• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #ifdef CONFIG_MEM_PURGEABLE
81 #include <linux/mm_purgeable.h>
82 #endif
83 #include <trace/events/kmem.h>
84 
85 #include <asm/io.h>
86 #include <asm/mmu_context.h>
87 #include <asm/pgalloc.h>
88 #include <linux/uaccess.h>
89 #include <asm/tlb.h>
90 #include <asm/tlbflush.h>
91 
92 #include "pgalloc-track.h"
93 #include "internal.h"
94 #include "swap.h"
95 
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99 
100 #ifndef CONFIG_NUMA
101 unsigned long max_mapnr;
102 EXPORT_SYMBOL(max_mapnr);
103 
104 struct page *mem_map;
105 EXPORT_SYMBOL(mem_map);
106 #endif
107 
108 static vm_fault_t do_fault(struct vm_fault *vmf);
109 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
110 static bool vmf_pte_changed(struct vm_fault *vmf);
111 
112 /*
113  * Return true if the original pte was a uffd-wp pte marker (so the pte was
114  * wr-protected).
115  */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)116 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 {
118 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 		return false;
120 
121 	return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123 
124 /*
125  * A number of key systems in x86 including ioremap() rely on the assumption
126  * that high_memory defines the upper bound on direct map memory, then end
127  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
128  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
129  * and ZONE_HIGHMEM.
130  */
131 void *high_memory;
132 EXPORT_SYMBOL(high_memory);
133 
134 /*
135  * Randomize the address space (stacks, mmaps, brk, etc.).
136  *
137  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
138  *   as ancient (libc5 based) binaries can segfault. )
139  */
140 int randomize_va_space __read_mostly =
141 #ifdef CONFIG_COMPAT_BRK
142 					1;
143 #else
144 					2;
145 #endif
146 
147 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)148 static inline bool arch_wants_old_prefaulted_pte(void)
149 {
150 	/*
151 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
152 	 * some architectures, even if it's performed in hardware. By
153 	 * default, "false" means prefaulted entries will be 'young'.
154 	 */
155 	return false;
156 }
157 #endif
158 
disable_randmaps(char * s)159 static int __init disable_randmaps(char *s)
160 {
161 	randomize_va_space = 0;
162 	return 1;
163 }
164 __setup("norandmaps", disable_randmaps);
165 
166 unsigned long zero_pfn __read_mostly;
167 EXPORT_SYMBOL(zero_pfn);
168 
169 unsigned long highest_memmap_pfn __read_mostly;
170 
171 /*
172  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173  */
init_zero_pfn(void)174 static int __init init_zero_pfn(void)
175 {
176 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 	return 0;
178 }
179 early_initcall(init_zero_pfn);
180 
mm_trace_rss_stat(struct mm_struct * mm,int member)181 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 {
183 	trace_rss_stat(mm, member);
184 }
185 
186 /*
187  * Note: this doesn't free the actual pages themselves. That
188  * has been handled earlier when unmapping all the memory regions.
189  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)190 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 			   unsigned long addr)
192 {
193 	pgtable_t token = pmd_pgtable(*pmd);
194 	pmd_clear(pmd);
195 	pte_free_tlb(tlb, token, addr);
196 	mm_dec_nr_ptes(tlb->mm);
197 }
198 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)199 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
200 				unsigned long addr, unsigned long end,
201 				unsigned long floor, unsigned long ceiling)
202 {
203 	pmd_t *pmd;
204 	unsigned long next;
205 	unsigned long start;
206 
207 	start = addr;
208 	pmd = pmd_offset(pud, addr);
209 	do {
210 		next = pmd_addr_end(addr, end);
211 		if (pmd_none_or_clear_bad(pmd))
212 			continue;
213 		free_pte_range(tlb, pmd, addr);
214 	} while (pmd++, addr = next, addr != end);
215 
216 	start &= PUD_MASK;
217 	if (start < floor)
218 		return;
219 	if (ceiling) {
220 		ceiling &= PUD_MASK;
221 		if (!ceiling)
222 			return;
223 	}
224 	if (end - 1 > ceiling - 1)
225 		return;
226 
227 	pmd = pmd_offset(pud, start);
228 	pud_clear(pud);
229 	pmd_free_tlb(tlb, pmd, start);
230 	mm_dec_nr_pmds(tlb->mm);
231 }
232 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)233 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
234 				unsigned long addr, unsigned long end,
235 				unsigned long floor, unsigned long ceiling)
236 {
237 	pud_t *pud;
238 	unsigned long next;
239 	unsigned long start;
240 
241 	start = addr;
242 	pud = pud_offset(p4d, addr);
243 	do {
244 		next = pud_addr_end(addr, end);
245 		if (pud_none_or_clear_bad(pud))
246 			continue;
247 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
248 	} while (pud++, addr = next, addr != end);
249 
250 	start &= P4D_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= P4D_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pud = pud_offset(p4d, start);
262 	p4d_clear(p4d);
263 	pud_free_tlb(tlb, pud, start);
264 	mm_dec_nr_puds(tlb->mm);
265 }
266 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)267 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
268 				unsigned long addr, unsigned long end,
269 				unsigned long floor, unsigned long ceiling)
270 {
271 	p4d_t *p4d;
272 	unsigned long next;
273 	unsigned long start;
274 
275 	start = addr;
276 	p4d = p4d_offset(pgd, addr);
277 	do {
278 		next = p4d_addr_end(addr, end);
279 		if (p4d_none_or_clear_bad(p4d))
280 			continue;
281 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
282 	} while (p4d++, addr = next, addr != end);
283 
284 	start &= PGDIR_MASK;
285 	if (start < floor)
286 		return;
287 	if (ceiling) {
288 		ceiling &= PGDIR_MASK;
289 		if (!ceiling)
290 			return;
291 	}
292 	if (end - 1 > ceiling - 1)
293 		return;
294 
295 	p4d = p4d_offset(pgd, start);
296 	pgd_clear(pgd);
297 	p4d_free_tlb(tlb, p4d, start);
298 }
299 
300 /*
301  * This function frees user-level page tables of a process.
302  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 void free_pgd_range(struct mmu_gather *tlb,
304 			unsigned long addr, unsigned long end,
305 			unsigned long floor, unsigned long ceiling)
306 {
307 	pgd_t *pgd;
308 	unsigned long next;
309 
310 	/*
311 	 * The next few lines have given us lots of grief...
312 	 *
313 	 * Why are we testing PMD* at this top level?  Because often
314 	 * there will be no work to do at all, and we'd prefer not to
315 	 * go all the way down to the bottom just to discover that.
316 	 *
317 	 * Why all these "- 1"s?  Because 0 represents both the bottom
318 	 * of the address space and the top of it (using -1 for the
319 	 * top wouldn't help much: the masks would do the wrong thing).
320 	 * The rule is that addr 0 and floor 0 refer to the bottom of
321 	 * the address space, but end 0 and ceiling 0 refer to the top
322 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
323 	 * that end 0 case should be mythical).
324 	 *
325 	 * Wherever addr is brought up or ceiling brought down, we must
326 	 * be careful to reject "the opposite 0" before it confuses the
327 	 * subsequent tests.  But what about where end is brought down
328 	 * by PMD_SIZE below? no, end can't go down to 0 there.
329 	 *
330 	 * Whereas we round start (addr) and ceiling down, by different
331 	 * masks at different levels, in order to test whether a table
332 	 * now has no other vmas using it, so can be freed, we don't
333 	 * bother to round floor or end up - the tests don't need that.
334 	 */
335 
336 	addr &= PMD_MASK;
337 	if (addr < floor) {
338 		addr += PMD_SIZE;
339 		if (!addr)
340 			return;
341 	}
342 	if (ceiling) {
343 		ceiling &= PMD_MASK;
344 		if (!ceiling)
345 			return;
346 	}
347 	if (end - 1 > ceiling - 1)
348 		end -= PMD_SIZE;
349 	if (addr > end - 1)
350 		return;
351 	/*
352 	 * We add page table cache pages with PAGE_SIZE,
353 	 * (see pte_free_tlb()), flush the tlb if we need
354 	 */
355 	tlb_change_page_size(tlb, PAGE_SIZE);
356 	pgd = pgd_offset(tlb->mm, addr);
357 	do {
358 		next = pgd_addr_end(addr, end);
359 		if (pgd_none_or_clear_bad(pgd))
360 			continue;
361 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
362 	} while (pgd++, addr = next, addr != end);
363 }
364 
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)365 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
366 		   struct vm_area_struct *vma, unsigned long floor,
367 		   unsigned long ceiling, bool mm_wr_locked)
368 {
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(mas, ceiling - 1);
378 
379 		/*
380 		 * Hide vma from rmap and truncate_pagecache before freeing
381 		 * pgtables
382 		 */
383 		if (mm_wr_locked)
384 			vma_start_write(vma);
385 		unlink_anon_vmas(vma);
386 		unlink_file_vma(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 				floor, next ? next->vm_start : ceiling);
391 		} else {
392 			/*
393 			 * Optimization: gather nearby vmas into one call down
394 			 */
395 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 			       && !is_vm_hugetlb_page(next)) {
397 				vma = next;
398 				next = mas_find(mas, ceiling - 1);
399 				if (mm_wr_locked)
400 					vma_start_write(vma);
401 				unlink_anon_vmas(vma);
402 				unlink_file_vma(vma);
403 			}
404 			free_pgd_range(tlb, addr, vma->vm_end,
405 				floor, next ? next->vm_start : ceiling);
406 		}
407 		vma = next;
408 	} while (vma);
409 }
410 
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 	spinlock_t *ptl = pmd_lock(mm, pmd);
414 
415 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
416 		mm_inc_nr_ptes(mm);
417 		/*
418 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 		 * visible before the pte is made visible to other CPUs by being
420 		 * put into page tables.
421 		 *
422 		 * The other side of the story is the pointer chasing in the page
423 		 * table walking code (when walking the page table without locking;
424 		 * ie. most of the time). Fortunately, these data accesses consist
425 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 		 * being the notable exception) will already guarantee loads are
427 		 * seen in-order. See the alpha page table accessors for the
428 		 * smp_rmb() barriers in page table walking code.
429 		 */
430 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 		pmd_populate(mm, pmd, *pte);
432 		*pte = NULL;
433 	}
434 	spin_unlock(ptl);
435 }
436 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	pmd_install(mm, pmd, &new);
444 	if (new)
445 		pte_free(mm, new);
446 	return 0;
447 }
448 
__pte_alloc_kernel(pmd_t * pmd)449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 	pte_t *new = pte_alloc_one_kernel(&init_mm);
452 	if (!new)
453 		return -ENOMEM;
454 
455 	spin_lock(&init_mm.page_table_lock);
456 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
457 		smp_wmb(); /* See comment in pmd_install() */
458 		pmd_populate_kernel(&init_mm, pmd, new);
459 		new = NULL;
460 	}
461 	spin_unlock(&init_mm.page_table_lock);
462 	if (new)
463 		pte_free_kernel(&init_mm, new);
464 	return 0;
465 }
466 
init_rss_vec(int * rss)467 static inline void init_rss_vec(int *rss)
468 {
469 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471 
add_mm_rss_vec(struct mm_struct * mm,int * rss)472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 	int i;
475 
476 	if (current->mm == mm)
477 		sync_mm_rss(mm);
478 	for (i = 0; i < NR_MM_COUNTERS; i++)
479 		if (rss[i])
480 			add_mm_counter(mm, i, rss[i]);
481 }
482 
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 			  pte_t pte, struct page *page)
492 {
493 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 	p4d_t *p4d = p4d_offset(pgd, addr);
495 	pud_t *pud = pud_offset(p4d, addr);
496 	pmd_t *pmd = pmd_offset(pud, addr);
497 	struct address_space *mapping;
498 	pgoff_t index;
499 	static unsigned long resume;
500 	static unsigned long nr_shown;
501 	static unsigned long nr_unshown;
502 
503 	/*
504 	 * Allow a burst of 60 reports, then keep quiet for that minute;
505 	 * or allow a steady drip of one report per second.
506 	 */
507 	if (nr_shown == 60) {
508 		if (time_before(jiffies, resume)) {
509 			nr_unshown++;
510 			return;
511 		}
512 		if (nr_unshown) {
513 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 				 nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 	index = linear_page_index(vma, addr);
524 
525 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526 		 current->comm,
527 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 	if (page)
529 		dump_page(page, "bad pte");
530 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 		 vma->vm_file,
534 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 		 mapping ? mapping->a_ops->read_folio : NULL);
537 	dump_stack();
538 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540 
541 /*
542  * vm_normal_page -- This function gets the "struct page" associated with a pte.
543  *
544  * "Special" mappings do not wish to be associated with a "struct page" (either
545  * it doesn't exist, or it exists but they don't want to touch it). In this
546  * case, NULL is returned here. "Normal" mappings do have a struct page.
547  *
548  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549  * pte bit, in which case this function is trivial. Secondly, an architecture
550  * may not have a spare pte bit, which requires a more complicated scheme,
551  * described below.
552  *
553  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554  * special mapping (even if there are underlying and valid "struct pages").
555  * COWed pages of a VM_PFNMAP are always normal.
556  *
557  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560  * mapping will always honor the rule
561  *
562  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563  *
564  * And for normal mappings this is false.
565  *
566  * This restricts such mappings to be a linear translation from virtual address
567  * to pfn. To get around this restriction, we allow arbitrary mappings so long
568  * as the vma is not a COW mapping; in that case, we know that all ptes are
569  * special (because none can have been COWed).
570  *
571  *
572  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573  *
574  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575  * page" backing, however the difference is that _all_ pages with a struct
576  * page (that is, those where pfn_valid is true) are refcounted and considered
577  * normal pages by the VM. The disadvantage is that pages are refcounted
578  * (which can be slower and simply not an option for some PFNMAP users). The
579  * advantage is that we don't have to follow the strict linearity rule of
580  * PFNMAP mappings in order to support COWable mappings.
581  *
582  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 			    pte_t pte)
585 {
586 	unsigned long pfn = pte_pfn(pte);
587 
588 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 		if (likely(!pte_special(pte)))
590 			goto check_pfn;
591 		if (vma->vm_ops && vma->vm_ops->find_special_page)
592 			return vma->vm_ops->find_special_page(vma, addr);
593 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 			return NULL;
595 		if (is_zero_pfn(pfn))
596 			return NULL;
597 		if (pte_devmap(pte))
598 		/*
599 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 		 * and will have refcounts incremented on their struct pages
601 		 * when they are inserted into PTEs, thus they are safe to
602 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 		 */
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 			    pte_t pte)
648 {
649 	struct page *page = vm_normal_page(vma, addr, pte);
650 
651 	if (page)
652 		return page_folio(page);
653 	return NULL;
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 				pmd_t pmd)
659 {
660 	unsigned long pfn = pmd_pfn(pmd);
661 
662 	/*
663 	 * There is no pmd_special() but there may be special pmds, e.g.
664 	 * in a direct-access (dax) mapping, so let's just replicate the
665 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 	 */
667 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 		if (vma->vm_flags & VM_MIXEDMAP) {
669 			if (!pfn_valid(pfn))
670 				return NULL;
671 			goto out;
672 		} else {
673 			unsigned long off;
674 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 			if (pfn == vma->vm_pgoff + off)
676 				return NULL;
677 			if (!is_cow_mapping(vma->vm_flags))
678 				return NULL;
679 		}
680 	}
681 
682 	if (pmd_devmap(pmd))
683 		return NULL;
684 	if (is_huge_zero_pmd(pmd))
685 		return NULL;
686 	if (unlikely(pfn > highest_memmap_pfn))
687 		return NULL;
688 
689 	/*
690 	 * NOTE! We still have PageReserved() pages in the page tables.
691 	 * eg. VDSO mappings can cause them to exist.
692 	 */
693 out:
694 	return pfn_to_page(pfn);
695 }
696 #endif
697 
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 				  struct page *page, unsigned long address,
700 				  pte_t *ptep)
701 {
702 	pte_t orig_pte;
703 	pte_t pte;
704 	swp_entry_t entry;
705 
706 	orig_pte = ptep_get(ptep);
707 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 	if (pte_swp_soft_dirty(orig_pte))
709 		pte = pte_mksoft_dirty(pte);
710 
711 	entry = pte_to_swp_entry(orig_pte);
712 	if (pte_swp_uffd_wp(orig_pte))
713 		pte = pte_mkuffd_wp(pte);
714 	else if (is_writable_device_exclusive_entry(entry))
715 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716 
717 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 
719 	/*
720 	 * No need to take a page reference as one was already
721 	 * created when the swap entry was made.
722 	 */
723 	if (PageAnon(page))
724 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 	else
726 		/*
727 		 * Currently device exclusive access only supports anonymous
728 		 * memory so the entry shouldn't point to a filebacked page.
729 		 */
730 		WARN_ON_ONCE(1);
731 
732 	set_pte_at(vma->vm_mm, address, ptep, pte);
733 
734 	/*
735 	 * No need to invalidate - it was non-present before. However
736 	 * secondary CPUs may have mappings that need invalidating.
737 	 */
738 	update_mmu_cache(vma, address, ptep);
739 }
740 
741 /*
742  * Tries to restore an exclusive pte if the page lock can be acquired without
743  * sleeping.
744  */
745 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 			unsigned long addr)
748 {
749 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 	struct page *page = pfn_swap_entry_to_page(entry);
751 
752 	if (trylock_page(page)) {
753 		restore_exclusive_pte(vma, page, addr, src_pte);
754 		unlock_page(page);
755 		return 0;
756 	}
757 
758 	return -EBUSY;
759 }
760 
761 /*
762  * copy one vm_area from one task to the other. Assumes the page tables
763  * already present in the new task to be cleared in the whole range
764  * covered by this vma.
765  */
766 
767 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 	unsigned long vm_flags = dst_vma->vm_flags;
773 	pte_t orig_pte = ptep_get(src_pte);
774 	pte_t pte = orig_pte;
775 	struct page *page;
776 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
777 
778 	if (likely(!non_swap_entry(entry))) {
779 		if (swap_duplicate(entry) < 0)
780 			return -EIO;
781 
782 		/* make sure dst_mm is on swapoff's mmlist. */
783 		if (unlikely(list_empty(&dst_mm->mmlist))) {
784 			spin_lock(&mmlist_lock);
785 			if (list_empty(&dst_mm->mmlist))
786 				list_add(&dst_mm->mmlist,
787 						&src_mm->mmlist);
788 			spin_unlock(&mmlist_lock);
789 		}
790 		/* Mark the swap entry as shared. */
791 		if (pte_swp_exclusive(orig_pte)) {
792 			pte = pte_swp_clear_exclusive(orig_pte);
793 			set_pte_at(src_mm, addr, src_pte, pte);
794 		}
795 		rss[MM_SWAPENTS]++;
796 	} else if (is_migration_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		rss[mm_counter(page)]++;
800 
801 		if (!is_readable_migration_entry(entry) &&
802 				is_cow_mapping(vm_flags)) {
803 			/*
804 			 * COW mappings require pages in both parent and child
805 			 * to be set to read. A previously exclusive entry is
806 			 * now shared.
807 			 */
808 			entry = make_readable_migration_entry(
809 							swp_offset(entry));
810 			pte = swp_entry_to_pte(entry);
811 			if (pte_swp_soft_dirty(orig_pte))
812 				pte = pte_swp_mksoft_dirty(pte);
813 			if (pte_swp_uffd_wp(orig_pte))
814 				pte = pte_swp_mkuffd_wp(pte);
815 			set_pte_at(src_mm, addr, src_pte, pte);
816 		}
817 	} else if (is_device_private_entry(entry)) {
818 		page = pfn_swap_entry_to_page(entry);
819 
820 		/*
821 		 * Update rss count even for unaddressable pages, as
822 		 * they should treated just like normal pages in this
823 		 * respect.
824 		 *
825 		 * We will likely want to have some new rss counters
826 		 * for unaddressable pages, at some point. But for now
827 		 * keep things as they are.
828 		 */
829 		get_page(page);
830 		rss[mm_counter(page)]++;
831 		/* Cannot fail as these pages cannot get pinned. */
832 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833 
834 		/*
835 		 * We do not preserve soft-dirty information, because so
836 		 * far, checkpoint/restore is the only feature that
837 		 * requires that. And checkpoint/restore does not work
838 		 * when a device driver is involved (you cannot easily
839 		 * save and restore device driver state).
840 		 */
841 		if (is_writable_device_private_entry(entry) &&
842 		    is_cow_mapping(vm_flags)) {
843 			entry = make_readable_device_private_entry(
844 							swp_offset(entry));
845 			pte = swp_entry_to_pte(entry);
846 			if (pte_swp_uffd_wp(orig_pte))
847 				pte = pte_swp_mkuffd_wp(pte);
848 			set_pte_at(src_mm, addr, src_pte, pte);
849 		}
850 	} else if (is_device_exclusive_entry(entry)) {
851 		/*
852 		 * Make device exclusive entries present by restoring the
853 		 * original entry then copying as for a present pte. Device
854 		 * exclusive entries currently only support private writable
855 		 * (ie. COW) mappings.
856 		 */
857 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 			return -EBUSY;
860 		return -ENOENT;
861 	} else if (is_pte_marker_entry(entry)) {
862 		pte_marker marker = copy_pte_marker(entry, dst_vma);
863 
864 		if (marker)
865 			set_pte_at(dst_mm, addr, dst_pte,
866 				   make_pte_marker(marker));
867 		return 0;
868 	}
869 	if (!userfaultfd_wp(dst_vma))
870 		pte = pte_swp_clear_uffd_wp(pte);
871 	set_pte_at(dst_mm, addr, dst_pte, pte);
872 	return 0;
873 }
874 
875 /*
876  * Copy a present and normal page.
877  *
878  * NOTE! The usual case is that this isn't required;
879  * instead, the caller can just increase the page refcount
880  * and re-use the pte the traditional way.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 		  struct folio **prealloc, struct page *page)
891 {
892 	struct folio *new_folio;
893 	pte_t pte;
894 
895 	new_folio = *prealloc;
896 	if (!new_folio)
897 		return -EAGAIN;
898 
899 	/*
900 	 * We have a prealloc page, all good!  Take it
901 	 * over and copy the page & arm it.
902 	 */
903 	*prealloc = NULL;
904 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
905 	__folio_mark_uptodate(new_folio);
906 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
907 	folio_add_lru_vma(new_folio, dst_vma);
908 	rss[MM_ANONPAGES]++;
909 
910 	/* All done, just insert the new page copy in the child */
911 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
912 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
913 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
914 		/* Uffd-wp needs to be delivered to dest pte as well */
915 		pte = pte_mkuffd_wp(pte);
916 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
917 	return 0;
918 }
919 
920 /*
921  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
922  * is required to copy this pte.
923  */
924 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)925 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
926 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
927 		 struct folio **prealloc)
928 {
929 	struct mm_struct *src_mm = src_vma->vm_mm;
930 	unsigned long vm_flags = src_vma->vm_flags;
931 	pte_t pte = ptep_get(src_pte);
932 	struct page *page;
933 	struct folio *folio;
934 
935 	page = vm_normal_page(src_vma, addr, pte);
936 	if (page)
937 		folio = page_folio(page);
938 	if (page && folio_test_anon(folio)) {
939 		/*
940 		 * If this page may have been pinned by the parent process,
941 		 * copy the page immediately for the child so that we'll always
942 		 * guarantee the pinned page won't be randomly replaced in the
943 		 * future.
944 		 */
945 		folio_get(folio);
946 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
947 			/* Page may be pinned, we have to copy. */
948 			folio_put(folio);
949 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 						 addr, rss, prealloc, page);
951 		}
952 		rss[MM_ANONPAGES]++;
953 	} else if (page) {
954 		folio_get(folio);
955 		page_dup_file_rmap(page, false);
956 		rss[mm_counter_file(page)]++;
957 	}
958 
959 	/*
960 	 * If it's a COW mapping, write protect it both
961 	 * in the parent and the child
962 	 */
963 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 		ptep_set_wrprotect(src_mm, addr, src_pte);
965 		pte = pte_wrprotect(pte);
966 	}
967 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968 
969 	/*
970 	 * If it's a shared mapping, mark it clean in
971 	 * the child
972 	 */
973 	if (vm_flags & VM_SHARED)
974 		pte = pte_mkclean(pte);
975 	pte = pte_mkold(pte);
976 
977 	if (!userfaultfd_wp(dst_vma))
978 		pte = pte_clear_uffd_wp(pte);
979 
980 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 	return 0;
982 }
983 
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)984 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
985 		struct vm_area_struct *vma, unsigned long addr)
986 {
987 	struct folio *new_folio;
988 
989 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
990 	if (!new_folio)
991 		return NULL;
992 
993 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
994 		folio_put(new_folio);
995 		return NULL;
996 	}
997 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
998 
999 	return new_folio;
1000 }
1001 
1002 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 	       unsigned long end)
1006 {
1007 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 	struct mm_struct *src_mm = src_vma->vm_mm;
1009 	pte_t *orig_src_pte, *orig_dst_pte;
1010 	pte_t *src_pte, *dst_pte;
1011 	pte_t ptent;
1012 	spinlock_t *src_ptl, *dst_ptl;
1013 	int progress, ret = 0;
1014 	int rss[NR_MM_COUNTERS];
1015 	swp_entry_t entry = (swp_entry_t){0};
1016 	struct folio *prealloc = NULL;
1017 
1018 again:
1019 	progress = 0;
1020 	init_rss_vec(rss);
1021 
1022 	/*
1023 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1024 	 * error handling here, assume that exclusive mmap_lock on dst and src
1025 	 * protects anon from unexpected THP transitions; with shmem and file
1026 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1027 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1028 	 * can remove such assumptions later, but this is good enough for now.
1029 	 */
1030 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1031 	if (!dst_pte) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1036 	if (!src_pte) {
1037 		pte_unmap_unlock(dst_pte, dst_ptl);
1038 		/* ret == 0 */
1039 		goto out;
1040 	}
1041 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 	orig_src_pte = src_pte;
1043 	orig_dst_pte = dst_pte;
1044 	arch_enter_lazy_mmu_mode();
1045 
1046 	do {
1047 		/*
1048 		 * We are holding two locks at this point - either of them
1049 		 * could generate latencies in another task on another CPU.
1050 		 */
1051 		if (progress >= 32) {
1052 			progress = 0;
1053 			if (need_resched() ||
1054 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 				break;
1056 		}
1057 		ptent = ptep_get(src_pte);
1058 		if (pte_none(ptent)) {
1059 			progress++;
1060 			continue;
1061 		}
1062 		if (unlikely(!pte_present(ptent))) {
1063 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1064 						  dst_pte, src_pte,
1065 						  dst_vma, src_vma,
1066 						  addr, rss);
1067 			if (ret == -EIO) {
1068 				entry = pte_to_swp_entry(ptep_get(src_pte));
1069 				break;
1070 			} else if (ret == -EBUSY) {
1071 				break;
1072 			} else if (!ret) {
1073 				progress += 8;
1074 				continue;
1075 			}
1076 
1077 			/*
1078 			 * Device exclusive entry restored, continue by copying
1079 			 * the now present pte.
1080 			 */
1081 			WARN_ON_ONCE(ret != -ENOENT);
1082 		}
1083 		/* copy_present_pte() will clear `*prealloc' if consumed */
1084 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 				       addr, rss, &prealloc);
1086 		/*
1087 		 * If we need a pre-allocated page for this pte, drop the
1088 		 * locks, allocate, and try again.
1089 		 */
1090 		if (unlikely(ret == -EAGAIN))
1091 			break;
1092 		if (unlikely(prealloc)) {
1093 			/*
1094 			 * pre-alloc page cannot be reused by next time so as
1095 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 			 * will allocate page according to address).  This
1097 			 * could only happen if one pinned pte changed.
1098 			 */
1099 			folio_put(prealloc);
1100 			prealloc = NULL;
1101 		}
1102 		progress += 8;
1103 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 
1105 	arch_leave_lazy_mmu_mode();
1106 	pte_unmap_unlock(orig_src_pte, src_ptl);
1107 	add_mm_rss_vec(dst_mm, rss);
1108 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 	cond_resched();
1110 
1111 	if (ret == -EIO) {
1112 		VM_WARN_ON_ONCE(!entry.val);
1113 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1114 			ret = -ENOMEM;
1115 			goto out;
1116 		}
1117 		entry.val = 0;
1118 	} else if (ret == -EBUSY) {
1119 		goto out;
1120 	} else if (ret ==  -EAGAIN) {
1121 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1122 		if (!prealloc)
1123 			return -ENOMEM;
1124 	} else if (ret) {
1125 		VM_WARN_ON_ONCE(1);
1126 	}
1127 
1128 	/* We've captured and resolved the error. Reset, try again. */
1129 	ret = 0;
1130 
1131 	if (addr != end)
1132 		goto again;
1133 out:
1134 	if (unlikely(prealloc))
1135 		folio_put(prealloc);
1136 	return ret;
1137 }
1138 
1139 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1140 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 	       unsigned long end)
1143 {
1144 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 	struct mm_struct *src_mm = src_vma->vm_mm;
1146 	pmd_t *src_pmd, *dst_pmd;
1147 	unsigned long next;
1148 
1149 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 	if (!dst_pmd)
1151 		return -ENOMEM;
1152 	src_pmd = pmd_offset(src_pud, addr);
1153 	do {
1154 		next = pmd_addr_end(addr, end);
1155 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156 			|| pmd_devmap(*src_pmd)) {
1157 			int err;
1158 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1159 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1160 					    addr, dst_vma, src_vma);
1161 			if (err == -ENOMEM)
1162 				return -ENOMEM;
1163 			if (!err)
1164 				continue;
1165 			/* fall through */
1166 		}
1167 		if (pmd_none_or_clear_bad(src_pmd))
1168 			continue;
1169 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 				   addr, next))
1171 			return -ENOMEM;
1172 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173 	return 0;
1174 }
1175 
1176 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1177 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 	       unsigned long end)
1180 {
1181 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 	struct mm_struct *src_mm = src_vma->vm_mm;
1183 	pud_t *src_pud, *dst_pud;
1184 	unsigned long next;
1185 
1186 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 	if (!dst_pud)
1188 		return -ENOMEM;
1189 	src_pud = pud_offset(src_p4d, addr);
1190 	do {
1191 		next = pud_addr_end(addr, end);
1192 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 			int err;
1194 
1195 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1196 			err = copy_huge_pud(dst_mm, src_mm,
1197 					    dst_pud, src_pud, addr, src_vma);
1198 			if (err == -ENOMEM)
1199 				return -ENOMEM;
1200 			if (!err)
1201 				continue;
1202 			/* fall through */
1203 		}
1204 		if (pud_none_or_clear_bad(src_pud))
1205 			continue;
1206 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 				   addr, next))
1208 			return -ENOMEM;
1209 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1210 	return 0;
1211 }
1212 
1213 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1214 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1215 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 	       unsigned long end)
1217 {
1218 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 	p4d_t *src_p4d, *dst_p4d;
1220 	unsigned long next;
1221 
1222 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 	if (!dst_p4d)
1224 		return -ENOMEM;
1225 	src_p4d = p4d_offset(src_pgd, addr);
1226 	do {
1227 		next = p4d_addr_end(addr, end);
1228 		if (p4d_none_or_clear_bad(src_p4d))
1229 			continue;
1230 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 				   addr, next))
1232 			return -ENOMEM;
1233 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Return true if the vma needs to copy the pgtable during this fork().  Return
1239  * false when we can speed up fork() by allowing lazy page faults later until
1240  * when the child accesses the memory range.
1241  */
1242 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1243 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 {
1245 	/*
1246 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1247 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1248 	 * contains uffd-wp protection information, that's something we can't
1249 	 * retrieve from page cache, and skip copying will lose those info.
1250 	 */
1251 	if (userfaultfd_wp(dst_vma))
1252 		return true;
1253 
1254 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 		return true;
1256 
1257 	if (src_vma->anon_vma)
1258 		return true;
1259 
1260 	/*
1261 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1262 	 * becomes much lighter when there are big shared or private readonly
1263 	 * mappings. The tradeoff is that copy_page_range is more efficient
1264 	 * than faulting.
1265 	 */
1266 	return false;
1267 }
1268 
1269 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1270 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1271 {
1272 	pgd_t *src_pgd, *dst_pgd;
1273 	unsigned long addr = src_vma->vm_start;
1274 	unsigned long end = src_vma->vm_end;
1275 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1276 	struct mm_struct *src_mm = src_vma->vm_mm;
1277 	struct mmu_notifier_range range;
1278 	unsigned long next, pfn;
1279 	bool is_cow;
1280 	int ret;
1281 
1282 	if (!vma_needs_copy(dst_vma, src_vma))
1283 		return 0;
1284 
1285 	if (is_vm_hugetlb_page(src_vma))
1286 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1287 
1288 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1289 		ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1290 		if (ret)
1291 			return ret;
1292 	}
1293 
1294 	/*
1295 	 * We need to invalidate the secondary MMU mappings only when
1296 	 * there could be a permission downgrade on the ptes of the
1297 	 * parent mm. And a permission downgrade will only happen if
1298 	 * is_cow_mapping() returns true.
1299 	 */
1300 	is_cow = is_cow_mapping(src_vma->vm_flags);
1301 
1302 	if (is_cow) {
1303 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1304 					0, src_mm, addr, end);
1305 		mmu_notifier_invalidate_range_start(&range);
1306 		/*
1307 		 * Disabling preemption is not needed for the write side, as
1308 		 * the read side doesn't spin, but goes to the mmap_lock.
1309 		 *
1310 		 * Use the raw variant of the seqcount_t write API to avoid
1311 		 * lockdep complaining about preemptibility.
1312 		 */
1313 		vma_assert_write_locked(src_vma);
1314 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1315 	}
1316 
1317 	ret = 0;
1318 	dst_pgd = pgd_offset(dst_mm, addr);
1319 	src_pgd = pgd_offset(src_mm, addr);
1320 	do {
1321 		next = pgd_addr_end(addr, end);
1322 		if (pgd_none_or_clear_bad(src_pgd))
1323 			continue;
1324 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1325 					    addr, next))) {
1326 			ret = -ENOMEM;
1327 			break;
1328 		}
1329 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1330 
1331 	if (is_cow) {
1332 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1333 		mmu_notifier_invalidate_range_end(&range);
1334 	}
1335 	if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1336 		untrack_pfn_copy(dst_vma, pfn);
1337 	return ret;
1338 }
1339 
1340 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1341 static inline bool should_zap_cows(struct zap_details *details)
1342 {
1343 	/* By default, zap all pages */
1344 	if (!details)
1345 		return true;
1346 
1347 	/* Or, we zap COWed pages only if the caller wants to */
1348 	return details->even_cows;
1349 }
1350 
1351 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1353 {
1354 	/* If we can make a decision without *page.. */
1355 	if (should_zap_cows(details))
1356 		return true;
1357 
1358 	/* E.g. the caller passes NULL for the case of a zero page */
1359 	if (!page)
1360 		return true;
1361 
1362 	/* Otherwise we should only zap non-anon pages */
1363 	return !PageAnon(page);
1364 }
1365 
zap_drop_file_uffd_wp(struct zap_details * details)1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1367 {
1368 	if (!details)
1369 		return false;
1370 
1371 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1372 }
1373 
1374 /*
1375  * This function makes sure that we'll replace the none pte with an uffd-wp
1376  * swap special pte marker when necessary. Must be with the pgtable lock held.
1377  */
1378 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380 			      unsigned long addr, pte_t *pte,
1381 			      struct zap_details *details, pte_t pteval)
1382 {
1383 	/* Zap on anonymous always means dropping everything */
1384 	if (vma_is_anonymous(vma))
1385 		return;
1386 
1387 	if (zap_drop_file_uffd_wp(details))
1388 		return;
1389 
1390 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1391 }
1392 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1393 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1394 				struct vm_area_struct *vma, pmd_t *pmd,
1395 				unsigned long addr, unsigned long end,
1396 				struct zap_details *details)
1397 {
1398 	struct mm_struct *mm = tlb->mm;
1399 	int force_flush = 0;
1400 	int rss[NR_MM_COUNTERS];
1401 	spinlock_t *ptl;
1402 	pte_t *start_pte;
1403 	pte_t *pte;
1404 	swp_entry_t entry;
1405 
1406 	tlb_change_page_size(tlb, PAGE_SIZE);
1407 	init_rss_vec(rss);
1408 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 	if (!pte)
1410 		return addr;
1411 
1412 	flush_tlb_batched_pending(mm);
1413 	arch_enter_lazy_mmu_mode();
1414 	do {
1415 		pte_t ptent = ptep_get(pte);
1416 		struct page *page;
1417 
1418 		if (pte_none(ptent))
1419 			continue;
1420 
1421 		if (need_resched())
1422 			break;
1423 
1424 		if (pte_present(ptent)) {
1425 			unsigned int delay_rmap;
1426 
1427 			page = vm_normal_page(vma, addr, ptent);
1428 #ifdef CONFIG_MEM_PURGEABLE
1429 			if (vma->vm_flags & VM_USEREXPTE)
1430 				page =  NULL;
1431 #endif
1432 			if (unlikely(!should_zap_page(details, page)))
1433 				continue;
1434 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1435 							tlb->fullmm);
1436 			arch_check_zapped_pte(vma, ptent);
1437 			tlb_remove_tlb_entry(tlb, pte, addr);
1438 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1439 						      ptent);
1440 			if (unlikely(!page)) {
1441 				ksm_might_unmap_zero_page(mm, ptent);
1442 				continue;
1443 			}
1444 #ifdef CONFIG_MEM_PURGEABLE
1445 			if (vma->vm_flags & VM_PURGEABLE)
1446 				uxpte_clear_present(vma, addr);
1447 #endif
1448 			delay_rmap = 0;
1449 			if (!PageAnon(page)) {
1450 				if (pte_dirty(ptent)) {
1451 					set_page_dirty(page);
1452 					if (tlb_delay_rmap(tlb)) {
1453 						delay_rmap = 1;
1454 						force_flush = 1;
1455 					}
1456 				}
1457 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1458 					mark_page_accessed(page);
1459 			}
1460 			rss[mm_counter(page)]--;
1461 			if (!delay_rmap) {
1462 				page_remove_rmap(page, vma, false);
1463 				if (unlikely(page_mapcount(page) < 0))
1464 					print_bad_pte(vma, addr, ptent, page);
1465 			}
1466 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1467 				force_flush = 1;
1468 				addr += PAGE_SIZE;
1469 				break;
1470 			}
1471 			continue;
1472 		}
1473 
1474 		entry = pte_to_swp_entry(ptent);
1475 		if (is_device_private_entry(entry) ||
1476 		    is_device_exclusive_entry(entry)) {
1477 			page = pfn_swap_entry_to_page(entry);
1478 			if (unlikely(!should_zap_page(details, page)))
1479 				continue;
1480 			/*
1481 			 * Both device private/exclusive mappings should only
1482 			 * work with anonymous page so far, so we don't need to
1483 			 * consider uffd-wp bit when zap. For more information,
1484 			 * see zap_install_uffd_wp_if_needed().
1485 			 */
1486 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1487 			rss[mm_counter(page)]--;
1488 			if (is_device_private_entry(entry))
1489 				page_remove_rmap(page, vma, false);
1490 			put_page(page);
1491 		} else if (!non_swap_entry(entry)) {
1492 			/* Genuine swap entry, hence a private anon page */
1493 			if (!should_zap_cows(details))
1494 				continue;
1495 			rss[MM_SWAPENTS]--;
1496 			if (unlikely(!free_swap_and_cache(entry)))
1497 				print_bad_pte(vma, addr, ptent, NULL);
1498 		} else if (is_migration_entry(entry)) {
1499 			page = pfn_swap_entry_to_page(entry);
1500 			if (!should_zap_page(details, page))
1501 				continue;
1502 			rss[mm_counter(page)]--;
1503 		} else if (pte_marker_entry_uffd_wp(entry)) {
1504 			/*
1505 			 * For anon: always drop the marker; for file: only
1506 			 * drop the marker if explicitly requested.
1507 			 */
1508 			if (!vma_is_anonymous(vma) &&
1509 			    !zap_drop_file_uffd_wp(details))
1510 				continue;
1511 		} else if (is_hwpoison_entry(entry) ||
1512 			   is_poisoned_swp_entry(entry)) {
1513 			if (!should_zap_cows(details))
1514 				continue;
1515 		} else {
1516 			/* We should have covered all the swap entry types */
1517 			WARN_ON_ONCE(1);
1518 		}
1519 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1520 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1521 	} while (pte++, addr += PAGE_SIZE, addr != end);
1522 
1523 	add_mm_rss_vec(mm, rss);
1524 	arch_leave_lazy_mmu_mode();
1525 
1526 	/* Do the actual TLB flush before dropping ptl */
1527 	if (force_flush) {
1528 		tlb_flush_mmu_tlbonly(tlb);
1529 		tlb_flush_rmaps(tlb, vma);
1530 	}
1531 	pte_unmap_unlock(start_pte, ptl);
1532 
1533 	/*
1534 	 * If we forced a TLB flush (either due to running out of
1535 	 * batch buffers or because we needed to flush dirty TLB
1536 	 * entries before releasing the ptl), free the batched
1537 	 * memory too. Come back again if we didn't do everything.
1538 	 */
1539 	if (force_flush)
1540 		tlb_flush_mmu(tlb);
1541 
1542 	return addr;
1543 }
1544 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1545 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1546 				struct vm_area_struct *vma, pud_t *pud,
1547 				unsigned long addr, unsigned long end,
1548 				struct zap_details *details)
1549 {
1550 	pmd_t *pmd;
1551 	unsigned long next;
1552 
1553 	pmd = pmd_offset(pud, addr);
1554 	do {
1555 		next = pmd_addr_end(addr, end);
1556 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1557 			if (next - addr != HPAGE_PMD_SIZE)
1558 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1559 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1560 				addr = next;
1561 				continue;
1562 			}
1563 			/* fall through */
1564 		} else if (details && details->single_folio &&
1565 			   folio_test_pmd_mappable(details->single_folio) &&
1566 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1567 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1568 			/*
1569 			 * Take and drop THP pmd lock so that we cannot return
1570 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1571 			 * but not yet decremented compound_mapcount().
1572 			 */
1573 			spin_unlock(ptl);
1574 		}
1575 		if (pmd_none(*pmd)) {
1576 			addr = next;
1577 			continue;
1578 		}
1579 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1580 		if (addr != next)
1581 			pmd--;
1582 	} while (pmd++, cond_resched(), addr != end);
1583 
1584 	return addr;
1585 }
1586 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1587 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1588 				struct vm_area_struct *vma, p4d_t *p4d,
1589 				unsigned long addr, unsigned long end,
1590 				struct zap_details *details)
1591 {
1592 	pud_t *pud;
1593 	unsigned long next;
1594 
1595 	pud = pud_offset(p4d, addr);
1596 	do {
1597 		next = pud_addr_end(addr, end);
1598 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1599 			if (next - addr != HPAGE_PUD_SIZE) {
1600 				mmap_assert_locked(tlb->mm);
1601 				split_huge_pud(vma, pud, addr);
1602 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1603 				goto next;
1604 			/* fall through */
1605 		}
1606 		if (pud_none_or_clear_bad(pud))
1607 			continue;
1608 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1609 next:
1610 		cond_resched();
1611 	} while (pud++, addr = next, addr != end);
1612 
1613 	return addr;
1614 }
1615 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1616 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1617 				struct vm_area_struct *vma, pgd_t *pgd,
1618 				unsigned long addr, unsigned long end,
1619 				struct zap_details *details)
1620 {
1621 	p4d_t *p4d;
1622 	unsigned long next;
1623 
1624 	p4d = p4d_offset(pgd, addr);
1625 	do {
1626 		next = p4d_addr_end(addr, end);
1627 		if (p4d_none_or_clear_bad(p4d))
1628 			continue;
1629 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1630 	} while (p4d++, addr = next, addr != end);
1631 
1632 	return addr;
1633 }
1634 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1635 void unmap_page_range(struct mmu_gather *tlb,
1636 			     struct vm_area_struct *vma,
1637 			     unsigned long addr, unsigned long end,
1638 			     struct zap_details *details)
1639 {
1640 	pgd_t *pgd;
1641 	unsigned long next;
1642 
1643 	BUG_ON(addr >= end);
1644 	tlb_start_vma(tlb, vma);
1645 	pgd = pgd_offset(vma->vm_mm, addr);
1646 	do {
1647 		next = pgd_addr_end(addr, end);
1648 		if (pgd_none_or_clear_bad(pgd))
1649 			continue;
1650 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1651 	} while (pgd++, addr = next, addr != end);
1652 	tlb_end_vma(tlb, vma);
1653 }
1654 
1655 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1656 static void unmap_single_vma(struct mmu_gather *tlb,
1657 		struct vm_area_struct *vma, unsigned long start_addr,
1658 		unsigned long end_addr,
1659 		struct zap_details *details, bool mm_wr_locked)
1660 {
1661 	unsigned long start = max(vma->vm_start, start_addr);
1662 	unsigned long end;
1663 
1664 	if (start >= vma->vm_end)
1665 		return;
1666 	end = min(vma->vm_end, end_addr);
1667 	if (end <= vma->vm_start)
1668 		return;
1669 
1670 	if (vma->vm_file)
1671 		uprobe_munmap(vma, start, end);
1672 
1673 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1674 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1675 
1676 	if (start != end) {
1677 		if (unlikely(is_vm_hugetlb_page(vma))) {
1678 			/*
1679 			 * It is undesirable to test vma->vm_file as it
1680 			 * should be non-null for valid hugetlb area.
1681 			 * However, vm_file will be NULL in the error
1682 			 * cleanup path of mmap_region. When
1683 			 * hugetlbfs ->mmap method fails,
1684 			 * mmap_region() nullifies vma->vm_file
1685 			 * before calling this function to clean up.
1686 			 * Since no pte has actually been setup, it is
1687 			 * safe to do nothing in this case.
1688 			 */
1689 			if (vma->vm_file) {
1690 				zap_flags_t zap_flags = details ?
1691 				    details->zap_flags : 0;
1692 				__unmap_hugepage_range(tlb, vma, start, end,
1693 							     NULL, zap_flags);
1694 			}
1695 		} else
1696 			unmap_page_range(tlb, vma, start, end, details);
1697 	}
1698 }
1699 
1700 /**
1701  * unmap_vmas - unmap a range of memory covered by a list of vma's
1702  * @tlb: address of the caller's struct mmu_gather
1703  * @mas: the maple state
1704  * @vma: the starting vma
1705  * @start_addr: virtual address at which to start unmapping
1706  * @end_addr: virtual address at which to end unmapping
1707  * @tree_end: The maximum index to check
1708  * @mm_wr_locked: lock flag
1709  *
1710  * Unmap all pages in the vma list.
1711  *
1712  * Only addresses between `start' and `end' will be unmapped.
1713  *
1714  * The VMA list must be sorted in ascending virtual address order.
1715  *
1716  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1717  * range after unmap_vmas() returns.  So the only responsibility here is to
1718  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1719  * drops the lock and schedules.
1720  */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1721 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1722 		struct vm_area_struct *vma, unsigned long start_addr,
1723 		unsigned long end_addr, unsigned long tree_end,
1724 		bool mm_wr_locked)
1725 {
1726 	struct mmu_notifier_range range;
1727 	struct zap_details details = {
1728 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1729 		/* Careful - we need to zap private pages too! */
1730 		.even_cows = true,
1731 	};
1732 
1733 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1734 				start_addr, end_addr);
1735 	mmu_notifier_invalidate_range_start(&range);
1736 	do {
1737 		unsigned long start = start_addr;
1738 		unsigned long end = end_addr;
1739 		hugetlb_zap_begin(vma, &start, &end);
1740 		unmap_single_vma(tlb, vma, start, end, &details,
1741 				 mm_wr_locked);
1742 		hugetlb_zap_end(vma, &details);
1743 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1744 	mmu_notifier_invalidate_range_end(&range);
1745 }
1746 
1747 /**
1748  * zap_page_range_single - remove user pages in a given range
1749  * @vma: vm_area_struct holding the applicable pages
1750  * @address: starting address of pages to zap
1751  * @size: number of bytes to zap
1752  * @details: details of shared cache invalidation
1753  *
1754  * The range must fit into one VMA.
1755  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1756 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1757 		unsigned long size, struct zap_details *details)
1758 {
1759 	const unsigned long end = address + size;
1760 	struct mmu_notifier_range range;
1761 	struct mmu_gather tlb;
1762 
1763 	lru_add_drain();
1764 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1765 				address, end);
1766 	hugetlb_zap_begin(vma, &range.start, &range.end);
1767 	tlb_gather_mmu(&tlb, vma->vm_mm);
1768 	update_hiwater_rss(vma->vm_mm);
1769 	mmu_notifier_invalidate_range_start(&range);
1770 	/*
1771 	 * unmap 'address-end' not 'range.start-range.end' as range
1772 	 * could have been expanded for hugetlb pmd sharing.
1773 	 */
1774 	unmap_single_vma(&tlb, vma, address, end, details, false);
1775 	mmu_notifier_invalidate_range_end(&range);
1776 	tlb_finish_mmu(&tlb);
1777 	hugetlb_zap_end(vma, details);
1778 }
1779 
1780 /**
1781  * zap_vma_ptes - remove ptes mapping the vma
1782  * @vma: vm_area_struct holding ptes to be zapped
1783  * @address: starting address of pages to zap
1784  * @size: number of bytes to zap
1785  *
1786  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1787  *
1788  * The entire address range must be fully contained within the vma.
1789  *
1790  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1791 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1792 		unsigned long size)
1793 {
1794 	if (!range_in_vma(vma, address, address + size) ||
1795 	    		!(vma->vm_flags & VM_PFNMAP))
1796 		return;
1797 
1798 	zap_page_range_single(vma, address, size, NULL);
1799 }
1800 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1801 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1802 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1803 {
1804 	pgd_t *pgd;
1805 	p4d_t *p4d;
1806 	pud_t *pud;
1807 	pmd_t *pmd;
1808 
1809 	pgd = pgd_offset(mm, addr);
1810 	p4d = p4d_alloc(mm, pgd, addr);
1811 	if (!p4d)
1812 		return NULL;
1813 	pud = pud_alloc(mm, p4d, addr);
1814 	if (!pud)
1815 		return NULL;
1816 	pmd = pmd_alloc(mm, pud, addr);
1817 	if (!pmd)
1818 		return NULL;
1819 
1820 	VM_BUG_ON(pmd_trans_huge(*pmd));
1821 	return pmd;
1822 }
1823 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1824 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1825 			spinlock_t **ptl)
1826 {
1827 	pmd_t *pmd = walk_to_pmd(mm, addr);
1828 
1829 	if (!pmd)
1830 		return NULL;
1831 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1832 }
1833 
validate_page_before_insert(struct page * page)1834 static int validate_page_before_insert(struct page *page)
1835 {
1836 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1837 		return -EINVAL;
1838 	flush_dcache_page(page);
1839 	return 0;
1840 }
1841 
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1842 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1843 			unsigned long addr, struct page *page, pgprot_t prot)
1844 {
1845 	if (!pte_none(ptep_get(pte)))
1846 		return -EBUSY;
1847 	/* Ok, finally just insert the thing.. */
1848 	get_page(page);
1849 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1850 	page_add_file_rmap(page, vma, false);
1851 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1852 	return 0;
1853 }
1854 
1855 /*
1856  * This is the old fallback for page remapping.
1857  *
1858  * For historical reasons, it only allows reserved pages. Only
1859  * old drivers should use this, and they needed to mark their
1860  * pages reserved for the old functions anyway.
1861  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1862 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1863 			struct page *page, pgprot_t prot)
1864 {
1865 	int retval;
1866 	pte_t *pte;
1867 	spinlock_t *ptl;
1868 
1869 	retval = validate_page_before_insert(page);
1870 	if (retval)
1871 		goto out;
1872 	retval = -ENOMEM;
1873 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1874 	if (!pte)
1875 		goto out;
1876 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1877 	pte_unmap_unlock(pte, ptl);
1878 out:
1879 	return retval;
1880 }
1881 
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1882 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1883 			unsigned long addr, struct page *page, pgprot_t prot)
1884 {
1885 	int err;
1886 
1887 	if (!page_count(page))
1888 		return -EINVAL;
1889 	err = validate_page_before_insert(page);
1890 	if (err)
1891 		return err;
1892 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1893 }
1894 
1895 /* insert_pages() amortizes the cost of spinlock operations
1896  * when inserting pages in a loop.
1897  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1898 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899 			struct page **pages, unsigned long *num, pgprot_t prot)
1900 {
1901 	pmd_t *pmd = NULL;
1902 	pte_t *start_pte, *pte;
1903 	spinlock_t *pte_lock;
1904 	struct mm_struct *const mm = vma->vm_mm;
1905 	unsigned long curr_page_idx = 0;
1906 	unsigned long remaining_pages_total = *num;
1907 	unsigned long pages_to_write_in_pmd;
1908 	int ret;
1909 more:
1910 	ret = -EFAULT;
1911 	pmd = walk_to_pmd(mm, addr);
1912 	if (!pmd)
1913 		goto out;
1914 
1915 	pages_to_write_in_pmd = min_t(unsigned long,
1916 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917 
1918 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1919 	ret = -ENOMEM;
1920 	if (pte_alloc(mm, pmd))
1921 		goto out;
1922 
1923 	while (pages_to_write_in_pmd) {
1924 		int pte_idx = 0;
1925 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926 
1927 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928 		if (!start_pte) {
1929 			ret = -EFAULT;
1930 			goto out;
1931 		}
1932 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1933 			int err = insert_page_in_batch_locked(vma, pte,
1934 				addr, pages[curr_page_idx], prot);
1935 			if (unlikely(err)) {
1936 				pte_unmap_unlock(start_pte, pte_lock);
1937 				ret = err;
1938 				remaining_pages_total -= pte_idx;
1939 				goto out;
1940 			}
1941 			addr += PAGE_SIZE;
1942 			++curr_page_idx;
1943 		}
1944 		pte_unmap_unlock(start_pte, pte_lock);
1945 		pages_to_write_in_pmd -= batch_size;
1946 		remaining_pages_total -= batch_size;
1947 	}
1948 	if (remaining_pages_total)
1949 		goto more;
1950 	ret = 0;
1951 out:
1952 	*num = remaining_pages_total;
1953 	return ret;
1954 }
1955 
1956 /**
1957  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1958  * @vma: user vma to map to
1959  * @addr: target start user address of these pages
1960  * @pages: source kernel pages
1961  * @num: in: number of pages to map. out: number of pages that were *not*
1962  * mapped. (0 means all pages were successfully mapped).
1963  *
1964  * Preferred over vm_insert_page() when inserting multiple pages.
1965  *
1966  * In case of error, we may have mapped a subset of the provided
1967  * pages. It is the caller's responsibility to account for this case.
1968  *
1969  * The same restrictions apply as in vm_insert_page().
1970  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1971 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1972 			struct page **pages, unsigned long *num)
1973 {
1974 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1975 
1976 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1977 		return -EFAULT;
1978 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1979 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1980 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1981 		vm_flags_set(vma, VM_MIXEDMAP);
1982 	}
1983 	/* Defer page refcount checking till we're about to map that page. */
1984 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1985 }
1986 EXPORT_SYMBOL(vm_insert_pages);
1987 
1988 /**
1989  * vm_insert_page - insert single page into user vma
1990  * @vma: user vma to map to
1991  * @addr: target user address of this page
1992  * @page: source kernel page
1993  *
1994  * This allows drivers to insert individual pages they've allocated
1995  * into a user vma.
1996  *
1997  * The page has to be a nice clean _individual_ kernel allocation.
1998  * If you allocate a compound page, you need to have marked it as
1999  * such (__GFP_COMP), or manually just split the page up yourself
2000  * (see split_page()).
2001  *
2002  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2003  * took an arbitrary page protection parameter. This doesn't allow
2004  * that. Your vma protection will have to be set up correctly, which
2005  * means that if you want a shared writable mapping, you'd better
2006  * ask for a shared writable mapping!
2007  *
2008  * The page does not need to be reserved.
2009  *
2010  * Usually this function is called from f_op->mmap() handler
2011  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2012  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2013  * function from other places, for example from page-fault handler.
2014  *
2015  * Return: %0 on success, negative error code otherwise.
2016  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2017 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2018 			struct page *page)
2019 {
2020 	if (addr < vma->vm_start || addr >= vma->vm_end)
2021 		return -EFAULT;
2022 	if (!page_count(page))
2023 		return -EINVAL;
2024 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2025 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2026 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2027 		vm_flags_set(vma, VM_MIXEDMAP);
2028 	}
2029 	return insert_page(vma, addr, page, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_insert_page);
2032 
2033 /*
2034  * __vm_map_pages - maps range of kernel pages into user vma
2035  * @vma: user vma to map to
2036  * @pages: pointer to array of source kernel pages
2037  * @num: number of pages in page array
2038  * @offset: user's requested vm_pgoff
2039  *
2040  * This allows drivers to map range of kernel pages into a user vma.
2041  *
2042  * Return: 0 on success and error code otherwise.
2043  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2044 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2045 				unsigned long num, unsigned long offset)
2046 {
2047 	unsigned long count = vma_pages(vma);
2048 	unsigned long uaddr = vma->vm_start;
2049 	int ret, i;
2050 
2051 	/* Fail if the user requested offset is beyond the end of the object */
2052 	if (offset >= num)
2053 		return -ENXIO;
2054 
2055 	/* Fail if the user requested size exceeds available object size */
2056 	if (count > num - offset)
2057 		return -ENXIO;
2058 
2059 	for (i = 0; i < count; i++) {
2060 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2061 		if (ret < 0)
2062 			return ret;
2063 		uaddr += PAGE_SIZE;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 /**
2070  * vm_map_pages - maps range of kernel pages starts with non zero offset
2071  * @vma: user vma to map to
2072  * @pages: pointer to array of source kernel pages
2073  * @num: number of pages in page array
2074  *
2075  * Maps an object consisting of @num pages, catering for the user's
2076  * requested vm_pgoff
2077  *
2078  * If we fail to insert any page into the vma, the function will return
2079  * immediately leaving any previously inserted pages present.  Callers
2080  * from the mmap handler may immediately return the error as their caller
2081  * will destroy the vma, removing any successfully inserted pages. Other
2082  * callers should make their own arrangements for calling unmap_region().
2083  *
2084  * Context: Process context. Called by mmap handlers.
2085  * Return: 0 on success and error code otherwise.
2086  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2087 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2088 				unsigned long num)
2089 {
2090 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2091 }
2092 EXPORT_SYMBOL(vm_map_pages);
2093 
2094 /**
2095  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2096  * @vma: user vma to map to
2097  * @pages: pointer to array of source kernel pages
2098  * @num: number of pages in page array
2099  *
2100  * Similar to vm_map_pages(), except that it explicitly sets the offset
2101  * to 0. This function is intended for the drivers that did not consider
2102  * vm_pgoff.
2103  *
2104  * Context: Process context. Called by mmap handlers.
2105  * Return: 0 on success and error code otherwise.
2106  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2107 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2108 				unsigned long num)
2109 {
2110 	return __vm_map_pages(vma, pages, num, 0);
2111 }
2112 EXPORT_SYMBOL(vm_map_pages_zero);
2113 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2114 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2116 {
2117 	struct mm_struct *mm = vma->vm_mm;
2118 	pte_t *pte, entry;
2119 	spinlock_t *ptl;
2120 
2121 	pte = get_locked_pte(mm, addr, &ptl);
2122 	if (!pte)
2123 		return VM_FAULT_OOM;
2124 	entry = ptep_get(pte);
2125 	if (!pte_none(entry)) {
2126 		if (mkwrite) {
2127 			/*
2128 			 * For read faults on private mappings the PFN passed
2129 			 * in may not match the PFN we have mapped if the
2130 			 * mapped PFN is a writeable COW page.  In the mkwrite
2131 			 * case we are creating a writable PTE for a shared
2132 			 * mapping and we expect the PFNs to match. If they
2133 			 * don't match, we are likely racing with block
2134 			 * allocation and mapping invalidation so just skip the
2135 			 * update.
2136 			 */
2137 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2138 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2139 				goto out_unlock;
2140 			}
2141 			entry = pte_mkyoung(entry);
2142 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2144 				update_mmu_cache(vma, addr, pte);
2145 		}
2146 		goto out_unlock;
2147 	}
2148 
2149 	/* Ok, finally just insert the thing.. */
2150 	if (pfn_t_devmap(pfn))
2151 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2152 	else
2153 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2154 
2155 	if (mkwrite) {
2156 		entry = pte_mkyoung(entry);
2157 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2158 	}
2159 
2160 	set_pte_at(mm, addr, pte, entry);
2161 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2162 
2163 out_unlock:
2164 	pte_unmap_unlock(pte, ptl);
2165 	return VM_FAULT_NOPAGE;
2166 }
2167 
2168 /**
2169  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2170  * @vma: user vma to map to
2171  * @addr: target user address of this page
2172  * @pfn: source kernel pfn
2173  * @pgprot: pgprot flags for the inserted page
2174  *
2175  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2176  * to override pgprot on a per-page basis.
2177  *
2178  * This only makes sense for IO mappings, and it makes no sense for
2179  * COW mappings.  In general, using multiple vmas is preferable;
2180  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2181  * impractical.
2182  *
2183  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2184  * caching- and encryption bits different than those of @vma->vm_page_prot,
2185  * because the caching- or encryption mode may not be known at mmap() time.
2186  *
2187  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2188  * to set caching and encryption bits for those vmas (except for COW pages).
2189  * This is ensured by core vm only modifying these page table entries using
2190  * functions that don't touch caching- or encryption bits, using pte_modify()
2191  * if needed. (See for example mprotect()).
2192  *
2193  * Also when new page-table entries are created, this is only done using the
2194  * fault() callback, and never using the value of vma->vm_page_prot,
2195  * except for page-table entries that point to anonymous pages as the result
2196  * of COW.
2197  *
2198  * Context: Process context.  May allocate using %GFP_KERNEL.
2199  * Return: vm_fault_t value.
2200  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2201 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2202 			unsigned long pfn, pgprot_t pgprot)
2203 {
2204 	/*
2205 	 * Technically, architectures with pte_special can avoid all these
2206 	 * restrictions (same for remap_pfn_range).  However we would like
2207 	 * consistency in testing and feature parity among all, so we should
2208 	 * try to keep these invariants in place for everybody.
2209 	 */
2210 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 						(VM_PFNMAP|VM_MIXEDMAP));
2213 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215 
2216 	if (addr < vma->vm_start || addr >= vma->vm_end)
2217 		return VM_FAULT_SIGBUS;
2218 
2219 	if (!pfn_modify_allowed(pfn, pgprot))
2220 		return VM_FAULT_SIGBUS;
2221 
2222 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2223 
2224 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2225 			false);
2226 }
2227 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2228 
2229 /**
2230  * vmf_insert_pfn - insert single pfn into user vma
2231  * @vma: user vma to map to
2232  * @addr: target user address of this page
2233  * @pfn: source kernel pfn
2234  *
2235  * Similar to vm_insert_page, this allows drivers to insert individual pages
2236  * they've allocated into a user vma. Same comments apply.
2237  *
2238  * This function should only be called from a vm_ops->fault handler, and
2239  * in that case the handler should return the result of this function.
2240  *
2241  * vma cannot be a COW mapping.
2242  *
2243  * As this is called only for pages that do not currently exist, we
2244  * do not need to flush old virtual caches or the TLB.
2245  *
2246  * Context: Process context.  May allocate using %GFP_KERNEL.
2247  * Return: vm_fault_t value.
2248  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2249 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2250 			unsigned long pfn)
2251 {
2252 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2253 }
2254 EXPORT_SYMBOL(vmf_insert_pfn);
2255 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2256 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2257 {
2258 	/* these checks mirror the abort conditions in vm_normal_page */
2259 	if (vma->vm_flags & VM_MIXEDMAP)
2260 		return true;
2261 	if (pfn_t_devmap(pfn))
2262 		return true;
2263 	if (pfn_t_special(pfn))
2264 		return true;
2265 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2266 		return true;
2267 	return false;
2268 }
2269 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2270 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2271 		unsigned long addr, pfn_t pfn, bool mkwrite)
2272 {
2273 	pgprot_t pgprot = vma->vm_page_prot;
2274 	int err;
2275 
2276 	BUG_ON(!vm_mixed_ok(vma, pfn));
2277 
2278 	if (addr < vma->vm_start || addr >= vma->vm_end)
2279 		return VM_FAULT_SIGBUS;
2280 
2281 	track_pfn_insert(vma, &pgprot, pfn);
2282 
2283 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2284 		return VM_FAULT_SIGBUS;
2285 
2286 	/*
2287 	 * If we don't have pte special, then we have to use the pfn_valid()
2288 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2289 	 * refcount the page if pfn_valid is true (hence insert_page rather
2290 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2291 	 * without pte special, it would there be refcounted as a normal page.
2292 	 */
2293 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2294 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2295 		struct page *page;
2296 
2297 		/*
2298 		 * At this point we are committed to insert_page()
2299 		 * regardless of whether the caller specified flags that
2300 		 * result in pfn_t_has_page() == false.
2301 		 */
2302 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2303 		err = insert_page(vma, addr, page, pgprot);
2304 	} else {
2305 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2306 	}
2307 
2308 	if (err == -ENOMEM)
2309 		return VM_FAULT_OOM;
2310 	if (err < 0 && err != -EBUSY)
2311 		return VM_FAULT_SIGBUS;
2312 
2313 	return VM_FAULT_NOPAGE;
2314 }
2315 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2316 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2317 		pfn_t pfn)
2318 {
2319 	return __vm_insert_mixed(vma, addr, pfn, false);
2320 }
2321 EXPORT_SYMBOL(vmf_insert_mixed);
2322 
2323 /*
2324  *  If the insertion of PTE failed because someone else already added a
2325  *  different entry in the mean time, we treat that as success as we assume
2326  *  the same entry was actually inserted.
2327  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2328 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2329 		unsigned long addr, pfn_t pfn)
2330 {
2331 	return __vm_insert_mixed(vma, addr, pfn, true);
2332 }
2333 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2334 
2335 /*
2336  * maps a range of physical memory into the requested pages. the old
2337  * mappings are removed. any references to nonexistent pages results
2338  * in null mappings (currently treated as "copy-on-access")
2339  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2340 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2341 			unsigned long addr, unsigned long end,
2342 			unsigned long pfn, pgprot_t prot)
2343 {
2344 	pte_t *pte, *mapped_pte;
2345 	spinlock_t *ptl;
2346 	int err = 0;
2347 
2348 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2349 	if (!pte)
2350 		return -ENOMEM;
2351 	arch_enter_lazy_mmu_mode();
2352 	do {
2353 		BUG_ON(!pte_none(ptep_get(pte)));
2354 		if (!pfn_modify_allowed(pfn, prot)) {
2355 			err = -EACCES;
2356 			break;
2357 		}
2358 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2359 		pfn++;
2360 	} while (pte++, addr += PAGE_SIZE, addr != end);
2361 	arch_leave_lazy_mmu_mode();
2362 	pte_unmap_unlock(mapped_pte, ptl);
2363 	return err;
2364 }
2365 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2366 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2367 			unsigned long addr, unsigned long end,
2368 			unsigned long pfn, pgprot_t prot)
2369 {
2370 	pmd_t *pmd;
2371 	unsigned long next;
2372 	int err;
2373 
2374 	pfn -= addr >> PAGE_SHIFT;
2375 	pmd = pmd_alloc(mm, pud, addr);
2376 	if (!pmd)
2377 		return -ENOMEM;
2378 	VM_BUG_ON(pmd_trans_huge(*pmd));
2379 	do {
2380 		next = pmd_addr_end(addr, end);
2381 		err = remap_pte_range(mm, pmd, addr, next,
2382 				pfn + (addr >> PAGE_SHIFT), prot);
2383 		if (err)
2384 			return err;
2385 	} while (pmd++, addr = next, addr != end);
2386 	return 0;
2387 }
2388 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2389 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2390 			unsigned long addr, unsigned long end,
2391 			unsigned long pfn, pgprot_t prot)
2392 {
2393 	pud_t *pud;
2394 	unsigned long next;
2395 	int err;
2396 
2397 	pfn -= addr >> PAGE_SHIFT;
2398 	pud = pud_alloc(mm, p4d, addr);
2399 	if (!pud)
2400 		return -ENOMEM;
2401 	do {
2402 		next = pud_addr_end(addr, end);
2403 		err = remap_pmd_range(mm, pud, addr, next,
2404 				pfn + (addr >> PAGE_SHIFT), prot);
2405 		if (err)
2406 			return err;
2407 	} while (pud++, addr = next, addr != end);
2408 	return 0;
2409 }
2410 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2411 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2412 			unsigned long addr, unsigned long end,
2413 			unsigned long pfn, pgprot_t prot)
2414 {
2415 	p4d_t *p4d;
2416 	unsigned long next;
2417 	int err;
2418 
2419 	pfn -= addr >> PAGE_SHIFT;
2420 	p4d = p4d_alloc(mm, pgd, addr);
2421 	if (!p4d)
2422 		return -ENOMEM;
2423 	do {
2424 		next = p4d_addr_end(addr, end);
2425 		err = remap_pud_range(mm, p4d, addr, next,
2426 				pfn + (addr >> PAGE_SHIFT), prot);
2427 		if (err)
2428 			return err;
2429 	} while (p4d++, addr = next, addr != end);
2430 	return 0;
2431 }
2432 
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2433 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2434 		unsigned long pfn, unsigned long size, pgprot_t prot)
2435 {
2436 	pgd_t *pgd;
2437 	unsigned long next;
2438 	unsigned long end = addr + PAGE_ALIGN(size);
2439 	struct mm_struct *mm = vma->vm_mm;
2440 	int err;
2441 
2442 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2443 		return -EINVAL;
2444 
2445 	/*
2446 	 * Physically remapped pages are special. Tell the
2447 	 * rest of the world about it:
2448 	 *   VM_IO tells people not to look at these pages
2449 	 *	(accesses can have side effects).
2450 	 *   VM_PFNMAP tells the core MM that the base pages are just
2451 	 *	raw PFN mappings, and do not have a "struct page" associated
2452 	 *	with them.
2453 	 *   VM_DONTEXPAND
2454 	 *      Disable vma merging and expanding with mremap().
2455 	 *   VM_DONTDUMP
2456 	 *      Omit vma from core dump, even when VM_IO turned off.
2457 	 *
2458 	 * There's a horrible special case to handle copy-on-write
2459 	 * behaviour that some programs depend on. We mark the "original"
2460 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2461 	 * See vm_normal_page() for details.
2462 	 */
2463 	if (is_cow_mapping(vma->vm_flags)) {
2464 		if (addr != vma->vm_start || end != vma->vm_end)
2465 			return -EINVAL;
2466 		vma->vm_pgoff = pfn;
2467 	}
2468 
2469 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2470 
2471 	BUG_ON(addr >= end);
2472 	pfn -= addr >> PAGE_SHIFT;
2473 	pgd = pgd_offset(mm, addr);
2474 	flush_cache_range(vma, addr, end);
2475 	do {
2476 		next = pgd_addr_end(addr, end);
2477 		err = remap_p4d_range(mm, pgd, addr, next,
2478 				pfn + (addr >> PAGE_SHIFT), prot);
2479 		if (err)
2480 			return err;
2481 	} while (pgd++, addr = next, addr != end);
2482 
2483 	return 0;
2484 }
2485 
2486 /*
2487  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2488  * must have pre-validated the caching bits of the pgprot_t.
2489  */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2490 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2491 		unsigned long pfn, unsigned long size, pgprot_t prot)
2492 {
2493 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2494 
2495 	if (!error)
2496 		return 0;
2497 
2498 	/*
2499 	 * A partial pfn range mapping is dangerous: it does not
2500 	 * maintain page reference counts, and callers may free
2501 	 * pages due to the error. So zap it early.
2502 	 */
2503 	zap_page_range_single(vma, addr, size, NULL);
2504 	return error;
2505 }
2506 
2507 /**
2508  * remap_pfn_range - remap kernel memory to userspace
2509  * @vma: user vma to map to
2510  * @addr: target page aligned user address to start at
2511  * @pfn: page frame number of kernel physical memory address
2512  * @size: size of mapping area
2513  * @prot: page protection flags for this mapping
2514  *
2515  * Note: this is only safe if the mm semaphore is held when called.
2516  *
2517  * Return: %0 on success, negative error code otherwise.
2518  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2519 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2520 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2521 {
2522 	int err;
2523 
2524 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2525 	if (err)
2526 		return -EINVAL;
2527 
2528 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2529 	if (err)
2530 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2531 	return err;
2532 }
2533 EXPORT_SYMBOL(remap_pfn_range);
2534 
2535 /**
2536  * vm_iomap_memory - remap memory to userspace
2537  * @vma: user vma to map to
2538  * @start: start of the physical memory to be mapped
2539  * @len: size of area
2540  *
2541  * This is a simplified io_remap_pfn_range() for common driver use. The
2542  * driver just needs to give us the physical memory range to be mapped,
2543  * we'll figure out the rest from the vma information.
2544  *
2545  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2546  * whatever write-combining details or similar.
2547  *
2548  * Return: %0 on success, negative error code otherwise.
2549  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2550 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2551 {
2552 	unsigned long vm_len, pfn, pages;
2553 
2554 	/* Check that the physical memory area passed in looks valid */
2555 	if (start + len < start)
2556 		return -EINVAL;
2557 	/*
2558 	 * You *really* shouldn't map things that aren't page-aligned,
2559 	 * but we've historically allowed it because IO memory might
2560 	 * just have smaller alignment.
2561 	 */
2562 	len += start & ~PAGE_MASK;
2563 	pfn = start >> PAGE_SHIFT;
2564 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2565 	if (pfn + pages < pfn)
2566 		return -EINVAL;
2567 
2568 	/* We start the mapping 'vm_pgoff' pages into the area */
2569 	if (vma->vm_pgoff > pages)
2570 		return -EINVAL;
2571 	pfn += vma->vm_pgoff;
2572 	pages -= vma->vm_pgoff;
2573 
2574 	/* Can we fit all of the mapping? */
2575 	vm_len = vma->vm_end - vma->vm_start;
2576 	if (vm_len >> PAGE_SHIFT > pages)
2577 		return -EINVAL;
2578 
2579 	/* Ok, let it rip */
2580 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2581 }
2582 EXPORT_SYMBOL(vm_iomap_memory);
2583 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2584 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2585 				     unsigned long addr, unsigned long end,
2586 				     pte_fn_t fn, void *data, bool create,
2587 				     pgtbl_mod_mask *mask)
2588 {
2589 	pte_t *pte, *mapped_pte;
2590 	int err = 0;
2591 	spinlock_t *ptl;
2592 
2593 	if (create) {
2594 		mapped_pte = pte = (mm == &init_mm) ?
2595 			pte_alloc_kernel_track(pmd, addr, mask) :
2596 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2597 		if (!pte)
2598 			return -ENOMEM;
2599 	} else {
2600 		mapped_pte = pte = (mm == &init_mm) ?
2601 			pte_offset_kernel(pmd, addr) :
2602 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2603 		if (!pte)
2604 			return -EINVAL;
2605 	}
2606 
2607 	arch_enter_lazy_mmu_mode();
2608 
2609 	if (fn) {
2610 		do {
2611 			if (create || !pte_none(ptep_get(pte))) {
2612 				err = fn(pte, addr, data);
2613 				if (err)
2614 					break;
2615 			}
2616 		} while (pte++, addr += PAGE_SIZE, addr != end);
2617 	}
2618 	*mask |= PGTBL_PTE_MODIFIED;
2619 
2620 	arch_leave_lazy_mmu_mode();
2621 
2622 	if (mm != &init_mm)
2623 		pte_unmap_unlock(mapped_pte, ptl);
2624 	return err;
2625 }
2626 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2627 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2628 				     unsigned long addr, unsigned long end,
2629 				     pte_fn_t fn, void *data, bool create,
2630 				     pgtbl_mod_mask *mask)
2631 {
2632 	pmd_t *pmd;
2633 	unsigned long next;
2634 	int err = 0;
2635 
2636 	BUG_ON(pud_huge(*pud));
2637 
2638 	if (create) {
2639 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2640 		if (!pmd)
2641 			return -ENOMEM;
2642 	} else {
2643 		pmd = pmd_offset(pud, addr);
2644 	}
2645 	do {
2646 		next = pmd_addr_end(addr, end);
2647 		if (pmd_none(*pmd) && !create)
2648 			continue;
2649 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2650 			return -EINVAL;
2651 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2652 			if (!create)
2653 				continue;
2654 			pmd_clear_bad(pmd);
2655 		}
2656 		err = apply_to_pte_range(mm, pmd, addr, next,
2657 					 fn, data, create, mask);
2658 		if (err)
2659 			break;
2660 	} while (pmd++, addr = next, addr != end);
2661 
2662 	return err;
2663 }
2664 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2665 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2666 				     unsigned long addr, unsigned long end,
2667 				     pte_fn_t fn, void *data, bool create,
2668 				     pgtbl_mod_mask *mask)
2669 {
2670 	pud_t *pud;
2671 	unsigned long next;
2672 	int err = 0;
2673 
2674 	if (create) {
2675 		pud = pud_alloc_track(mm, p4d, addr, mask);
2676 		if (!pud)
2677 			return -ENOMEM;
2678 	} else {
2679 		pud = pud_offset(p4d, addr);
2680 	}
2681 	do {
2682 		next = pud_addr_end(addr, end);
2683 		if (pud_none(*pud) && !create)
2684 			continue;
2685 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2686 			return -EINVAL;
2687 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2688 			if (!create)
2689 				continue;
2690 			pud_clear_bad(pud);
2691 		}
2692 		err = apply_to_pmd_range(mm, pud, addr, next,
2693 					 fn, data, create, mask);
2694 		if (err)
2695 			break;
2696 	} while (pud++, addr = next, addr != end);
2697 
2698 	return err;
2699 }
2700 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2701 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2702 				     unsigned long addr, unsigned long end,
2703 				     pte_fn_t fn, void *data, bool create,
2704 				     pgtbl_mod_mask *mask)
2705 {
2706 	p4d_t *p4d;
2707 	unsigned long next;
2708 	int err = 0;
2709 
2710 	if (create) {
2711 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2712 		if (!p4d)
2713 			return -ENOMEM;
2714 	} else {
2715 		p4d = p4d_offset(pgd, addr);
2716 	}
2717 	do {
2718 		next = p4d_addr_end(addr, end);
2719 		if (p4d_none(*p4d) && !create)
2720 			continue;
2721 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2722 			return -EINVAL;
2723 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2724 			if (!create)
2725 				continue;
2726 			p4d_clear_bad(p4d);
2727 		}
2728 		err = apply_to_pud_range(mm, p4d, addr, next,
2729 					 fn, data, create, mask);
2730 		if (err)
2731 			break;
2732 	} while (p4d++, addr = next, addr != end);
2733 
2734 	return err;
2735 }
2736 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2737 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2738 				 unsigned long size, pte_fn_t fn,
2739 				 void *data, bool create)
2740 {
2741 	pgd_t *pgd;
2742 	unsigned long start = addr, next;
2743 	unsigned long end = addr + size;
2744 	pgtbl_mod_mask mask = 0;
2745 	int err = 0;
2746 
2747 	if (WARN_ON(addr >= end))
2748 		return -EINVAL;
2749 
2750 	pgd = pgd_offset(mm, addr);
2751 	do {
2752 		next = pgd_addr_end(addr, end);
2753 		if (pgd_none(*pgd) && !create)
2754 			continue;
2755 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2756 			err = -EINVAL;
2757 			break;
2758 		}
2759 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2760 			if (!create)
2761 				continue;
2762 			pgd_clear_bad(pgd);
2763 		}
2764 		err = apply_to_p4d_range(mm, pgd, addr, next,
2765 					 fn, data, create, &mask);
2766 		if (err)
2767 			break;
2768 	} while (pgd++, addr = next, addr != end);
2769 
2770 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2771 		arch_sync_kernel_mappings(start, start + size);
2772 
2773 	return err;
2774 }
2775 
2776 /*
2777  * Scan a region of virtual memory, filling in page tables as necessary
2778  * and calling a provided function on each leaf page table.
2779  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2780 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2781 			unsigned long size, pte_fn_t fn, void *data)
2782 {
2783 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_page_range);
2786 
2787 /*
2788  * Scan a region of virtual memory, calling a provided function on
2789  * each leaf page table where it exists.
2790  *
2791  * Unlike apply_to_page_range, this does _not_ fill in page tables
2792  * where they are absent.
2793  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2794 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2795 				 unsigned long size, pte_fn_t fn, void *data)
2796 {
2797 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2798 }
2799 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2800 
2801 /*
2802  * handle_pte_fault chooses page fault handler according to an entry which was
2803  * read non-atomically.  Before making any commitment, on those architectures
2804  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2805  * parts, do_swap_page must check under lock before unmapping the pte and
2806  * proceeding (but do_wp_page is only called after already making such a check;
2807  * and do_anonymous_page can safely check later on).
2808  */
pte_unmap_same(struct vm_fault * vmf)2809 static inline int pte_unmap_same(struct vm_fault *vmf)
2810 {
2811 	int same = 1;
2812 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2813 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2814 		spin_lock(vmf->ptl);
2815 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2816 		spin_unlock(vmf->ptl);
2817 	}
2818 #endif
2819 	pte_unmap(vmf->pte);
2820 	vmf->pte = NULL;
2821 	return same;
2822 }
2823 
2824 /*
2825  * Return:
2826  *	0:		copied succeeded
2827  *	-EHWPOISON:	copy failed due to hwpoison in source page
2828  *	-EAGAIN:	copied failed (some other reason)
2829  */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2830 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2831 				      struct vm_fault *vmf)
2832 {
2833 	int ret;
2834 	void *kaddr;
2835 	void __user *uaddr;
2836 	struct vm_area_struct *vma = vmf->vma;
2837 	struct mm_struct *mm = vma->vm_mm;
2838 	unsigned long addr = vmf->address;
2839 
2840 	if (likely(src)) {
2841 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2842 			memory_failure_queue(page_to_pfn(src), 0);
2843 			return -EHWPOISON;
2844 		}
2845 		return 0;
2846 	}
2847 
2848 	/*
2849 	 * If the source page was a PFN mapping, we don't have
2850 	 * a "struct page" for it. We do a best-effort copy by
2851 	 * just copying from the original user address. If that
2852 	 * fails, we just zero-fill it. Live with it.
2853 	 */
2854 	kaddr = kmap_atomic(dst);
2855 	uaddr = (void __user *)(addr & PAGE_MASK);
2856 
2857 	/*
2858 	 * On architectures with software "accessed" bits, we would
2859 	 * take a double page fault, so mark it accessed here.
2860 	 */
2861 	vmf->pte = NULL;
2862 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2863 		pte_t entry;
2864 
2865 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2867 			/*
2868 			 * Other thread has already handled the fault
2869 			 * and update local tlb only
2870 			 */
2871 			if (vmf->pte)
2872 				update_mmu_tlb(vma, addr, vmf->pte);
2873 			ret = -EAGAIN;
2874 			goto pte_unlock;
2875 		}
2876 
2877 		entry = pte_mkyoung(vmf->orig_pte);
2878 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2879 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2880 	}
2881 
2882 	/*
2883 	 * This really shouldn't fail, because the page is there
2884 	 * in the page tables. But it might just be unreadable,
2885 	 * in which case we just give up and fill the result with
2886 	 * zeroes.
2887 	 */
2888 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 		if (vmf->pte)
2890 			goto warn;
2891 
2892 		/* Re-validate under PTL if the page is still mapped */
2893 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2894 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2895 			/* The PTE changed under us, update local tlb */
2896 			if (vmf->pte)
2897 				update_mmu_tlb(vma, addr, vmf->pte);
2898 			ret = -EAGAIN;
2899 			goto pte_unlock;
2900 		}
2901 
2902 		/*
2903 		 * The same page can be mapped back since last copy attempt.
2904 		 * Try to copy again under PTL.
2905 		 */
2906 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2907 			/*
2908 			 * Give a warn in case there can be some obscure
2909 			 * use-case
2910 			 */
2911 warn:
2912 			WARN_ON_ONCE(1);
2913 			clear_page(kaddr);
2914 		}
2915 	}
2916 
2917 	ret = 0;
2918 
2919 pte_unlock:
2920 	if (vmf->pte)
2921 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 	kunmap_atomic(kaddr);
2923 	flush_dcache_page(dst);
2924 
2925 	return ret;
2926 }
2927 
__get_fault_gfp_mask(struct vm_area_struct * vma)2928 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2929 {
2930 	struct file *vm_file = vma->vm_file;
2931 
2932 	if (vm_file)
2933 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2934 
2935 	/*
2936 	 * Special mappings (e.g. VDSO) do not have any file so fake
2937 	 * a default GFP_KERNEL for them.
2938 	 */
2939 	return GFP_KERNEL;
2940 }
2941 
2942 /*
2943  * Notify the address space that the page is about to become writable so that
2944  * it can prohibit this or wait for the page to get into an appropriate state.
2945  *
2946  * We do this without the lock held, so that it can sleep if it needs to.
2947  */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2948 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2949 {
2950 	vm_fault_t ret;
2951 	unsigned int old_flags = vmf->flags;
2952 
2953 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2954 
2955 	if (vmf->vma->vm_file &&
2956 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2957 		return VM_FAULT_SIGBUS;
2958 
2959 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2960 	/* Restore original flags so that caller is not surprised */
2961 	vmf->flags = old_flags;
2962 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2963 		return ret;
2964 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2965 		folio_lock(folio);
2966 		if (!folio->mapping) {
2967 			folio_unlock(folio);
2968 			return 0; /* retry */
2969 		}
2970 		ret |= VM_FAULT_LOCKED;
2971 	} else
2972 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2973 	return ret;
2974 }
2975 
2976 /*
2977  * Handle dirtying of a page in shared file mapping on a write fault.
2978  *
2979  * The function expects the page to be locked and unlocks it.
2980  */
fault_dirty_shared_page(struct vm_fault * vmf)2981 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2982 {
2983 	struct vm_area_struct *vma = vmf->vma;
2984 	struct address_space *mapping;
2985 	struct folio *folio = page_folio(vmf->page);
2986 	bool dirtied;
2987 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2988 
2989 	dirtied = folio_mark_dirty(folio);
2990 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2991 	/*
2992 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2993 	 * by truncate after folio_unlock().   The address_space itself remains
2994 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2995 	 * release semantics to prevent the compiler from undoing this copying.
2996 	 */
2997 	mapping = folio_raw_mapping(folio);
2998 	folio_unlock(folio);
2999 
3000 	if (!page_mkwrite)
3001 		file_update_time(vma->vm_file);
3002 
3003 	/*
3004 	 * Throttle page dirtying rate down to writeback speed.
3005 	 *
3006 	 * mapping may be NULL here because some device drivers do not
3007 	 * set page.mapping but still dirty their pages
3008 	 *
3009 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3010 	 * is pinning the mapping, as per above.
3011 	 */
3012 	if ((dirtied || page_mkwrite) && mapping) {
3013 		struct file *fpin;
3014 
3015 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3016 		balance_dirty_pages_ratelimited(mapping);
3017 		if (fpin) {
3018 			fput(fpin);
3019 			return VM_FAULT_COMPLETED;
3020 		}
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 /*
3027  * Handle write page faults for pages that can be reused in the current vma
3028  *
3029  * This can happen either due to the mapping being with the VM_SHARED flag,
3030  * or due to us being the last reference standing to the page. In either
3031  * case, all we need to do here is to mark the page as writable and update
3032  * any related book-keeping.
3033  */
wp_page_reuse(struct vm_fault * vmf)3034 static inline void wp_page_reuse(struct vm_fault *vmf)
3035 	__releases(vmf->ptl)
3036 {
3037 	struct vm_area_struct *vma = vmf->vma;
3038 	struct page *page = vmf->page;
3039 	pte_t entry;
3040 
3041 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3042 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3043 
3044 	/*
3045 	 * Clear the pages cpupid information as the existing
3046 	 * information potentially belongs to a now completely
3047 	 * unrelated process.
3048 	 */
3049 	if (page)
3050 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3051 
3052 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3053 	entry = pte_mkyoung(vmf->orig_pte);
3054 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3055 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3056 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3057 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3058 	count_vm_event(PGREUSE);
3059 }
3060 
3061 /*
3062  * Handle the case of a page which we actually need to copy to a new page,
3063  * either due to COW or unsharing.
3064  *
3065  * Called with mmap_lock locked and the old page referenced, but
3066  * without the ptl held.
3067  *
3068  * High level logic flow:
3069  *
3070  * - Allocate a page, copy the content of the old page to the new one.
3071  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3072  * - Take the PTL. If the pte changed, bail out and release the allocated page
3073  * - If the pte is still the way we remember it, update the page table and all
3074  *   relevant references. This includes dropping the reference the page-table
3075  *   held to the old page, as well as updating the rmap.
3076  * - In any case, unlock the PTL and drop the reference we took to the old page.
3077  */
wp_page_copy(struct vm_fault * vmf)3078 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3079 {
3080 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3081 	struct vm_area_struct *vma = vmf->vma;
3082 	struct mm_struct *mm = vma->vm_mm;
3083 	struct folio *old_folio = NULL;
3084 	struct folio *new_folio = NULL;
3085 	pte_t entry;
3086 	int page_copied = 0;
3087 	struct mmu_notifier_range range;
3088 	int ret;
3089 
3090 	delayacct_wpcopy_start();
3091 
3092 	if (vmf->page)
3093 		old_folio = page_folio(vmf->page);
3094 	if (unlikely(anon_vma_prepare(vma)))
3095 		goto oom;
3096 
3097 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3098 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3099 		if (!new_folio)
3100 			goto oom;
3101 	} else {
3102 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3103 				vmf->address, false);
3104 		if (!new_folio)
3105 			goto oom;
3106 
3107 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3108 		if (ret) {
3109 			/*
3110 			 * COW failed, if the fault was solved by other,
3111 			 * it's fine. If not, userspace would re-fault on
3112 			 * the same address and we will handle the fault
3113 			 * from the second attempt.
3114 			 * The -EHWPOISON case will not be retried.
3115 			 */
3116 			folio_put(new_folio);
3117 			if (old_folio)
3118 				folio_put(old_folio);
3119 
3120 			delayacct_wpcopy_end();
3121 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3122 		}
3123 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3124 	}
3125 
3126 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3127 		goto oom_free_new;
3128 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3129 
3130 	__folio_mark_uptodate(new_folio);
3131 
3132 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3133 				vmf->address & PAGE_MASK,
3134 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3135 	mmu_notifier_invalidate_range_start(&range);
3136 
3137 	/*
3138 	 * Re-check the pte - we dropped the lock
3139 	 */
3140 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3141 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3142 		if (old_folio) {
3143 			if (!folio_test_anon(old_folio)) {
3144 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3145 				inc_mm_counter(mm, MM_ANONPAGES);
3146 			}
3147 		} else {
3148 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3149 			inc_mm_counter(mm, MM_ANONPAGES);
3150 		}
3151 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3152 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3153 		entry = pte_sw_mkyoung(entry);
3154 		if (unlikely(unshare)) {
3155 			if (pte_soft_dirty(vmf->orig_pte))
3156 				entry = pte_mksoft_dirty(entry);
3157 			if (pte_uffd_wp(vmf->orig_pte))
3158 				entry = pte_mkuffd_wp(entry);
3159 		} else {
3160 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3161 		}
3162 
3163 		/*
3164 		 * Clear the pte entry and flush it first, before updating the
3165 		 * pte with the new entry, to keep TLBs on different CPUs in
3166 		 * sync. This code used to set the new PTE then flush TLBs, but
3167 		 * that left a window where the new PTE could be loaded into
3168 		 * some TLBs while the old PTE remains in others.
3169 		 */
3170 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3171 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3172 #ifdef CONFIG_MEM_PURGEABLE
3173 		if (vma->vm_flags & VM_PURGEABLE) {
3174 			pr_info("set wp new folio %lx purgeable\n", folio_pfn(new_folio));
3175 			folio_set_purgeable(new_folio);
3176 			uxpte_set_present(vma, vmf->address);
3177 		}
3178 #endif
3179 		folio_add_lru_vma(new_folio, vma);
3180 		/*
3181 		 * We call the notify macro here because, when using secondary
3182 		 * mmu page tables (such as kvm shadow page tables), we want the
3183 		 * new page to be mapped directly into the secondary page table.
3184 		 */
3185 		BUG_ON(unshare && pte_write(entry));
3186 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3188 		if (old_folio) {
3189 			/*
3190 			 * Only after switching the pte to the new page may
3191 			 * we remove the mapcount here. Otherwise another
3192 			 * process may come and find the rmap count decremented
3193 			 * before the pte is switched to the new page, and
3194 			 * "reuse" the old page writing into it while our pte
3195 			 * here still points into it and can be read by other
3196 			 * threads.
3197 			 *
3198 			 * The critical issue is to order this
3199 			 * page_remove_rmap with the ptp_clear_flush above.
3200 			 * Those stores are ordered by (if nothing else,)
3201 			 * the barrier present in the atomic_add_negative
3202 			 * in page_remove_rmap.
3203 			 *
3204 			 * Then the TLB flush in ptep_clear_flush ensures that
3205 			 * no process can access the old page before the
3206 			 * decremented mapcount is visible. And the old page
3207 			 * cannot be reused until after the decremented
3208 			 * mapcount is visible. So transitively, TLBs to
3209 			 * old page will be flushed before it can be reused.
3210 			 */
3211 			page_remove_rmap(vmf->page, vma, false);
3212 		}
3213 
3214 		/* Free the old page.. */
3215 		new_folio = old_folio;
3216 		page_copied = 1;
3217 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 	} else if (vmf->pte) {
3219 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3220 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3221 	}
3222 
3223 	mmu_notifier_invalidate_range_end(&range);
3224 
3225 	if (new_folio)
3226 		folio_put(new_folio);
3227 	if (old_folio) {
3228 		if (page_copied)
3229 			free_swap_cache(&old_folio->page);
3230 		folio_put(old_folio);
3231 	}
3232 
3233 	delayacct_wpcopy_end();
3234 	return 0;
3235 oom_free_new:
3236 	folio_put(new_folio);
3237 oom:
3238 	if (old_folio)
3239 		folio_put(old_folio);
3240 
3241 	delayacct_wpcopy_end();
3242 	return VM_FAULT_OOM;
3243 }
3244 
3245 /**
3246  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3247  *			  writeable once the page is prepared
3248  *
3249  * @vmf: structure describing the fault
3250  *
3251  * This function handles all that is needed to finish a write page fault in a
3252  * shared mapping due to PTE being read-only once the mapped page is prepared.
3253  * It handles locking of PTE and modifying it.
3254  *
3255  * The function expects the page to be locked or other protection against
3256  * concurrent faults / writeback (such as DAX radix tree locks).
3257  *
3258  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3259  * we acquired PTE lock.
3260  */
finish_mkwrite_fault(struct vm_fault * vmf)3261 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3262 {
3263 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3264 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3265 				       &vmf->ptl);
3266 	if (!vmf->pte)
3267 		return VM_FAULT_NOPAGE;
3268 	/*
3269 	 * We might have raced with another page fault while we released the
3270 	 * pte_offset_map_lock.
3271 	 */
3272 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3273 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3274 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275 		return VM_FAULT_NOPAGE;
3276 	}
3277 	wp_page_reuse(vmf);
3278 	return 0;
3279 }
3280 
3281 /*
3282  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3283  * mapping
3284  */
wp_pfn_shared(struct vm_fault * vmf)3285 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3286 {
3287 	struct vm_area_struct *vma = vmf->vma;
3288 
3289 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3290 		vm_fault_t ret;
3291 
3292 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3293 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3294 			vma_end_read(vmf->vma);
3295 			return VM_FAULT_RETRY;
3296 		}
3297 
3298 		vmf->flags |= FAULT_FLAG_MKWRITE;
3299 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3300 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3301 			return ret;
3302 		return finish_mkwrite_fault(vmf);
3303 	}
3304 	wp_page_reuse(vmf);
3305 	return 0;
3306 }
3307 
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3308 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3309 	__releases(vmf->ptl)
3310 {
3311 	struct vm_area_struct *vma = vmf->vma;
3312 	vm_fault_t ret = 0;
3313 
3314 	folio_get(folio);
3315 
3316 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3317 		vm_fault_t tmp;
3318 
3319 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3320 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3321 			folio_put(folio);
3322 			vma_end_read(vmf->vma);
3323 			return VM_FAULT_RETRY;
3324 		}
3325 
3326 		tmp = do_page_mkwrite(vmf, folio);
3327 		if (unlikely(!tmp || (tmp &
3328 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3329 			folio_put(folio);
3330 			return tmp;
3331 		}
3332 		tmp = finish_mkwrite_fault(vmf);
3333 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3334 			folio_unlock(folio);
3335 			folio_put(folio);
3336 			return tmp;
3337 		}
3338 	} else {
3339 		wp_page_reuse(vmf);
3340 		folio_lock(folio);
3341 	}
3342 	ret |= fault_dirty_shared_page(vmf);
3343 	folio_put(folio);
3344 
3345 	return ret;
3346 }
3347 
3348 /*
3349  * This routine handles present pages, when
3350  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3351  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3352  *   (FAULT_FLAG_UNSHARE)
3353  *
3354  * It is done by copying the page to a new address and decrementing the
3355  * shared-page counter for the old page.
3356  *
3357  * Note that this routine assumes that the protection checks have been
3358  * done by the caller (the low-level page fault routine in most cases).
3359  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3360  * done any necessary COW.
3361  *
3362  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3363  * though the page will change only once the write actually happens. This
3364  * avoids a few races, and potentially makes it more efficient.
3365  *
3366  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3367  * but allow concurrent faults), with pte both mapped and locked.
3368  * We return with mmap_lock still held, but pte unmapped and unlocked.
3369  */
do_wp_page(struct vm_fault * vmf)3370 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3371 	__releases(vmf->ptl)
3372 {
3373 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3374 	struct vm_area_struct *vma = vmf->vma;
3375 	struct folio *folio = NULL;
3376 
3377 	if (likely(!unshare)) {
3378 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3379 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3380 			return handle_userfault(vmf, VM_UFFD_WP);
3381 		}
3382 
3383 		/*
3384 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3385 		 * is flushed in this case before copying.
3386 		 */
3387 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3388 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3389 			flush_tlb_page(vmf->vma, vmf->address);
3390 	}
3391 
3392 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3393 
3394 	if (vmf->page)
3395 		folio = page_folio(vmf->page);
3396 
3397 	/*
3398 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3399 	 * FAULT_FLAG_WRITE set at this point.
3400 	 */
3401 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3402 		/*
3403 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3404 		 * VM_PFNMAP VMA.
3405 		 *
3406 		 * We should not cow pages in a shared writeable mapping.
3407 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3408 		 */
3409 		if (!vmf->page)
3410 			return wp_pfn_shared(vmf);
3411 		return wp_page_shared(vmf, folio);
3412 	}
3413 
3414 	/*
3415 	 * Private mapping: create an exclusive anonymous page copy if reuse
3416 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3417 	 */
3418 	if (folio && folio_test_anon(folio)) {
3419 		/*
3420 		 * If the page is exclusive to this process we must reuse the
3421 		 * page without further checks.
3422 		 */
3423 		if (PageAnonExclusive(vmf->page))
3424 			goto reuse;
3425 
3426 		/*
3427 		 * We have to verify under folio lock: these early checks are
3428 		 * just an optimization to avoid locking the folio and freeing
3429 		 * the swapcache if there is little hope that we can reuse.
3430 		 *
3431 		 * KSM doesn't necessarily raise the folio refcount.
3432 		 */
3433 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3434 			goto copy;
3435 		if (!folio_test_lru(folio))
3436 			/*
3437 			 * We cannot easily detect+handle references from
3438 			 * remote LRU caches or references to LRU folios.
3439 			 */
3440 			lru_add_drain();
3441 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3442 			goto copy;
3443 		if (!folio_trylock(folio))
3444 			goto copy;
3445 		if (folio_test_swapcache(folio))
3446 			folio_free_swap(folio);
3447 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3448 			folio_unlock(folio);
3449 			goto copy;
3450 		}
3451 		/*
3452 		 * Ok, we've got the only folio reference from our mapping
3453 		 * and the folio is locked, it's dark out, and we're wearing
3454 		 * sunglasses. Hit it.
3455 		 */
3456 		page_move_anon_rmap(vmf->page, vma);
3457 		folio_unlock(folio);
3458 reuse:
3459 		if (unlikely(unshare)) {
3460 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3461 			return 0;
3462 		}
3463 		wp_page_reuse(vmf);
3464 		return 0;
3465 	}
3466 copy:
3467 	if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3468 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 		vma_end_read(vmf->vma);
3470 		return VM_FAULT_RETRY;
3471 	}
3472 
3473 	/*
3474 	 * Ok, we need to copy. Oh, well..
3475 	 */
3476 	if (folio)
3477 		folio_get(folio);
3478 
3479 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3480 #ifdef CONFIG_KSM
3481 	if (folio && folio_test_ksm(folio))
3482 		count_vm_event(COW_KSM);
3483 #endif
3484 	return wp_page_copy(vmf);
3485 }
3486 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3487 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3488 		unsigned long start_addr, unsigned long end_addr,
3489 		struct zap_details *details)
3490 {
3491 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3492 }
3493 
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3494 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3495 					    pgoff_t first_index,
3496 					    pgoff_t last_index,
3497 					    struct zap_details *details)
3498 {
3499 	struct vm_area_struct *vma;
3500 	pgoff_t vba, vea, zba, zea;
3501 
3502 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3503 		vba = vma->vm_pgoff;
3504 		vea = vba + vma_pages(vma) - 1;
3505 		zba = max(first_index, vba);
3506 		zea = min(last_index, vea);
3507 
3508 		unmap_mapping_range_vma(vma,
3509 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3510 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3511 				details);
3512 	}
3513 }
3514 
3515 /**
3516  * unmap_mapping_folio() - Unmap single folio from processes.
3517  * @folio: The locked folio to be unmapped.
3518  *
3519  * Unmap this folio from any userspace process which still has it mmaped.
3520  * Typically, for efficiency, the range of nearby pages has already been
3521  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3522  * truncation or invalidation holds the lock on a folio, it may find that
3523  * the page has been remapped again: and then uses unmap_mapping_folio()
3524  * to unmap it finally.
3525  */
unmap_mapping_folio(struct folio * folio)3526 void unmap_mapping_folio(struct folio *folio)
3527 {
3528 	struct address_space *mapping = folio->mapping;
3529 	struct zap_details details = { };
3530 	pgoff_t	first_index;
3531 	pgoff_t	last_index;
3532 
3533 	VM_BUG_ON(!folio_test_locked(folio));
3534 
3535 	first_index = folio->index;
3536 	last_index = folio_next_index(folio) - 1;
3537 
3538 	details.even_cows = false;
3539 	details.single_folio = folio;
3540 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3541 
3542 	i_mmap_lock_read(mapping);
3543 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3544 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3545 					 last_index, &details);
3546 	i_mmap_unlock_read(mapping);
3547 }
3548 
3549 /**
3550  * unmap_mapping_pages() - Unmap pages from processes.
3551  * @mapping: The address space containing pages to be unmapped.
3552  * @start: Index of first page to be unmapped.
3553  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3554  * @even_cows: Whether to unmap even private COWed pages.
3555  *
3556  * Unmap the pages in this address space from any userspace process which
3557  * has them mmaped.  Generally, you want to remove COWed pages as well when
3558  * a file is being truncated, but not when invalidating pages from the page
3559  * cache.
3560  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3561 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3562 		pgoff_t nr, bool even_cows)
3563 {
3564 	struct zap_details details = { };
3565 	pgoff_t	first_index = start;
3566 	pgoff_t	last_index = start + nr - 1;
3567 
3568 	details.even_cows = even_cows;
3569 	if (last_index < first_index)
3570 		last_index = ULONG_MAX;
3571 
3572 	i_mmap_lock_read(mapping);
3573 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3574 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3575 					 last_index, &details);
3576 	i_mmap_unlock_read(mapping);
3577 }
3578 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3579 
3580 /**
3581  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3582  * address_space corresponding to the specified byte range in the underlying
3583  * file.
3584  *
3585  * @mapping: the address space containing mmaps to be unmapped.
3586  * @holebegin: byte in first page to unmap, relative to the start of
3587  * the underlying file.  This will be rounded down to a PAGE_SIZE
3588  * boundary.  Note that this is different from truncate_pagecache(), which
3589  * must keep the partial page.  In contrast, we must get rid of
3590  * partial pages.
3591  * @holelen: size of prospective hole in bytes.  This will be rounded
3592  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3593  * end of the file.
3594  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3595  * but 0 when invalidating pagecache, don't throw away private data.
3596  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3597 void unmap_mapping_range(struct address_space *mapping,
3598 		loff_t const holebegin, loff_t const holelen, int even_cows)
3599 {
3600 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3601 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602 
3603 	/* Check for overflow. */
3604 	if (sizeof(holelen) > sizeof(hlen)) {
3605 		long long holeend =
3606 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3607 		if (holeend & ~(long long)ULONG_MAX)
3608 			hlen = ULONG_MAX - hba + 1;
3609 	}
3610 
3611 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3612 }
3613 EXPORT_SYMBOL(unmap_mapping_range);
3614 
3615 /*
3616  * Restore a potential device exclusive pte to a working pte entry
3617  */
remove_device_exclusive_entry(struct vm_fault * vmf)3618 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3619 {
3620 	struct folio *folio = page_folio(vmf->page);
3621 	struct vm_area_struct *vma = vmf->vma;
3622 	struct mmu_notifier_range range;
3623 	vm_fault_t ret;
3624 
3625 	/*
3626 	 * We need a reference to lock the folio because we don't hold
3627 	 * the PTL so a racing thread can remove the device-exclusive
3628 	 * entry and unmap it. If the folio is free the entry must
3629 	 * have been removed already. If it happens to have already
3630 	 * been re-allocated after being freed all we do is lock and
3631 	 * unlock it.
3632 	 */
3633 	if (!folio_try_get(folio))
3634 		return 0;
3635 
3636 	ret = folio_lock_or_retry(folio, vmf);
3637 	if (ret) {
3638 		folio_put(folio);
3639 		return ret;
3640 	}
3641 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3642 				vma->vm_mm, vmf->address & PAGE_MASK,
3643 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3644 	mmu_notifier_invalidate_range_start(&range);
3645 
3646 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3647 				&vmf->ptl);
3648 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3649 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3650 
3651 	if (vmf->pte)
3652 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3653 	folio_unlock(folio);
3654 	folio_put(folio);
3655 
3656 	mmu_notifier_invalidate_range_end(&range);
3657 	return 0;
3658 }
3659 
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3660 static inline bool should_try_to_free_swap(struct folio *folio,
3661 					   struct vm_area_struct *vma,
3662 					   unsigned int fault_flags)
3663 {
3664 	if (!folio_test_swapcache(folio))
3665 		return false;
3666 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3667 	    folio_test_mlocked(folio))
3668 		return true;
3669 	/*
3670 	 * If we want to map a page that's in the swapcache writable, we
3671 	 * have to detect via the refcount if we're really the exclusive
3672 	 * user. Try freeing the swapcache to get rid of the swapcache
3673 	 * reference only in case it's likely that we'll be the exlusive user.
3674 	 */
3675 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3676 		folio_ref_count(folio) == 2;
3677 }
3678 
pte_marker_clear(struct vm_fault * vmf)3679 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3680 {
3681 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3682 				       vmf->address, &vmf->ptl);
3683 	if (!vmf->pte)
3684 		return 0;
3685 	/*
3686 	 * Be careful so that we will only recover a special uffd-wp pte into a
3687 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3688 	 *
3689 	 * This should also cover the case where e.g. the pte changed
3690 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3691 	 * So is_pte_marker() check is not enough to safely drop the pte.
3692 	 */
3693 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3694 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3695 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3696 	return 0;
3697 }
3698 
do_pte_missing(struct vm_fault * vmf)3699 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3700 {
3701 	if (vma_is_anonymous(vmf->vma))
3702 		return do_anonymous_page(vmf);
3703 	else
3704 		return do_fault(vmf);
3705 }
3706 
3707 /*
3708  * This is actually a page-missing access, but with uffd-wp special pte
3709  * installed.  It means this pte was wr-protected before being unmapped.
3710  */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3711 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3712 {
3713 	/*
3714 	 * Just in case there're leftover special ptes even after the region
3715 	 * got unregistered - we can simply clear them.
3716 	 */
3717 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3718 		return pte_marker_clear(vmf);
3719 
3720 	return do_pte_missing(vmf);
3721 }
3722 
handle_pte_marker(struct vm_fault * vmf)3723 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3724 {
3725 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3726 	unsigned long marker = pte_marker_get(entry);
3727 
3728 	/*
3729 	 * PTE markers should never be empty.  If anything weird happened,
3730 	 * the best thing to do is to kill the process along with its mm.
3731 	 */
3732 	if (WARN_ON_ONCE(!marker))
3733 		return VM_FAULT_SIGBUS;
3734 
3735 	/* Higher priority than uffd-wp when data corrupted */
3736 	if (marker & PTE_MARKER_POISONED)
3737 		return VM_FAULT_HWPOISON;
3738 
3739 	if (pte_marker_entry_uffd_wp(entry))
3740 		return pte_marker_handle_uffd_wp(vmf);
3741 
3742 	/* This is an unknown pte marker */
3743 	return VM_FAULT_SIGBUS;
3744 }
3745 
3746 /*
3747  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3748  * but allow concurrent faults), and pte mapped but not yet locked.
3749  * We return with pte unmapped and unlocked.
3750  *
3751  * We return with the mmap_lock locked or unlocked in the same cases
3752  * as does filemap_fault().
3753  */
do_swap_page(struct vm_fault * vmf)3754 vm_fault_t do_swap_page(struct vm_fault *vmf)
3755 {
3756 	struct vm_area_struct *vma = vmf->vma;
3757 	struct folio *swapcache, *folio = NULL;
3758 	struct page *page;
3759 	struct swap_info_struct *si = NULL;
3760 	rmap_t rmap_flags = RMAP_NONE;
3761 	bool need_clear_cache = false;
3762 	bool exclusive = false;
3763 	swp_entry_t entry;
3764 	pte_t pte;
3765 	vm_fault_t ret = 0;
3766 	void *shadow = NULL;
3767 
3768 	if (!pte_unmap_same(vmf))
3769 		goto out;
3770 
3771 	entry = pte_to_swp_entry(vmf->orig_pte);
3772 	if (unlikely(non_swap_entry(entry))) {
3773 		if (is_migration_entry(entry)) {
3774 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3775 					     vmf->address);
3776 		} else if (is_device_exclusive_entry(entry)) {
3777 			vmf->page = pfn_swap_entry_to_page(entry);
3778 			ret = remove_device_exclusive_entry(vmf);
3779 		} else if (is_device_private_entry(entry)) {
3780 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3781 				/*
3782 				 * migrate_to_ram is not yet ready to operate
3783 				 * under VMA lock.
3784 				 */
3785 				vma_end_read(vma);
3786 				ret = VM_FAULT_RETRY;
3787 				goto out;
3788 			}
3789 
3790 			vmf->page = pfn_swap_entry_to_page(entry);
3791 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3792 					vmf->address, &vmf->ptl);
3793 			if (unlikely(!vmf->pte ||
3794 				     !pte_same(ptep_get(vmf->pte),
3795 							vmf->orig_pte)))
3796 				goto unlock;
3797 
3798 			/*
3799 			 * Get a page reference while we know the page can't be
3800 			 * freed.
3801 			 */
3802 			get_page(vmf->page);
3803 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3804 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3805 			put_page(vmf->page);
3806 		} else if (is_hwpoison_entry(entry)) {
3807 			ret = VM_FAULT_HWPOISON;
3808 		} else if (is_pte_marker_entry(entry)) {
3809 			ret = handle_pte_marker(vmf);
3810 		} else {
3811 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3812 			ret = VM_FAULT_SIGBUS;
3813 		}
3814 		goto out;
3815 	}
3816 
3817 	/* Prevent swapoff from happening to us. */
3818 	si = get_swap_device(entry);
3819 	if (unlikely(!si))
3820 		goto out;
3821 
3822 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3823 	if (folio)
3824 		page = folio_file_page(folio, swp_offset(entry));
3825 	swapcache = folio;
3826 
3827 	if (!folio) {
3828 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3829 		    __swap_count(entry) == 1) {
3830 			/*
3831 			 * Prevent parallel swapin from proceeding with
3832 			 * the cache flag. Otherwise, another thread may
3833 			 * finish swapin first, free the entry, and swapout
3834 			 * reusing the same entry. It's undetectable as
3835 			 * pte_same() returns true due to entry reuse.
3836 			 */
3837 			if (swapcache_prepare(entry)) {
3838 				/* Relax a bit to prevent rapid repeated page faults */
3839 				schedule_timeout_uninterruptible(1);
3840 				goto out;
3841 			}
3842 			need_clear_cache = true;
3843 
3844 			/* skip swapcache */
3845 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3846 						vma, vmf->address, false);
3847 			page = &folio->page;
3848 			if (folio) {
3849 				__folio_set_locked(folio);
3850 				__folio_set_swapbacked(folio);
3851 
3852 				if (mem_cgroup_swapin_charge_folio(folio,
3853 							vma->vm_mm, GFP_KERNEL,
3854 							entry)) {
3855 					ret = VM_FAULT_OOM;
3856 					goto out_page;
3857 				}
3858 				mem_cgroup_swapin_uncharge_swap(entry);
3859 
3860 				shadow = get_shadow_from_swap_cache(entry);
3861 				if (shadow)
3862 					workingset_refault(folio, shadow);
3863 
3864 				folio_add_lru(folio);
3865 
3866 				/* To provide entry to swap_readpage() */
3867 				folio->swap = entry;
3868 				swap_readpage(page, true, NULL);
3869 				folio->private = NULL;
3870 			}
3871 		} else {
3872 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3873 						vmf);
3874 			if (page)
3875 				folio = page_folio(page);
3876 			swapcache = folio;
3877 		}
3878 
3879 		if (!folio) {
3880 			/*
3881 			 * Back out if somebody else faulted in this pte
3882 			 * while we released the pte lock.
3883 			 */
3884 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3885 					vmf->address, &vmf->ptl);
3886 			if (likely(vmf->pte &&
3887 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3888 				ret = VM_FAULT_OOM;
3889 			goto unlock;
3890 		}
3891 
3892 		/* Had to read the page from swap area: Major fault */
3893 		ret = VM_FAULT_MAJOR;
3894 		count_vm_event(PGMAJFAULT);
3895 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3896 	} else if (PageHWPoison(page)) {
3897 		/*
3898 		 * hwpoisoned dirty swapcache pages are kept for killing
3899 		 * owner processes (which may be unknown at hwpoison time)
3900 		 */
3901 		ret = VM_FAULT_HWPOISON;
3902 		goto out_release;
3903 	}
3904 
3905 	ret |= folio_lock_or_retry(folio, vmf);
3906 	if (ret & VM_FAULT_RETRY)
3907 		goto out_release;
3908 
3909 	if (swapcache) {
3910 		/*
3911 		 * Make sure folio_free_swap() or swapoff did not release the
3912 		 * swapcache from under us.  The page pin, and pte_same test
3913 		 * below, are not enough to exclude that.  Even if it is still
3914 		 * swapcache, we need to check that the page's swap has not
3915 		 * changed.
3916 		 */
3917 		if (unlikely(!folio_test_swapcache(folio) ||
3918 			     page_swap_entry(page).val != entry.val))
3919 			goto out_page;
3920 
3921 		/*
3922 		 * KSM sometimes has to copy on read faults, for example, if
3923 		 * page->index of !PageKSM() pages would be nonlinear inside the
3924 		 * anon VMA -- PageKSM() is lost on actual swapout.
3925 		 */
3926 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3927 		if (unlikely(!page)) {
3928 			ret = VM_FAULT_OOM;
3929 			goto out_page;
3930 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3931 			ret = VM_FAULT_HWPOISON;
3932 			goto out_page;
3933 		}
3934 		folio = page_folio(page);
3935 
3936 		/*
3937 		 * If we want to map a page that's in the swapcache writable, we
3938 		 * have to detect via the refcount if we're really the exclusive
3939 		 * owner. Try removing the extra reference from the local LRU
3940 		 * caches if required.
3941 		 */
3942 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3943 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3944 			lru_add_drain();
3945 	}
3946 
3947 	folio_throttle_swaprate(folio, GFP_KERNEL);
3948 
3949 	/*
3950 	 * Back out if somebody else already faulted in this pte.
3951 	 */
3952 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3953 			&vmf->ptl);
3954 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3955 		goto out_nomap;
3956 
3957 	if (unlikely(!folio_test_uptodate(folio))) {
3958 		ret = VM_FAULT_SIGBUS;
3959 		goto out_nomap;
3960 	}
3961 
3962 	/*
3963 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3964 	 * must never point at an anonymous page in the swapcache that is
3965 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3966 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3967 	 * check after taking the PT lock and making sure that nobody
3968 	 * concurrently faulted in this page and set PG_anon_exclusive.
3969 	 */
3970 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3971 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3972 
3973 	/*
3974 	 * Check under PT lock (to protect against concurrent fork() sharing
3975 	 * the swap entry concurrently) for certainly exclusive pages.
3976 	 */
3977 	if (!folio_test_ksm(folio)) {
3978 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3979 		if (folio != swapcache) {
3980 			/*
3981 			 * We have a fresh page that is not exposed to the
3982 			 * swapcache -> certainly exclusive.
3983 			 */
3984 			exclusive = true;
3985 		} else if (exclusive && folio_test_writeback(folio) &&
3986 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3987 			/*
3988 			 * This is tricky: not all swap backends support
3989 			 * concurrent page modifications while under writeback.
3990 			 *
3991 			 * So if we stumble over such a page in the swapcache
3992 			 * we must not set the page exclusive, otherwise we can
3993 			 * map it writable without further checks and modify it
3994 			 * while still under writeback.
3995 			 *
3996 			 * For these problematic swap backends, simply drop the
3997 			 * exclusive marker: this is perfectly fine as we start
3998 			 * writeback only if we fully unmapped the page and
3999 			 * there are no unexpected references on the page after
4000 			 * unmapping succeeded. After fully unmapped, no
4001 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4002 			 * appear, so dropping the exclusive marker and mapping
4003 			 * it only R/O is fine.
4004 			 */
4005 			exclusive = false;
4006 		}
4007 	}
4008 
4009 	/*
4010 	 * Some architectures may have to restore extra metadata to the page
4011 	 * when reading from swap. This metadata may be indexed by swap entry
4012 	 * so this must be called before swap_free().
4013 	 */
4014 	arch_swap_restore(entry, folio);
4015 
4016 	/*
4017 	 * Remove the swap entry and conditionally try to free up the swapcache.
4018 	 * We're already holding a reference on the page but haven't mapped it
4019 	 * yet.
4020 	 */
4021 	swap_free(entry);
4022 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4023 		folio_free_swap(folio);
4024 
4025 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4026 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4027 	pte = mk_pte(page, vma->vm_page_prot);
4028 
4029 	/*
4030 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4031 	 * certainly not shared either because we just allocated them without
4032 	 * exposing them to the swapcache or because the swap entry indicates
4033 	 * exclusivity.
4034 	 */
4035 	if (!folio_test_ksm(folio) &&
4036 	    (exclusive || folio_ref_count(folio) == 1)) {
4037 		if (vmf->flags & FAULT_FLAG_WRITE) {
4038 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4039 			vmf->flags &= ~FAULT_FLAG_WRITE;
4040 		}
4041 		rmap_flags |= RMAP_EXCLUSIVE;
4042 	}
4043 	flush_icache_page(vma, page);
4044 	if (pte_swp_soft_dirty(vmf->orig_pte))
4045 		pte = pte_mksoft_dirty(pte);
4046 	if (pte_swp_uffd_wp(vmf->orig_pte))
4047 		pte = pte_mkuffd_wp(pte);
4048 	vmf->orig_pte = pte;
4049 
4050 	/* ksm created a completely new copy */
4051 	if (unlikely(folio != swapcache && swapcache)) {
4052 		page_add_new_anon_rmap(page, vma, vmf->address);
4053 		folio_add_lru_vma(folio, vma);
4054 	} else {
4055 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4056 	}
4057 
4058 	VM_BUG_ON(!folio_test_anon(folio) ||
4059 			(pte_write(pte) && !PageAnonExclusive(page)));
4060 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4061 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4062 
4063 	folio_unlock(folio);
4064 	if (folio != swapcache && swapcache) {
4065 		/*
4066 		 * Hold the lock to avoid the swap entry to be reused
4067 		 * until we take the PT lock for the pte_same() check
4068 		 * (to avoid false positives from pte_same). For
4069 		 * further safety release the lock after the swap_free
4070 		 * so that the swap count won't change under a
4071 		 * parallel locked swapcache.
4072 		 */
4073 		folio_unlock(swapcache);
4074 		folio_put(swapcache);
4075 	}
4076 
4077 	if (vmf->flags & FAULT_FLAG_WRITE) {
4078 		ret |= do_wp_page(vmf);
4079 		if (ret & VM_FAULT_ERROR)
4080 			ret &= VM_FAULT_ERROR;
4081 		goto out;
4082 	}
4083 
4084 	/* No need to invalidate - it was non-present before */
4085 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4086 unlock:
4087 	if (vmf->pte)
4088 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4089 out:
4090 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4091 	if (need_clear_cache)
4092 		swapcache_clear(si, entry);
4093 	if (si)
4094 		put_swap_device(si);
4095 	return ret;
4096 out_nomap:
4097 	if (vmf->pte)
4098 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4099 out_page:
4100 	folio_unlock(folio);
4101 out_release:
4102 	folio_put(folio);
4103 	if (folio != swapcache && swapcache) {
4104 		folio_unlock(swapcache);
4105 		folio_put(swapcache);
4106 	}
4107 	if (need_clear_cache)
4108 		swapcache_clear(si, entry);
4109 	if (si)
4110 		put_swap_device(si);
4111 	return ret;
4112 }
4113 
4114 /*
4115  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4116  * but allow concurrent faults), and pte mapped but not yet locked.
4117  * We return with mmap_lock still held, but pte unmapped and unlocked.
4118  */
do_anonymous_page(struct vm_fault * vmf)4119 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4120 {
4121 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4122 	struct vm_area_struct *vma = vmf->vma;
4123 	struct folio *folio;
4124 	vm_fault_t ret = 0;
4125 	pte_t entry;
4126 
4127 	/* File mapping without ->vm_ops ? */
4128 	if (vma->vm_flags & VM_SHARED)
4129 		return VM_FAULT_SIGBUS;
4130 
4131 	/*
4132 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4133 	 * be distinguished from a transient failure of pte_offset_map().
4134 	 */
4135 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4136 		return VM_FAULT_OOM;
4137 
4138 #ifdef CONFIG_MEM_PURGEABLE
4139 	/* use extra page table for userexpte */
4140 	if (vma->vm_flags & VM_USEREXPTE) {
4141 		if (do_uxpte_page_fault(vmf, &entry))
4142 			goto oom;
4143 		else
4144 			goto got_page;
4145 	}
4146 #endif
4147 	/* Use the zero-page for reads */
4148 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4149 			!mm_forbids_zeropage(vma->vm_mm)) {
4150 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4151 						vma->vm_page_prot));
4152 #ifdef CONFIG_MEM_PURGEABLE
4153 got_page:
4154 #endif
4155 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4156 				vmf->address, &vmf->ptl);
4157 		if (!vmf->pte)
4158 			goto unlock;
4159 		if (vmf_pte_changed(vmf)) {
4160 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4161 			goto unlock;
4162 		}
4163 		ret = check_stable_address_space(vma->vm_mm);
4164 		if (ret)
4165 			goto unlock;
4166 		/* Deliver the page fault to userland, check inside PT lock */
4167 		if (userfaultfd_missing(vma)) {
4168 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 			return handle_userfault(vmf, VM_UFFD_MISSING);
4170 		}
4171 		goto setpte;
4172 	}
4173 
4174 	/* Allocate our own private page. */
4175 	if (unlikely(anon_vma_prepare(vma)))
4176 		goto oom;
4177 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4178 	if (!folio)
4179 		goto oom;
4180 
4181 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4182 		goto oom_free_page;
4183 	folio_throttle_swaprate(folio, GFP_KERNEL);
4184 
4185 	/*
4186 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4187 	 * preceding stores to the page contents become visible before
4188 	 * the set_pte_at() write.
4189 	 */
4190 	__folio_mark_uptodate(folio);
4191 
4192 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4193 	entry = pte_sw_mkyoung(entry);
4194 	if (vma->vm_flags & VM_WRITE)
4195 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4196 
4197 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4198 			&vmf->ptl);
4199 	if (!vmf->pte)
4200 		goto release;
4201 	if (vmf_pte_changed(vmf)) {
4202 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4203 		goto release;
4204 	}
4205 
4206 	ret = check_stable_address_space(vma->vm_mm);
4207 	if (ret)
4208 		goto release;
4209 
4210 	/* Deliver the page fault to userland, check inside PT lock */
4211 	if (userfaultfd_missing(vma)) {
4212 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4213 		folio_put(folio);
4214 		return handle_userfault(vmf, VM_UFFD_MISSING);
4215 	}
4216 
4217 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4218 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4219 #ifdef CONFIG_MEM_PURGEABLE
4220 	if (vma->vm_flags & VM_PURGEABLE)
4221 		folio_set_purgeable(folio);
4222 #endif
4223 	folio_add_lru_vma(folio, vma);
4224 setpte:
4225 #ifdef CONFIG_MEM_PURGEABLE
4226 	if (vma->vm_flags & VM_PURGEABLE)
4227 		uxpte_set_present(vma, vmf->address);
4228 #endif
4229 	if (uffd_wp)
4230 		entry = pte_mkuffd_wp(entry);
4231 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4232 
4233 	/* No need to invalidate - it was non-present before */
4234 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4235 unlock:
4236 	if (vmf->pte)
4237 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4238 	return ret;
4239 release:
4240 	folio_put(folio);
4241 	goto unlock;
4242 oom_free_page:
4243 	folio_put(folio);
4244 oom:
4245 	return VM_FAULT_OOM;
4246 }
4247 
4248 /*
4249  * The mmap_lock must have been held on entry, and may have been
4250  * released depending on flags and vma->vm_ops->fault() return value.
4251  * See filemap_fault() and __lock_page_retry().
4252  */
__do_fault(struct vm_fault * vmf)4253 static vm_fault_t __do_fault(struct vm_fault *vmf)
4254 {
4255 	struct vm_area_struct *vma = vmf->vma;
4256 	vm_fault_t ret;
4257 
4258 	/*
4259 	 * Preallocate pte before we take page_lock because this might lead to
4260 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4261 	 *				lock_page(A)
4262 	 *				SetPageWriteback(A)
4263 	 *				unlock_page(A)
4264 	 * lock_page(B)
4265 	 *				lock_page(B)
4266 	 * pte_alloc_one
4267 	 *   shrink_page_list
4268 	 *     wait_on_page_writeback(A)
4269 	 *				SetPageWriteback(B)
4270 	 *				unlock_page(B)
4271 	 *				# flush A, B to clear the writeback
4272 	 */
4273 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4274 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4275 		if (!vmf->prealloc_pte)
4276 			return VM_FAULT_OOM;
4277 	}
4278 
4279 	ret = vma->vm_ops->fault(vmf);
4280 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4281 			    VM_FAULT_DONE_COW)))
4282 		return ret;
4283 
4284 	if (unlikely(PageHWPoison(vmf->page))) {
4285 		struct page *page = vmf->page;
4286 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4287 		if (ret & VM_FAULT_LOCKED) {
4288 			if (page_mapped(page))
4289 				unmap_mapping_pages(page_mapping(page),
4290 						    page->index, 1, false);
4291 			/* Retry if a clean page was removed from the cache. */
4292 			if (invalidate_inode_page(page))
4293 				poisonret = VM_FAULT_NOPAGE;
4294 			unlock_page(page);
4295 		}
4296 		put_page(page);
4297 		vmf->page = NULL;
4298 		return poisonret;
4299 	}
4300 
4301 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4302 		lock_page(vmf->page);
4303 	else
4304 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4305 
4306 	return ret;
4307 }
4308 
4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4310 static void deposit_prealloc_pte(struct vm_fault *vmf)
4311 {
4312 	struct vm_area_struct *vma = vmf->vma;
4313 
4314 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4315 	/*
4316 	 * We are going to consume the prealloc table,
4317 	 * count that as nr_ptes.
4318 	 */
4319 	mm_inc_nr_ptes(vma->vm_mm);
4320 	vmf->prealloc_pte = NULL;
4321 }
4322 
do_set_pmd(struct vm_fault * vmf,struct page * page)4323 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4324 {
4325 	struct vm_area_struct *vma = vmf->vma;
4326 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4327 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4328 	pmd_t entry;
4329 	vm_fault_t ret = VM_FAULT_FALLBACK;
4330 
4331 	/*
4332 	 * It is too late to allocate a small folio, we already have a large
4333 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
4334 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4335 	 * PMD mappings if THPs are disabled.
4336 	 */
4337 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4338 		return ret;
4339 
4340 	if (!transhuge_vma_suitable(vma, haddr))
4341 		return ret;
4342 
4343 	page = compound_head(page);
4344 	if (compound_order(page) != HPAGE_PMD_ORDER)
4345 		return ret;
4346 
4347 	/*
4348 	 * Just backoff if any subpage of a THP is corrupted otherwise
4349 	 * the corrupted page may mapped by PMD silently to escape the
4350 	 * check.  This kind of THP just can be PTE mapped.  Access to
4351 	 * the corrupted subpage should trigger SIGBUS as expected.
4352 	 */
4353 	if (unlikely(PageHasHWPoisoned(page)))
4354 		return ret;
4355 
4356 	/*
4357 	 * Archs like ppc64 need additional space to store information
4358 	 * related to pte entry. Use the preallocated table for that.
4359 	 */
4360 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4361 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4362 		if (!vmf->prealloc_pte)
4363 			return VM_FAULT_OOM;
4364 	}
4365 
4366 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4367 	if (unlikely(!pmd_none(*vmf->pmd)))
4368 		goto out;
4369 
4370 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4371 
4372 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4373 	if (write)
4374 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4375 
4376 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4377 	page_add_file_rmap(page, vma, true);
4378 
4379 	/*
4380 	 * deposit and withdraw with pmd lock held
4381 	 */
4382 	if (arch_needs_pgtable_deposit())
4383 		deposit_prealloc_pte(vmf);
4384 
4385 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4386 
4387 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4388 
4389 	/* fault is handled */
4390 	ret = 0;
4391 	count_vm_event(THP_FILE_MAPPED);
4392 out:
4393 	spin_unlock(vmf->ptl);
4394 	return ret;
4395 }
4396 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4397 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4398 {
4399 	return VM_FAULT_FALLBACK;
4400 }
4401 #endif
4402 
4403 /**
4404  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4405  * @vmf: Fault decription.
4406  * @folio: The folio that contains @page.
4407  * @page: The first page to create a PTE for.
4408  * @nr: The number of PTEs to create.
4409  * @addr: The first address to create a PTE for.
4410  */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4411 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4412 		struct page *page, unsigned int nr, unsigned long addr)
4413 {
4414 	struct vm_area_struct *vma = vmf->vma;
4415 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4416 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4417 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4418 	pte_t entry;
4419 
4420 	flush_icache_pages(vma, page, nr);
4421 	entry = mk_pte(page, vma->vm_page_prot);
4422 
4423 	if (prefault && arch_wants_old_prefaulted_pte())
4424 		entry = pte_mkold(entry);
4425 	else
4426 		entry = pte_sw_mkyoung(entry);
4427 
4428 	if (write)
4429 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4430 	if (unlikely(uffd_wp))
4431 		entry = pte_mkuffd_wp(entry);
4432 	/* copy-on-write page */
4433 	if (write && !(vma->vm_flags & VM_SHARED)) {
4434 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4435 		VM_BUG_ON_FOLIO(nr != 1, folio);
4436 		folio_add_new_anon_rmap(folio, vma, addr);
4437 		folio_add_lru_vma(folio, vma);
4438 	} else {
4439 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4440 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4441 	}
4442 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4443 
4444 	/* no need to invalidate: a not-present page won't be cached */
4445 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4446 }
4447 
vmf_pte_changed(struct vm_fault * vmf)4448 static bool vmf_pte_changed(struct vm_fault *vmf)
4449 {
4450 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4451 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4452 
4453 	return !pte_none(ptep_get(vmf->pte));
4454 }
4455 
4456 /**
4457  * finish_fault - finish page fault once we have prepared the page to fault
4458  *
4459  * @vmf: structure describing the fault
4460  *
4461  * This function handles all that is needed to finish a page fault once the
4462  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4463  * given page, adds reverse page mapping, handles memcg charges and LRU
4464  * addition.
4465  *
4466  * The function expects the page to be locked and on success it consumes a
4467  * reference of a page being mapped (for the PTE which maps it).
4468  *
4469  * Return: %0 on success, %VM_FAULT_ code in case of error.
4470  */
finish_fault(struct vm_fault * vmf)4471 vm_fault_t finish_fault(struct vm_fault *vmf)
4472 {
4473 	struct vm_area_struct *vma = vmf->vma;
4474 	struct page *page;
4475 	vm_fault_t ret;
4476 
4477 	/* Did we COW the page? */
4478 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4479 		page = vmf->cow_page;
4480 	else
4481 		page = vmf->page;
4482 
4483 	/*
4484 	 * check even for read faults because we might have lost our CoWed
4485 	 * page
4486 	 */
4487 	if (!(vma->vm_flags & VM_SHARED)) {
4488 		ret = check_stable_address_space(vma->vm_mm);
4489 		if (ret)
4490 			return ret;
4491 	}
4492 
4493 	if (pmd_none(*vmf->pmd)) {
4494 		if (PageTransCompound(page)) {
4495 			ret = do_set_pmd(vmf, page);
4496 			if (ret != VM_FAULT_FALLBACK)
4497 				return ret;
4498 		}
4499 
4500 		if (vmf->prealloc_pte)
4501 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4502 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4503 			return VM_FAULT_OOM;
4504 	}
4505 
4506 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4507 				      vmf->address, &vmf->ptl);
4508 	if (!vmf->pte)
4509 		return VM_FAULT_NOPAGE;
4510 
4511 	/* Re-check under ptl */
4512 	if (likely(!vmf_pte_changed(vmf))) {
4513 		struct folio *folio = page_folio(page);
4514 
4515 		set_pte_range(vmf, folio, page, 1, vmf->address);
4516 		ret = 0;
4517 	} else {
4518 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4519 		ret = VM_FAULT_NOPAGE;
4520 	}
4521 
4522 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4523 	return ret;
4524 }
4525 
4526 static unsigned long fault_around_pages __read_mostly =
4527 	65536 >> PAGE_SHIFT;
4528 
4529 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4530 static int fault_around_bytes_get(void *data, u64 *val)
4531 {
4532 	*val = fault_around_pages << PAGE_SHIFT;
4533 	return 0;
4534 }
4535 
4536 /*
4537  * fault_around_bytes must be rounded down to the nearest page order as it's
4538  * what do_fault_around() expects to see.
4539  */
fault_around_bytes_set(void * data,u64 val)4540 static int fault_around_bytes_set(void *data, u64 val)
4541 {
4542 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4543 		return -EINVAL;
4544 
4545 	/*
4546 	 * The minimum value is 1 page, however this results in no fault-around
4547 	 * at all. See should_fault_around().
4548 	 */
4549 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4550 
4551 	return 0;
4552 }
4553 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4554 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4555 
fault_around_debugfs(void)4556 static int __init fault_around_debugfs(void)
4557 {
4558 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4559 				   &fault_around_bytes_fops);
4560 	return 0;
4561 }
4562 late_initcall(fault_around_debugfs);
4563 #endif
4564 
4565 /*
4566  * do_fault_around() tries to map few pages around the fault address. The hope
4567  * is that the pages will be needed soon and this will lower the number of
4568  * faults to handle.
4569  *
4570  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4571  * not ready to be mapped: not up-to-date, locked, etc.
4572  *
4573  * This function doesn't cross VMA or page table boundaries, in order to call
4574  * map_pages() and acquire a PTE lock only once.
4575  *
4576  * fault_around_pages defines how many pages we'll try to map.
4577  * do_fault_around() expects it to be set to a power of two less than or equal
4578  * to PTRS_PER_PTE.
4579  *
4580  * The virtual address of the area that we map is naturally aligned to
4581  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4582  * (and therefore to page order).  This way it's easier to guarantee
4583  * that we don't cross page table boundaries.
4584  */
do_fault_around(struct vm_fault * vmf)4585 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4586 {
4587 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4588 	pgoff_t pte_off = pte_index(vmf->address);
4589 	/* The page offset of vmf->address within the VMA. */
4590 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4591 	pgoff_t from_pte, to_pte;
4592 	vm_fault_t ret;
4593 
4594 	/* The PTE offset of the start address, clamped to the VMA. */
4595 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4596 		       pte_off - min(pte_off, vma_off));
4597 
4598 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4599 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4600 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4601 
4602 	if (pmd_none(*vmf->pmd)) {
4603 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4604 		if (!vmf->prealloc_pte)
4605 			return VM_FAULT_OOM;
4606 	}
4607 
4608 	rcu_read_lock();
4609 	ret = vmf->vma->vm_ops->map_pages(vmf,
4610 			vmf->pgoff + from_pte - pte_off,
4611 			vmf->pgoff + to_pte - pte_off);
4612 	rcu_read_unlock();
4613 
4614 	return ret;
4615 }
4616 
4617 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4618 static inline bool should_fault_around(struct vm_fault *vmf)
4619 {
4620 	/* No ->map_pages?  No way to fault around... */
4621 	if (!vmf->vma->vm_ops->map_pages)
4622 		return false;
4623 
4624 	if (uffd_disable_fault_around(vmf->vma))
4625 		return false;
4626 
4627 	/* A single page implies no faulting 'around' at all. */
4628 	return fault_around_pages > 1;
4629 }
4630 
do_read_fault(struct vm_fault * vmf)4631 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4632 {
4633 	vm_fault_t ret = 0;
4634 	struct folio *folio;
4635 
4636 	/*
4637 	 * Let's call ->map_pages() first and use ->fault() as fallback
4638 	 * if page by the offset is not ready to be mapped (cold cache or
4639 	 * something).
4640 	 */
4641 	if (should_fault_around(vmf)) {
4642 		ret = do_fault_around(vmf);
4643 		if (ret)
4644 			return ret;
4645 	}
4646 
4647 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4648 		vma_end_read(vmf->vma);
4649 		return VM_FAULT_RETRY;
4650 	}
4651 
4652 	ret = __do_fault(vmf);
4653 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4654 		return ret;
4655 
4656 	ret |= finish_fault(vmf);
4657 	folio = page_folio(vmf->page);
4658 	folio_unlock(folio);
4659 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4660 		folio_put(folio);
4661 	return ret;
4662 }
4663 
do_cow_fault(struct vm_fault * vmf)4664 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4665 {
4666 	struct vm_area_struct *vma = vmf->vma;
4667 	vm_fault_t ret;
4668 
4669 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4670 		vma_end_read(vma);
4671 		return VM_FAULT_RETRY;
4672 	}
4673 
4674 	if (unlikely(anon_vma_prepare(vma)))
4675 		return VM_FAULT_OOM;
4676 
4677 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4678 	if (!vmf->cow_page)
4679 		return VM_FAULT_OOM;
4680 
4681 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4682 				GFP_KERNEL)) {
4683 		put_page(vmf->cow_page);
4684 		return VM_FAULT_OOM;
4685 	}
4686 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4687 
4688 	ret = __do_fault(vmf);
4689 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4690 		goto uncharge_out;
4691 	if (ret & VM_FAULT_DONE_COW)
4692 		return ret;
4693 
4694 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4695 	__SetPageUptodate(vmf->cow_page);
4696 
4697 	ret |= finish_fault(vmf);
4698 	unlock_page(vmf->page);
4699 	put_page(vmf->page);
4700 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4701 		goto uncharge_out;
4702 	return ret;
4703 uncharge_out:
4704 	put_page(vmf->cow_page);
4705 	return ret;
4706 }
4707 
do_shared_fault(struct vm_fault * vmf)4708 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4709 {
4710 	struct vm_area_struct *vma = vmf->vma;
4711 	vm_fault_t ret, tmp;
4712 	struct folio *folio;
4713 
4714 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4715 		vma_end_read(vma);
4716 		return VM_FAULT_RETRY;
4717 	}
4718 
4719 	ret = __do_fault(vmf);
4720 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4721 		return ret;
4722 
4723 	folio = page_folio(vmf->page);
4724 
4725 	/*
4726 	 * Check if the backing address space wants to know that the page is
4727 	 * about to become writable
4728 	 */
4729 	if (vma->vm_ops->page_mkwrite) {
4730 		folio_unlock(folio);
4731 		tmp = do_page_mkwrite(vmf, folio);
4732 		if (unlikely(!tmp ||
4733 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4734 			folio_put(folio);
4735 			return tmp;
4736 		}
4737 	}
4738 
4739 	ret |= finish_fault(vmf);
4740 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4741 					VM_FAULT_RETRY))) {
4742 		folio_unlock(folio);
4743 		folio_put(folio);
4744 		return ret;
4745 	}
4746 
4747 	ret |= fault_dirty_shared_page(vmf);
4748 	return ret;
4749 }
4750 
4751 /*
4752  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4753  * but allow concurrent faults).
4754  * The mmap_lock may have been released depending on flags and our
4755  * return value.  See filemap_fault() and __folio_lock_or_retry().
4756  * If mmap_lock is released, vma may become invalid (for example
4757  * by other thread calling munmap()).
4758  */
do_fault(struct vm_fault * vmf)4759 static vm_fault_t do_fault(struct vm_fault *vmf)
4760 {
4761 	struct vm_area_struct *vma = vmf->vma;
4762 	struct mm_struct *vm_mm = vma->vm_mm;
4763 	vm_fault_t ret;
4764 
4765 	/*
4766 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4767 	 */
4768 	if (!vma->vm_ops->fault) {
4769 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4770 					       vmf->address, &vmf->ptl);
4771 		if (unlikely(!vmf->pte))
4772 			ret = VM_FAULT_SIGBUS;
4773 		else {
4774 			/*
4775 			 * Make sure this is not a temporary clearing of pte
4776 			 * by holding ptl and checking again. A R/M/W update
4777 			 * of pte involves: take ptl, clearing the pte so that
4778 			 * we don't have concurrent modification by hardware
4779 			 * followed by an update.
4780 			 */
4781 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4782 				ret = VM_FAULT_SIGBUS;
4783 			else
4784 				ret = VM_FAULT_NOPAGE;
4785 
4786 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4787 		}
4788 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4789 		ret = do_read_fault(vmf);
4790 	else if (!(vma->vm_flags & VM_SHARED))
4791 		ret = do_cow_fault(vmf);
4792 	else
4793 		ret = do_shared_fault(vmf);
4794 
4795 	/* preallocated pagetable is unused: free it */
4796 	if (vmf->prealloc_pte) {
4797 		pte_free(vm_mm, vmf->prealloc_pte);
4798 		vmf->prealloc_pte = NULL;
4799 	}
4800 	return ret;
4801 }
4802 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4803 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4804 		      unsigned long addr, int page_nid, int *flags)
4805 {
4806 	get_page(page);
4807 
4808 	/* Record the current PID acceesing VMA */
4809 	vma_set_access_pid_bit(vma);
4810 
4811 	count_vm_numa_event(NUMA_HINT_FAULTS);
4812 	if (page_nid == numa_node_id()) {
4813 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4814 		*flags |= TNF_FAULT_LOCAL;
4815 	}
4816 
4817 	return mpol_misplaced(page, vma, addr);
4818 }
4819 
do_numa_page(struct vm_fault * vmf)4820 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4821 {
4822 	struct vm_area_struct *vma = vmf->vma;
4823 	struct page *page = NULL;
4824 	int page_nid = NUMA_NO_NODE;
4825 	bool writable = false;
4826 	int last_cpupid;
4827 	int target_nid;
4828 	pte_t pte, old_pte;
4829 	int flags = 0;
4830 
4831 	/*
4832 	 * The "pte" at this point cannot be used safely without
4833 	 * validation through pte_unmap_same(). It's of NUMA type but
4834 	 * the pfn may be screwed if the read is non atomic.
4835 	 */
4836 	spin_lock(vmf->ptl);
4837 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4838 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4839 		return 0;
4840 	}
4841 
4842 	/* Get the normal PTE  */
4843 	old_pte = ptep_get(vmf->pte);
4844 	pte = pte_modify(old_pte, vma->vm_page_prot);
4845 
4846 	/*
4847 	 * Detect now whether the PTE could be writable; this information
4848 	 * is only valid while holding the PT lock.
4849 	 */
4850 	writable = pte_write(pte);
4851 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4852 	    can_change_pte_writable(vma, vmf->address, pte))
4853 		writable = true;
4854 
4855 	page = vm_normal_page(vma, vmf->address, pte);
4856 	if (!page || is_zone_device_page(page))
4857 		goto out_map;
4858 
4859 	/* TODO: handle PTE-mapped THP */
4860 	if (PageCompound(page))
4861 		goto out_map;
4862 
4863 	/*
4864 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4865 	 * much anyway since they can be in shared cache state. This misses
4866 	 * the case where a mapping is writable but the process never writes
4867 	 * to it but pte_write gets cleared during protection updates and
4868 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4869 	 * background writeback, dirty balancing and application behaviour.
4870 	 */
4871 	if (!writable)
4872 		flags |= TNF_NO_GROUP;
4873 
4874 	/*
4875 	 * Flag if the page is shared between multiple address spaces. This
4876 	 * is later used when determining whether to group tasks together
4877 	 */
4878 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4879 		flags |= TNF_SHARED;
4880 
4881 	page_nid = page_to_nid(page);
4882 	/*
4883 	 * For memory tiering mode, cpupid of slow memory page is used
4884 	 * to record page access time.  So use default value.
4885 	 */
4886 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4887 	    !node_is_toptier(page_nid))
4888 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4889 	else
4890 		last_cpupid = page_cpupid_last(page);
4891 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4892 			&flags);
4893 	if (target_nid == NUMA_NO_NODE) {
4894 		put_page(page);
4895 		goto out_map;
4896 	}
4897 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4898 	writable = false;
4899 
4900 	/* Migrate to the requested node */
4901 	if (migrate_misplaced_page(page, vma, target_nid)) {
4902 		page_nid = target_nid;
4903 		flags |= TNF_MIGRATED;
4904 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4905 		return 0;
4906 	}
4907 
4908 	flags |= TNF_MIGRATE_FAIL;
4909 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4910 				       vmf->address, &vmf->ptl);
4911 	if (unlikely(!vmf->pte))
4912 		return 0;
4913 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4914 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4915 		return 0;
4916 	}
4917 out_map:
4918 	/*
4919 	 * Make it present again, depending on how arch implements
4920 	 * non-accessible ptes, some can allow access by kernel mode.
4921 	 */
4922 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4923 	pte = pte_modify(old_pte, vma->vm_page_prot);
4924 	pte = pte_mkyoung(pte);
4925 	if (writable)
4926 		pte = pte_mkwrite(pte, vma);
4927 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4928 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4929 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4930 
4931 	if (page_nid != NUMA_NO_NODE)
4932 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4933 	return 0;
4934 }
4935 
create_huge_pmd(struct vm_fault * vmf)4936 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4937 {
4938 	struct vm_area_struct *vma = vmf->vma;
4939 	if (vma_is_anonymous(vma))
4940 		return do_huge_pmd_anonymous_page(vmf);
4941 	if (vma->vm_ops->huge_fault)
4942 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4943 	return VM_FAULT_FALLBACK;
4944 }
4945 
4946 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4947 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4948 {
4949 	struct vm_area_struct *vma = vmf->vma;
4950 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4951 	vm_fault_t ret;
4952 
4953 	if (vma_is_anonymous(vma)) {
4954 		if (likely(!unshare) &&
4955 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4956 			return handle_userfault(vmf, VM_UFFD_WP);
4957 		return do_huge_pmd_wp_page(vmf);
4958 	}
4959 
4960 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4961 		if (vma->vm_ops->huge_fault) {
4962 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4963 			if (!(ret & VM_FAULT_FALLBACK))
4964 				return ret;
4965 		}
4966 	}
4967 
4968 	/* COW or write-notify handled on pte level: split pmd. */
4969 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4970 
4971 	return VM_FAULT_FALLBACK;
4972 }
4973 
create_huge_pud(struct vm_fault * vmf)4974 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4975 {
4976 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4977 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4978 	struct vm_area_struct *vma = vmf->vma;
4979 	/* No support for anonymous transparent PUD pages yet */
4980 	if (vma_is_anonymous(vma))
4981 		return VM_FAULT_FALLBACK;
4982 	if (vma->vm_ops->huge_fault)
4983 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4985 	return VM_FAULT_FALLBACK;
4986 }
4987 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4988 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4989 {
4990 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4991 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4992 	struct vm_area_struct *vma = vmf->vma;
4993 	vm_fault_t ret;
4994 
4995 	/* No support for anonymous transparent PUD pages yet */
4996 	if (vma_is_anonymous(vma))
4997 		goto split;
4998 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4999 		if (vma->vm_ops->huge_fault) {
5000 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5001 			if (!(ret & VM_FAULT_FALLBACK))
5002 				return ret;
5003 		}
5004 	}
5005 split:
5006 	/* COW or write-notify not handled on PUD level: split pud.*/
5007 	__split_huge_pud(vma, vmf->pud, vmf->address);
5008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5009 	return VM_FAULT_FALLBACK;
5010 }
5011 
5012 /*
5013  * These routines also need to handle stuff like marking pages dirty
5014  * and/or accessed for architectures that don't do it in hardware (most
5015  * RISC architectures).  The early dirtying is also good on the i386.
5016  *
5017  * There is also a hook called "update_mmu_cache()" that architectures
5018  * with external mmu caches can use to update those (ie the Sparc or
5019  * PowerPC hashed page tables that act as extended TLBs).
5020  *
5021  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5022  * concurrent faults).
5023  *
5024  * The mmap_lock may have been released depending on flags and our return value.
5025  * See filemap_fault() and __folio_lock_or_retry().
5026  */
handle_pte_fault(struct vm_fault * vmf)5027 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5028 {
5029 	pte_t entry;
5030 
5031 	if (unlikely(pmd_none(*vmf->pmd))) {
5032 		/*
5033 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5034 		 * want to allocate huge page, and if we expose page table
5035 		 * for an instant, it will be difficult to retract from
5036 		 * concurrent faults and from rmap lookups.
5037 		 */
5038 		vmf->pte = NULL;
5039 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5040 	} else {
5041 		/*
5042 		 * A regular pmd is established and it can't morph into a huge
5043 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5044 		 * mode; but shmem or file collapse to THP could still morph
5045 		 * it into a huge pmd: just retry later if so.
5046 		 */
5047 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5048 						 vmf->address, &vmf->ptl);
5049 		if (unlikely(!vmf->pte))
5050 			return 0;
5051 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5052 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5053 
5054 		if (pte_none(vmf->orig_pte)) {
5055 			pte_unmap(vmf->pte);
5056 			vmf->pte = NULL;
5057 		}
5058 	}
5059 
5060 	if (!vmf->pte)
5061 		return do_pte_missing(vmf);
5062 
5063 	if (!pte_present(vmf->orig_pte))
5064 		return do_swap_page(vmf);
5065 
5066 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5067 		return do_numa_page(vmf);
5068 
5069 	spin_lock(vmf->ptl);
5070 	entry = vmf->orig_pte;
5071 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5072 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5073 		goto unlock;
5074 	}
5075 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5076 		if (!pte_write(entry))
5077 			return do_wp_page(vmf);
5078 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5079 			entry = pte_mkdirty(entry);
5080 	}
5081 	entry = pte_mkyoung(entry);
5082 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5083 				vmf->flags & FAULT_FLAG_WRITE)) {
5084 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5085 				vmf->pte, 1);
5086 	} else {
5087 		/* Skip spurious TLB flush for retried page fault */
5088 		if (vmf->flags & FAULT_FLAG_TRIED)
5089 			goto unlock;
5090 		/*
5091 		 * This is needed only for protection faults but the arch code
5092 		 * is not yet telling us if this is a protection fault or not.
5093 		 * This still avoids useless tlb flushes for .text page faults
5094 		 * with threads.
5095 		 */
5096 		if (vmf->flags & FAULT_FLAG_WRITE)
5097 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5098 						     vmf->pte);
5099 	}
5100 unlock:
5101 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5102 	return 0;
5103 }
5104 
5105 /*
5106  * On entry, we hold either the VMA lock or the mmap_lock
5107  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5108  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5109  * and __folio_lock_or_retry().
5110  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5111 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5112 		unsigned long address, unsigned int flags)
5113 {
5114 	struct vm_fault vmf = {
5115 		.vma = vma,
5116 		.address = address & PAGE_MASK,
5117 		.real_address = address,
5118 		.flags = flags,
5119 		.pgoff = linear_page_index(vma, address),
5120 		.gfp_mask = __get_fault_gfp_mask(vma),
5121 	};
5122 	struct mm_struct *mm = vma->vm_mm;
5123 	unsigned long vm_flags = vma->vm_flags;
5124 	pgd_t *pgd;
5125 	p4d_t *p4d;
5126 	vm_fault_t ret;
5127 
5128 	pgd = pgd_offset(mm, address);
5129 	p4d = p4d_alloc(mm, pgd, address);
5130 	if (!p4d)
5131 		return VM_FAULT_OOM;
5132 
5133 	vmf.pud = pud_alloc(mm, p4d, address);
5134 	if (!vmf.pud)
5135 		return VM_FAULT_OOM;
5136 retry_pud:
5137 	if (pud_none(*vmf.pud) &&
5138 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5139 		ret = create_huge_pud(&vmf);
5140 		if (!(ret & VM_FAULT_FALLBACK))
5141 			return ret;
5142 	} else {
5143 		pud_t orig_pud = *vmf.pud;
5144 
5145 		barrier();
5146 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5147 
5148 			/*
5149 			 * TODO once we support anonymous PUDs: NUMA case and
5150 			 * FAULT_FLAG_UNSHARE handling.
5151 			 */
5152 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5153 				ret = wp_huge_pud(&vmf, orig_pud);
5154 				if (!(ret & VM_FAULT_FALLBACK))
5155 					return ret;
5156 			} else {
5157 				huge_pud_set_accessed(&vmf, orig_pud);
5158 				return 0;
5159 			}
5160 		}
5161 	}
5162 
5163 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5164 	if (!vmf.pmd)
5165 		return VM_FAULT_OOM;
5166 
5167 	/* Huge pud page fault raced with pmd_alloc? */
5168 	if (pud_trans_unstable(vmf.pud))
5169 		goto retry_pud;
5170 
5171 	if (pmd_none(*vmf.pmd) &&
5172 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5173 		ret = create_huge_pmd(&vmf);
5174 		if (!(ret & VM_FAULT_FALLBACK))
5175 			return ret;
5176 	} else {
5177 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5178 
5179 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5180 			VM_BUG_ON(thp_migration_supported() &&
5181 					  !is_pmd_migration_entry(vmf.orig_pmd));
5182 			if (is_pmd_migration_entry(vmf.orig_pmd))
5183 				pmd_migration_entry_wait(mm, vmf.pmd);
5184 			return 0;
5185 		}
5186 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5187 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5188 				return do_huge_pmd_numa_page(&vmf);
5189 
5190 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5191 			    !pmd_write(vmf.orig_pmd)) {
5192 				ret = wp_huge_pmd(&vmf);
5193 				if (!(ret & VM_FAULT_FALLBACK))
5194 					return ret;
5195 			} else {
5196 				huge_pmd_set_accessed(&vmf);
5197 				return 0;
5198 			}
5199 		}
5200 	}
5201 
5202 	return handle_pte_fault(&vmf);
5203 }
5204 
5205 /**
5206  * mm_account_fault - Do page fault accounting
5207  * @mm: mm from which memcg should be extracted. It can be NULL.
5208  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5209  *        of perf event counters, but we'll still do the per-task accounting to
5210  *        the task who triggered this page fault.
5211  * @address: the faulted address.
5212  * @flags: the fault flags.
5213  * @ret: the fault retcode.
5214  *
5215  * This will take care of most of the page fault accounting.  Meanwhile, it
5216  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5217  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5218  * still be in per-arch page fault handlers at the entry of page fault.
5219  */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5220 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5221 				    unsigned long address, unsigned int flags,
5222 				    vm_fault_t ret)
5223 {
5224 	bool major;
5225 
5226 	/* Incomplete faults will be accounted upon completion. */
5227 	if (ret & VM_FAULT_RETRY)
5228 		return;
5229 
5230 	/*
5231 	 * To preserve the behavior of older kernels, PGFAULT counters record
5232 	 * both successful and failed faults, as opposed to perf counters,
5233 	 * which ignore failed cases.
5234 	 */
5235 	count_vm_event(PGFAULT);
5236 	count_memcg_event_mm(mm, PGFAULT);
5237 
5238 	/*
5239 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5240 	 * valid).  That includes arch_vma_access_permitted() failing before
5241 	 * reaching here. So this is not a "this many hardware page faults"
5242 	 * counter.  We should use the hw profiling for that.
5243 	 */
5244 	if (ret & VM_FAULT_ERROR)
5245 		return;
5246 
5247 	/*
5248 	 * We define the fault as a major fault when the final successful fault
5249 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5250 	 * handle it immediately previously).
5251 	 */
5252 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5253 
5254 	if (major)
5255 		current->maj_flt++;
5256 	else
5257 		current->min_flt++;
5258 
5259 	/*
5260 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5261 	 * accounting for the per thread fault counters who triggered the
5262 	 * fault, and we skip the perf event updates.
5263 	 */
5264 	if (!regs)
5265 		return;
5266 
5267 	if (major)
5268 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5269 	else
5270 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5271 }
5272 
5273 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5274 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5275 {
5276 	/* the LRU algorithm only applies to accesses with recency */
5277 	current->in_lru_fault = vma_has_recency(vma);
5278 }
5279 
lru_gen_exit_fault(void)5280 static void lru_gen_exit_fault(void)
5281 {
5282 	current->in_lru_fault = false;
5283 }
5284 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5285 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5286 {
5287 }
5288 
lru_gen_exit_fault(void)5289 static void lru_gen_exit_fault(void)
5290 {
5291 }
5292 #endif /* CONFIG_LRU_GEN */
5293 
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5294 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5295 				       unsigned int *flags)
5296 {
5297 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5298 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5299 			return VM_FAULT_SIGSEGV;
5300 		/*
5301 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5302 		 * just treat it like an ordinary read-fault otherwise.
5303 		 */
5304 		if (!is_cow_mapping(vma->vm_flags))
5305 			*flags &= ~FAULT_FLAG_UNSHARE;
5306 	} else if (*flags & FAULT_FLAG_WRITE) {
5307 		/* Write faults on read-only mappings are impossible ... */
5308 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5309 			return VM_FAULT_SIGSEGV;
5310 		/* ... and FOLL_FORCE only applies to COW mappings. */
5311 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5312 				 !is_cow_mapping(vma->vm_flags)))
5313 			return VM_FAULT_SIGSEGV;
5314 	}
5315 #ifdef CONFIG_PER_VMA_LOCK
5316 	/*
5317 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5318 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5319 	 */
5320 	if (WARN_ON_ONCE((*flags &
5321 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5322 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5323 		return VM_FAULT_SIGSEGV;
5324 #endif
5325 
5326 	return 0;
5327 }
5328 
5329 /*
5330  * By the time we get here, we already hold the mm semaphore
5331  *
5332  * The mmap_lock may have been released depending on flags and our
5333  * return value.  See filemap_fault() and __folio_lock_or_retry().
5334  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5335 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5336 			   unsigned int flags, struct pt_regs *regs)
5337 {
5338 	/* If the fault handler drops the mmap_lock, vma may be freed */
5339 	struct mm_struct *mm = vma->vm_mm;
5340 	vm_fault_t ret;
5341 
5342 	__set_current_state(TASK_RUNNING);
5343 
5344 	ret = sanitize_fault_flags(vma, &flags);
5345 	if (ret)
5346 		goto out;
5347 
5348 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5349 					    flags & FAULT_FLAG_INSTRUCTION,
5350 					    flags & FAULT_FLAG_REMOTE)) {
5351 		ret = VM_FAULT_SIGSEGV;
5352 		goto out;
5353 	}
5354 
5355 	/*
5356 	 * Enable the memcg OOM handling for faults triggered in user
5357 	 * space.  Kernel faults are handled more gracefully.
5358 	 */
5359 	if (flags & FAULT_FLAG_USER)
5360 		mem_cgroup_enter_user_fault();
5361 
5362 	lru_gen_enter_fault(vma);
5363 
5364 	if (unlikely(is_vm_hugetlb_page(vma)))
5365 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5366 	else
5367 		ret = __handle_mm_fault(vma, address, flags);
5368 
5369 	lru_gen_exit_fault();
5370 
5371 	if (flags & FAULT_FLAG_USER) {
5372 		mem_cgroup_exit_user_fault();
5373 		/*
5374 		 * The task may have entered a memcg OOM situation but
5375 		 * if the allocation error was handled gracefully (no
5376 		 * VM_FAULT_OOM), there is no need to kill anything.
5377 		 * Just clean up the OOM state peacefully.
5378 		 */
5379 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5380 			mem_cgroup_oom_synchronize(false);
5381 	}
5382 out:
5383 	mm_account_fault(mm, regs, address, flags, ret);
5384 
5385 	return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(handle_mm_fault);
5388 
5389 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5390 #include <linux/extable.h>
5391 
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5392 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5393 {
5394 	if (likely(mmap_read_trylock(mm)))
5395 		return true;
5396 
5397 	if (regs && !user_mode(regs)) {
5398 		unsigned long ip = exception_ip(regs);
5399 		if (!search_exception_tables(ip))
5400 			return false;
5401 	}
5402 
5403 	return !mmap_read_lock_killable(mm);
5404 }
5405 
mmap_upgrade_trylock(struct mm_struct * mm)5406 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5407 {
5408 	/*
5409 	 * We don't have this operation yet.
5410 	 *
5411 	 * It should be easy enough to do: it's basically a
5412 	 *    atomic_long_try_cmpxchg_acquire()
5413 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5414 	 * it also needs the proper lockdep magic etc.
5415 	 */
5416 	return false;
5417 }
5418 
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5419 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5420 {
5421 	mmap_read_unlock(mm);
5422 	if (regs && !user_mode(regs)) {
5423 		unsigned long ip = exception_ip(regs);
5424 		if (!search_exception_tables(ip))
5425 			return false;
5426 	}
5427 	return !mmap_write_lock_killable(mm);
5428 }
5429 
5430 /*
5431  * Helper for page fault handling.
5432  *
5433  * This is kind of equivalend to "mmap_read_lock()" followed
5434  * by "find_extend_vma()", except it's a lot more careful about
5435  * the locking (and will drop the lock on failure).
5436  *
5437  * For example, if we have a kernel bug that causes a page
5438  * fault, we don't want to just use mmap_read_lock() to get
5439  * the mm lock, because that would deadlock if the bug were
5440  * to happen while we're holding the mm lock for writing.
5441  *
5442  * So this checks the exception tables on kernel faults in
5443  * order to only do this all for instructions that are actually
5444  * expected to fault.
5445  *
5446  * We can also actually take the mm lock for writing if we
5447  * need to extend the vma, which helps the VM layer a lot.
5448  */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5449 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5450 			unsigned long addr, struct pt_regs *regs)
5451 {
5452 	struct vm_area_struct *vma;
5453 
5454 	if (!get_mmap_lock_carefully(mm, regs))
5455 		return NULL;
5456 
5457 	vma = find_vma(mm, addr);
5458 	if (likely(vma && (vma->vm_start <= addr)))
5459 		return vma;
5460 
5461 	/*
5462 	 * Well, dang. We might still be successful, but only
5463 	 * if we can extend a vma to do so.
5464 	 */
5465 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5466 		mmap_read_unlock(mm);
5467 		return NULL;
5468 	}
5469 
5470 	/*
5471 	 * We can try to upgrade the mmap lock atomically,
5472 	 * in which case we can continue to use the vma
5473 	 * we already looked up.
5474 	 *
5475 	 * Otherwise we'll have to drop the mmap lock and
5476 	 * re-take it, and also look up the vma again,
5477 	 * re-checking it.
5478 	 */
5479 	if (!mmap_upgrade_trylock(mm)) {
5480 		if (!upgrade_mmap_lock_carefully(mm, regs))
5481 			return NULL;
5482 
5483 		vma = find_vma(mm, addr);
5484 		if (!vma)
5485 			goto fail;
5486 		if (vma->vm_start <= addr)
5487 			goto success;
5488 		if (!(vma->vm_flags & VM_GROWSDOWN))
5489 			goto fail;
5490 	}
5491 
5492 	if (expand_stack_locked(vma, addr))
5493 		goto fail;
5494 
5495 success:
5496 	mmap_write_downgrade(mm);
5497 	return vma;
5498 
5499 fail:
5500 	mmap_write_unlock(mm);
5501 	return NULL;
5502 }
5503 #endif
5504 
5505 #ifdef CONFIG_PER_VMA_LOCK
5506 /*
5507  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5508  * stable and not isolated. If the VMA is not found or is being modified the
5509  * function returns NULL.
5510  */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5511 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5512 					  unsigned long address)
5513 {
5514 	MA_STATE(mas, &mm->mm_mt, address, address);
5515 	struct vm_area_struct *vma;
5516 
5517 	rcu_read_lock();
5518 retry:
5519 	vma = mas_walk(&mas);
5520 	if (!vma)
5521 		goto inval;
5522 
5523 	if (!vma_start_read(vma))
5524 		goto inval;
5525 
5526 	/*
5527 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5528 	 * This check must happen after vma_start_read(); otherwise, a
5529 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5530 	 * from its anon_vma.
5531 	 */
5532 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5533 		goto inval_end_read;
5534 
5535 	/* Check since vm_start/vm_end might change before we lock the VMA */
5536 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5537 		goto inval_end_read;
5538 
5539 	/* Check if the VMA got isolated after we found it */
5540 	if (vma->detached) {
5541 		vma_end_read(vma);
5542 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5543 		/* The area was replaced with another one */
5544 		goto retry;
5545 	}
5546 
5547 	rcu_read_unlock();
5548 	return vma;
5549 
5550 inval_end_read:
5551 	vma_end_read(vma);
5552 inval:
5553 	rcu_read_unlock();
5554 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5555 	return NULL;
5556 }
5557 #endif /* CONFIG_PER_VMA_LOCK */
5558 
5559 #ifndef __PAGETABLE_P4D_FOLDED
5560 /*
5561  * Allocate p4d page table.
5562  * We've already handled the fast-path in-line.
5563  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5564 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5565 {
5566 	p4d_t *new = p4d_alloc_one(mm, address);
5567 	if (!new)
5568 		return -ENOMEM;
5569 
5570 	spin_lock(&mm->page_table_lock);
5571 	if (pgd_present(*pgd)) {	/* Another has populated it */
5572 		p4d_free(mm, new);
5573 	} else {
5574 		smp_wmb(); /* See comment in pmd_install() */
5575 		pgd_populate(mm, pgd, new);
5576 	}
5577 	spin_unlock(&mm->page_table_lock);
5578 	return 0;
5579 }
5580 #endif /* __PAGETABLE_P4D_FOLDED */
5581 
5582 #ifndef __PAGETABLE_PUD_FOLDED
5583 /*
5584  * Allocate page upper directory.
5585  * We've already handled the fast-path in-line.
5586  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5587 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5588 {
5589 	pud_t *new = pud_alloc_one(mm, address);
5590 	if (!new)
5591 		return -ENOMEM;
5592 
5593 	spin_lock(&mm->page_table_lock);
5594 	if (!p4d_present(*p4d)) {
5595 		mm_inc_nr_puds(mm);
5596 		smp_wmb(); /* See comment in pmd_install() */
5597 		p4d_populate(mm, p4d, new);
5598 	} else	/* Another has populated it */
5599 		pud_free(mm, new);
5600 	spin_unlock(&mm->page_table_lock);
5601 	return 0;
5602 }
5603 #endif /* __PAGETABLE_PUD_FOLDED */
5604 
5605 #ifndef __PAGETABLE_PMD_FOLDED
5606 /*
5607  * Allocate page middle directory.
5608  * We've already handled the fast-path in-line.
5609  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5610 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5611 {
5612 	spinlock_t *ptl;
5613 	pmd_t *new = pmd_alloc_one(mm, address);
5614 	if (!new)
5615 		return -ENOMEM;
5616 
5617 	ptl = pud_lock(mm, pud);
5618 	if (!pud_present(*pud)) {
5619 		mm_inc_nr_pmds(mm);
5620 		smp_wmb(); /* See comment in pmd_install() */
5621 		pud_populate(mm, pud, new);
5622 	} else {	/* Another has populated it */
5623 		pmd_free(mm, new);
5624 	}
5625 	spin_unlock(ptl);
5626 	return 0;
5627 }
5628 #endif /* __PAGETABLE_PMD_FOLDED */
5629 
5630 /**
5631  * follow_pte - look up PTE at a user virtual address
5632  * @mm: the mm_struct of the target address space
5633  * @address: user virtual address
5634  * @ptepp: location to store found PTE
5635  * @ptlp: location to store the lock for the PTE
5636  *
5637  * On a successful return, the pointer to the PTE is stored in @ptepp;
5638  * the corresponding lock is taken and its location is stored in @ptlp.
5639  * The contents of the PTE are only stable until @ptlp is released;
5640  * any further use, if any, must be protected against invalidation
5641  * with MMU notifiers.
5642  *
5643  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5644  * should be taken for read.
5645  *
5646  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5647  * it is not a good general-purpose API.
5648  *
5649  * Return: zero on success, -ve otherwise.
5650  */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5651 int follow_pte(struct mm_struct *mm, unsigned long address,
5652 	       pte_t **ptepp, spinlock_t **ptlp)
5653 {
5654 	pgd_t *pgd;
5655 	p4d_t *p4d;
5656 	pud_t *pud;
5657 	pmd_t *pmd;
5658 	pte_t *ptep;
5659 
5660 	pgd = pgd_offset(mm, address);
5661 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5662 		goto out;
5663 
5664 	p4d = p4d_offset(pgd, address);
5665 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5666 		goto out;
5667 
5668 	pud = pud_offset(p4d, address);
5669 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5670 		goto out;
5671 
5672 	pmd = pmd_offset(pud, address);
5673 	VM_BUG_ON(pmd_trans_huge(*pmd));
5674 
5675 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5676 	if (!ptep)
5677 		goto out;
5678 	if (!pte_present(ptep_get(ptep)))
5679 		goto unlock;
5680 	*ptepp = ptep;
5681 	return 0;
5682 unlock:
5683 	pte_unmap_unlock(ptep, *ptlp);
5684 out:
5685 	return -EINVAL;
5686 }
5687 EXPORT_SYMBOL_GPL(follow_pte);
5688 
5689 /**
5690  * follow_pfn - look up PFN at a user virtual address
5691  * @vma: memory mapping
5692  * @address: user virtual address
5693  * @pfn: location to store found PFN
5694  *
5695  * Only IO mappings and raw PFN mappings are allowed.
5696  *
5697  * This function does not allow the caller to read the permissions
5698  * of the PTE.  Do not use it.
5699  *
5700  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5701  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5702 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5703 	unsigned long *pfn)
5704 {
5705 	int ret = -EINVAL;
5706 	spinlock_t *ptl;
5707 	pte_t *ptep;
5708 
5709 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5710 		return ret;
5711 
5712 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5713 	if (ret)
5714 		return ret;
5715 	*pfn = pte_pfn(ptep_get(ptep));
5716 	pte_unmap_unlock(ptep, ptl);
5717 	return 0;
5718 }
5719 EXPORT_SYMBOL(follow_pfn);
5720 
5721 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5722 int follow_phys(struct vm_area_struct *vma,
5723 		unsigned long address, unsigned int flags,
5724 		unsigned long *prot, resource_size_t *phys)
5725 {
5726 	int ret = -EINVAL;
5727 	pte_t *ptep, pte;
5728 	spinlock_t *ptl;
5729 
5730 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5731 		goto out;
5732 
5733 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5734 		goto out;
5735 	pte = ptep_get(ptep);
5736 
5737 	/* Never return PFNs of anon folios in COW mappings. */
5738 	if (vm_normal_folio(vma, address, pte))
5739 		goto unlock;
5740 
5741 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5742 		goto unlock;
5743 
5744 	*prot = pgprot_val(pte_pgprot(pte));
5745 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5746 
5747 	ret = 0;
5748 unlock:
5749 	pte_unmap_unlock(ptep, ptl);
5750 out:
5751 	return ret;
5752 }
5753 
5754 /**
5755  * generic_access_phys - generic implementation for iomem mmap access
5756  * @vma: the vma to access
5757  * @addr: userspace address, not relative offset within @vma
5758  * @buf: buffer to read/write
5759  * @len: length of transfer
5760  * @write: set to FOLL_WRITE when writing, otherwise reading
5761  *
5762  * This is a generic implementation for &vm_operations_struct.access for an
5763  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5764  * not page based.
5765  */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5766 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5767 			void *buf, int len, int write)
5768 {
5769 	resource_size_t phys_addr;
5770 	unsigned long prot = 0;
5771 	void __iomem *maddr;
5772 	pte_t *ptep, pte;
5773 	spinlock_t *ptl;
5774 	int offset = offset_in_page(addr);
5775 	int ret = -EINVAL;
5776 
5777 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5778 		return -EINVAL;
5779 
5780 retry:
5781 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5782 		return -EINVAL;
5783 	pte = ptep_get(ptep);
5784 	pte_unmap_unlock(ptep, ptl);
5785 
5786 	prot = pgprot_val(pte_pgprot(pte));
5787 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5788 
5789 	if ((write & FOLL_WRITE) && !pte_write(pte))
5790 		return -EINVAL;
5791 
5792 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5793 	if (!maddr)
5794 		return -ENOMEM;
5795 
5796 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5797 		goto out_unmap;
5798 
5799 	if (!pte_same(pte, ptep_get(ptep))) {
5800 		pte_unmap_unlock(ptep, ptl);
5801 		iounmap(maddr);
5802 
5803 		goto retry;
5804 	}
5805 
5806 	if (write)
5807 		memcpy_toio(maddr + offset, buf, len);
5808 	else
5809 		memcpy_fromio(buf, maddr + offset, len);
5810 	ret = len;
5811 	pte_unmap_unlock(ptep, ptl);
5812 out_unmap:
5813 	iounmap(maddr);
5814 
5815 	return ret;
5816 }
5817 EXPORT_SYMBOL_GPL(generic_access_phys);
5818 #endif
5819 
5820 /*
5821  * Access another process' address space as given in mm.
5822  */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5823 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5824 		       int len, unsigned int gup_flags)
5825 {
5826 	void *old_buf = buf;
5827 	int write = gup_flags & FOLL_WRITE;
5828 
5829 	if (mmap_read_lock_killable(mm))
5830 		return 0;
5831 
5832 	/* Untag the address before looking up the VMA */
5833 	addr = untagged_addr_remote(mm, addr);
5834 
5835 	/* Avoid triggering the temporary warning in __get_user_pages */
5836 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5837 		return 0;
5838 
5839 	/* ignore errors, just check how much was successfully transferred */
5840 	while (len) {
5841 		int bytes, offset;
5842 		void *maddr;
5843 		struct vm_area_struct *vma = NULL;
5844 		struct page *page = get_user_page_vma_remote(mm, addr,
5845 							     gup_flags, &vma);
5846 
5847 		if (IS_ERR_OR_NULL(page)) {
5848 			/* We might need to expand the stack to access it */
5849 			vma = vma_lookup(mm, addr);
5850 			if (!vma) {
5851 				vma = expand_stack(mm, addr);
5852 
5853 				/* mmap_lock was dropped on failure */
5854 				if (!vma)
5855 					return buf - old_buf;
5856 
5857 				/* Try again if stack expansion worked */
5858 				continue;
5859 			}
5860 
5861 
5862 			/*
5863 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5864 			 * we can access using slightly different code.
5865 			 */
5866 			bytes = 0;
5867 #ifdef CONFIG_HAVE_IOREMAP_PROT
5868 			if (vma->vm_ops && vma->vm_ops->access)
5869 				bytes = vma->vm_ops->access(vma, addr, buf,
5870 							    len, write);
5871 #endif
5872 			if (bytes <= 0)
5873 				break;
5874 		} else {
5875 			bytes = len;
5876 			offset = addr & (PAGE_SIZE-1);
5877 			if (bytes > PAGE_SIZE-offset)
5878 				bytes = PAGE_SIZE-offset;
5879 
5880 			maddr = kmap(page);
5881 			if (write) {
5882 				copy_to_user_page(vma, page, addr,
5883 						  maddr + offset, buf, bytes);
5884 				set_page_dirty_lock(page);
5885 			} else {
5886 				copy_from_user_page(vma, page, addr,
5887 						    buf, maddr + offset, bytes);
5888 			}
5889 			kunmap(page);
5890 			put_page(page);
5891 		}
5892 		len -= bytes;
5893 		buf += bytes;
5894 		addr += bytes;
5895 	}
5896 	mmap_read_unlock(mm);
5897 
5898 	return buf - old_buf;
5899 }
5900 
5901 /**
5902  * access_remote_vm - access another process' address space
5903  * @mm:		the mm_struct of the target address space
5904  * @addr:	start address to access
5905  * @buf:	source or destination buffer
5906  * @len:	number of bytes to transfer
5907  * @gup_flags:	flags modifying lookup behaviour
5908  *
5909  * The caller must hold a reference on @mm.
5910  *
5911  * Return: number of bytes copied from source to destination.
5912  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5913 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5914 		void *buf, int len, unsigned int gup_flags)
5915 {
5916 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5917 }
5918 
5919 /*
5920  * Access another process' address space.
5921  * Source/target buffer must be kernel space,
5922  * Do not walk the page table directly, use get_user_pages
5923  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5924 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5925 		void *buf, int len, unsigned int gup_flags)
5926 {
5927 	struct mm_struct *mm;
5928 	int ret;
5929 
5930 	mm = get_task_mm(tsk);
5931 	if (!mm)
5932 		return 0;
5933 
5934 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5935 
5936 	mmput(mm);
5937 
5938 	return ret;
5939 }
5940 EXPORT_SYMBOL_GPL(access_process_vm);
5941 
5942 /*
5943  * Print the name of a VMA.
5944  */
print_vma_addr(char * prefix,unsigned long ip)5945 void print_vma_addr(char *prefix, unsigned long ip)
5946 {
5947 	struct mm_struct *mm = current->mm;
5948 	struct vm_area_struct *vma;
5949 
5950 	/*
5951 	 * we might be running from an atomic context so we cannot sleep
5952 	 */
5953 	if (!mmap_read_trylock(mm))
5954 		return;
5955 
5956 	vma = find_vma(mm, ip);
5957 	if (vma && vma->vm_file) {
5958 		struct file *f = vma->vm_file;
5959 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5960 		if (buf) {
5961 			char *p;
5962 
5963 			p = file_path(f, buf, PAGE_SIZE);
5964 			if (IS_ERR(p))
5965 				p = "?";
5966 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5967 					vma->vm_start,
5968 					vma->vm_end - vma->vm_start);
5969 			free_page((unsigned long)buf);
5970 		}
5971 	}
5972 	mmap_read_unlock(mm);
5973 }
5974 
5975 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5976 void __might_fault(const char *file, int line)
5977 {
5978 	if (pagefault_disabled())
5979 		return;
5980 	__might_sleep(file, line);
5981 	if (current->mm)
5982 		might_lock_read(&current->mm->mmap_lock);
5983 }
5984 EXPORT_SYMBOL(__might_fault);
5985 #endif
5986 
5987 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5988 /*
5989  * Process all subpages of the specified huge page with the specified
5990  * operation.  The target subpage will be processed last to keep its
5991  * cache lines hot.
5992  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5993 static inline int process_huge_page(
5994 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5995 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5996 	void *arg)
5997 {
5998 	int i, n, base, l, ret;
5999 	unsigned long addr = addr_hint &
6000 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6001 
6002 	/* Process target subpage last to keep its cache lines hot */
6003 	might_sleep();
6004 	n = (addr_hint - addr) / PAGE_SIZE;
6005 	if (2 * n <= pages_per_huge_page) {
6006 		/* If target subpage in first half of huge page */
6007 		base = 0;
6008 		l = n;
6009 		/* Process subpages at the end of huge page */
6010 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6011 			cond_resched();
6012 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6013 			if (ret)
6014 				return ret;
6015 		}
6016 	} else {
6017 		/* If target subpage in second half of huge page */
6018 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6019 		l = pages_per_huge_page - n;
6020 		/* Process subpages at the begin of huge page */
6021 		for (i = 0; i < base; i++) {
6022 			cond_resched();
6023 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6024 			if (ret)
6025 				return ret;
6026 		}
6027 	}
6028 	/*
6029 	 * Process remaining subpages in left-right-left-right pattern
6030 	 * towards the target subpage
6031 	 */
6032 	for (i = 0; i < l; i++) {
6033 		int left_idx = base + i;
6034 		int right_idx = base + 2 * l - 1 - i;
6035 
6036 		cond_resched();
6037 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6038 		if (ret)
6039 			return ret;
6040 		cond_resched();
6041 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6042 		if (ret)
6043 			return ret;
6044 	}
6045 	return 0;
6046 }
6047 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6048 static void clear_gigantic_page(struct page *page,
6049 				unsigned long addr,
6050 				unsigned int pages_per_huge_page)
6051 {
6052 	int i;
6053 	struct page *p;
6054 
6055 	might_sleep();
6056 	for (i = 0; i < pages_per_huge_page; i++) {
6057 		p = nth_page(page, i);
6058 		cond_resched();
6059 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6060 	}
6061 }
6062 
clear_subpage(unsigned long addr,int idx,void * arg)6063 static int clear_subpage(unsigned long addr, int idx, void *arg)
6064 {
6065 	struct page *page = arg;
6066 
6067 	clear_user_highpage(page + idx, addr);
6068 	return 0;
6069 }
6070 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6071 void clear_huge_page(struct page *page,
6072 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6073 {
6074 	unsigned long addr = addr_hint &
6075 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6076 
6077 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6078 		clear_gigantic_page(page, addr, pages_per_huge_page);
6079 		return;
6080 	}
6081 
6082 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6083 }
6084 
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6085 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6086 				     unsigned long addr,
6087 				     struct vm_area_struct *vma,
6088 				     unsigned int pages_per_huge_page)
6089 {
6090 	int i;
6091 	struct page *dst_page;
6092 	struct page *src_page;
6093 
6094 	for (i = 0; i < pages_per_huge_page; i++) {
6095 		dst_page = folio_page(dst, i);
6096 		src_page = folio_page(src, i);
6097 
6098 		cond_resched();
6099 		if (copy_mc_user_highpage(dst_page, src_page,
6100 					  addr + i*PAGE_SIZE, vma)) {
6101 			memory_failure_queue(page_to_pfn(src_page), 0);
6102 			return -EHWPOISON;
6103 		}
6104 	}
6105 	return 0;
6106 }
6107 
6108 struct copy_subpage_arg {
6109 	struct page *dst;
6110 	struct page *src;
6111 	struct vm_area_struct *vma;
6112 };
6113 
copy_subpage(unsigned long addr,int idx,void * arg)6114 static int copy_subpage(unsigned long addr, int idx, void *arg)
6115 {
6116 	struct copy_subpage_arg *copy_arg = arg;
6117 
6118 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6119 				  addr, copy_arg->vma)) {
6120 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6121 		return -EHWPOISON;
6122 	}
6123 	return 0;
6124 }
6125 
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6126 int copy_user_large_folio(struct folio *dst, struct folio *src,
6127 			  unsigned long addr_hint, struct vm_area_struct *vma)
6128 {
6129 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6130 	unsigned long addr = addr_hint &
6131 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6132 	struct copy_subpage_arg arg = {
6133 		.dst = &dst->page,
6134 		.src = &src->page,
6135 		.vma = vma,
6136 	};
6137 
6138 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6139 		return copy_user_gigantic_page(dst, src, addr, vma,
6140 					       pages_per_huge_page);
6141 
6142 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6143 }
6144 
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6145 long copy_folio_from_user(struct folio *dst_folio,
6146 			   const void __user *usr_src,
6147 			   bool allow_pagefault)
6148 {
6149 	void *kaddr;
6150 	unsigned long i, rc = 0;
6151 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6152 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6153 	struct page *subpage;
6154 
6155 	for (i = 0; i < nr_pages; i++) {
6156 		subpage = folio_page(dst_folio, i);
6157 		kaddr = kmap_local_page(subpage);
6158 		if (!allow_pagefault)
6159 			pagefault_disable();
6160 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6161 		if (!allow_pagefault)
6162 			pagefault_enable();
6163 		kunmap_local(kaddr);
6164 
6165 		ret_val -= (PAGE_SIZE - rc);
6166 		if (rc)
6167 			break;
6168 
6169 		flush_dcache_page(subpage);
6170 
6171 		cond_resched();
6172 	}
6173 	return ret_val;
6174 }
6175 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6176 
6177 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6178 
6179 static struct kmem_cache *page_ptl_cachep;
6180 
ptlock_cache_init(void)6181 void __init ptlock_cache_init(void)
6182 {
6183 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6184 			SLAB_PANIC, NULL);
6185 }
6186 
ptlock_alloc(struct ptdesc * ptdesc)6187 bool ptlock_alloc(struct ptdesc *ptdesc)
6188 {
6189 	spinlock_t *ptl;
6190 
6191 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6192 	if (!ptl)
6193 		return false;
6194 	ptdesc->ptl = ptl;
6195 	return true;
6196 }
6197 
ptlock_free(struct ptdesc * ptdesc)6198 void ptlock_free(struct ptdesc *ptdesc)
6199 {
6200 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6201 }
6202 #endif
6203