1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 #include <linux/hck/lite_hck_jit_memory.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifdef CONFIG_MEM_PURGEABLE
63 #define MAP_PURGEABLE 0x04 /* purgeable memory */
64 #define MAP_USEREXPTE 0x08 /* userspace extension page table */
65 #endif
66
67 #ifndef arch_mmap_check
68 #define arch_mmap_check(addr, len, flags) (0)
69 #endif
70
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
72 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
73 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
74 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
75 #endif
76 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
77 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
78 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
79 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
80 #endif
81
82 static bool ignore_rlimit_data;
83 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
84
85 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
86 struct vm_area_struct *vma, struct vm_area_struct *prev,
87 struct vm_area_struct *next, unsigned long start,
88 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
89
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)90 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
91 {
92 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
93 }
94
95 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)96 void vma_set_page_prot(struct vm_area_struct *vma)
97 {
98 unsigned long vm_flags = vma->vm_flags;
99 pgprot_t vm_page_prot;
100
101 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
102 if (vma_wants_writenotify(vma, vm_page_prot)) {
103 vm_flags &= ~VM_SHARED;
104 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
105 }
106 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
107 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
108 }
109
110 /*
111 * Requires inode->i_mapping->i_mmap_rwsem
112 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)113 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
114 struct file *file, struct address_space *mapping)
115 {
116 if (vma->vm_flags & VM_SHARED)
117 mapping_unmap_writable(mapping);
118
119 flush_dcache_mmap_lock(mapping);
120 vma_interval_tree_remove(vma, &mapping->i_mmap);
121 flush_dcache_mmap_unlock(mapping);
122 }
123
124 /*
125 * Unlink a file-based vm structure from its interval tree, to hide
126 * vma from rmap and vmtruncate before freeing its page tables.
127 */
unlink_file_vma(struct vm_area_struct * vma)128 void unlink_file_vma(struct vm_area_struct *vma)
129 {
130 struct file *file = vma->vm_file;
131
132 if (file) {
133 struct address_space *mapping = file->f_mapping;
134 i_mmap_lock_write(mapping);
135 __remove_shared_vm_struct(vma, file, mapping);
136 i_mmap_unlock_write(mapping);
137 }
138 }
139
140 /*
141 * Close a vm structure and free it.
142 */
remove_vma(struct vm_area_struct * vma,bool unreachable)143 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
144 {
145 might_sleep();
146 vma_close(vma);
147 if (vma->vm_file)
148 fput(vma->vm_file);
149 mpol_put(vma_policy(vma));
150 if (unreachable)
151 __vm_area_free(vma);
152 else
153 vm_area_free(vma);
154 }
155
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)156 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
157 unsigned long min)
158 {
159 return mas_prev(&vmi->mas, min);
160 }
161
162 /*
163 * check_brk_limits() - Use platform specific check of range & verify mlock
164 * limits.
165 * @addr: The address to check
166 * @len: The size of increase.
167 *
168 * Return: 0 on success.
169 */
check_brk_limits(unsigned long addr,unsigned long len)170 static int check_brk_limits(unsigned long addr, unsigned long len)
171 {
172 unsigned long mapped_addr;
173
174 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
175 if (IS_ERR_VALUE(mapped_addr))
176 return mapped_addr;
177
178 return mlock_future_ok(current->mm, current->mm->def_flags, len)
179 ? 0 : -EAGAIN;
180 }
181 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
182 unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk,unsigned long,brk)183 SYSCALL_DEFINE1(brk, unsigned long, brk)
184 {
185 unsigned long newbrk, oldbrk, origbrk;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *brkvma, *next = NULL;
188 unsigned long min_brk;
189 bool populate = false;
190 LIST_HEAD(uf);
191 struct vma_iterator vmi;
192
193 if (mmap_write_lock_killable(mm))
194 return -EINTR;
195
196 origbrk = mm->brk;
197
198 #ifdef CONFIG_COMPAT_BRK
199 /*
200 * CONFIG_COMPAT_BRK can still be overridden by setting
201 * randomize_va_space to 2, which will still cause mm->start_brk
202 * to be arbitrarily shifted
203 */
204 if (current->brk_randomized)
205 min_brk = mm->start_brk;
206 else
207 min_brk = mm->end_data;
208 #else
209 min_brk = mm->start_brk;
210 #endif
211 if (brk < min_brk)
212 goto out;
213
214 /*
215 * Check against rlimit here. If this check is done later after the test
216 * of oldbrk with newbrk then it can escape the test and let the data
217 * segment grow beyond its set limit the in case where the limit is
218 * not page aligned -Ram Gupta
219 */
220 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
221 mm->end_data, mm->start_data))
222 goto out;
223
224 newbrk = PAGE_ALIGN(brk);
225 oldbrk = PAGE_ALIGN(mm->brk);
226 if (oldbrk == newbrk) {
227 mm->brk = brk;
228 goto success;
229 }
230
231 /* Always allow shrinking brk. */
232 if (brk <= mm->brk) {
233 /* Search one past newbrk */
234 vma_iter_init(&vmi, mm, newbrk);
235 brkvma = vma_find(&vmi, oldbrk);
236 if (!brkvma || brkvma->vm_start >= oldbrk)
237 goto out; /* mapping intersects with an existing non-brk vma. */
238 /*
239 * mm->brk must be protected by write mmap_lock.
240 * do_vma_munmap() will drop the lock on success, so update it
241 * before calling do_vma_munmap().
242 */
243 mm->brk = brk;
244 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
245 goto out;
246
247 goto success_unlocked;
248 }
249
250 if (check_brk_limits(oldbrk, newbrk - oldbrk))
251 goto out;
252
253 /*
254 * Only check if the next VMA is within the stack_guard_gap of the
255 * expansion area
256 */
257 vma_iter_init(&vmi, mm, oldbrk);
258 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
259 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
260 goto out;
261
262 brkvma = vma_prev_limit(&vmi, mm->start_brk);
263 /* Ok, looks good - let it rip. */
264 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
265 goto out;
266
267 mm->brk = brk;
268 if (mm->def_flags & VM_LOCKED)
269 populate = true;
270
271 success:
272 mmap_write_unlock(mm);
273 success_unlocked:
274 userfaultfd_unmap_complete(mm, &uf);
275 if (populate)
276 mm_populate(oldbrk, newbrk - oldbrk);
277 return brk;
278
279 out:
280 mm->brk = origbrk;
281 mmap_write_unlock(mm);
282 return origbrk;
283 }
284
285 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
validate_mm(struct mm_struct * mm)286 static void validate_mm(struct mm_struct *mm)
287 {
288 int bug = 0;
289 int i = 0;
290 struct vm_area_struct *vma;
291 VMA_ITERATOR(vmi, mm, 0);
292
293 mt_validate(&mm->mm_mt);
294 for_each_vma(vmi, vma) {
295 #ifdef CONFIG_DEBUG_VM_RB
296 struct anon_vma *anon_vma = vma->anon_vma;
297 struct anon_vma_chain *avc;
298 #endif
299 unsigned long vmi_start, vmi_end;
300 bool warn = 0;
301
302 vmi_start = vma_iter_addr(&vmi);
303 vmi_end = vma_iter_end(&vmi);
304 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
305 warn = 1;
306
307 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
308 warn = 1;
309
310 if (warn) {
311 pr_emerg("issue in %s\n", current->comm);
312 dump_stack();
313 dump_vma(vma);
314 pr_emerg("tree range: %px start %lx end %lx\n", vma,
315 vmi_start, vmi_end - 1);
316 vma_iter_dump_tree(&vmi);
317 }
318
319 #ifdef CONFIG_DEBUG_VM_RB
320 if (anon_vma) {
321 anon_vma_lock_read(anon_vma);
322 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
323 anon_vma_interval_tree_verify(avc);
324 anon_vma_unlock_read(anon_vma);
325 }
326 #endif
327 i++;
328 }
329 if (i != mm->map_count) {
330 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
331 bug = 1;
332 }
333 VM_BUG_ON_MM(bug, mm);
334 }
335
336 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
337 #define validate_mm(mm) do { } while (0)
338 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
339
340 /*
341 * vma has some anon_vma assigned, and is already inserted on that
342 * anon_vma's interval trees.
343 *
344 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
345 * vma must be removed from the anon_vma's interval trees using
346 * anon_vma_interval_tree_pre_update_vma().
347 *
348 * After the update, the vma will be reinserted using
349 * anon_vma_interval_tree_post_update_vma().
350 *
351 * The entire update must be protected by exclusive mmap_lock and by
352 * the root anon_vma's mutex.
353 */
354 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)355 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
356 {
357 struct anon_vma_chain *avc;
358
359 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
360 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
361 }
362
363 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)364 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
365 {
366 struct anon_vma_chain *avc;
367
368 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
369 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
370 }
371
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)372 static unsigned long count_vma_pages_range(struct mm_struct *mm,
373 unsigned long addr, unsigned long end)
374 {
375 VMA_ITERATOR(vmi, mm, addr);
376 struct vm_area_struct *vma;
377 unsigned long nr_pages = 0;
378
379 for_each_vma_range(vmi, vma, end) {
380 unsigned long vm_start = max(addr, vma->vm_start);
381 unsigned long vm_end = min(end, vma->vm_end);
382
383 nr_pages += PHYS_PFN(vm_end - vm_start);
384 }
385
386 return nr_pages;
387 }
388
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)389 static void __vma_link_file(struct vm_area_struct *vma,
390 struct address_space *mapping)
391 {
392 if (vma->vm_flags & VM_SHARED)
393 mapping_allow_writable(mapping);
394
395 flush_dcache_mmap_lock(mapping);
396 vma_interval_tree_insert(vma, &mapping->i_mmap);
397 flush_dcache_mmap_unlock(mapping);
398 }
399
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)400 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
401 {
402 VMA_ITERATOR(vmi, mm, 0);
403 struct address_space *mapping = NULL;
404
405 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
406 if (vma_iter_prealloc(&vmi, vma))
407 return -ENOMEM;
408
409 vma_start_write(vma);
410
411 vma_iter_store(&vmi, vma);
412
413 if (vma->vm_file) {
414 mapping = vma->vm_file->f_mapping;
415 i_mmap_lock_write(mapping);
416 __vma_link_file(vma, mapping);
417 i_mmap_unlock_write(mapping);
418 }
419
420 mm->map_count++;
421 validate_mm(mm);
422 return 0;
423 }
424
425 /*
426 * init_multi_vma_prep() - Initializer for struct vma_prepare
427 * @vp: The vma_prepare struct
428 * @vma: The vma that will be altered once locked
429 * @next: The next vma if it is to be adjusted
430 * @remove: The first vma to be removed
431 * @remove2: The second vma to be removed
432 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vm_area_struct * next,struct vm_area_struct * remove,struct vm_area_struct * remove2)433 static inline void init_multi_vma_prep(struct vma_prepare *vp,
434 struct vm_area_struct *vma, struct vm_area_struct *next,
435 struct vm_area_struct *remove, struct vm_area_struct *remove2)
436 {
437 memset(vp, 0, sizeof(struct vma_prepare));
438 vp->vma = vma;
439 vp->anon_vma = vma->anon_vma;
440 vp->remove = remove;
441 vp->remove2 = remove2;
442 vp->adj_next = next;
443 if (!vp->anon_vma && next)
444 vp->anon_vma = next->anon_vma;
445
446 vp->file = vma->vm_file;
447 if (vp->file)
448 vp->mapping = vma->vm_file->f_mapping;
449
450 }
451
452 /*
453 * init_vma_prep() - Initializer wrapper for vma_prepare struct
454 * @vp: The vma_prepare struct
455 * @vma: The vma that will be altered once locked
456 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)457 static inline void init_vma_prep(struct vma_prepare *vp,
458 struct vm_area_struct *vma)
459 {
460 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
461 }
462
463
464 /*
465 * vma_prepare() - Helper function for handling locking VMAs prior to altering
466 * @vp: The initialized vma_prepare struct
467 */
vma_prepare(struct vma_prepare * vp)468 static inline void vma_prepare(struct vma_prepare *vp)
469 {
470 if (vp->file) {
471 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
472
473 if (vp->adj_next)
474 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
475 vp->adj_next->vm_end);
476
477 i_mmap_lock_write(vp->mapping);
478 if (vp->insert && vp->insert->vm_file) {
479 /*
480 * Put into interval tree now, so instantiated pages
481 * are visible to arm/parisc __flush_dcache_page
482 * throughout; but we cannot insert into address
483 * space until vma start or end is updated.
484 */
485 __vma_link_file(vp->insert,
486 vp->insert->vm_file->f_mapping);
487 }
488 }
489
490 if (vp->anon_vma) {
491 anon_vma_lock_write(vp->anon_vma);
492 anon_vma_interval_tree_pre_update_vma(vp->vma);
493 if (vp->adj_next)
494 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
495 }
496
497 if (vp->file) {
498 flush_dcache_mmap_lock(vp->mapping);
499 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
500 if (vp->adj_next)
501 vma_interval_tree_remove(vp->adj_next,
502 &vp->mapping->i_mmap);
503 }
504
505 }
506
507 /*
508 * vma_complete- Helper function for handling the unlocking after altering VMAs,
509 * or for inserting a VMA.
510 *
511 * @vp: The vma_prepare struct
512 * @vmi: The vma iterator
513 * @mm: The mm_struct
514 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)515 static inline void vma_complete(struct vma_prepare *vp,
516 struct vma_iterator *vmi, struct mm_struct *mm)
517 {
518 if (vp->file) {
519 if (vp->adj_next)
520 vma_interval_tree_insert(vp->adj_next,
521 &vp->mapping->i_mmap);
522 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
523 flush_dcache_mmap_unlock(vp->mapping);
524 }
525
526 if (vp->remove && vp->file) {
527 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
528 if (vp->remove2)
529 __remove_shared_vm_struct(vp->remove2, vp->file,
530 vp->mapping);
531 } else if (vp->insert) {
532 /*
533 * split_vma has split insert from vma, and needs
534 * us to insert it before dropping the locks
535 * (it may either follow vma or precede it).
536 */
537 vma_iter_store(vmi, vp->insert);
538 mm->map_count++;
539 }
540
541 if (vp->anon_vma) {
542 anon_vma_interval_tree_post_update_vma(vp->vma);
543 if (vp->adj_next)
544 anon_vma_interval_tree_post_update_vma(vp->adj_next);
545 anon_vma_unlock_write(vp->anon_vma);
546 }
547
548 if (vp->file) {
549 i_mmap_unlock_write(vp->mapping);
550 uprobe_mmap(vp->vma);
551
552 if (vp->adj_next)
553 uprobe_mmap(vp->adj_next);
554 }
555
556 if (vp->remove) {
557 again:
558 vma_mark_detached(vp->remove, true);
559 if (vp->file) {
560 uprobe_munmap(vp->remove, vp->remove->vm_start,
561 vp->remove->vm_end);
562 fput(vp->file);
563 }
564 if (vp->remove->anon_vma)
565 anon_vma_merge(vp->vma, vp->remove);
566 mm->map_count--;
567 mpol_put(vma_policy(vp->remove));
568 if (!vp->remove2)
569 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
570 vm_area_free(vp->remove);
571
572 /*
573 * In mprotect's case 6 (see comments on vma_merge),
574 * we are removing both mid and next vmas
575 */
576 if (vp->remove2) {
577 vp->remove = vp->remove2;
578 vp->remove2 = NULL;
579 goto again;
580 }
581 }
582 if (vp->insert && vp->file)
583 uprobe_mmap(vp->insert);
584 validate_mm(mm);
585 }
586
587 /*
588 * dup_anon_vma() - Helper function to duplicate anon_vma
589 * @dst: The destination VMA
590 * @src: The source VMA
591 * @dup: Pointer to the destination VMA when successful.
592 *
593 * Returns: 0 on success.
594 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)595 static inline int dup_anon_vma(struct vm_area_struct *dst,
596 struct vm_area_struct *src, struct vm_area_struct **dup)
597 {
598 /*
599 * Easily overlooked: when mprotect shifts the boundary, make sure the
600 * expanding vma has anon_vma set if the shrinking vma had, to cover any
601 * anon pages imported.
602 */
603 if (src->anon_vma && !dst->anon_vma) {
604 int ret;
605
606 vma_assert_write_locked(dst);
607 dst->anon_vma = src->anon_vma;
608 ret = anon_vma_clone(dst, src);
609 if (ret)
610 return ret;
611
612 *dup = dst;
613 }
614
615 return 0;
616 }
617
618 /*
619 * vma_expand - Expand an existing VMA
620 *
621 * @vmi: The vma iterator
622 * @vma: The vma to expand
623 * @start: The start of the vma
624 * @end: The exclusive end of the vma
625 * @pgoff: The page offset of vma
626 * @next: The current of next vma.
627 *
628 * Expand @vma to @start and @end. Can expand off the start and end. Will
629 * expand over @next if it's different from @vma and @end == @next->vm_end.
630 * Checking if the @vma can expand and merge with @next needs to be handled by
631 * the caller.
632 *
633 * Returns: 0 on success
634 */
vma_expand(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * next)635 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
636 unsigned long start, unsigned long end, pgoff_t pgoff,
637 struct vm_area_struct *next)
638 {
639 struct vm_area_struct *anon_dup = NULL;
640 bool remove_next = false;
641 struct vma_prepare vp;
642
643 vma_start_write(vma);
644 if (next && (vma != next) && (end == next->vm_end)) {
645 int ret;
646
647 remove_next = true;
648 vma_start_write(next);
649 ret = dup_anon_vma(vma, next, &anon_dup);
650 if (ret)
651 return ret;
652 }
653
654 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
655 /* Not merging but overwriting any part of next is not handled. */
656 VM_WARN_ON(next && !vp.remove &&
657 next != vma && end > next->vm_start);
658 /* Only handles expanding */
659 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
660
661 /* Note: vma iterator must be pointing to 'start' */
662 vma_iter_config(vmi, start, end);
663 if (vma_iter_prealloc(vmi, vma))
664 goto nomem;
665
666 vma_prepare(&vp);
667 vma_adjust_trans_huge(vma, start, end, 0);
668 vma->vm_start = start;
669 vma->vm_end = end;
670 vma->vm_pgoff = pgoff;
671 vma_iter_store(vmi, vma);
672
673 vma_complete(&vp, vmi, vma->vm_mm);
674 return 0;
675
676 nomem:
677 if (anon_dup)
678 unlink_anon_vmas(anon_dup);
679 return -ENOMEM;
680 }
681
682 /*
683 * vma_shrink() - Reduce an existing VMAs memory area
684 * @vmi: The vma iterator
685 * @vma: The VMA to modify
686 * @start: The new start
687 * @end: The new end
688 *
689 * Returns: 0 on success, -ENOMEM otherwise
690 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)691 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
692 unsigned long start, unsigned long end, pgoff_t pgoff)
693 {
694 struct vma_prepare vp;
695
696 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
697
698 if (vma->vm_start < start)
699 vma_iter_config(vmi, vma->vm_start, start);
700 else
701 vma_iter_config(vmi, end, vma->vm_end);
702
703 if (vma_iter_prealloc(vmi, NULL))
704 return -ENOMEM;
705
706 vma_start_write(vma);
707
708 init_vma_prep(&vp, vma);
709 vma_prepare(&vp);
710 vma_adjust_trans_huge(vma, start, end, 0);
711
712 vma_iter_clear(vmi);
713 vma->vm_start = start;
714 vma->vm_end = end;
715 vma->vm_pgoff = pgoff;
716 vma_complete(&vp, vmi, vma->vm_mm);
717 return 0;
718 }
719
720 /*
721 * If the vma has a ->close operation then the driver probably needs to release
722 * per-vma resources, so we don't attempt to merge those if the caller indicates
723 * the current vma may be removed as part of the merge.
724 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name,bool may_remove_vma)725 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
726 struct file *file, unsigned long vm_flags,
727 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
728 struct anon_vma_name *anon_name, bool may_remove_vma)
729 {
730 /*
731 * VM_SOFTDIRTY should not prevent from VMA merging, if we
732 * match the flags but dirty bit -- the caller should mark
733 * merged VMA as dirty. If dirty bit won't be excluded from
734 * comparison, we increase pressure on the memory system forcing
735 * the kernel to generate new VMAs when old one could be
736 * extended instead.
737 */
738 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
739 return false;
740 if (vma->vm_file != file)
741 return false;
742 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
743 return false;
744 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
745 return false;
746 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
747 return false;
748 return true;
749 }
750
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)751 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
752 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
753 {
754 /*
755 * The list_is_singular() test is to avoid merging VMA cloned from
756 * parents. This can improve scalability caused by anon_vma lock.
757 */
758 if ((!anon_vma1 || !anon_vma2) && (!vma ||
759 list_is_singular(&vma->anon_vma_chain)))
760 return true;
761 return anon_vma1 == anon_vma2;
762 }
763
764 /*
765 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
766 * in front of (at a lower virtual address and file offset than) the vma.
767 *
768 * We cannot merge two vmas if they have differently assigned (non-NULL)
769 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
770 *
771 * We don't check here for the merged mmap wrapping around the end of pagecache
772 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
773 * wrap, nor mmaps which cover the final page at index -1UL.
774 *
775 * We assume the vma may be removed as part of the merge.
776 */
777 static bool
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)778 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
779 struct anon_vma *anon_vma, struct file *file,
780 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
781 struct anon_vma_name *anon_name)
782 {
783 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
784 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
785 if (vma->vm_pgoff == vm_pgoff)
786 return true;
787 }
788 return false;
789 }
790
791 /*
792 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
793 * beyond (at a higher virtual address and file offset than) the vma.
794 *
795 * We cannot merge two vmas if they have differently assigned (non-NULL)
796 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
797 *
798 * We assume that vma is not removed as part of the merge.
799 */
800 static bool
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)801 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
802 struct anon_vma *anon_vma, struct file *file,
803 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
804 struct anon_vma_name *anon_name)
805 {
806 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
807 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
808 pgoff_t vm_pglen;
809 vm_pglen = vma_pages(vma);
810 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
811 return true;
812 }
813 return false;
814 }
815
816 /*
817 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
818 * figure out whether that can be merged with its predecessor or its
819 * successor. Or both (it neatly fills a hole).
820 *
821 * In most cases - when called for mmap, brk or mremap - [addr,end) is
822 * certain not to be mapped by the time vma_merge is called; but when
823 * called for mprotect, it is certain to be already mapped (either at
824 * an offset within prev, or at the start of next), and the flags of
825 * this area are about to be changed to vm_flags - and the no-change
826 * case has already been eliminated.
827 *
828 * The following mprotect cases have to be considered, where **** is
829 * the area passed down from mprotect_fixup, never extending beyond one
830 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
831 * at the same address as **** and is of the same or larger span, and
832 * NNNN the next vma after ****:
833 *
834 * **** **** ****
835 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
836 * cannot merge might become might become
837 * PPNNNNNNNNNN PPPPPPPPPPCC
838 * mmap, brk or case 4 below case 5 below
839 * mremap move:
840 * **** ****
841 * PPPP NNNN PPPPCCCCNNNN
842 * might become might become
843 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
844 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
845 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
846 *
847 * It is important for case 8 that the vma CCCC overlapping the
848 * region **** is never going to extended over NNNN. Instead NNNN must
849 * be extended in region **** and CCCC must be removed. This way in
850 * all cases where vma_merge succeeds, the moment vma_merge drops the
851 * rmap_locks, the properties of the merged vma will be already
852 * correct for the whole merged range. Some of those properties like
853 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
854 * be correct for the whole merged range immediately after the
855 * rmap_locks are released. Otherwise if NNNN would be removed and
856 * CCCC would be extended over the NNNN range, remove_migration_ptes
857 * or other rmap walkers (if working on addresses beyond the "end"
858 * parameter) may establish ptes with the wrong permissions of CCCC
859 * instead of the right permissions of NNNN.
860 *
861 * In the code below:
862 * PPPP is represented by *prev
863 * CCCC is represented by *curr or not represented at all (NULL)
864 * NNNN is represented by *next or not represented at all (NULL)
865 * **** is not represented - it will be merged and the vma containing the
866 * area is returned, or the function will return NULL
867 */
vma_merge(struct vma_iterator * vmi,struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)868 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
869 struct vm_area_struct *prev, unsigned long addr,
870 unsigned long end, unsigned long vm_flags,
871 struct anon_vma *anon_vma, struct file *file,
872 pgoff_t pgoff, struct mempolicy *policy,
873 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
874 struct anon_vma_name *anon_name)
875 {
876 struct vm_area_struct *curr, *next, *res;
877 struct vm_area_struct *vma, *adjust, *remove, *remove2;
878 struct vm_area_struct *anon_dup = NULL;
879 struct vma_prepare vp;
880 pgoff_t vma_pgoff;
881 int err = 0;
882 bool merge_prev = false;
883 bool merge_next = false;
884 bool vma_expanded = false;
885 unsigned long vma_start = addr;
886 unsigned long vma_end = end;
887 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
888 long adj_start = 0;
889
890 /*
891 * We later require that vma->vm_flags == vm_flags,
892 * so this tests vma->vm_flags & VM_SPECIAL, too.
893 */
894 if (vm_flags & VM_SPECIAL)
895 return NULL;
896
897 /* Does the input range span an existing VMA? (cases 5 - 8) */
898 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
899
900 if (!curr || /* cases 1 - 4 */
901 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
902 next = vma_lookup(mm, end);
903 else
904 next = NULL; /* case 5 */
905
906 if (prev) {
907 vma_start = prev->vm_start;
908 vma_pgoff = prev->vm_pgoff;
909
910 /* Can we merge the predecessor? */
911 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
912 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
913 pgoff, vm_userfaultfd_ctx, anon_name)) {
914 merge_prev = true;
915 vma_prev(vmi);
916 }
917 }
918
919 /* Can we merge the successor? */
920 if (next && mpol_equal(policy, vma_policy(next)) &&
921 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
922 vm_userfaultfd_ctx, anon_name)) {
923 merge_next = true;
924 }
925
926 /* Verify some invariant that must be enforced by the caller. */
927 VM_WARN_ON(prev && addr <= prev->vm_start);
928 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
929 VM_WARN_ON(addr >= end);
930
931 if (!merge_prev && !merge_next)
932 return NULL; /* Not mergeable. */
933
934 if (merge_prev)
935 vma_start_write(prev);
936
937 res = vma = prev;
938 remove = remove2 = adjust = NULL;
939
940 /* Can we merge both the predecessor and the successor? */
941 if (merge_prev && merge_next &&
942 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
943 vma_start_write(next);
944 remove = next; /* case 1 */
945 vma_end = next->vm_end;
946 err = dup_anon_vma(prev, next, &anon_dup);
947 if (curr) { /* case 6 */
948 vma_start_write(curr);
949 remove = curr;
950 remove2 = next;
951 if (!next->anon_vma)
952 err = dup_anon_vma(prev, curr, &anon_dup);
953 }
954 } else if (merge_prev) { /* case 2 */
955 if (curr) {
956 vma_start_write(curr);
957 if (end == curr->vm_end) { /* case 7 */
958 /*
959 * can_vma_merge_after() assumed we would not be
960 * removing prev vma, so it skipped the check
961 * for vm_ops->close, but we are removing curr
962 */
963 if (curr->vm_ops && curr->vm_ops->close)
964 err = -EINVAL;
965 remove = curr;
966 } else { /* case 5 */
967 adjust = curr;
968 adj_start = (end - curr->vm_start);
969 }
970 if (!err)
971 err = dup_anon_vma(prev, curr, &anon_dup);
972 }
973 } else { /* merge_next */
974 vma_start_write(next);
975 res = next;
976 if (prev && addr < prev->vm_end) { /* case 4 */
977 vma_start_write(prev);
978 vma_end = addr;
979 adjust = next;
980 adj_start = -(prev->vm_end - addr);
981 err = dup_anon_vma(next, prev, &anon_dup);
982 } else {
983 /*
984 * Note that cases 3 and 8 are the ONLY ones where prev
985 * is permitted to be (but is not necessarily) NULL.
986 */
987 vma = next; /* case 3 */
988 vma_start = addr;
989 vma_end = next->vm_end;
990 vma_pgoff = next->vm_pgoff - pglen;
991 if (curr) { /* case 8 */
992 vma_pgoff = curr->vm_pgoff;
993 vma_start_write(curr);
994 remove = curr;
995 err = dup_anon_vma(next, curr, &anon_dup);
996 }
997 }
998 }
999
1000 /* Error in anon_vma clone. */
1001 if (err)
1002 goto anon_vma_fail;
1003
1004 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005 vma_expanded = true;
1006
1007 if (vma_expanded) {
1008 vma_iter_config(vmi, vma_start, vma_end);
1009 } else {
1010 vma_iter_config(vmi, adjust->vm_start + adj_start,
1011 adjust->vm_end);
1012 }
1013
1014 if (vma_iter_prealloc(vmi, vma))
1015 goto prealloc_fail;
1016
1017 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019 vp.anon_vma != adjust->anon_vma);
1020
1021 vma_prepare(&vp);
1022 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023
1024 vma->vm_start = vma_start;
1025 vma->vm_end = vma_end;
1026 vma->vm_pgoff = vma_pgoff;
1027
1028 if (vma_expanded)
1029 vma_iter_store(vmi, vma);
1030
1031 if (adj_start) {
1032 adjust->vm_start += adj_start;
1033 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034 if (adj_start < 0) {
1035 WARN_ON(vma_expanded);
1036 vma_iter_store(vmi, next);
1037 }
1038 }
1039
1040 vma_complete(&vp, vmi, mm);
1041 khugepaged_enter_vma(res, vm_flags);
1042 return res;
1043
1044 prealloc_fail:
1045 if (anon_dup)
1046 unlink_anon_vmas(anon_dup);
1047
1048 anon_vma_fail:
1049 vma_iter_set(vmi, addr);
1050 vma_iter_load(vmi);
1051 return NULL;
1052 }
1053
1054 /*
1055 * Rough compatibility check to quickly see if it's even worth looking
1056 * at sharing an anon_vma.
1057 *
1058 * They need to have the same vm_file, and the flags can only differ
1059 * in things that mprotect may change.
1060 *
1061 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062 * we can merge the two vma's. For example, we refuse to merge a vma if
1063 * there is a vm_ops->close() function, because that indicates that the
1064 * driver is doing some kind of reference counting. But that doesn't
1065 * really matter for the anon_vma sharing case.
1066 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1067 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068 {
1069 return a->vm_end == b->vm_start &&
1070 mpol_equal(vma_policy(a), vma_policy(b)) &&
1071 a->vm_file == b->vm_file &&
1072 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074 }
1075
1076 /*
1077 * Do some basic sanity checking to see if we can re-use the anon_vma
1078 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079 * the same as 'old', the other will be the new one that is trying
1080 * to share the anon_vma.
1081 *
1082 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083 * the anon_vma of 'old' is concurrently in the process of being set up
1084 * by another page fault trying to merge _that_. But that's ok: if it
1085 * is being set up, that automatically means that it will be a singleton
1086 * acceptable for merging, so we can do all of this optimistically. But
1087 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088 *
1089 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091 * is to return an anon_vma that is "complex" due to having gone through
1092 * a fork).
1093 *
1094 * We also make sure that the two vma's are compatible (adjacent,
1095 * and with the same memory policies). That's all stable, even with just
1096 * a read lock on the mmap_lock.
1097 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1098 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099 {
1100 if (anon_vma_compatible(a, b)) {
1101 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102
1103 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104 return anon_vma;
1105 }
1106 return NULL;
1107 }
1108
1109 /*
1110 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111 * neighbouring vmas for a suitable anon_vma, before it goes off
1112 * to allocate a new anon_vma. It checks because a repetitive
1113 * sequence of mprotects and faults may otherwise lead to distinct
1114 * anon_vmas being allocated, preventing vma merge in subsequent
1115 * mprotect.
1116 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1117 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118 {
1119 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120 struct anon_vma *anon_vma = NULL;
1121 struct vm_area_struct *prev, *next;
1122
1123 /* Try next first. */
1124 next = mas_walk(&mas);
1125 if (next) {
1126 anon_vma = reusable_anon_vma(next, vma, next);
1127 if (anon_vma)
1128 return anon_vma;
1129 }
1130
1131 prev = mas_prev(&mas, 0);
1132 VM_BUG_ON_VMA(prev != vma, vma);
1133 prev = mas_prev(&mas, 0);
1134 /* Try prev next. */
1135 if (prev)
1136 anon_vma = reusable_anon_vma(prev, prev, vma);
1137
1138 /*
1139 * We might reach here with anon_vma == NULL if we can't find
1140 * any reusable anon_vma.
1141 * There's no absolute need to look only at touching neighbours:
1142 * we could search further afield for "compatible" anon_vmas.
1143 * But it would probably just be a waste of time searching,
1144 * or lead to too many vmas hanging off the same anon_vma.
1145 * We're trying to allow mprotect remerging later on,
1146 * not trying to minimize memory used for anon_vmas.
1147 */
1148 return anon_vma;
1149 }
1150
1151 /*
1152 * If a hint addr is less than mmap_min_addr change hint to be as
1153 * low as possible but still greater than mmap_min_addr
1154 */
round_hint_to_min(unsigned long hint)1155 static inline unsigned long round_hint_to_min(unsigned long hint)
1156 {
1157 hint &= PAGE_MASK;
1158 if (((void *)hint != NULL) &&
1159 (hint < mmap_min_addr))
1160 return PAGE_ALIGN(mmap_min_addr);
1161 return hint;
1162 }
1163
mlock_future_ok(struct mm_struct * mm,unsigned long flags,unsigned long bytes)1164 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165 unsigned long bytes)
1166 {
1167 unsigned long locked_pages, limit_pages;
1168
1169 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170 return true;
1171
1172 locked_pages = bytes >> PAGE_SHIFT;
1173 locked_pages += mm->locked_vm;
1174
1175 limit_pages = rlimit(RLIMIT_MEMLOCK);
1176 limit_pages >>= PAGE_SHIFT;
1177
1178 return locked_pages <= limit_pages;
1179 }
1180
file_mmap_size_max(struct file * file,struct inode * inode)1181 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182 {
1183 if (S_ISREG(inode->i_mode))
1184 return MAX_LFS_FILESIZE;
1185
1186 if (S_ISBLK(inode->i_mode))
1187 return MAX_LFS_FILESIZE;
1188
1189 if (S_ISSOCK(inode->i_mode))
1190 return MAX_LFS_FILESIZE;
1191
1192 /* Special "we do even unsigned file positions" case */
1193 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194 return 0;
1195
1196 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197 return ULONG_MAX;
1198 }
1199
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1200 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201 unsigned long pgoff, unsigned long len)
1202 {
1203 u64 maxsize = file_mmap_size_max(file, inode);
1204
1205 if (maxsize && len > maxsize)
1206 return false;
1207 maxsize -= len;
1208 if (pgoff > maxsize >> PAGE_SHIFT)
1209 return false;
1210 return true;
1211 }
1212
1213 /*
1214 * The caller must write-lock current->mm->mmap_lock.
1215 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1216 unsigned long do_mmap(struct file *file, unsigned long addr,
1217 unsigned long len, unsigned long prot,
1218 unsigned long flags, vm_flags_t vm_flags,
1219 unsigned long pgoff, unsigned long *populate,
1220 struct list_head *uf)
1221 {
1222 struct mm_struct *mm = current->mm;
1223 int pkey = 0;
1224
1225 *populate = 0;
1226
1227 if (!len)
1228 return -EINVAL;
1229
1230 /*
1231 * Does the application expect PROT_READ to imply PROT_EXEC?
1232 *
1233 * (the exception is when the underlying filesystem is noexec
1234 * mounted, in which case we dont add PROT_EXEC.)
1235 */
1236 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237 if (!(file && path_noexec(&file->f_path)))
1238 prot |= PROT_EXEC;
1239
1240 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1241 if (flags & MAP_FIXED_NOREPLACE)
1242 flags |= MAP_FIXED;
1243
1244 if (!(flags & MAP_FIXED))
1245 addr = round_hint_to_min(addr);
1246
1247 /* Careful about overflows.. */
1248 len = PAGE_ALIGN(len);
1249 if (!len)
1250 return -ENOMEM;
1251
1252 /* offset overflow? */
1253 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254 return -EOVERFLOW;
1255
1256 /* Too many mappings? */
1257 if (mm->map_count > sysctl_max_map_count)
1258 return -ENOMEM;
1259
1260 /* Obtain the address to map to. we verify (or select) it and ensure
1261 * that it represents a valid section of the address space.
1262 */
1263 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264 if (IS_ERR_VALUE(addr))
1265 return addr;
1266
1267 if (flags & MAP_FIXED_NOREPLACE) {
1268 if (find_vma_intersection(mm, addr, addr + len))
1269 return -EEXIST;
1270 }
1271
1272 if (prot == PROT_EXEC) {
1273 pkey = execute_only_pkey(mm);
1274 if (pkey < 0)
1275 pkey = 0;
1276 }
1277
1278 /* Do simple checking here so the lower-level routines won't have
1279 * to. we assume access permissions have been handled by the open
1280 * of the memory object, so we don't do any here.
1281 */
1282 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
1283 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285 if (flags & MAP_LOCKED)
1286 if (!can_do_mlock())
1287 return -EPERM;
1288
1289 if (!mlock_future_ok(mm, vm_flags, len))
1290 return -EAGAIN;
1291
1292 if (file) {
1293 struct inode *inode = file_inode(file);
1294 unsigned long flags_mask;
1295
1296 if (!file_mmap_ok(file, inode, pgoff, len))
1297 return -EOVERFLOW;
1298
1299 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300
1301 switch (flags & MAP_TYPE) {
1302 case MAP_SHARED:
1303 /*
1304 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305 * flags. E.g. MAP_SYNC is dangerous to use with
1306 * MAP_SHARED as you don't know which consistency model
1307 * you will get. We silently ignore unsupported flags
1308 * with MAP_SHARED to preserve backward compatibility.
1309 */
1310 flags &= LEGACY_MAP_MASK;
1311 fallthrough;
1312 case MAP_SHARED_VALIDATE:
1313 if (flags & ~flags_mask)
1314 return -EOPNOTSUPP;
1315 if (prot & PROT_WRITE) {
1316 if (!(file->f_mode & FMODE_WRITE))
1317 return -EACCES;
1318 if (IS_SWAPFILE(file->f_mapping->host))
1319 return -ETXTBSY;
1320 }
1321
1322 /*
1323 * Make sure we don't allow writing to an append-only
1324 * file..
1325 */
1326 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327 return -EACCES;
1328
1329 vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 if (!(file->f_mode & FMODE_WRITE))
1331 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332 fallthrough;
1333 case MAP_PRIVATE:
1334 if (!(file->f_mode & FMODE_READ))
1335 return -EACCES;
1336 if (path_noexec(&file->f_path)) {
1337 if (vm_flags & VM_EXEC)
1338 return -EPERM;
1339 vm_flags &= ~VM_MAYEXEC;
1340 }
1341
1342 if (!file->f_op->mmap)
1343 return -ENODEV;
1344 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345 return -EINVAL;
1346 break;
1347
1348 default:
1349 return -EINVAL;
1350 }
1351 } else {
1352 switch (flags & MAP_TYPE) {
1353 case MAP_SHARED:
1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 return -EINVAL;
1356 /*
1357 * Ignore pgoff.
1358 */
1359 pgoff = 0;
1360 vm_flags |= VM_SHARED | VM_MAYSHARE;
1361 break;
1362 case MAP_PRIVATE:
1363 /*
1364 * Set pgoff according to addr for anon_vma.
1365 */
1366 pgoff = addr >> PAGE_SHIFT;
1367 break;
1368 #ifdef CONFIG_MEM_PURGEABLE
1369 case MAP_PURGEABLE:
1370 vm_flags |= VM_PURGEABLE;
1371 break;
1372 case MAP_USEREXPTE:
1373 vm_flags |= VM_USEREXPTE;
1374 break;
1375 #endif
1376 default:
1377 return -EINVAL;
1378 }
1379 }
1380
1381 /*
1382 * Set 'VM_NORESERVE' if we should not account for the
1383 * memory use of this mapping.
1384 */
1385 if (flags & MAP_NORESERVE) {
1386 /* We honor MAP_NORESERVE if allowed to overcommit */
1387 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1388 vm_flags |= VM_NORESERVE;
1389
1390 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1391 if (file && is_file_hugepages(file))
1392 vm_flags |= VM_NORESERVE;
1393 }
1394
1395 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1396 if (!IS_ERR_VALUE(addr) &&
1397 ((vm_flags & VM_LOCKED) ||
1398 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1399 *populate = len;
1400 return addr;
1401 }
1402
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1403 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1404 unsigned long prot, unsigned long flags,
1405 unsigned long fd, unsigned long pgoff)
1406 {
1407 struct file *file = NULL;
1408 unsigned long retval;
1409
1410 if (!(flags & MAP_ANONYMOUS)) {
1411 audit_mmap_fd(fd, flags);
1412 file = fget(fd);
1413 if (!file)
1414 return -EBADF;
1415 if (is_file_hugepages(file)) {
1416 len = ALIGN(len, huge_page_size(hstate_file(file)));
1417 } else if (unlikely(flags & MAP_HUGETLB)) {
1418 retval = -EINVAL;
1419 goto out_fput;
1420 }
1421 } else if (flags & MAP_HUGETLB) {
1422 struct hstate *hs;
1423
1424 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1425 if (!hs)
1426 return -EINVAL;
1427
1428 len = ALIGN(len, huge_page_size(hs));
1429 /*
1430 * VM_NORESERVE is used because the reservations will be
1431 * taken when vm_ops->mmap() is called
1432 */
1433 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1434 VM_NORESERVE,
1435 HUGETLB_ANONHUGE_INODE,
1436 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1437 if (IS_ERR(file))
1438 return PTR_ERR(file);
1439 }
1440
1441 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1442
1443 if (!IS_ERR_VALUE(retval)) {
1444 CALL_HCK_LITE_HOOK(check_jit_memory_lhck, current, fd, prot, flags, PAGE_ALIGN(len), &retval);
1445 if (IS_ERR_VALUE(retval))
1446 pr_info("JITINFO: jit request denied");
1447 }
1448 out_fput:
1449 if (file)
1450 fput(file);
1451 return retval;
1452 }
1453
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1454 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1455 unsigned long, prot, unsigned long, flags,
1456 unsigned long, fd, unsigned long, pgoff)
1457 {
1458 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1459 }
1460
1461 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1462 struct mmap_arg_struct {
1463 unsigned long addr;
1464 unsigned long len;
1465 unsigned long prot;
1466 unsigned long flags;
1467 unsigned long fd;
1468 unsigned long offset;
1469 };
1470
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1471 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1472 {
1473 struct mmap_arg_struct a;
1474
1475 if (copy_from_user(&a, arg, sizeof(a)))
1476 return -EFAULT;
1477 if (offset_in_page(a.offset))
1478 return -EINVAL;
1479
1480 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1481 a.offset >> PAGE_SHIFT);
1482 }
1483 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1484
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1485 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1486 {
1487 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1488 }
1489
vma_is_shared_writable(struct vm_area_struct * vma)1490 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1491 {
1492 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1493 (VM_WRITE | VM_SHARED);
1494 }
1495
vma_fs_can_writeback(struct vm_area_struct * vma)1496 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1497 {
1498 /* No managed pages to writeback. */
1499 if (vma->vm_flags & VM_PFNMAP)
1500 return false;
1501
1502 return vma->vm_file && vma->vm_file->f_mapping &&
1503 mapping_can_writeback(vma->vm_file->f_mapping);
1504 }
1505
1506 /*
1507 * Does this VMA require the underlying folios to have their dirty state
1508 * tracked?
1509 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)1510 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1511 {
1512 /* Only shared, writable VMAs require dirty tracking. */
1513 if (!vma_is_shared_writable(vma))
1514 return false;
1515
1516 /* Does the filesystem need to be notified? */
1517 if (vm_ops_needs_writenotify(vma->vm_ops))
1518 return true;
1519
1520 /*
1521 * Even if the filesystem doesn't indicate a need for writenotify, if it
1522 * can writeback, dirty tracking is still required.
1523 */
1524 return vma_fs_can_writeback(vma);
1525 }
1526
1527 /*
1528 * Some shared mappings will want the pages marked read-only
1529 * to track write events. If so, we'll downgrade vm_page_prot
1530 * to the private version (using protection_map[] without the
1531 * VM_SHARED bit).
1532 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1533 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1534 {
1535 /* If it was private or non-writable, the write bit is already clear */
1536 if (!vma_is_shared_writable(vma))
1537 return 0;
1538
1539 /* The backer wishes to know when pages are first written to? */
1540 if (vm_ops_needs_writenotify(vma->vm_ops))
1541 return 1;
1542
1543 /* The open routine did something to the protections that pgprot_modify
1544 * won't preserve? */
1545 if (pgprot_val(vm_page_prot) !=
1546 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1547 return 0;
1548
1549 /*
1550 * Do we need to track softdirty? hugetlb does not support softdirty
1551 * tracking yet.
1552 */
1553 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1554 return 1;
1555
1556 /* Do we need write faults for uffd-wp tracking? */
1557 if (userfaultfd_wp(vma))
1558 return 1;
1559
1560 /* Can the mapping track the dirty pages? */
1561 return vma_fs_can_writeback(vma);
1562 }
1563
1564 /*
1565 * We account for memory if it's a private writeable mapping,
1566 * not hugepages and VM_NORESERVE wasn't set.
1567 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1568 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1569 {
1570 /*
1571 * hugetlb has its own accounting separate from the core VM
1572 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1573 */
1574 if (file && is_file_hugepages(file))
1575 return 0;
1576
1577 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1578 }
1579
1580 /**
1581 * unmapped_area() - Find an area between the low_limit and the high_limit with
1582 * the correct alignment and offset, all from @info. Note: current->mm is used
1583 * for the search.
1584 *
1585 * @info: The unmapped area information including the range [low_limit -
1586 * high_limit), the alignment offset and mask.
1587 *
1588 * Return: A memory address or -ENOMEM.
1589 */
unmapped_area(struct vm_unmapped_area_info * info)1590 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1591 {
1592 unsigned long length, gap;
1593 unsigned long low_limit, high_limit;
1594 struct vm_area_struct *tmp;
1595
1596 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1597
1598 /* Adjust search length to account for worst case alignment overhead */
1599 length = info->length + info->align_mask;
1600 if (length < info->length)
1601 return -ENOMEM;
1602
1603 low_limit = info->low_limit;
1604 if (low_limit < mmap_min_addr)
1605 low_limit = mmap_min_addr;
1606 high_limit = info->high_limit;
1607 retry:
1608 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1609 return -ENOMEM;
1610
1611 gap = mas.index;
1612 gap += (info->align_offset - gap) & info->align_mask;
1613 tmp = mas_next(&mas, ULONG_MAX);
1614 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1615 if (vm_start_gap(tmp) < gap + length - 1) {
1616 low_limit = tmp->vm_end;
1617 mas_reset(&mas);
1618 goto retry;
1619 }
1620 } else {
1621 tmp = mas_prev(&mas, 0);
1622 if (tmp && vm_end_gap(tmp) > gap) {
1623 low_limit = vm_end_gap(tmp);
1624 mas_reset(&mas);
1625 goto retry;
1626 }
1627 }
1628
1629 return gap;
1630 }
1631
1632 /**
1633 * unmapped_area_topdown() - Find an area between the low_limit and the
1634 * high_limit with the correct alignment and offset at the highest available
1635 * address, all from @info. Note: current->mm is used for the search.
1636 *
1637 * @info: The unmapped area information including the range [low_limit -
1638 * high_limit), the alignment offset and mask.
1639 *
1640 * Return: A memory address or -ENOMEM.
1641 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)1642 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1643 {
1644 unsigned long length, gap, gap_end;
1645 unsigned long low_limit, high_limit;
1646 struct vm_area_struct *tmp;
1647
1648 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1649 /* Adjust search length to account for worst case alignment overhead */
1650 length = info->length + info->align_mask;
1651 if (length < info->length)
1652 return -ENOMEM;
1653
1654 low_limit = info->low_limit;
1655 if (low_limit < mmap_min_addr)
1656 low_limit = mmap_min_addr;
1657 high_limit = info->high_limit;
1658 retry:
1659 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1660 return -ENOMEM;
1661
1662 gap = mas.last + 1 - info->length;
1663 gap -= (gap - info->align_offset) & info->align_mask;
1664 gap_end = mas.last;
1665 tmp = mas_next(&mas, ULONG_MAX);
1666 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1667 if (vm_start_gap(tmp) <= gap_end) {
1668 high_limit = vm_start_gap(tmp);
1669 mas_reset(&mas);
1670 goto retry;
1671 }
1672 } else {
1673 tmp = mas_prev(&mas, 0);
1674 if (tmp && vm_end_gap(tmp) > gap) {
1675 high_limit = tmp->vm_start;
1676 mas_reset(&mas);
1677 goto retry;
1678 }
1679 }
1680
1681 return gap;
1682 }
1683
1684 /*
1685 * Search for an unmapped address range.
1686 *
1687 * We are looking for a range that:
1688 * - does not intersect with any VMA;
1689 * - is contained within the [low_limit, high_limit) interval;
1690 * - is at least the desired size.
1691 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1692 */
vm_unmapped_area(struct vm_unmapped_area_info * info)1693 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1694 {
1695 unsigned long addr;
1696
1697 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1698 addr = unmapped_area_topdown(info);
1699 else
1700 addr = unmapped_area(info);
1701
1702 trace_vm_unmapped_area(addr, info);
1703 return addr;
1704 }
1705
1706 /* Get an address range which is currently unmapped.
1707 * For shmat() with addr=0.
1708 *
1709 * Ugly calling convention alert:
1710 * Return value with the low bits set means error value,
1711 * ie
1712 * if (ret & ~PAGE_MASK)
1713 * error = ret;
1714 *
1715 * This function "knows" that -ENOMEM has the bits set.
1716 */
1717 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1718 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1719 unsigned long len, unsigned long pgoff,
1720 unsigned long flags)
1721 {
1722 struct mm_struct *mm = current->mm;
1723 struct vm_area_struct *vma, *prev;
1724 struct vm_unmapped_area_info info;
1725 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1726
1727 if (len > mmap_end - mmap_min_addr)
1728 return -ENOMEM;
1729
1730 if (flags & MAP_FIXED)
1731 return addr;
1732
1733 if (addr) {
1734 addr = PAGE_ALIGN(addr);
1735 vma = find_vma_prev(mm, addr, &prev);
1736 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1737 (!vma || addr + len <= vm_start_gap(vma)) &&
1738 (!prev || addr >= vm_end_gap(prev)))
1739 return addr;
1740 }
1741
1742 info.flags = 0;
1743 info.length = len;
1744 info.low_limit = mm->mmap_base;
1745 info.high_limit = mmap_end;
1746 info.align_mask = 0;
1747 info.align_offset = 0;
1748 return vm_unmapped_area(&info);
1749 }
1750
1751 #ifndef HAVE_ARCH_UNMAPPED_AREA
1752 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1753 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1754 unsigned long len, unsigned long pgoff,
1755 unsigned long flags)
1756 {
1757 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1758 }
1759 #endif
1760
1761 /*
1762 * This mmap-allocator allocates new areas top-down from below the
1763 * stack's low limit (the base):
1764 */
1765 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1766 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1767 unsigned long len, unsigned long pgoff,
1768 unsigned long flags)
1769 {
1770 struct vm_area_struct *vma, *prev;
1771 struct mm_struct *mm = current->mm;
1772 struct vm_unmapped_area_info info;
1773 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1774
1775 /* requested length too big for entire address space */
1776 if (len > mmap_end - mmap_min_addr)
1777 return -ENOMEM;
1778
1779 if (flags & MAP_FIXED)
1780 return addr;
1781
1782 /* requesting a specific address */
1783 if (addr) {
1784 addr = PAGE_ALIGN(addr);
1785 vma = find_vma_prev(mm, addr, &prev);
1786 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1787 (!vma || addr + len <= vm_start_gap(vma)) &&
1788 (!prev || addr >= vm_end_gap(prev)))
1789 return addr;
1790 }
1791
1792 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1793 info.length = len;
1794 info.low_limit = PAGE_SIZE;
1795 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1796 info.align_mask = 0;
1797 info.align_offset = 0;
1798 addr = vm_unmapped_area(&info);
1799
1800 /*
1801 * A failed mmap() very likely causes application failure,
1802 * so fall back to the bottom-up function here. This scenario
1803 * can happen with large stack limits and large mmap()
1804 * allocations.
1805 */
1806 if (offset_in_page(addr)) {
1807 VM_BUG_ON(addr != -ENOMEM);
1808 info.flags = 0;
1809 info.low_limit = TASK_UNMAPPED_BASE;
1810 info.high_limit = mmap_end;
1811 addr = vm_unmapped_area(&info);
1812 }
1813
1814 return addr;
1815 }
1816
1817 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1818 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1819 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1820 unsigned long len, unsigned long pgoff,
1821 unsigned long flags)
1822 {
1823 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1824 }
1825 #endif
1826
1827 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1828 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1829 unsigned long pgoff, unsigned long flags)
1830 {
1831 unsigned long (*get_area)(struct file *, unsigned long,
1832 unsigned long, unsigned long, unsigned long);
1833
1834 unsigned long error = arch_mmap_check(addr, len, flags);
1835 if (error)
1836 return error;
1837
1838 /* Careful about overflows.. */
1839 if (len > TASK_SIZE)
1840 return -ENOMEM;
1841
1842 get_area = current->mm->get_unmapped_area;
1843 if (file) {
1844 if (file->f_op->get_unmapped_area)
1845 get_area = file->f_op->get_unmapped_area;
1846 } else if (flags & MAP_SHARED) {
1847 /*
1848 * mmap_region() will call shmem_zero_setup() to create a file,
1849 * so use shmem's get_unmapped_area in case it can be huge.
1850 * do_mmap() will clear pgoff, so match alignment.
1851 */
1852 pgoff = 0;
1853 get_area = shmem_get_unmapped_area;
1854 }
1855
1856 addr = get_area(file, addr, len, pgoff, flags);
1857 if (IS_ERR_VALUE(addr))
1858 return addr;
1859
1860 if (addr > TASK_SIZE - len)
1861 return -ENOMEM;
1862 if (offset_in_page(addr))
1863 return -EINVAL;
1864
1865 error = security_mmap_addr(addr);
1866 return error ? error : addr;
1867 }
1868
1869 EXPORT_SYMBOL(get_unmapped_area);
1870
1871 /**
1872 * find_vma_intersection() - Look up the first VMA which intersects the interval
1873 * @mm: The process address space.
1874 * @start_addr: The inclusive start user address.
1875 * @end_addr: The exclusive end user address.
1876 *
1877 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1878 * start_addr < end_addr.
1879 */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1880 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1881 unsigned long start_addr,
1882 unsigned long end_addr)
1883 {
1884 unsigned long index = start_addr;
1885
1886 mmap_assert_locked(mm);
1887 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1888 }
1889 EXPORT_SYMBOL(find_vma_intersection);
1890
1891 /**
1892 * find_vma() - Find the VMA for a given address, or the next VMA.
1893 * @mm: The mm_struct to check
1894 * @addr: The address
1895 *
1896 * Returns: The VMA associated with addr, or the next VMA.
1897 * May return %NULL in the case of no VMA at addr or above.
1898 */
find_vma(struct mm_struct * mm,unsigned long addr)1899 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1900 {
1901 unsigned long index = addr;
1902
1903 mmap_assert_locked(mm);
1904 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1905 }
1906 EXPORT_SYMBOL(find_vma);
1907
1908 /**
1909 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1910 * set %pprev to the previous VMA, if any.
1911 * @mm: The mm_struct to check
1912 * @addr: The address
1913 * @pprev: The pointer to set to the previous VMA
1914 *
1915 * Note that RCU lock is missing here since the external mmap_lock() is used
1916 * instead.
1917 *
1918 * Returns: The VMA associated with @addr, or the next vma.
1919 * May return %NULL in the case of no vma at addr or above.
1920 */
1921 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1922 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1923 struct vm_area_struct **pprev)
1924 {
1925 struct vm_area_struct *vma;
1926 MA_STATE(mas, &mm->mm_mt, addr, addr);
1927
1928 vma = mas_walk(&mas);
1929 *pprev = mas_prev(&mas, 0);
1930 if (!vma)
1931 vma = mas_next(&mas, ULONG_MAX);
1932 return vma;
1933 }
1934
1935 /*
1936 * Verify that the stack growth is acceptable and
1937 * update accounting. This is shared with both the
1938 * grow-up and grow-down cases.
1939 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1940 static int acct_stack_growth(struct vm_area_struct *vma,
1941 unsigned long size, unsigned long grow)
1942 {
1943 struct mm_struct *mm = vma->vm_mm;
1944 unsigned long new_start;
1945
1946 /* address space limit tests */
1947 if (!may_expand_vm(mm, vma->vm_flags, grow))
1948 return -ENOMEM;
1949
1950 /* Stack limit test */
1951 if (size > rlimit(RLIMIT_STACK))
1952 return -ENOMEM;
1953
1954 /* mlock limit tests */
1955 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1956 return -ENOMEM;
1957
1958 /* Check to ensure the stack will not grow into a hugetlb-only region */
1959 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1960 vma->vm_end - size;
1961 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1962 return -EFAULT;
1963
1964 /*
1965 * Overcommit.. This must be the final test, as it will
1966 * update security statistics.
1967 */
1968 if (security_vm_enough_memory_mm(mm, grow))
1969 return -ENOMEM;
1970
1971 return 0;
1972 }
1973
1974 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1975 /*
1976 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1977 * vma is the last one with address > vma->vm_end. Have to extend vma.
1978 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1979 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1980 {
1981 struct mm_struct *mm = vma->vm_mm;
1982 struct vm_area_struct *next;
1983 unsigned long gap_addr;
1984 int error = 0;
1985 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1986
1987 if (!(vma->vm_flags & VM_GROWSUP))
1988 return -EFAULT;
1989
1990 /* Guard against exceeding limits of the address space. */
1991 address &= PAGE_MASK;
1992 if (address >= (TASK_SIZE & PAGE_MASK))
1993 return -ENOMEM;
1994 address += PAGE_SIZE;
1995
1996 /* Enforce stack_guard_gap */
1997 gap_addr = address + stack_guard_gap;
1998
1999 /* Guard against overflow */
2000 if (gap_addr < address || gap_addr > TASK_SIZE)
2001 gap_addr = TASK_SIZE;
2002
2003 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2004 if (next && vma_is_accessible(next)) {
2005 if (!(next->vm_flags & VM_GROWSUP))
2006 return -ENOMEM;
2007 /* Check that both stack segments have the same anon_vma? */
2008 }
2009
2010 if (next)
2011 mas_prev_range(&mas, address);
2012
2013 __mas_set_range(&mas, vma->vm_start, address - 1);
2014 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2015 return -ENOMEM;
2016
2017 /* We must make sure the anon_vma is allocated. */
2018 if (unlikely(anon_vma_prepare(vma))) {
2019 mas_destroy(&mas);
2020 return -ENOMEM;
2021 }
2022
2023 /* Lock the VMA before expanding to prevent concurrent page faults */
2024 vma_start_write(vma);
2025 /*
2026 * vma->vm_start/vm_end cannot change under us because the caller
2027 * is required to hold the mmap_lock in read mode. We need the
2028 * anon_vma lock to serialize against concurrent expand_stacks.
2029 */
2030 anon_vma_lock_write(vma->anon_vma);
2031
2032 /* Somebody else might have raced and expanded it already */
2033 if (address > vma->vm_end) {
2034 unsigned long size, grow;
2035
2036 size = address - vma->vm_start;
2037 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2038
2039 error = -ENOMEM;
2040 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2041 error = acct_stack_growth(vma, size, grow);
2042 if (!error) {
2043 /*
2044 * We only hold a shared mmap_lock lock here, so
2045 * we need to protect against concurrent vma
2046 * expansions. anon_vma_lock_write() doesn't
2047 * help here, as we don't guarantee that all
2048 * growable vmas in a mm share the same root
2049 * anon vma. So, we reuse mm->page_table_lock
2050 * to guard against concurrent vma expansions.
2051 */
2052 spin_lock(&mm->page_table_lock);
2053 if (vma->vm_flags & VM_LOCKED)
2054 mm->locked_vm += grow;
2055 vm_stat_account(mm, vma->vm_flags, grow);
2056 anon_vma_interval_tree_pre_update_vma(vma);
2057 vma->vm_end = address;
2058 /* Overwrite old entry in mtree. */
2059 mas_store_prealloc(&mas, vma);
2060 anon_vma_interval_tree_post_update_vma(vma);
2061 spin_unlock(&mm->page_table_lock);
2062
2063 perf_event_mmap(vma);
2064 }
2065 }
2066 }
2067 anon_vma_unlock_write(vma->anon_vma);
2068 khugepaged_enter_vma(vma, vma->vm_flags);
2069 mas_destroy(&mas);
2070 validate_mm(mm);
2071 return error;
2072 }
2073 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2074
2075 /*
2076 * vma is the first one with address < vma->vm_start. Have to extend vma.
2077 * mmap_lock held for writing.
2078 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2079 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2080 {
2081 struct mm_struct *mm = vma->vm_mm;
2082 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2083 struct vm_area_struct *prev;
2084 int error = 0;
2085
2086 if (!(vma->vm_flags & VM_GROWSDOWN))
2087 return -EFAULT;
2088
2089 address &= PAGE_MASK;
2090 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2091 return -EPERM;
2092
2093 /* Enforce stack_guard_gap */
2094 prev = mas_prev(&mas, 0);
2095 /* Check that both stack segments have the same anon_vma? */
2096 if (prev) {
2097 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2098 vma_is_accessible(prev) &&
2099 (address - prev->vm_end < stack_guard_gap))
2100 return -ENOMEM;
2101 }
2102
2103 if (prev)
2104 mas_next_range(&mas, vma->vm_start);
2105
2106 __mas_set_range(&mas, address, vma->vm_end - 1);
2107 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2108 return -ENOMEM;
2109
2110 /* We must make sure the anon_vma is allocated. */
2111 if (unlikely(anon_vma_prepare(vma))) {
2112 mas_destroy(&mas);
2113 return -ENOMEM;
2114 }
2115
2116 /* Lock the VMA before expanding to prevent concurrent page faults */
2117 vma_start_write(vma);
2118 /*
2119 * vma->vm_start/vm_end cannot change under us because the caller
2120 * is required to hold the mmap_lock in read mode. We need the
2121 * anon_vma lock to serialize against concurrent expand_stacks.
2122 */
2123 anon_vma_lock_write(vma->anon_vma);
2124
2125 /* Somebody else might have raced and expanded it already */
2126 if (address < vma->vm_start) {
2127 unsigned long size, grow;
2128
2129 size = vma->vm_end - address;
2130 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2131
2132 error = -ENOMEM;
2133 if (grow <= vma->vm_pgoff) {
2134 error = acct_stack_growth(vma, size, grow);
2135 if (!error) {
2136 /*
2137 * We only hold a shared mmap_lock lock here, so
2138 * we need to protect against concurrent vma
2139 * expansions. anon_vma_lock_write() doesn't
2140 * help here, as we don't guarantee that all
2141 * growable vmas in a mm share the same root
2142 * anon vma. So, we reuse mm->page_table_lock
2143 * to guard against concurrent vma expansions.
2144 */
2145 spin_lock(&mm->page_table_lock);
2146 if (vma->vm_flags & VM_LOCKED)
2147 mm->locked_vm += grow;
2148 vm_stat_account(mm, vma->vm_flags, grow);
2149 anon_vma_interval_tree_pre_update_vma(vma);
2150 vma->vm_start = address;
2151 vma->vm_pgoff -= grow;
2152 /* Overwrite old entry in mtree. */
2153 mas_store_prealloc(&mas, vma);
2154 anon_vma_interval_tree_post_update_vma(vma);
2155 spin_unlock(&mm->page_table_lock);
2156
2157 perf_event_mmap(vma);
2158 }
2159 }
2160 }
2161 anon_vma_unlock_write(vma->anon_vma);
2162 khugepaged_enter_vma(vma, vma->vm_flags);
2163 mas_destroy(&mas);
2164 validate_mm(mm);
2165 return error;
2166 }
2167
2168 /* enforced gap between the expanding stack and other mappings. */
2169 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2170
cmdline_parse_stack_guard_gap(char * p)2171 static int __init cmdline_parse_stack_guard_gap(char *p)
2172 {
2173 unsigned long val;
2174 char *endptr;
2175
2176 val = simple_strtoul(p, &endptr, 10);
2177 if (!*endptr)
2178 stack_guard_gap = val << PAGE_SHIFT;
2179
2180 return 1;
2181 }
2182 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2183
2184 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2185 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2186 {
2187 return expand_upwards(vma, address);
2188 }
2189
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2190 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2191 {
2192 struct vm_area_struct *vma, *prev;
2193
2194 addr &= PAGE_MASK;
2195 vma = find_vma_prev(mm, addr, &prev);
2196 if (vma && (vma->vm_start <= addr))
2197 return vma;
2198 if (!prev)
2199 return NULL;
2200 if (expand_stack_locked(prev, addr))
2201 return NULL;
2202 if (prev->vm_flags & VM_LOCKED)
2203 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2204 return prev;
2205 }
2206 #else
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2207 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2208 {
2209 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2210 return -EINVAL;
2211 return expand_downwards(vma, address);
2212 }
2213
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2214 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2215 {
2216 struct vm_area_struct *vma;
2217 unsigned long start;
2218
2219 addr &= PAGE_MASK;
2220 vma = find_vma(mm, addr);
2221 if (!vma)
2222 return NULL;
2223 if (vma->vm_start <= addr)
2224 return vma;
2225 start = vma->vm_start;
2226 if (expand_stack_locked(vma, addr))
2227 return NULL;
2228 if (vma->vm_flags & VM_LOCKED)
2229 populate_vma_page_range(vma, addr, start, NULL);
2230 return vma;
2231 }
2232 #endif
2233
2234 /*
2235 * IA64 has some horrid mapping rules: it can expand both up and down,
2236 * but with various special rules.
2237 *
2238 * We'll get rid of this architecture eventually, so the ugliness is
2239 * temporary.
2240 */
2241 #ifdef CONFIG_IA64
vma_expand_ok(struct vm_area_struct * vma,unsigned long addr)2242 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2243 {
2244 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2245 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2246 }
2247
2248 /*
2249 * IA64 stacks grow down, but there's a special register backing store
2250 * that can grow up. Only sequentially, though, so the new address must
2251 * match vm_end.
2252 */
vma_expand_up(struct vm_area_struct * vma,unsigned long addr)2253 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2254 {
2255 if (!vma_expand_ok(vma, addr))
2256 return -EFAULT;
2257 if (vma->vm_end != (addr & PAGE_MASK))
2258 return -EFAULT;
2259 return expand_upwards(vma, addr);
2260 }
2261
vma_expand_down(struct vm_area_struct * vma,unsigned long addr)2262 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2263 {
2264 if (!vma_expand_ok(vma, addr))
2265 return -EFAULT;
2266 return expand_downwards(vma, addr);
2267 }
2268
2269 #elif defined(CONFIG_STACK_GROWSUP)
2270
2271 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2272 #define vma_expand_down(vma, addr) (-EFAULT)
2273
2274 #else
2275
2276 #define vma_expand_up(vma,addr) (-EFAULT)
2277 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2278
2279 #endif
2280
2281 /*
2282 * expand_stack(): legacy interface for page faulting. Don't use unless
2283 * you have to.
2284 *
2285 * This is called with the mm locked for reading, drops the lock, takes
2286 * the lock for writing, tries to look up a vma again, expands it if
2287 * necessary, and downgrades the lock to reading again.
2288 *
2289 * If no vma is found or it can't be expanded, it returns NULL and has
2290 * dropped the lock.
2291 */
expand_stack(struct mm_struct * mm,unsigned long addr)2292 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2293 {
2294 struct vm_area_struct *vma, *prev;
2295
2296 mmap_read_unlock(mm);
2297 if (mmap_write_lock_killable(mm))
2298 return NULL;
2299
2300 vma = find_vma_prev(mm, addr, &prev);
2301 if (vma && vma->vm_start <= addr)
2302 goto success;
2303
2304 if (prev && !vma_expand_up(prev, addr)) {
2305 vma = prev;
2306 goto success;
2307 }
2308
2309 if (vma && !vma_expand_down(vma, addr))
2310 goto success;
2311
2312 mmap_write_unlock(mm);
2313 return NULL;
2314
2315 success:
2316 mmap_write_downgrade(mm);
2317 return vma;
2318 }
2319
2320 /*
2321 * Ok - we have the memory areas we should free on a maple tree so release them,
2322 * and do the vma updates.
2323 *
2324 * Called with the mm semaphore held.
2325 */
remove_mt(struct mm_struct * mm,struct ma_state * mas)2326 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2327 {
2328 unsigned long nr_accounted = 0;
2329 struct vm_area_struct *vma;
2330
2331 /* Update high watermark before we lower total_vm */
2332 update_hiwater_vm(mm);
2333 mas_for_each(mas, vma, ULONG_MAX) {
2334 long nrpages = vma_pages(vma);
2335
2336 if (vma->vm_flags & VM_ACCOUNT)
2337 nr_accounted += nrpages;
2338 vm_stat_account(mm, vma->vm_flags, -nrpages);
2339 remove_vma(vma, false);
2340 }
2341 vm_unacct_memory(nr_accounted);
2342 }
2343
2344 /*
2345 * Get rid of page table information in the indicated region.
2346 *
2347 * Called with the mm semaphore held.
2348 */
unmap_region(struct mm_struct * mm,struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next,unsigned long start,unsigned long end,unsigned long tree_end,bool mm_wr_locked)2349 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2350 struct vm_area_struct *vma, struct vm_area_struct *prev,
2351 struct vm_area_struct *next, unsigned long start,
2352 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2353 {
2354 struct mmu_gather tlb;
2355 unsigned long mt_start = mas->index;
2356
2357 lru_add_drain();
2358 tlb_gather_mmu(&tlb, mm);
2359 update_hiwater_rss(mm);
2360 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2361 mas_set(mas, mt_start);
2362 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2363 next ? next->vm_start : USER_PGTABLES_CEILING,
2364 mm_wr_locked);
2365 tlb_finish_mmu(&tlb);
2366 }
2367
2368 /*
2369 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2370 * has already been checked or doesn't make sense to fail.
2371 * VMA Iterator will point to the end VMA.
2372 */
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2373 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2374 unsigned long addr, int new_below)
2375 {
2376 struct vma_prepare vp;
2377 struct vm_area_struct *new;
2378 int err;
2379
2380 WARN_ON(vma->vm_start >= addr);
2381 WARN_ON(vma->vm_end <= addr);
2382
2383 if (vma->vm_ops && vma->vm_ops->may_split) {
2384 err = vma->vm_ops->may_split(vma, addr);
2385 if (err)
2386 return err;
2387 }
2388
2389 new = vm_area_dup(vma);
2390 if (!new)
2391 return -ENOMEM;
2392
2393 if (new_below) {
2394 new->vm_end = addr;
2395 } else {
2396 new->vm_start = addr;
2397 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2398 }
2399
2400 err = -ENOMEM;
2401 vma_iter_config(vmi, new->vm_start, new->vm_end);
2402 if (vma_iter_prealloc(vmi, new))
2403 goto out_free_vma;
2404
2405 err = vma_dup_policy(vma, new);
2406 if (err)
2407 goto out_free_vmi;
2408
2409 err = anon_vma_clone(new, vma);
2410 if (err)
2411 goto out_free_mpol;
2412
2413 if (new->vm_file)
2414 get_file(new->vm_file);
2415
2416 if (new->vm_ops && new->vm_ops->open)
2417 new->vm_ops->open(new);
2418
2419 vma_start_write(vma);
2420 vma_start_write(new);
2421
2422 init_vma_prep(&vp, vma);
2423 vp.insert = new;
2424 vma_prepare(&vp);
2425 /*
2426 * Get rid of huge pages and shared page tables straddling the split
2427 * boundary.
2428 */
2429 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2430 if (is_vm_hugetlb_page(vma))
2431 hugetlb_split(vma, addr);
2432
2433 if (new_below) {
2434 vma->vm_start = addr;
2435 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2436 } else {
2437 vma->vm_end = addr;
2438 }
2439
2440 /* vma_complete stores the new vma */
2441 vma_complete(&vp, vmi, vma->vm_mm);
2442
2443 /* Success. */
2444 if (new_below)
2445 vma_next(vmi);
2446 return 0;
2447
2448 out_free_mpol:
2449 mpol_put(vma_policy(new));
2450 out_free_vmi:
2451 vma_iter_free(vmi);
2452 out_free_vma:
2453 vm_area_free(new);
2454 return err;
2455 }
2456
2457 /*
2458 * Split a vma into two pieces at address 'addr', a new vma is allocated
2459 * either for the first part or the tail.
2460 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2461 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2462 unsigned long addr, int new_below)
2463 {
2464 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2465 return -ENOMEM;
2466
2467 return __split_vma(vmi, vma, addr, new_below);
2468 }
2469
2470 /*
2471 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2472 * @vmi: The vma iterator
2473 * @vma: The starting vm_area_struct
2474 * @mm: The mm_struct
2475 * @start: The aligned start address to munmap.
2476 * @end: The aligned end address to munmap.
2477 * @uf: The userfaultfd list_head
2478 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2479 * success.
2480 *
2481 * Return: 0 on success and drops the lock if so directed, error and leaves the
2482 * lock held otherwise.
2483 */
2484 static int
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)2485 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2486 struct mm_struct *mm, unsigned long start,
2487 unsigned long end, struct list_head *uf, bool unlock)
2488 {
2489 struct vm_area_struct *prev, *next = NULL;
2490 struct maple_tree mt_detach;
2491 int count = 0;
2492 int error = -ENOMEM;
2493 unsigned long locked_vm = 0;
2494 MA_STATE(mas_detach, &mt_detach, 0, 0);
2495 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2496 mt_on_stack(mt_detach);
2497
2498 /*
2499 * If we need to split any vma, do it now to save pain later.
2500 *
2501 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2502 * unmapped vm_area_struct will remain in use: so lower split_vma
2503 * places tmp vma above, and higher split_vma places tmp vma below.
2504 */
2505
2506 /* Does it split the first one? */
2507 if (start > vma->vm_start) {
2508
2509 /*
2510 * Make sure that map_count on return from munmap() will
2511 * not exceed its limit; but let map_count go just above
2512 * its limit temporarily, to help free resources as expected.
2513 */
2514 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2515 goto map_count_exceeded;
2516
2517 error = __split_vma(vmi, vma, start, 1);
2518 if (error)
2519 goto start_split_failed;
2520 }
2521
2522 /*
2523 * Detach a range of VMAs from the mm. Using next as a temp variable as
2524 * it is always overwritten.
2525 */
2526 next = vma;
2527 do {
2528 /* Does it split the end? */
2529 if (next->vm_end > end) {
2530 error = __split_vma(vmi, next, end, 0);
2531 if (error)
2532 goto end_split_failed;
2533 }
2534 vma_start_write(next);
2535 mas_set(&mas_detach, count);
2536 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2537 if (error)
2538 goto munmap_gather_failed;
2539 vma_mark_detached(next, true);
2540 if (next->vm_flags & VM_LOCKED)
2541 locked_vm += vma_pages(next);
2542
2543 count++;
2544 if (unlikely(uf)) {
2545 /*
2546 * If userfaultfd_unmap_prep returns an error the vmas
2547 * will remain split, but userland will get a
2548 * highly unexpected error anyway. This is no
2549 * different than the case where the first of the two
2550 * __split_vma fails, but we don't undo the first
2551 * split, despite we could. This is unlikely enough
2552 * failure that it's not worth optimizing it for.
2553 */
2554 error = userfaultfd_unmap_prep(next, start, end, uf);
2555
2556 if (error)
2557 goto userfaultfd_error;
2558 }
2559 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2560 BUG_ON(next->vm_start < start);
2561 BUG_ON(next->vm_start > end);
2562 #endif
2563 } for_each_vma_range(*vmi, next, end);
2564
2565 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2566 /* Make sure no VMAs are about to be lost. */
2567 {
2568 MA_STATE(test, &mt_detach, 0, 0);
2569 struct vm_area_struct *vma_mas, *vma_test;
2570 int test_count = 0;
2571
2572 vma_iter_set(vmi, start);
2573 rcu_read_lock();
2574 vma_test = mas_find(&test, count - 1);
2575 for_each_vma_range(*vmi, vma_mas, end) {
2576 BUG_ON(vma_mas != vma_test);
2577 test_count++;
2578 vma_test = mas_next(&test, count - 1);
2579 }
2580 rcu_read_unlock();
2581 BUG_ON(count != test_count);
2582 }
2583 #endif
2584
2585 while (vma_iter_addr(vmi) > start)
2586 vma_iter_prev_range(vmi);
2587
2588 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2589 if (error)
2590 goto clear_tree_failed;
2591
2592 /* Point of no return */
2593 mm->locked_vm -= locked_vm;
2594 mm->map_count -= count;
2595 if (unlock)
2596 mmap_write_downgrade(mm);
2597
2598 prev = vma_iter_prev_range(vmi);
2599 next = vma_next(vmi);
2600 if (next)
2601 vma_iter_prev_range(vmi);
2602
2603 /*
2604 * We can free page tables without write-locking mmap_lock because VMAs
2605 * were isolated before we downgraded mmap_lock.
2606 */
2607 mas_set(&mas_detach, 1);
2608 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2609 !unlock);
2610 /* Statistics and freeing VMAs */
2611 mas_set(&mas_detach, 0);
2612 remove_mt(mm, &mas_detach);
2613 validate_mm(mm);
2614 if (unlock)
2615 mmap_read_unlock(mm);
2616
2617 __mt_destroy(&mt_detach);
2618 return 0;
2619
2620 clear_tree_failed:
2621 userfaultfd_error:
2622 munmap_gather_failed:
2623 end_split_failed:
2624 mas_set(&mas_detach, 0);
2625 mas_for_each(&mas_detach, next, end)
2626 vma_mark_detached(next, false);
2627
2628 __mt_destroy(&mt_detach);
2629 start_split_failed:
2630 map_count_exceeded:
2631 validate_mm(mm);
2632 return error;
2633 }
2634
2635 /*
2636 * do_vmi_munmap() - munmap a given range.
2637 * @vmi: The vma iterator
2638 * @mm: The mm_struct
2639 * @start: The start address to munmap
2640 * @len: The length of the range to munmap
2641 * @uf: The userfaultfd list_head
2642 * @unlock: set to true if the user wants to drop the mmap_lock on success
2643 *
2644 * This function takes a @mas that is either pointing to the previous VMA or set
2645 * to MA_START and sets it up to remove the mapping(s). The @len will be
2646 * aligned and any arch_unmap work will be preformed.
2647 *
2648 * Return: 0 on success and drops the lock if so directed, error and leaves the
2649 * lock held otherwise.
2650 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)2651 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2652 unsigned long start, size_t len, struct list_head *uf,
2653 bool unlock)
2654 {
2655 unsigned long end;
2656 struct vm_area_struct *vma;
2657
2658 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2659 return -EINVAL;
2660
2661 end = start + PAGE_ALIGN(len);
2662 if (end == start)
2663 return -EINVAL;
2664
2665 int errno = 0;
2666 CALL_HCK_LITE_HOOK(delete_jit_memory_lhck, current, start, len, &errno);
2667 if (errno)
2668 return errno;
2669
2670 /* arch_unmap() might do unmaps itself. */
2671 arch_unmap(mm, start, end);
2672
2673 /* Find the first overlapping VMA */
2674 vma = vma_find(vmi, end);
2675 if (!vma) {
2676 if (unlock)
2677 mmap_write_unlock(mm);
2678 return 0;
2679 }
2680
2681 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2682 }
2683
2684 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2685 * @mm: The mm_struct
2686 * @start: The start address to munmap
2687 * @len: The length to be munmapped.
2688 * @uf: The userfaultfd list_head
2689 *
2690 * Return: 0 on success, error otherwise.
2691 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2692 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2693 struct list_head *uf)
2694 {
2695 VMA_ITERATOR(vmi, mm, start);
2696
2697 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2698 }
2699
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2700 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2701 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2702 struct list_head *uf)
2703 {
2704 struct mm_struct *mm = current->mm;
2705 struct vm_area_struct *vma = NULL;
2706 struct vm_area_struct *next, *prev, *merge;
2707 pgoff_t pglen = PHYS_PFN(len);
2708 unsigned long charged = 0;
2709 unsigned long end = addr + len;
2710 unsigned long merge_start = addr, merge_end = end;
2711 pgoff_t vm_pgoff;
2712 int error;
2713 VMA_ITERATOR(vmi, mm, addr);
2714
2715 /* Check against address space limit. */
2716 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2717 unsigned long nr_pages;
2718
2719 /*
2720 * MAP_FIXED may remove pages of mappings that intersects with
2721 * requested mapping. Account for the pages it would unmap.
2722 */
2723 nr_pages = count_vma_pages_range(mm, addr, end);
2724
2725 if (!may_expand_vm(mm, vm_flags,
2726 (len >> PAGE_SHIFT) - nr_pages))
2727 return -ENOMEM;
2728 }
2729
2730 /* Unmap any existing mapping in the area */
2731 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2732 return -ENOMEM;
2733
2734 /*
2735 * Private writable mapping: check memory availability
2736 */
2737 if (accountable_mapping(file, vm_flags)) {
2738 charged = len >> PAGE_SHIFT;
2739 if (security_vm_enough_memory_mm(mm, charged))
2740 return -ENOMEM;
2741 vm_flags |= VM_ACCOUNT;
2742 }
2743
2744 next = vma_next(&vmi);
2745 prev = vma_prev(&vmi);
2746 if (vm_flags & VM_SPECIAL) {
2747 if (prev)
2748 vma_iter_next_range(&vmi);
2749 goto cannot_expand;
2750 }
2751
2752 /* Attempt to expand an old mapping */
2753 /* Check next */
2754 if (next && next->vm_start == end && !vma_policy(next) &&
2755 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2756 NULL_VM_UFFD_CTX, NULL)) {
2757 merge_end = next->vm_end;
2758 vma = next;
2759 vm_pgoff = next->vm_pgoff - pglen;
2760 }
2761
2762 /* Check prev */
2763 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2764 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2765 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2766 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2767 NULL_VM_UFFD_CTX, NULL))) {
2768 merge_start = prev->vm_start;
2769 vma = prev;
2770 vm_pgoff = prev->vm_pgoff;
2771 } else if (prev) {
2772 vma_iter_next_range(&vmi);
2773 }
2774
2775 /* Actually expand, if possible */
2776 if (vma &&
2777 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2778 khugepaged_enter_vma(vma, vm_flags);
2779 goto expanded;
2780 }
2781
2782 if (vma == prev)
2783 vma_iter_set(&vmi, addr);
2784 cannot_expand:
2785
2786 /*
2787 * Determine the object being mapped and call the appropriate
2788 * specific mapper. the address has already been validated, but
2789 * not unmapped, but the maps are removed from the list.
2790 */
2791 vma = vm_area_alloc(mm);
2792 if (!vma) {
2793 error = -ENOMEM;
2794 goto unacct_error;
2795 }
2796
2797 vma_iter_config(&vmi, addr, end);
2798 vma->vm_start = addr;
2799 vma->vm_end = end;
2800 vm_flags_init(vma, vm_flags);
2801 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2802 vma->vm_pgoff = pgoff;
2803
2804 if (vma_iter_prealloc(&vmi, vma)) {
2805 error = -ENOMEM;
2806 goto free_vma;
2807 }
2808
2809 if (file) {
2810 vma->vm_file = get_file(file);
2811 error = mmap_file(file, vma);
2812 if (error)
2813 goto unmap_and_free_file_vma;
2814
2815 /* Drivers cannot alter the address of the VMA. */
2816 WARN_ON_ONCE(addr != vma->vm_start);
2817 /*
2818 * Drivers should not permit writability when previously it was
2819 * disallowed.
2820 */
2821 VM_WARN_ON_ONCE(vm_flags != vma->vm_flags &&
2822 !(vm_flags & VM_MAYWRITE) &&
2823 (vma->vm_flags & VM_MAYWRITE));
2824
2825 vma_iter_config(&vmi, addr, end);
2826 /*
2827 * If vm_flags changed after mmap_file(), we should try merge
2828 * vma again as we may succeed this time.
2829 */
2830 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2831 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2832 vma->vm_end, vma->vm_flags, NULL,
2833 vma->vm_file, vma->vm_pgoff, NULL,
2834 NULL_VM_UFFD_CTX, NULL);
2835
2836 if (merge) {
2837 /*
2838 * ->mmap() can change vma->vm_file and fput
2839 * the original file. So fput the vma->vm_file
2840 * here or we would add an extra fput for file
2841 * and cause general protection fault
2842 * ultimately.
2843 */
2844 fput(vma->vm_file);
2845 vm_area_free(vma);
2846 vma = merge;
2847 /* Update vm_flags to pick up the change. */
2848 vm_flags = vma->vm_flags;
2849 goto file_expanded;
2850 }
2851 }
2852
2853 vm_flags = vma->vm_flags;
2854 } else if (vm_flags & VM_SHARED) {
2855 error = shmem_zero_setup(vma);
2856 if (error)
2857 goto free_iter_vma;
2858 } else {
2859 vma_set_anonymous(vma);
2860 }
2861
2862 #ifdef CONFIG_SPARC64
2863 /* TODO: Fix SPARC ADI! */
2864 WARN_ON_ONCE(!arch_validate_flags(vm_flags));
2865 #endif
2866
2867 /* Lock the VMA since it is modified after insertion into VMA tree */
2868 vma_start_write(vma);
2869 vma_iter_store(&vmi, vma);
2870 mm->map_count++;
2871 if (vma->vm_file) {
2872 i_mmap_lock_write(vma->vm_file->f_mapping);
2873 if (vma->vm_flags & VM_SHARED)
2874 mapping_allow_writable(vma->vm_file->f_mapping);
2875
2876 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2877 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2878 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2879 i_mmap_unlock_write(vma->vm_file->f_mapping);
2880 }
2881
2882 /*
2883 * vma_merge() calls khugepaged_enter_vma() either, the below
2884 * call covers the non-merge case.
2885 */
2886 khugepaged_enter_vma(vma, vma->vm_flags);
2887
2888 file_expanded:
2889 file = vma->vm_file;
2890 ksm_add_vma(vma);
2891 expanded:
2892 perf_event_mmap(vma);
2893
2894 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2895 if (vm_flags & VM_LOCKED) {
2896 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2897 is_vm_hugetlb_page(vma) ||
2898 vma == get_gate_vma(current->mm))
2899 vm_flags_clear(vma, VM_LOCKED_MASK);
2900 else
2901 mm->locked_vm += (len >> PAGE_SHIFT);
2902 }
2903
2904 if (file)
2905 uprobe_mmap(vma);
2906
2907 /*
2908 * New (or expanded) vma always get soft dirty status.
2909 * Otherwise user-space soft-dirty page tracker won't
2910 * be able to distinguish situation when vma area unmapped,
2911 * then new mapped in-place (which must be aimed as
2912 * a completely new data area).
2913 */
2914 vm_flags_set(vma, VM_SOFTDIRTY);
2915
2916 vma_set_page_prot(vma);
2917
2918 return addr;
2919
2920 unmap_and_free_file_vma:
2921 fput(vma->vm_file);
2922 vma->vm_file = NULL;
2923
2924 vma_iter_set(&vmi, vma->vm_end);
2925 /* Undo any partial mapping done by a device driver. */
2926 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2927 vma->vm_end, vma->vm_end, true);
2928 free_iter_vma:
2929 vma_iter_free(&vmi);
2930 free_vma:
2931 vm_area_free(vma);
2932 unacct_error:
2933 if (charged)
2934 vm_unacct_memory(charged);
2935 return error;
2936 }
2937
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2938 unsigned long mmap_region(struct file *file, unsigned long addr,
2939 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2940 struct list_head *uf)
2941 {
2942 unsigned long ret;
2943 bool writable_file_mapping = false;
2944
2945 /* Check to see if MDWE is applicable. */
2946 if (map_deny_write_exec(vm_flags, vm_flags))
2947 return -EACCES;
2948
2949 /* Allow architectures to sanity-check the vm_flags. */
2950 if (!arch_validate_flags(vm_flags))
2951 return -EINVAL;
2952
2953 /* Map writable and ensure this isn't a sealed memfd. */
2954 if (file && (vm_flags & VM_SHARED)) {
2955 int error = mapping_map_writable(file->f_mapping);
2956
2957 if (error)
2958 return error;
2959 writable_file_mapping = true;
2960 }
2961
2962 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2963
2964 /* Clear our write mapping regardless of error. */
2965 if (writable_file_mapping)
2966 mapping_unmap_writable(file->f_mapping);
2967
2968 validate_mm(current->mm);
2969 return ret;
2970 }
2971
__vm_munmap(unsigned long start,size_t len,bool unlock)2972 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2973 {
2974 int ret;
2975 struct mm_struct *mm = current->mm;
2976 LIST_HEAD(uf);
2977 VMA_ITERATOR(vmi, mm, start);
2978
2979 if (mmap_write_lock_killable(mm))
2980 return -EINTR;
2981
2982 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2983 if (ret || !unlock)
2984 mmap_write_unlock(mm);
2985
2986 userfaultfd_unmap_complete(mm, &uf);
2987 return ret;
2988 }
2989
vm_munmap(unsigned long start,size_t len)2990 int vm_munmap(unsigned long start, size_t len)
2991 {
2992 return __vm_munmap(start, len, false);
2993 }
2994 EXPORT_SYMBOL(vm_munmap);
2995
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2996 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2997 {
2998 addr = untagged_addr(addr);
2999 return __vm_munmap(addr, len, true);
3000 }
3001
3002
3003 /*
3004 * Emulation of deprecated remap_file_pages() syscall.
3005 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3006 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3007 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3008 {
3009
3010 struct mm_struct *mm = current->mm;
3011 struct vm_area_struct *vma;
3012 unsigned long populate = 0;
3013 unsigned long ret = -EINVAL;
3014 struct file *file;
3015 vm_flags_t vm_flags;
3016
3017 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3018 current->comm, current->pid);
3019
3020 if (prot)
3021 return ret;
3022 start = start & PAGE_MASK;
3023 size = size & PAGE_MASK;
3024
3025 if (start + size <= start)
3026 return ret;
3027
3028 /* Does pgoff wrap? */
3029 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3030 return ret;
3031
3032 if (mmap_read_lock_killable(mm))
3033 return -EINTR;
3034
3035 /*
3036 * Look up VMA under read lock first so we can perform the security
3037 * without holding locks (which can be problematic). We reacquire a
3038 * write lock later and check nothing changed underneath us.
3039 */
3040 vma = vma_lookup(mm, start);
3041
3042 if (!vma || !(vma->vm_flags & VM_SHARED)) {
3043 mmap_read_unlock(mm);
3044 return -EINVAL;
3045 }
3046
3047 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3048 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3049 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3050
3051 flags &= MAP_NONBLOCK;
3052 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3053 if (vma->vm_flags & VM_LOCKED)
3054 flags |= MAP_LOCKED;
3055
3056 /* Save vm_flags used to calculate prot and flags, and recheck later. */
3057 vm_flags = vma->vm_flags;
3058 file = get_file(vma->vm_file);
3059
3060 mmap_read_unlock(mm);
3061
3062 /* Call outside mmap_lock to be consistent with other callers. */
3063 ret = security_mmap_file(file, prot, flags);
3064 if (ret) {
3065 fput(file);
3066 return ret;
3067 }
3068
3069 ret = -EINVAL;
3070
3071 /* OK security check passed, take write lock + let it rip. */
3072 if (mmap_write_lock_killable(mm)) {
3073 fput(file);
3074 return -EINTR;
3075 }
3076
3077 vma = vma_lookup(mm, start);
3078
3079 if (!vma)
3080 goto out;
3081
3082 /* Make sure things didn't change under us. */
3083 if (vma->vm_flags != vm_flags)
3084 goto out;
3085 if (vma->vm_file != file)
3086 goto out;
3087
3088 if (start + size > vma->vm_end) {
3089 VMA_ITERATOR(vmi, mm, vma->vm_end);
3090 struct vm_area_struct *next, *prev = vma;
3091
3092 for_each_vma_range(vmi, next, start + size) {
3093 /* hole between vmas ? */
3094 if (next->vm_start != prev->vm_end)
3095 goto out;
3096
3097 if (next->vm_file != vma->vm_file)
3098 goto out;
3099
3100 if (next->vm_flags != vma->vm_flags)
3101 goto out;
3102
3103 if (start + size <= next->vm_end)
3104 break;
3105
3106 prev = next;
3107 }
3108
3109 if (!next)
3110 goto out;
3111 }
3112
3113 ret = do_mmap(vma->vm_file, start, size,
3114 prot, flags, 0, pgoff, &populate, NULL);
3115 out:
3116 mmap_write_unlock(mm);
3117 fput(file);
3118 if (populate)
3119 mm_populate(ret, populate);
3120 if (!IS_ERR_VALUE(ret))
3121 ret = 0;
3122 return ret;
3123 }
3124
3125 /*
3126 * do_vma_munmap() - Unmap a full or partial vma.
3127 * @vmi: The vma iterator pointing at the vma
3128 * @vma: The first vma to be munmapped
3129 * @start: the start of the address to unmap
3130 * @end: The end of the address to unmap
3131 * @uf: The userfaultfd list_head
3132 * @unlock: Drop the lock on success
3133 *
3134 * unmaps a VMA mapping when the vma iterator is already in position.
3135 * Does not handle alignment.
3136 *
3137 * Return: 0 on success drops the lock of so directed, error on failure and will
3138 * still hold the lock.
3139 */
do_vma_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)3140 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3141 unsigned long start, unsigned long end, struct list_head *uf,
3142 bool unlock)
3143 {
3144 struct mm_struct *mm = vma->vm_mm;
3145
3146 arch_unmap(mm, start, end);
3147 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3148 }
3149
3150 /*
3151 * do_brk_flags() - Increase the brk vma if the flags match.
3152 * @vmi: The vma iterator
3153 * @addr: The start address
3154 * @len: The length of the increase
3155 * @vma: The vma,
3156 * @flags: The VMA Flags
3157 *
3158 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3159 * do not match then create a new anonymous VMA. Eventually we may be able to
3160 * do some brk-specific accounting here.
3161 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)3162 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3163 unsigned long addr, unsigned long len, unsigned long flags)
3164 {
3165 struct mm_struct *mm = current->mm;
3166 struct vma_prepare vp;
3167
3168 /*
3169 * Check against address space limits by the changed size
3170 * Note: This happens *after* clearing old mappings in some code paths.
3171 */
3172 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3173 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3174 return -ENOMEM;
3175
3176 if (mm->map_count > sysctl_max_map_count)
3177 return -ENOMEM;
3178
3179 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3180 return -ENOMEM;
3181
3182 /*
3183 * Expand the existing vma if possible; Note that singular lists do not
3184 * occur after forking, so the expand will only happen on new VMAs.
3185 */
3186 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3187 can_vma_merge_after(vma, flags, NULL, NULL,
3188 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3189 vma_iter_config(vmi, vma->vm_start, addr + len);
3190 if (vma_iter_prealloc(vmi, vma))
3191 goto unacct_fail;
3192
3193 vma_start_write(vma);
3194
3195 init_vma_prep(&vp, vma);
3196 vma_prepare(&vp);
3197 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3198 vma->vm_end = addr + len;
3199 vm_flags_set(vma, VM_SOFTDIRTY);
3200 vma_iter_store(vmi, vma);
3201
3202 vma_complete(&vp, vmi, mm);
3203 khugepaged_enter_vma(vma, flags);
3204 goto out;
3205 }
3206
3207 if (vma)
3208 vma_iter_next_range(vmi);
3209 /* create a vma struct for an anonymous mapping */
3210 vma = vm_area_alloc(mm);
3211 if (!vma)
3212 goto unacct_fail;
3213
3214 vma_set_anonymous(vma);
3215 vma->vm_start = addr;
3216 vma->vm_end = addr + len;
3217 vma->vm_pgoff = addr >> PAGE_SHIFT;
3218 vm_flags_init(vma, flags);
3219 vma->vm_page_prot = vm_get_page_prot(flags);
3220 vma_start_write(vma);
3221 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3222 goto mas_store_fail;
3223
3224 mm->map_count++;
3225 validate_mm(mm);
3226 ksm_add_vma(vma);
3227 out:
3228 perf_event_mmap(vma);
3229 mm->total_vm += len >> PAGE_SHIFT;
3230 mm->data_vm += len >> PAGE_SHIFT;
3231 if (flags & VM_LOCKED)
3232 mm->locked_vm += (len >> PAGE_SHIFT);
3233 vm_flags_set(vma, VM_SOFTDIRTY);
3234 return 0;
3235
3236 mas_store_fail:
3237 vm_area_free(vma);
3238 unacct_fail:
3239 vm_unacct_memory(len >> PAGE_SHIFT);
3240 return -ENOMEM;
3241 }
3242
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3243 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3244 {
3245 struct mm_struct *mm = current->mm;
3246 struct vm_area_struct *vma = NULL;
3247 unsigned long len;
3248 int ret;
3249 bool populate;
3250 LIST_HEAD(uf);
3251 VMA_ITERATOR(vmi, mm, addr);
3252
3253 len = PAGE_ALIGN(request);
3254 if (len < request)
3255 return -ENOMEM;
3256 if (!len)
3257 return 0;
3258
3259 /* Until we need other flags, refuse anything except VM_EXEC. */
3260 if ((flags & (~VM_EXEC)) != 0)
3261 return -EINVAL;
3262
3263 if (mmap_write_lock_killable(mm))
3264 return -EINTR;
3265
3266 ret = check_brk_limits(addr, len);
3267 if (ret)
3268 goto limits_failed;
3269
3270 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3271 if (ret)
3272 goto munmap_failed;
3273
3274 vma = vma_prev(&vmi);
3275 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3276 populate = ((mm->def_flags & VM_LOCKED) != 0);
3277 mmap_write_unlock(mm);
3278 userfaultfd_unmap_complete(mm, &uf);
3279 if (populate && !ret)
3280 mm_populate(addr, len);
3281 return ret;
3282
3283 munmap_failed:
3284 limits_failed:
3285 mmap_write_unlock(mm);
3286 return ret;
3287 }
3288 EXPORT_SYMBOL(vm_brk_flags);
3289
vm_brk(unsigned long addr,unsigned long len)3290 int vm_brk(unsigned long addr, unsigned long len)
3291 {
3292 return vm_brk_flags(addr, len, 0);
3293 }
3294 EXPORT_SYMBOL(vm_brk);
3295
3296 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3297 void exit_mmap(struct mm_struct *mm)
3298 {
3299 struct mmu_gather tlb;
3300 struct vm_area_struct *vma;
3301 unsigned long nr_accounted = 0;
3302 MA_STATE(mas, &mm->mm_mt, 0, 0);
3303 int count = 0;
3304
3305 /* mm's last user has gone, and its about to be pulled down */
3306 mmu_notifier_release(mm);
3307
3308 mmap_read_lock(mm);
3309 arch_exit_mmap(mm);
3310
3311 vma = mas_find(&mas, ULONG_MAX);
3312 if (!vma) {
3313 /* Can happen if dup_mmap() received an OOM */
3314 mmap_read_unlock(mm);
3315 return;
3316 }
3317
3318 lru_add_drain();
3319 flush_cache_mm(mm);
3320 tlb_gather_mmu_fullmm(&tlb, mm);
3321 /* update_hiwater_rss(mm) here? but nobody should be looking */
3322 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3323 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3324 mmap_read_unlock(mm);
3325
3326 /*
3327 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3328 * because the memory has been already freed.
3329 */
3330 set_bit(MMF_OOM_SKIP, &mm->flags);
3331 mmap_write_lock(mm);
3332 mt_clear_in_rcu(&mm->mm_mt);
3333 mas_set(&mas, vma->vm_end);
3334 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3335 USER_PGTABLES_CEILING, true);
3336 tlb_finish_mmu(&tlb);
3337
3338 /*
3339 * Walk the list again, actually closing and freeing it, with preemption
3340 * enabled, without holding any MM locks besides the unreachable
3341 * mmap_write_lock.
3342 */
3343 mas_set(&mas, vma->vm_end);
3344 do {
3345 if (vma->vm_flags & VM_ACCOUNT)
3346 nr_accounted += vma_pages(vma);
3347 remove_vma(vma, true);
3348 count++;
3349 cond_resched();
3350 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3351
3352 BUG_ON(count != mm->map_count);
3353
3354 trace_exit_mmap(mm);
3355 __mt_destroy(&mm->mm_mt);
3356 mmap_write_unlock(mm);
3357 vm_unacct_memory(nr_accounted);
3358 }
3359
3360 /* Insert vm structure into process list sorted by address
3361 * and into the inode's i_mmap tree. If vm_file is non-NULL
3362 * then i_mmap_rwsem is taken here.
3363 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3364 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3365 {
3366 unsigned long charged = vma_pages(vma);
3367
3368
3369 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3370 return -ENOMEM;
3371
3372 if ((vma->vm_flags & VM_ACCOUNT) &&
3373 security_vm_enough_memory_mm(mm, charged))
3374 return -ENOMEM;
3375
3376 /*
3377 * The vm_pgoff of a purely anonymous vma should be irrelevant
3378 * until its first write fault, when page's anon_vma and index
3379 * are set. But now set the vm_pgoff it will almost certainly
3380 * end up with (unless mremap moves it elsewhere before that
3381 * first wfault), so /proc/pid/maps tells a consistent story.
3382 *
3383 * By setting it to reflect the virtual start address of the
3384 * vma, merges and splits can happen in a seamless way, just
3385 * using the existing file pgoff checks and manipulations.
3386 * Similarly in do_mmap and in do_brk_flags.
3387 */
3388 if (vma_is_anonymous(vma)) {
3389 BUG_ON(vma->anon_vma);
3390 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3391 }
3392
3393 if (vma_link(mm, vma)) {
3394 vm_unacct_memory(charged);
3395 return -ENOMEM;
3396 }
3397
3398 return 0;
3399 }
3400
3401 /*
3402 * Copy the vma structure to a new location in the same mm,
3403 * prior to moving page table entries, to effect an mremap move.
3404 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3405 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3406 unsigned long addr, unsigned long len, pgoff_t pgoff,
3407 bool *need_rmap_locks)
3408 {
3409 struct vm_area_struct *vma = *vmap;
3410 unsigned long vma_start = vma->vm_start;
3411 struct mm_struct *mm = vma->vm_mm;
3412 struct vm_area_struct *new_vma, *prev;
3413 bool faulted_in_anon_vma = true;
3414 VMA_ITERATOR(vmi, mm, addr);
3415
3416 /*
3417 * If anonymous vma has not yet been faulted, update new pgoff
3418 * to match new location, to increase its chance of merging.
3419 */
3420 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3421 pgoff = addr >> PAGE_SHIFT;
3422 faulted_in_anon_vma = false;
3423 }
3424
3425 new_vma = find_vma_prev(mm, addr, &prev);
3426 if (new_vma && new_vma->vm_start < addr + len)
3427 return NULL; /* should never get here */
3428
3429 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3430 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3431 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3432 if (new_vma) {
3433 /*
3434 * Source vma may have been merged into new_vma
3435 */
3436 if (unlikely(vma_start >= new_vma->vm_start &&
3437 vma_start < new_vma->vm_end)) {
3438 /*
3439 * The only way we can get a vma_merge with
3440 * self during an mremap is if the vma hasn't
3441 * been faulted in yet and we were allowed to
3442 * reset the dst vma->vm_pgoff to the
3443 * destination address of the mremap to allow
3444 * the merge to happen. mremap must change the
3445 * vm_pgoff linearity between src and dst vmas
3446 * (in turn preventing a vma_merge) to be
3447 * safe. It is only safe to keep the vm_pgoff
3448 * linear if there are no pages mapped yet.
3449 */
3450 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3451 *vmap = vma = new_vma;
3452 }
3453 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3454 } else {
3455 new_vma = vm_area_dup(vma);
3456 if (!new_vma)
3457 goto out;
3458 new_vma->vm_start = addr;
3459 new_vma->vm_end = addr + len;
3460 new_vma->vm_pgoff = pgoff;
3461 if (vma_dup_policy(vma, new_vma))
3462 goto out_free_vma;
3463 if (anon_vma_clone(new_vma, vma))
3464 goto out_free_mempol;
3465 if (new_vma->vm_file)
3466 get_file(new_vma->vm_file);
3467 if (new_vma->vm_ops && new_vma->vm_ops->open)
3468 new_vma->vm_ops->open(new_vma);
3469 if (vma_link(mm, new_vma))
3470 goto out_vma_link;
3471 *need_rmap_locks = false;
3472 }
3473 return new_vma;
3474
3475 out_vma_link:
3476 vma_close(new_vma);
3477
3478 if (new_vma->vm_file)
3479 fput(new_vma->vm_file);
3480
3481 unlink_anon_vmas(new_vma);
3482 out_free_mempol:
3483 mpol_put(vma_policy(new_vma));
3484 out_free_vma:
3485 vm_area_free(new_vma);
3486 out:
3487 return NULL;
3488 }
3489
3490 /*
3491 * Return true if the calling process may expand its vm space by the passed
3492 * number of pages
3493 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3494 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3495 {
3496 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3497 return false;
3498
3499 if (is_data_mapping(flags) &&
3500 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3501 /* Workaround for Valgrind */
3502 if (rlimit(RLIMIT_DATA) == 0 &&
3503 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3504 return true;
3505
3506 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3507 current->comm, current->pid,
3508 (mm->data_vm + npages) << PAGE_SHIFT,
3509 rlimit(RLIMIT_DATA),
3510 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3511
3512 if (!ignore_rlimit_data)
3513 return false;
3514 }
3515
3516 return true;
3517 }
3518
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3519 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3520 {
3521 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3522
3523 if (is_exec_mapping(flags))
3524 mm->exec_vm += npages;
3525 else if (is_stack_mapping(flags))
3526 mm->stack_vm += npages;
3527 else if (is_data_mapping(flags))
3528 mm->data_vm += npages;
3529 }
3530
3531 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3532
3533 /*
3534 * Having a close hook prevents vma merging regardless of flags.
3535 */
special_mapping_close(struct vm_area_struct * vma)3536 static void special_mapping_close(struct vm_area_struct *vma)
3537 {
3538 }
3539
special_mapping_name(struct vm_area_struct * vma)3540 static const char *special_mapping_name(struct vm_area_struct *vma)
3541 {
3542 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3543 }
3544
special_mapping_mremap(struct vm_area_struct * new_vma)3545 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3546 {
3547 struct vm_special_mapping *sm = new_vma->vm_private_data;
3548
3549 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3550 return -EFAULT;
3551
3552 if (sm->mremap)
3553 return sm->mremap(sm, new_vma);
3554
3555 return 0;
3556 }
3557
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3558 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3559 {
3560 /*
3561 * Forbid splitting special mappings - kernel has expectations over
3562 * the number of pages in mapping. Together with VM_DONTEXPAND
3563 * the size of vma should stay the same over the special mapping's
3564 * lifetime.
3565 */
3566 return -EINVAL;
3567 }
3568
3569 static const struct vm_operations_struct special_mapping_vmops = {
3570 .close = special_mapping_close,
3571 .fault = special_mapping_fault,
3572 .mremap = special_mapping_mremap,
3573 .name = special_mapping_name,
3574 /* vDSO code relies that VVAR can't be accessed remotely */
3575 .access = NULL,
3576 .may_split = special_mapping_split,
3577 };
3578
3579 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3580 .close = special_mapping_close,
3581 .fault = special_mapping_fault,
3582 };
3583
special_mapping_fault(struct vm_fault * vmf)3584 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3585 {
3586 struct vm_area_struct *vma = vmf->vma;
3587 pgoff_t pgoff;
3588 struct page **pages;
3589
3590 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3591 pages = vma->vm_private_data;
3592 } else {
3593 struct vm_special_mapping *sm = vma->vm_private_data;
3594
3595 if (sm->fault)
3596 return sm->fault(sm, vmf->vma, vmf);
3597
3598 pages = sm->pages;
3599 }
3600
3601 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3602 pgoff--;
3603
3604 if (*pages) {
3605 struct page *page = *pages;
3606 get_page(page);
3607 vmf->page = page;
3608 return 0;
3609 }
3610
3611 return VM_FAULT_SIGBUS;
3612 }
3613
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3614 static struct vm_area_struct *__install_special_mapping(
3615 struct mm_struct *mm,
3616 unsigned long addr, unsigned long len,
3617 unsigned long vm_flags, void *priv,
3618 const struct vm_operations_struct *ops)
3619 {
3620 int ret;
3621 struct vm_area_struct *vma;
3622
3623 vma = vm_area_alloc(mm);
3624 if (unlikely(vma == NULL))
3625 return ERR_PTR(-ENOMEM);
3626
3627 vma->vm_start = addr;
3628 vma->vm_end = addr + len;
3629
3630 vm_flags_init(vma, (vm_flags | mm->def_flags |
3631 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3632 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3633
3634 vma->vm_ops = ops;
3635 vma->vm_private_data = priv;
3636
3637 ret = insert_vm_struct(mm, vma);
3638 if (ret)
3639 goto out;
3640
3641 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3642
3643 perf_event_mmap(vma);
3644
3645 return vma;
3646
3647 out:
3648 vm_area_free(vma);
3649 return ERR_PTR(ret);
3650 }
3651
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3652 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3653 const struct vm_special_mapping *sm)
3654 {
3655 return vma->vm_private_data == sm &&
3656 (vma->vm_ops == &special_mapping_vmops ||
3657 vma->vm_ops == &legacy_special_mapping_vmops);
3658 }
3659
3660 /*
3661 * Called with mm->mmap_lock held for writing.
3662 * Insert a new vma covering the given region, with the given flags.
3663 * Its pages are supplied by the given array of struct page *.
3664 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3665 * The region past the last page supplied will always produce SIGBUS.
3666 * The array pointer and the pages it points to are assumed to stay alive
3667 * for as long as this mapping might exist.
3668 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3669 struct vm_area_struct *_install_special_mapping(
3670 struct mm_struct *mm,
3671 unsigned long addr, unsigned long len,
3672 unsigned long vm_flags, const struct vm_special_mapping *spec)
3673 {
3674 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3675 &special_mapping_vmops);
3676 }
3677
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3678 int install_special_mapping(struct mm_struct *mm,
3679 unsigned long addr, unsigned long len,
3680 unsigned long vm_flags, struct page **pages)
3681 {
3682 struct vm_area_struct *vma = __install_special_mapping(
3683 mm, addr, len, vm_flags, (void *)pages,
3684 &legacy_special_mapping_vmops);
3685
3686 return PTR_ERR_OR_ZERO(vma);
3687 }
3688
3689 static DEFINE_MUTEX(mm_all_locks_mutex);
3690
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3691 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3692 {
3693 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3694 /*
3695 * The LSB of head.next can't change from under us
3696 * because we hold the mm_all_locks_mutex.
3697 */
3698 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3699 /*
3700 * We can safely modify head.next after taking the
3701 * anon_vma->root->rwsem. If some other vma in this mm shares
3702 * the same anon_vma we won't take it again.
3703 *
3704 * No need of atomic instructions here, head.next
3705 * can't change from under us thanks to the
3706 * anon_vma->root->rwsem.
3707 */
3708 if (__test_and_set_bit(0, (unsigned long *)
3709 &anon_vma->root->rb_root.rb_root.rb_node))
3710 BUG();
3711 }
3712 }
3713
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3714 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3715 {
3716 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3717 /*
3718 * AS_MM_ALL_LOCKS can't change from under us because
3719 * we hold the mm_all_locks_mutex.
3720 *
3721 * Operations on ->flags have to be atomic because
3722 * even if AS_MM_ALL_LOCKS is stable thanks to the
3723 * mm_all_locks_mutex, there may be other cpus
3724 * changing other bitflags in parallel to us.
3725 */
3726 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3727 BUG();
3728 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3729 }
3730 }
3731
3732 /*
3733 * This operation locks against the VM for all pte/vma/mm related
3734 * operations that could ever happen on a certain mm. This includes
3735 * vmtruncate, try_to_unmap, and all page faults.
3736 *
3737 * The caller must take the mmap_lock in write mode before calling
3738 * mm_take_all_locks(). The caller isn't allowed to release the
3739 * mmap_lock until mm_drop_all_locks() returns.
3740 *
3741 * mmap_lock in write mode is required in order to block all operations
3742 * that could modify pagetables and free pages without need of
3743 * altering the vma layout. It's also needed in write mode to avoid new
3744 * anon_vmas to be associated with existing vmas.
3745 *
3746 * A single task can't take more than one mm_take_all_locks() in a row
3747 * or it would deadlock.
3748 *
3749 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3750 * mapping->flags avoid to take the same lock twice, if more than one
3751 * vma in this mm is backed by the same anon_vma or address_space.
3752 *
3753 * We take locks in following order, accordingly to comment at beginning
3754 * of mm/rmap.c:
3755 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3756 * hugetlb mapping);
3757 * - all vmas marked locked
3758 * - all i_mmap_rwsem locks;
3759 * - all anon_vma->rwseml
3760 *
3761 * We can take all locks within these types randomly because the VM code
3762 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3763 * mm_all_locks_mutex.
3764 *
3765 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3766 * that may have to take thousand of locks.
3767 *
3768 * mm_take_all_locks() can fail if it's interrupted by signals.
3769 */
mm_take_all_locks(struct mm_struct * mm)3770 int mm_take_all_locks(struct mm_struct *mm)
3771 {
3772 struct vm_area_struct *vma;
3773 struct anon_vma_chain *avc;
3774 MA_STATE(mas, &mm->mm_mt, 0, 0);
3775
3776 mmap_assert_write_locked(mm);
3777
3778 mutex_lock(&mm_all_locks_mutex);
3779
3780 /*
3781 * vma_start_write() does not have a complement in mm_drop_all_locks()
3782 * because vma_start_write() is always asymmetrical; it marks a VMA as
3783 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3784 * is reached.
3785 */
3786 mas_for_each(&mas, vma, ULONG_MAX) {
3787 if (signal_pending(current))
3788 goto out_unlock;
3789 vma_start_write(vma);
3790 }
3791
3792 mas_set(&mas, 0);
3793 mas_for_each(&mas, vma, ULONG_MAX) {
3794 if (signal_pending(current))
3795 goto out_unlock;
3796 if (vma->vm_file && vma->vm_file->f_mapping &&
3797 is_vm_hugetlb_page(vma))
3798 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3799 }
3800
3801 mas_set(&mas, 0);
3802 mas_for_each(&mas, vma, ULONG_MAX) {
3803 if (signal_pending(current))
3804 goto out_unlock;
3805 if (vma->vm_file && vma->vm_file->f_mapping &&
3806 !is_vm_hugetlb_page(vma))
3807 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3808 }
3809
3810 mas_set(&mas, 0);
3811 mas_for_each(&mas, vma, ULONG_MAX) {
3812 if (signal_pending(current))
3813 goto out_unlock;
3814 if (vma->anon_vma)
3815 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3816 vm_lock_anon_vma(mm, avc->anon_vma);
3817 }
3818
3819 return 0;
3820
3821 out_unlock:
3822 mm_drop_all_locks(mm);
3823 return -EINTR;
3824 }
3825
vm_unlock_anon_vma(struct anon_vma * anon_vma)3826 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3827 {
3828 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3829 /*
3830 * The LSB of head.next can't change to 0 from under
3831 * us because we hold the mm_all_locks_mutex.
3832 *
3833 * We must however clear the bitflag before unlocking
3834 * the vma so the users using the anon_vma->rb_root will
3835 * never see our bitflag.
3836 *
3837 * No need of atomic instructions here, head.next
3838 * can't change from under us until we release the
3839 * anon_vma->root->rwsem.
3840 */
3841 if (!__test_and_clear_bit(0, (unsigned long *)
3842 &anon_vma->root->rb_root.rb_root.rb_node))
3843 BUG();
3844 anon_vma_unlock_write(anon_vma);
3845 }
3846 }
3847
vm_unlock_mapping(struct address_space * mapping)3848 static void vm_unlock_mapping(struct address_space *mapping)
3849 {
3850 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3851 /*
3852 * AS_MM_ALL_LOCKS can't change to 0 from under us
3853 * because we hold the mm_all_locks_mutex.
3854 */
3855 i_mmap_unlock_write(mapping);
3856 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3857 &mapping->flags))
3858 BUG();
3859 }
3860 }
3861
3862 /*
3863 * The mmap_lock cannot be released by the caller until
3864 * mm_drop_all_locks() returns.
3865 */
mm_drop_all_locks(struct mm_struct * mm)3866 void mm_drop_all_locks(struct mm_struct *mm)
3867 {
3868 struct vm_area_struct *vma;
3869 struct anon_vma_chain *avc;
3870 MA_STATE(mas, &mm->mm_mt, 0, 0);
3871
3872 mmap_assert_write_locked(mm);
3873 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3874
3875 mas_for_each(&mas, vma, ULONG_MAX) {
3876 if (vma->anon_vma)
3877 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3878 vm_unlock_anon_vma(avc->anon_vma);
3879 if (vma->vm_file && vma->vm_file->f_mapping)
3880 vm_unlock_mapping(vma->vm_file->f_mapping);
3881 }
3882
3883 mutex_unlock(&mm_all_locks_mutex);
3884 }
3885
3886 /*
3887 * initialise the percpu counter for VM
3888 */
mmap_init(void)3889 void __init mmap_init(void)
3890 {
3891 int ret;
3892
3893 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3894 VM_BUG_ON(ret);
3895 }
3896
3897 /*
3898 * Initialise sysctl_user_reserve_kbytes.
3899 *
3900 * This is intended to prevent a user from starting a single memory hogging
3901 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3902 * mode.
3903 *
3904 * The default value is min(3% of free memory, 128MB)
3905 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3906 */
init_user_reserve(void)3907 static int init_user_reserve(void)
3908 {
3909 unsigned long free_kbytes;
3910
3911 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3912
3913 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3914 return 0;
3915 }
3916 subsys_initcall(init_user_reserve);
3917
3918 /*
3919 * Initialise sysctl_admin_reserve_kbytes.
3920 *
3921 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3922 * to log in and kill a memory hogging process.
3923 *
3924 * Systems with more than 256MB will reserve 8MB, enough to recover
3925 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3926 * only reserve 3% of free pages by default.
3927 */
init_admin_reserve(void)3928 static int init_admin_reserve(void)
3929 {
3930 unsigned long free_kbytes;
3931
3932 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3933
3934 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3935 return 0;
3936 }
3937 subsys_initcall(init_admin_reserve);
3938
3939 /*
3940 * Reinititalise user and admin reserves if memory is added or removed.
3941 *
3942 * The default user reserve max is 128MB, and the default max for the
3943 * admin reserve is 8MB. These are usually, but not always, enough to
3944 * enable recovery from a memory hogging process using login/sshd, a shell,
3945 * and tools like top. It may make sense to increase or even disable the
3946 * reserve depending on the existence of swap or variations in the recovery
3947 * tools. So, the admin may have changed them.
3948 *
3949 * If memory is added and the reserves have been eliminated or increased above
3950 * the default max, then we'll trust the admin.
3951 *
3952 * If memory is removed and there isn't enough free memory, then we
3953 * need to reset the reserves.
3954 *
3955 * Otherwise keep the reserve set by the admin.
3956 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3957 static int reserve_mem_notifier(struct notifier_block *nb,
3958 unsigned long action, void *data)
3959 {
3960 unsigned long tmp, free_kbytes;
3961
3962 switch (action) {
3963 case MEM_ONLINE:
3964 /* Default max is 128MB. Leave alone if modified by operator. */
3965 tmp = sysctl_user_reserve_kbytes;
3966 if (0 < tmp && tmp < (1UL << 17))
3967 init_user_reserve();
3968
3969 /* Default max is 8MB. Leave alone if modified by operator. */
3970 tmp = sysctl_admin_reserve_kbytes;
3971 if (0 < tmp && tmp < (1UL << 13))
3972 init_admin_reserve();
3973
3974 break;
3975 case MEM_OFFLINE:
3976 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3977
3978 if (sysctl_user_reserve_kbytes > free_kbytes) {
3979 init_user_reserve();
3980 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3981 sysctl_user_reserve_kbytes);
3982 }
3983
3984 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3985 init_admin_reserve();
3986 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3987 sysctl_admin_reserve_kbytes);
3988 }
3989 break;
3990 default:
3991 break;
3992 }
3993 return NOTIFY_OK;
3994 }
3995
init_reserve_notifier(void)3996 static int __meminit init_reserve_notifier(void)
3997 {
3998 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3999 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4000
4001 return 0;
4002 }
4003 subsys_initcall(init_reserve_notifier);
4004