1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 #include <linux/zswapd.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 enum {
46 MEMMAP_ON_MEMORY_DISABLE = 0,
47 MEMMAP_ON_MEMORY_ENABLE,
48 MEMMAP_ON_MEMORY_FORCE,
49 };
50
51 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
52
memory_block_memmap_size(void)53 static inline unsigned long memory_block_memmap_size(void)
54 {
55 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
56 }
57
memory_block_memmap_on_memory_pages(void)58 static inline unsigned long memory_block_memmap_on_memory_pages(void)
59 {
60 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
61
62 /*
63 * In "forced" memmap_on_memory mode, we add extra pages to align the
64 * vmemmap size to cover full pageblocks. That way, we can add memory
65 * even if the vmemmap size is not properly aligned, however, we might waste
66 * memory.
67 */
68 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
69 return pageblock_align(nr_pages);
70 return nr_pages;
71 }
72
73 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
74 /*
75 * memory_hotplug.memmap_on_memory parameter
76 */
set_memmap_mode(const char * val,const struct kernel_param * kp)77 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
78 {
79 int ret, mode;
80 bool enabled;
81
82 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
83 mode = MEMMAP_ON_MEMORY_FORCE;
84 } else {
85 ret = kstrtobool(val, &enabled);
86 if (ret < 0)
87 return ret;
88 if (enabled)
89 mode = MEMMAP_ON_MEMORY_ENABLE;
90 else
91 mode = MEMMAP_ON_MEMORY_DISABLE;
92 }
93 *((int *)kp->arg) = mode;
94 if (mode == MEMMAP_ON_MEMORY_FORCE) {
95 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
96
97 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
98 memmap_pages - PFN_UP(memory_block_memmap_size()));
99 }
100 return 0;
101 }
102
get_memmap_mode(char * buffer,const struct kernel_param * kp)103 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
104 {
105 int mode = *((int *)kp->arg);
106
107 if (mode == MEMMAP_ON_MEMORY_FORCE)
108 return sprintf(buffer, "force\n");
109 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
110 }
111
112 static const struct kernel_param_ops memmap_mode_ops = {
113 .set = set_memmap_mode,
114 .get = get_memmap_mode,
115 };
116 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
117 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
118 "With value \"force\" it could result in memory wastage due "
119 "to memmap size limitations (Y/N/force)");
120
mhp_memmap_on_memory(void)121 static inline bool mhp_memmap_on_memory(void)
122 {
123 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
124 }
125 #else
mhp_memmap_on_memory(void)126 static inline bool mhp_memmap_on_memory(void)
127 {
128 return false;
129 }
130 #endif
131
132 enum {
133 ONLINE_POLICY_CONTIG_ZONES = 0,
134 ONLINE_POLICY_AUTO_MOVABLE,
135 };
136
137 static const char * const online_policy_to_str[] = {
138 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
139 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
140 };
141
set_online_policy(const char * val,const struct kernel_param * kp)142 static int set_online_policy(const char *val, const struct kernel_param *kp)
143 {
144 int ret = sysfs_match_string(online_policy_to_str, val);
145
146 if (ret < 0)
147 return ret;
148 *((int *)kp->arg) = ret;
149 return 0;
150 }
151
get_online_policy(char * buffer,const struct kernel_param * kp)152 static int get_online_policy(char *buffer, const struct kernel_param *kp)
153 {
154 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
155 }
156
157 /*
158 * memory_hotplug.online_policy: configure online behavior when onlining without
159 * specifying a zone (MMOP_ONLINE)
160 *
161 * "contig-zones": keep zone contiguous
162 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
163 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
164 */
165 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
166 static const struct kernel_param_ops online_policy_ops = {
167 .set = set_online_policy,
168 .get = get_online_policy,
169 };
170 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
171 MODULE_PARM_DESC(online_policy,
172 "Set the online policy (\"contig-zones\", \"auto-movable\") "
173 "Default: \"contig-zones\"");
174
175 /*
176 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
177 *
178 * The ratio represent an upper limit and the kernel might decide to not
179 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
180 * doesn't allow for more MOVABLE memory.
181 */
182 static unsigned int auto_movable_ratio __read_mostly = 301;
183 module_param(auto_movable_ratio, uint, 0644);
184 MODULE_PARM_DESC(auto_movable_ratio,
185 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
186 "in percent for \"auto-movable\" online policy. Default: 301");
187
188 /*
189 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
190 */
191 #ifdef CONFIG_NUMA
192 static bool auto_movable_numa_aware __read_mostly = true;
193 module_param(auto_movable_numa_aware, bool, 0644);
194 MODULE_PARM_DESC(auto_movable_numa_aware,
195 "Consider numa node stats in addition to global stats in "
196 "\"auto-movable\" online policy. Default: true");
197 #endif /* CONFIG_NUMA */
198
199 /*
200 * online_page_callback contains pointer to current page onlining function.
201 * Initially it is generic_online_page(). If it is required it could be
202 * changed by calling set_online_page_callback() for callback registration
203 * and restore_online_page_callback() for generic callback restore.
204 */
205
206 static online_page_callback_t online_page_callback = generic_online_page;
207 static DEFINE_MUTEX(online_page_callback_lock);
208
209 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
210
get_online_mems(void)211 void get_online_mems(void)
212 {
213 percpu_down_read(&mem_hotplug_lock);
214 }
215
put_online_mems(void)216 void put_online_mems(void)
217 {
218 percpu_up_read(&mem_hotplug_lock);
219 }
220
221 bool movable_node_enabled = false;
222
223 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
224 int mhp_default_online_type = MMOP_OFFLINE;
225 #else
226 int mhp_default_online_type = MMOP_ONLINE;
227 #endif
228
setup_memhp_default_state(char * str)229 static int __init setup_memhp_default_state(char *str)
230 {
231 const int online_type = mhp_online_type_from_str(str);
232
233 if (online_type >= 0)
234 mhp_default_online_type = online_type;
235
236 return 1;
237 }
238 __setup("memhp_default_state=", setup_memhp_default_state);
239
mem_hotplug_begin(void)240 void mem_hotplug_begin(void)
241 {
242 cpus_read_lock();
243 percpu_down_write(&mem_hotplug_lock);
244 }
245
mem_hotplug_done(void)246 void mem_hotplug_done(void)
247 {
248 percpu_up_write(&mem_hotplug_lock);
249 cpus_read_unlock();
250 }
251
252 u64 max_mem_size = U64_MAX;
253
254 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)255 static struct resource *register_memory_resource(u64 start, u64 size,
256 const char *resource_name)
257 {
258 struct resource *res;
259 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
260
261 if (strcmp(resource_name, "System RAM"))
262 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
263
264 if (!mhp_range_allowed(start, size, true))
265 return ERR_PTR(-E2BIG);
266
267 /*
268 * Make sure value parsed from 'mem=' only restricts memory adding
269 * while booting, so that memory hotplug won't be impacted. Please
270 * refer to document of 'mem=' in kernel-parameters.txt for more
271 * details.
272 */
273 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
274 return ERR_PTR(-E2BIG);
275
276 /*
277 * Request ownership of the new memory range. This might be
278 * a child of an existing resource that was present but
279 * not marked as busy.
280 */
281 res = __request_region(&iomem_resource, start, size,
282 resource_name, flags);
283
284 if (!res) {
285 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
286 start, start + size);
287 return ERR_PTR(-EEXIST);
288 }
289 return res;
290 }
291
release_memory_resource(struct resource * res)292 static void release_memory_resource(struct resource *res)
293 {
294 if (!res)
295 return;
296 release_resource(res);
297 kfree(res);
298 }
299
check_pfn_span(unsigned long pfn,unsigned long nr_pages)300 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
301 {
302 /*
303 * Disallow all operations smaller than a sub-section and only
304 * allow operations smaller than a section for
305 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
306 * enforces a larger memory_block_size_bytes() granularity for
307 * memory that will be marked online, so this check should only
308 * fire for direct arch_{add,remove}_memory() users outside of
309 * add_memory_resource().
310 */
311 unsigned long min_align;
312
313 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
314 min_align = PAGES_PER_SUBSECTION;
315 else
316 min_align = PAGES_PER_SECTION;
317 if (!IS_ALIGNED(pfn | nr_pages, min_align))
318 return -EINVAL;
319 return 0;
320 }
321
322 /*
323 * Return page for the valid pfn only if the page is online. All pfn
324 * walkers which rely on the fully initialized page->flags and others
325 * should use this rather than pfn_valid && pfn_to_page
326 */
pfn_to_online_page(unsigned long pfn)327 struct page *pfn_to_online_page(unsigned long pfn)
328 {
329 unsigned long nr = pfn_to_section_nr(pfn);
330 struct dev_pagemap *pgmap;
331 struct mem_section *ms;
332
333 if (nr >= NR_MEM_SECTIONS)
334 return NULL;
335
336 ms = __nr_to_section(nr);
337 if (!online_section(ms))
338 return NULL;
339
340 /*
341 * Save some code text when online_section() +
342 * pfn_section_valid() are sufficient.
343 */
344 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
345 return NULL;
346
347 if (!pfn_section_valid(ms, pfn))
348 return NULL;
349
350 if (!online_device_section(ms))
351 return pfn_to_page(pfn);
352
353 /*
354 * Slowpath: when ZONE_DEVICE collides with
355 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
356 * the section may be 'offline' but 'valid'. Only
357 * get_dev_pagemap() can determine sub-section online status.
358 */
359 pgmap = get_dev_pagemap(pfn, NULL);
360 put_dev_pagemap(pgmap);
361
362 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
363 if (pgmap)
364 return NULL;
365
366 return pfn_to_page(pfn);
367 }
368 EXPORT_SYMBOL_GPL(pfn_to_online_page);
369
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)370 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
371 struct mhp_params *params)
372 {
373 const unsigned long end_pfn = pfn + nr_pages;
374 unsigned long cur_nr_pages;
375 int err;
376 struct vmem_altmap *altmap = params->altmap;
377
378 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
379 return -EINVAL;
380
381 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
382
383 if (altmap) {
384 /*
385 * Validate altmap is within bounds of the total request
386 */
387 if (altmap->base_pfn != pfn
388 || vmem_altmap_offset(altmap) > nr_pages) {
389 pr_warn_once("memory add fail, invalid altmap\n");
390 return -EINVAL;
391 }
392 altmap->alloc = 0;
393 }
394
395 if (check_pfn_span(pfn, nr_pages)) {
396 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
397 return -EINVAL;
398 }
399
400 for (; pfn < end_pfn; pfn += cur_nr_pages) {
401 /* Select all remaining pages up to the next section boundary */
402 cur_nr_pages = min(end_pfn - pfn,
403 SECTION_ALIGN_UP(pfn + 1) - pfn);
404 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
405 params->pgmap);
406 if (err)
407 break;
408 cond_resched();
409 }
410 vmemmap_populate_print_last();
411 return err;
412 }
413
414 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)415 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
416 unsigned long start_pfn,
417 unsigned long end_pfn)
418 {
419 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
420 if (unlikely(!pfn_to_online_page(start_pfn)))
421 continue;
422
423 if (unlikely(pfn_to_nid(start_pfn) != nid))
424 continue;
425
426 if (zone != page_zone(pfn_to_page(start_pfn)))
427 continue;
428
429 return start_pfn;
430 }
431
432 return 0;
433 }
434
435 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)436 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
437 unsigned long start_pfn,
438 unsigned long end_pfn)
439 {
440 unsigned long pfn;
441
442 /* pfn is the end pfn of a memory section. */
443 pfn = end_pfn - 1;
444 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
445 if (unlikely(!pfn_to_online_page(pfn)))
446 continue;
447
448 if (unlikely(pfn_to_nid(pfn) != nid))
449 continue;
450
451 if (zone != page_zone(pfn_to_page(pfn)))
452 continue;
453
454 return pfn;
455 }
456
457 return 0;
458 }
459
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)460 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
461 unsigned long end_pfn)
462 {
463 unsigned long pfn;
464 int nid = zone_to_nid(zone);
465
466 if (zone->zone_start_pfn == start_pfn) {
467 /*
468 * If the section is smallest section in the zone, it need
469 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
470 * In this case, we find second smallest valid mem_section
471 * for shrinking zone.
472 */
473 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
474 zone_end_pfn(zone));
475 if (pfn) {
476 zone->spanned_pages = zone_end_pfn(zone) - pfn;
477 zone->zone_start_pfn = pfn;
478 } else {
479 zone->zone_start_pfn = 0;
480 zone->spanned_pages = 0;
481 }
482 } else if (zone_end_pfn(zone) == end_pfn) {
483 /*
484 * If the section is biggest section in the zone, it need
485 * shrink zone->spanned_pages.
486 * In this case, we find second biggest valid mem_section for
487 * shrinking zone.
488 */
489 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
490 start_pfn);
491 if (pfn)
492 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
493 else {
494 zone->zone_start_pfn = 0;
495 zone->spanned_pages = 0;
496 }
497 }
498 }
499
update_pgdat_span(struct pglist_data * pgdat)500 static void update_pgdat_span(struct pglist_data *pgdat)
501 {
502 unsigned long node_start_pfn = 0, node_end_pfn = 0;
503 struct zone *zone;
504
505 for (zone = pgdat->node_zones;
506 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
507 unsigned long end_pfn = zone_end_pfn(zone);
508
509 /* No need to lock the zones, they can't change. */
510 if (!zone->spanned_pages)
511 continue;
512 if (!node_end_pfn) {
513 node_start_pfn = zone->zone_start_pfn;
514 node_end_pfn = end_pfn;
515 continue;
516 }
517
518 if (end_pfn > node_end_pfn)
519 node_end_pfn = end_pfn;
520 if (zone->zone_start_pfn < node_start_pfn)
521 node_start_pfn = zone->zone_start_pfn;
522 }
523
524 pgdat->node_start_pfn = node_start_pfn;
525 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
526 }
527
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)528 void __ref remove_pfn_range_from_zone(struct zone *zone,
529 unsigned long start_pfn,
530 unsigned long nr_pages)
531 {
532 const unsigned long end_pfn = start_pfn + nr_pages;
533 struct pglist_data *pgdat = zone->zone_pgdat;
534 unsigned long pfn, cur_nr_pages;
535
536 /* Poison struct pages because they are now uninitialized again. */
537 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
538 cond_resched();
539
540 /* Select all remaining pages up to the next section boundary */
541 cur_nr_pages =
542 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
543 page_init_poison(pfn_to_page(pfn),
544 sizeof(struct page) * cur_nr_pages);
545 }
546
547 /*
548 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
549 * we will not try to shrink the zones - which is okay as
550 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
551 */
552 if (zone_is_zone_device(zone))
553 return;
554
555 clear_zone_contiguous(zone);
556
557 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
558 update_pgdat_span(pgdat);
559
560 set_zone_contiguous(zone);
561 }
562
563 /**
564 * __remove_pages() - remove sections of pages
565 * @pfn: starting pageframe (must be aligned to start of a section)
566 * @nr_pages: number of pages to remove (must be multiple of section size)
567 * @altmap: alternative device page map or %NULL if default memmap is used
568 *
569 * Generic helper function to remove section mappings and sysfs entries
570 * for the section of the memory we are removing. Caller needs to make
571 * sure that pages are marked reserved and zones are adjust properly by
572 * calling offline_pages().
573 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)574 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
575 struct vmem_altmap *altmap)
576 {
577 const unsigned long end_pfn = pfn + nr_pages;
578 unsigned long cur_nr_pages;
579
580 if (check_pfn_span(pfn, nr_pages)) {
581 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
582 return;
583 }
584
585 for (; pfn < end_pfn; pfn += cur_nr_pages) {
586 cond_resched();
587 /* Select all remaining pages up to the next section boundary */
588 cur_nr_pages = min(end_pfn - pfn,
589 SECTION_ALIGN_UP(pfn + 1) - pfn);
590 sparse_remove_section(pfn, cur_nr_pages, altmap);
591 }
592 }
593
set_online_page_callback(online_page_callback_t callback)594 int set_online_page_callback(online_page_callback_t callback)
595 {
596 int rc = -EINVAL;
597
598 get_online_mems();
599 mutex_lock(&online_page_callback_lock);
600
601 if (online_page_callback == generic_online_page) {
602 online_page_callback = callback;
603 rc = 0;
604 }
605
606 mutex_unlock(&online_page_callback_lock);
607 put_online_mems();
608
609 return rc;
610 }
611 EXPORT_SYMBOL_GPL(set_online_page_callback);
612
restore_online_page_callback(online_page_callback_t callback)613 int restore_online_page_callback(online_page_callback_t callback)
614 {
615 int rc = -EINVAL;
616
617 get_online_mems();
618 mutex_lock(&online_page_callback_lock);
619
620 if (online_page_callback == callback) {
621 online_page_callback = generic_online_page;
622 rc = 0;
623 }
624
625 mutex_unlock(&online_page_callback_lock);
626 put_online_mems();
627
628 return rc;
629 }
630 EXPORT_SYMBOL_GPL(restore_online_page_callback);
631
generic_online_page(struct page * page,unsigned int order)632 void generic_online_page(struct page *page, unsigned int order)
633 {
634 /*
635 * Freeing the page with debug_pagealloc enabled will try to unmap it,
636 * so we should map it first. This is better than introducing a special
637 * case in page freeing fast path.
638 */
639 debug_pagealloc_map_pages(page, 1 << order);
640 __free_pages_core(page, order);
641 totalram_pages_add(1UL << order);
642 }
643 EXPORT_SYMBOL_GPL(generic_online_page);
644
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)645 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
646 {
647 const unsigned long end_pfn = start_pfn + nr_pages;
648 unsigned long pfn;
649
650 /*
651 * Online the pages in MAX_ORDER aligned chunks. The callback might
652 * decide to not expose all pages to the buddy (e.g., expose them
653 * later). We account all pages as being online and belonging to this
654 * zone ("present").
655 * When using memmap_on_memory, the range might not be aligned to
656 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
657 * this and the first chunk to online will be pageblock_nr_pages.
658 */
659 for (pfn = start_pfn; pfn < end_pfn;) {
660 int order;
661
662 /*
663 * Free to online pages in the largest chunks alignment allows.
664 *
665 * __ffs() behaviour is undefined for 0. start == 0 is
666 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case.
667 */
668 if (pfn)
669 order = min_t(int, MAX_ORDER, __ffs(pfn));
670 else
671 order = MAX_ORDER;
672
673 (*online_page_callback)(pfn_to_page(pfn), order);
674 pfn += (1UL << order);
675 }
676
677 /* mark all involved sections as online */
678 online_mem_sections(start_pfn, end_pfn);
679 }
680
681 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)682 static void node_states_check_changes_online(unsigned long nr_pages,
683 struct zone *zone, struct memory_notify *arg)
684 {
685 int nid = zone_to_nid(zone);
686
687 arg->status_change_nid = NUMA_NO_NODE;
688 arg->status_change_nid_normal = NUMA_NO_NODE;
689
690 if (!node_state(nid, N_MEMORY))
691 arg->status_change_nid = nid;
692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 arg->status_change_nid_normal = nid;
694 }
695
node_states_set_node(int node,struct memory_notify * arg)696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid >= 0)
702 node_set_state(node, N_MEMORY);
703 }
704
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)705 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 unsigned long nr_pages)
707 {
708 unsigned long old_end_pfn = zone_end_pfn(zone);
709
710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 zone->zone_start_pfn = start_pfn;
712
713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714 }
715
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)716 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717 unsigned long nr_pages)
718 {
719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 pgdat->node_start_pfn = start_pfn;
723
724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726 }
727
728 #ifdef CONFIG_ZONE_DEVICE
section_taint_zone_device(unsigned long pfn)729 static void section_taint_zone_device(unsigned long pfn)
730 {
731 struct mem_section *ms = __pfn_to_section(pfn);
732
733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734 }
735 #else
section_taint_zone_device(unsigned long pfn)736 static inline void section_taint_zone_device(unsigned long pfn)
737 {
738 }
739 #endif
740
741 /*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)750 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 unsigned long nr_pages,
752 struct vmem_altmap *altmap, int migratetype)
753 {
754 struct pglist_data *pgdat = zone->zone_pgdat;
755 int nid = pgdat->node_id;
756
757 clear_zone_contiguous(zone);
758
759 if (zone_is_empty(zone))
760 init_currently_empty_zone(zone, start_pfn, nr_pages);
761 resize_zone_range(zone, start_pfn, nr_pages);
762 resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764 /*
765 * Subsection population requires care in pfn_to_online_page().
766 * Set the taint to enable the slow path detection of
767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
768 * section.
769 */
770 if (zone_is_zone_device(zone)) {
771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 section_taint_zone_device(start_pfn);
773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 section_taint_zone_device(start_pfn + nr_pages);
775 }
776
777 /*
778 * TODO now we have a visible range of pages which are not associated
779 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 * expects the zone spans the pfn range. All the pages in the range
781 * are reserved so nobody should be touching them so we should be safe
782 */
783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 MEMINIT_HOTPLUG, altmap, migratetype);
785
786 set_zone_contiguous(zone);
787 }
788
789 struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792 };
793
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796 {
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801 #ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808 #endif /* CONFIG_CMA */
809 }
810 }
811 struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814 };
815
auto_movable_stats_account_group(struct memory_group * group,void * arg)816 static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818 {
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841 }
842
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845 {
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 pg_data_t *pgdat = NODE_DATA(nid);
850 struct zone *zone;
851 int i;
852
853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 if (nid == NUMA_NO_NODE) {
855 /* TODO: cache values */
856 for_each_populated_zone(zone)
857 auto_movable_stats_account_zone(&stats, zone);
858 } else {
859 for (i = 0; i < MAX_NR_ZONES; i++) {
860 zone = pgdat->node_zones + i;
861 if (populated_zone(zone))
862 auto_movable_stats_account_zone(&stats, zone);
863 }
864 }
865
866 kernel_early_pages = stats.kernel_early_pages;
867 movable_pages = stats.movable_pages;
868
869 /*
870 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 * memory within the same group. Remove the effect of all but the
872 * current group from the stats.
873 */
874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 group, &group_stats);
876 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 return false;
878 kernel_early_pages -= group_stats.req_kernel_early_pages;
879 movable_pages -= group_stats.movable_pages;
880
881 if (group && group->is_dynamic)
882 kernel_early_pages += group->present_kernel_pages;
883
884 /*
885 * Test if we could online the given number of pages to ZONE_MOVABLE
886 * and still stay in the configured ratio.
887 */
888 movable_pages += nr_pages;
889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890 }
891
892 /*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)897 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 unsigned long nr_pages)
899 {
900 struct pglist_data *pgdat = NODE_DATA(nid);
901 int zid;
902
903 for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 struct zone *zone = &pgdat->node_zones[zid];
905
906 if (zone_intersects(zone, start_pfn, nr_pages))
907 return zone;
908 }
909
910 return &pgdat->node_zones[ZONE_NORMAL];
911 }
912
913 /*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 * MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 * MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 * hotunplugged, especially when hot(un)plugging individual memory blocks.
933 * There is no coordination across memory devices, therefore "automatic"
934 * hotunplugging, as implemented in hypervisors, could result in zone
935 * imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 * with unmovable allocations). While there are corner cases where it might
939 * still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 * effectively unused by the kernel, yet they account to "present pages".
955 * Fortunately, these allocations are comparatively small in relevant setups
956 * (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 * hotplugged by virtio-mem, look like they are completely present, however,
959 * only parts of the memory block are actually currently usable.
960 * "present pages" is an upper limit that can get reached at runtime. As
961 * we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)963 static struct zone *auto_movable_zone_for_pfn(int nid,
964 struct memory_group *group,
965 unsigned long pfn,
966 unsigned long nr_pages)
967 {
968 unsigned long online_pages = 0, max_pages, end_pfn;
969 struct page *page;
970
971 if (!auto_movable_ratio)
972 goto kernel_zone;
973
974 if (group && !group->is_dynamic) {
975 max_pages = group->s.max_pages;
976 online_pages = group->present_movable_pages;
977
978 /* If anything is !MOVABLE online the rest !MOVABLE. */
979 if (group->present_kernel_pages)
980 goto kernel_zone;
981 } else if (!group || group->d.unit_pages == nr_pages) {
982 max_pages = nr_pages;
983 } else {
984 max_pages = group->d.unit_pages;
985 /*
986 * Take a look at all online sections in the current unit.
987 * We can safely assume that all pages within a section belong
988 * to the same zone, because dynamic memory groups only deal
989 * with hotplugged memory.
990 */
991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 end_pfn = pfn + group->d.unit_pages;
993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 page = pfn_to_online_page(pfn);
995 if (!page)
996 continue;
997 /* If anything is !MOVABLE online the rest !MOVABLE. */
998 if (!is_zone_movable_page(page))
999 goto kernel_zone;
1000 online_pages += PAGES_PER_SECTION;
1001 }
1002 }
1003
1004 /*
1005 * Online MOVABLE if we could *currently* online all remaining parts
1006 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 * nobody interferes, all will be MOVABLE if possible.
1008 */
1009 nr_pages = max_pages - online_pages;
1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 goto kernel_zone;
1012
1013 #ifdef CONFIG_NUMA
1014 if (auto_movable_numa_aware &&
1015 !auto_movable_can_online_movable(nid, group, nr_pages))
1016 goto kernel_zone;
1017 #endif /* CONFIG_NUMA */
1018
1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020 kernel_zone:
1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022 }
1023
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)1024 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 unsigned long nr_pages)
1026 {
1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 nr_pages);
1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033 /*
1034 * We inherit the existing zone in a simple case where zones do not
1035 * overlap in the given range
1036 */
1037 if (in_kernel ^ in_movable)
1038 return (in_kernel) ? kernel_zone : movable_zone;
1039
1040 /*
1041 * If the range doesn't belong to any zone or two zones overlap in the
1042 * given range then we use movable zone only if movable_node is
1043 * enabled because we always online to a kernel zone by default.
1044 */
1045 return movable_node_enabled ? movable_zone : kernel_zone;
1046 }
1047
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)1048 struct zone *zone_for_pfn_range(int online_type, int nid,
1049 struct memory_group *group, unsigned long start_pfn,
1050 unsigned long nr_pages)
1051 {
1052 if (online_type == MMOP_ONLINE_KERNEL)
1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055 if (online_type == MMOP_ONLINE_MOVABLE)
1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062 }
1063
1064 /*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1068 void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 long nr_pages)
1070 {
1071 struct zone *zone = page_zone(page);
1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074 /*
1075 * We only support onlining/offlining/adding/removing of complete
1076 * memory blocks; therefore, either all is either early or hotplugged.
1077 */
1078 if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 zone->present_early_pages += nr_pages;
1080 zone->present_pages += nr_pages;
1081 zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083 if (group && movable)
1084 group->present_movable_pages += nr_pages;
1085 else if (group && !movable)
1086 group->present_kernel_pages += nr_pages;
1087 }
1088
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone)1089 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 struct zone *zone)
1091 {
1092 unsigned long end_pfn = pfn + nr_pages;
1093 int ret, i;
1094
1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 if (ret)
1097 return ret;
1098
1099 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1100
1101 for (i = 0; i < nr_pages; i++)
1102 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1103
1104 /*
1105 * It might be that the vmemmap_pages fully span sections. If that is
1106 * the case, mark those sections online here as otherwise they will be
1107 * left offline.
1108 */
1109 if (nr_pages >= PAGES_PER_SECTION)
1110 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1111
1112 return ret;
1113 }
1114
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1115 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1116 {
1117 unsigned long end_pfn = pfn + nr_pages;
1118
1119 /*
1120 * It might be that the vmemmap_pages fully span sections. If that is
1121 * the case, mark those sections offline here as otherwise they will be
1122 * left online.
1123 */
1124 if (nr_pages >= PAGES_PER_SECTION)
1125 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1126
1127 /*
1128 * The pages associated with this vmemmap have been offlined, so
1129 * we can reset its state here.
1130 */
1131 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1132 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1133 }
1134
1135 /*
1136 * Must be called with mem_hotplug_lock in write mode.
1137 */
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1138 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1139 struct zone *zone, struct memory_group *group)
1140 {
1141 unsigned long flags;
1142 int need_zonelists_rebuild = 0;
1143 const int nid = zone_to_nid(zone);
1144 int ret;
1145 struct memory_notify arg;
1146
1147 /*
1148 * {on,off}lining is constrained to full memory sections (or more
1149 * precisely to memory blocks from the user space POV).
1150 * memmap_on_memory is an exception because it reserves initial part
1151 * of the physical memory space for vmemmaps. That space is pageblock
1152 * aligned.
1153 */
1154 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1155 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1156 return -EINVAL;
1157
1158
1159 /* associate pfn range with the zone */
1160 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1161
1162 arg.start_pfn = pfn;
1163 arg.nr_pages = nr_pages;
1164 node_states_check_changes_online(nr_pages, zone, &arg);
1165
1166 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1167 ret = notifier_to_errno(ret);
1168 if (ret)
1169 goto failed_addition;
1170
1171 /*
1172 * Fixup the number of isolated pageblocks before marking the sections
1173 * onlining, such that undo_isolate_page_range() works correctly.
1174 */
1175 spin_lock_irqsave(&zone->lock, flags);
1176 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1177 spin_unlock_irqrestore(&zone->lock, flags);
1178
1179 /*
1180 * If this zone is not populated, then it is not in zonelist.
1181 * This means the page allocator ignores this zone.
1182 * So, zonelist must be updated after online.
1183 */
1184 if (!populated_zone(zone)) {
1185 need_zonelists_rebuild = 1;
1186 setup_zone_pageset(zone);
1187 }
1188
1189 online_pages_range(pfn, nr_pages);
1190 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1191
1192 node_states_set_node(nid, &arg);
1193 if (need_zonelists_rebuild)
1194 build_all_zonelists(NULL);
1195
1196 /* Basic onlining is complete, allow allocation of onlined pages. */
1197 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1198
1199 /*
1200 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1201 * the tail of the freelist when undoing isolation). Shuffle the whole
1202 * zone to make sure the just onlined pages are properly distributed
1203 * across the whole freelist - to create an initial shuffle.
1204 */
1205 shuffle_zone(zone);
1206
1207 /* reinitialise watermarks and update pcp limits */
1208 init_per_zone_wmark_min();
1209
1210 kswapd_run(nid);
1211 kcompactd_run(nid);
1212 #ifdef CONFIG_HYPERHOLD_ZSWAPD
1213 zswapd_run(nid);
1214 #endif
1215
1216 writeback_set_ratelimit();
1217
1218 memory_notify(MEM_ONLINE, &arg);
1219 return 0;
1220
1221 failed_addition:
1222 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1223 (unsigned long long) pfn << PAGE_SHIFT,
1224 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1225 memory_notify(MEM_CANCEL_ONLINE, &arg);
1226 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1227 return ret;
1228 }
1229
1230 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1231 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1232 {
1233 struct pglist_data *pgdat;
1234
1235 /*
1236 * NODE_DATA is preallocated (free_area_init) but its internal
1237 * state is not allocated completely. Add missing pieces.
1238 * Completely offline nodes stay around and they just need
1239 * reintialization.
1240 */
1241 pgdat = NODE_DATA(nid);
1242
1243 /* init node's zones as empty zones, we don't have any present pages.*/
1244 free_area_init_core_hotplug(pgdat);
1245
1246 /*
1247 * The node we allocated has no zone fallback lists. For avoiding
1248 * to access not-initialized zonelist, build here.
1249 */
1250 build_all_zonelists(pgdat);
1251
1252 return pgdat;
1253 }
1254
1255 /*
1256 * __try_online_node - online a node if offlined
1257 * @nid: the node ID
1258 * @set_node_online: Whether we want to online the node
1259 * called by cpu_up() to online a node without onlined memory.
1260 *
1261 * Returns:
1262 * 1 -> a new node has been allocated
1263 * 0 -> the node is already online
1264 * -ENOMEM -> the node could not be allocated
1265 */
__try_online_node(int nid,bool set_node_online)1266 static int __try_online_node(int nid, bool set_node_online)
1267 {
1268 pg_data_t *pgdat;
1269 int ret = 1;
1270
1271 if (node_online(nid))
1272 return 0;
1273
1274 pgdat = hotadd_init_pgdat(nid);
1275 if (!pgdat) {
1276 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1277 ret = -ENOMEM;
1278 goto out;
1279 }
1280
1281 if (set_node_online) {
1282 node_set_online(nid);
1283 ret = register_one_node(nid);
1284 BUG_ON(ret);
1285 }
1286 out:
1287 return ret;
1288 }
1289
1290 /*
1291 * Users of this function always want to online/register the node
1292 */
try_online_node(int nid)1293 int try_online_node(int nid)
1294 {
1295 int ret;
1296
1297 mem_hotplug_begin();
1298 ret = __try_online_node(nid, true);
1299 mem_hotplug_done();
1300 return ret;
1301 }
1302
check_hotplug_memory_range(u64 start,u64 size)1303 static int check_hotplug_memory_range(u64 start, u64 size)
1304 {
1305 /* memory range must be block size aligned */
1306 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1307 !IS_ALIGNED(size, memory_block_size_bytes())) {
1308 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1309 memory_block_size_bytes(), start, size);
1310 return -EINVAL;
1311 }
1312
1313 return 0;
1314 }
1315
online_memory_block(struct memory_block * mem,void * arg)1316 static int online_memory_block(struct memory_block *mem, void *arg)
1317 {
1318 mem->online_type = mhp_default_online_type;
1319 return device_online(&mem->dev);
1320 }
1321
1322 #ifndef arch_supports_memmap_on_memory
arch_supports_memmap_on_memory(unsigned long vmemmap_size)1323 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1324 {
1325 /*
1326 * As default, we want the vmemmap to span a complete PMD such that we
1327 * can map the vmemmap using a single PMD if supported by the
1328 * architecture.
1329 */
1330 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1331 }
1332 #endif
1333
mhp_supports_memmap_on_memory(unsigned long size)1334 static bool mhp_supports_memmap_on_memory(unsigned long size)
1335 {
1336 unsigned long vmemmap_size = memory_block_memmap_size();
1337 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1338
1339 /*
1340 * Besides having arch support and the feature enabled at runtime, we
1341 * need a few more assumptions to hold true:
1342 *
1343 * a) We span a single memory block: memory onlining/offlinin;g happens
1344 * in memory block granularity. We don't want the vmemmap of online
1345 * memory blocks to reside on offline memory blocks. In the future,
1346 * we might want to support variable-sized memory blocks to make the
1347 * feature more versatile.
1348 *
1349 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1350 * to populate memory from the altmap for unrelated parts (i.e.,
1351 * other memory blocks)
1352 *
1353 * c) The vmemmap pages (and thereby the pages that will be exposed to
1354 * the buddy) have to cover full pageblocks: memory onlining/offlining
1355 * code requires applicable ranges to be page-aligned, for example, to
1356 * set the migratetypes properly.
1357 *
1358 * TODO: Although we have a check here to make sure that vmemmap pages
1359 * fully populate a PMD, it is not the right place to check for
1360 * this. A much better solution involves improving vmemmap code
1361 * to fallback to base pages when trying to populate vmemmap using
1362 * altmap as an alternative source of memory, and we do not exactly
1363 * populate a single PMD.
1364 */
1365 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1366 return false;
1367
1368 /*
1369 * Make sure the vmemmap allocation is fully contained
1370 * so that we always allocate vmemmap memory from altmap area.
1371 */
1372 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1373 return false;
1374
1375 /*
1376 * start pfn should be pageblock_nr_pages aligned for correctly
1377 * setting migrate types
1378 */
1379 if (!pageblock_aligned(memmap_pages))
1380 return false;
1381
1382 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1383 /* No effective hotplugged memory doesn't make sense. */
1384 return false;
1385
1386 return arch_supports_memmap_on_memory(vmemmap_size);
1387 }
1388
1389 /*
1390 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1391 * and online/offline operations (triggered e.g. by sysfs).
1392 *
1393 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1394 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1395 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1396 {
1397 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1398 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1399 struct vmem_altmap mhp_altmap = {
1400 .base_pfn = PHYS_PFN(res->start),
1401 .end_pfn = PHYS_PFN(res->end),
1402 };
1403 struct memory_group *group = NULL;
1404 u64 start, size;
1405 bool new_node = false;
1406 int ret;
1407
1408 start = res->start;
1409 size = resource_size(res);
1410
1411 ret = check_hotplug_memory_range(start, size);
1412 if (ret)
1413 return ret;
1414
1415 if (mhp_flags & MHP_NID_IS_MGID) {
1416 group = memory_group_find_by_id(nid);
1417 if (!group)
1418 return -EINVAL;
1419 nid = group->nid;
1420 }
1421
1422 if (!node_possible(nid)) {
1423 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1424 return -EINVAL;
1425 }
1426
1427 mem_hotplug_begin();
1428
1429 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1430 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1431 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1432 ret = memblock_add_node(start, size, nid, memblock_flags);
1433 if (ret)
1434 goto error_mem_hotplug_end;
1435 }
1436
1437 ret = __try_online_node(nid, false);
1438 if (ret < 0)
1439 goto error;
1440 new_node = ret;
1441
1442 /*
1443 * Self hosted memmap array
1444 */
1445 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1446 if (mhp_supports_memmap_on_memory(size)) {
1447 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1448 params.altmap = kmalloc(sizeof(struct vmem_altmap), GFP_KERNEL);
1449 if (!params.altmap) {
1450 ret = -ENOMEM;
1451 goto error;
1452 }
1453
1454 memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap));
1455 }
1456 /* fallback to not using altmap */
1457 }
1458
1459 /* call arch's memory hotadd */
1460 ret = arch_add_memory(nid, start, size, ¶ms);
1461 if (ret < 0)
1462 goto error_free;
1463
1464 /* create memory block devices after memory was added */
1465 ret = create_memory_block_devices(start, size, params.altmap, group);
1466 if (ret) {
1467 arch_remove_memory(start, size, params.altmap);
1468 goto error_free;
1469 }
1470
1471 if (new_node) {
1472 /* If sysfs file of new node can't be created, cpu on the node
1473 * can't be hot-added. There is no rollback way now.
1474 * So, check by BUG_ON() to catch it reluctantly..
1475 * We online node here. We can't roll back from here.
1476 */
1477 node_set_online(nid);
1478 ret = __register_one_node(nid);
1479 BUG_ON(ret);
1480 }
1481
1482 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1483 PFN_UP(start + size - 1),
1484 MEMINIT_HOTPLUG);
1485
1486 /* create new memmap entry */
1487 if (!strcmp(res->name, "System RAM"))
1488 firmware_map_add_hotplug(start, start + size, "System RAM");
1489
1490 /* device_online() will take the lock when calling online_pages() */
1491 mem_hotplug_done();
1492
1493 /*
1494 * In case we're allowed to merge the resource, flag it and trigger
1495 * merging now that adding succeeded.
1496 */
1497 if (mhp_flags & MHP_MERGE_RESOURCE)
1498 merge_system_ram_resource(res);
1499
1500 /* online pages if requested */
1501 if (mhp_default_online_type != MMOP_OFFLINE)
1502 walk_memory_blocks(start, size, NULL, online_memory_block);
1503
1504 return ret;
1505 error_free:
1506 kfree(params.altmap);
1507 error:
1508 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1509 memblock_remove(start, size);
1510 error_mem_hotplug_end:
1511 mem_hotplug_done();
1512 return ret;
1513 }
1514
1515 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1516 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1517 {
1518 struct resource *res;
1519 int ret;
1520
1521 res = register_memory_resource(start, size, "System RAM");
1522 if (IS_ERR(res))
1523 return PTR_ERR(res);
1524
1525 ret = add_memory_resource(nid, res, mhp_flags);
1526 if (ret < 0)
1527 release_memory_resource(res);
1528 return ret;
1529 }
1530
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1531 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1532 {
1533 int rc;
1534
1535 lock_device_hotplug();
1536 rc = __add_memory(nid, start, size, mhp_flags);
1537 unlock_device_hotplug();
1538
1539 return rc;
1540 }
1541 EXPORT_SYMBOL_GPL(add_memory);
1542
1543 /*
1544 * Add special, driver-managed memory to the system as system RAM. Such
1545 * memory is not exposed via the raw firmware-provided memmap as system
1546 * RAM, instead, it is detected and added by a driver - during cold boot,
1547 * after a reboot, and after kexec.
1548 *
1549 * Reasons why this memory should not be used for the initial memmap of a
1550 * kexec kernel or for placing kexec images:
1551 * - The booting kernel is in charge of determining how this memory will be
1552 * used (e.g., use persistent memory as system RAM)
1553 * - Coordination with a hypervisor is required before this memory
1554 * can be used (e.g., inaccessible parts).
1555 *
1556 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1557 * memory map") are created. Also, the created memory resource is flagged
1558 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1559 * this memory as well (esp., not place kexec images onto it).
1560 *
1561 * The resource_name (visible via /proc/iomem) has to have the format
1562 * "System RAM ($DRIVER)".
1563 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1564 int add_memory_driver_managed(int nid, u64 start, u64 size,
1565 const char *resource_name, mhp_t mhp_flags)
1566 {
1567 struct resource *res;
1568 int rc;
1569
1570 if (!resource_name ||
1571 strstr(resource_name, "System RAM (") != resource_name ||
1572 resource_name[strlen(resource_name) - 1] != ')')
1573 return -EINVAL;
1574
1575 lock_device_hotplug();
1576
1577 res = register_memory_resource(start, size, resource_name);
1578 if (IS_ERR(res)) {
1579 rc = PTR_ERR(res);
1580 goto out_unlock;
1581 }
1582
1583 rc = add_memory_resource(nid, res, mhp_flags);
1584 if (rc < 0)
1585 release_memory_resource(res);
1586
1587 out_unlock:
1588 unlock_device_hotplug();
1589 return rc;
1590 }
1591 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1592
1593 /*
1594 * Platforms should define arch_get_mappable_range() that provides
1595 * maximum possible addressable physical memory range for which the
1596 * linear mapping could be created. The platform returned address
1597 * range must adhere to these following semantics.
1598 *
1599 * - range.start <= range.end
1600 * - Range includes both end points [range.start..range.end]
1601 *
1602 * There is also a fallback definition provided here, allowing the
1603 * entire possible physical address range in case any platform does
1604 * not define arch_get_mappable_range().
1605 */
arch_get_mappable_range(void)1606 struct range __weak arch_get_mappable_range(void)
1607 {
1608 struct range mhp_range = {
1609 .start = 0UL,
1610 .end = -1ULL,
1611 };
1612 return mhp_range;
1613 }
1614
mhp_get_pluggable_range(bool need_mapping)1615 struct range mhp_get_pluggable_range(bool need_mapping)
1616 {
1617 const u64 max_phys = PHYSMEM_END;
1618 struct range mhp_range;
1619
1620 if (need_mapping) {
1621 mhp_range = arch_get_mappable_range();
1622 if (mhp_range.start > max_phys) {
1623 mhp_range.start = 0;
1624 mhp_range.end = 0;
1625 }
1626 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1627 } else {
1628 mhp_range.start = 0;
1629 mhp_range.end = max_phys;
1630 }
1631 return mhp_range;
1632 }
1633 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1634
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1635 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1636 {
1637 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1638 u64 end = start + size;
1639
1640 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1641 return true;
1642
1643 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1644 start, end, mhp_range.start, mhp_range.end);
1645 return false;
1646 }
1647
1648 #ifdef CONFIG_MEMORY_HOTREMOVE
1649 /*
1650 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1651 * non-lru movable pages and hugepages). Will skip over most unmovable
1652 * pages (esp., pages that can be skipped when offlining), but bail out on
1653 * definitely unmovable pages.
1654 *
1655 * Returns:
1656 * 0 in case a movable page is found and movable_pfn was updated.
1657 * -ENOENT in case no movable page was found.
1658 * -EBUSY in case a definitely unmovable page was found.
1659 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1660 static int scan_movable_pages(unsigned long start, unsigned long end,
1661 unsigned long *movable_pfn)
1662 {
1663 unsigned long pfn;
1664
1665 for (pfn = start; pfn < end; pfn++) {
1666 struct page *page, *head;
1667 unsigned long skip;
1668
1669 if (!pfn_valid(pfn))
1670 continue;
1671 page = pfn_to_page(pfn);
1672 if (PageLRU(page))
1673 goto found;
1674 if (__PageMovable(page))
1675 goto found;
1676
1677 /*
1678 * PageOffline() pages that are not marked __PageMovable() and
1679 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1680 * definitely unmovable. If their reference count would be 0,
1681 * they could at least be skipped when offlining memory.
1682 */
1683 if (PageOffline(page) && page_count(page))
1684 return -EBUSY;
1685
1686 if (!PageHuge(page))
1687 continue;
1688 head = compound_head(page);
1689 /*
1690 * This test is racy as we hold no reference or lock. The
1691 * hugetlb page could have been free'ed and head is no longer
1692 * a hugetlb page before the following check. In such unlikely
1693 * cases false positives and negatives are possible. Calling
1694 * code must deal with these scenarios.
1695 */
1696 if (HPageMigratable(head))
1697 goto found;
1698 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1699 pfn += skip - 1;
1700 }
1701 return -ENOENT;
1702 found:
1703 *movable_pfn = pfn;
1704 return 0;
1705 }
1706
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1707 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1708 {
1709 unsigned long pfn;
1710 struct page *page, *head;
1711 LIST_HEAD(source);
1712 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1713 DEFAULT_RATELIMIT_BURST);
1714
1715 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1716 struct folio *folio;
1717 bool isolated;
1718
1719 if (!pfn_valid(pfn))
1720 continue;
1721 page = pfn_to_page(pfn);
1722 folio = page_folio(page);
1723 head = &folio->page;
1724
1725 if (PageHuge(page)) {
1726 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1727 isolate_hugetlb(folio, &source);
1728 continue;
1729 } else if (PageTransHuge(page))
1730 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1731
1732 /*
1733 * HWPoison pages have elevated reference counts so the migration would
1734 * fail on them. It also doesn't make any sense to migrate them in the
1735 * first place. Still try to unmap such a page in case it is still mapped
1736 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1737 * the unmap as the catch all safety net).
1738 */
1739 if (PageHWPoison(page)) {
1740 if (WARN_ON(folio_test_lru(folio)))
1741 folio_isolate_lru(folio);
1742 if (folio_mapped(folio)) {
1743 folio_lock(folio);
1744 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1745 folio_unlock(folio);
1746 }
1747
1748 continue;
1749 }
1750
1751 if (!get_page_unless_zero(page))
1752 continue;
1753 /*
1754 * We can skip free pages. And we can deal with pages on
1755 * LRU and non-lru movable pages.
1756 */
1757 if (PageLRU(page))
1758 isolated = isolate_lru_page(page);
1759 else
1760 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1761 if (isolated) {
1762 list_add_tail(&page->lru, &source);
1763 if (!__PageMovable(page))
1764 inc_node_page_state(page, NR_ISOLATED_ANON +
1765 page_is_file_lru(page));
1766
1767 } else {
1768 if (__ratelimit(&migrate_rs)) {
1769 pr_warn("failed to isolate pfn %lx\n", pfn);
1770 dump_page(page, "isolation failed");
1771 }
1772 }
1773 put_page(page);
1774 }
1775 if (!list_empty(&source)) {
1776 nodemask_t nmask = node_states[N_MEMORY];
1777 struct migration_target_control mtc = {
1778 .nmask = &nmask,
1779 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1780 };
1781 int ret;
1782
1783 /*
1784 * We have checked that migration range is on a single zone so
1785 * we can use the nid of the first page to all the others.
1786 */
1787 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1788
1789 /*
1790 * try to allocate from a different node but reuse this node
1791 * if there are no other online nodes to be used (e.g. we are
1792 * offlining a part of the only existing node)
1793 */
1794 node_clear(mtc.nid, nmask);
1795 if (nodes_empty(nmask))
1796 node_set(mtc.nid, nmask);
1797 ret = migrate_pages(&source, alloc_migration_target, NULL,
1798 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1799 if (ret) {
1800 list_for_each_entry(page, &source, lru) {
1801 if (__ratelimit(&migrate_rs)) {
1802 pr_warn("migrating pfn %lx failed ret:%d\n",
1803 page_to_pfn(page), ret);
1804 dump_page(page, "migration failure");
1805 }
1806 }
1807 putback_movable_pages(&source);
1808 }
1809 }
1810 }
1811
cmdline_parse_movable_node(char * p)1812 static int __init cmdline_parse_movable_node(char *p)
1813 {
1814 movable_node_enabled = true;
1815 return 0;
1816 }
1817 early_param("movable_node", cmdline_parse_movable_node);
1818
1819 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1820 static void node_states_check_changes_offline(unsigned long nr_pages,
1821 struct zone *zone, struct memory_notify *arg)
1822 {
1823 struct pglist_data *pgdat = zone->zone_pgdat;
1824 unsigned long present_pages = 0;
1825 enum zone_type zt;
1826
1827 arg->status_change_nid = NUMA_NO_NODE;
1828 arg->status_change_nid_normal = NUMA_NO_NODE;
1829
1830 /*
1831 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1832 * If the memory to be offline is within the range
1833 * [0..ZONE_NORMAL], and it is the last present memory there,
1834 * the zones in that range will become empty after the offlining,
1835 * thus we can determine that we need to clear the node from
1836 * node_states[N_NORMAL_MEMORY].
1837 */
1838 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1839 present_pages += pgdat->node_zones[zt].present_pages;
1840 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1841 arg->status_change_nid_normal = zone_to_nid(zone);
1842
1843 /*
1844 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1845 * does not apply as we don't support 32bit.
1846 * Here we count the possible pages from ZONE_MOVABLE.
1847 * If after having accounted all the pages, we see that the nr_pages
1848 * to be offlined is over or equal to the accounted pages,
1849 * we know that the node will become empty, and so, we can clear
1850 * it for N_MEMORY as well.
1851 */
1852 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1853
1854 if (nr_pages >= present_pages)
1855 arg->status_change_nid = zone_to_nid(zone);
1856 }
1857
node_states_clear_node(int node,struct memory_notify * arg)1858 static void node_states_clear_node(int node, struct memory_notify *arg)
1859 {
1860 if (arg->status_change_nid_normal >= 0)
1861 node_clear_state(node, N_NORMAL_MEMORY);
1862
1863 if (arg->status_change_nid >= 0)
1864 node_clear_state(node, N_MEMORY);
1865 }
1866
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1867 static int count_system_ram_pages_cb(unsigned long start_pfn,
1868 unsigned long nr_pages, void *data)
1869 {
1870 unsigned long *nr_system_ram_pages = data;
1871
1872 *nr_system_ram_pages += nr_pages;
1873 return 0;
1874 }
1875
1876 /*
1877 * Must be called with mem_hotplug_lock in write mode.
1878 */
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1879 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1880 struct zone *zone, struct memory_group *group)
1881 {
1882 const unsigned long end_pfn = start_pfn + nr_pages;
1883 unsigned long pfn, system_ram_pages = 0;
1884 const int node = zone_to_nid(zone);
1885 unsigned long flags;
1886 struct memory_notify arg;
1887 char *reason;
1888 int ret;
1889
1890 /*
1891 * {on,off}lining is constrained to full memory sections (or more
1892 * precisely to memory blocks from the user space POV).
1893 * memmap_on_memory is an exception because it reserves initial part
1894 * of the physical memory space for vmemmaps. That space is pageblock
1895 * aligned.
1896 */
1897 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1898 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1899 return -EINVAL;
1900
1901 /*
1902 * Don't allow to offline memory blocks that contain holes.
1903 * Consequently, memory blocks with holes can never get onlined
1904 * via the hotplug path - online_pages() - as hotplugged memory has
1905 * no holes. This way, we e.g., don't have to worry about marking
1906 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1907 * avoid using walk_system_ram_range() later.
1908 */
1909 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1910 count_system_ram_pages_cb);
1911 if (system_ram_pages != nr_pages) {
1912 ret = -EINVAL;
1913 reason = "memory holes";
1914 goto failed_removal;
1915 }
1916
1917 /*
1918 * We only support offlining of memory blocks managed by a single zone,
1919 * checked by calling code. This is just a sanity check that we might
1920 * want to remove in the future.
1921 */
1922 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1923 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1924 ret = -EINVAL;
1925 reason = "multizone range";
1926 goto failed_removal;
1927 }
1928
1929 /*
1930 * Disable pcplists so that page isolation cannot race with freeing
1931 * in a way that pages from isolated pageblock are left on pcplists.
1932 */
1933 zone_pcp_disable(zone);
1934 lru_cache_disable();
1935
1936 /* set above range as isolated */
1937 ret = start_isolate_page_range(start_pfn, end_pfn,
1938 MIGRATE_MOVABLE,
1939 MEMORY_OFFLINE | REPORT_FAILURE,
1940 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1941 if (ret) {
1942 reason = "failure to isolate range";
1943 goto failed_removal_pcplists_disabled;
1944 }
1945
1946 arg.start_pfn = start_pfn;
1947 arg.nr_pages = nr_pages;
1948 node_states_check_changes_offline(nr_pages, zone, &arg);
1949
1950 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1951 ret = notifier_to_errno(ret);
1952 if (ret) {
1953 reason = "notifier failure";
1954 goto failed_removal_isolated;
1955 }
1956
1957 do {
1958 pfn = start_pfn;
1959 do {
1960 /*
1961 * Historically we always checked for any signal and
1962 * can't limit it to fatal signals without eventually
1963 * breaking user space.
1964 */
1965 if (signal_pending(current)) {
1966 ret = -EINTR;
1967 reason = "signal backoff";
1968 goto failed_removal_isolated;
1969 }
1970
1971 cond_resched();
1972
1973 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1974 if (!ret) {
1975 /*
1976 * TODO: fatal migration failures should bail
1977 * out
1978 */
1979 do_migrate_range(pfn, end_pfn);
1980 }
1981 } while (!ret);
1982
1983 if (ret != -ENOENT) {
1984 reason = "unmovable page";
1985 goto failed_removal_isolated;
1986 }
1987
1988 /*
1989 * Dissolve free hugepages in the memory block before doing
1990 * offlining actually in order to make hugetlbfs's object
1991 * counting consistent.
1992 */
1993 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1994 if (ret) {
1995 reason = "failure to dissolve huge pages";
1996 goto failed_removal_isolated;
1997 }
1998
1999 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2000
2001 } while (ret);
2002
2003 /* Mark all sections offline and remove free pages from the buddy. */
2004 __offline_isolated_pages(start_pfn, end_pfn);
2005 pr_debug("Offlined Pages %ld\n", nr_pages);
2006
2007 /*
2008 * The memory sections are marked offline, and the pageblock flags
2009 * effectively stale; nobody should be touching them. Fixup the number
2010 * of isolated pageblocks, memory onlining will properly revert this.
2011 */
2012 spin_lock_irqsave(&zone->lock, flags);
2013 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2014 spin_unlock_irqrestore(&zone->lock, flags);
2015
2016 lru_cache_enable();
2017 zone_pcp_enable(zone);
2018
2019 /* removal success */
2020 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2021 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2022
2023 /* reinitialise watermarks and update pcp limits */
2024 init_per_zone_wmark_min();
2025
2026 if (!populated_zone(zone)) {
2027 zone_pcp_reset(zone);
2028 build_all_zonelists(NULL);
2029 }
2030
2031 node_states_clear_node(node, &arg);
2032 if (arg.status_change_nid >= 0) {
2033 kcompactd_stop(node);
2034 kswapd_stop(node);
2035 #ifdef CONFIG_HYPERHOLD_ZSWAPD
2036 zswapd_stop(node);
2037 #endif
2038 }
2039
2040 writeback_set_ratelimit();
2041
2042 memory_notify(MEM_OFFLINE, &arg);
2043 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2044 return 0;
2045
2046 failed_removal_isolated:
2047 /* pushback to free area */
2048 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2049 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2050 failed_removal_pcplists_disabled:
2051 lru_cache_enable();
2052 zone_pcp_enable(zone);
2053 failed_removal:
2054 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2055 (unsigned long long) start_pfn << PAGE_SHIFT,
2056 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2057 reason);
2058 return ret;
2059 }
2060
check_memblock_offlined_cb(struct memory_block * mem,void * arg)2061 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2062 {
2063 int *nid = arg;
2064
2065 *nid = mem->nid;
2066 if (unlikely(mem->state != MEM_OFFLINE)) {
2067 phys_addr_t beginpa, endpa;
2068
2069 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2070 endpa = beginpa + memory_block_size_bytes() - 1;
2071 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2072 &beginpa, &endpa);
2073
2074 return -EBUSY;
2075 }
2076 return 0;
2077 }
2078
test_has_altmap_cb(struct memory_block * mem,void * arg)2079 static int test_has_altmap_cb(struct memory_block *mem, void *arg)
2080 {
2081 struct memory_block **mem_ptr = (struct memory_block **)arg;
2082 /*
2083 * return the memblock if we have altmap
2084 * and break callback.
2085 */
2086 if (mem->altmap) {
2087 *mem_ptr = mem;
2088 return 1;
2089 }
2090 return 0;
2091 }
2092
check_cpu_on_node(int nid)2093 static int check_cpu_on_node(int nid)
2094 {
2095 int cpu;
2096
2097 for_each_present_cpu(cpu) {
2098 if (cpu_to_node(cpu) == nid)
2099 /*
2100 * the cpu on this node isn't removed, and we can't
2101 * offline this node.
2102 */
2103 return -EBUSY;
2104 }
2105
2106 return 0;
2107 }
2108
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2109 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2110 {
2111 int nid = *(int *)arg;
2112
2113 /*
2114 * If a memory block belongs to multiple nodes, the stored nid is not
2115 * reliable. However, such blocks are always online (e.g., cannot get
2116 * offlined) and, therefore, are still spanned by the node.
2117 */
2118 return mem->nid == nid ? -EEXIST : 0;
2119 }
2120
2121 /**
2122 * try_offline_node
2123 * @nid: the node ID
2124 *
2125 * Offline a node if all memory sections and cpus of the node are removed.
2126 *
2127 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2128 * and online/offline operations before this call.
2129 */
try_offline_node(int nid)2130 void try_offline_node(int nid)
2131 {
2132 int rc;
2133
2134 /*
2135 * If the node still spans pages (especially ZONE_DEVICE), don't
2136 * offline it. A node spans memory after move_pfn_range_to_zone(),
2137 * e.g., after the memory block was onlined.
2138 */
2139 if (node_spanned_pages(nid))
2140 return;
2141
2142 /*
2143 * Especially offline memory blocks might not be spanned by the
2144 * node. They will get spanned by the node once they get onlined.
2145 * However, they link to the node in sysfs and can get onlined later.
2146 */
2147 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2148 if (rc)
2149 return;
2150
2151 if (check_cpu_on_node(nid))
2152 return;
2153
2154 /*
2155 * all memory/cpu of this node are removed, we can offline this
2156 * node now.
2157 */
2158 node_set_offline(nid);
2159 unregister_one_node(nid);
2160 }
2161 EXPORT_SYMBOL(try_offline_node);
2162
try_remove_memory(u64 start,u64 size)2163 static int __ref try_remove_memory(u64 start, u64 size)
2164 {
2165 struct memory_block *mem;
2166 int rc = 0, nid = NUMA_NO_NODE;
2167 struct vmem_altmap *altmap = NULL;
2168
2169 BUG_ON(check_hotplug_memory_range(start, size));
2170
2171 /*
2172 * All memory blocks must be offlined before removing memory. Check
2173 * whether all memory blocks in question are offline and return error
2174 * if this is not the case.
2175 *
2176 * While at it, determine the nid. Note that if we'd have mixed nodes,
2177 * we'd only try to offline the last determined one -- which is good
2178 * enough for the cases we care about.
2179 */
2180 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2181 if (rc)
2182 return rc;
2183
2184 /*
2185 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2186 * the same granularity it was added - a single memory block.
2187 */
2188 if (mhp_memmap_on_memory()) {
2189 rc = walk_memory_blocks(start, size, &mem, test_has_altmap_cb);
2190 if (rc) {
2191 if (size != memory_block_size_bytes()) {
2192 pr_warn("Refuse to remove %#llx - %#llx,"
2193 "wrong granularity\n",
2194 start, start + size);
2195 return -EINVAL;
2196 }
2197 altmap = mem->altmap;
2198 /*
2199 * Mark altmap NULL so that we can add a debug
2200 * check on memblock free.
2201 */
2202 mem->altmap = NULL;
2203 }
2204 }
2205
2206 /* remove memmap entry */
2207 firmware_map_remove(start, start + size, "System RAM");
2208
2209 /*
2210 * Memory block device removal under the device_hotplug_lock is
2211 * a barrier against racing online attempts.
2212 */
2213 remove_memory_block_devices(start, size);
2214
2215 mem_hotplug_begin();
2216
2217 arch_remove_memory(start, size, altmap);
2218
2219 /* Verify that all vmemmap pages have actually been freed. */
2220 if (altmap) {
2221 WARN(altmap->alloc, "Altmap not fully unmapped");
2222 kfree(altmap);
2223 }
2224
2225 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2226 memblock_phys_free(start, size);
2227 memblock_remove(start, size);
2228 }
2229
2230 release_mem_region_adjustable(start, size);
2231
2232 if (nid != NUMA_NO_NODE)
2233 try_offline_node(nid);
2234
2235 mem_hotplug_done();
2236 return 0;
2237 }
2238
2239 /**
2240 * __remove_memory - Remove memory if every memory block is offline
2241 * @start: physical address of the region to remove
2242 * @size: size of the region to remove
2243 *
2244 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2245 * and online/offline operations before this call, as required by
2246 * try_offline_node().
2247 */
__remove_memory(u64 start,u64 size)2248 void __remove_memory(u64 start, u64 size)
2249 {
2250
2251 /*
2252 * trigger BUG() if some memory is not offlined prior to calling this
2253 * function
2254 */
2255 if (try_remove_memory(start, size))
2256 BUG();
2257 }
2258
2259 /*
2260 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2261 * some memory is not offline
2262 */
remove_memory(u64 start,u64 size)2263 int remove_memory(u64 start, u64 size)
2264 {
2265 int rc;
2266
2267 lock_device_hotplug();
2268 rc = try_remove_memory(start, size);
2269 unlock_device_hotplug();
2270
2271 return rc;
2272 }
2273 EXPORT_SYMBOL_GPL(remove_memory);
2274
try_offline_memory_block(struct memory_block * mem,void * arg)2275 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2276 {
2277 uint8_t online_type = MMOP_ONLINE_KERNEL;
2278 uint8_t **online_types = arg;
2279 struct page *page;
2280 int rc;
2281
2282 /*
2283 * Sense the online_type via the zone of the memory block. Offlining
2284 * with multiple zones within one memory block will be rejected
2285 * by offlining code ... so we don't care about that.
2286 */
2287 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2288 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2289 online_type = MMOP_ONLINE_MOVABLE;
2290
2291 rc = device_offline(&mem->dev);
2292 /*
2293 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2294 * so try_reonline_memory_block() can do the right thing.
2295 */
2296 if (!rc)
2297 **online_types = online_type;
2298
2299 (*online_types)++;
2300 /* Ignore if already offline. */
2301 return rc < 0 ? rc : 0;
2302 }
2303
try_reonline_memory_block(struct memory_block * mem,void * arg)2304 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2305 {
2306 uint8_t **online_types = arg;
2307 int rc;
2308
2309 if (**online_types != MMOP_OFFLINE) {
2310 mem->online_type = **online_types;
2311 rc = device_online(&mem->dev);
2312 if (rc < 0)
2313 pr_warn("%s: Failed to re-online memory: %d",
2314 __func__, rc);
2315 }
2316
2317 /* Continue processing all remaining memory blocks. */
2318 (*online_types)++;
2319 return 0;
2320 }
2321
2322 /*
2323 * Try to offline and remove memory. Might take a long time to finish in case
2324 * memory is still in use. Primarily useful for memory devices that logically
2325 * unplugged all memory (so it's no longer in use) and want to offline + remove
2326 * that memory.
2327 */
offline_and_remove_memory(u64 start,u64 size)2328 int offline_and_remove_memory(u64 start, u64 size)
2329 {
2330 const unsigned long mb_count = size / memory_block_size_bytes();
2331 uint8_t *online_types, *tmp;
2332 int rc;
2333
2334 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2335 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2336 return -EINVAL;
2337
2338 /*
2339 * We'll remember the old online type of each memory block, so we can
2340 * try to revert whatever we did when offlining one memory block fails
2341 * after offlining some others succeeded.
2342 */
2343 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2344 GFP_KERNEL);
2345 if (!online_types)
2346 return -ENOMEM;
2347 /*
2348 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2349 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2350 * try_reonline_memory_block().
2351 */
2352 memset(online_types, MMOP_OFFLINE, mb_count);
2353
2354 lock_device_hotplug();
2355
2356 tmp = online_types;
2357 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2358
2359 /*
2360 * In case we succeeded to offline all memory, remove it.
2361 * This cannot fail as it cannot get onlined in the meantime.
2362 */
2363 if (!rc) {
2364 rc = try_remove_memory(start, size);
2365 if (rc)
2366 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2367 }
2368
2369 /*
2370 * Rollback what we did. While memory onlining might theoretically fail
2371 * (nacked by a notifier), it barely ever happens.
2372 */
2373 if (rc) {
2374 tmp = online_types;
2375 walk_memory_blocks(start, size, &tmp,
2376 try_reonline_memory_block);
2377 }
2378 unlock_device_hotplug();
2379
2380 kfree(online_types);
2381 return rc;
2382 }
2383 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2384 #endif /* CONFIG_MEMORY_HOTREMOVE */
2385