;
1338 }
1339
1340 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1341 static inline bool should_zap_cows(struct zap_details *details)
1342 {
1343 /* By default, zap all pages */
1344 if (!details)
1345 return true;
1346
1347 /* Or, we zap COWed pages only if the caller wants to */
1348 return details->even_cows;
1349 }
1350
1351 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1353 {
1354 /* If we can make a decision without *page.. */
1355 if (should_zap_cows(details))
1356 return true;
1357
1358 /* E.g. the caller passes NULL for the case of a zero page */
1359 if (!page)
1360 return true;
1361
1362 /* Otherwise we should only zap non-anon pages */
1363 return !PageAnon(page);
1364 }
1365
zap_drop_file_uffd_wp(struct zap_details * details)1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1367 {
1368 if (!details)
1369 return false;
1370
1371 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1372 }
1373
1374 /*
1375 * This function makes sure that we'll replace the none pte with an uffd-wp
1376 * swap special pte marker when necessary. Must be with the pgtable lock held.
1377 */
1378 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380 unsigned long addr, pte_t *pte,
1381 struct zap_details *details, pte_t pteval)
1382 {
1383 /* Zap on anonymous always means dropping everything */
1384 if (vma_is_anonymous(vma))
1385 return;
1386
1387 if (zap_drop_file_uffd_wp(details))
1388 return;
1389
1390 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1391 }
1392
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1393 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1394 struct vm_area_struct *vma, pmd_t *pmd,
1395 unsigned long addr, unsigned long end,
1396 struct zap_details *details)
1397 {
1398 struct mm_struct *mm = tlb->mm;
1399 int force_flush = 0;
1400 int rss[NR_MM_COUNTERS];
1401 spinlock_t *ptl;
1402 pte_t *start_pte;
1403 pte_t *pte;
1404 swp_entry_t entry;
1405
1406 tlb_change_page_size(tlb, PAGE_SIZE);
1407 init_rss_vec(rss);
1408 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 if (!pte)
1410 return addr;
1411
1412 flush_tlb_batched_pending(mm);
1413 arch_enter_lazy_mmu_mode();
1414 do {
1415 pte_t ptent = ptep_get(pte);
1416 struct page *page;
1417
1418 if (pte_none(ptent))
1419 continue;
1420
1421 if (need_resched())
1422 break;
1423
1424 if (pte_present(ptent)) {
1425 unsigned int delay_rmap;
1426
1427 page = vm_normal_page(vma, addr, ptent);
1428 #ifdef CONFIG_MEM_PURGEABLE
1429 if (vma->vm_flags & VM_USEREXPTE)
1430 page = NULL;
1431 #endif
1432 if (unlikely(!should_zap_page(details, page)))
1433 continue;
1434 ptent = ptep_get_and_clear_full(mm, addr, pte,
1435 tlb->fullmm);
1436 arch_check_zapped_pte(vma, ptent);
1437 tlb_remove_tlb_entry(tlb, pte, addr);
1438 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1439 ptent);
1440 if (unlikely(!page)) {
1441 ksm_might_unmap_zero_page(mm, ptent);
1442 continue;
1443 }
1444 #ifdef CONFIG_MEM_PURGEABLE
1445 if (vma->vm_flags & VM_PURGEABLE)
1446 uxpte_clear_present(vma, addr);
1447 #endif
1448 delay_rmap = 0;
1449 if (!PageAnon(page)) {
1450 if (pte_dirty(ptent)) {
1451 set_page_dirty(page);
1452 if (tlb_delay_rmap(tlb)) {
1453 delay_rmap = 1;
1454 force_flush = 1;
1455 }
1456 }
1457 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1458 mark_page_accessed(page);
1459 }
1460 rss[mm_counter(page)]--;
1461 if (!delay_rmap) {
1462 page_remove_rmap(page, vma, false);
1463 if (unlikely(page_mapcount(page) < 0))
1464 print_bad_pte(vma, addr, ptent, page);
1465 }
1466 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1467 force_flush = 1;
1468 addr += PAGE_SIZE;
1469 break;
1470 }
1471 continue;
1472 }
1473
1474 entry = pte_to_swp_entry(ptent);
1475 if (is_device_private_entry(entry) ||
1476 is_device_exclusive_entry(entry)) {
1477 page = pfn_swap_entry_to_page(entry);
1478 if (unlikely(!should_zap_page(details, page)))
1479 continue;
1480 /*
1481 * Both device private/exclusive mappings should only
1482 * work with anonymous page so far, so we don't need to
1483 * consider uffd-wp bit when zap. For more information,
1484 * see zap_install_uffd_wp_if_needed().
1485 */
1486 WARN_ON_ONCE(!vma_is_anonymous(vma));
1487 rss[mm_counter(page)]--;
1488 if (is_device_private_entry(entry))
1489 page_remove_rmap(page, vma, false);
1490 put_page(page);
1491 } else if (!non_swap_entry(entry)) {
1492 /* Genuine swap entry, hence a private anon page */
1493 if (!should_zap_cows(details))
1494 continue;
1495 rss[MM_SWAPENTS]--;
1496 if (unlikely(!free_swap_and_cache(entry)))
1497 print_bad_pte(vma, addr, ptent, NULL);
1498 } else if (is_migration_entry(entry)) {
1499 page = pfn_swap_entry_to_page(entry);
1500 if (!should_zap_page(details, page))
1501 continue;
1502 rss[mm_counter(page)]--;
1503 } else if (pte_marker_entry_uffd_wp(entry)) {
1504 /*
1505 * For anon: always drop the marker; for file: only
1506 * drop the marker if explicitly requested.
1507 */
1508 if (!vma_is_anonymous(vma) &&
1509 !zap_drop_file_uffd_wp(details))
1510 continue;
1511 } else if (is_hwpoison_entry(entry) ||
1512 is_poisoned_swp_entry(entry)) {
1513 if (!should_zap_cows(details))
1514 continue;
1515 } else {
1516 /* We should have covered all the swap entry types */
1517 WARN_ON_ONCE(1);
1518 }
1519 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1520 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1521 } while (pte++, addr += PAGE_SIZE, addr != end);
1522
1523 add_mm_rss_vec(mm, rss);
1524 arch_leave_lazy_mmu_mode();
1525
1526 /* Do the actual TLB flush before dropping ptl */
1527 if (force_flush) {
1528 tlb_flush_mmu_tlbonly(tlb);
1529 tlb_flush_rmaps(tlb, vma);
1530 }
1531 pte_unmap_unlock(start_pte, ptl);
1532
1533 /*
1534 * If we forced a TLB flush (either due to running out of
1535 * batch buffers or because we needed to flush dirty TLB
1536 * entries before releasing the ptl), free the batched
1537 * memory too. Come back again if we didn't do everything.
1538 */
1539 if (force_flush)
1540 tlb_flush_mmu(tlb);
1541
1542 return addr;
1543 }
1544
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1545 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1546 struct vm_area_struct *vma, pud_t *pud,
1547 unsigned long addr, unsigned long end,
1548 struct zap_details *details)
1549 {
1550 pmd_t *pmd;
1551 unsigned long next;
1552
1553 pmd = pmd_offset(pud, addr);
1554 do {
1555 next = pmd_addr_end(addr, end);
1556 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1557 if (next - addr != HPAGE_PMD_SIZE)
1558 __split_huge_pmd(vma, pmd, addr, false, NULL);
1559 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1560 addr = next;
1561 continue;
1562 }
1563 /* fall through */
1564 } else if (details && details->single_folio &&
1565 folio_test_pmd_mappable(details->single_folio) &&
1566 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1567 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1568 /*
1569 * Take and drop THP pmd lock so that we cannot return
1570 * prematurely, while zap_huge_pmd() has cleared *pmd,
1571 * but not yet decremented compound_mapcount().
1572 */
1573 spin_unlock(ptl);
1574 }
1575 if (pmd_none(*pmd)) {
1576 addr = next;
1577 continue;
1578 }
1579 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1580 if (addr != next)
1581 pmd--;
1582 } while (pmd++, cond_resched(), addr != end);
1583
1584 return addr;
1585 }
1586
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1587 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1588 struct vm_area_struct *vma, p4d_t *p4d,
1589 unsigned long addr, unsigned long end,
1590 struct zap_details *details)
1591 {
1592 pud_t *pud;
1593 unsigned long next;
1594
1595 pud = pud_offset(p4d, addr);
1596 do {
1597 next = pud_addr_end(addr, end);
1598 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1599 if (next - addr != HPAGE_PUD_SIZE) {
1600 mmap_assert_locked(tlb->mm);
1601 split_huge_pud(vma, pud, addr);
1602 } else if (zap_huge_pud(tlb, vma, pud, addr))
1603 goto next;
1604 /* fall through */
1605 }
1606 if (pud_none_or_clear_bad(pud))
1607 continue;
1608 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1609 next:
1610 cond_resched();
1611 } while (pud++, addr = next, addr != end);
1612
1613 return addr;
1614 }
1615
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1616 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1617 struct vm_area_struct *vma, pgd_t *pgd,
1618 unsigned long addr, unsigned long end,
1619 struct zap_details *details)
1620 {
1621 p4d_t *p4d;
1622 unsigned long next;
1623
1624 p4d = p4d_offset(pgd, addr);
1625 do {
1626 next = p4d_addr_end(addr, end);
1627 if (p4d_none_or_clear_bad(p4d))
1628 continue;
1629 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1630 } while (p4d++, addr = next, addr != end);
1631
1632 return addr;
1633 }
1634
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1635 void unmap_page_range(struct mmu_gather *tlb,
1636 struct vm_area_struct *vma,
1637 unsigned long addr, unsigned long end,
1638 struct zap_details *details)
1639 {
1640 pgd_t *pgd;
1641 unsigned long next;
1642
1643 BUG_ON(addr >= end);
1644 tlb_start_vma(tlb, vma);
1645 pgd = pgd_offset(vma->vm_mm, addr);
1646 do {
1647 next = pgd_addr_end(addr, end);
1648 if (pgd_none_or_clear_bad(pgd))
1649 continue;
1650 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1651 } while (pgd++, addr = next, addr != end);
1652 tlb_end_vma(tlb, vma);
1653 }
1654
1655
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1656 static void unmap_single_vma(struct mmu_gather *tlb,
1657 struct vm_area_struct *vma, unsigned long start_addr,
1658 unsigned long end_addr,
1659 struct zap_details *details, bool mm_wr_locked)
1660 {
1661 unsigned long start = max(vma->vm_start, start_addr);
1662 unsigned long end;
1663
1664 if (start >= vma->vm_end)
1665 return;
1666 end = min(vma->vm_end, end_addr);
1667 if (end <= vma->vm_start)
1668 return;
1669
1670 if (vma->vm_file)
1671 uprobe_munmap(vma, start, end);
1672
1673 if (unlikely(vma->vm_flags & VM_PFNMAP))
1674 untrack_pfn(vma, 0, 0, mm_wr_locked);
1675
1676 if (start != end) {
1677 if (unlikely(is_vm_hugetlb_page(vma))) {
1678 /*
1679 * It is undesirable to test vma->vm_file as it
1680 * should be non-null for valid hugetlb area.
1681 * However, vm_file will be NULL in the error
1682 * cleanup path of mmap_region. When
1683 * hugetlbfs ->mmap method fails,
1684 * mmap_region() nullifies vma->vm_file
1685 * before calling this function to clean up.
1686 * Since no pte has actually been setup, it is
1687 * safe to do nothing in this case.
1688 */
1689 if (vma->vm_file) {
1690 zap_flags_t zap_flags = details ?
1691 details->zap_flags : 0;
1692 __unmap_hugepage_range(tlb, vma, start, end,
1693 NULL, zap_flags);
1694 }
1695 } else
1696 unmap_page_range(tlb, vma, start, end, details);
1697 }
1698 }
1699
1700 /**
1701 * unmap_vmas - unmap a range of memory covered by a list of vma's
1702 * @tlb: address of the caller's struct mmu_gather
1703 * @mas: the maple state
1704 * @vma: the starting vma
1705 * @start_addr: virtual address at which to start unmapping
1706 * @end_addr: virtual address at which to end unmapping
1707 * @tree_end: The maximum index to check
1708 * @mm_wr_locked: lock flag
1709 *
1710 * Unmap all pages in the vma list.
1711 *
1712 * Only addresses between `start' and `end' will be unmapped.
1713 *
1714 * The VMA list must be sorted in ascending virtual address order.
1715 *
1716 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1717 * range after unmap_vmas() returns. So the only responsibility here is to
1718 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1719 * drops the lock and schedules.
1720 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1721 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1722 struct vm_area_struct *vma, unsigned long start_addr,
1723 unsigned long end_addr, unsigned long tree_end,
1724 bool mm_wr_locked)
1725 {
1726 struct mmu_notifier_range range;
1727 struct zap_details details = {
1728 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1729 /* Careful - we need to zap private pages too! */
1730 .even_cows = true,
1731 };
1732
1733 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1734 start_addr, end_addr);
1735 mmu_notifier_invalidate_range_start(&range);
1736 do {
1737 unsigned long start = start_addr;
1738 unsigned long end = end_addr;
1739 hugetlb_zap_begin(vma, &start, &end);
1740 unmap_single_vma(tlb, vma, start, end, &details,
1741 mm_wr_locked);
1742 hugetlb_zap_end(vma, &details);
1743 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1744 mmu_notifier_invalidate_range_end(&range);
1745 }
1746
1747 /**
1748 * zap_page_range_single - remove user pages in a given range
1749 * @vma: vm_area_struct holding the applicable pages
1750 * @address: starting address of pages to zap
1751 * @size: number of bytes to zap
1752 * @details: details of shared cache invalidation
1753 *
1754 * The range must fit into one VMA.
1755 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1756 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1757 unsigned long size, struct zap_details *details)
1758 {
1759 const unsigned long end = address + size;
1760 struct mmu_notifier_range range;
1761 struct mmu_gather tlb;
1762
1763 lru_add_drain();
1764 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1765 address, end);
1766 hugetlb_zap_begin(vma, &range.start, &range.end);
1767 tlb_gather_mmu(&tlb, vma->vm_mm);
1768 update_hiwater_rss(vma->vm_mm);
1769 mmu_notifier_invalidate_range_start(&range);
1770 /*
1771 * unmap 'address-end' not 'range.start-range.end' as range
1772 * could have been expanded for hugetlb pmd sharing.
1773 */
1774 unmap_single_vma(&tlb, vma, address, end, details, false);
1775 mmu_notifier_invalidate_range_end(&range);
1776 tlb_finish_mmu(&tlb);
1777 hugetlb_zap_end(vma, details);
1778 }
1779
1780 /**
1781 * zap_vma_ptes - remove ptes mapping the vma
1782 * @vma: vm_area_struct holding ptes to be zapped
1783 * @address: starting address of pages to zap
1784 * @size: number of bytes to zap
1785 *
1786 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1787 *
1788 * The entire address range must be fully contained within the vma.
1789 *
1790 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1791 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1792 unsigned long size)
1793 {
1794 if (!range_in_vma(vma, address, address + size) ||
1795 !(vma->vm_flags & VM_PFNMAP))
1796 return;
1797
1798 zap_page_range_single(vma, address, size, NULL);
1799 }
1800 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1801
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1802 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1803 {
1804 pgd_t *pgd;
1805 p4d_t *p4d;
1806 pud_t *pud;
1807 pmd_t *pmd;
1808
1809 pgd = pgd_offset(mm, addr);
1810 p4d = p4d_alloc(mm, pgd, addr);
1811 if (!p4d)
1812 return NULL;
1813 pud = pud_alloc(mm, p4d, addr);
1814 if (!pud)
1815 return NULL;
1816 pmd = pmd_alloc(mm, pud, addr);
1817 if (!pmd)
1818 return NULL;
1819
1820 VM_BUG_ON(pmd_trans_huge(*pmd));
1821 return pmd;
1822 }
1823
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1824 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1825 spinlock_t **ptl)
1826 {
1827 pmd_t *pmd = walk_to_pmd(mm, addr);
1828
1829 if (!pmd)
1830 return NULL;
1831 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1832 }
1833
validate_page_before_insert(struct page * page)1834 static int validate_page_before_insert(struct page *page)
1835 {
1836 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1837 return -EINVAL;
1838 flush_dcache_page(page);
1839 return 0;
1840 }
1841
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1842 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1843 unsigned long addr, struct page *page, pgprot_t prot)
1844 {
1845 if (!pte_none(ptep_get(pte)))
1846 return -EBUSY;
1847 /* Ok, finally just insert the thing.. */
1848 get_page(page);
1849 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1850 page_add_file_rmap(page, vma, false);
1851 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1852 return 0;
1853 }
1854
1855 /*
1856 * This is the old fallback for page remapping.
1857 *
1858 * For historical reasons, it only allows reserved pages. Only
1859 * old drivers should use this, and they needed to mark their
1860 * pages reserved for the old functions anyway.
1861 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1862 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1863 struct page *page, pgprot_t prot)
1864 {
1865 int retval;
1866 pte_t *pte;
1867 spinlock_t *ptl;
1868
1869 retval = validate_page_before_insert(page);
1870 if (retval)
1871 goto out;
1872 retval = -ENOMEM;
1873 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1874 if (!pte)
1875 goto out;
1876 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1877 pte_unmap_unlock(pte, ptl);
1878 out:
1879 return retval;
1880 }
1881
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1882 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1883 unsigned long addr, struct page *page, pgprot_t prot)
1884 {
1885 int err;
1886
1887 if (!page_count(page))
1888 return -EINVAL;
1889 err = validate_page_before_insert(page);
1890 if (err)
1891 return err;
1892 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1893 }
1894
1895 /* insert_pages() amortizes the cost of spinlock operations
1896 * when inserting pages in a loop.
1897 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1898 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899 struct page **pages, unsigned long *num, pgprot_t prot)
1900 {
1901 pmd_t *pmd = NULL;
1902 pte_t *start_pte, *pte;
1903 spinlock_t *pte_lock;
1904 struct mm_struct *const mm = vma->vm_mm;
1905 unsigned long curr_page_idx = 0;
1906 unsigned long remaining_pages_total = *num;
1907 unsigned long pages_to_write_in_pmd;
1908 int ret;
1909 more:
1910 ret = -EFAULT;
1911 pmd = walk_to_pmd(mm, addr);
1912 if (!pmd)
1913 goto out;
1914
1915 pages_to_write_in_pmd = min_t(unsigned long,
1916 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917
1918 /* Allocate the PTE if necessary; takes PMD lock once only. */
1919 ret = -ENOMEM;
1920 if (pte_alloc(mm, pmd))
1921 goto out;
1922
1923 while (pages_to_write_in_pmd) {
1924 int pte_idx = 0;
1925 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926
1927 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928 if (!start_pte) {
1929 ret = -EFAULT;
1930 goto out;
1931 }
1932 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1933 int err = insert_page_in_batch_locked(vma, pte,
1934 addr, pages[curr_page_idx], prot);
1935 if (unlikely(err)) {
1936 pte_unmap_unlock(start_pte, pte_lock);
1937 ret = err;
1938 remaining_pages_total -= pte_idx;
1939 goto out;
1940 }
1941 addr += PAGE_SIZE;
1942 ++curr_page_idx;
1943 }
1944 pte_unmap_unlock(start_pte, pte_lock);
1945 pages_to_write_in_pmd -= batch_size;
1946 remaining_pages_total -= batch_size;
1947 }
1948 if (remaining_pages_total)
1949 goto more;
1950 ret = 0;
1951 out:
1952 *num = remaining_pages_total;
1953 return ret;
1954 }
1955
1956 /**
1957 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1958 * @vma: user vma to map to
1959 * @addr: target start user address of these pages
1960 * @pages: source kernel pages
1961 * @num: in: number of pages to map. out: number of pages that were *not*
1962 * mapped. (0 means all pages were successfully mapped).
1963 *
1964 * Preferred over vm_insert_page() when inserting multiple pages.
1965 *
1966 * In case of error, we may have mapped a subset of the provided
1967 * pages. It is the caller's responsibility to account for this case.
1968 *
1969 * The same restrictions apply as in vm_insert_page().
1970 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1971 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1972 struct page **pages, unsigned long *num)
1973 {
1974 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1975
1976 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1977 return -EFAULT;
1978 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1979 BUG_ON(mmap_read_trylock(vma->vm_mm));
1980 BUG_ON(vma->vm_flags & VM_PFNMAP);
1981 vm_flags_set(vma, VM_MIXEDMAP);
1982 }
1983 /* Defer page refcount checking till we're about to map that page. */
1984 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1985 }
1986 EXPORT_SYMBOL(vm_insert_pages);
1987
1988 /**
1989 * vm_insert_page - insert single page into user vma
1990 * @vma: user vma to map to
1991 * @addr: target user address of this page
1992 * @page: source kernel page
1993 *
1994 * This allows drivers to insert individual pages they've allocated
1995 * into a user vma.
1996 *
1997 * The page has to be a nice clean _individual_ kernel allocation.
1998 * If you allocate a compound page, you need to have marked it as
1999 * such (__GFP_COMP), or manually just split the page up yourself
2000 * (see split_page()).
2001 *
2002 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2003 * took an arbitrary page protection parameter. This doesn't allow
2004 * that. Your vma protection will have to be set up correctly, which
2005 * means that if you want a shared writable mapping, you'd better
2006 * ask for a shared writable mapping!
2007 *
2008 * The page does not need to be reserved.
2009 *
2010 * Usually this function is called from f_op->mmap() handler
2011 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2012 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2013 * function from other places, for example from page-fault handler.
2014 *
2015 * Return: %0 on success, negative error code otherwise.
2016 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2017 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2018 struct page *page)
2019 {
2020 if (addr < vma->vm_start || addr >= vma->vm_end)
2021 return -EFAULT;
2022 if (!page_count(page))
2023 return -EINVAL;
2024 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2025 BUG_ON(mmap_read_trylock(vma->vm_mm));
2026 BUG_ON(vma->vm_flags & VM_PFNMAP);
2027 vm_flags_set(vma, VM_MIXEDMAP);
2028 }
2029 return insert_page(vma, addr, page, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_insert_page);
2032
2033 /*
2034 * __vm_map_pages - maps range of kernel pages into user vma
2035 * @vma: user vma to map to
2036 * @pages: pointer to array of source kernel pages
2037 * @num: number of pages in page array
2038 * @offset: user's requested vm_pgoff
2039 *
2040 * This allows drivers to map range of kernel pages into a user vma.
2041 *
2042 * Return: 0 on success and error code otherwise.
2043 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2044 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2045 unsigned long num, unsigned long offset)
2046 {
2047 unsigned long count = vma_pages(vma);
2048 unsigned long uaddr = vma->vm_start;
2049 int ret, i;
2050
2051 /* Fail if the user requested offset is beyond the end of the object */
2052 if (offset >= num)
2053 return -ENXIO;
2054
2055 /* Fail if the user requested size exceeds available object size */
2056 if (count > num - offset)
2057 return -ENXIO;
2058
2059 for (i = 0; i < count; i++) {
2060 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2061 if (ret < 0)
2062 return ret;
2063 uaddr += PAGE_SIZE;
2064 }
2065
2066 return 0;
2067 }
2068
2069 /**
2070 * vm_map_pages - maps range of kernel pages starts with non zero offset
2071 * @vma: user vma to map to
2072 * @pages: pointer to array of source kernel pages
2073 * @num: number of pages in page array
2074 *
2075 * Maps an object consisting of @num pages, catering for the user's
2076 * requested vm_pgoff
2077 *
2078 * If we fail to insert any page into the vma, the function will return
2079 * immediately leaving any previously inserted pages present. Callers
2080 * from the mmap handler may immediately return the error as their caller
2081 * will destroy the vma, removing any successfully inserted pages. Other
2082 * callers should make their own arrangements for calling unmap_region().
2083 *
2084 * Context: Process context. Called by mmap handlers.
2085 * Return: 0 on success and error code otherwise.
2086 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2087 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2088 unsigned long num)
2089 {
2090 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2091 }
2092 EXPORT_SYMBOL(vm_map_pages);
2093
2094 /**
2095 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2096 * @vma: user vma to map to
2097 * @pages: pointer to array of source kernel pages
2098 * @num: number of pages in page array
2099 *
2100 * Similar to vm_map_pages(), except that it explicitly sets the offset
2101 * to 0. This function is intended for the drivers that did not consider
2102 * vm_pgoff.
2103 *
2104 * Context: Process context. Called by mmap handlers.
2105 * Return: 0 on success and error code otherwise.
2106 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2107 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2108 unsigned long num)
2109 {
2110 return __vm_map_pages(vma, pages, num, 0);
2111 }
2112 EXPORT_SYMBOL(vm_map_pages_zero);
2113
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2114 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 pfn_t pfn, pgprot_t prot, bool mkwrite)
2116 {
2117 struct mm_struct *mm = vma->vm_mm;
2118 pte_t *pte, entry;
2119 spinlock_t *ptl;
2120
2121 pte = get_locked_pte(mm, addr, &ptl);
2122 if (!pte)
2123 return VM_FAULT_OOM;
2124 entry = ptep_get(pte);
2125 if (!pte_none(entry)) {
2126 if (mkwrite) {
2127 /*
2128 * For read faults on private mappings the PFN passed
2129 * in may not match the PFN we have mapped if the
2130 * mapped PFN is a writeable COW page. In the mkwrite
2131 * case we are creating a writable PTE for a shared
2132 * mapping and we expect the PFNs to match. If they
2133 * don't match, we are likely racing with block
2134 * allocation and mapping invalidation so just skip the
2135 * update.
2136 */
2137 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2138 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2139 goto out_unlock;
2140 }
2141 entry = pte_mkyoung(entry);
2142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2144 update_mmu_cache(vma, addr, pte);
2145 }
2146 goto out_unlock;
2147 }
2148
2149 /* Ok, finally just insert the thing.. */
2150 if (pfn_t_devmap(pfn))
2151 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2152 else
2153 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2154
2155 if (mkwrite) {
2156 entry = pte_mkyoung(entry);
2157 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2158 }
2159
2160 set_pte_at(mm, addr, pte, entry);
2161 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2162
2163 out_unlock:
2164 pte_unmap_unlock(pte, ptl);
2165 return VM_FAULT_NOPAGE;
2166 }
2167
2168 /**
2169 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2170 * @vma: user vma to map to
2171 * @addr: target user address of this page
2172 * @pfn: source kernel pfn
2173 * @pgprot: pgprot flags for the inserted page
2174 *
2175 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2176 * to override pgprot on a per-page basis.
2177 *
2178 * This only makes sense for IO mappings, and it makes no sense for
2179 * COW mappings. In general, using multiple vmas is preferable;
2180 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2181 * impractical.
2182 *
2183 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2184 * caching- and encryption bits different than those of @vma->vm_page_prot,
2185 * because the caching- or encryption mode may not be known at mmap() time.
2186 *
2187 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2188 * to set caching and encryption bits for those vmas (except for COW pages).
2189 * This is ensured by core vm only modifying these page table entries using
2190 * functions that don't touch caching- or encryption bits, using pte_modify()
2191 * if needed. (See for example mprotect()).
2192 *
2193 * Also when new page-table entries are created, this is only done using the
2194 * fault() callback, and never using the value of vma->vm_page_prot,
2195 * except for page-table entries that point to anonymous pages as the result
2196 * of COW.
2197 *
2198 * Context: Process context. May allocate using %GFP_KERNEL.
2199 * Return: vm_fault_t value.
2200 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2201 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2202 unsigned long pfn, pgprot_t pgprot)
2203 {
2204 /*
2205 * Technically, architectures with pte_special can avoid all these
2206 * restrictions (same for remap_pfn_range). However we would like
2207 * consistency in testing and feature parity among all, so we should
2208 * try to keep these invariants in place for everybody.
2209 */
2210 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 (VM_PFNMAP|VM_MIXEDMAP));
2213 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215
2216 if (addr < vma->vm_start || addr >= vma->vm_end)
2217 return VM_FAULT_SIGBUS;
2218
2219 if (!pfn_modify_allowed(pfn, pgprot))
2220 return VM_FAULT_SIGBUS;
2221
2222 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2223
2224 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2225 false);
2226 }
2227 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2228
2229 /**
2230 * vmf_insert_pfn - insert single pfn into user vma
2231 * @vma: user vma to map to
2232 * @addr: target user address of this page
2233 * @pfn: source kernel pfn
2234 *
2235 * Similar to vm_insert_page, this allows drivers to insert individual pages
2236 * they've allocated into a user vma. Same comments apply.
2237 *
2238 * This function should only be called from a vm_ops->fault handler, and
2239 * in that case the handler should return the result of this function.
2240 *
2241 * vma cannot be a COW mapping.
2242 *
2243 * As this is called only for pages that do not currently exist, we
2244 * do not need to flush old virtual caches or the TLB.
2245 *
2246 * Context: Process context. May allocate using %GFP_KERNEL.
2247 * Return: vm_fault_t value.
2248 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2249 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2250 unsigned long pfn)
2251 {
2252 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2253 }
2254 EXPORT_SYMBOL(vmf_insert_pfn);
2255
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2256 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2257 {
2258 /* these checks mirror the abort conditions in vm_normal_page */
2259 if (vma->vm_flags & VM_MIXEDMAP)
2260 return true;
2261 if (pfn_t_devmap(pfn))
2262 return true;
2263 if (pfn_t_special(pfn))
2264 return true;
2265 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2266 return true;
2267 return false;
2268 }
2269
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2270 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2271 unsigned long addr, pfn_t pfn, bool mkwrite)
2272 {
2273 pgprot_t pgprot = vma->vm_page_prot;
2274 int err;
2275
2276 BUG_ON(!vm_mixed_ok(vma, pfn));
2277
2278 if (addr < vma->vm_start || addr >= vma->vm_end)
2279 return VM_FAULT_SIGBUS;
2280
2281 track_pfn_insert(vma, &pgprot, pfn);
2282
2283 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2284 return VM_FAULT_SIGBUS;
2285
2286 /*
2287 * If we don't have pte special, then we have to use the pfn_valid()
2288 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2289 * refcount the page if pfn_valid is true (hence insert_page rather
2290 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2291 * without pte special, it would there be refcounted as a normal page.
2292 */
2293 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2294 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2295 struct page *page;
2296
2297 /*
2298 * At this point we are committed to insert_page()
2299 * regardless of whether the caller specified flags that
2300 * result in pfn_t_has_page() == false.
2301 */
2302 page = pfn_to_page(pfn_t_to_pfn(pfn));
2303 err = insert_page(vma, addr, page, pgprot);
2304 } else {
2305 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2306 }
2307
2308 if (err == -ENOMEM)
2309 return VM_FAULT_OOM;
2310 if (err < 0 && err != -EBUSY)
2311 return VM_FAULT_SIGBUS;
2312
2313 return VM_FAULT_NOPAGE;
2314 }
2315
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2316 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2317 pfn_t pfn)
2318 {
2319 return __vm_insert_mixed(vma, addr, pfn, false);
2320 }
2321 EXPORT_SYMBOL(vmf_insert_mixed);
2322
2323 /*
2324 * If the insertion of PTE failed because someone else already added a
2325 * different entry in the mean time, we treat that as success as we assume
2326 * the same entry was actually inserted.
2327 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2328 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2329 unsigned long addr, pfn_t pfn)
2330 {
2331 return __vm_insert_mixed(vma, addr, pfn, true);
2332 }
2333 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2334
2335 /*
2336 * maps a range of physical memory into the requested pages. the old
2337 * mappings are removed. any references to nonexistent pages results
2338 * in null mappings (currently treated as "copy-on-access")
2339 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2340 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2341 unsigned long addr, unsigned long end,
2342 unsigned long pfn, pgprot_t prot)
2343 {
2344 pte_t *pte, *mapped_pte;
2345 spinlock_t *ptl;
2346 int err = 0;
2347
2348 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2349 if (!pte)
2350 return -ENOMEM;
2351 arch_enter_lazy_mmu_mode();
2352 do {
2353 BUG_ON(!pte_none(ptep_get(pte)));
2354 if (!pfn_modify_allowed(pfn, prot)) {
2355 err = -EACCES;
2356 break;
2357 }
2358 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2359 pfn++;
2360 } while (pte++, addr += PAGE_SIZE, addr != end);
2361 arch_leave_lazy_mmu_mode();
2362 pte_unmap_unlock(mapped_pte, ptl);
2363 return err;
2364 }
2365
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2366 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2367 unsigned long addr, unsigned long end,
2368 unsigned long pfn, pgprot_t prot)
2369 {
2370 pmd_t *pmd;
2371 unsigned long next;
2372 int err;
2373
2374 pfn -= addr >> PAGE_SHIFT;
2375 pmd = pmd_alloc(mm, pud, addr);
2376 if (!pmd)
2377 return -ENOMEM;
2378 VM_BUG_ON(pmd_trans_huge(*pmd));
2379 do {
2380 next = pmd_addr_end(addr, end);
2381 err = remap_pte_range(mm, pmd, addr, next,
2382 pfn + (addr >> PAGE_SHIFT), prot);
2383 if (err)
2384 return err;
2385 } while (pmd++, addr = next, addr != end);
2386 return 0;
2387 }
2388
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2389 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2390 unsigned long addr, unsigned long end,
2391 unsigned long pfn, pgprot_t prot)
2392 {
2393 pud_t *pud;
2394 unsigned long next;
2395 int err;
2396
2397 pfn -= addr >> PAGE_SHIFT;
2398 pud = pud_alloc(mm, p4d, addr);
2399 if (!pud)
2400 return -ENOMEM;
2401 do {
2402 next = pud_addr_end(addr, end);
2403 err = remap_pmd_range(mm, pud, addr, next,
2404 pfn + (addr >> PAGE_SHIFT), prot);
2405 if (err)
2406 return err;
2407 } while (pud++, addr = next, addr != end);
2408 return 0;
2409 }
2410
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2411 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2412 unsigned long addr, unsigned long end,
2413 unsigned long pfn, pgprot_t prot)
2414 {
2415 p4d_t *p4d;
2416 unsigned long next;
2417 int err;
2418
2419 pfn -= addr >> PAGE_SHIFT;
2420 p4d = p4d_alloc(mm, pgd, addr);
2421 if (!p4d)
2422 return -ENOMEM;
2423 do {
2424 next = p4d_addr_end(addr, end);
2425 err = remap_pud_range(mm, p4d, addr, next,
2426 pfn + (addr >> PAGE_SHIFT), prot);
2427 if (err)
2428 return err;
2429 } while (p4d++, addr = next, addr != end);
2430 return 0;
2431 }
2432
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2433 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2434 unsigned long pfn, unsigned long size, pgprot_t prot)
2435 {
2436 pgd_t *pgd;
2437 unsigned long next;
2438 unsigned long end = addr + PAGE_ALIGN(size);
2439 struct mm_struct *mm = vma->vm_mm;
2440 int err;
2441
2442 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2443 return -EINVAL;
2444
2445 /*
2446 * Physically remapped pages are special. Tell the
2447 * rest of the world about it:
2448 * VM_IO tells people not to look at these pages
2449 * (accesses can have side effects).
2450 * VM_PFNMAP tells the core MM that the base pages are just
2451 * raw PFN mappings, and do not have a "struct page" associated
2452 * with them.
2453 * VM_DONTEXPAND
2454 * Disable vma merging and expanding with mremap().
2455 * VM_DONTDUMP
2456 * Omit vma from core dump, even when VM_IO turned off.
2457 *
2458 * There's a horrible special case to handle copy-on-write
2459 * behaviour that some programs depend on. We mark the "original"
2460 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2461 * See vm_normal_page() for details.
2462 */
2463 if (is_cow_mapping(vma->vm_flags)) {
2464 if (addr != vma->vm_start || end != vma->vm_end)
2465 return -EINVAL;
2466 vma->vm_pgoff = pfn;
2467 }
2468
2469 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2470
2471 BUG_ON(addr >= end);
2472 pfn -= addr >> PAGE_SHIFT;
2473 pgd = pgd_offset(mm, addr);
2474 flush_cache_range(vma, addr, end);
2475 do {
2476 next = pgd_addr_end(addr, end);
2477 err = remap_p4d_range(mm, pgd, addr, next,
2478 pfn + (addr >> PAGE_SHIFT), prot);
2479 if (err)
2480 return err;
2481 } while (pgd++, addr = next, addr != end);
2482
2483 return 0;
2484 }
2485
2486 /*
2487 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2488 * must have pre-validated the caching bits of the pgprot_t.
2489 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2490 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2491 unsigned long pfn, unsigned long size, pgprot_t prot)
2492 {
2493 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2494
2495 if (!error)
2496 return 0;
2497
2498 /*
2499 * A partial pfn range mapping is dangerous: it does not
2500 * maintain page reference counts, and callers may free
2501 * pages due to the error. So zap it early.
2502 */
2503 zap_page_range_single(vma, addr, size, NULL);
2504 return error;
2505 }
2506
2507 /**
2508 * remap_pfn_range - remap kernel memory to userspace
2509 * @vma: user vma to map to
2510 * @addr: target page aligned user address to start at
2511 * @pfn: page frame number of kernel physical memory address
2512 * @size: size of mapping area
2513 * @prot: page protection flags for this mapping
2514 *
2515 * Note: this is only safe if the mm semaphore is held when called.
2516 *
2517 * Return: %0 on success, negative error code otherwise.
2518 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2519 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2520 unsigned long pfn, unsigned long size, pgprot_t prot)
2521 {
2522 int err;
2523
2524 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2525 if (err)
2526 return -EINVAL;
2527
2528 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2529 if (err)
2530 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2531 return err;
2532 }
2533 EXPORT_SYMBOL(remap_pfn_range);
2534
2535 /**
2536 * vm_iomap_memory - remap memory to userspace
2537 * @vma: user vma to map to
2538 * @start: start of the physical memory to be mapped
2539 * @len: size of area
2540 *
2541 * This is a simplified io_remap_pfn_range() for common driver use. The
2542 * driver just needs to give us the physical memory range to be mapped,
2543 * we'll figure out the rest from the vma information.
2544 *
2545 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2546 * whatever write-combining details or similar.
2547 *
2548 * Return: %0 on success, negative error code otherwise.
2549 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2550 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2551 {
2552 unsigned long vm_len, pfn, pages;
2553
2554 /* Check that the physical memory area passed in looks valid */
2555 if (start + len < start)
2556 return -EINVAL;
2557 /*
2558 * You *really* shouldn't map things that aren't page-aligned,
2559 * but we've historically allowed it because IO memory might
2560 * just have smaller alignment.
2561 */
2562 len += start & ~PAGE_MASK;
2563 pfn = start >> PAGE_SHIFT;
2564 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2565 if (pfn + pages < pfn)
2566 return -EINVAL;
2567
2568 /* We start the mapping 'vm_pgoff' pages into the area */
2569 if (vma->vm_pgoff > pages)
2570 return -EINVAL;
2571 pfn += vma->vm_pgoff;
2572 pages -= vma->vm_pgoff;
2573
2574 /* Can we fit all of the mapping? */
2575 vm_len = vma->vm_end - vma->vm_start;
2576 if (vm_len >> PAGE_SHIFT > pages)
2577 return -EINVAL;
2578
2579 /* Ok, let it rip */
2580 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2581 }
2582 EXPORT_SYMBOL(vm_iomap_memory);
2583
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2584 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2585 unsigned long addr, unsigned long end,
2586 pte_fn_t fn, void *data, bool create,
2587 pgtbl_mod_mask *mask)
2588 {
2589 pte_t *pte, *mapped_pte;
2590 int err = 0;
2591 spinlock_t *ptl;
2592
2593 if (create) {
2594 mapped_pte = pte = (mm == &init_mm) ?
2595 pte_alloc_kernel_track(pmd, addr, mask) :
2596 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2597 if (!pte)
2598 return -ENOMEM;
2599 } else {
2600 mapped_pte = pte = (mm == &init_mm) ?
2601 pte_offset_kernel(pmd, addr) :
2602 pte_offset_map_lock(mm, pmd, addr, &ptl);
2603 if (!pte)
2604 return -EINVAL;
2605 }
2606
2607 arch_enter_lazy_mmu_mode();
2608
2609 if (fn) {
2610 do {
2611 if (create || !pte_none(ptep_get(pte))) {
2612 err = fn(pte, addr, data);
2613 if (err)
2614 break;
2615 }
2616 } while (pte++, addr += PAGE_SIZE, addr != end);
2617 }
2618 *mask |= PGTBL_PTE_MODIFIED;
2619
2620 arch_leave_lazy_mmu_mode();
2621
2622 if (mm != &init_mm)
2623 pte_unmap_unlock(mapped_pte, ptl);
2624 return err;
2625 }
2626
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2627 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2628 unsigned long addr, unsigned long end,
2629 pte_fn_t fn, void *data, bool create,
2630 pgtbl_mod_mask *mask)
2631 {
2632 pmd_t *pmd;
2633 unsigned long next;
2634 int err = 0;
2635
2636 BUG_ON(pud_huge(*pud));
2637
2638 if (create) {
2639 pmd = pmd_alloc_track(mm, pud, addr, mask);
2640 if (!pmd)
2641 return -ENOMEM;
2642 } else {
2643 pmd = pmd_offset(pud, addr);
2644 }
2645 do {
2646 next = pmd_addr_end(addr, end);
2647 if (pmd_none(*pmd) && !create)
2648 continue;
2649 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2650 return -EINVAL;
2651 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2652 if (!create)
2653 continue;
2654 pmd_clear_bad(pmd);
2655 }
2656 err = apply_to_pte_range(mm, pmd, addr, next,
2657 fn, data, create, mask);
2658 if (err)
2659 break;
2660 } while (pmd++, addr = next, addr != end);
2661
2662 return err;
2663 }
2664
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2665 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2666 unsigned long addr, unsigned long end,
2667 pte_fn_t fn, void *data, bool create,
2668 pgtbl_mod_mask *mask)
2669 {
2670 pud_t *pud;
2671 unsigned long next;
2672 int err = 0;
2673
2674 if (create) {
2675 pud = pud_alloc_track(mm, p4d, addr, mask);
2676 if (!pud)
2677 return -ENOMEM;
2678 } else {
2679 pud = pud_offset(p4d, addr);
2680 }
2681 do {
2682 next = pud_addr_end(addr, end);
2683 if (pud_none(*pud) && !create)
2684 continue;
2685 if (WARN_ON_ONCE(pud_leaf(*pud)))
2686 return -EINVAL;
2687 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2688 if (!create)
2689 continue;
2690 pud_clear_bad(pud);
2691 }
2692 err = apply_to_pmd_range(mm, pud, addr, next,
2693 fn, data, create, mask);
2694 if (err)
2695 break;
2696 } while (pud++, addr = next, addr != end);
2697
2698 return err;
2699 }
2700
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2701 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2702 unsigned long addr, unsigned long end,
2703 pte_fn_t fn, void *data, bool create,
2704 pgtbl_mod_mask *mask)
2705 {
2706 p4d_t *p4d;
2707 unsigned long next;
2708 int err = 0;
2709
2710 if (create) {
2711 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2712 if (!p4d)
2713 return -ENOMEM;
2714 } else {
2715 p4d = p4d_offset(pgd, addr);
2716 }
2717 do {
2718 next = p4d_addr_end(addr, end);
2719 if (p4d_none(*p4d) && !create)
2720 continue;
2721 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2722 return -EINVAL;
2723 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2724 if (!create)
2725 continue;
2726 p4d_clear_bad(p4d);
2727 }
2728 err = apply_to_pud_range(mm, p4d, addr, next,
2729 fn, data, create, mask);
2730 if (err)
2731 break;
2732 } while (p4d++, addr = next, addr != end);
2733
2734 return err;
2735 }
2736
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2737 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2738 unsigned long size, pte_fn_t fn,
2739 void *data, bool create)
2740 {
2741 pgd_t *pgd;
2742 unsigned long start = addr, next;
2743 unsigned long end = addr + size;
2744 pgtbl_mod_mask mask = 0;
2745 int err = 0;
2746
2747 if (WARN_ON(addr >= end))
2748 return -EINVAL;
2749
2750 pgd = pgd_offset(mm, addr);
2751 do {
2752 next = pgd_addr_end(addr, end);
2753 if (pgd_none(*pgd) && !create)
2754 continue;
2755 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2756 err = -EINVAL;
2757 break;
2758 }
2759 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2760 if (!create)
2761 continue;
2762 pgd_clear_bad(pgd);
2763 }
2764 err = apply_to_p4d_range(mm, pgd, addr, next,
2765 fn, data, create, &mask);
2766 if (err)
2767 break;
2768 } while (pgd++, addr = next, addr != end);
2769
2770 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2771 arch_sync_kernel_mappings(start, start + size);
2772
2773 return err;
2774 }
2775
2776 /*
2777 * Scan a region of virtual memory, filling in page tables as necessary
2778 * and calling a provided function on each leaf page table.
2779 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2780 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2781 unsigned long size, pte_fn_t fn, void *data)
2782 {
2783 return __apply_to_page_range(mm, addr, size, fn, data, true);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_page_range);
2786
2787 /*
2788 * Scan a region of virtual memory, calling a provided function on
2789 * each leaf page table where it exists.
2790 *
2791 * Unlike apply_to_page_range, this does _not_ fill in page tables
2792 * where they are absent.
2793 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2794 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2795 unsigned long size, pte_fn_t fn, void *data)
2796 {
2797 return __apply_to_page_range(mm, addr, size, fn, data, false);
2798 }
2799 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2800
2801 /*
2802 * handle_pte_fault chooses page fault handler according to an entry which was
2803 * read non-atomically. Before making any commitment, on those architectures
2804 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2805 * parts, do_swap_page must check under lock before unmapping the pte and
2806 * proceeding (but do_wp_page is only called after already making such a check;
2807 * and do_anonymous_page can safely check later on).
2808 */
pte_unmap_same(struct vm_fault * vmf)2809 static inline int pte_unmap_same(struct vm_fault *vmf)
2810 {
2811 int same = 1;
2812 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2813 if (sizeof(pte_t) > sizeof(unsigned long)) {
2814 spin_lock(vmf->ptl);
2815 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2816 spin_unlock(vmf->ptl);
2817 }
2818 #endif
2819 pte_unmap(vmf->pte);
2820 vmf->pte = NULL;
2821 return same;
2822 }
2823
2824 /*
2825 * Return:
2826 * 0: copied succeeded
2827 * -EHWPOISON: copy failed due to hwpoison in source page
2828 * -EAGAIN: copied failed (some other reason)
2829 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2830 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2831 struct vm_fault *vmf)
2832 {
2833 int ret;
2834 void *kaddr;
2835 void __user *uaddr;
2836 struct vm_area_struct *vma = vmf->vma;
2837 struct mm_struct *mm = vma->vm_mm;
2838 unsigned long addr = vmf->address;
2839
2840 if (likely(src)) {
2841 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2842 memory_failure_queue(page_to_pfn(src), 0);
2843 return -EHWPOISON;
2844 }
2845 return 0;
2846 }
2847
2848 /*
2849 * If the source page was a PFN mapping, we don't have
2850 * a "struct page" for it. We do a best-effort copy by
2851 * just copying from the original user address. If that
2852 * fails, we just zero-fill it. Live with it.
2853 */
2854 kaddr = kmap_atomic(dst);
2855 uaddr = (void __user *)(addr & PAGE_MASK);
2856
2857 /*
2858 * On architectures with software "accessed" bits, we would
2859 * take a double page fault, so mark it accessed here.
2860 */
2861 vmf->pte = NULL;
2862 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2863 pte_t entry;
2864
2865 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2867 /*
2868 * Other thread has already handled the fault
2869 * and update local tlb only
2870 */
2871 if (vmf->pte)
2872 update_mmu_tlb(vma, addr, vmf->pte);
2873 ret = -EAGAIN;
2874 goto pte_unlock;
2875 }
2876
2877 entry = pte_mkyoung(vmf->orig_pte);
2878 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2879 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2880 }
2881
2882 /*
2883 * This really shouldn't fail, because the page is there
2884 * in the page tables. But it might just be unreadable,
2885 * in which case we just give up and fill the result with
2886 * zeroes.
2887 */
2888 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 if (vmf->pte)
2890 goto warn;
2891
2892 /* Re-validate under PTL if the page is still mapped */
2893 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2894 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2895 /* The PTE changed under us, update local tlb */
2896 if (vmf->pte)
2897 update_mmu_tlb(vma, addr, vmf->pte);
2898 ret = -EAGAIN;
2899 goto pte_unlock;
2900 }
2901
2902 /*
2903 * The same page can be mapped back since last copy attempt.
2904 * Try to copy again under PTL.
2905 */
2906 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2907 /*
2908 * Give a warn in case there can be some obscure
2909 * use-case
2910 */
2911 warn:
2912 WARN_ON_ONCE(1);
2913 clear_page(kaddr);
2914 }
2915 }
2916
2917 ret = 0;
2918
2919 pte_unlock:
2920 if (vmf->pte)
2921 pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 kunmap_atomic(kaddr);
2923 flush_dcache_page(dst);
2924
2925 return ret;
2926 }
2927
__get_fault_gfp_mask(struct vm_area_struct * vma)2928 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2929 {
2930 struct file *vm_file = vma->vm_file;
2931
2932 if (vm_file)
2933 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2934
2935 /*
2936 * Special mappings (e.g. VDSO) do not have any file so fake
2937 * a default GFP_KERNEL for them.
2938 */
2939 return GFP_KERNEL;
2940 }
2941
2942 /*
2943 * Notify the address space that the page is about to become writable so that
2944 * it can prohibit this or wait for the page to get into an appropriate state.
2945 *
2946 * We do this without the lock held, so that it can sleep if it needs to.
2947 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2948 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2949 {
2950 vm_fault_t ret;
2951 unsigned int old_flags = vmf->flags;
2952
2953 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2954
2955 if (vmf->vma->vm_file &&
2956 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2957 return VM_FAULT_SIGBUS;
2958
2959 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2960 /* Restore original flags so that caller is not surprised */
2961 vmf->flags = old_flags;
2962 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2963 return ret;
2964 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2965 folio_lock(folio);
2966 if (!folio->mapping) {
2967 folio_unlock(folio);
2968 return 0; /* retry */
2969 }
2970 ret |= VM_FAULT_LOCKED;
2971 } else
2972 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2973 return ret;
2974 }
2975
2976 /*
2977 * Handle dirtying of a page in shared file mapping on a write fault.
2978 *
2979 * The function expects the page to be locked and unlocks it.
2980 */
fault_dirty_shared_page(struct vm_fault * vmf)2981 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2982 {
2983 struct vm_area_struct *vma = vmf->vma;
2984 struct address_space *mapping;
2985 struct folio *folio = page_folio(vmf->page);
2986 bool dirtied;
2987 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2988
2989 dirtied = folio_mark_dirty(folio);
2990 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2991 /*
2992 * Take a local copy of the address_space - folio.mapping may be zeroed
2993 * by truncate after folio_unlock(). The address_space itself remains
2994 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2995 * release semantics to prevent the compiler from undoing this copying.
2996 */
2997 mapping = folio_raw_mapping(folio);
2998 folio_unlock(folio);
2999
3000 if (!page_mkwrite)
3001 file_update_time(vma->vm_file);
3002
3003 /*
3004 * Throttle page dirtying rate down to writeback speed.
3005 *
3006 * mapping may be NULL here because some device drivers do not
3007 * set page.mapping but still dirty their pages
3008 *
3009 * Drop the mmap_lock before waiting on IO, if we can. The file
3010 * is pinning the mapping, as per above.
3011 */
3012 if ((dirtied || page_mkwrite) && mapping) {
3013 struct file *fpin;
3014
3015 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3016 balance_dirty_pages_ratelimited(mapping);
3017 if (fpin) {
3018 fput(fpin);
3019 return VM_FAULT_COMPLETED;
3020 }
3021 }
3022
3023 return 0;
3024 }
3025
3026 /*
3027 * Handle write page faults for pages that can be reused in the current vma
3028 *
3029 * This can happen either due to the mapping being with the VM_SHARED flag,
3030 * or due to us being the last reference standing to the page. In either
3031 * case, all we need to do here is to mark the page as writable and update
3032 * any related book-keeping.
3033 */
wp_page_reuse(struct vm_fault * vmf)3034 static inline void wp_page_reuse(struct vm_fault *vmf)
3035 __releases(vmf->ptl)
3036 {
3037 struct vm_area_struct *vma = vmf->vma;
3038 struct page *page = vmf->page;
3039 pte_t entry;
3040
3041 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3042 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3043
3044 /*
3045 * Clear the pages cpupid information as the existing
3046 * information potentially belongs to a now completely
3047 * unrelated process.
3048 */
3049 if (page)
3050 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3051
3052 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3053 entry = pte_mkyoung(vmf->orig_pte);
3054 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3055 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3056 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3057 pte_unmap_unlock(vmf->pte, vmf->ptl);
3058 count_vm_event(PGREUSE);
3059 }
3060
3061 /*
3062 * Handle the case of a page which we actually need to copy to a new page,
3063 * either due to COW or unsharing.
3064 *
3065 * Called with mmap_lock locked and the old page referenced, but
3066 * without the ptl held.
3067 *
3068 * High level logic flow:
3069 *
3070 * - Allocate a page, copy the content of the old page to the new one.
3071 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3072 * - Take the PTL. If the pte changed, bail out and release the allocated page
3073 * - If the pte is still the way we remember it, update the page table and all
3074 * relevant references. This includes dropping the reference the page-table
3075 * held to the old page, as well as updating the rmap.
3076 * - In any case, unlock the PTL and drop the reference we took to the old page.
3077 */
wp_page_copy(struct vm_fault * vmf)3078 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3079 {
3080 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3081 struct vm_area_struct *vma = vmf->vma;
3082 struct mm_struct *mm = vma->vm_mm;
3083 struct folio *old_folio = NULL;
3084 struct folio *new_folio = NULL;
3085 pte_t entry;
3086 int page_copied = 0;
3087 struct mmu_notifier_range range;
3088 int ret;
3089
3090 delayacct_wpcopy_start();
3091
3092 if (vmf->page)
3093 old_folio = page_folio(vmf->page);
3094 if (unlikely(anon_vma_prepare(vma)))
3095 goto oom;
3096
3097 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3098 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3099 if (!new_folio)
3100 goto oom;
3101 } else {
3102 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3103 vmf->address, false);
3104 if (!new_folio)
3105 goto oom;
3106
3107 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3108 if (ret) {
3109 /*
3110 * COW failed, if the fault was solved by other,
3111 * it's fine. If not, userspace would re-fault on
3112 * the same address and we will handle the fault
3113 * from the second attempt.
3114 * The -EHWPOISON case will not be retried.
3115 */
3116 folio_put(new_folio);
3117 if (old_folio)
3118 folio_put(old_folio);
3119
3120 delayacct_wpcopy_end();
3121 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3122 }
3123 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3124 }
3125
3126 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3127 goto oom_free_new;
3128 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3129
3130 __folio_mark_uptodate(new_folio);
3131
3132 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3133 vmf->address & PAGE_MASK,
3134 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3135 mmu_notifier_invalidate_range_start(&range);
3136
3137 /*
3138 * Re-check the pte - we dropped the lock
3139 */
3140 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3141 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3142 if (old_folio) {
3143 if (!folio_test_anon(old_folio)) {
3144 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3145 inc_mm_counter(mm, MM_ANONPAGES);
3146 }
3147 } else {
3148 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3149 inc_mm_counter(mm, MM_ANONPAGES);
3150 }
3151 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3152 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3153 entry = pte_sw_mkyoung(entry);
3154 if (unlikely(unshare)) {
3155 if (pte_soft_dirty(vmf->orig_pte))
3156 entry = pte_mksoft_dirty(entry);
3157 if (pte_uffd_wp(vmf->orig_pte))
3158 entry = pte_mkuffd_wp(entry);
3159 } else {
3160 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3161 }
3162
3163 /*
3164 * Clear the pte entry and flush it first, before updating the
3165 * pte with the new entry, to keep TLBs on different CPUs in
3166 * sync. This code used to set the new PTE then flush TLBs, but
3167 * that left a window where the new PTE could be loaded into
3168 * some TLBs while the old PTE remains in others.
3169 */
3170 ptep_clear_flush(vma, vmf->address, vmf->pte);
3171 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3172 #ifdef CONFIG_MEM_PURGEABLE
3173 if (vma->vm_flags & VM_PURGEABLE) {
3174 pr_info("set wp new folio %lx purgeable\n", folio_pfn(new_folio));
3175 folio_set_purgeable(new_folio);
3176 uxpte_set_present(vma, vmf->address);
3177 }
3178 #endif
3179 folio_add_lru_vma(new_folio, vma);
3180 /*
3181 * We call the notify macro here because, when using secondary
3182 * mmu page tables (such as kvm shadow page tables), we want the
3183 * new page to be mapped directly into the secondary page table.
3184 */
3185 BUG_ON(unshare && pte_write(entry));
3186 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3188 if (old_folio) {
3189 /*
3190 * Only after switching the pte to the new page may
3191 * we remove the mapcount here. Otherwise another
3192 * process may come and find the rmap count decremented
3193 * before the pte is switched to the new page, and
3194 * "reuse" the old page writing into it while our pte
3195 * here still points into it and can be read by other
3196 * threads.
3197 *
3198 * The critical issue is to order this
3199 * page_remove_rmap with the ptp_clear_flush above.
3200 * Those stores are ordered by (if nothing else,)
3201 * the barrier present in the atomic_add_negative
3202 * in page_remove_rmap.
3203 *
3204 * Then the TLB flush in ptep_clear_flush ensures that
3205 * no process can access the old page before the
3206 * decremented mapcount is visible. And the old page
3207 * cannot be reused until after the decremented
3208 * mapcount is visible. So transitively, TLBs to
3209 * old page will be flushed before it can be reused.
3210 */
3211 page_remove_rmap(vmf->page, vma, false);
3212 }
3213
3214 /* Free the old page.. */
3215 new_folio = old_folio;
3216 page_copied = 1;
3217 pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 } else if (vmf->pte) {
3219 update_mmu_tlb(vma, vmf->address, vmf->pte);
3220 pte_unmap_unlock(vmf->pte, vmf->ptl);
3221 }
3222
3223 mmu_notifier_invalidate_range_end(&range);
3224
3225 if (new_folio)
3226 folio_put(new_folio);
3227 if (old_folio) {
3228 if (page_copied)
3229 free_swap_cache(&old_folio->page);
3230 folio_put(old_folio);
3231 }
3232
3233 delayacct_wpcopy_end();
3234 return 0;
3235 oom_free_new:
3236 folio_put(new_folio);
3237 oom:
3238 if (old_folio)
3239 folio_put(old_folio);
3240
3241 delayacct_wpcopy_end();
3242 return VM_FAULT_OOM;
3243 }
3244
3245 /**
3246 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3247 * writeable once the page is prepared
3248 *
3249 * @vmf: structure describing the fault
3250 *
3251 * This function handles all that is needed to finish a write page fault in a
3252 * shared mapping due to PTE being read-only once the mapped page is prepared.
3253 * It handles locking of PTE and modifying it.
3254 *
3255 * The function expects the page to be locked or other protection against
3256 * concurrent faults / writeback (such as DAX radix tree locks).
3257 *
3258 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3259 * we acquired PTE lock.
3260 */
finish_mkwrite_fault(struct vm_fault * vmf)3261 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3262 {
3263 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3264 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3265 &vmf->ptl);
3266 if (!vmf->pte)
3267 return VM_FAULT_NOPAGE;
3268 /*
3269 * We might have raced with another page fault while we released the
3270 * pte_offset_map_lock.
3271 */
3272 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3273 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3274 pte_unmap_unlock(vmf->pte, vmf->ptl);
3275 return VM_FAULT_NOPAGE;
3276 }
3277 wp_page_reuse(vmf);
3278 return 0;
3279 }
3280
3281 /*
3282 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3283 * mapping
3284 */
wp_pfn_shared(struct vm_fault * vmf)3285 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3286 {
3287 struct vm_area_struct *vma = vmf->vma;
3288
3289 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3290 vm_fault_t ret;
3291
3292 pte_unmap_unlock(vmf->pte, vmf->ptl);
3293 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3294 vma_end_read(vmf->vma);
3295 return VM_FAULT_RETRY;
3296 }
3297
3298 vmf->flags |= FAULT_FLAG_MKWRITE;
3299 ret = vma->vm_ops->pfn_mkwrite(vmf);
3300 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3301 return ret;
3302 return finish_mkwrite_fault(vmf);
3303 }
3304 wp_page_reuse(vmf);
3305 return 0;
3306 }
3307
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3308 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3309 __releases(vmf->ptl)
3310 {
3311 struct vm_area_struct *vma = vmf->vma;
3312 vm_fault_t ret = 0;
3313
3314 folio_get(folio);
3315
3316 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3317 vm_fault_t tmp;
3318
3319 pte_unmap_unlock(vmf->pte, vmf->ptl);
3320 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3321 folio_put(folio);
3322 vma_end_read(vmf->vma);
3323 return VM_FAULT_RETRY;
3324 }
3325
3326 tmp = do_page_mkwrite(vmf, folio);
3327 if (unlikely(!tmp || (tmp &
3328 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3329 folio_put(folio);
3330 return tmp;
3331 }
3332 tmp = finish_mkwrite_fault(vmf);
3333 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3334 folio_unlock(folio);
3335 folio_put(folio);
3336 return tmp;
3337 }
3338 } else {
3339 wp_page_reuse(vmf);
3340 folio_lock(folio);
3341 }
3342 ret |= fault_dirty_shared_page(vmf);
3343 folio_put(folio);
3344
3345 return ret;
3346 }
3347
3348 /*
3349 * This routine handles present pages, when
3350 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3351 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3352 * (FAULT_FLAG_UNSHARE)
3353 *
3354 * It is done by copying the page to a new address and decrementing the
3355 * shared-page counter for the old page.
3356 *
3357 * Note that this routine assumes that the protection checks have been
3358 * done by the caller (the low-level page fault routine in most cases).
3359 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3360 * done any necessary COW.
3361 *
3362 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3363 * though the page will change only once the write actually happens. This
3364 * avoids a few races, and potentially makes it more efficient.
3365 *
3366 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3367 * but allow concurrent faults), with pte both mapped and locked.
3368 * We return with mmap_lock still held, but pte unmapped and unlocked.
3369 */
do_wp_page(struct vm_fault * vmf)3370 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3371 __releases(vmf->ptl)
3372 {
3373 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3374 struct vm_area_struct *vma = vmf->vma;
3375 struct folio *folio = NULL;
3376
3377 if (likely(!unshare)) {
3378 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3379 pte_unmap_unlock(vmf->pte, vmf->ptl);
3380 return handle_userfault(vmf, VM_UFFD_WP);
3381 }
3382
3383 /*
3384 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3385 * is flushed in this case before copying.
3386 */
3387 if (unlikely(userfaultfd_wp(vmf->vma) &&
3388 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3389 flush_tlb_page(vmf->vma, vmf->address);
3390 }
3391
3392 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3393
3394 if (vmf->page)
3395 folio = page_folio(vmf->page);
3396
3397 /*
3398 * Shared mapping: we are guaranteed to have VM_WRITE and
3399 * FAULT_FLAG_WRITE set at this point.
3400 */
3401 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3402 /*
3403 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3404 * VM_PFNMAP VMA.
3405 *
3406 * We should not cow pages in a shared writeable mapping.
3407 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3408 */
3409 if (!vmf->page)
3410 return wp_pfn_shared(vmf);
3411 return wp_page_shared(vmf, folio);
3412 }
3413
3414 /*
3415 * Private mapping: create an exclusive anonymous page copy if reuse
3416 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3417 */
3418 if (folio && folio_test_anon(folio)) {
3419 /*
3420 * If the page is exclusive to this process we must reuse the
3421 * page without further checks.
3422 */
3423 if (PageAnonExclusive(vmf->page))
3424 goto reuse;
3425
3426 /*
3427 * We have to verify under folio lock: these early checks are
3428 * just an optimization to avoid locking the folio and freeing
3429 * the swapcache if there is little hope that we can reuse.
3430 *
3431 * KSM doesn't necessarily raise the folio refcount.
3432 */
3433 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3434 goto copy;
3435 if (!folio_test_lru(folio))
3436 /*
3437 * We cannot easily detect+handle references from
3438 * remote LRU caches or references to LRU folios.
3439 */
3440 lru_add_drain();
3441 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3442 goto copy;
3443 if (!folio_trylock(folio))
3444 goto copy;
3445 if (folio_test_swapcache(folio))
3446 folio_free_swap(folio);
3447 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3448 folio_unlock(folio);
3449 goto copy;
3450 }
3451 /*
3452 * Ok, we've got the only folio reference from our mapping
3453 * and the folio is locked, it's dark out, and we're wearing
3454 * sunglasses. Hit it.
3455 */
3456 page_move_anon_rmap(vmf->page, vma);
3457 folio_unlock(folio);
3458 reuse:
3459 if (unlikely(unshare)) {
3460 pte_unmap_unlock(vmf->pte, vmf->ptl);
3461 return 0;
3462 }
3463 wp_page_reuse(vmf);
3464 return 0;
3465 }
3466 copy:
3467 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3468 pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 vma_end_read(vmf->vma);
3470 return VM_FAULT_RETRY;
3471 }
3472
3473 /*
3474 * Ok, we need to copy. Oh, well..
3475 */
3476 if (folio)
3477 folio_get(folio);
3478
3479 pte_unmap_unlock(vmf->pte, vmf->ptl);
3480 #ifdef CONFIG_KSM
3481 if (folio && folio_test_ksm(folio))
3482 count_vm_event(COW_KSM);
3483 #endif
3484 return wp_page_copy(vmf);
3485 }
3486
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3487 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3488 unsigned long start_addr, unsigned long end_addr,
3489 struct zap_details *details)
3490 {
3491 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3492 }
3493
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3494 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3495 pgoff_t first_index,
3496 pgoff_t last_index,
3497 struct zap_details *details)
3498 {
3499 struct vm_area_struct *vma;
3500 pgoff_t vba, vea, zba, zea;
3501
3502 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3503 vba = vma->vm_pgoff;
3504 vea = vba + vma_pages(vma) - 1;
3505 zba = max(first_index, vba);
3506 zea = min(last_index, vea);
3507
3508 unmap_mapping_range_vma(vma,
3509 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3510 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3511 details);
3512 }
3513 }
3514
3515 /**
3516 * unmap_mapping_folio() - Unmap single folio from processes.
3517 * @folio: The locked folio to be unmapped.
3518 *
3519 * Unmap this folio from any userspace process which still has it mmaped.
3520 * Typically, for efficiency, the range of nearby pages has already been
3521 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3522 * truncation or invalidation holds the lock on a folio, it may find that
3523 * the page has been remapped again: and then uses unmap_mapping_folio()
3524 * to unmap it finally.
3525 */
unmap_mapping_folio(struct folio * folio)3526 void unmap_mapping_folio(struct folio *folio)
3527 {
3528 struct address_space *mapping = folio->mapping;
3529 struct zap_details details = { };
3530 pgoff_t first_index;
3531 pgoff_t last_index;
3532
3533 VM_BUG_ON(!folio_test_locked(folio));
3534
3535 first_index = folio->index;
3536 last_index = folio_next_index(folio) - 1;
3537
3538 details.even_cows = false;
3539 details.single_folio = folio;
3540 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3541
3542 i_mmap_lock_read(mapping);
3543 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3544 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3545 last_index, &details);
3546 i_mmap_unlock_read(mapping);
3547 }
3548
3549 /**
3550 * unmap_mapping_pages() - Unmap pages from processes.
3551 * @mapping: The address space containing pages to be unmapped.
3552 * @start: Index of first page to be unmapped.
3553 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3554 * @even_cows: Whether to unmap even private COWed pages.
3555 *
3556 * Unmap the pages in this address space from any userspace process which
3557 * has them mmaped. Generally, you want to remove COWed pages as well when
3558 * a file is being truncated, but not when invalidating pages from the page
3559 * cache.
3560 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3561 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3562 pgoff_t nr, bool even_cows)
3563 {
3564 struct zap_details details = { };
3565 pgoff_t first_index = start;
3566 pgoff_t last_index = start + nr - 1;
3567
3568 details.even_cows = even_cows;
3569 if (last_index < first_index)
3570 last_index = ULONG_MAX;
3571
3572 i_mmap_lock_read(mapping);
3573 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3574 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3575 last_index, &details);
3576 i_mmap_unlock_read(mapping);
3577 }
3578 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3579
3580 /**
3581 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3582 * address_space corresponding to the specified byte range in the underlying
3583 * file.
3584 *
3585 * @mapping: the address space containing mmaps to be unmapped.
3586 * @holebegin: byte in first page to unmap, relative to the start of
3587 * the underlying file. This will be rounded down to a PAGE_SIZE
3588 * boundary. Note that this is different from truncate_pagecache(), which
3589 * must keep the partial page. In contrast, we must get rid of
3590 * partial pages.
3591 * @holelen: size of prospective hole in bytes. This will be rounded
3592 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3593 * end of the file.
3594 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3595 * but 0 when invalidating pagecache, don't throw away private data.
3596 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3597 void unmap_mapping_range(struct address_space *mapping,
3598 loff_t const holebegin, loff_t const holelen, int even_cows)
3599 {
3600 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3601 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602
3603 /* Check for overflow. */
3604 if (sizeof(holelen) > sizeof(hlen)) {
3605 long long holeend =
3606 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3607 if (holeend & ~(long long)ULONG_MAX)
3608 hlen = ULONG_MAX - hba + 1;
3609 }
3610
3611 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3612 }
3613 EXPORT_SYMBOL(unmap_mapping_range);
3614
3615 /*
3616 * Restore a potential device exclusive pte to a working pte entry
3617 */
remove_device_exclusive_entry(struct vm_fault * vmf)3618 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3619 {
3620 struct folio *folio = page_folio(vmf->page);
3621 struct vm_area_struct *vma = vmf->vma;
3622 struct mmu_notifier_range range;
3623 vm_fault_t ret;
3624
3625 /*
3626 * We need a reference to lock the folio because we don't hold
3627 * the PTL so a racing thread can remove the device-exclusive
3628 * entry and unmap it. If the folio is free the entry must
3629 * have been removed already. If it happens to have already
3630 * been re-allocated after being freed all we do is lock and
3631 * unlock it.
3632 */
3633 if (!folio_try_get(folio))
3634 return 0;
3635
3636 ret = folio_lock_or_retry(folio, vmf);
3637 if (ret) {
3638 folio_put(folio);
3639 return ret;
3640 }
3641 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3642 vma->vm_mm, vmf->address & PAGE_MASK,
3643 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3644 mmu_notifier_invalidate_range_start(&range);
3645
3646 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3647 &vmf->ptl);
3648 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3649 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3650
3651 if (vmf->pte)
3652 pte_unmap_unlock(vmf->pte, vmf->ptl);
3653 folio_unlock(folio);
3654 folio_put(folio);
3655
3656 mmu_notifier_invalidate_range_end(&range);
3657 return 0;
3658 }
3659
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3660 static inline bool should_try_to_free_swap(struct folio *folio,
3661 struct vm_area_struct *vma,
3662 unsigned int fault_flags)
3663 {
3664 if (!folio_test_swapcache(folio))
3665 return false;
3666 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3667 folio_test_mlocked(folio))
3668 return true;
3669 /*
3670 * If we want to map a page that's in the swapcache writable, we
3671 * have to detect via the refcount if we're really the exclusive
3672 * user. Try freeing the swapcache to get rid of the swapcache
3673 * reference only in case it's likely that we'll be the exlusive user.
3674 */
3675 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3676 folio_ref_count(folio) == 2;
3677 }
3678
pte_marker_clear(struct vm_fault * vmf)3679 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3680 {
3681 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3682 vmf->address, &vmf->ptl);
3683 if (!vmf->pte)
3684 return 0;
3685 /*
3686 * Be careful so that we will only recover a special uffd-wp pte into a
3687 * none pte. Otherwise it means the pte could have changed, so retry.
3688 *
3689 * This should also cover the case where e.g. the pte changed
3690 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3691 * So is_pte_marker() check is not enough to safely drop the pte.
3692 */
3693 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3694 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3695 pte_unmap_unlock(vmf->pte, vmf->ptl);
3696 return 0;
3697 }
3698
do_pte_missing(struct vm_fault * vmf)3699 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3700 {
3701 if (vma_is_anonymous(vmf->vma))
3702 return do_anonymous_page(vmf);
3703 else
3704 return do_fault(vmf);
3705 }
3706
3707 /*
3708 * This is actually a page-missing access, but with uffd-wp special pte
3709 * installed. It means this pte was wr-protected before being unmapped.
3710 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3711 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3712 {
3713 /*
3714 * Just in case there're leftover special ptes even after the region
3715 * got unregistered - we can simply clear them.
3716 */
3717 if (unlikely(!userfaultfd_wp(vmf->vma)))
3718 return pte_marker_clear(vmf);
3719
3720 return do_pte_missing(vmf);
3721 }
3722
handle_pte_marker(struct vm_fault * vmf)3723 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3724 {
3725 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3726 unsigned long marker = pte_marker_get(entry);
3727
3728 /*
3729 * PTE markers should never be empty. If anything weird happened,
3730 * the best thing to do is to kill the process along with its mm.
3731 */
3732 if (WARN_ON_ONCE(!marker))
3733 return VM_FAULT_SIGBUS;
3734
3735 /* Higher priority than uffd-wp when data corrupted */
3736 if (marker & PTE_MARKER_POISONED)
3737 return VM_FAULT_HWPOISON;
3738
3739 if (pte_marker_entry_uffd_wp(entry))
3740 return pte_marker_handle_uffd_wp(vmf);
3741
3742 /* This is an unknown pte marker */
3743 return VM_FAULT_SIGBUS;
3744 }
3745
3746 /*
3747 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3748 * but allow concurrent faults), and pte mapped but not yet locked.
3749 * We return with pte unmapped and unlocked.
3750 *
3751 * We return with the mmap_lock locked or unlocked in the same cases
3752 * as does filemap_fault().
3753 */
do_swap_page(struct vm_fault * vmf)3754 vm_fault_t do_swap_page(struct vm_fault *vmf)
3755 {
3756 struct vm_area_struct *vma = vmf->vma;
3757 struct folio *swapcache, *folio = NULL;
3758 struct page *page;
3759 struct swap_info_struct *si = NULL;
3760 rmap_t rmap_flags = RMAP_NONE;
3761 bool need_clear_cache = false;
3762 bool exclusive = false;
3763 swp_entry_t entry;
3764 pte_t pte;
3765 vm_fault_t ret = 0;
3766 void *shadow = NULL;
3767
3768 if (!pte_unmap_same(vmf))
3769 goto out;
3770
3771 entry = pte_to_swp_entry(vmf->orig_pte);
3772 if (unlikely(non_swap_entry(entry))) {
3773 if (is_migration_entry(entry)) {
3774 migration_entry_wait(vma->vm_mm, vmf->pmd,
3775 vmf->address);
3776 } else if (is_device_exclusive_entry(entry)) {
3777 vmf->page = pfn_swap_entry_to_page(entry);
3778 ret = remove_device_exclusive_entry(vmf);
3779 } else if (is_device_private_entry(entry)) {
3780 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3781 /*
3782 * migrate_to_ram is not yet ready to operate
3783 * under VMA lock.
3784 */
3785 vma_end_read(vma);
3786 ret = VM_FAULT_RETRY;
3787 goto out;
3788 }
3789
3790 vmf->page = pfn_swap_entry_to_page(entry);
3791 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3792 vmf->address, &vmf->ptl);
3793 if (unlikely(!vmf->pte ||
3794 !pte_same(ptep_get(vmf->pte),
3795 vmf->orig_pte)))
3796 goto unlock;
3797
3798 /*
3799 * Get a page reference while we know the page can't be
3800 * freed.
3801 */
3802 get_page(vmf->page);
3803 pte_unmap_unlock(vmf->pte, vmf->ptl);
3804 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3805 put_page(vmf->page);
3806 } else if (is_hwpoison_entry(entry)) {
3807 ret = VM_FAULT_HWPOISON;
3808 } else if (is_pte_marker_entry(entry)) {
3809 ret = handle_pte_marker(vmf);
3810 } else {
3811 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3812 ret = VM_FAULT_SIGBUS;
3813 }
3814 goto out;
3815 }
3816
3817 /* Prevent swapoff from happening to us. */
3818 si = get_swap_device(entry);
3819 if (unlikely(!si))
3820 goto out;
3821
3822 folio = swap_cache_get_folio(entry, vma, vmf->address);
3823 if (folio)
3824 page = folio_file_page(folio, swp_offset(entry));
3825 swapcache = folio;
3826
3827 if (!folio) {
3828 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3829 __swap_count(entry) == 1) {
3830 /*
3831 * Prevent parallel swapin from proceeding with
3832 * the cache flag. Otherwise, another thread may
3833 * finish swapin first, free the entry, and swapout
3834 * reusing the same entry. It's undetectable as
3835 * pte_same() returns true due to entry reuse.
3836 */
3837 if (swapcache_prepare(entry)) {
3838 /* Relax a bit to prevent rapid repeated page faults */
3839 schedule_timeout_uninterruptible(1);
3840 goto out;
3841 }
3842 need_clear_cache = true;
3843
3844 /* skip swapcache */
3845 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3846 vma, vmf->address, false);
3847 page = &folio->page;
3848 if (folio) {
3849 __folio_set_locked(folio);
3850 __folio_set_swapbacked(folio);
3851
3852 if (mem_cgroup_swapin_charge_folio(folio,
3853 vma->vm_mm, GFP_KERNEL,
3854 entry)) {
3855 ret = VM_FAULT_OOM;
3856 goto out_page;
3857 }
3858 mem_cgroup_swapin_uncharge_swap(entry);
3859
3860 shadow = get_shadow_from_swap_cache(entry);
3861 if (shadow)
3862 workingset_refault(folio, shadow);
3863
3864 folio_add_lru(folio);
3865
3866 /* To provide entry to swap_readpage() */
3867 folio->swap = entry;
3868 swap_readpage(page, true, NULL);
3869 folio->private = NULL;
3870 }
3871 } else {
3872 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3873 vmf);
3874 if (page)
3875 folio = page_folio(page);
3876 swapcache = folio;
3877 }
3878
3879 if (!folio) {
3880 /*
3881 * Back out if somebody else faulted in this pte
3882 * while we released the pte lock.
3883 */
3884 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3885 vmf->address, &vmf->ptl);
3886 if (likely(vmf->pte &&
3887 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3888 ret = VM_FAULT_OOM;
3889 goto unlock;
3890 }
3891
3892 /* Had to read the page from swap area: Major fault */
3893 ret = VM_FAULT_MAJOR;
3894 count_vm_event(PGMAJFAULT);
3895 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3896 } else if (PageHWPoison(page)) {
3897 /*
3898 * hwpoisoned dirty swapcache pages are kept for killing
3899 * owner processes (which may be unknown at hwpoison time)
3900 */
3901 ret = VM_FAULT_HWPOISON;
3902 goto out_release;
3903 }
3904
3905 ret |= folio_lock_or_retry(folio, vmf);
3906 if (ret & VM_FAULT_RETRY)
3907 goto out_release;
3908
3909 if (swapcache) {
3910 /*
3911 * Make sure folio_free_swap() or swapoff did not release the
3912 * swapcache from under us. The page pin, and pte_same test
3913 * below, are not enough to exclude that. Even if it is still
3914 * swapcache, we need to check that the page's swap has not
3915 * changed.
3916 */
3917 if (unlikely(!folio_test_swapcache(folio) ||
3918 page_swap_entry(page).val != entry.val))
3919 goto out_page;
3920
3921 /*
3922 * KSM sometimes has to copy on read faults, for example, if
3923 * page->index of !PageKSM() pages would be nonlinear inside the
3924 * anon VMA -- PageKSM() is lost on actual swapout.
3925 */
3926 page = ksm_might_need_to_copy(page, vma, vmf->address);
3927 if (unlikely(!page)) {
3928 ret = VM_FAULT_OOM;
3929 goto out_page;
3930 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3931 ret = VM_FAULT_HWPOISON;
3932 goto out_page;
3933 }
3934 folio = page_folio(page);
3935
3936 /*
3937 * If we want to map a page that's in the swapcache writable, we
3938 * have to detect via the refcount if we're really the exclusive
3939 * owner. Try removing the extra reference from the local LRU
3940 * caches if required.
3941 */
3942 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3943 !folio_test_ksm(folio) && !folio_test_lru(folio))
3944 lru_add_drain();
3945 }
3946
3947 folio_throttle_swaprate(folio, GFP_KERNEL);
3948
3949 /*
3950 * Back out if somebody else already faulted in this pte.
3951 */
3952 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3953 &vmf->ptl);
3954 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3955 goto out_nomap;
3956
3957 if (unlikely(!folio_test_uptodate(folio))) {
3958 ret = VM_FAULT_SIGBUS;
3959 goto out_nomap;
3960 }
3961
3962 /*
3963 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3964 * must never point at an anonymous page in the swapcache that is
3965 * PG_anon_exclusive. Sanity check that this holds and especially, that
3966 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3967 * check after taking the PT lock and making sure that nobody
3968 * concurrently faulted in this page and set PG_anon_exclusive.
3969 */
3970 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3971 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3972
3973 /*
3974 * Check under PT lock (to protect against concurrent fork() sharing
3975 * the swap entry concurrently) for certainly exclusive pages.
3976 */
3977 if (!folio_test_ksm(folio)) {
3978 exclusive = pte_swp_exclusive(vmf->orig_pte);
3979 if (folio != swapcache) {
3980 /*
3981 * We have a fresh page that is not exposed to the
3982 * swapcache -> certainly exclusive.
3983 */
3984 exclusive = true;
3985 } else if (exclusive && folio_test_writeback(folio) &&
3986 data_race(si->flags & SWP_STABLE_WRITES)) {
3987 /*
3988 * This is tricky: not all swap backends support
3989 * concurrent page modifications while under writeback.
3990 *
3991 * So if we stumble over such a page in the swapcache
3992 * we must not set the page exclusive, otherwise we can
3993 * map it writable without further checks and modify it
3994 * while still under writeback.
3995 *
3996 * For these problematic swap backends, simply drop the
3997 * exclusive marker: this is perfectly fine as we start
3998 * writeback only if we fully unmapped the page and
3999 * there are no unexpected references on the page after
4000 * unmapping succeeded. After fully unmapped, no
4001 * further GUP references (FOLL_GET and FOLL_PIN) can
4002 * appear, so dropping the exclusive marker and mapping
4003 * it only R/O is fine.
4004 */
4005 exclusive = false;
4006 }
4007 }
4008
4009 /*
4010 * Some architectures may have to restore extra metadata to the page
4011 * when reading from swap. This metadata may be indexed by swap entry
4012 * so this must be called before swap_free().
4013 */
4014 arch_swap_restore(entry, folio);
4015
4016 /*
4017 * Remove the swap entry and conditionally try to free up the swapcache.
4018 * We're already holding a reference on the page but haven't mapped it
4019 * yet.
4020 */
4021 swap_free(entry);
4022 if (should_try_to_free_swap(folio, vma, vmf->flags))
4023 folio_free_swap(folio);
4024
4025 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4026 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4027 pte = mk_pte(page, vma->vm_page_prot);
4028
4029 /*
4030 * Same logic as in do_wp_page(); however, optimize for pages that are
4031 * certainly not shared either because we just allocated them without
4032 * exposing them to the swapcache or because the swap entry indicates
4033 * exclusivity.
4034 */
4035 if (!folio_test_ksm(folio) &&
4036 (exclusive || folio_ref_count(folio) == 1)) {
4037 if (vmf->flags & FAULT_FLAG_WRITE) {
4038 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4039 vmf->flags &= ~FAULT_FLAG_WRITE;
4040 }
4041 rmap_flags |= RMAP_EXCLUSIVE;
4042 }
4043 flush_icache_page(vma, page);
4044 if (pte_swp_soft_dirty(vmf->orig_pte))
4045 pte = pte_mksoft_dirty(pte);
4046 if (pte_swp_uffd_wp(vmf->orig_pte))
4047 pte = pte_mkuffd_wp(pte);
4048 vmf->orig_pte = pte;
4049
4050 /* ksm created a completely new copy */
4051 if (unlikely(folio != swapcache && swapcache)) {
4052 page_add_new_anon_rmap(page, vma, vmf->address);
4053 folio_add_lru_vma(folio, vma);
4054 } else {
4055 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4056 }
4057
4058 VM_BUG_ON(!folio_test_anon(folio) ||
4059 (pte_write(pte) && !PageAnonExclusive(page)));
4060 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4061 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4062
4063 folio_unlock(folio);
4064 if (folio != swapcache && swapcache) {
4065 /*
4066 * Hold the lock to avoid the swap entry to be reused
4067 * until we take the PT lock for the pte_same() check
4068 * (to avoid false positives from pte_same). For
4069 * further safety release the lock after the swap_free
4070 * so that the swap count won't change under a
4071 * parallel locked swapcache.
4072 */
4073 folio_unlock(swapcache);
4074 folio_put(swapcache);
4075 }
4076
4077 if (vmf->flags & FAULT_FLAG_WRITE) {
4078 ret |= do_wp_page(vmf);
4079 if (ret & VM_FAULT_ERROR)
4080 ret &= VM_FAULT_ERROR;
4081 goto out;
4082 }
4083
4084 /* No need to invalidate - it was non-present before */
4085 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4086 unlock:
4087 if (vmf->pte)
4088 pte_unmap_unlock(vmf->pte, vmf->ptl);
4089 out:
4090 /* Clear the swap cache pin for direct swapin after PTL unlock */
4091 if (need_clear_cache)
4092 swapcache_clear(si, entry);
4093 if (si)
4094 put_swap_device(si);
4095 return ret;
4096 out_nomap:
4097 if (vmf->pte)
4098 pte_unmap_unlock(vmf->pte, vmf->ptl);
4099 out_page:
4100 folio_unlock(folio);
4101 out_release:
4102 folio_put(folio);
4103 if (folio != swapcache && swapcache) {
4104 folio_unlock(swapcache);
4105 folio_put(swapcache);
4106 }
4107 if (need_clear_cache)
4108 swapcache_clear(si, entry);
4109 if (si)
4110 put_swap_device(si);
4111 return ret;
4112 }
4113
4114 /*
4115 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4116 * but allow concurrent faults), and pte mapped but not yet locked.
4117 * We return with mmap_lock still held, but pte unmapped and unlocked.
4118 */
do_anonymous_page(struct vm_fault * vmf)4119 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4120 {
4121 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4122 struct vm_area_struct *vma = vmf->vma;
4123 struct folio *folio;
4124 vm_fault_t ret = 0;
4125 pte_t entry;
4126
4127 /* File mapping without ->vm_ops ? */
4128 if (vma->vm_flags & VM_SHARED)
4129 return VM_FAULT_SIGBUS;
4130
4131 /*
4132 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4133 * be distinguished from a transient failure of pte_offset_map().
4134 */
4135 if (pte_alloc(vma->vm_mm, vmf->pmd))
4136 return VM_FAULT_OOM;
4137
4138 #ifdef CONFIG_MEM_PURGEABLE
4139 /* use extra page table for userexpte */
4140 if (vma->vm_flags & VM_USEREXPTE) {
4141 if (do_uxpte_page_fault(vmf, &entry))
4142 goto oom;
4143 else
4144 goto got_page;
4145 }
4146 #endif
4147 /* Use the zero-page for reads */
4148 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4149 !mm_forbids_zeropage(vma->vm_mm)) {
4150 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4151 vma->vm_page_prot));
4152 #ifdef CONFIG_MEM_PURGEABLE
4153 got_page:
4154 #endif
4155 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4156 vmf->address, &vmf->ptl);
4157 if (!vmf->pte)
4158 goto unlock;
4159 if (vmf_pte_changed(vmf)) {
4160 update_mmu_tlb(vma, vmf->address, vmf->pte);
4161 goto unlock;
4162 }
4163 ret = check_stable_address_space(vma->vm_mm);
4164 if (ret)
4165 goto unlock;
4166 /* Deliver the page fault to userland, check inside PT lock */
4167 if (userfaultfd_missing(vma)) {
4168 pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 return handle_userfault(vmf, VM_UFFD_MISSING);
4170 }
4171 goto setpte;
4172 }
4173
4174 /* Allocate our own private page. */
4175 if (unlikely(anon_vma_prepare(vma)))
4176 goto oom;
4177 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4178 if (!folio)
4179 goto oom;
4180
4181 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4182 goto oom_free_page;
4183 folio_throttle_swaprate(folio, GFP_KERNEL);
4184
4185 /*
4186 * The memory barrier inside __folio_mark_uptodate makes sure that
4187 * preceding stores to the page contents become visible before
4188 * the set_pte_at() write.
4189 */
4190 __folio_mark_uptodate(folio);
4191
4192 entry = mk_pte(&folio->page, vma->vm_page_prot);
4193 entry = pte_sw_mkyoung(entry);
4194 if (vma->vm_flags & VM_WRITE)
4195 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4196
4197 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4198 &vmf->ptl);
4199 if (!vmf->pte)
4200 goto release;
4201 if (vmf_pte_changed(vmf)) {
4202 update_mmu_tlb(vma, vmf->address, vmf->pte);
4203 goto release;
4204 }
4205
4206 ret = check_stable_address_space(vma->vm_mm);
4207 if (ret)
4208 goto release;
4209
4210 /* Deliver the page fault to userland, check inside PT lock */
4211 if (userfaultfd_missing(vma)) {
4212 pte_unmap_unlock(vmf->pte, vmf->ptl);
4213 folio_put(folio);
4214 return handle_userfault(vmf, VM_UFFD_MISSING);
4215 }
4216
4217 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4218 folio_add_new_anon_rmap(folio, vma, vmf->address);
4219 #ifdef CONFIG_MEM_PURGEABLE
4220 if (vma->vm_flags & VM_PURGEABLE)
4221 folio_set_purgeable(folio);
4222 #endif
4223 folio_add_lru_vma(folio, vma);
4224 setpte:
4225 #ifdef CONFIG_MEM_PURGEABLE
4226 if (vma->vm_flags & VM_PURGEABLE)
4227 uxpte_set_present(vma, vmf->address);
4228 #endif
4229 if (uffd_wp)
4230 entry = pte_mkuffd_wp(entry);
4231 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4232
4233 /* No need to invalidate - it was non-present before */
4234 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4235 unlock:
4236 if (vmf->pte)
4237 pte_unmap_unlock(vmf->pte, vmf->ptl);
4238 return ret;
4239 release:
4240 folio_put(folio);
4241 goto unlock;
4242 oom_free_page:
4243 folio_put(folio);
4244 oom:
4245 return VM_FAULT_OOM;
4246 }
4247
4248 /*
4249 * The mmap_lock must have been held on entry, and may have been
4250 * released depending on flags and vma->vm_ops->fault() return value.
4251 * See filemap_fault() and __lock_page_retry().
4252 */
__do_fault(struct vm_fault * vmf)4253 static vm_fault_t __do_fault(struct vm_fault *vmf)
4254 {
4255 struct vm_area_struct *vma = vmf->vma;
4256 vm_fault_t ret;
4257
4258 /*
4259 * Preallocate pte before we take page_lock because this might lead to
4260 * deadlocks for memcg reclaim which waits for pages under writeback:
4261 * lock_page(A)
4262 * SetPageWriteback(A)
4263 * unlock_page(A)
4264 * lock_page(B)
4265 * lock_page(B)
4266 * pte_alloc_one
4267 * shrink_page_list
4268 * wait_on_page_writeback(A)
4269 * SetPageWriteback(B)
4270 * unlock_page(B)
4271 * # flush A, B to clear the writeback
4272 */
4273 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4274 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4275 if (!vmf->prealloc_pte)
4276 return VM_FAULT_OOM;
4277 }
4278
4279 ret = vma->vm_ops->fault(vmf);
4280 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4281 VM_FAULT_DONE_COW)))
4282 return ret;
4283
4284 if (unlikely(PageHWPoison(vmf->page))) {
4285 struct page *page = vmf->page;
4286 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4287 if (ret & VM_FAULT_LOCKED) {
4288 if (page_mapped(page))
4289 unmap_mapping_pages(page_mapping(page),
4290 page->index, 1, false);
4291 /* Retry if a clean page was removed from the cache. */
4292 if (invalidate_inode_page(page))
4293 poisonret = VM_FAULT_NOPAGE;
4294 unlock_page(page);
4295 }
4296 put_page(page);
4297 vmf->page = NULL;
4298 return poisonret;
4299 }
4300
4301 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4302 lock_page(vmf->page);
4303 else
4304 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4305
4306 return ret;
4307 }
4308
4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4310 static void deposit_prealloc_pte(struct vm_fault *vmf)
4311 {
4312 struct vm_area_struct *vma = vmf->vma;
4313
4314 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4315 /*
4316 * We are going to consume the prealloc table,
4317 * count that as nr_ptes.
4318 */
4319 mm_inc_nr_ptes(vma->vm_mm);
4320 vmf->prealloc_pte = NULL;
4321 }
4322
do_set_pmd(struct vm_fault * vmf,struct page * page)4323 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4324 {
4325 struct vm_area_struct *vma = vmf->vma;
4326 bool write = vmf->flags & FAULT_FLAG_WRITE;
4327 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4328 pmd_t entry;
4329 vm_fault_t ret = VM_FAULT_FALLBACK;
4330
4331 /*
4332 * It is too late to allocate a small folio, we already have a large
4333 * folio in the pagecache: especially s390 KVM cannot tolerate any
4334 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4335 * PMD mappings if THPs are disabled.
4336 */
4337 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4338 return ret;
4339
4340 if (!transhuge_vma_suitable(vma, haddr))
4341 return ret;
4342
4343 page = compound_head(page);
4344 if (compound_order(page) != HPAGE_PMD_ORDER)
4345 return ret;
4346
4347 /*
4348 * Just backoff if any subpage of a THP is corrupted otherwise
4349 * the corrupted page may mapped by PMD silently to escape the
4350 * check. This kind of THP just can be PTE mapped. Access to
4351 * the corrupted subpage should trigger SIGBUS as expected.
4352 */
4353 if (unlikely(PageHasHWPoisoned(page)))
4354 return ret;
4355
4356 /*
4357 * Archs like ppc64 need additional space to store information
4358 * related to pte entry. Use the preallocated table for that.
4359 */
4360 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4361 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4362 if (!vmf->prealloc_pte)
4363 return VM_FAULT_OOM;
4364 }
4365
4366 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4367 if (unlikely(!pmd_none(*vmf->pmd)))
4368 goto out;
4369
4370 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4371
4372 entry = mk_huge_pmd(page, vma->vm_page_prot);
4373 if (write)
4374 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4375
4376 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4377 page_add_file_rmap(page, vma, true);
4378
4379 /*
4380 * deposit and withdraw with pmd lock held
4381 */
4382 if (arch_needs_pgtable_deposit())
4383 deposit_prealloc_pte(vmf);
4384
4385 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4386
4387 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4388
4389 /* fault is handled */
4390 ret = 0;
4391 count_vm_event(THP_FILE_MAPPED);
4392 out:
4393 spin_unlock(vmf->ptl);
4394 return ret;
4395 }
4396 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4397 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4398 {
4399 return VM_FAULT_FALLBACK;
4400 }
4401 #endif
4402
4403 /**
4404 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4405 * @vmf: Fault decription.
4406 * @folio: The folio that contains @page.
4407 * @page: The first page to create a PTE for.
4408 * @nr: The number of PTEs to create.
4409 * @addr: The first address to create a PTE for.
4410 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4411 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4412 struct page *page, unsigned int nr, unsigned long addr)
4413 {
4414 struct vm_area_struct *vma = vmf->vma;
4415 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4416 bool write = vmf->flags & FAULT_FLAG_WRITE;
4417 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4418 pte_t entry;
4419
4420 flush_icache_pages(vma, page, nr);
4421 entry = mk_pte(page, vma->vm_page_prot);
4422
4423 if (prefault && arch_wants_old_prefaulted_pte())
4424 entry = pte_mkold(entry);
4425 else
4426 entry = pte_sw_mkyoung(entry);
4427
4428 if (write)
4429 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4430 if (unlikely(uffd_wp))
4431 entry = pte_mkuffd_wp(entry);
4432 /* copy-on-write page */
4433 if (write && !(vma->vm_flags & VM_SHARED)) {
4434 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4435 VM_BUG_ON_FOLIO(nr != 1, folio);
4436 folio_add_new_anon_rmap(folio, vma, addr);
4437 folio_add_lru_vma(folio, vma);
4438 } else {
4439 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4440 folio_add_file_rmap_range(folio, page, nr, vma, false);
4441 }
4442 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4443
4444 /* no need to invalidate: a not-present page won't be cached */
4445 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4446 }
4447
vmf_pte_changed(struct vm_fault * vmf)4448 static bool vmf_pte_changed(struct vm_fault *vmf)
4449 {
4450 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4451 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4452
4453 return !pte_none(ptep_get(vmf->pte));
4454 }
4455
4456 /**
4457 * finish_fault - finish page fault once we have prepared the page to fault
4458 *
4459 * @vmf: structure describing the fault
4460 *
4461 * This function handles all that is needed to finish a page fault once the
4462 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4463 * given page, adds reverse page mapping, handles memcg charges and LRU
4464 * addition.
4465 *
4466 * The function expects the page to be locked and on success it consumes a
4467 * reference of a page being mapped (for the PTE which maps it).
4468 *
4469 * Return: %0 on success, %VM_FAULT_ code in case of error.
4470 */
finish_fault(struct vm_fault * vmf)4471 vm_fault_t finish_fault(struct vm_fault *vmf)
4472 {
4473 struct vm_area_struct *vma = vmf->vma;
4474 struct page *page;
4475 vm_fault_t ret;
4476
4477 /* Did we COW the page? */
4478 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4479 page = vmf->cow_page;
4480 else
4481 page = vmf->page;
4482
4483 /*
4484 * check even for read faults because we might have lost our CoWed
4485 * page
4486 */
4487 if (!(vma->vm_flags & VM_SHARED)) {
4488 ret = check_stable_address_space(vma->vm_mm);
4489 if (ret)
4490 return ret;
4491 }
4492
4493 if (pmd_none(*vmf->pmd)) {
4494 if (PageTransCompound(page)) {
4495 ret = do_set_pmd(vmf, page);
4496 if (ret != VM_FAULT_FALLBACK)
4497 return ret;
4498 }
4499
4500 if (vmf->prealloc_pte)
4501 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4502 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4503 return VM_FAULT_OOM;
4504 }
4505
4506 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4507 vmf->address, &vmf->ptl);
4508 if (!vmf->pte)
4509 return VM_FAULT_NOPAGE;
4510
4511 /* Re-check under ptl */
4512 if (likely(!vmf_pte_changed(vmf))) {
4513 struct folio *folio = page_folio(page);
4514
4515 set_pte_range(vmf, folio, page, 1, vmf->address);
4516 ret = 0;
4517 } else {
4518 update_mmu_tlb(vma, vmf->address, vmf->pte);
4519 ret = VM_FAULT_NOPAGE;
4520 }
4521
4522 pte_unmap_unlock(vmf->pte, vmf->ptl);
4523 return ret;
4524 }
4525
4526 static unsigned long fault_around_pages __read_mostly =
4527 65536 >> PAGE_SHIFT;
4528
4529 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4530 static int fault_around_bytes_get(void *data, u64 *val)
4531 {
4532 *val = fault_around_pages << PAGE_SHIFT;
4533 return 0;
4534 }
4535
4536 /*
4537 * fault_around_bytes must be rounded down to the nearest page order as it's
4538 * what do_fault_around() expects to see.
4539 */
fault_around_bytes_set(void * data,u64 val)4540 static int fault_around_bytes_set(void *data, u64 val)
4541 {
4542 if (val / PAGE_SIZE > PTRS_PER_PTE)
4543 return -EINVAL;
4544
4545 /*
4546 * The minimum value is 1 page, however this results in no fault-around
4547 * at all. See should_fault_around().
4548 */
4549 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4550
4551 return 0;
4552 }
4553 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4554 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4555
fault_around_debugfs(void)4556 static int __init fault_around_debugfs(void)
4557 {
4558 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4559 &fault_around_bytes_fops);
4560 return 0;
4561 }
4562 late_initcall(fault_around_debugfs);
4563 #endif
4564
4565 /*
4566 * do_fault_around() tries to map few pages around the fault address. The hope
4567 * is that the pages will be needed soon and this will lower the number of
4568 * faults to handle.
4569 *
4570 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4571 * not ready to be mapped: not up-to-date, locked, etc.
4572 *
4573 * This function doesn't cross VMA or page table boundaries, in order to call
4574 * map_pages() and acquire a PTE lock only once.
4575 *
4576 * fault_around_pages defines how many pages we'll try to map.
4577 * do_fault_around() expects it to be set to a power of two less than or equal
4578 * to PTRS_PER_PTE.
4579 *
4580 * The virtual address of the area that we map is naturally aligned to
4581 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4582 * (and therefore to page order). This way it's easier to guarantee
4583 * that we don't cross page table boundaries.
4584 */
do_fault_around(struct vm_fault * vmf)4585 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4586 {
4587 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4588 pgoff_t pte_off = pte_index(vmf->address);
4589 /* The page offset of vmf->address within the VMA. */
4590 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4591 pgoff_t from_pte, to_pte;
4592 vm_fault_t ret;
4593
4594 /* The PTE offset of the start address, clamped to the VMA. */
4595 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4596 pte_off - min(pte_off, vma_off));
4597
4598 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4599 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4600 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4601
4602 if (pmd_none(*vmf->pmd)) {
4603 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4604 if (!vmf->prealloc_pte)
4605 return VM_FAULT_OOM;
4606 }
4607
4608 rcu_read_lock();
4609 ret = vmf->vma->vm_ops->map_pages(vmf,
4610 vmf->pgoff + from_pte - pte_off,
4611 vmf->pgoff + to_pte - pte_off);
4612 rcu_read_unlock();
4613
4614 return ret;
4615 }
4616
4617 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4618 static inline bool should_fault_around(struct vm_fault *vmf)
4619 {
4620 /* No ->map_pages? No way to fault around... */
4621 if (!vmf->vma->vm_ops->map_pages)
4622 return false;
4623
4624 if (uffd_disable_fault_around(vmf->vma))
4625 return false;
4626
4627 /* A single page implies no faulting 'around' at all. */
4628 return fault_around_pages > 1;
4629 }
4630
do_read_fault(struct vm_fault * vmf)4631 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4632 {
4633 vm_fault_t ret = 0;
4634 struct folio *folio;
4635
4636 /*
4637 * Let's call ->map_pages() first and use ->fault() as fallback
4638 * if page by the offset is not ready to be mapped (cold cache or
4639 * something).
4640 */
4641 if (should_fault_around(vmf)) {
4642 ret = do_fault_around(vmf);
4643 if (ret)
4644 return ret;
4645 }
4646
4647 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4648 vma_end_read(vmf->vma);
4649 return VM_FAULT_RETRY;
4650 }
4651
4652 ret = __do_fault(vmf);
4653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4654 return ret;
4655
4656 ret |= finish_fault(vmf);
4657 folio = page_folio(vmf->page);
4658 folio_unlock(folio);
4659 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4660 folio_put(folio);
4661 return ret;
4662 }
4663
do_cow_fault(struct vm_fault * vmf)4664 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4665 {
4666 struct vm_area_struct *vma = vmf->vma;
4667 vm_fault_t ret;
4668
4669 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4670 vma_end_read(vma);
4671 return VM_FAULT_RETRY;
4672 }
4673
4674 if (unlikely(anon_vma_prepare(vma)))
4675 return VM_FAULT_OOM;
4676
4677 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4678 if (!vmf->cow_page)
4679 return VM_FAULT_OOM;
4680
4681 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4682 GFP_KERNEL)) {
4683 put_page(vmf->cow_page);
4684 return VM_FAULT_OOM;
4685 }
4686 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4687
4688 ret = __do_fault(vmf);
4689 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4690 goto uncharge_out;
4691 if (ret & VM_FAULT_DONE_COW)
4692 return ret;
4693
4694 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4695 __SetPageUptodate(vmf->cow_page);
4696
4697 ret |= finish_fault(vmf);
4698 unlock_page(vmf->page);
4699 put_page(vmf->page);
4700 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4701 goto uncharge_out;
4702 return ret;
4703 uncharge_out:
4704 put_page(vmf->cow_page);
4705 return ret;
4706 }
4707
do_shared_fault(struct vm_fault * vmf)4708 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4709 {
4710 struct vm_area_struct *vma = vmf->vma;
4711 vm_fault_t ret, tmp;
4712 struct folio *folio;
4713
4714 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4715 vma_end_read(vma);
4716 return VM_FAULT_RETRY;
4717 }
4718
4719 ret = __do_fault(vmf);
4720 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4721 return ret;
4722
4723 folio = page_folio(vmf->page);
4724
4725 /*
4726 * Check if the backing address space wants to know that the page is
4727 * about to become writable
4728 */
4729 if (vma->vm_ops->page_mkwrite) {
4730 folio_unlock(folio);
4731 tmp = do_page_mkwrite(vmf, folio);
4732 if (unlikely(!tmp ||
4733 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4734 folio_put(folio);
4735 return tmp;
4736 }
4737 }
4738
4739 ret |= finish_fault(vmf);
4740 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4741 VM_FAULT_RETRY))) {
4742 folio_unlock(folio);
4743 folio_put(folio);
4744 return ret;
4745 }
4746
4747 ret |= fault_dirty_shared_page(vmf);
4748 return ret;
4749 }
4750
4751 /*
4752 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4753 * but allow concurrent faults).
4754 * The mmap_lock may have been released depending on flags and our
4755 * return value. See filemap_fault() and __folio_lock_or_retry().
4756 * If mmap_lock is released, vma may become invalid (for example
4757 * by other thread calling munmap()).
4758 */
do_fault(struct vm_fault * vmf)4759 static vm_fault_t do_fault(struct vm_fault *vmf)
4760 {
4761 struct vm_area_struct *vma = vmf->vma;
4762 struct mm_struct *vm_mm = vma->vm_mm;
4763 vm_fault_t ret;
4764
4765 /*
4766 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4767 */
4768 if (!vma->vm_ops->fault) {
4769 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4770 vmf->address, &vmf->ptl);
4771 if (unlikely(!vmf->pte))
4772 ret = VM_FAULT_SIGBUS;
4773 else {
4774 /*
4775 * Make sure this is not a temporary clearing of pte
4776 * by holding ptl and checking again. A R/M/W update
4777 * of pte involves: take ptl, clearing the pte so that
4778 * we don't have concurrent modification by hardware
4779 * followed by an update.
4780 */
4781 if (unlikely(pte_none(ptep_get(vmf->pte))))
4782 ret = VM_FAULT_SIGBUS;
4783 else
4784 ret = VM_FAULT_NOPAGE;
4785
4786 pte_unmap_unlock(vmf->pte, vmf->ptl);
4787 }
4788 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4789 ret = do_read_fault(vmf);
4790 else if (!(vma->vm_flags & VM_SHARED))
4791 ret = do_cow_fault(vmf);
4792 else
4793 ret = do_shared_fault(vmf);
4794
4795 /* preallocated pagetable is unused: free it */
4796 if (vmf->prealloc_pte) {
4797 pte_free(vm_mm, vmf->prealloc_pte);
4798 vmf->prealloc_pte = NULL;
4799 }
4800 return ret;
4801 }
4802
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4803 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4804 unsigned long addr, int page_nid, int *flags)
4805 {
4806 get_page(page);
4807
4808 /* Record the current PID acceesing VMA */
4809 vma_set_access_pid_bit(vma);
4810
4811 count_vm_numa_event(NUMA_HINT_FAULTS);
4812 if (page_nid == numa_node_id()) {
4813 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4814 *flags |= TNF_FAULT_LOCAL;
4815 }
4816
4817 return mpol_misplaced(page, vma, addr);
4818 }
4819
do_numa_page(struct vm_fault * vmf)4820 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4821 {
4822 struct vm_area_struct *vma = vmf->vma;
4823 struct page *page = NULL;
4824 int page_nid = NUMA_NO_NODE;
4825 bool writable = false;
4826 int last_cpupid;
4827 int target_nid;
4828 pte_t pte, old_pte;
4829 int flags = 0;
4830
4831 /*
4832 * The "pte" at this point cannot be used safely without
4833 * validation through pte_unmap_same(). It's of NUMA type but
4834 * the pfn may be screwed if the read is non atomic.
4835 */
4836 spin_lock(vmf->ptl);
4837 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4838 pte_unmap_unlock(vmf->pte, vmf->ptl);
4839 return 0;
4840 }
4841
4842 /* Get the normal PTE */
4843 old_pte = ptep_get(vmf->pte);
4844 pte = pte_modify(old_pte, vma->vm_page_prot);
4845
4846 /*
4847 * Detect now whether the PTE could be writable; this information
4848 * is only valid while holding the PT lock.
4849 */
4850 writable = pte_write(pte);
4851 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4852 can_change_pte_writable(vma, vmf->address, pte))
4853 writable = true;
4854
4855 page = vm_normal_page(vma, vmf->address, pte);
4856 if (!page || is_zone_device_page(page))
4857 goto out_map;
4858
4859 /* TODO: handle PTE-mapped THP */
4860 if (PageCompound(page))
4861 goto out_map;
4862
4863 /*
4864 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4865 * much anyway since they can be in shared cache state. This misses
4866 * the case where a mapping is writable but the process never writes
4867 * to it but pte_write gets cleared during protection updates and
4868 * pte_dirty has unpredictable behaviour between PTE scan updates,
4869 * background writeback, dirty balancing and application behaviour.
4870 */
4871 if (!writable)
4872 flags |= TNF_NO_GROUP;
4873
4874 /*
4875 * Flag if the page is shared between multiple address spaces. This
4876 * is later used when determining whether to group tasks together
4877 */
4878 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4879 flags |= TNF_SHARED;
4880
4881 page_nid = page_to_nid(page);
4882 /*
4883 * For memory tiering mode, cpupid of slow memory page is used
4884 * to record page access time. So use default value.
4885 */
4886 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4887 !node_is_toptier(page_nid))
4888 last_cpupid = (-1 & LAST_CPUPID_MASK);
4889 else
4890 last_cpupid = page_cpupid_last(page);
4891 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4892 &flags);
4893 if (target_nid == NUMA_NO_NODE) {
4894 put_page(page);
4895 goto out_map;
4896 }
4897 pte_unmap_unlock(vmf->pte, vmf->ptl);
4898 writable = false;
4899
4900 /* Migrate to the requested node */
4901 if (migrate_misplaced_page(page, vma, target_nid)) {
4902 page_nid = target_nid;
4903 flags |= TNF_MIGRATED;
4904 task_numa_fault(last_cpupid, page_nid, 1, flags);
4905 return 0;
4906 }
4907
4908 flags |= TNF_MIGRATE_FAIL;
4909 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4910 vmf->address, &vmf->ptl);
4911 if (unlikely(!vmf->pte))
4912 return 0;
4913 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4914 pte_unmap_unlock(vmf->pte, vmf->ptl);
4915 return 0;
4916 }
4917 out_map:
4918 /*
4919 * Make it present again, depending on how arch implements
4920 * non-accessible ptes, some can allow access by kernel mode.
4921 */
4922 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4923 pte = pte_modify(old_pte, vma->vm_page_prot);
4924 pte = pte_mkyoung(pte);
4925 if (writable)
4926 pte = pte_mkwrite(pte, vma);
4927 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4928 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4929 pte_unmap_unlock(vmf->pte, vmf->ptl);
4930
4931 if (page_nid != NUMA_NO_NODE)
4932 task_numa_fault(last_cpupid, page_nid, 1, flags);
4933 return 0;
4934 }
4935
create_huge_pmd(struct vm_fault * vmf)4936 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4937 {
4938 struct vm_area_struct *vma = vmf->vma;
4939 if (vma_is_anonymous(vma))
4940 return do_huge_pmd_anonymous_page(vmf);
4941 if (vma->vm_ops->huge_fault)
4942 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4943 return VM_FAULT_FALLBACK;
4944 }
4945
4946 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4947 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4948 {
4949 struct vm_area_struct *vma = vmf->vma;
4950 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4951 vm_fault_t ret;
4952
4953 if (vma_is_anonymous(vma)) {
4954 if (likely(!unshare) &&
4955 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4956 return handle_userfault(vmf, VM_UFFD_WP);
4957 return do_huge_pmd_wp_page(vmf);
4958 }
4959
4960 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4961 if (vma->vm_ops->huge_fault) {
4962 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4963 if (!(ret & VM_FAULT_FALLBACK))
4964 return ret;
4965 }
4966 }
4967
4968 /* COW or write-notify handled on pte level: split pmd. */
4969 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4970
4971 return VM_FAULT_FALLBACK;
4972 }
4973
create_huge_pud(struct vm_fault * vmf)4974 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4975 {
4976 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4977 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4978 struct vm_area_struct *vma = vmf->vma;
4979 /* No support for anonymous transparent PUD pages yet */
4980 if (vma_is_anonymous(vma))
4981 return VM_FAULT_FALLBACK;
4982 if (vma->vm_ops->huge_fault)
4983 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4985 return VM_FAULT_FALLBACK;
4986 }
4987
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4988 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4989 {
4990 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4991 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4992 struct vm_area_struct *vma = vmf->vma;
4993 vm_fault_t ret;
4994
4995 /* No support for anonymous transparent PUD pages yet */
4996 if (vma_is_anonymous(vma))
4997 goto split;
4998 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4999 if (vma->vm_ops->huge_fault) {
5000 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5001 if (!(ret & VM_FAULT_FALLBACK))
5002 return ret;
5003 }
5004 }
5005 split:
5006 /* COW or write-notify not handled on PUD level: split pud.*/
5007 __split_huge_pud(vma, vmf->pud, vmf->address);
5008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5009 return VM_FAULT_FALLBACK;
5010 }
5011
5012 /*
5013 * These routines also need to handle stuff like marking pages dirty
5014 * and/or accessed for architectures that don't do it in hardware (most
5015 * RISC architectures). The early dirtying is also good on the i386.
5016 *
5017 * There is also a hook called "update_mmu_cache()" that architectures
5018 * with external mmu caches can use to update those (ie the Sparc or
5019 * PowerPC hashed page tables that act as extended TLBs).
5020 *
5021 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5022 * concurrent faults).
5023 *
5024 * The mmap_lock may have been released depending on flags and our return value.
5025 * See filemap_fault() and __folio_lock_or_retry().
5026 */
handle_pte_fault(struct vm_fault * vmf)5027 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5028 {
5029 pte_t entry;
5030
5031 if (unlikely(pmd_none(*vmf->pmd))) {
5032 /*
5033 * Leave __pte_alloc() until later: because vm_ops->fault may
5034 * want to allocate huge page, and if we expose page table
5035 * for an instant, it will be difficult to retract from
5036 * concurrent faults and from rmap lookups.
5037 */
5038 vmf->pte = NULL;
5039 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5040 } else {
5041 /*
5042 * A regular pmd is established and it can't morph into a huge
5043 * pmd by anon khugepaged, since that takes mmap_lock in write
5044 * mode; but shmem or file collapse to THP could still morph
5045 * it into a huge pmd: just retry later if so.
5046 */
5047 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5048 vmf->address, &vmf->ptl);
5049 if (unlikely(!vmf->pte))
5050 return 0;
5051 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5052 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5053
5054 if (pte_none(vmf->orig_pte)) {
5055 pte_unmap(vmf->pte);
5056 vmf->pte = NULL;
5057 }
5058 }
5059
5060 if (!vmf->pte)
5061 return do_pte_missing(vmf);
5062
5063 if (!pte_present(vmf->orig_pte))
5064 return do_swap_page(vmf);
5065
5066 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5067 return do_numa_page(vmf);
5068
5069 spin_lock(vmf->ptl);
5070 entry = vmf->orig_pte;
5071 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5072 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5073 goto unlock;
5074 }
5075 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5076 if (!pte_write(entry))
5077 return do_wp_page(vmf);
5078 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5079 entry = pte_mkdirty(entry);
5080 }
5081 entry = pte_mkyoung(entry);
5082 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5083 vmf->flags & FAULT_FLAG_WRITE)) {
5084 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5085 vmf->pte, 1);
5086 } else {
5087 /* Skip spurious TLB flush for retried page fault */
5088 if (vmf->flags & FAULT_FLAG_TRIED)
5089 goto unlock;
5090 /*
5091 * This is needed only for protection faults but the arch code
5092 * is not yet telling us if this is a protection fault or not.
5093 * This still avoids useless tlb flushes for .text page faults
5094 * with threads.
5095 */
5096 if (vmf->flags & FAULT_FLAG_WRITE)
5097 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5098 vmf->pte);
5099 }
5100 unlock:
5101 pte_unmap_unlock(vmf->pte, vmf->ptl);
5102 return 0;
5103 }
5104
5105 /*
5106 * On entry, we hold either the VMA lock or the mmap_lock
5107 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5108 * the result, the mmap_lock is not held on exit. See filemap_fault()
5109 * and __folio_lock_or_retry().
5110 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5111 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5112 unsigned long address, unsigned int flags)
5113 {
5114 struct vm_fault vmf = {
5115 .vma = vma,
5116 .address = address & PAGE_MASK,
5117 .real_address = address,
5118 .flags = flags,
5119 .pgoff = linear_page_index(vma, address),
5120 .gfp_mask = __get_fault_gfp_mask(vma),
5121 };
5122 struct mm_struct *mm = vma->vm_mm;
5123 unsigned long vm_flags = vma->vm_flags;
5124 pgd_t *pgd;
5125 p4d_t *p4d;
5126 vm_fault_t ret;
5127
5128 pgd = pgd_offset(mm, address);
5129 p4d = p4d_alloc(mm, pgd, address);
5130 if (!p4d)
5131 return VM_FAULT_OOM;
5132
5133 vmf.pud = pud_alloc(mm, p4d, address);
5134 if (!vmf.pud)
5135 return VM_FAULT_OOM;
5136 retry_pud:
5137 if (pud_none(*vmf.pud) &&
5138 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5139 ret = create_huge_pud(&vmf);
5140 if (!(ret & VM_FAULT_FALLBACK))
5141 return ret;
5142 } else {
5143 pud_t orig_pud = *vmf.pud;
5144
5145 barrier();
5146 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5147
5148 /*
5149 * TODO once we support anonymous PUDs: NUMA case and
5150 * FAULT_FLAG_UNSHARE handling.
5151 */
5152 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5153 ret = wp_huge_pud(&vmf, orig_pud);
5154 if (!(ret & VM_FAULT_FALLBACK))
5155 return ret;
5156 } else {
5157 huge_pud_set_accessed(&vmf, orig_pud);
5158 return 0;
5159 }
5160 }
5161 }
5162
5163 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5164 if (!vmf.pmd)
5165 return VM_FAULT_OOM;
5166
5167 /* Huge pud page fault raced with pmd_alloc? */
5168 if (pud_trans_unstable(vmf.pud))
5169 goto retry_pud;
5170
5171 if (pmd_none(*vmf.pmd) &&
5172 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5173 ret = create_huge_pmd(&vmf);
5174 if (!(ret & VM_FAULT_FALLBACK))
5175 return ret;
5176 } else {
5177 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5178
5179 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5180 VM_BUG_ON(thp_migration_supported() &&
5181 !is_pmd_migration_entry(vmf.orig_pmd));
5182 if (is_pmd_migration_entry(vmf.orig_pmd))
5183 pmd_migration_entry_wait(mm, vmf.pmd);
5184 return 0;
5185 }
5186 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5187 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5188 return do_huge_pmd_numa_page(&vmf);
5189
5190 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5191 !pmd_write(vmf.orig_pmd)) {
5192 ret = wp_huge_pmd(&vmf);
5193 if (!(ret & VM_FAULT_FALLBACK))
5194 return ret;
5195 } else {
5196 huge_pmd_set_accessed(&vmf);
5197 return 0;
5198 }
5199 }
5200 }
5201
5202 return handle_pte_fault(&vmf);
5203 }
5204
5205 /**
5206 * mm_account_fault - Do page fault accounting
5207 * @mm: mm from which memcg should be extracted. It can be NULL.
5208 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5209 * of perf event counters, but we'll still do the per-task accounting to
5210 * the task who triggered this page fault.
5211 * @address: the faulted address.
5212 * @flags: the fault flags.
5213 * @ret: the fault retcode.
5214 *
5215 * This will take care of most of the page fault accounting. Meanwhile, it
5216 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5217 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5218 * still be in per-arch page fault handlers at the entry of page fault.
5219 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5220 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5221 unsigned long address, unsigned int flags,
5222 vm_fault_t ret)
5223 {
5224 bool major;
5225
5226 /* Incomplete faults will be accounted upon completion. */
5227 if (ret & VM_FAULT_RETRY)
5228 return;
5229
5230 /*
5231 * To preserve the behavior of older kernels, PGFAULT counters record
5232 * both successful and failed faults, as opposed to perf counters,
5233 * which ignore failed cases.
5234 */
5235 count_vm_event(PGFAULT);
5236 count_memcg_event_mm(mm, PGFAULT);
5237
5238 /*
5239 * Do not account for unsuccessful faults (e.g. when the address wasn't
5240 * valid). That includes arch_vma_access_permitted() failing before
5241 * reaching here. So this is not a "this many hardware page faults"
5242 * counter. We should use the hw profiling for that.
5243 */
5244 if (ret & VM_FAULT_ERROR)
5245 return;
5246
5247 /*
5248 * We define the fault as a major fault when the final successful fault
5249 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5250 * handle it immediately previously).
5251 */
5252 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5253
5254 if (major)
5255 current->maj_flt++;
5256 else
5257 current->min_flt++;
5258
5259 /*
5260 * If the fault is done for GUP, regs will be NULL. We only do the
5261 * accounting for the per thread fault counters who triggered the
5262 * fault, and we skip the perf event updates.
5263 */
5264 if (!regs)
5265 return;
5266
5267 if (major)
5268 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5269 else
5270 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5271 }
5272
5273 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5274 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5275 {
5276 /* the LRU algorithm only applies to accesses with recency */
5277 current->in_lru_fault = vma_has_recency(vma);
5278 }
5279
lru_gen_exit_fault(void)5280 static void lru_gen_exit_fault(void)
5281 {
5282 current->in_lru_fault = false;
5283 }
5284 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5285 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5286 {
5287 }
5288
lru_gen_exit_fault(void)5289 static void lru_gen_exit_fault(void)
5290 {
5291 }
5292 #endif /* CONFIG_LRU_GEN */
5293
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5294 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5295 unsigned int *flags)
5296 {
5297 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5298 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5299 return VM_FAULT_SIGSEGV;
5300 /*
5301 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5302 * just treat it like an ordinary read-fault otherwise.
5303 */
5304 if (!is_cow_mapping(vma->vm_flags))
5305 *flags &= ~FAULT_FLAG_UNSHARE;
5306 } else if (*flags & FAULT_FLAG_WRITE) {
5307 /* Write faults on read-only mappings are impossible ... */
5308 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5309 return VM_FAULT_SIGSEGV;
5310 /* ... and FOLL_FORCE only applies to COW mappings. */
5311 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5312 !is_cow_mapping(vma->vm_flags)))
5313 return VM_FAULT_SIGSEGV;
5314 }
5315 #ifdef CONFIG_PER_VMA_LOCK
5316 /*
5317 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5318 * the assumption that lock is dropped on VM_FAULT_RETRY.
5319 */
5320 if (WARN_ON_ONCE((*flags &
5321 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5322 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5323 return VM_FAULT_SIGSEGV;
5324 #endif
5325
5326 return 0;
5327 }
5328
5329 /*
5330 * By the time we get here, we already hold the mm semaphore
5331 *
5332 * The mmap_lock may have been released depending on flags and our
5333 * return value. See filemap_fault() and __folio_lock_or_retry().
5334 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5335 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5336 unsigned int flags, struct pt_regs *regs)
5337 {
5338 /* If the fault handler drops the mmap_lock, vma may be freed */
5339 struct mm_struct *mm = vma->vm_mm;
5340 vm_fault_t ret;
5341
5342 __set_current_state(TASK_RUNNING);
5343
5344 ret = sanitize_fault_flags(vma, &flags);
5345 if (ret)
5346 goto out;
5347
5348 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5349 flags & FAULT_FLAG_INSTRUCTION,
5350 flags & FAULT_FLAG_REMOTE)) {
5351 ret = VM_FAULT_SIGSEGV;
5352 goto out;
5353 }
5354
5355 /*
5356 * Enable the memcg OOM handling for faults triggered in user
5357 * space. Kernel faults are handled more gracefully.
5358 */
5359 if (flags & FAULT_FLAG_USER)
5360 mem_cgroup_enter_user_fault();
5361
5362 lru_gen_enter_fault(vma);
5363
5364 if (unlikely(is_vm_hugetlb_page(vma)))
5365 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5366 else
5367 ret = __handle_mm_fault(vma, address, flags);
5368
5369 lru_gen_exit_fault();
5370
5371 if (flags & FAULT_FLAG_USER) {
5372 mem_cgroup_exit_user_fault();
5373 /*
5374 * The task may have entered a memcg OOM situation but
5375 * if the allocation error was handled gracefully (no
5376 * VM_FAULT_OOM), there is no need to kill anything.
5377 * Just clean up the OOM state peacefully.
5378 */
5379 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5380 mem_cgroup_oom_synchronize(false);
5381 }
5382 out:
5383 mm_account_fault(mm, regs, address, flags, ret);
5384
5385 return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(handle_mm_fault);
5388
5389 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5390 #include <linux/extable.h>
5391
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5392 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5393 {
5394 if (likely(mmap_read_trylock(mm)))
5395 return true;
5396
5397 if (regs && !user_mode(regs)) {
5398 unsigned long ip = exception_ip(regs);
5399 if (!search_exception_tables(ip))
5400 return false;
5401 }
5402
5403 return !mmap_read_lock_killable(mm);
5404 }
5405
mmap_upgrade_trylock(struct mm_struct * mm)5406 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5407 {
5408 /*
5409 * We don't have this operation yet.
5410 *
5411 * It should be easy enough to do: it's basically a
5412 * atomic_long_try_cmpxchg_acquire()
5413 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5414 * it also needs the proper lockdep magic etc.
5415 */
5416 return false;
5417 }
5418
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5419 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5420 {
5421 mmap_read_unlock(mm);
5422 if (regs && !user_mode(regs)) {
5423 unsigned long ip = exception_ip(regs);
5424 if (!search_exception_tables(ip))
5425 return false;
5426 }
5427 return !mmap_write_lock_killable(mm);
5428 }
5429
5430 /*
5431 * Helper for page fault handling.
5432 *
5433 * This is kind of equivalend to "mmap_read_lock()" followed
5434 * by "find_extend_vma()", except it's a lot more careful about
5435 * the locking (and will drop the lock on failure).
5436 *
5437 * For example, if we have a kernel bug that causes a page
5438 * fault, we don't want to just use mmap_read_lock() to get
5439 * the mm lock, because that would deadlock if the bug were
5440 * to happen while we're holding the mm lock for writing.
5441 *
5442 * So this checks the exception tables on kernel faults in
5443 * order to only do this all for instructions that are actually
5444 * expected to fault.
5445 *
5446 * We can also actually take the mm lock for writing if we
5447 * need to extend the vma, which helps the VM layer a lot.
5448 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5449 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5450 unsigned long addr, struct pt_regs *regs)
5451 {
5452 struct vm_area_struct *vma;
5453
5454 if (!get_mmap_lock_carefully(mm, regs))
5455 return NULL;
5456
5457 vma = find_vma(mm, addr);
5458 if (likely(vma && (vma->vm_start <= addr)))
5459 return vma;
5460
5461 /*
5462 * Well, dang. We might still be successful, but only
5463 * if we can extend a vma to do so.
5464 */
5465 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5466 mmap_read_unlock(mm);
5467 return NULL;
5468 }
5469
5470 /*
5471 * We can try to upgrade the mmap lock atomically,
5472 * in which case we can continue to use the vma
5473 * we already looked up.
5474 *
5475 * Otherwise we'll have to drop the mmap lock and
5476 * re-take it, and also look up the vma again,
5477 * re-checking it.
5478 */
5479 if (!mmap_upgrade_trylock(mm)) {
5480 if (!upgrade_mmap_lock_carefully(mm, regs))
5481 return NULL;
5482
5483 vma = find_vma(mm, addr);
5484 if (!vma)
5485 goto fail;
5486 if (vma->vm_start <= addr)
5487 goto success;
5488 if (!(vma->vm_flags & VM_GROWSDOWN))
5489 goto fail;
5490 }
5491
5492 if (expand_stack_locked(vma, addr))
5493 goto fail;
5494
5495 success:
5496 mmap_write_downgrade(mm);
5497 return vma;
5498
5499 fail:
5500 mmap_write_unlock(mm);
5501 return NULL;
5502 }
5503 #endif
5504
5505 #ifdef CONFIG_PER_VMA_LOCK
5506 /*
5507 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5508 * stable and not isolated. If the VMA is not found or is being modified the
5509 * function returns NULL.
5510 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5511 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5512 unsigned long address)
5513 {
5514 MA_STATE(mas, &mm->mm_mt, address, address);
5515 struct vm_area_struct *vma;
5516
5517 rcu_read_lock();
5518 retry:
5519 vma = mas_walk(&mas);
5520 if (!vma)
5521 goto inval;
5522
5523 if (!vma_start_read(vma))
5524 goto inval;
5525
5526 /*
5527 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5528 * This check must happen after vma_start_read(); otherwise, a
5529 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5530 * from its anon_vma.
5531 */
5532 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5533 goto inval_end_read;
5534
5535 /* Check since vm_start/vm_end might change before we lock the VMA */
5536 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5537 goto inval_end_read;
5538
5539 /* Check if the VMA got isolated after we found it */
5540 if (vma->detached) {
5541 vma_end_read(vma);
5542 count_vm_vma_lock_event(VMA_LOCK_MISS);
5543 /* The area was replaced with another one */
5544 goto retry;
5545 }
5546
5547 rcu_read_unlock();
5548 return vma;
5549
5550 inval_end_read:
5551 vma_end_read(vma);
5552 inval:
5553 rcu_read_unlock();
5554 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5555 return NULL;
5556 }
5557 #endif /* CONFIG_PER_VMA_LOCK */
5558
5559 #ifndef __PAGETABLE_P4D_FOLDED
5560 /*
5561 * Allocate p4d page table.
5562 * We've already handled the fast-path in-line.
5563 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5564 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5565 {
5566 p4d_t *new = p4d_alloc_one(mm, address);
5567 if (!new)
5568 return -ENOMEM;
5569
5570 spin_lock(&mm->page_table_lock);
5571 if (pgd_present(*pgd)) { /* Another has populated it */
5572 p4d_free(mm, new);
5573 } else {
5574 smp_wmb(); /* See comment in pmd_install() */
5575 pgd_populate(mm, pgd, new);
5576 }
5577 spin_unlock(&mm->page_table_lock);
5578 return 0;
5579 }
5580 #endif /* __PAGETABLE_P4D_FOLDED */
5581
5582 #ifndef __PAGETABLE_PUD_FOLDED
5583 /*
5584 * Allocate page upper directory.
5585 * We've already handled the fast-path in-line.
5586 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5587 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5588 {
5589 pud_t *new = pud_alloc_one(mm, address);
5590 if (!new)
5591 return -ENOMEM;
5592
5593 spin_lock(&mm->page_table_lock);
5594 if (!p4d_present(*p4d)) {
5595 mm_inc_nr_puds(mm);
5596 smp_wmb(); /* See comment in pmd_install() */
5597 p4d_populate(mm, p4d, new);
5598 } else /* Another has populated it */
5599 pud_free(mm, new);
5600 spin_unlock(&mm->page_table_lock);
5601 return 0;
5602 }
5603 #endif /* __PAGETABLE_PUD_FOLDED */
5604
5605 #ifndef __PAGETABLE_PMD_FOLDED
5606 /*
5607 * Allocate page middle directory.
5608 * We've already handled the fast-path in-line.
5609 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5610 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5611 {
5612 spinlock_t *ptl;
5613 pmd_t *new = pmd_alloc_one(mm, address);
5614 if (!new)
5615 return -ENOMEM;
5616
5617 ptl = pud_lock(mm, pud);
5618 if (!pud_present(*pud)) {
5619 mm_inc_nr_pmds(mm);
5620 smp_wmb(); /* See comment in pmd_install() */
5621 pud_populate(mm, pud, new);
5622 } else { /* Another has populated it */
5623 pmd_free(mm, new);
5624 }
5625 spin_unlock(ptl);
5626 return 0;
5627 }
5628 #endif /* __PAGETABLE_PMD_FOLDED */
5629
5630 /**
5631 * follow_pte - look up PTE at a user virtual address
5632 * @mm: the mm_struct of the target address space
5633 * @address: user virtual address
5634 * @ptepp: location to store found PTE
5635 * @ptlp: location to store the lock for the PTE
5636 *
5637 * On a successful return, the pointer to the PTE is stored in @ptepp;
5638 * the corresponding lock is taken and its location is stored in @ptlp.
5639 * The contents of the PTE are only stable until @ptlp is released;
5640 * any further use, if any, must be protected against invalidation
5641 * with MMU notifiers.
5642 *
5643 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5644 * should be taken for read.
5645 *
5646 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5647 * it is not a good general-purpose API.
5648 *
5649 * Return: zero on success, -ve otherwise.
5650 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5651 int follow_pte(struct mm_struct *mm, unsigned long address,
5652 pte_t **ptepp, spinlock_t **ptlp)
5653 {
5654 pgd_t *pgd;
5655 p4d_t *p4d;
5656 pud_t *pud;
5657 pmd_t *pmd;
5658 pte_t *ptep;
5659
5660 pgd = pgd_offset(mm, address);
5661 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5662 goto out;
5663
5664 p4d = p4d_offset(pgd, address);
5665 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5666 goto out;
5667
5668 pud = pud_offset(p4d, address);
5669 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5670 goto out;
5671
5672 pmd = pmd_offset(pud, address);
5673 VM_BUG_ON(pmd_trans_huge(*pmd));
5674
5675 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5676 if (!ptep)
5677 goto out;
5678 if (!pte_present(ptep_get(ptep)))
5679 goto unlock;
5680 *ptepp = ptep;
5681 return 0;
5682 unlock:
5683 pte_unmap_unlock(ptep, *ptlp);
5684 out:
5685 return -EINVAL;
5686 }
5687 EXPORT_SYMBOL_GPL(follow_pte);
5688
5689 /**
5690 * follow_pfn - look up PFN at a user virtual address
5691 * @vma: memory mapping
5692 * @address: user virtual address
5693 * @pfn: location to store found PFN
5694 *
5695 * Only IO mappings and raw PFN mappings are allowed.
5696 *
5697 * This function does not allow the caller to read the permissions
5698 * of the PTE. Do not use it.
5699 *
5700 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5701 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5702 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5703 unsigned long *pfn)
5704 {
5705 int ret = -EINVAL;
5706 spinlock_t *ptl;
5707 pte_t *ptep;
5708
5709 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5710 return ret;
5711
5712 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5713 if (ret)
5714 return ret;
5715 *pfn = pte_pfn(ptep_get(ptep));
5716 pte_unmap_unlock(ptep, ptl);
5717 return 0;
5718 }
5719 EXPORT_SYMBOL(follow_pfn);
5720
5721 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5722 int follow_phys(struct vm_area_struct *vma,
5723 unsigned long address, unsigned int flags,
5724 unsigned long *prot, resource_size_t *phys)
5725 {
5726 int ret = -EINVAL;
5727 pte_t *ptep, pte;
5728 spinlock_t *ptl;
5729
5730 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5731 goto out;
5732
5733 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5734 goto out;
5735 pte = ptep_get(ptep);
5736
5737 /* Never return PFNs of anon folios in COW mappings. */
5738 if (vm_normal_folio(vma, address, pte))
5739 goto unlock;
5740
5741 if ((flags & FOLL_WRITE) && !pte_write(pte))
5742 goto unlock;
5743
5744 *prot = pgprot_val(pte_pgprot(pte));
5745 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5746
5747 ret = 0;
5748 unlock:
5749 pte_unmap_unlock(ptep, ptl);
5750 out:
5751 return ret;
5752 }
5753
5754 /**
5755 * generic_access_phys - generic implementation for iomem mmap access
5756 * @vma: the vma to access
5757 * @addr: userspace address, not relative offset within @vma
5758 * @buf: buffer to read/write
5759 * @len: length of transfer
5760 * @write: set to FOLL_WRITE when writing, otherwise reading
5761 *
5762 * This is a generic implementation for &vm_operations_struct.access for an
5763 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5764 * not page based.
5765 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5766 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5767 void *buf, int len, int write)
5768 {
5769 resource_size_t phys_addr;
5770 unsigned long prot = 0;
5771 void __iomem *maddr;
5772 pte_t *ptep, pte;
5773 spinlock_t *ptl;
5774 int offset = offset_in_page(addr);
5775 int ret = -EINVAL;
5776
5777 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5778 return -EINVAL;
5779
5780 retry:
5781 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5782 return -EINVAL;
5783 pte = ptep_get(ptep);
5784 pte_unmap_unlock(ptep, ptl);
5785
5786 prot = pgprot_val(pte_pgprot(pte));
5787 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5788
5789 if ((write & FOLL_WRITE) && !pte_write(pte))
5790 return -EINVAL;
5791
5792 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5793 if (!maddr)
5794 return -ENOMEM;
5795
5796 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5797 goto out_unmap;
5798
5799 if (!pte_same(pte, ptep_get(ptep))) {
5800 pte_unmap_unlock(ptep, ptl);
5801 iounmap(maddr);
5802
5803 goto retry;
5804 }
5805
5806 if (write)
5807 memcpy_toio(maddr + offset, buf, len);
5808 else
5809 memcpy_fromio(buf, maddr + offset, len);
5810 ret = len;
5811 pte_unmap_unlock(ptep, ptl);
5812 out_unmap:
5813 iounmap(maddr);
5814
5815 return ret;
5816 }
5817 EXPORT_SYMBOL_GPL(generic_access_phys);
5818 #endif
5819
5820 /*
5821 * Access another process' address space as given in mm.
5822 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5823 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5824 int len, unsigned int gup_flags)
5825 {
5826 void *old_buf = buf;
5827 int write = gup_flags & FOLL_WRITE;
5828
5829 if (mmap_read_lock_killable(mm))
5830 return 0;
5831
5832 /* Untag the address before looking up the VMA */
5833 addr = untagged_addr_remote(mm, addr);
5834
5835 /* Avoid triggering the temporary warning in __get_user_pages */
5836 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5837 return 0;
5838
5839 /* ignore errors, just check how much was successfully transferred */
5840 while (len) {
5841 int bytes, offset;
5842 void *maddr;
5843 struct vm_area_struct *vma = NULL;
5844 struct page *page = get_user_page_vma_remote(mm, addr,
5845 gup_flags, &vma);
5846
5847 if (IS_ERR_OR_NULL(page)) {
5848 /* We might need to expand the stack to access it */
5849 vma = vma_lookup(mm, addr);
5850 if (!vma) {
5851 vma = expand_stack(mm, addr);
5852
5853 /* mmap_lock was dropped on failure */
5854 if (!vma)
5855 return buf - old_buf;
5856
5857 /* Try again if stack expansion worked */
5858 continue;
5859 }
5860
5861
5862 /*
5863 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5864 * we can access using slightly different code.
5865 */
5866 bytes = 0;
5867 #ifdef CONFIG_HAVE_IOREMAP_PROT
5868 if (vma->vm_ops && vma->vm_ops->access)
5869 bytes = vma->vm_ops->access(vma, addr, buf,
5870 len, write);
5871 #endif
5872 if (bytes <= 0)
5873 break;
5874 } else {
5875 bytes = len;
5876 offset = addr & (PAGE_SIZE-1);
5877 if (bytes > PAGE_SIZE-offset)
5878 bytes = PAGE_SIZE-offset;
5879
5880 maddr = kmap(page);
5881 if (write) {
5882 copy_to_user_page(vma, page, addr,
5883 maddr + offset, buf, bytes);
5884 set_page_dirty_lock(page);
5885 } else {
5886 copy_from_user_page(vma, page, addr,
5887 buf, maddr + offset, bytes);
5888 }
5889 kunmap(page);
5890 put_page(page);
5891 }
5892 len -= bytes;
5893 buf += bytes;
5894 addr += bytes;
5895 }
5896 mmap_read_unlock(mm);
5897
5898 return buf - old_buf;
5899 }
5900
5901 /**
5902 * access_remote_vm - access another process' address space
5903 * @mm: the mm_struct of the target address space
5904 * @addr: start address to access
5905 * @buf: source or destination buffer
5906 * @len: number of bytes to transfer
5907 * @gup_flags: flags modifying lookup behaviour
5908 *
5909 * The caller must hold a reference on @mm.
5910 *
5911 * Return: number of bytes copied from source to destination.
5912 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5913 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5914 void *buf, int len, unsigned int gup_flags)
5915 {
5916 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5917 }
5918
5919 /*
5920 * Access another process' address space.
5921 * Source/target buffer must be kernel space,
5922 * Do not walk the page table directly, use get_user_pages
5923 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5924 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5925 void *buf, int len, unsigned int gup_flags)
5926 {
5927 struct mm_struct *mm;
5928 int ret;
5929
5930 mm = get_task_mm(tsk);
5931 if (!mm)
5932 return 0;
5933
5934 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5935
5936 mmput(mm);
5937
5938 return ret;
5939 }
5940 EXPORT_SYMBOL_GPL(access_process_vm);
5941
5942 /*
5943 * Print the name of a VMA.
5944 */
print_vma_addr(char * prefix,unsigned long ip)5945 void print_vma_addr(char *prefix, unsigned long ip)
5946 {
5947 struct mm_struct *mm = current->mm;
5948 struct vm_area_struct *vma;
5949
5950 /*
5951 * we might be running from an atomic context so we cannot sleep
5952 */
5953 if (!mmap_read_trylock(mm))
5954 return;
5955
5956 vma = find_vma(mm, ip);
5957 if (vma && vma->vm_file) {
5958 struct file *f = vma->vm_file;
5959 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5960 if (buf) {
5961 char *p;
5962
5963 p = file_path(f, buf, PAGE_SIZE);
5964 if (IS_ERR(p))
5965 p = "?";
5966 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5967 vma->vm_start,
5968 vma->vm_end - vma->vm_start);
5969 free_page((unsigned long)buf);
5970 }
5971 }
5972 mmap_read_unlock(mm);
5973 }
5974
5975 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5976 void __might_fault(const char *file, int line)
5977 {
5978 if (pagefault_disabled())
5979 return;
5980 __might_sleep(file, line);
5981 if (current->mm)
5982 might_lock_read(¤t->mm->mmap_lock);
5983 }
5984 EXPORT_SYMBOL(__might_fault);
5985 #endif
5986
5987 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5988 /*
5989 * Process all subpages of the specified huge page with the specified
5990 * operation. The target subpage will be processed last to keep its
5991 * cache lines hot.
5992 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5993 static inline int process_huge_page(
5994 unsigned long addr_hint, unsigned int pages_per_huge_page,
5995 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5996 void *arg)
5997 {
5998 int i, n, base, l, ret;
5999 unsigned long addr = addr_hint &
6000 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6001
6002 /* Process target subpage last to keep its cache lines hot */
6003 might_sleep();
6004 n = (addr_hint - addr) / PAGE_SIZE;
6005 if (2 * n <= pages_per_huge_page) {
6006 /* If target subpage in first half of huge page */
6007 base = 0;
6008 l = n;
6009 /* Process subpages at the end of huge page */
6010 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6011 cond_resched();
6012 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6013 if (ret)
6014 return ret;
6015 }
6016 } else {
6017 /* If target subpage in second half of huge page */
6018 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6019 l = pages_per_huge_page - n;
6020 /* Process subpages at the begin of huge page */
6021 for (i = 0; i < base; i++) {
6022 cond_resched();
6023 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6024 if (ret)
6025 return ret;
6026 }
6027 }
6028 /*
6029 * Process remaining subpages in left-right-left-right pattern
6030 * towards the target subpage
6031 */
6032 for (i = 0; i < l; i++) {
6033 int left_idx = base + i;
6034 int right_idx = base + 2 * l - 1 - i;
6035
6036 cond_resched();
6037 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6038 if (ret)
6039 return ret;
6040 cond_resched();
6041 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6042 if (ret)
6043 return ret;
6044 }
6045 return 0;
6046 }
6047
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6048 static void clear_gigantic_page(struct page *page,
6049 unsigned long addr,
6050 unsigned int pages_per_huge_page)
6051 {
6052 int i;
6053 struct page *p;
6054
6055 might_sleep();
6056 for (i = 0; i < pages_per_huge_page; i++) {
6057 p = nth_page(page, i);
6058 cond_resched();
6059 clear_user_highpage(p, addr + i * PAGE_SIZE);
6060 }
6061 }
6062
clear_subpage(unsigned long addr,int idx,void * arg)6063 static int clear_subpage(unsigned long addr, int idx, void *arg)
6064 {
6065 struct page *page = arg;
6066
6067 clear_user_highpage(page + idx, addr);
6068 return 0;
6069 }
6070
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6071 void clear_huge_page(struct page *page,
6072 unsigned long addr_hint, unsigned int pages_per_huge_page)
6073 {
6074 unsigned long addr = addr_hint &
6075 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6076
6077 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6078 clear_gigantic_page(page, addr, pages_per_huge_page);
6079 return;
6080 }
6081
6082 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6083 }
6084
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6085 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6086 unsigned long addr,
6087 struct vm_area_struct *vma,
6088 unsigned int pages_per_huge_page)
6089 {
6090 int i;
6091 struct page *dst_page;
6092 struct page *src_page;
6093
6094 for (i = 0; i < pages_per_huge_page; i++) {
6095 dst_page = folio_page(dst, i);
6096 src_page = folio_page(src, i);
6097
6098 cond_resched();
6099 if (copy_mc_user_highpage(dst_page, src_page,
6100 addr + i*PAGE_SIZE, vma)) {
6101 memory_failure_queue(page_to_pfn(src_page), 0);
6102 return -EHWPOISON;
6103 }
6104 }
6105 return 0;
6106 }
6107
6108 struct copy_subpage_arg {
6109 struct page *dst;
6110 struct page *src;
6111 struct vm_area_struct *vma;
6112 };
6113
copy_subpage(unsigned long addr,int idx,void * arg)6114 static int copy_subpage(unsigned long addr, int idx, void *arg)
6115 {
6116 struct copy_subpage_arg *copy_arg = arg;
6117
6118 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6119 addr, copy_arg->vma)) {
6120 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6121 return -EHWPOISON;
6122 }
6123 return 0;
6124 }
6125
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6126 int copy_user_large_folio(struct folio *dst, struct folio *src,
6127 unsigned long addr_hint, struct vm_area_struct *vma)
6128 {
6129 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6130 unsigned long addr = addr_hint &
6131 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6132 struct copy_subpage_arg arg = {
6133 .dst = &dst->page,
6134 .src = &src->page,
6135 .vma = vma,
6136 };
6137
6138 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6139 return copy_user_gigantic_page(dst, src, addr, vma,
6140 pages_per_huge_page);
6141
6142 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6143 }
6144
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6145 long copy_folio_from_user(struct folio *dst_folio,
6146 const void __user *usr_src,
6147 bool allow_pagefault)
6148 {
6149 void *kaddr;
6150 unsigned long i, rc = 0;
6151 unsigned int nr_pages = folio_nr_pages(dst_folio);
6152 unsigned long ret_val = nr_pages * PAGE_SIZE;
6153 struct page *subpage;
6154
6155 for (i = 0; i < nr_pages; i++) {
6156 subpage = folio_page(dst_folio, i);
6157 kaddr = kmap_local_page(subpage);
6158 if (!allow_pagefault)
6159 pagefault_disable();
6160 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6161 if (!allow_pagefault)
6162 pagefault_enable();
6163 kunmap_local(kaddr);
6164
6165 ret_val -= (PAGE_SIZE - rc);
6166 if (rc)
6167 break;
6168
6169 flush_dcache_page(subpage);
6170
6171 cond_resched();
6172 }
6173 return ret_val;
6174 }
6175 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6176
6177 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6178
6179 static struct kmem_cache *page_ptl_cachep;
6180
ptlock_cache_init(void)6181 void __init ptlock_cache_init(void)
6182 {
6183 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6184 SLAB_PANIC, NULL);
6185 }
6186
ptlock_alloc(struct ptdesc * ptdesc)6187 bool ptlock_alloc(struct ptdesc *ptdesc)
6188 {
6189 spinlock_t *ptl;
6190
6191 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6192 if (!ptl)
6193 return false;
6194 ptdesc->ptl = ptl;
6195 return true;
6196 }
6197
ptlock_free(struct ptdesc * ptdesc)6198 void ptlock_free(struct ptdesc *ptdesc)
6199 {
6200 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6201 }
6202 #endif
6203