• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/zswapd.h>
55 #ifdef CONFIG_RECLAIM_ACCT
56 #include <linux/reclaim_acct.h>
57 #endif
58 #include <linux/delayacct.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61 #include "shuffle.h"
62 #include "page_reporting.h"
63 
64 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
65 typedef int __bitwise fpi_t;
66 
67 /* No special request */
68 #define FPI_NONE		((__force fpi_t)0)
69 
70 /*
71  * Skip free page reporting notification for the (possibly merged) page.
72  * This does not hinder free page reporting from grabbing the page,
73  * reporting it and marking it "reported" -  it only skips notifying
74  * the free page reporting infrastructure about a newly freed page. For
75  * example, used when temporarily pulling a page from a freelist and
76  * putting it back unmodified.
77  */
78 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
79 
80 /*
81  * Place the (possibly merged) page to the tail of the freelist. Will ignore
82  * page shuffling (relevant code - e.g., memory onlining - is expected to
83  * shuffle the whole zone).
84  *
85  * Note: No code should rely on this flag for correctness - it's purely
86  *       to allow for optimizations when handing back either fresh pages
87  *       (memory onlining) or untouched pages (page isolation, free page
88  *       reporting).
89  */
90 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
91 
92 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
93 static DEFINE_MUTEX(pcp_batch_high_lock);
94 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 
96 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 /*
98  * On SMP, spin_trylock is sufficient protection.
99  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100  */
101 #define pcp_trylock_prepare(flags)	do { } while (0)
102 #define pcp_trylock_finish(flag)	do { } while (0)
103 #else
104 
105 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
106 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
107 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
108 #endif
109 
110 /*
111  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
112  * a migration causing the wrong PCP to be locked and remote memory being
113  * potentially allocated, pin the task to the CPU for the lookup+lock.
114  * preempt_disable is used on !RT because it is faster than migrate_disable.
115  * migrate_disable is used on RT because otherwise RT spinlock usage is
116  * interfered with and a high priority task cannot preempt the allocator.
117  */
118 #ifndef CONFIG_PREEMPT_RT
119 #define pcpu_task_pin()		preempt_disable()
120 #define pcpu_task_unpin()	preempt_enable()
121 #else
122 #define pcpu_task_pin()		migrate_disable()
123 #define pcpu_task_unpin()	migrate_enable()
124 #endif
125 
126 /*
127  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
128  * Return value should be used with equivalent unlock helper.
129  */
130 #define pcpu_spin_lock(type, member, ptr)				\
131 ({									\
132 	type *_ret;							\
133 	pcpu_task_pin();						\
134 	_ret = this_cpu_ptr(ptr);					\
135 	spin_lock(&_ret->member);					\
136 	_ret;								\
137 })
138 
139 #define pcpu_spin_trylock(type, member, ptr)				\
140 ({									\
141 	type *_ret;							\
142 	pcpu_task_pin();						\
143 	_ret = this_cpu_ptr(ptr);					\
144 	if (!spin_trylock(&_ret->member)) {				\
145 		pcpu_task_unpin();					\
146 		_ret = NULL;						\
147 	}								\
148 	_ret;								\
149 })
150 
151 #define pcpu_spin_unlock(member, ptr)					\
152 ({									\
153 	spin_unlock(&ptr->member);					\
154 	pcpu_task_unpin();						\
155 })
156 
157 /* struct per_cpu_pages specific helpers. */
158 #define pcp_spin_lock(ptr)						\
159 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_trylock(ptr)						\
162 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 
164 #define pcp_spin_unlock(ptr)						\
165 	pcpu_spin_unlock(lock, ptr)
166 
167 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
168 DEFINE_PER_CPU(int, numa_node);
169 EXPORT_PER_CPU_SYMBOL(numa_node);
170 #endif
171 
172 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173 
174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 /*
176  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
177  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
178  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
179  * defined in <linux/topology.h>.
180  */
181 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
182 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
183 #endif
184 
185 static DEFINE_MUTEX(pcpu_drain_mutex);
186 
187 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
188 volatile unsigned long latent_entropy __latent_entropy;
189 EXPORT_SYMBOL(latent_entropy);
190 #endif
191 
192 /*
193  * Array of node states.
194  */
195 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
196 	[N_POSSIBLE] = NODE_MASK_ALL,
197 	[N_ONLINE] = { { [0] = 1UL } },
198 #ifndef CONFIG_NUMA
199 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
200 #ifdef CONFIG_HIGHMEM
201 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
202 #endif
203 	[N_MEMORY] = { { [0] = 1UL } },
204 	[N_CPU] = { { [0] = 1UL } },
205 #endif	/* NUMA */
206 };
207 EXPORT_SYMBOL(node_states);
208 
209 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210 
211 /*
212  * A cached value of the page's pageblock's migratetype, used when the page is
213  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215  * Also the migratetype set in the page does not necessarily match the pcplist
216  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217  * other index - this ensures that it will be put on the correct CMA freelist.
218  */
get_pcppage_migratetype(struct page * page)219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 	return page->index;
222 }
223 
set_pcppage_migratetype(struct page * page,int migratetype)224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 	page->index = migratetype;
227 }
228 
229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
230 unsigned int pageblock_order __read_mostly;
231 #endif
232 
233 static void __free_pages_ok(struct page *page, unsigned int order,
234 			    fpi_t fpi_flags);
235 
236 /*
237  * results with 256, 32 in the lowmem_reserve sysctl:
238  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
239  *	1G machine -> (16M dma, 784M normal, 224M high)
240  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
241  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
242  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
243  *
244  * TBD: should special case ZONE_DMA32 machines here - in those we normally
245  * don't need any ZONE_NORMAL reservation
246  */
247 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
248 #ifdef CONFIG_ZONE_DMA
249 	[ZONE_DMA] = 256,
250 #endif
251 #ifdef CONFIG_ZONE_DMA32
252 	[ZONE_DMA32] = 256,
253 #endif
254 	[ZONE_NORMAL] = 32,
255 #ifdef CONFIG_HIGHMEM
256 	[ZONE_HIGHMEM] = 0,
257 #endif
258 	[ZONE_MOVABLE] = 0,
259 };
260 
261 char * const zone_names[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	 "DMA",
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	 "DMA32",
267 #endif
268 	 "Normal",
269 #ifdef CONFIG_HIGHMEM
270 	 "HighMem",
271 #endif
272 	 "Movable",
273 #ifdef CONFIG_ZONE_DEVICE
274 	 "Device",
275 #endif
276 };
277 
278 const char * const migratetype_names[MIGRATE_TYPES] = {
279 	"Unmovable",
280 	"Movable",
281 	"Reclaimable",
282 #ifdef CONFIG_CMA_REUSE
283 	"CMA",
284 #endif
285 	"HighAtomic",
286 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
287 	"CMA",
288 #endif
289 #ifdef CONFIG_MEMORY_ISOLATION
290 	"Isolate",
291 #endif
292 };
293 
294 int min_free_kbytes = 1024;
295 int user_min_free_kbytes = -1;
296 static int watermark_boost_factor __read_mostly = 15000;
297 static int watermark_scale_factor = 10;
298 
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300 int movable_zone;
301 EXPORT_SYMBOL(movable_zone);
302 
303 #if MAX_NUMNODES > 1
304 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
305 unsigned int nr_online_nodes __read_mostly = 1;
306 EXPORT_SYMBOL(nr_node_ids);
307 EXPORT_SYMBOL(nr_online_nodes);
308 #endif
309 
310 static bool page_contains_unaccepted(struct page *page, unsigned int order);
311 static void accept_page(struct page *page, unsigned int order);
312 static bool cond_accept_memory(struct zone *zone, unsigned int order);
313 static bool __free_unaccepted(struct page *page);
314 
315 int page_group_by_mobility_disabled __read_mostly;
316 
317 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
318 /*
319  * During boot we initialize deferred pages on-demand, as needed, but once
320  * page_alloc_init_late() has finished, the deferred pages are all initialized,
321  * and we can permanently disable that path.
322  */
323 DEFINE_STATIC_KEY_TRUE(deferred_pages);
324 
deferred_pages_enabled(void)325 static inline bool deferred_pages_enabled(void)
326 {
327 	return static_branch_unlikely(&deferred_pages);
328 }
329 
330 /*
331  * deferred_grow_zone() is __init, but it is called from
332  * get_page_from_freelist() during early boot until deferred_pages permanently
333  * disables this call. This is why we have refdata wrapper to avoid warning,
334  * and to ensure that the function body gets unloaded.
335  */
336 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)337 _deferred_grow_zone(struct zone *zone, unsigned int order)
338 {
339        return deferred_grow_zone(zone, order);
340 }
341 #else
deferred_pages_enabled(void)342 static inline bool deferred_pages_enabled(void)
343 {
344 	return false;
345 }
346 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
347 
348 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)349 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
350 							unsigned long pfn)
351 {
352 #ifdef CONFIG_SPARSEMEM
353 	return section_to_usemap(__pfn_to_section(pfn));
354 #else
355 	return page_zone(page)->pageblock_flags;
356 #endif /* CONFIG_SPARSEMEM */
357 }
358 
pfn_to_bitidx(const struct page * page,unsigned long pfn)359 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
360 {
361 #ifdef CONFIG_SPARSEMEM
362 	pfn &= (PAGES_PER_SECTION-1);
363 #else
364 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
365 #endif /* CONFIG_SPARSEMEM */
366 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 }
368 
369 /**
370  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
371  * @page: The page within the block of interest
372  * @pfn: The target page frame number
373  * @mask: mask of bits that the caller is interested in
374  *
375  * Return: pageblock_bits flags
376  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)377 unsigned long get_pfnblock_flags_mask(const struct page *page,
378 					unsigned long pfn, unsigned long mask)
379 {
380 	unsigned long *bitmap;
381 	unsigned long bitidx, word_bitidx;
382 	unsigned long word;
383 
384 	bitmap = get_pageblock_bitmap(page, pfn);
385 	bitidx = pfn_to_bitidx(page, pfn);
386 	word_bitidx = bitidx / BITS_PER_LONG;
387 	bitidx &= (BITS_PER_LONG-1);
388 	/*
389 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
390 	 * a consistent read of the memory array, so that results, even though
391 	 * racy, are not corrupted.
392 	 */
393 	word = READ_ONCE(bitmap[word_bitidx]);
394 	return (word >> bitidx) & mask;
395 }
396 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)397 static __always_inline int get_pfnblock_migratetype(const struct page *page,
398 					unsigned long pfn)
399 {
400 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
401 }
402 
403 /**
404  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
405  * @page: The page within the block of interest
406  * @flags: The flags to set
407  * @pfn: The target page frame number
408  * @mask: mask of bits that the caller is interested in
409  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)410 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
411 					unsigned long pfn,
412 					unsigned long mask)
413 {
414 	unsigned long *bitmap;
415 	unsigned long bitidx, word_bitidx;
416 	unsigned long word;
417 
418 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
419 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
420 
421 	bitmap = get_pageblock_bitmap(page, pfn);
422 	bitidx = pfn_to_bitidx(page, pfn);
423 	word_bitidx = bitidx / BITS_PER_LONG;
424 	bitidx &= (BITS_PER_LONG-1);
425 
426 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
427 
428 	mask <<= bitidx;
429 	flags <<= bitidx;
430 
431 	word = READ_ONCE(bitmap[word_bitidx]);
432 	do {
433 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
434 }
435 
set_pageblock_migratetype(struct page * page,int migratetype)436 void set_pageblock_migratetype(struct page *page, int migratetype)
437 {
438 	if (unlikely(page_group_by_mobility_disabled &&
439 		     migratetype < MIGRATE_PCPTYPES))
440 		migratetype = MIGRATE_UNMOVABLE;
441 
442 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
443 				page_to_pfn(page), MIGRATETYPE_MASK);
444 }
445 
446 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)447 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
448 {
449 	int ret;
450 	unsigned seq;
451 	unsigned long pfn = page_to_pfn(page);
452 	unsigned long sp, start_pfn;
453 
454 	do {
455 		seq = zone_span_seqbegin(zone);
456 		start_pfn = zone->zone_start_pfn;
457 		sp = zone->spanned_pages;
458 		ret = !zone_spans_pfn(zone, pfn);
459 	} while (zone_span_seqretry(zone, seq));
460 
461 	if (ret)
462 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
463 			pfn, zone_to_nid(zone), zone->name,
464 			start_pfn, start_pfn + sp);
465 
466 	return ret;
467 }
468 
469 /*
470  * Temporary debugging check for pages not lying within a given zone.
471  */
bad_range(struct zone * zone,struct page * page)472 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
473 {
474 	if (page_outside_zone_boundaries(zone, page))
475 		return 1;
476 	if (zone != page_zone(page))
477 		return 1;
478 
479 	return 0;
480 }
481 #else
bad_range(struct zone * zone,struct page * page)482 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
483 {
484 	return 0;
485 }
486 #endif
487 
bad_page(struct page * page,const char * reason)488 static void bad_page(struct page *page, const char *reason)
489 {
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			goto out;
502 		}
503 		if (nr_unshown) {
504 			pr_alert(
505 			      "BUG: Bad page state: %lu messages suppressed\n",
506 				nr_unshown);
507 			nr_unshown = 0;
508 		}
509 		nr_shown = 0;
510 	}
511 	if (nr_shown++ == 0)
512 		resume = jiffies + 60 * HZ;
513 
514 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
515 		current->comm, page_to_pfn(page));
516 	dump_page(page, reason);
517 
518 	print_modules();
519 	dump_stack();
520 out:
521 	/* Leave bad fields for debug, except PageBuddy could make trouble */
522 	page_mapcount_reset(page); /* remove PageBuddy */
523 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
524 }
525 
order_to_pindex(int migratetype,int order)526 static inline unsigned int order_to_pindex(int migratetype, int order)
527 {
528 	bool __maybe_unused movable;
529 
530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
531 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
532 		VM_BUG_ON(order != pageblock_order);
533 
534 		movable = migratetype == MIGRATE_MOVABLE;
535 
536 		return NR_LOWORDER_PCP_LISTS + movable;
537 	}
538 #else
539 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
540 #endif
541 
542 	return (MIGRATE_PCPTYPES * order) + migratetype;
543 }
544 
pindex_to_order(unsigned int pindex)545 static inline int pindex_to_order(unsigned int pindex)
546 {
547 	int order = pindex / MIGRATE_PCPTYPES;
548 
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 	if (pindex >= NR_LOWORDER_PCP_LISTS)
551 		order = pageblock_order;
552 #else
553 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
554 #endif
555 
556 	return order;
557 }
558 
pcp_allowed_order(unsigned int order)559 static inline bool pcp_allowed_order(unsigned int order)
560 {
561 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
562 		return true;
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 	if (order == pageblock_order)
565 		return true;
566 #endif
567 	return false;
568 }
569 
free_the_page(struct page * page,unsigned int order)570 static inline void free_the_page(struct page *page, unsigned int order)
571 {
572 	if (pcp_allowed_order(order))		/* Via pcp? */
573 		free_unref_page(page, order);
574 	else
575 		__free_pages_ok(page, order, FPI_NONE);
576 }
577 
578 /*
579  * Higher-order pages are called "compound pages".  They are structured thusly:
580  *
581  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582  *
583  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
584  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585  *
586  * The first tail page's ->compound_order holds the order of allocation.
587  * This usage means that zero-order pages may not be compound.
588  */
589 
prep_compound_page(struct page * page,unsigned int order)590 void prep_compound_page(struct page *page, unsigned int order)
591 {
592 	int i;
593 	int nr_pages = 1 << order;
594 
595 	__SetPageHead(page);
596 	for (i = 1; i < nr_pages; i++)
597 		prep_compound_tail(page, i);
598 
599 	prep_compound_head(page, order);
600 }
601 
destroy_large_folio(struct folio * folio)602 void destroy_large_folio(struct folio *folio)
603 {
604 	if (folio_test_hugetlb(folio)) {
605 		free_huge_folio(folio);
606 		return;
607 	}
608 
609 	folio_unqueue_deferred_split(folio);
610 	mem_cgroup_uncharge(folio);
611 	free_the_page(&folio->page, folio_order(folio));
612 }
613 
set_buddy_order(struct page * page,unsigned int order)614 static inline void set_buddy_order(struct page *page, unsigned int order)
615 {
616 	set_page_private(page, order);
617 	__SetPageBuddy(page);
618 }
619 
620 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)621 static inline struct capture_control *task_capc(struct zone *zone)
622 {
623 	struct capture_control *capc = current->capture_control;
624 
625 	return unlikely(capc) &&
626 		!(current->flags & PF_KTHREAD) &&
627 		!capc->page &&
628 		capc->cc->zone == zone ? capc : NULL;
629 }
630 
631 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)632 compaction_capture(struct capture_control *capc, struct page *page,
633 		   int order, int migratetype)
634 {
635 	if (!capc || order != capc->cc->order)
636 		return false;
637 
638 	/* Do not accidentally pollute CMA or isolated regions*/
639 	if (is_migrate_cma(migratetype) ||
640 	    is_migrate_isolate(migratetype))
641 		return false;
642 
643 	/*
644 	 * Do not let lower order allocations pollute a movable pageblock.
645 	 * This might let an unmovable request use a reclaimable pageblock
646 	 * and vice-versa but no more than normal fallback logic which can
647 	 * have trouble finding a high-order free page.
648 	 */
649 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
650 		return false;
651 
652 	capc->page = page;
653 	return true;
654 }
655 
656 #else
task_capc(struct zone * zone)657 static inline struct capture_control *task_capc(struct zone *zone)
658 {
659 	return NULL;
660 }
661 
662 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)663 compaction_capture(struct capture_control *capc, struct page *page,
664 		   int order, int migratetype)
665 {
666 	return false;
667 }
668 #endif /* CONFIG_COMPACTION */
669 
670 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)671 static inline void add_to_free_list(struct page *page, struct zone *zone,
672 				    unsigned int order, int migratetype)
673 {
674 	struct free_area *area = &zone->free_area[order];
675 
676 	list_add(&page->buddy_list, &area->free_list[migratetype]);
677 	area->nr_free++;
678 }
679 
680 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)681 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
682 					 unsigned int order, int migratetype)
683 {
684 	struct free_area *area = &zone->free_area[order];
685 
686 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
687 	area->nr_free++;
688 }
689 
690 /*
691  * Used for pages which are on another list. Move the pages to the tail
692  * of the list - so the moved pages won't immediately be considered for
693  * allocation again (e.g., optimization for memory onlining).
694  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)695 static inline void move_to_free_list(struct page *page, struct zone *zone,
696 				     unsigned int order, int migratetype)
697 {
698 	struct free_area *area = &zone->free_area[order];
699 
700 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
701 }
702 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)703 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
704 					   unsigned int order)
705 {
706 	/* clear reported state and update reported page count */
707 	if (page_reported(page))
708 		__ClearPageReported(page);
709 
710 	list_del(&page->buddy_list);
711 	__ClearPageBuddy(page);
712 	set_page_private(page, 0);
713 	zone->free_area[order].nr_free--;
714 }
715 
get_page_from_free_area(struct free_area * area,int migratetype)716 static inline struct page *get_page_from_free_area(struct free_area *area,
717 					    int migratetype)
718 {
719 	return list_first_entry_or_null(&area->free_list[migratetype],
720 					struct page, buddy_list);
721 }
722 
723 /*
724  * If this is not the largest possible page, check if the buddy
725  * of the next-highest order is free. If it is, it's possible
726  * that pages are being freed that will coalesce soon. In case,
727  * that is happening, add the free page to the tail of the list
728  * so it's less likely to be used soon and more likely to be merged
729  * as a higher order page
730  */
731 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)732 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
733 		   struct page *page, unsigned int order)
734 {
735 	unsigned long higher_page_pfn;
736 	struct page *higher_page;
737 
738 	if (order >= MAX_ORDER - 1)
739 		return false;
740 
741 	higher_page_pfn = buddy_pfn & pfn;
742 	higher_page = page + (higher_page_pfn - pfn);
743 
744 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
745 			NULL) != NULL;
746 }
747 
748 /*
749  * Freeing function for a buddy system allocator.
750  *
751  * The concept of a buddy system is to maintain direct-mapped table
752  * (containing bit values) for memory blocks of various "orders".
753  * The bottom level table contains the map for the smallest allocatable
754  * units of memory (here, pages), and each level above it describes
755  * pairs of units from the levels below, hence, "buddies".
756  * At a high level, all that happens here is marking the table entry
757  * at the bottom level available, and propagating the changes upward
758  * as necessary, plus some accounting needed to play nicely with other
759  * parts of the VM system.
760  * At each level, we keep a list of pages, which are heads of continuous
761  * free pages of length of (1 << order) and marked with PageBuddy.
762  * Page's order is recorded in page_private(page) field.
763  * So when we are allocating or freeing one, we can derive the state of the
764  * other.  That is, if we allocate a small block, and both were
765  * free, the remainder of the region must be split into blocks.
766  * If a block is freed, and its buddy is also free, then this
767  * triggers coalescing into a block of larger size.
768  *
769  * -- nyc
770  */
771 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)772 static inline void __free_one_page(struct page *page,
773 		unsigned long pfn,
774 		struct zone *zone, unsigned int order,
775 		int migratetype, fpi_t fpi_flags)
776 {
777 	struct capture_control *capc = task_capc(zone);
778 	unsigned long buddy_pfn = 0;
779 	unsigned long combined_pfn;
780 	struct page *buddy;
781 	bool to_tail;
782 
783 	VM_BUG_ON(!zone_is_initialized(zone));
784 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
785 
786 	VM_BUG_ON(migratetype == -1);
787 	if (likely(!is_migrate_isolate(migratetype)))
788 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
789 
790 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
791 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
792 
793 	while (order < MAX_ORDER) {
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			__mod_zone_freepage_state(zone, -(1 << order),
796 								migratetype);
797 			return;
798 		}
799 
800 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
801 		if (!buddy)
802 			goto done_merging;
803 
804 		if (unlikely(order >= pageblock_order)) {
805 			/*
806 			 * We want to prevent merge between freepages on pageblock
807 			 * without fallbacks and normal pageblock. Without this,
808 			 * pageblock isolation could cause incorrect freepage or CMA
809 			 * accounting or HIGHATOMIC accounting.
810 			 */
811 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
812 
813 			if (migratetype != buddy_mt
814 					&& (!migratetype_is_mergeable(migratetype) ||
815 						!migratetype_is_mergeable(buddy_mt)))
816 				goto done_merging;
817 		}
818 
819 		/*
820 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 		 * merge with it and move up one order.
822 		 */
823 		if (page_is_guard(buddy))
824 			clear_page_guard(zone, buddy, order, migratetype);
825 		else
826 			del_page_from_free_list(buddy, zone, order);
827 		combined_pfn = buddy_pfn & pfn;
828 		page = page + (combined_pfn - pfn);
829 		pfn = combined_pfn;
830 		order++;
831 	}
832 
833 done_merging:
834 	set_buddy_order(page, order);
835 
836 	if (fpi_flags & FPI_TO_TAIL)
837 		to_tail = true;
838 	else if (is_shuffle_order(order))
839 		to_tail = shuffle_pick_tail();
840 	else
841 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
842 
843 	if (to_tail)
844 		add_to_free_list_tail(page, zone, order, migratetype);
845 	else
846 		add_to_free_list(page, zone, order, migratetype);
847 
848 	/* Notify page reporting subsystem of freed page */
849 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
850 		page_reporting_notify_free(order);
851 }
852 
853 /**
854  * split_free_page() -- split a free page at split_pfn_offset
855  * @free_page:		the original free page
856  * @order:		the order of the page
857  * @split_pfn_offset:	split offset within the page
858  *
859  * Return -ENOENT if the free page is changed, otherwise 0
860  *
861  * It is used when the free page crosses two pageblocks with different migratetypes
862  * at split_pfn_offset within the page. The split free page will be put into
863  * separate migratetype lists afterwards. Otherwise, the function achieves
864  * nothing.
865  */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)866 int split_free_page(struct page *free_page,
867 			unsigned int order, unsigned long split_pfn_offset)
868 {
869 	struct zone *zone = page_zone(free_page);
870 	unsigned long free_page_pfn = page_to_pfn(free_page);
871 	unsigned long pfn;
872 	unsigned long flags;
873 	int free_page_order;
874 	int mt;
875 	int ret = 0;
876 
877 	if (split_pfn_offset == 0)
878 		return ret;
879 
880 	spin_lock_irqsave(&zone->lock, flags);
881 
882 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
883 		ret = -ENOENT;
884 		goto out;
885 	}
886 
887 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
888 	if (likely(!is_migrate_isolate(mt)))
889 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
890 
891 	del_page_from_free_list(free_page, zone, order);
892 	for (pfn = free_page_pfn;
893 	     pfn < free_page_pfn + (1UL << order);) {
894 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
895 
896 		free_page_order = min_t(unsigned int,
897 					pfn ? __ffs(pfn) : order,
898 					__fls(split_pfn_offset));
899 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
900 				mt, FPI_NONE);
901 		pfn += 1UL << free_page_order;
902 		split_pfn_offset -= (1UL << free_page_order);
903 		/* we have done the first part, now switch to second part */
904 		if (split_pfn_offset == 0)
905 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
906 	}
907 out:
908 	spin_unlock_irqrestore(&zone->lock, flags);
909 	return ret;
910 }
911 /*
912  * A bad page could be due to a number of fields. Instead of multiple branches,
913  * try and check multiple fields with one check. The caller must do a detailed
914  * check if necessary.
915  */
page_expected_state(struct page * page,unsigned long check_flags)916 static inline bool page_expected_state(struct page *page,
917 					unsigned long check_flags)
918 {
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		return false;
921 
922 	if (unlikely((unsigned long)page->mapping |
923 			page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 			page->memcg_data |
926 #endif
927 			(page->flags & check_flags)))
928 		return false;
929 
930 	return true;
931 }
932 
page_bad_reason(struct page * page,unsigned long flags)933 static const char *page_bad_reason(struct page *page, unsigned long flags)
934 {
935 	const char *bad_reason = NULL;
936 
937 	if (unlikely(atomic_read(&page->_mapcount) != -1))
938 		bad_reason = "nonzero mapcount";
939 	if (unlikely(page->mapping != NULL))
940 		bad_reason = "non-NULL mapping";
941 	if (unlikely(page_ref_count(page) != 0))
942 		bad_reason = "nonzero _refcount";
943 	if (unlikely(page->flags & flags)) {
944 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
945 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
946 		else
947 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
948 	}
949 #ifdef CONFIG_MEMCG
950 	if (unlikely(page->memcg_data))
951 		bad_reason = "page still charged to cgroup";
952 #endif
953 	return bad_reason;
954 }
955 
free_page_is_bad_report(struct page * page)956 static void free_page_is_bad_report(struct page *page)
957 {
958 	bad_page(page,
959 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
960 }
961 
free_page_is_bad(struct page * page)962 static inline bool free_page_is_bad(struct page *page)
963 {
964 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 		return false;
966 
967 	/* Something has gone sideways, find it */
968 	free_page_is_bad_report(page);
969 	return true;
970 }
971 
is_check_pages_enabled(void)972 static inline bool is_check_pages_enabled(void)
973 {
974 	return static_branch_unlikely(&check_pages_enabled);
975 }
976 
free_tail_page_prepare(struct page * head_page,struct page * page)977 static int free_tail_page_prepare(struct page *head_page, struct page *page)
978 {
979 	struct folio *folio = (struct folio *)head_page;
980 	int ret = 1;
981 
982 	/*
983 	 * We rely page->lru.next never has bit 0 set, unless the page
984 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985 	 */
986 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987 
988 	if (!is_check_pages_enabled()) {
989 		ret = 0;
990 		goto out;
991 	}
992 	switch (page - head_page) {
993 	case 1:
994 		/* the first tail page: these may be in place of ->mapping */
995 		if (unlikely(folio_entire_mapcount(folio))) {
996 			bad_page(page, "nonzero entire_mapcount");
997 			goto out;
998 		}
999 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1000 			bad_page(page, "nonzero nr_pages_mapped");
1001 			goto out;
1002 		}
1003 		if (unlikely(atomic_read(&folio->_pincount))) {
1004 			bad_page(page, "nonzero pincount");
1005 			goto out;
1006 		}
1007 		break;
1008 	case 2:
1009 		/* the second tail page: deferred_list overlaps ->mapping */
1010 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1011 			bad_page(page, "on deferred list");
1012 			goto out;
1013 		}
1014 		break;
1015 	default:
1016 		if (page->mapping != TAIL_MAPPING) {
1017 			bad_page(page, "corrupted mapping in tail page");
1018 			goto out;
1019 		}
1020 		break;
1021 	}
1022 	if (unlikely(!PageTail(page))) {
1023 		bad_page(page, "PageTail not set");
1024 		goto out;
1025 	}
1026 	if (unlikely(compound_head(page) != head_page)) {
1027 		bad_page(page, "compound_head not consistent");
1028 		goto out;
1029 	}
1030 	ret = 0;
1031 out:
1032 	page->mapping = NULL;
1033 	clear_compound_head(page);
1034 	return ret;
1035 }
1036 
1037 /*
1038  * Skip KASAN memory poisoning when either:
1039  *
1040  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1041  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1042  *    using page tags instead (see below).
1043  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1044  *    that error detection is disabled for accesses via the page address.
1045  *
1046  * Pages will have match-all tags in the following circumstances:
1047  *
1048  * 1. Pages are being initialized for the first time, including during deferred
1049  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1050  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1051  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1052  * 3. The allocation was excluded from being checked due to sampling,
1053  *    see the call to kasan_unpoison_pages.
1054  *
1055  * Poisoning pages during deferred memory init will greatly lengthen the
1056  * process and cause problem in large memory systems as the deferred pages
1057  * initialization is done with interrupt disabled.
1058  *
1059  * Assuming that there will be no reference to those newly initialized
1060  * pages before they are ever allocated, this should have no effect on
1061  * KASAN memory tracking as the poison will be properly inserted at page
1062  * allocation time. The only corner case is when pages are allocated by
1063  * on-demand allocation and then freed again before the deferred pages
1064  * initialization is done, but this is not likely to happen.
1065  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1066 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1067 {
1068 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1069 		return deferred_pages_enabled();
1070 
1071 	return page_kasan_tag(page) == 0xff;
1072 }
1073 
kernel_init_pages(struct page * page,int numpages)1074 static void kernel_init_pages(struct page *page, int numpages)
1075 {
1076 	int i;
1077 
1078 	/* s390's use of memset() could override KASAN redzones. */
1079 	kasan_disable_current();
1080 	for (i = 0; i < numpages; i++)
1081 		clear_highpage_kasan_tagged(page + i);
1082 	kasan_enable_current();
1083 }
1084 
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1085 static __always_inline bool free_pages_prepare(struct page *page,
1086 			unsigned int order, fpi_t fpi_flags)
1087 {
1088 	int bad = 0;
1089 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1090 	bool init = want_init_on_free();
1091 	struct folio *folio = page_folio(page);
1092 
1093 	VM_BUG_ON_PAGE(PageTail(page), page);
1094 
1095 	trace_mm_page_free(page, order);
1096 	kmsan_free_page(page, order);
1097 
1098 	/*
1099 	 * In rare cases, when truncation or holepunching raced with
1100 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1101 	 * found set here.  This does not indicate a problem, unless
1102 	 * "unevictable_pgs_cleared" appears worryingly large.
1103 	 */
1104 	if (unlikely(folio_test_mlocked(folio))) {
1105 		long nr_pages = folio_nr_pages(folio);
1106 
1107 		__folio_clear_mlocked(folio);
1108 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1109 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1110 	}
1111 
1112 	if (unlikely(PageHWPoison(page)) && !order) {
1113 		/*
1114 		 * Do not let hwpoison pages hit pcplists/buddy
1115 		 * Untie memcg state and reset page's owner
1116 		 */
1117 		if (memcg_kmem_online() && PageMemcgKmem(page))
1118 			__memcg_kmem_uncharge_page(page, order);
1119 		reset_page_owner(page, order);
1120 		page_table_check_free(page, order);
1121 		return false;
1122 	}
1123 
1124 	/*
1125 	 * Check tail pages before head page information is cleared to
1126 	 * avoid checking PageCompound for order-0 pages.
1127 	 */
1128 	if (unlikely(order)) {
1129 		bool compound = PageCompound(page);
1130 		int i;
1131 
1132 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1133 
1134 		if (compound)
1135 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1136 		for (i = 1; i < (1 << order); i++) {
1137 			if (compound)
1138 				bad += free_tail_page_prepare(page, page + i);
1139 			if (is_check_pages_enabled()) {
1140 				if (free_page_is_bad(page + i)) {
1141 					bad++;
1142 					continue;
1143 				}
1144 			}
1145 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1146 		}
1147 	}
1148 	if (PageMappingFlags(page))
1149 		page->mapping = NULL;
1150 	if (memcg_kmem_online() && PageMemcgKmem(page))
1151 		__memcg_kmem_uncharge_page(page, order);
1152 	if (is_check_pages_enabled()) {
1153 		if (free_page_is_bad(page))
1154 			bad++;
1155 		if (bad)
1156 			return false;
1157 	}
1158 
1159 	page_cpupid_reset_last(page);
1160 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1161 	reset_page_owner(page, order);
1162 	page_table_check_free(page, order);
1163 
1164 	if (!PageHighMem(page)) {
1165 		debug_check_no_locks_freed(page_address(page),
1166 					   PAGE_SIZE << order);
1167 		debug_check_no_obj_freed(page_address(page),
1168 					   PAGE_SIZE << order);
1169 	}
1170 
1171 	kernel_poison_pages(page, 1 << order);
1172 
1173 	/*
1174 	 * As memory initialization might be integrated into KASAN,
1175 	 * KASAN poisoning and memory initialization code must be
1176 	 * kept together to avoid discrepancies in behavior.
1177 	 *
1178 	 * With hardware tag-based KASAN, memory tags must be set before the
1179 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1180 	 */
1181 	if (!skip_kasan_poison) {
1182 		kasan_poison_pages(page, order, init);
1183 
1184 		/* Memory is already initialized if KASAN did it internally. */
1185 		if (kasan_has_integrated_init())
1186 			init = false;
1187 	}
1188 	if (init)
1189 		kernel_init_pages(page, 1 << order);
1190 
1191 	/*
1192 	 * arch_free_page() can make the page's contents inaccessible.  s390
1193 	 * does this.  So nothing which can access the page's contents should
1194 	 * happen after this.
1195 	 */
1196 	arch_free_page(page, order);
1197 
1198 	debug_pagealloc_unmap_pages(page, 1 << order);
1199 
1200 	return true;
1201 }
1202 
1203 /*
1204  * Frees a number of pages from the PCP lists
1205  * Assumes all pages on list are in same zone.
1206  * count is the number of pages to free.
1207  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1208 static void free_pcppages_bulk(struct zone *zone, int count,
1209 					struct per_cpu_pages *pcp,
1210 					int pindex)
1211 {
1212 	unsigned long flags;
1213 	unsigned int order;
1214 	bool isolated_pageblocks;
1215 	struct page *page;
1216 
1217 	/*
1218 	 * Ensure proper count is passed which otherwise would stuck in the
1219 	 * below while (list_empty(list)) loop.
1220 	 */
1221 	count = min(pcp->count, count);
1222 
1223 	/* Ensure requested pindex is drained first. */
1224 	pindex = pindex - 1;
1225 
1226 	spin_lock_irqsave(&zone->lock, flags);
1227 	isolated_pageblocks = has_isolate_pageblock(zone);
1228 
1229 	while (count > 0) {
1230 		struct list_head *list;
1231 		int nr_pages;
1232 
1233 		/* Remove pages from lists in a round-robin fashion. */
1234 		do {
1235 			if (++pindex > NR_PCP_LISTS - 1)
1236 				pindex = 0;
1237 			list = &pcp->lists[pindex];
1238 		} while (list_empty(list));
1239 
1240 		order = pindex_to_order(pindex);
1241 		nr_pages = 1 << order;
1242 		do {
1243 			int mt;
1244 
1245 			page = list_last_entry(list, struct page, pcp_list);
1246 			mt = get_pcppage_migratetype(page);
1247 
1248 			/* must delete to avoid corrupting pcp list */
1249 			list_del(&page->pcp_list);
1250 			count -= nr_pages;
1251 			pcp->count -= nr_pages;
1252 
1253 			/* MIGRATE_ISOLATE page should not go to pcplists */
1254 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1255 			/* Pageblock could have been isolated meanwhile */
1256 			if (unlikely(isolated_pageblocks))
1257 				mt = get_pageblock_migratetype(page);
1258 
1259 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1260 			trace_mm_page_pcpu_drain(page, order, mt);
1261 		} while (count > 0 && !list_empty(list));
1262 	}
1263 
1264 	spin_unlock_irqrestore(&zone->lock, flags);
1265 }
1266 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1267 static void free_one_page(struct zone *zone,
1268 				struct page *page, unsigned long pfn,
1269 				unsigned int order,
1270 				int migratetype, fpi_t fpi_flags)
1271 {
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&zone->lock, flags);
1275 	if (unlikely(has_isolate_pageblock(zone) ||
1276 		is_migrate_isolate(migratetype))) {
1277 		migratetype = get_pfnblock_migratetype(page, pfn);
1278 	}
1279 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1280 	spin_unlock_irqrestore(&zone->lock, flags);
1281 }
1282 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1283 static void __free_pages_ok(struct page *page, unsigned int order,
1284 			    fpi_t fpi_flags)
1285 {
1286 	unsigned long flags;
1287 	int migratetype;
1288 	unsigned long pfn = page_to_pfn(page);
1289 	struct zone *zone = page_zone(page);
1290 
1291 	if (!free_pages_prepare(page, order, fpi_flags))
1292 		return;
1293 
1294 	/*
1295 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1296 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1297 	 * This will reduce the lock holding time.
1298 	 */
1299 	migratetype = get_pfnblock_migratetype(page, pfn);
1300 
1301 	spin_lock_irqsave(&zone->lock, flags);
1302 	if (unlikely(has_isolate_pageblock(zone) ||
1303 		is_migrate_isolate(migratetype))) {
1304 		migratetype = get_pfnblock_migratetype(page, pfn);
1305 	}
1306 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1307 	spin_unlock_irqrestore(&zone->lock, flags);
1308 
1309 	__count_vm_events(PGFREE, 1 << order);
1310 }
1311 
__free_pages_core(struct page * page,unsigned int order)1312 void __free_pages_core(struct page *page, unsigned int order)
1313 {
1314 	unsigned int nr_pages = 1 << order;
1315 	struct page *p = page;
1316 	unsigned int loop;
1317 
1318 	/*
1319 	 * When initializing the memmap, __init_single_page() sets the refcount
1320 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1321 	 * refcount of all involved pages to 0.
1322 	 */
1323 	prefetchw(p);
1324 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1325 		prefetchw(p + 1);
1326 		__ClearPageReserved(p);
1327 		set_page_count(p, 0);
1328 	}
1329 	__ClearPageReserved(p);
1330 	set_page_count(p, 0);
1331 
1332 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1333 
1334 	if (page_contains_unaccepted(page, order)) {
1335 		if (order == MAX_ORDER && __free_unaccepted(page))
1336 			return;
1337 
1338 		accept_page(page, order);
1339 	}
1340 
1341 	/*
1342 	 * Bypass PCP and place fresh pages right to the tail, primarily
1343 	 * relevant for memory onlining.
1344 	 */
1345 	__free_pages_ok(page, order, FPI_TO_TAIL);
1346 }
1347 
1348 /*
1349  * Check that the whole (or subset of) a pageblock given by the interval of
1350  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1351  * with the migration of free compaction scanner.
1352  *
1353  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1354  *
1355  * It's possible on some configurations to have a setup like node0 node1 node0
1356  * i.e. it's possible that all pages within a zones range of pages do not
1357  * belong to a single zone. We assume that a border between node0 and node1
1358  * can occur within a single pageblock, but not a node0 node1 node0
1359  * interleaving within a single pageblock. It is therefore sufficient to check
1360  * the first and last page of a pageblock and avoid checking each individual
1361  * page in a pageblock.
1362  *
1363  * Note: the function may return non-NULL struct page even for a page block
1364  * which contains a memory hole (i.e. there is no physical memory for a subset
1365  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1366  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1367  * even though the start pfn is online and valid. This should be safe most of
1368  * the time because struct pages are still initialized via init_unavailable_range()
1369  * and pfn walkers shouldn't touch any physical memory range for which they do
1370  * not recognize any specific metadata in struct pages.
1371  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1372 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1373 				     unsigned long end_pfn, struct zone *zone)
1374 {
1375 	struct page *start_page;
1376 	struct page *end_page;
1377 
1378 	/* end_pfn is one past the range we are checking */
1379 	end_pfn--;
1380 
1381 	if (!pfn_valid(end_pfn))
1382 		return NULL;
1383 
1384 	start_page = pfn_to_online_page(start_pfn);
1385 	if (!start_page)
1386 		return NULL;
1387 
1388 	if (page_zone(start_page) != zone)
1389 		return NULL;
1390 
1391 	end_page = pfn_to_page(end_pfn);
1392 
1393 	/* This gives a shorter code than deriving page_zone(end_page) */
1394 	if (page_zone_id(start_page) != page_zone_id(end_page))
1395 		return NULL;
1396 
1397 	return start_page;
1398 }
1399 
1400 /*
1401  * The order of subdivision here is critical for the IO subsystem.
1402  * Please do not alter this order without good reasons and regression
1403  * testing. Specifically, as large blocks of memory are subdivided,
1404  * the order in which smaller blocks are delivered depends on the order
1405  * they're subdivided in this function. This is the primary factor
1406  * influencing the order in which pages are delivered to the IO
1407  * subsystem according to empirical testing, and this is also justified
1408  * by considering the behavior of a buddy system containing a single
1409  * large block of memory acted on by a series of small allocations.
1410  * This behavior is a critical factor in sglist merging's success.
1411  *
1412  * -- nyc
1413  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1414 static inline void expand(struct zone *zone, struct page *page,
1415 	int low, int high, int migratetype)
1416 {
1417 	unsigned long size = 1 << high;
1418 
1419 	while (high > low) {
1420 		high--;
1421 		size >>= 1;
1422 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1423 
1424 		/*
1425 		 * Mark as guard pages (or page), that will allow to
1426 		 * merge back to allocator when buddy will be freed.
1427 		 * Corresponding page table entries will not be touched,
1428 		 * pages will stay not present in virtual address space
1429 		 */
1430 		if (set_page_guard(zone, &page[size], high, migratetype))
1431 			continue;
1432 
1433 		add_to_free_list(&page[size], zone, high, migratetype);
1434 		set_buddy_order(&page[size], high);
1435 	}
1436 }
1437 
check_new_page_bad(struct page * page)1438 static void check_new_page_bad(struct page *page)
1439 {
1440 	if (unlikely(page->flags & __PG_HWPOISON)) {
1441 		/* Don't complain about hwpoisoned pages */
1442 		page_mapcount_reset(page); /* remove PageBuddy */
1443 		return;
1444 	}
1445 
1446 	bad_page(page,
1447 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1448 }
1449 
1450 /*
1451  * This page is about to be returned from the page allocator
1452  */
check_new_page(struct page * page)1453 static int check_new_page(struct page *page)
1454 {
1455 	if (likely(page_expected_state(page,
1456 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1457 		return 0;
1458 
1459 	check_new_page_bad(page);
1460 	return 1;
1461 }
1462 
check_new_pages(struct page * page,unsigned int order)1463 static inline bool check_new_pages(struct page *page, unsigned int order)
1464 {
1465 	if (is_check_pages_enabled()) {
1466 		for (int i = 0; i < (1 << order); i++) {
1467 			struct page *p = page + i;
1468 
1469 			if (check_new_page(p))
1470 				return true;
1471 		}
1472 	}
1473 
1474 	return false;
1475 }
1476 
should_skip_kasan_unpoison(gfp_t flags)1477 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1478 {
1479 	/* Don't skip if a software KASAN mode is enabled. */
1480 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1481 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1482 		return false;
1483 
1484 	/* Skip, if hardware tag-based KASAN is not enabled. */
1485 	if (!kasan_hw_tags_enabled())
1486 		return true;
1487 
1488 	/*
1489 	 * With hardware tag-based KASAN enabled, skip if this has been
1490 	 * requested via __GFP_SKIP_KASAN.
1491 	 */
1492 	return flags & __GFP_SKIP_KASAN;
1493 }
1494 
should_skip_init(gfp_t flags)1495 static inline bool should_skip_init(gfp_t flags)
1496 {
1497 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1498 	if (!kasan_hw_tags_enabled())
1499 		return false;
1500 
1501 	/* For hardware tag-based KASAN, skip if requested. */
1502 	return (flags & __GFP_SKIP_ZERO);
1503 }
1504 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1505 inline void post_alloc_hook(struct page *page, unsigned int order,
1506 				gfp_t gfp_flags)
1507 {
1508 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1509 			!should_skip_init(gfp_flags);
1510 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1511 	int i;
1512 
1513 	set_page_private(page, 0);
1514 	set_page_refcounted(page);
1515 
1516 	arch_alloc_page(page, order);
1517 	debug_pagealloc_map_pages(page, 1 << order);
1518 
1519 	/*
1520 	 * Page unpoisoning must happen before memory initialization.
1521 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1522 	 * allocations and the page unpoisoning code will complain.
1523 	 */
1524 	kernel_unpoison_pages(page, 1 << order);
1525 
1526 	/*
1527 	 * As memory initialization might be integrated into KASAN,
1528 	 * KASAN unpoisoning and memory initializion code must be
1529 	 * kept together to avoid discrepancies in behavior.
1530 	 */
1531 
1532 	/*
1533 	 * If memory tags should be zeroed
1534 	 * (which happens only when memory should be initialized as well).
1535 	 */
1536 	if (zero_tags) {
1537 		/* Initialize both memory and memory tags. */
1538 		for (i = 0; i != 1 << order; ++i)
1539 			tag_clear_highpage(page + i);
1540 
1541 		/* Take note that memory was initialized by the loop above. */
1542 		init = false;
1543 	}
1544 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1545 	    kasan_unpoison_pages(page, order, init)) {
1546 		/* Take note that memory was initialized by KASAN. */
1547 		if (kasan_has_integrated_init())
1548 			init = false;
1549 	} else {
1550 		/*
1551 		 * If memory tags have not been set by KASAN, reset the page
1552 		 * tags to ensure page_address() dereferencing does not fault.
1553 		 */
1554 		for (i = 0; i != 1 << order; ++i)
1555 			page_kasan_tag_reset(page + i);
1556 	}
1557 	/* If memory is still not initialized, initialize it now. */
1558 	if (init)
1559 		kernel_init_pages(page, 1 << order);
1560 
1561 	set_page_owner(page, order, gfp_flags);
1562 	page_table_check_alloc(page, order);
1563 }
1564 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1565 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1566 							unsigned int alloc_flags)
1567 {
1568 	post_alloc_hook(page, order, gfp_flags);
1569 
1570 	if (order && (gfp_flags & __GFP_COMP))
1571 		prep_compound_page(page, order);
1572 
1573 	/*
1574 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1575 	 * allocate the page. The expectation is that the caller is taking
1576 	 * steps that will free more memory. The caller should avoid the page
1577 	 * being used for !PFMEMALLOC purposes.
1578 	 */
1579 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1580 		set_page_pfmemalloc(page);
1581 	else
1582 		clear_page_pfmemalloc(page);
1583 }
1584 
1585 /*
1586  * Go through the free lists for the given migratetype and remove
1587  * the smallest available page from the freelists
1588  */
1589 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1590 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1591 						int migratetype)
1592 {
1593 	unsigned int current_order;
1594 	struct free_area *area;
1595 	struct page *page;
1596 
1597 	/* Find a page of the appropriate size in the preferred list */
1598 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1599 		area = &(zone->free_area[current_order]);
1600 		page = get_page_from_free_area(area, migratetype);
1601 		if (!page)
1602 			continue;
1603 		del_page_from_free_list(page, zone, current_order);
1604 		expand(zone, page, order, current_order, migratetype);
1605 		set_pcppage_migratetype(page, migratetype);
1606 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1607 				pcp_allowed_order(order) &&
1608 				migratetype < MIGRATE_PCPTYPES);
1609 		return page;
1610 	}
1611 
1612 	return NULL;
1613 }
1614 
1615 
1616 /*
1617  * This array describes the order lists are fallen back to when
1618  * the free lists for the desirable migrate type are depleted
1619  *
1620  * The other migratetypes do not have fallbacks.
1621  */
1622 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1623 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1624 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1625 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1626 };
1627 
1628 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1629 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1630 					unsigned int order)
1631 {
1632 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1633 }
1634 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1635 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1636 					unsigned int order) { return NULL; }
1637 #endif
1638 
1639 /*
1640  * Move the free pages in a range to the freelist tail of the requested type.
1641  * Note that start_page and end_pages are not aligned on a pageblock
1642  * boundary. If alignment is required, use move_freepages_block()
1643  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1644 static int move_freepages(struct zone *zone,
1645 			  unsigned long start_pfn, unsigned long end_pfn,
1646 			  int migratetype, int *num_movable)
1647 {
1648 	struct page *page;
1649 	unsigned long pfn;
1650 	unsigned int order;
1651 	int pages_moved = 0;
1652 
1653 	for (pfn = start_pfn; pfn <= end_pfn;) {
1654 		page = pfn_to_page(pfn);
1655 		if (!PageBuddy(page)) {
1656 			/*
1657 			 * We assume that pages that could be isolated for
1658 			 * migration are movable. But we don't actually try
1659 			 * isolating, as that would be expensive.
1660 			 */
1661 			if (num_movable &&
1662 					(PageLRU(page) || __PageMovable(page)))
1663 				(*num_movable)++;
1664 			pfn++;
1665 			continue;
1666 		}
1667 
1668 		/* Make sure we are not inadvertently changing nodes */
1669 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1670 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1671 
1672 		order = buddy_order(page);
1673 		move_to_free_list(page, zone, order, migratetype);
1674 		pfn += 1 << order;
1675 		pages_moved += 1 << order;
1676 	}
1677 
1678 	return pages_moved;
1679 }
1680 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1681 int move_freepages_block(struct zone *zone, struct page *page,
1682 				int migratetype, int *num_movable)
1683 {
1684 	unsigned long start_pfn, end_pfn, pfn;
1685 
1686 	if (num_movable)
1687 		*num_movable = 0;
1688 
1689 	pfn = page_to_pfn(page);
1690 	start_pfn = pageblock_start_pfn(pfn);
1691 	end_pfn = pageblock_end_pfn(pfn) - 1;
1692 
1693 	/* Do not cross zone boundaries */
1694 	if (!zone_spans_pfn(zone, start_pfn))
1695 		start_pfn = pfn;
1696 	if (!zone_spans_pfn(zone, end_pfn))
1697 		return 0;
1698 
1699 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1700 								num_movable);
1701 }
1702 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1703 static void change_pageblock_range(struct page *pageblock_page,
1704 					int start_order, int migratetype)
1705 {
1706 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1707 
1708 	while (nr_pageblocks--) {
1709 		set_pageblock_migratetype(pageblock_page, migratetype);
1710 		pageblock_page += pageblock_nr_pages;
1711 	}
1712 }
1713 
1714 /*
1715  * When we are falling back to another migratetype during allocation, try to
1716  * steal extra free pages from the same pageblocks to satisfy further
1717  * allocations, instead of polluting multiple pageblocks.
1718  *
1719  * If we are stealing a relatively large buddy page, it is likely there will
1720  * be more free pages in the pageblock, so try to steal them all. For
1721  * reclaimable and unmovable allocations, we steal regardless of page size,
1722  * as fragmentation caused by those allocations polluting movable pageblocks
1723  * is worse than movable allocations stealing from unmovable and reclaimable
1724  * pageblocks.
1725  */
can_steal_fallback(unsigned int order,int start_mt)1726 static bool can_steal_fallback(unsigned int order, int start_mt)
1727 {
1728 	/*
1729 	 * Leaving this order check is intended, although there is
1730 	 * relaxed order check in next check. The reason is that
1731 	 * we can actually steal whole pageblock if this condition met,
1732 	 * but, below check doesn't guarantee it and that is just heuristic
1733 	 * so could be changed anytime.
1734 	 */
1735 	if (order >= pageblock_order)
1736 		return true;
1737 
1738 	if (order >= pageblock_order / 2 ||
1739 		start_mt == MIGRATE_RECLAIMABLE ||
1740 		start_mt == MIGRATE_UNMOVABLE ||
1741 		page_group_by_mobility_disabled)
1742 		return true;
1743 
1744 	return false;
1745 }
1746 
boost_watermark(struct zone * zone)1747 static inline bool boost_watermark(struct zone *zone)
1748 {
1749 	unsigned long max_boost;
1750 
1751 	if (!watermark_boost_factor)
1752 		return false;
1753 	/*
1754 	 * Don't bother in zones that are unlikely to produce results.
1755 	 * On small machines, including kdump capture kernels running
1756 	 * in a small area, boosting the watermark can cause an out of
1757 	 * memory situation immediately.
1758 	 */
1759 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1760 		return false;
1761 
1762 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1763 			watermark_boost_factor, 10000);
1764 
1765 	/*
1766 	 * high watermark may be uninitialised if fragmentation occurs
1767 	 * very early in boot so do not boost. We do not fall
1768 	 * through and boost by pageblock_nr_pages as failing
1769 	 * allocations that early means that reclaim is not going
1770 	 * to help and it may even be impossible to reclaim the
1771 	 * boosted watermark resulting in a hang.
1772 	 */
1773 	if (!max_boost)
1774 		return false;
1775 
1776 	max_boost = max(pageblock_nr_pages, max_boost);
1777 
1778 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1779 		max_boost);
1780 
1781 	return true;
1782 }
1783 
1784 /*
1785  * This function implements actual steal behaviour. If order is large enough,
1786  * we can steal whole pageblock. If not, we first move freepages in this
1787  * pageblock to our migratetype and determine how many already-allocated pages
1788  * are there in the pageblock with a compatible migratetype. If at least half
1789  * of pages are free or compatible, we can change migratetype of the pageblock
1790  * itself, so pages freed in the future will be put on the correct free list.
1791  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1792 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1793 		unsigned int alloc_flags, int start_type, bool whole_block)
1794 {
1795 	unsigned int current_order = buddy_order(page);
1796 	int free_pages, movable_pages, alike_pages;
1797 	int old_block_type;
1798 
1799 	old_block_type = get_pageblock_migratetype(page);
1800 
1801 	/*
1802 	 * This can happen due to races and we want to prevent broken
1803 	 * highatomic accounting.
1804 	 */
1805 	if (is_migrate_highatomic(old_block_type))
1806 		goto single_page;
1807 
1808 	/* Take ownership for orders >= pageblock_order */
1809 	if (current_order >= pageblock_order) {
1810 		change_pageblock_range(page, current_order, start_type);
1811 		goto single_page;
1812 	}
1813 
1814 	/*
1815 	 * Boost watermarks to increase reclaim pressure to reduce the
1816 	 * likelihood of future fallbacks. Wake kswapd now as the node
1817 	 * may be balanced overall and kswapd will not wake naturally.
1818 	 */
1819 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1820 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1821 
1822 	/* We are not allowed to try stealing from the whole block */
1823 	if (!whole_block)
1824 		goto single_page;
1825 
1826 	free_pages = move_freepages_block(zone, page, start_type,
1827 						&movable_pages);
1828 	/* moving whole block can fail due to zone boundary conditions */
1829 	if (!free_pages)
1830 		goto single_page;
1831 
1832 	/*
1833 	 * Determine how many pages are compatible with our allocation.
1834 	 * For movable allocation, it's the number of movable pages which
1835 	 * we just obtained. For other types it's a bit more tricky.
1836 	 */
1837 	if (start_type == MIGRATE_MOVABLE) {
1838 		alike_pages = movable_pages;
1839 	} else {
1840 		/*
1841 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1842 		 * to MOVABLE pageblock, consider all non-movable pages as
1843 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1844 		 * vice versa, be conservative since we can't distinguish the
1845 		 * exact migratetype of non-movable pages.
1846 		 */
1847 		if (old_block_type == MIGRATE_MOVABLE)
1848 			alike_pages = pageblock_nr_pages
1849 						- (free_pages + movable_pages);
1850 		else
1851 			alike_pages = 0;
1852 	}
1853 	/*
1854 	 * If a sufficient number of pages in the block are either free or of
1855 	 * compatible migratability as our allocation, claim the whole block.
1856 	 */
1857 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1858 			page_group_by_mobility_disabled)
1859 		set_pageblock_migratetype(page, start_type);
1860 
1861 	return;
1862 
1863 single_page:
1864 	move_to_free_list(page, zone, current_order, start_type);
1865 }
1866 
1867 /*
1868  * Check whether there is a suitable fallback freepage with requested order.
1869  * If only_stealable is true, this function returns fallback_mt only if
1870  * we can steal other freepages all together. This would help to reduce
1871  * fragmentation due to mixed migratetype pages in one pageblock.
1872  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1873 int find_suitable_fallback(struct free_area *area, unsigned int order,
1874 			int migratetype, bool only_stealable, bool *can_steal)
1875 {
1876 	int i;
1877 	int fallback_mt;
1878 
1879 	if (area->nr_free == 0)
1880 		return -1;
1881 
1882 	*can_steal = false;
1883 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1884 		fallback_mt = fallbacks[migratetype][i];
1885 		if (free_area_empty(area, fallback_mt))
1886 			continue;
1887 
1888 		if (can_steal_fallback(order, migratetype))
1889 			*can_steal = true;
1890 
1891 		if (!only_stealable)
1892 			return fallback_mt;
1893 
1894 		if (*can_steal)
1895 			return fallback_mt;
1896 	}
1897 
1898 	return -1;
1899 }
1900 
1901 /*
1902  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1903  * there are no empty page blocks that contain a page with a suitable order
1904  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1905 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1906 {
1907 	int mt;
1908 	unsigned long max_managed, flags;
1909 
1910 	/*
1911 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1912 	 * Check is race-prone but harmless.
1913 	 */
1914 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1915 	if (zone->nr_reserved_highatomic >= max_managed)
1916 		return;
1917 
1918 	spin_lock_irqsave(&zone->lock, flags);
1919 
1920 	/* Recheck the nr_reserved_highatomic limit under the lock */
1921 	if (zone->nr_reserved_highatomic >= max_managed)
1922 		goto out_unlock;
1923 
1924 	/* Yoink! */
1925 	mt = get_pageblock_migratetype(page);
1926 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1927 	if (migratetype_is_mergeable(mt)) {
1928 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1929 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1930 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1931 	}
1932 
1933 out_unlock:
1934 	spin_unlock_irqrestore(&zone->lock, flags);
1935 }
1936 
1937 /*
1938  * Used when an allocation is about to fail under memory pressure. This
1939  * potentially hurts the reliability of high-order allocations when under
1940  * intense memory pressure but failed atomic allocations should be easier
1941  * to recover from than an OOM.
1942  *
1943  * If @force is true, try to unreserve a pageblock even though highatomic
1944  * pageblock is exhausted.
1945  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1946 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1947 						bool force)
1948 {
1949 	struct zonelist *zonelist = ac->zonelist;
1950 	unsigned long flags;
1951 	struct zoneref *z;
1952 	struct zone *zone;
1953 	struct page *page;
1954 	int order;
1955 	bool ret;
1956 
1957 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1958 								ac->nodemask) {
1959 		/*
1960 		 * Preserve at least one pageblock unless memory pressure
1961 		 * is really high.
1962 		 */
1963 		if (!force && zone->nr_reserved_highatomic <=
1964 					pageblock_nr_pages)
1965 			continue;
1966 
1967 		spin_lock_irqsave(&zone->lock, flags);
1968 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1969 			struct free_area *area = &(zone->free_area[order]);
1970 
1971 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1972 			if (!page)
1973 				continue;
1974 
1975 			/*
1976 			 * In page freeing path, migratetype change is racy so
1977 			 * we can counter several free pages in a pageblock
1978 			 * in this loop although we changed the pageblock type
1979 			 * from highatomic to ac->migratetype. So we should
1980 			 * adjust the count once.
1981 			 */
1982 			if (is_migrate_highatomic_page(page)) {
1983 				/*
1984 				 * It should never happen but changes to
1985 				 * locking could inadvertently allow a per-cpu
1986 				 * drain to add pages to MIGRATE_HIGHATOMIC
1987 				 * while unreserving so be safe and watch for
1988 				 * underflows.
1989 				 */
1990 				zone->nr_reserved_highatomic -= min(
1991 						pageblock_nr_pages,
1992 						zone->nr_reserved_highatomic);
1993 			}
1994 
1995 			/*
1996 			 * Convert to ac->migratetype and avoid the normal
1997 			 * pageblock stealing heuristics. Minimally, the caller
1998 			 * is doing the work and needs the pages. More
1999 			 * importantly, if the block was always converted to
2000 			 * MIGRATE_UNMOVABLE or another type then the number
2001 			 * of pageblocks that cannot be completely freed
2002 			 * may increase.
2003 			 */
2004 			set_pageblock_migratetype(page, ac->migratetype);
2005 			ret = move_freepages_block(zone, page, ac->migratetype,
2006 									NULL);
2007 			if (ret) {
2008 				spin_unlock_irqrestore(&zone->lock, flags);
2009 				return ret;
2010 			}
2011 		}
2012 		spin_unlock_irqrestore(&zone->lock, flags);
2013 	}
2014 
2015 	return false;
2016 }
2017 
2018 /*
2019  * Try finding a free buddy page on the fallback list and put it on the free
2020  * list of requested migratetype, possibly along with other pages from the same
2021  * block, depending on fragmentation avoidance heuristics. Returns true if
2022  * fallback was found so that __rmqueue_smallest() can grab it.
2023  *
2024  * The use of signed ints for order and current_order is a deliberate
2025  * deviation from the rest of this file, to make the for loop
2026  * condition simpler.
2027  */
2028 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2029 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2030 						unsigned int alloc_flags)
2031 {
2032 	struct free_area *area;
2033 	int current_order;
2034 	int min_order = order;
2035 	struct page *page;
2036 	int fallback_mt;
2037 	bool can_steal;
2038 
2039 	/*
2040 	 * Do not steal pages from freelists belonging to other pageblocks
2041 	 * i.e. orders < pageblock_order. If there are no local zones free,
2042 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2043 	 */
2044 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2045 		min_order = pageblock_order;
2046 
2047 	/*
2048 	 * Find the largest available free page in the other list. This roughly
2049 	 * approximates finding the pageblock with the most free pages, which
2050 	 * would be too costly to do exactly.
2051 	 */
2052 	for (current_order = MAX_ORDER; current_order >= min_order;
2053 				--current_order) {
2054 		area = &(zone->free_area[current_order]);
2055 		fallback_mt = find_suitable_fallback(area, current_order,
2056 				start_migratetype, false, &can_steal);
2057 		if (fallback_mt == -1)
2058 			continue;
2059 
2060 		/*
2061 		 * We cannot steal all free pages from the pageblock and the
2062 		 * requested migratetype is movable. In that case it's better to
2063 		 * steal and split the smallest available page instead of the
2064 		 * largest available page, because even if the next movable
2065 		 * allocation falls back into a different pageblock than this
2066 		 * one, it won't cause permanent fragmentation.
2067 		 */
2068 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2069 					&& current_order > order)
2070 			goto find_smallest;
2071 
2072 		goto do_steal;
2073 	}
2074 
2075 	return false;
2076 
2077 find_smallest:
2078 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2079 		area = &(zone->free_area[current_order]);
2080 		fallback_mt = find_suitable_fallback(area, current_order,
2081 				start_migratetype, false, &can_steal);
2082 		if (fallback_mt != -1)
2083 			break;
2084 	}
2085 
2086 	/*
2087 	 * This should not happen - we already found a suitable fallback
2088 	 * when looking for the largest page.
2089 	 */
2090 	VM_BUG_ON(current_order > MAX_ORDER);
2091 
2092 do_steal:
2093 	page = get_page_from_free_area(area, fallback_mt);
2094 
2095 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2096 								can_steal);
2097 
2098 	trace_mm_page_alloc_extfrag(page, order, current_order,
2099 		start_migratetype, fallback_mt);
2100 
2101 	return true;
2102 
2103 }
2104 
2105 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2106 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2107 					int migratetype, unsigned int alloc_flags)
2108 {
2109     struct page *page = NULL;
2110 retry:
2111 	page = __rmqueue_smallest(zone, order, migratetype);
2112 
2113     if (unlikely(!page) && is_migrate_cma(migratetype)) {
2114         migratetype = MIGRATE_MOVABLE;
2115         alloc_flags &= ~ALLOC_CMA;
2116         page = __rmqueue_smallest(zone, order, migratetype);
2117     }
2118 
2119     if (unlikely(!page) &&
2120 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2121         goto retry;
2122 
2123     return page;
2124 }
2125 
2126 /*
2127  * Do the hard work of removing an element from the buddy allocator.
2128  * Call me with the zone->lock already held.
2129  */
2130 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2131 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2132 						unsigned int alloc_flags)
2133 {
2134 	struct page *page;
2135 
2136 #ifdef CONFIG_CMA_REUSE
2137 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2138 	if (page)
2139 		return page;
2140 #endif
2141 
2142 	if (IS_ENABLED(CONFIG_CMA)) {
2143 		/*
2144 		 * Balance movable allocations between regular and CMA areas by
2145 		 * allocating from CMA when over half of the zone's free memory
2146 		 * is in the CMA area.
2147 		 */
2148 		if (alloc_flags & ALLOC_CMA &&
2149 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2150 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2151 			page = __rmqueue_cma_fallback(zone, order);
2152 			if (page)
2153 				return page;
2154 		}
2155 	}
2156 retry:
2157 	page = __rmqueue_smallest(zone, order, migratetype);
2158 	if (unlikely(!page)) {
2159 		if (alloc_flags & ALLOC_CMA)
2160 			page = __rmqueue_cma_fallback(zone, order);
2161 
2162 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2163 								alloc_flags))
2164 			goto retry;
2165 	}
2166 	return page;
2167 }
2168 
2169 /*
2170  * Obtain a specified number of elements from the buddy allocator, all under
2171  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2172  * Returns the number of new pages which were placed at *list.
2173  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2175 			unsigned long count, struct list_head *list,
2176 			int migratetype, unsigned int alloc_flags)
2177 {
2178 	unsigned long flags;
2179 	int i;
2180 
2181 	spin_lock_irqsave(&zone->lock, flags);
2182 	for (i = 0; i < count; ++i) {
2183 		struct page *page = __rmqueue(zone, order, migratetype,
2184 								alloc_flags);
2185 		if (unlikely(page == NULL))
2186 			break;
2187 
2188 		/*
2189 		 * Split buddy pages returned by expand() are received here in
2190 		 * physical page order. The page is added to the tail of
2191 		 * caller's list. From the callers perspective, the linked list
2192 		 * is ordered by page number under some conditions. This is
2193 		 * useful for IO devices that can forward direction from the
2194 		 * head, thus also in the physical page order. This is useful
2195 		 * for IO devices that can merge IO requests if the physical
2196 		 * pages are ordered properly.
2197 		 */
2198 		list_add_tail(&page->pcp_list, list);
2199 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2200 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2201 					      -(1 << order));
2202 	}
2203 
2204 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2205 	spin_unlock_irqrestore(&zone->lock, flags);
2206 
2207 	return i;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 /*
2212  * Called from the vmstat counter updater to drain pagesets of this
2213  * currently executing processor on remote nodes after they have
2214  * expired.
2215  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2216 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2217 {
2218 	int to_drain, batch;
2219 
2220 	batch = READ_ONCE(pcp->batch);
2221 	to_drain = min(pcp->count, batch);
2222 	if (to_drain > 0) {
2223 		spin_lock(&pcp->lock);
2224 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2225 		spin_unlock(&pcp->lock);
2226 	}
2227 }
2228 #endif
2229 
2230 /*
2231  * Drain pcplists of the indicated processor and zone.
2232  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2233 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2234 {
2235 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2236 	int count;
2237 
2238 	do {
2239 		spin_lock(&pcp->lock);
2240 		count = pcp->count;
2241 		if (count) {
2242 			int to_drain = min(count,
2243 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2244 
2245 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2246 			count -= to_drain;
2247 		}
2248 		spin_unlock(&pcp->lock);
2249 	} while (count);
2250 }
2251 
2252 /*
2253  * Drain pcplists of all zones on the indicated processor.
2254  */
drain_pages(unsigned int cpu)2255 static void drain_pages(unsigned int cpu)
2256 {
2257 	struct zone *zone;
2258 
2259 	for_each_populated_zone(zone) {
2260 		drain_pages_zone(cpu, zone);
2261 	}
2262 }
2263 
2264 /*
2265  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2266  */
drain_local_pages(struct zone * zone)2267 void drain_local_pages(struct zone *zone)
2268 {
2269 	int cpu = smp_processor_id();
2270 
2271 	if (zone)
2272 		drain_pages_zone(cpu, zone);
2273 	else
2274 		drain_pages(cpu);
2275 }
2276 
2277 /*
2278  * The implementation of drain_all_pages(), exposing an extra parameter to
2279  * drain on all cpus.
2280  *
2281  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2282  * not empty. The check for non-emptiness can however race with a free to
2283  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2284  * that need the guarantee that every CPU has drained can disable the
2285  * optimizing racy check.
2286  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2287 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2288 {
2289 	int cpu;
2290 
2291 	/*
2292 	 * Allocate in the BSS so we won't require allocation in
2293 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2294 	 */
2295 	static cpumask_t cpus_with_pcps;
2296 
2297 	/*
2298 	 * Do not drain if one is already in progress unless it's specific to
2299 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2300 	 * the drain to be complete when the call returns.
2301 	 */
2302 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2303 		if (!zone)
2304 			return;
2305 		mutex_lock(&pcpu_drain_mutex);
2306 	}
2307 
2308 	/*
2309 	 * We don't care about racing with CPU hotplug event
2310 	 * as offline notification will cause the notified
2311 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2312 	 * disables preemption as part of its processing
2313 	 */
2314 	for_each_online_cpu(cpu) {
2315 		struct per_cpu_pages *pcp;
2316 		struct zone *z;
2317 		bool has_pcps = false;
2318 
2319 		if (force_all_cpus) {
2320 			/*
2321 			 * The pcp.count check is racy, some callers need a
2322 			 * guarantee that no cpu is missed.
2323 			 */
2324 			has_pcps = true;
2325 		} else if (zone) {
2326 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2327 			if (pcp->count)
2328 				has_pcps = true;
2329 		} else {
2330 			for_each_populated_zone(z) {
2331 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2332 				if (pcp->count) {
2333 					has_pcps = true;
2334 					break;
2335 				}
2336 			}
2337 		}
2338 
2339 		if (has_pcps)
2340 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 		else
2342 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 	}
2344 
2345 	for_each_cpu(cpu, &cpus_with_pcps) {
2346 		if (zone)
2347 			drain_pages_zone(cpu, zone);
2348 		else
2349 			drain_pages(cpu);
2350 	}
2351 
2352 	mutex_unlock(&pcpu_drain_mutex);
2353 }
2354 
2355 /*
2356  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2357  *
2358  * When zone parameter is non-NULL, spill just the single zone's pages.
2359  */
drain_all_pages(struct zone * zone)2360 void drain_all_pages(struct zone *zone)
2361 {
2362 	__drain_all_pages(zone, false);
2363 }
2364 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2365 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2366 							unsigned int order)
2367 {
2368 	int migratetype;
2369 
2370 	if (!free_pages_prepare(page, order, FPI_NONE))
2371 		return false;
2372 
2373 	migratetype = get_pfnblock_migratetype(page, pfn);
2374 	set_pcppage_migratetype(page, migratetype);
2375 	return true;
2376 }
2377 
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2378 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2379 {
2380 	int min_nr_free, max_nr_free;
2381 	int batch = READ_ONCE(pcp->batch);
2382 
2383 	/* Free everything if batch freeing high-order pages. */
2384 	if (unlikely(free_high))
2385 		return pcp->count;
2386 
2387 	/* Check for PCP disabled or boot pageset */
2388 	if (unlikely(high < batch))
2389 		return 1;
2390 
2391 	/* Leave at least pcp->batch pages on the list */
2392 	min_nr_free = batch;
2393 	max_nr_free = high - batch;
2394 
2395 	/*
2396 	 * Double the number of pages freed each time there is subsequent
2397 	 * freeing of pages without any allocation.
2398 	 */
2399 	batch <<= pcp->free_factor;
2400 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2401 		pcp->free_factor++;
2402 	batch = clamp(batch, min_nr_free, max_nr_free);
2403 
2404 	return batch;
2405 }
2406 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2407 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2408 		       bool free_high)
2409 {
2410 	int high = READ_ONCE(pcp->high);
2411 
2412 	if (unlikely(!high || free_high))
2413 		return 0;
2414 
2415 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2416 		return high;
2417 
2418 	/*
2419 	 * If reclaim is active, limit the number of pages that can be
2420 	 * stored on pcp lists
2421 	 */
2422 	return min(READ_ONCE(pcp->batch) << 2, high);
2423 }
2424 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2425 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2426 				   struct page *page, int migratetype,
2427 				   unsigned int order)
2428 {
2429 	int high;
2430 	int pindex;
2431 	bool free_high;
2432 
2433 	__count_vm_events(PGFREE, 1 << order);
2434 	pindex = order_to_pindex(migratetype, order);
2435 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2436 	pcp->count += 1 << order;
2437 
2438 	/*
2439 	 * As high-order pages other than THP's stored on PCP can contribute
2440 	 * to fragmentation, limit the number stored when PCP is heavily
2441 	 * freeing without allocation. The remainder after bulk freeing
2442 	 * stops will be drained from vmstat refresh context.
2443 	 */
2444 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2445 
2446 	high = nr_pcp_high(pcp, zone, free_high);
2447 	if (pcp->count >= high) {
2448 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2449 	}
2450 }
2451 
2452 /*
2453  * Free a pcp page
2454  */
free_unref_page(struct page * page,unsigned int order)2455 void free_unref_page(struct page *page, unsigned int order)
2456 {
2457 	unsigned long __maybe_unused UP_flags;
2458 	struct per_cpu_pages *pcp;
2459 	struct zone *zone;
2460 	unsigned long pfn = page_to_pfn(page);
2461 	int migratetype, pcpmigratetype;
2462 
2463 	if (!free_unref_page_prepare(page, pfn, order))
2464 		return;
2465 
2466 	/*
2467 	 * We only track unmovable, reclaimable and movable on pcp lists.
2468 	 * Place ISOLATE pages on the isolated list because they are being
2469 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2470 	 * get those areas back if necessary. Otherwise, we may have to free
2471 	 * excessively into the page allocator
2472 	 */
2473 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2474 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2475 		if (unlikely(is_migrate_isolate(migratetype))) {
2476 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2477 			return;
2478 		}
2479 		pcpmigratetype = MIGRATE_MOVABLE;
2480 	}
2481 
2482 	zone = page_zone(page);
2483 	pcp_trylock_prepare(UP_flags);
2484 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2485 	if (pcp) {
2486 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2487 		pcp_spin_unlock(pcp);
2488 	} else {
2489 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2490 	}
2491 	pcp_trylock_finish(UP_flags);
2492 }
2493 
2494 /*
2495  * Free a list of 0-order pages
2496  */
free_unref_page_list(struct list_head * list)2497 void free_unref_page_list(struct list_head *list)
2498 {
2499 	unsigned long __maybe_unused UP_flags;
2500 	struct page *page, *next;
2501 	struct per_cpu_pages *pcp = NULL;
2502 	struct zone *locked_zone = NULL;
2503 	int batch_count = 0;
2504 	int migratetype;
2505 
2506 	/* Prepare pages for freeing */
2507 	list_for_each_entry_safe(page, next, list, lru) {
2508 		unsigned long pfn = page_to_pfn(page);
2509 		if (!free_unref_page_prepare(page, pfn, 0)) {
2510 			list_del(&page->lru);
2511 			continue;
2512 		}
2513 
2514 		/*
2515 		 * Free isolated pages directly to the allocator, see
2516 		 * comment in free_unref_page.
2517 		 */
2518 		migratetype = get_pcppage_migratetype(page);
2519 		if (unlikely(is_migrate_isolate(migratetype))) {
2520 			list_del(&page->lru);
2521 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2522 			continue;
2523 		}
2524 	}
2525 
2526 	list_for_each_entry_safe(page, next, list, lru) {
2527 		struct zone *zone = page_zone(page);
2528 
2529 		list_del(&page->lru);
2530 		migratetype = get_pcppage_migratetype(page);
2531 
2532 		/*
2533 		 * Either different zone requiring a different pcp lock or
2534 		 * excessive lock hold times when freeing a large list of
2535 		 * pages.
2536 		 */
2537 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2538 			if (pcp) {
2539 				pcp_spin_unlock(pcp);
2540 				pcp_trylock_finish(UP_flags);
2541 			}
2542 
2543 			batch_count = 0;
2544 
2545 			/*
2546 			 * trylock is necessary as pages may be getting freed
2547 			 * from IRQ or SoftIRQ context after an IO completion.
2548 			 */
2549 			pcp_trylock_prepare(UP_flags);
2550 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2551 			if (unlikely(!pcp)) {
2552 				pcp_trylock_finish(UP_flags);
2553 				free_one_page(zone, page, page_to_pfn(page),
2554 					      0, migratetype, FPI_NONE);
2555 				locked_zone = NULL;
2556 				continue;
2557 			}
2558 			locked_zone = zone;
2559 		}
2560 
2561 		/*
2562 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2563 		 * to the MIGRATE_MOVABLE pcp list.
2564 		 */
2565 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2566 			migratetype = MIGRATE_MOVABLE;
2567 
2568 		trace_mm_page_free_batched(page);
2569 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2570 		batch_count++;
2571 	}
2572 
2573 	if (pcp) {
2574 		pcp_spin_unlock(pcp);
2575 		pcp_trylock_finish(UP_flags);
2576 	}
2577 }
2578 
2579 /*
2580  * split_page takes a non-compound higher-order page, and splits it into
2581  * n (1<<order) sub-pages: page[0..n]
2582  * Each sub-page must be freed individually.
2583  *
2584  * Note: this is probably too low level an operation for use in drivers.
2585  * Please consult with lkml before using this in your driver.
2586  */
split_page(struct page * page,unsigned int order)2587 void split_page(struct page *page, unsigned int order)
2588 {
2589 	int i;
2590 
2591 	VM_BUG_ON_PAGE(PageCompound(page), page);
2592 	VM_BUG_ON_PAGE(!page_count(page), page);
2593 
2594 	for (i = 1; i < (1 << order); i++)
2595 		set_page_refcounted(page + i);
2596 	split_page_owner(page, 1 << order);
2597 	split_page_memcg(page, 1 << order);
2598 }
2599 EXPORT_SYMBOL_GPL(split_page);
2600 
__isolate_free_page(struct page * page,unsigned int order)2601 int __isolate_free_page(struct page *page, unsigned int order)
2602 {
2603 	struct zone *zone = page_zone(page);
2604 	int mt = get_pageblock_migratetype(page);
2605 
2606 	if (!is_migrate_isolate(mt)) {
2607 		unsigned long watermark;
2608 		/*
2609 		 * Obey watermarks as if the page was being allocated. We can
2610 		 * emulate a high-order watermark check with a raised order-0
2611 		 * watermark, because we already know our high-order page
2612 		 * exists.
2613 		 */
2614 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2615 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2616 			return 0;
2617 
2618 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2619 	}
2620 
2621 	del_page_from_free_list(page, zone, order);
2622 
2623 	/*
2624 	 * Set the pageblock if the isolated page is at least half of a
2625 	 * pageblock
2626 	 */
2627 	if (order >= pageblock_order - 1) {
2628 		struct page *endpage = page + (1 << order) - 1;
2629 		for (; page < endpage; page += pageblock_nr_pages) {
2630 			int mt = get_pageblock_migratetype(page);
2631 			/*
2632 			 * Only change normal pageblocks (i.e., they can merge
2633 			 * with others)
2634 			 */
2635 			if (migratetype_is_mergeable(mt))
2636 				set_pageblock_migratetype(page,
2637 							  MIGRATE_MOVABLE);
2638 		}
2639 	}
2640 
2641 	return 1UL << order;
2642 }
2643 
2644 /**
2645  * __putback_isolated_page - Return a now-isolated page back where we got it
2646  * @page: Page that was isolated
2647  * @order: Order of the isolated page
2648  * @mt: The page's pageblock's migratetype
2649  *
2650  * This function is meant to return a page pulled from the free lists via
2651  * __isolate_free_page back to the free lists they were pulled from.
2652  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2653 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2654 {
2655 	struct zone *zone = page_zone(page);
2656 
2657 	/* zone lock should be held when this function is called */
2658 	lockdep_assert_held(&zone->lock);
2659 
2660 	/* Return isolated page to tail of freelist. */
2661 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2662 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2663 }
2664 
2665 /*
2666  * Update NUMA hit/miss statistics
2667  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2668 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2669 				   long nr_account)
2670 {
2671 #ifdef CONFIG_NUMA
2672 	enum numa_stat_item local_stat = NUMA_LOCAL;
2673 
2674 	/* skip numa counters update if numa stats is disabled */
2675 	if (!static_branch_likely(&vm_numa_stat_key))
2676 		return;
2677 
2678 	if (zone_to_nid(z) != numa_node_id())
2679 		local_stat = NUMA_OTHER;
2680 
2681 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2682 		__count_numa_events(z, NUMA_HIT, nr_account);
2683 	else {
2684 		__count_numa_events(z, NUMA_MISS, nr_account);
2685 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2686 	}
2687 	__count_numa_events(z, local_stat, nr_account);
2688 #endif
2689 }
2690 
2691 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2692 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2693 			   unsigned int order, unsigned int alloc_flags,
2694 			   int migratetype)
2695 {
2696 	struct page *page;
2697 	unsigned long flags;
2698 
2699 	do {
2700 		page = NULL;
2701 		spin_lock_irqsave(&zone->lock, flags);
2702 		if (alloc_flags & ALLOC_HIGHATOMIC)
2703 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2704 		if (!page) {
2705 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2706 
2707 			/*
2708 			 * If the allocation fails, allow OOM handling and
2709 			 * order-0 (atomic) allocs access to HIGHATOMIC
2710 			 * reserves as failing now is worse than failing a
2711 			 * high-order atomic allocation in the future.
2712 			 */
2713 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2714 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2715 
2716 			if (!page) {
2717 				spin_unlock_irqrestore(&zone->lock, flags);
2718 				return NULL;
2719 			}
2720 		}
2721 		__mod_zone_freepage_state(zone, -(1 << order),
2722 					  get_pcppage_migratetype(page));
2723 		spin_unlock_irqrestore(&zone->lock, flags);
2724 	} while (check_new_pages(page, order));
2725 
2726 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2727 	zone_statistics(preferred_zone, zone, 1);
2728 
2729 	return page;
2730 }
2731 
2732 /* Remove page from the per-cpu list, caller must protect the list */
2733 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2734 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2735 			int migratetype,
2736 			unsigned int alloc_flags,
2737 			struct per_cpu_pages *pcp,
2738 			struct list_head *list)
2739 {
2740 	struct page *page;
2741 
2742 	do {
2743 		if (list_empty(list)) {
2744 			int batch = READ_ONCE(pcp->batch);
2745 			int alloced;
2746 
2747 			/*
2748 			 * Scale batch relative to order if batch implies
2749 			 * free pages can be stored on the PCP. Batch can
2750 			 * be 1 for small zones or for boot pagesets which
2751 			 * should never store free pages as the pages may
2752 			 * belong to arbitrary zones.
2753 			 */
2754 			if (batch > 1)
2755 				batch = max(batch >> order, 2);
2756 			alloced = rmqueue_bulk(zone, order,
2757 					batch, list,
2758 					migratetype, alloc_flags);
2759 
2760 			pcp->count += alloced << order;
2761 			if (unlikely(list_empty(list)))
2762 				return NULL;
2763 		}
2764 
2765 		page = list_first_entry(list, struct page, pcp_list);
2766 		list_del(&page->pcp_list);
2767 		pcp->count -= 1 << order;
2768 	} while (check_new_pages(page, order));
2769 
2770 	return page;
2771 }
2772 
2773 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2774 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2775 			struct zone *zone, unsigned int order,
2776 			int migratetype, unsigned int alloc_flags)
2777 {
2778 	struct per_cpu_pages *pcp;
2779 	struct list_head *list;
2780 	struct page *page;
2781 	unsigned long __maybe_unused UP_flags;
2782 
2783 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2784 	pcp_trylock_prepare(UP_flags);
2785 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2786 	if (!pcp) {
2787 		pcp_trylock_finish(UP_flags);
2788 		return NULL;
2789 	}
2790 
2791 	/*
2792 	 * On allocation, reduce the number of pages that are batch freed.
2793 	 * See nr_pcp_free() where free_factor is increased for subsequent
2794 	 * frees.
2795 	 */
2796 	pcp->free_factor >>= 1;
2797 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2798 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2799 	pcp_spin_unlock(pcp);
2800 	pcp_trylock_finish(UP_flags);
2801 	if (page) {
2802 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2803 		zone_statistics(preferred_zone, zone, 1);
2804 	}
2805 	return page;
2806 }
2807 
2808 /*
2809  * Allocate a page from the given zone.
2810  * Use pcplists for THP or "cheap" high-order allocations.
2811  */
2812 
2813 /*
2814  * Do not instrument rmqueue() with KMSAN. This function may call
2815  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2816  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2817  * may call rmqueue() again, which will result in a deadlock.
2818  */
2819 __no_sanitize_memory
2820 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2821 struct page *rmqueue(struct zone *preferred_zone,
2822 			struct zone *zone, unsigned int order,
2823 			gfp_t gfp_flags, unsigned int alloc_flags,
2824 			int migratetype)
2825 {
2826 	struct page *page;
2827 
2828 	/*
2829 	 * We most definitely don't want callers attempting to
2830 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2831 	 */
2832 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2833 
2834 	if (likely(pcp_allowed_order(order))) {
2835 		page = rmqueue_pcplist(preferred_zone, zone, order,
2836 				       migratetype, alloc_flags);
2837 		if (likely(page))
2838 			goto out;
2839 	}
2840 
2841 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2842 							migratetype);
2843 
2844 out:
2845 	/* Separate test+clear to avoid unnecessary atomics */
2846 	if ((alloc_flags & ALLOC_KSWAPD) &&
2847 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2848 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2849 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2850 	}
2851 
2852 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2853 	return page;
2854 }
2855 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2856 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2857 {
2858 	return __should_fail_alloc_page(gfp_mask, order);
2859 }
2860 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2861 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2862 static inline long __zone_watermark_unusable_free(struct zone *z,
2863 				unsigned int order, unsigned int alloc_flags)
2864 {
2865 	long unusable_free = (1 << order) - 1;
2866 
2867 	/*
2868 	 * If the caller does not have rights to reserves below the min
2869 	 * watermark then subtract the high-atomic reserves. This will
2870 	 * over-estimate the size of the atomic reserve but it avoids a search.
2871 	 */
2872 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2873 		unusable_free += z->nr_reserved_highatomic;
2874 
2875 #ifdef CONFIG_CMA
2876 	/* If allocation can't use CMA areas don't use free CMA pages */
2877 	if (!(alloc_flags & ALLOC_CMA))
2878 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2879 #endif
2880 
2881 	return unusable_free;
2882 }
2883 
2884 /*
2885  * Return true if free base pages are above 'mark'. For high-order checks it
2886  * will return true of the order-0 watermark is reached and there is at least
2887  * one free page of a suitable size. Checking now avoids taking the zone lock
2888  * to check in the allocation paths if no pages are free.
2889  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2890 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2891 			 int highest_zoneidx, unsigned int alloc_flags,
2892 			 long free_pages)
2893 {
2894 	long min = mark;
2895 	int o;
2896 
2897 	/* free_pages may go negative - that's OK */
2898 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2899 
2900 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2901 		/*
2902 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2903 		 * as OOM.
2904 		 */
2905 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2906 			min -= min / 2;
2907 
2908 			/*
2909 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2910 			 * access more reserves than just __GFP_HIGH. Other
2911 			 * non-blocking allocations requests such as GFP_NOWAIT
2912 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2913 			 * access to the min reserve.
2914 			 */
2915 			if (alloc_flags & ALLOC_NON_BLOCK)
2916 				min -= min / 4;
2917 		}
2918 
2919 		/*
2920 		 * OOM victims can try even harder than the normal reserve
2921 		 * users on the grounds that it's definitely going to be in
2922 		 * the exit path shortly and free memory. Any allocation it
2923 		 * makes during the free path will be small and short-lived.
2924 		 */
2925 		if (alloc_flags & ALLOC_OOM)
2926 			min -= min / 2;
2927 	}
2928 
2929 	/*
2930 	 * Check watermarks for an order-0 allocation request. If these
2931 	 * are not met, then a high-order request also cannot go ahead
2932 	 * even if a suitable page happened to be free.
2933 	 */
2934 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2935 		return false;
2936 
2937 	/* If this is an order-0 request then the watermark is fine */
2938 	if (!order)
2939 		return true;
2940 
2941 	/* For a high-order request, check at least one suitable page is free */
2942 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2943 		struct free_area *area = &z->free_area[o];
2944 		int mt;
2945 
2946 		if (!area->nr_free)
2947 			continue;
2948 
2949 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2950 			if (!free_area_empty(area, mt))
2951 				return true;
2952 		}
2953 
2954 #ifdef CONFIG_CMA
2955 		if ((alloc_flags & ALLOC_CMA) &&
2956 		    !free_area_empty(area, MIGRATE_CMA)) {
2957 			return true;
2958 		}
2959 #endif
2960 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2961 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2962 			return true;
2963 		}
2964 	}
2965 	return false;
2966 }
2967 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2968 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2969 		      int highest_zoneidx, unsigned int alloc_flags)
2970 {
2971 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2972 					zone_page_state(z, NR_FREE_PAGES));
2973 }
2974 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2975 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2976 				unsigned long mark, int highest_zoneidx,
2977 				unsigned int alloc_flags, gfp_t gfp_mask)
2978 {
2979 	long free_pages;
2980 
2981 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2982 
2983 	/*
2984 	 * Fast check for order-0 only. If this fails then the reserves
2985 	 * need to be calculated.
2986 	 */
2987 	if (!order) {
2988 		long usable_free;
2989 		long reserved;
2990 
2991 		usable_free = free_pages;
2992 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2993 
2994 		/* reserved may over estimate high-atomic reserves. */
2995 		usable_free -= min(usable_free, reserved);
2996 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2997 			return true;
2998 	}
2999 
3000 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3001 					free_pages))
3002 		return true;
3003 
3004 	/*
3005 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3006 	 * when checking the min watermark. The min watermark is the
3007 	 * point where boosting is ignored so that kswapd is woken up
3008 	 * when below the low watermark.
3009 	 */
3010 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3011 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3012 		mark = z->_watermark[WMARK_MIN];
3013 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3014 					alloc_flags, free_pages);
3015 	}
3016 
3017 	return false;
3018 }
3019 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3020 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3021 			unsigned long mark, int highest_zoneidx)
3022 {
3023 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3024 
3025 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3026 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3027 
3028 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3029 								free_pages);
3030 }
3031 
3032 #ifdef CONFIG_NUMA
3033 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3034 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3035 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3036 {
3037 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3038 				node_reclaim_distance;
3039 }
3040 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3041 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3042 {
3043 	return true;
3044 }
3045 #endif	/* CONFIG_NUMA */
3046 
3047 /*
3048  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3049  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3050  * premature use of a lower zone may cause lowmem pressure problems that
3051  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3052  * probably too small. It only makes sense to spread allocations to avoid
3053  * fragmentation between the Normal and DMA32 zones.
3054  */
3055 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3056 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3057 {
3058 	unsigned int alloc_flags;
3059 
3060 	/*
3061 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3062 	 * to save a branch.
3063 	 */
3064 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3065 
3066 #ifdef CONFIG_ZONE_DMA32
3067 	if (!zone)
3068 		return alloc_flags;
3069 
3070 	if (zone_idx(zone) != ZONE_NORMAL)
3071 		return alloc_flags;
3072 
3073 	/*
3074 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3075 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3076 	 * on UMA that if Normal is populated then so is DMA32.
3077 	 */
3078 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3079 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3080 		return alloc_flags;
3081 
3082 	alloc_flags |= ALLOC_NOFRAGMENT;
3083 #endif /* CONFIG_ZONE_DMA32 */
3084 	return alloc_flags;
3085 }
3086 
3087 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3088 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3089 						  unsigned int alloc_flags)
3090 {
3091 #ifdef CONFIG_CMA
3092 	if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3093 		alloc_flags |= ALLOC_CMA;
3094 #endif
3095 	return alloc_flags;
3096 }
3097 
3098 /*
3099  * get_page_from_freelist goes through the zonelist trying to allocate
3100  * a page.
3101  */
3102 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3103 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3104 						const struct alloc_context *ac)
3105 {
3106 	struct zoneref *z;
3107 	struct zone *zone;
3108 	struct pglist_data *last_pgdat = NULL;
3109 	bool last_pgdat_dirty_ok = false;
3110 	bool no_fallback;
3111 
3112 retry:
3113 	/*
3114 	 * Scan zonelist, looking for a zone with enough free.
3115 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3116 	 */
3117 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3118 	z = ac->preferred_zoneref;
3119 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3120 					ac->nodemask) {
3121 		struct page *page;
3122 		unsigned long mark;
3123 
3124 		if (cpusets_enabled() &&
3125 			(alloc_flags & ALLOC_CPUSET) &&
3126 			!__cpuset_zone_allowed(zone, gfp_mask))
3127 				continue;
3128 		/*
3129 		 * When allocating a page cache page for writing, we
3130 		 * want to get it from a node that is within its dirty
3131 		 * limit, such that no single node holds more than its
3132 		 * proportional share of globally allowed dirty pages.
3133 		 * The dirty limits take into account the node's
3134 		 * lowmem reserves and high watermark so that kswapd
3135 		 * should be able to balance it without having to
3136 		 * write pages from its LRU list.
3137 		 *
3138 		 * XXX: For now, allow allocations to potentially
3139 		 * exceed the per-node dirty limit in the slowpath
3140 		 * (spread_dirty_pages unset) before going into reclaim,
3141 		 * which is important when on a NUMA setup the allowed
3142 		 * nodes are together not big enough to reach the
3143 		 * global limit.  The proper fix for these situations
3144 		 * will require awareness of nodes in the
3145 		 * dirty-throttling and the flusher threads.
3146 		 */
3147 		if (ac->spread_dirty_pages) {
3148 			if (last_pgdat != zone->zone_pgdat) {
3149 				last_pgdat = zone->zone_pgdat;
3150 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3151 			}
3152 
3153 			if (!last_pgdat_dirty_ok)
3154 				continue;
3155 		}
3156 
3157 		if (no_fallback && nr_online_nodes > 1 &&
3158 		    zone != ac->preferred_zoneref->zone) {
3159 			int local_nid;
3160 
3161 			/*
3162 			 * If moving to a remote node, retry but allow
3163 			 * fragmenting fallbacks. Locality is more important
3164 			 * than fragmentation avoidance.
3165 			 */
3166 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3167 			if (zone_to_nid(zone) != local_nid) {
3168 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3169 				goto retry;
3170 			}
3171 		}
3172 
3173 		cond_accept_memory(zone, order);
3174 
3175 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3176 		if (!zone_watermark_fast(zone, order, mark,
3177 				       ac->highest_zoneidx, alloc_flags,
3178 				       gfp_mask)) {
3179 			int ret;
3180 
3181 			if (cond_accept_memory(zone, order))
3182 				goto try_this_zone;
3183 
3184 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3185 			/*
3186 			 * Watermark failed for this zone, but see if we can
3187 			 * grow this zone if it contains deferred pages.
3188 			 */
3189 			if (deferred_pages_enabled()) {
3190 				if (_deferred_grow_zone(zone, order))
3191 					goto try_this_zone;
3192 			}
3193 #endif
3194 			/* Checked here to keep the fast path fast */
3195 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3196 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3197 				goto try_this_zone;
3198 
3199 			if (!node_reclaim_enabled() ||
3200 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3201 				continue;
3202 
3203 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3204 			switch (ret) {
3205 			case NODE_RECLAIM_NOSCAN:
3206 				/* did not scan */
3207 				continue;
3208 			case NODE_RECLAIM_FULL:
3209 				/* scanned but unreclaimable */
3210 				continue;
3211 			default:
3212 				/* did we reclaim enough */
3213 				if (zone_watermark_ok(zone, order, mark,
3214 					ac->highest_zoneidx, alloc_flags))
3215 					goto try_this_zone;
3216 
3217 				continue;
3218 			}
3219 		}
3220 
3221 try_this_zone:
3222 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3223 				gfp_mask, alloc_flags, ac->migratetype);
3224 		if (page) {
3225 			prep_new_page(page, order, gfp_mask, alloc_flags);
3226 
3227 			/*
3228 			 * If this is a high-order atomic allocation then check
3229 			 * if the pageblock should be reserved for the future
3230 			 */
3231 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3232 				reserve_highatomic_pageblock(page, zone);
3233 
3234 			return page;
3235 		} else {
3236 			if (cond_accept_memory(zone, order))
3237 				goto try_this_zone;
3238 
3239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3240 			/* Try again if zone has deferred pages */
3241 			if (deferred_pages_enabled()) {
3242 				if (_deferred_grow_zone(zone, order))
3243 					goto try_this_zone;
3244 			}
3245 #endif
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * It's possible on a UMA machine to get through all zones that are
3251 	 * fragmented. If avoiding fragmentation, reset and try again.
3252 	 */
3253 	if (no_fallback) {
3254 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3255 		goto retry;
3256 	}
3257 
3258 	return NULL;
3259 }
3260 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3261 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3262 {
3263 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3264 
3265 	/*
3266 	 * This documents exceptions given to allocations in certain
3267 	 * contexts that are allowed to allocate outside current's set
3268 	 * of allowed nodes.
3269 	 */
3270 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3271 		if (tsk_is_oom_victim(current) ||
3272 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3273 			filter &= ~SHOW_MEM_FILTER_NODES;
3274 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3275 		filter &= ~SHOW_MEM_FILTER_NODES;
3276 
3277 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3278 }
3279 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3280 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3281 {
3282 	struct va_format vaf;
3283 	va_list args;
3284 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3285 
3286 	if ((gfp_mask & __GFP_NOWARN) ||
3287 	     !__ratelimit(&nopage_rs) ||
3288 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3289 		return;
3290 
3291 	va_start(args, fmt);
3292 	vaf.fmt = fmt;
3293 	vaf.va = &args;
3294 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3295 			current->comm, &vaf, gfp_mask, &gfp_mask,
3296 			nodemask_pr_args(nodemask));
3297 	va_end(args);
3298 
3299 	cpuset_print_current_mems_allowed();
3300 	pr_cont("\n");
3301 	dump_stack();
3302 	warn_alloc_show_mem(gfp_mask, nodemask);
3303 }
3304 
3305 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3306 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3307 			      unsigned int alloc_flags,
3308 			      const struct alloc_context *ac)
3309 {
3310 	struct page *page;
3311 
3312 	page = get_page_from_freelist(gfp_mask, order,
3313 			alloc_flags|ALLOC_CPUSET, ac);
3314 	/*
3315 	 * fallback to ignore cpuset restriction if our nodes
3316 	 * are depleted
3317 	 */
3318 	if (!page)
3319 		page = get_page_from_freelist(gfp_mask, order,
3320 				alloc_flags, ac);
3321 
3322 	return page;
3323 }
3324 
3325 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3326 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3327 	const struct alloc_context *ac, unsigned long *did_some_progress)
3328 {
3329 	struct oom_control oc = {
3330 		.zonelist = ac->zonelist,
3331 		.nodemask = ac->nodemask,
3332 		.memcg = NULL,
3333 		.gfp_mask = gfp_mask,
3334 		.order = order,
3335 	};
3336 	struct page *page;
3337 
3338 	*did_some_progress = 0;
3339 
3340 	/*
3341 	 * Acquire the oom lock.  If that fails, somebody else is
3342 	 * making progress for us.
3343 	 */
3344 	if (!mutex_trylock(&oom_lock)) {
3345 		*did_some_progress = 1;
3346 		schedule_timeout_uninterruptible(1);
3347 		return NULL;
3348 	}
3349 
3350 	/*
3351 	 * Go through the zonelist yet one more time, keep very high watermark
3352 	 * here, this is only to catch a parallel oom killing, we must fail if
3353 	 * we're still under heavy pressure. But make sure that this reclaim
3354 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3355 	 * allocation which will never fail due to oom_lock already held.
3356 	 */
3357 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3358 				      ~__GFP_DIRECT_RECLAIM, order,
3359 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3360 	if (page)
3361 		goto out;
3362 
3363 	/* Coredumps can quickly deplete all memory reserves */
3364 	if (current->flags & PF_DUMPCORE)
3365 		goto out;
3366 	/* The OOM killer will not help higher order allocs */
3367 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3368 		goto out;
3369 	/*
3370 	 * We have already exhausted all our reclaim opportunities without any
3371 	 * success so it is time to admit defeat. We will skip the OOM killer
3372 	 * because it is very likely that the caller has a more reasonable
3373 	 * fallback than shooting a random task.
3374 	 *
3375 	 * The OOM killer may not free memory on a specific node.
3376 	 */
3377 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3378 		goto out;
3379 	/* The OOM killer does not needlessly kill tasks for lowmem */
3380 	if (ac->highest_zoneidx < ZONE_NORMAL)
3381 		goto out;
3382 	if (pm_suspended_storage())
3383 		goto out;
3384 	/*
3385 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3386 	 * other request to make a forward progress.
3387 	 * We are in an unfortunate situation where out_of_memory cannot
3388 	 * do much for this context but let's try it to at least get
3389 	 * access to memory reserved if the current task is killed (see
3390 	 * out_of_memory). Once filesystems are ready to handle allocation
3391 	 * failures more gracefully we should just bail out here.
3392 	 */
3393 
3394 	/* Exhausted what can be done so it's blame time */
3395 	if (out_of_memory(&oc) ||
3396 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3397 		*did_some_progress = 1;
3398 
3399 		/*
3400 		 * Help non-failing allocations by giving them access to memory
3401 		 * reserves
3402 		 */
3403 		if (gfp_mask & __GFP_NOFAIL)
3404 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3405 					ALLOC_NO_WATERMARKS, ac);
3406 	}
3407 out:
3408 	mutex_unlock(&oom_lock);
3409 	return page;
3410 }
3411 
3412 /*
3413  * Maximum number of compaction retries with a progress before OOM
3414  * killer is consider as the only way to move forward.
3415  */
3416 #define MAX_COMPACT_RETRIES 16
3417 
3418 #ifdef CONFIG_COMPACTION
3419 /* Try memory compaction for high-order allocations before reclaim */
3420 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3421 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3422 		unsigned int alloc_flags, const struct alloc_context *ac,
3423 		enum compact_priority prio, enum compact_result *compact_result)
3424 {
3425 	struct page *page = NULL;
3426 	unsigned long pflags;
3427 	unsigned int noreclaim_flag;
3428 
3429 	if (!order)
3430 		return NULL;
3431 
3432 	psi_memstall_enter(&pflags);
3433 	delayacct_compact_start();
3434 	noreclaim_flag = memalloc_noreclaim_save();
3435 
3436 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3437 								prio, &page);
3438 
3439 	memalloc_noreclaim_restore(noreclaim_flag);
3440 	psi_memstall_leave(&pflags);
3441 	delayacct_compact_end();
3442 
3443 	if (*compact_result == COMPACT_SKIPPED)
3444 		return NULL;
3445 	/*
3446 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3447 	 * count a compaction stall
3448 	 */
3449 	count_vm_event(COMPACTSTALL);
3450 
3451 	/* Prep a captured page if available */
3452 	if (page)
3453 		prep_new_page(page, order, gfp_mask, alloc_flags);
3454 
3455 	/* Try get a page from the freelist if available */
3456 	if (!page)
3457 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3458 
3459 	if (page) {
3460 		struct zone *zone = page_zone(page);
3461 
3462 		zone->compact_blockskip_flush = false;
3463 		compaction_defer_reset(zone, order, true);
3464 		count_vm_event(COMPACTSUCCESS);
3465 		return page;
3466 	}
3467 
3468 	/*
3469 	 * It's bad if compaction run occurs and fails. The most likely reason
3470 	 * is that pages exist, but not enough to satisfy watermarks.
3471 	 */
3472 	count_vm_event(COMPACTFAIL);
3473 
3474 	cond_resched();
3475 
3476 	return NULL;
3477 }
3478 
3479 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3480 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3481 		     enum compact_result compact_result,
3482 		     enum compact_priority *compact_priority,
3483 		     int *compaction_retries)
3484 {
3485 	int max_retries = MAX_COMPACT_RETRIES;
3486 	int min_priority;
3487 	bool ret = false;
3488 	int retries = *compaction_retries;
3489 	enum compact_priority priority = *compact_priority;
3490 
3491 	if (!order)
3492 		return false;
3493 
3494 	if (fatal_signal_pending(current))
3495 		return false;
3496 
3497 	/*
3498 	 * Compaction was skipped due to a lack of free order-0
3499 	 * migration targets. Continue if reclaim can help.
3500 	 */
3501 	if (compact_result == COMPACT_SKIPPED) {
3502 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3503 		goto out;
3504 	}
3505 
3506 	/*
3507 	 * Compaction managed to coalesce some page blocks, but the
3508 	 * allocation failed presumably due to a race. Retry some.
3509 	 */
3510 	if (compact_result == COMPACT_SUCCESS) {
3511 		/*
3512 		 * !costly requests are much more important than
3513 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3514 		 * facto nofail and invoke OOM killer to move on while
3515 		 * costly can fail and users are ready to cope with
3516 		 * that. 1/4 retries is rather arbitrary but we would
3517 		 * need much more detailed feedback from compaction to
3518 		 * make a better decision.
3519 		 */
3520 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3521 			max_retries /= 4;
3522 
3523 		if (++(*compaction_retries) <= max_retries) {
3524 			ret = true;
3525 			goto out;
3526 		}
3527 	}
3528 
3529 	/*
3530 	 * Compaction failed. Retry with increasing priority.
3531 	 */
3532 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3533 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3534 
3535 	if (*compact_priority > min_priority) {
3536 		(*compact_priority)--;
3537 		*compaction_retries = 0;
3538 		ret = true;
3539 	}
3540 out:
3541 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3542 	return ret;
3543 }
3544 #else
3545 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3546 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3547 		unsigned int alloc_flags, const struct alloc_context *ac,
3548 		enum compact_priority prio, enum compact_result *compact_result)
3549 {
3550 	*compact_result = COMPACT_SKIPPED;
3551 	return NULL;
3552 }
3553 
3554 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3555 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3556 		     enum compact_result compact_result,
3557 		     enum compact_priority *compact_priority,
3558 		     int *compaction_retries)
3559 {
3560 	struct zone *zone;
3561 	struct zoneref *z;
3562 
3563 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3564 		return false;
3565 
3566 	/*
3567 	 * There are setups with compaction disabled which would prefer to loop
3568 	 * inside the allocator rather than hit the oom killer prematurely.
3569 	 * Let's give them a good hope and keep retrying while the order-0
3570 	 * watermarks are OK.
3571 	 */
3572 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3573 				ac->highest_zoneidx, ac->nodemask) {
3574 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3575 					ac->highest_zoneidx, alloc_flags))
3576 			return true;
3577 	}
3578 	return false;
3579 }
3580 #endif /* CONFIG_COMPACTION */
3581 
3582 #ifdef CONFIG_LOCKDEP
3583 static struct lockdep_map __fs_reclaim_map =
3584 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3585 
__need_reclaim(gfp_t gfp_mask)3586 static bool __need_reclaim(gfp_t gfp_mask)
3587 {
3588 	/* no reclaim without waiting on it */
3589 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3590 		return false;
3591 
3592 	/* this guy won't enter reclaim */
3593 	if (current->flags & PF_MEMALLOC)
3594 		return false;
3595 
3596 	if (gfp_mask & __GFP_NOLOCKDEP)
3597 		return false;
3598 
3599 	return true;
3600 }
3601 
__fs_reclaim_acquire(unsigned long ip)3602 void __fs_reclaim_acquire(unsigned long ip)
3603 {
3604 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3605 }
3606 
__fs_reclaim_release(unsigned long ip)3607 void __fs_reclaim_release(unsigned long ip)
3608 {
3609 	lock_release(&__fs_reclaim_map, ip);
3610 }
3611 
fs_reclaim_acquire(gfp_t gfp_mask)3612 void fs_reclaim_acquire(gfp_t gfp_mask)
3613 {
3614 	gfp_mask = current_gfp_context(gfp_mask);
3615 
3616 	if (__need_reclaim(gfp_mask)) {
3617 		if (gfp_mask & __GFP_FS)
3618 			__fs_reclaim_acquire(_RET_IP_);
3619 
3620 #ifdef CONFIG_MMU_NOTIFIER
3621 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3622 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3623 #endif
3624 
3625 	}
3626 }
3627 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3628 
fs_reclaim_release(gfp_t gfp_mask)3629 void fs_reclaim_release(gfp_t gfp_mask)
3630 {
3631 	gfp_mask = current_gfp_context(gfp_mask);
3632 
3633 	if (__need_reclaim(gfp_mask)) {
3634 		if (gfp_mask & __GFP_FS)
3635 			__fs_reclaim_release(_RET_IP_);
3636 	}
3637 }
3638 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3639 #endif
3640 
3641 /*
3642  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3643  * have been rebuilt so allocation retries. Reader side does not lock and
3644  * retries the allocation if zonelist changes. Writer side is protected by the
3645  * embedded spin_lock.
3646  */
3647 static DEFINE_SEQLOCK(zonelist_update_seq);
3648 
zonelist_iter_begin(void)3649 static unsigned int zonelist_iter_begin(void)
3650 {
3651 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3652 		return read_seqbegin(&zonelist_update_seq);
3653 
3654 	return 0;
3655 }
3656 
check_retry_zonelist(unsigned int seq)3657 static unsigned int check_retry_zonelist(unsigned int seq)
3658 {
3659 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3660 		return read_seqretry(&zonelist_update_seq, seq);
3661 
3662 	return seq;
3663 }
3664 
3665 /* Perform direct synchronous page reclaim */
3666 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3667 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3668 					const struct alloc_context *ac)
3669 {
3670 	unsigned int noreclaim_flag;
3671 	unsigned long progress;
3672 
3673 	cond_resched();
3674 
3675 	/* We now go into synchronous reclaim */
3676 	cpuset_memory_pressure_bump();
3677 	fs_reclaim_acquire(gfp_mask);
3678 	noreclaim_flag = memalloc_noreclaim_save();
3679 
3680 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3681 								ac->nodemask);
3682 
3683 	memalloc_noreclaim_restore(noreclaim_flag);
3684 	fs_reclaim_release(gfp_mask);
3685 
3686 	cond_resched();
3687 
3688 	return progress;
3689 }
3690 
3691 /* The really slow allocator path where we enter direct reclaim */
3692 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3693 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3694 		unsigned int alloc_flags, const struct alloc_context *ac,
3695 		unsigned long *did_some_progress)
3696 {
3697 	struct page *page = NULL;
3698 	unsigned long pflags;
3699 	bool drained = false;
3700 
3701 	psi_memstall_enter(&pflags);
3702 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3703 	if (unlikely(!(*did_some_progress)))
3704 		goto out;
3705 
3706 retry:
3707 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3708 
3709 	/*
3710 	 * If an allocation failed after direct reclaim, it could be because
3711 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3712 	 * Shrink them and try again
3713 	 */
3714 	if (!page && !drained) {
3715 		unreserve_highatomic_pageblock(ac, false);
3716 #ifdef CONFIG_RECLAIM_ACCT
3717 		reclaimacct_substage_start(RA_DRAINALLPAGES);
3718 #endif
3719 		drain_all_pages(NULL);
3720 #ifdef CONFIG_RECLAIM_ACCT
3721 		reclaimacct_substage_end(RA_DRAINALLPAGES, 0, NULL);
3722 #endif
3723 		drained = true;
3724 		goto retry;
3725 	}
3726 out:
3727 	psi_memstall_leave(&pflags);
3728 
3729 	return page;
3730 }
3731 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3732 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3733 			     const struct alloc_context *ac)
3734 {
3735 	struct zoneref *z;
3736 	struct zone *zone;
3737 	pg_data_t *last_pgdat = NULL;
3738 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3739 
3740 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3741 					ac->nodemask) {
3742 		if (!managed_zone(zone))
3743 			continue;
3744 		if (last_pgdat != zone->zone_pgdat) {
3745 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3746 			last_pgdat = zone->zone_pgdat;
3747 		}
3748 	}
3749 }
3750 
3751 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3752 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3753 {
3754 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3755 
3756 	/*
3757 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3758 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3759 	 * to save two branches.
3760 	 */
3761 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3762 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3763 
3764 	/*
3765 	 * The caller may dip into page reserves a bit more if the caller
3766 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3767 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3768 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3769 	 */
3770 	alloc_flags |= (__force int)
3771 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3772 
3773 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3774 		/*
3775 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3776 		 * if it can't schedule.
3777 		 */
3778 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3779 			alloc_flags |= ALLOC_NON_BLOCK;
3780 
3781 			if (order > 0)
3782 				alloc_flags |= ALLOC_HIGHATOMIC;
3783 		}
3784 
3785 		/*
3786 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3787 		 * GFP_ATOMIC) rather than fail, see the comment for
3788 		 * cpuset_node_allowed().
3789 		 */
3790 		if (alloc_flags & ALLOC_MIN_RESERVE)
3791 			alloc_flags &= ~ALLOC_CPUSET;
3792 	} else if (unlikely(rt_task(current)) && in_task())
3793 		alloc_flags |= ALLOC_MIN_RESERVE;
3794 
3795 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3796 
3797 	return alloc_flags;
3798 }
3799 
oom_reserves_allowed(struct task_struct * tsk)3800 static bool oom_reserves_allowed(struct task_struct *tsk)
3801 {
3802 	if (!tsk_is_oom_victim(tsk))
3803 		return false;
3804 
3805 	/*
3806 	 * !MMU doesn't have oom reaper so give access to memory reserves
3807 	 * only to the thread with TIF_MEMDIE set
3808 	 */
3809 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3810 		return false;
3811 
3812 	return true;
3813 }
3814 
3815 /*
3816  * Distinguish requests which really need access to full memory
3817  * reserves from oom victims which can live with a portion of it
3818  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3819 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3820 {
3821 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3822 		return 0;
3823 	if (gfp_mask & __GFP_MEMALLOC)
3824 		return ALLOC_NO_WATERMARKS;
3825 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3826 		return ALLOC_NO_WATERMARKS;
3827 	if (!in_interrupt()) {
3828 		if (current->flags & PF_MEMALLOC)
3829 			return ALLOC_NO_WATERMARKS;
3830 		else if (oom_reserves_allowed(current))
3831 			return ALLOC_OOM;
3832 	}
3833 
3834 	return 0;
3835 }
3836 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3837 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3838 {
3839 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3840 }
3841 
3842 /*
3843  * Checks whether it makes sense to retry the reclaim to make a forward progress
3844  * for the given allocation request.
3845  *
3846  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3847  * without success, or when we couldn't even meet the watermark if we
3848  * reclaimed all remaining pages on the LRU lists.
3849  *
3850  * Returns true if a retry is viable or false to enter the oom path.
3851  */
3852 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3853 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3854 		     struct alloc_context *ac, int alloc_flags,
3855 		     bool did_some_progress, int *no_progress_loops)
3856 {
3857 	struct zone *zone;
3858 	struct zoneref *z;
3859 	bool ret = false;
3860 
3861 	/*
3862 	 * Costly allocations might have made a progress but this doesn't mean
3863 	 * their order will become available due to high fragmentation so
3864 	 * always increment the no progress counter for them
3865 	 */
3866 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3867 		*no_progress_loops = 0;
3868 	else
3869 		(*no_progress_loops)++;
3870 
3871 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3872 		goto out;
3873 
3874 
3875 	/*
3876 	 * Keep reclaiming pages while there is a chance this will lead
3877 	 * somewhere.  If none of the target zones can satisfy our allocation
3878 	 * request even if all reclaimable pages are considered then we are
3879 	 * screwed and have to go OOM.
3880 	 */
3881 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3882 				ac->highest_zoneidx, ac->nodemask) {
3883 		unsigned long available;
3884 		unsigned long reclaimable;
3885 		unsigned long min_wmark = min_wmark_pages(zone);
3886 		bool wmark;
3887 
3888 		available = reclaimable = zone_reclaimable_pages(zone);
3889 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3890 
3891 		/*
3892 		 * Would the allocation succeed if we reclaimed all
3893 		 * reclaimable pages?
3894 		 */
3895 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3896 				ac->highest_zoneidx, alloc_flags, available);
3897 		trace_reclaim_retry_zone(z, order, reclaimable,
3898 				available, min_wmark, *no_progress_loops, wmark);
3899 		if (wmark) {
3900 			ret = true;
3901 			break;
3902 		}
3903 	}
3904 
3905 	/*
3906 	 * Memory allocation/reclaim might be called from a WQ context and the
3907 	 * current implementation of the WQ concurrency control doesn't
3908 	 * recognize that a particular WQ is congested if the worker thread is
3909 	 * looping without ever sleeping. Therefore we have to do a short sleep
3910 	 * here rather than calling cond_resched().
3911 	 */
3912 	if (current->flags & PF_WQ_WORKER)
3913 		schedule_timeout_uninterruptible(1);
3914 	else
3915 		cond_resched();
3916 out:
3917 	/* Before OOM, exhaust highatomic_reserve */
3918 	if (!ret)
3919 		return unreserve_highatomic_pageblock(ac, true);
3920 
3921 	return ret;
3922 }
3923 
3924 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3925 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3926 {
3927 	/*
3928 	 * It's possible that cpuset's mems_allowed and the nodemask from
3929 	 * mempolicy don't intersect. This should be normally dealt with by
3930 	 * policy_nodemask(), but it's possible to race with cpuset update in
3931 	 * such a way the check therein was true, and then it became false
3932 	 * before we got our cpuset_mems_cookie here.
3933 	 * This assumes that for all allocations, ac->nodemask can come only
3934 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3935 	 * when it does not intersect with the cpuset restrictions) or the
3936 	 * caller can deal with a violated nodemask.
3937 	 */
3938 	if (cpusets_enabled() && ac->nodemask &&
3939 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3940 		ac->nodemask = NULL;
3941 		return true;
3942 	}
3943 
3944 	/*
3945 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3946 	 * possible to race with parallel threads in such a way that our
3947 	 * allocation can fail while the mask is being updated. If we are about
3948 	 * to fail, check if the cpuset changed during allocation and if so,
3949 	 * retry.
3950 	 */
3951 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3952 		return true;
3953 
3954 	return false;
3955 }
3956 
3957 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3958 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3959 						struct alloc_context *ac)
3960 {
3961 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3962 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3963 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3964 	struct page *page = NULL;
3965 	unsigned int alloc_flags;
3966 	unsigned long did_some_progress;
3967 	enum compact_priority compact_priority;
3968 	enum compact_result compact_result;
3969 	int compaction_retries;
3970 	int no_progress_loops;
3971 	unsigned int cpuset_mems_cookie;
3972 	unsigned int zonelist_iter_cookie;
3973 	int reserve_flags;
3974 	struct reclaim_acct ra = {0};
3975 
3976 restart:
3977 	compaction_retries = 0;
3978 	no_progress_loops = 0;
3979 	compact_result = COMPACT_SKIPPED;
3980 	compact_priority = DEF_COMPACT_PRIORITY;
3981 	cpuset_mems_cookie = read_mems_allowed_begin();
3982 	zonelist_iter_cookie = zonelist_iter_begin();
3983 
3984 	/*
3985 	 * The fast path uses conservative alloc_flags to succeed only until
3986 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3987 	 * alloc_flags precisely. So we do that now.
3988 	 */
3989 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3990 
3991 	/*
3992 	 * We need to recalculate the starting point for the zonelist iterator
3993 	 * because we might have used different nodemask in the fast path, or
3994 	 * there was a cpuset modification and we are retrying - otherwise we
3995 	 * could end up iterating over non-eligible zones endlessly.
3996 	 */
3997 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3998 					ac->highest_zoneidx, ac->nodemask);
3999 	if (!ac->preferred_zoneref->zone)
4000 		goto nopage;
4001 
4002 	/*
4003 	 * Check for insane configurations where the cpuset doesn't contain
4004 	 * any suitable zone to satisfy the request - e.g. non-movable
4005 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4006 	 */
4007 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4008 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4009 					ac->highest_zoneidx,
4010 					&cpuset_current_mems_allowed);
4011 		if (!z->zone)
4012 			goto nopage;
4013 	}
4014 
4015 	if (alloc_flags & ALLOC_KSWAPD)
4016 		wake_all_kswapds(order, gfp_mask, ac);
4017 
4018 	/*
4019 	 * The adjusted alloc_flags might result in immediate success, so try
4020 	 * that first
4021 	 */
4022 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4023 	if (page)
4024 		goto got_pg;
4025 
4026 	/*
4027 	 * For costly allocations, try direct compaction first, as it's likely
4028 	 * that we have enough base pages and don't need to reclaim. For non-
4029 	 * movable high-order allocations, do that as well, as compaction will
4030 	 * try prevent permanent fragmentation by migrating from blocks of the
4031 	 * same migratetype.
4032 	 * Don't try this for allocations that are allowed to ignore
4033 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4034 	 */
4035 	if (can_direct_reclaim && can_compact &&
4036 			(costly_order ||
4037 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4038 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4039 		page = __alloc_pages_direct_compact(gfp_mask, order,
4040 						alloc_flags, ac,
4041 						INIT_COMPACT_PRIORITY,
4042 						&compact_result);
4043 		if (page)
4044 			goto got_pg;
4045 
4046 		/*
4047 		 * Checks for costly allocations with __GFP_NORETRY, which
4048 		 * includes some THP page fault allocations
4049 		 */
4050 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4051 			/*
4052 			 * If allocating entire pageblock(s) and compaction
4053 			 * failed because all zones are below low watermarks
4054 			 * or is prohibited because it recently failed at this
4055 			 * order, fail immediately unless the allocator has
4056 			 * requested compaction and reclaim retry.
4057 			 *
4058 			 * Reclaim is
4059 			 *  - potentially very expensive because zones are far
4060 			 *    below their low watermarks or this is part of very
4061 			 *    bursty high order allocations,
4062 			 *  - not guaranteed to help because isolate_freepages()
4063 			 *    may not iterate over freed pages as part of its
4064 			 *    linear scan, and
4065 			 *  - unlikely to make entire pageblocks free on its
4066 			 *    own.
4067 			 */
4068 			if (compact_result == COMPACT_SKIPPED ||
4069 			    compact_result == COMPACT_DEFERRED)
4070 				goto nopage;
4071 
4072 			/*
4073 			 * Looks like reclaim/compaction is worth trying, but
4074 			 * sync compaction could be very expensive, so keep
4075 			 * using async compaction.
4076 			 */
4077 			compact_priority = INIT_COMPACT_PRIORITY;
4078 		}
4079 	}
4080 
4081 retry:
4082 	/*
4083 	 * Deal with possible cpuset update races or zonelist updates to avoid
4084 	 * infinite retries.
4085 	 */
4086 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4087 	    check_retry_zonelist(zonelist_iter_cookie))
4088 		goto restart;
4089 
4090 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4091 	if (alloc_flags & ALLOC_KSWAPD)
4092 		wake_all_kswapds(order, gfp_mask, ac);
4093 
4094 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4095 	if (reserve_flags)
4096 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4097 					  (alloc_flags & ALLOC_KSWAPD);
4098 
4099 	/*
4100 	 * Reset the nodemask and zonelist iterators if memory policies can be
4101 	 * ignored. These allocations are high priority and system rather than
4102 	 * user oriented.
4103 	 */
4104 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4105 		ac->nodemask = NULL;
4106 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4107 					ac->highest_zoneidx, ac->nodemask);
4108 	}
4109 
4110 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4111 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4112 	if (page)
4113 		goto got_pg;
4114 
4115 	/* Caller is not willing to reclaim, we can't balance anything */
4116 	if (!can_direct_reclaim)
4117 		goto nopage;
4118 
4119 	/* Avoid recursion of direct reclaim */
4120 	if (current->flags & PF_MEMALLOC)
4121 		goto nopage;
4122 
4123 	/* Try direct reclaim and then allocating */
4124 #ifdef CONFIG_RECLAIM_ACCT
4125 	reclaimacct_start(DIRECT_RECLAIMS, &ra);
4126 #endif
4127 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4128 							&did_some_progress);
4129 #ifdef CONFIG_RECLAIM_ACCT
4130 	reclaimacct_end(DIRECT_RECLAIMS);
4131 #endif
4132 	if (page)
4133 		goto got_pg;
4134 
4135 	/* Try direct compaction and then allocating */
4136 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4137 					compact_priority, &compact_result);
4138 	if (page)
4139 		goto got_pg;
4140 
4141 	/* Do not loop if specifically requested */
4142 	if (gfp_mask & __GFP_NORETRY)
4143 		goto nopage;
4144 
4145 	/*
4146 	 * Do not retry costly high order allocations unless they are
4147 	 * __GFP_RETRY_MAYFAIL and we can compact
4148 	 */
4149 	if (costly_order && (!can_compact ||
4150 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4151 		goto nopage;
4152 
4153 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4154 				 did_some_progress > 0, &no_progress_loops))
4155 		goto retry;
4156 
4157 	/*
4158 	 * It doesn't make any sense to retry for the compaction if the order-0
4159 	 * reclaim is not able to make any progress because the current
4160 	 * implementation of the compaction depends on the sufficient amount
4161 	 * of free memory (see __compaction_suitable)
4162 	 */
4163 	if (did_some_progress > 0 && can_compact &&
4164 			should_compact_retry(ac, order, alloc_flags,
4165 				compact_result, &compact_priority,
4166 				&compaction_retries))
4167 		goto retry;
4168 
4169 
4170 	/*
4171 	 * Deal with possible cpuset update races or zonelist updates to avoid
4172 	 * a unnecessary OOM kill.
4173 	 */
4174 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4175 	    check_retry_zonelist(zonelist_iter_cookie))
4176 		goto restart;
4177 
4178 	/* Reclaim has failed us, start killing things */
4179 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4180 	if (page)
4181 		goto got_pg;
4182 
4183 	/* Avoid allocations with no watermarks from looping endlessly */
4184 	if (tsk_is_oom_victim(current) &&
4185 	    (alloc_flags & ALLOC_OOM ||
4186 	     (gfp_mask & __GFP_NOMEMALLOC)))
4187 		goto nopage;
4188 
4189 	/* Retry as long as the OOM killer is making progress */
4190 	if (did_some_progress) {
4191 		no_progress_loops = 0;
4192 		goto retry;
4193 	}
4194 
4195 nopage:
4196 	/*
4197 	 * Deal with possible cpuset update races or zonelist updates to avoid
4198 	 * a unnecessary OOM kill.
4199 	 */
4200 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4201 	    check_retry_zonelist(zonelist_iter_cookie))
4202 		goto restart;
4203 
4204 	/*
4205 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4206 	 * we always retry
4207 	 */
4208 	if (gfp_mask & __GFP_NOFAIL) {
4209 		/*
4210 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4211 		 * of any new users that actually require GFP_NOWAIT
4212 		 */
4213 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4214 			goto fail;
4215 
4216 		/*
4217 		 * PF_MEMALLOC request from this context is rather bizarre
4218 		 * because we cannot reclaim anything and only can loop waiting
4219 		 * for somebody to do a work for us
4220 		 */
4221 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4222 
4223 		/*
4224 		 * non failing costly orders are a hard requirement which we
4225 		 * are not prepared for much so let's warn about these users
4226 		 * so that we can identify them and convert them to something
4227 		 * else.
4228 		 */
4229 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4230 
4231 		/*
4232 		 * Help non-failing allocations by giving some access to memory
4233 		 * reserves normally used for high priority non-blocking
4234 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4235 		 * could deplete whole memory reserves which would just make
4236 		 * the situation worse.
4237 		 */
4238 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4239 		if (page)
4240 			goto got_pg;
4241 
4242 		cond_resched();
4243 		goto retry;
4244 	}
4245 fail:
4246 	warn_alloc(gfp_mask, ac->nodemask,
4247 			"page allocation failure: order:%u", order);
4248 got_pg:
4249 	return page;
4250 }
4251 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4252 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4253 		int preferred_nid, nodemask_t *nodemask,
4254 		struct alloc_context *ac, gfp_t *alloc_gfp,
4255 		unsigned int *alloc_flags)
4256 {
4257 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4258 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4259 	ac->nodemask = nodemask;
4260 	ac->migratetype = gfp_migratetype(gfp_mask);
4261 
4262 	if (cpusets_enabled()) {
4263 		*alloc_gfp |= __GFP_HARDWALL;
4264 		/*
4265 		 * When we are in the interrupt context, it is irrelevant
4266 		 * to the current task context. It means that any node ok.
4267 		 */
4268 		if (in_task() && !ac->nodemask)
4269 			ac->nodemask = &cpuset_current_mems_allowed;
4270 		else
4271 			*alloc_flags |= ALLOC_CPUSET;
4272 	}
4273 
4274 	might_alloc(gfp_mask);
4275 
4276 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4277 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4278 		wake_all_zswapd();
4279 #endif
4280 
4281 	if (should_fail_alloc_page(gfp_mask, order))
4282 		return false;
4283 
4284 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4285 
4286 	/* Dirty zone balancing only done in the fast path */
4287 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4288 
4289 	/*
4290 	 * The preferred zone is used for statistics but crucially it is
4291 	 * also used as the starting point for the zonelist iterator. It
4292 	 * may get reset for allocations that ignore memory policies.
4293 	 */
4294 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4295 					ac->highest_zoneidx, ac->nodemask);
4296 
4297 	return true;
4298 }
4299 
4300 /*
4301  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4302  * @gfp: GFP flags for the allocation
4303  * @preferred_nid: The preferred NUMA node ID to allocate from
4304  * @nodemask: Set of nodes to allocate from, may be NULL
4305  * @nr_pages: The number of pages desired on the list or array
4306  * @page_list: Optional list to store the allocated pages
4307  * @page_array: Optional array to store the pages
4308  *
4309  * This is a batched version of the page allocator that attempts to
4310  * allocate nr_pages quickly. Pages are added to page_list if page_list
4311  * is not NULL, otherwise it is assumed that the page_array is valid.
4312  *
4313  * For lists, nr_pages is the number of pages that should be allocated.
4314  *
4315  * For arrays, only NULL elements are populated with pages and nr_pages
4316  * is the maximum number of pages that will be stored in the array.
4317  *
4318  * Returns the number of pages on the list or array.
4319  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4320 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4321 			nodemask_t *nodemask, int nr_pages,
4322 			struct list_head *page_list,
4323 			struct page **page_array)
4324 {
4325 	struct page *page;
4326 	unsigned long __maybe_unused UP_flags;
4327 	struct zone *zone;
4328 	struct zoneref *z;
4329 	struct per_cpu_pages *pcp;
4330 	struct list_head *pcp_list;
4331 	struct alloc_context ac;
4332 	gfp_t alloc_gfp;
4333 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4334 	int nr_populated = 0, nr_account = 0;
4335 
4336 	/*
4337 	 * Skip populated array elements to determine if any pages need
4338 	 * to be allocated before disabling IRQs.
4339 	 */
4340 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4341 		nr_populated++;
4342 
4343 	/* No pages requested? */
4344 	if (unlikely(nr_pages <= 0))
4345 		goto out;
4346 
4347 	/* Already populated array? */
4348 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4349 		goto out;
4350 
4351 	/* Bulk allocator does not support memcg accounting. */
4352 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4353 		goto failed;
4354 
4355 	/* Use the single page allocator for one page. */
4356 	if (nr_pages - nr_populated == 1)
4357 		goto failed;
4358 
4359 #ifdef CONFIG_PAGE_OWNER
4360 	/*
4361 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4362 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4363 	 * removes much of the performance benefit of bulk allocation so
4364 	 * force the caller to allocate one page at a time as it'll have
4365 	 * similar performance to added complexity to the bulk allocator.
4366 	 */
4367 	if (static_branch_unlikely(&page_owner_inited))
4368 		goto failed;
4369 #endif
4370 
4371 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4372 	gfp &= gfp_allowed_mask;
4373 	alloc_gfp = gfp;
4374 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4375 		goto out;
4376 	gfp = alloc_gfp;
4377 
4378 	/* Find an allowed local zone that meets the low watermark. */
4379 	z = ac.preferred_zoneref;
4380 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4381 		unsigned long mark;
4382 
4383 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4384 		    !__cpuset_zone_allowed(zone, gfp)) {
4385 			continue;
4386 		}
4387 
4388 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4389 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4390 			goto failed;
4391 		}
4392 
4393 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4394 		if (zone_watermark_fast(zone, 0,  mark,
4395 				zonelist_zone_idx(ac.preferred_zoneref),
4396 				alloc_flags, gfp)) {
4397 			break;
4398 		}
4399 	}
4400 
4401 	/*
4402 	 * If there are no allowed local zones that meets the watermarks then
4403 	 * try to allocate a single page and reclaim if necessary.
4404 	 */
4405 	if (unlikely(!zone))
4406 		goto failed;
4407 
4408 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4409 	pcp_trylock_prepare(UP_flags);
4410 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4411 	if (!pcp)
4412 		goto failed_irq;
4413 
4414 	/* Attempt the batch allocation */
4415 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4416 	while (nr_populated < nr_pages) {
4417 
4418 		/* Skip existing pages */
4419 		if (page_array && page_array[nr_populated]) {
4420 			nr_populated++;
4421 			continue;
4422 		}
4423 
4424 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4425 								pcp, pcp_list);
4426 		if (unlikely(!page)) {
4427 			/* Try and allocate at least one page */
4428 			if (!nr_account) {
4429 				pcp_spin_unlock(pcp);
4430 				goto failed_irq;
4431 			}
4432 			break;
4433 		}
4434 		nr_account++;
4435 
4436 		prep_new_page(page, 0, gfp, 0);
4437 		if (page_list)
4438 			list_add(&page->lru, page_list);
4439 		else
4440 			page_array[nr_populated] = page;
4441 		nr_populated++;
4442 	}
4443 
4444 	pcp_spin_unlock(pcp);
4445 	pcp_trylock_finish(UP_flags);
4446 
4447 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4448 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4449 
4450 out:
4451 	return nr_populated;
4452 
4453 failed_irq:
4454 	pcp_trylock_finish(UP_flags);
4455 
4456 failed:
4457 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4458 	if (page) {
4459 		if (page_list)
4460 			list_add(&page->lru, page_list);
4461 		else
4462 			page_array[nr_populated] = page;
4463 		nr_populated++;
4464 	}
4465 
4466 	goto out;
4467 }
4468 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4469 
4470 /*
4471  * This is the 'heart' of the zoned buddy allocator.
4472  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4473 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4474 							nodemask_t *nodemask)
4475 {
4476 	struct page *page;
4477 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4478 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4479 	struct alloc_context ac = { };
4480 
4481 	/*
4482 	 * There are several places where we assume that the order value is sane
4483 	 * so bail out early if the request is out of bound.
4484 	 */
4485 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4486 		return NULL;
4487 
4488 	gfp &= gfp_allowed_mask;
4489 	/*
4490 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4491 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4492 	 * from a particular context which has been marked by
4493 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4494 	 * movable zones are not used during allocation.
4495 	 */
4496 	gfp = current_gfp_context(gfp);
4497 	alloc_gfp = gfp;
4498 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4499 			&alloc_gfp, &alloc_flags))
4500 		return NULL;
4501 
4502 	/*
4503 	 * Forbid the first pass from falling back to types that fragment
4504 	 * memory until all local zones are considered.
4505 	 */
4506 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4507 
4508 	/* First allocation attempt */
4509 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4510 	if (likely(page))
4511 		goto out;
4512 
4513 	alloc_gfp = gfp;
4514 	ac.spread_dirty_pages = false;
4515 
4516 	/*
4517 	 * Restore the original nodemask if it was potentially replaced with
4518 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4519 	 */
4520 	ac.nodemask = nodemask;
4521 
4522 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4523 
4524 out:
4525 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4526 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4527 		__free_pages(page, order);
4528 		page = NULL;
4529 	}
4530 
4531 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4532 	kmsan_alloc_page(page, order, alloc_gfp);
4533 
4534 	return page;
4535 }
4536 EXPORT_SYMBOL(__alloc_pages);
4537 
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4538 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4539 		nodemask_t *nodemask)
4540 {
4541 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4542 					preferred_nid, nodemask);
4543 	return page_rmappable_folio(page);
4544 }
4545 EXPORT_SYMBOL(__folio_alloc);
4546 
4547 /*
4548  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4549  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4550  * you need to access high mem.
4551  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4552 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4553 {
4554 	struct page *page;
4555 
4556 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4557 	if (!page)
4558 		return 0;
4559 	return (unsigned long) page_address(page);
4560 }
4561 EXPORT_SYMBOL(__get_free_pages);
4562 
get_zeroed_page(gfp_t gfp_mask)4563 unsigned long get_zeroed_page(gfp_t gfp_mask)
4564 {
4565 	return __get_free_page(gfp_mask | __GFP_ZERO);
4566 }
4567 EXPORT_SYMBOL(get_zeroed_page);
4568 
4569 /**
4570  * __free_pages - Free pages allocated with alloc_pages().
4571  * @page: The page pointer returned from alloc_pages().
4572  * @order: The order of the allocation.
4573  *
4574  * This function can free multi-page allocations that are not compound
4575  * pages.  It does not check that the @order passed in matches that of
4576  * the allocation, so it is easy to leak memory.  Freeing more memory
4577  * than was allocated will probably emit a warning.
4578  *
4579  * If the last reference to this page is speculative, it will be released
4580  * by put_page() which only frees the first page of a non-compound
4581  * allocation.  To prevent the remaining pages from being leaked, we free
4582  * the subsequent pages here.  If you want to use the page's reference
4583  * count to decide when to free the allocation, you should allocate a
4584  * compound page, and use put_page() instead of __free_pages().
4585  *
4586  * Context: May be called in interrupt context or while holding a normal
4587  * spinlock, but not in NMI context or while holding a raw spinlock.
4588  */
__free_pages(struct page * page,unsigned int order)4589 void __free_pages(struct page *page, unsigned int order)
4590 {
4591 	/* get PageHead before we drop reference */
4592 	int head = PageHead(page);
4593 
4594 	if (put_page_testzero(page))
4595 		free_the_page(page, order);
4596 	else if (!head)
4597 		while (order-- > 0)
4598 			free_the_page(page + (1 << order), order);
4599 }
4600 EXPORT_SYMBOL(__free_pages);
4601 
free_pages(unsigned long addr,unsigned int order)4602 void free_pages(unsigned long addr, unsigned int order)
4603 {
4604 	if (addr != 0) {
4605 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4606 		__free_pages(virt_to_page((void *)addr), order);
4607 	}
4608 }
4609 
4610 EXPORT_SYMBOL(free_pages);
4611 
4612 /*
4613  * Page Fragment:
4614  *  An arbitrary-length arbitrary-offset area of memory which resides
4615  *  within a 0 or higher order page.  Multiple fragments within that page
4616  *  are individually refcounted, in the page's reference counter.
4617  *
4618  * The page_frag functions below provide a simple allocation framework for
4619  * page fragments.  This is used by the network stack and network device
4620  * drivers to provide a backing region of memory for use as either an
4621  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4622  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4623 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4624 					     gfp_t gfp_mask)
4625 {
4626 	struct page *page = NULL;
4627 	gfp_t gfp = gfp_mask;
4628 
4629 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4630 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4631 		    __GFP_NOMEMALLOC;
4632 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4633 				PAGE_FRAG_CACHE_MAX_ORDER);
4634 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4635 #endif
4636 	if (unlikely(!page))
4637 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4638 
4639 	nc->va = page ? page_address(page) : NULL;
4640 
4641 	return page;
4642 }
4643 
__page_frag_cache_drain(struct page * page,unsigned int count)4644 void __page_frag_cache_drain(struct page *page, unsigned int count)
4645 {
4646 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4647 
4648 	if (page_ref_sub_and_test(page, count))
4649 		free_the_page(page, compound_order(page));
4650 }
4651 EXPORT_SYMBOL(__page_frag_cache_drain);
4652 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4653 void *page_frag_alloc_align(struct page_frag_cache *nc,
4654 		      unsigned int fragsz, gfp_t gfp_mask,
4655 		      unsigned int align_mask)
4656 {
4657 	unsigned int size = PAGE_SIZE;
4658 	struct page *page;
4659 	int offset;
4660 
4661 	if (unlikely(!nc->va)) {
4662 refill:
4663 		page = __page_frag_cache_refill(nc, gfp_mask);
4664 		if (!page)
4665 			return NULL;
4666 
4667 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4668 		/* if size can vary use size else just use PAGE_SIZE */
4669 		size = nc->size;
4670 #endif
4671 		/* Even if we own the page, we do not use atomic_set().
4672 		 * This would break get_page_unless_zero() users.
4673 		 */
4674 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4675 
4676 		/* reset page count bias and offset to start of new frag */
4677 		nc->pfmemalloc = page_is_pfmemalloc(page);
4678 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4679 		nc->offset = size;
4680 	}
4681 
4682 	offset = nc->offset - fragsz;
4683 	if (unlikely(offset < 0)) {
4684 		page = virt_to_page(nc->va);
4685 
4686 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4687 			goto refill;
4688 
4689 		if (unlikely(nc->pfmemalloc)) {
4690 			free_the_page(page, compound_order(page));
4691 			goto refill;
4692 		}
4693 
4694 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4695 		/* if size can vary use size else just use PAGE_SIZE */
4696 		size = nc->size;
4697 #endif
4698 		/* OK, page count is 0, we can safely set it */
4699 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4700 
4701 		/* reset page count bias and offset to start of new frag */
4702 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4703 		offset = size - fragsz;
4704 		if (unlikely(offset < 0)) {
4705 			/*
4706 			 * The caller is trying to allocate a fragment
4707 			 * with fragsz > PAGE_SIZE but the cache isn't big
4708 			 * enough to satisfy the request, this may
4709 			 * happen in low memory conditions.
4710 			 * We don't release the cache page because
4711 			 * it could make memory pressure worse
4712 			 * so we simply return NULL here.
4713 			 */
4714 			return NULL;
4715 		}
4716 	}
4717 
4718 	nc->pagecnt_bias--;
4719 	offset &= align_mask;
4720 	nc->offset = offset;
4721 
4722 	return nc->va + offset;
4723 }
4724 EXPORT_SYMBOL(page_frag_alloc_align);
4725 
4726 /*
4727  * Frees a page fragment allocated out of either a compound or order 0 page.
4728  */
page_frag_free(void * addr)4729 void page_frag_free(void *addr)
4730 {
4731 	struct page *page = virt_to_head_page(addr);
4732 
4733 	if (unlikely(put_page_testzero(page)))
4734 		free_the_page(page, compound_order(page));
4735 }
4736 EXPORT_SYMBOL(page_frag_free);
4737 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4738 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4739 		size_t size)
4740 {
4741 	if (addr) {
4742 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4743 		struct page *page = virt_to_page((void *)addr);
4744 		struct page *last = page + nr;
4745 
4746 		split_page_owner(page, 1 << order);
4747 		split_page_memcg(page, 1 << order);
4748 		while (page < --last)
4749 			set_page_refcounted(last);
4750 
4751 		last = page + (1UL << order);
4752 		for (page += nr; page < last; page++)
4753 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4754 	}
4755 	return (void *)addr;
4756 }
4757 
4758 /**
4759  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4760  * @size: the number of bytes to allocate
4761  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4762  *
4763  * This function is similar to alloc_pages(), except that it allocates the
4764  * minimum number of pages to satisfy the request.  alloc_pages() can only
4765  * allocate memory in power-of-two pages.
4766  *
4767  * This function is also limited by MAX_ORDER.
4768  *
4769  * Memory allocated by this function must be released by free_pages_exact().
4770  *
4771  * Return: pointer to the allocated area or %NULL in case of error.
4772  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4773 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4774 {
4775 	unsigned int order = get_order(size);
4776 	unsigned long addr;
4777 
4778 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4779 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4780 
4781 	addr = __get_free_pages(gfp_mask, order);
4782 	return make_alloc_exact(addr, order, size);
4783 }
4784 EXPORT_SYMBOL(alloc_pages_exact);
4785 
4786 /**
4787  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4788  *			   pages on a node.
4789  * @nid: the preferred node ID where memory should be allocated
4790  * @size: the number of bytes to allocate
4791  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4792  *
4793  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4794  * back.
4795  *
4796  * Return: pointer to the allocated area or %NULL in case of error.
4797  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4798 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4799 {
4800 	unsigned int order = get_order(size);
4801 	struct page *p;
4802 
4803 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4804 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4805 
4806 	p = alloc_pages_node(nid, gfp_mask, order);
4807 	if (!p)
4808 		return NULL;
4809 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4810 }
4811 
4812 /**
4813  * free_pages_exact - release memory allocated via alloc_pages_exact()
4814  * @virt: the value returned by alloc_pages_exact.
4815  * @size: size of allocation, same value as passed to alloc_pages_exact().
4816  *
4817  * Release the memory allocated by a previous call to alloc_pages_exact.
4818  */
free_pages_exact(void * virt,size_t size)4819 void free_pages_exact(void *virt, size_t size)
4820 {
4821 	unsigned long addr = (unsigned long)virt;
4822 	unsigned long end = addr + PAGE_ALIGN(size);
4823 
4824 	while (addr < end) {
4825 		free_page(addr);
4826 		addr += PAGE_SIZE;
4827 	}
4828 }
4829 EXPORT_SYMBOL(free_pages_exact);
4830 
4831 /**
4832  * nr_free_zone_pages - count number of pages beyond high watermark
4833  * @offset: The zone index of the highest zone
4834  *
4835  * nr_free_zone_pages() counts the number of pages which are beyond the
4836  * high watermark within all zones at or below a given zone index.  For each
4837  * zone, the number of pages is calculated as:
4838  *
4839  *     nr_free_zone_pages = managed_pages - high_pages
4840  *
4841  * Return: number of pages beyond high watermark.
4842  */
nr_free_zone_pages(int offset)4843 static unsigned long nr_free_zone_pages(int offset)
4844 {
4845 	struct zoneref *z;
4846 	struct zone *zone;
4847 
4848 	/* Just pick one node, since fallback list is circular */
4849 	unsigned long sum = 0;
4850 
4851 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4852 
4853 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4854 		unsigned long size = zone_managed_pages(zone);
4855 		unsigned long high = high_wmark_pages(zone);
4856 		if (size > high)
4857 			sum += size - high;
4858 	}
4859 
4860 	return sum;
4861 }
4862 
4863 /**
4864  * nr_free_buffer_pages - count number of pages beyond high watermark
4865  *
4866  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4867  * watermark within ZONE_DMA and ZONE_NORMAL.
4868  *
4869  * Return: number of pages beyond high watermark within ZONE_DMA and
4870  * ZONE_NORMAL.
4871  */
nr_free_buffer_pages(void)4872 unsigned long nr_free_buffer_pages(void)
4873 {
4874 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4875 }
4876 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4877 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4878 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4879 {
4880 	zoneref->zone = zone;
4881 	zoneref->zone_idx = zone_idx(zone);
4882 }
4883 
4884 /*
4885  * Builds allocation fallback zone lists.
4886  *
4887  * Add all populated zones of a node to the zonelist.
4888  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4889 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4890 {
4891 	struct zone *zone;
4892 	enum zone_type zone_type = MAX_NR_ZONES;
4893 	int nr_zones = 0;
4894 
4895 	do {
4896 		zone_type--;
4897 		zone = pgdat->node_zones + zone_type;
4898 		if (populated_zone(zone)) {
4899 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4900 			check_highest_zone(zone_type);
4901 		}
4902 	} while (zone_type);
4903 
4904 	return nr_zones;
4905 }
4906 
4907 #ifdef CONFIG_NUMA
4908 
__parse_numa_zonelist_order(char * s)4909 static int __parse_numa_zonelist_order(char *s)
4910 {
4911 	/*
4912 	 * We used to support different zonelists modes but they turned
4913 	 * out to be just not useful. Let's keep the warning in place
4914 	 * if somebody still use the cmd line parameter so that we do
4915 	 * not fail it silently
4916 	 */
4917 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4918 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4919 		return -EINVAL;
4920 	}
4921 	return 0;
4922 }
4923 
4924 static char numa_zonelist_order[] = "Node";
4925 #define NUMA_ZONELIST_ORDER_LEN	16
4926 /*
4927  * sysctl handler for numa_zonelist_order
4928  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4929 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4930 		void *buffer, size_t *length, loff_t *ppos)
4931 {
4932 	if (write)
4933 		return __parse_numa_zonelist_order(buffer);
4934 	return proc_dostring(table, write, buffer, length, ppos);
4935 }
4936 
4937 static int node_load[MAX_NUMNODES];
4938 
4939 /**
4940  * find_next_best_node - find the next node that should appear in a given node's fallback list
4941  * @node: node whose fallback list we're appending
4942  * @used_node_mask: nodemask_t of already used nodes
4943  *
4944  * We use a number of factors to determine which is the next node that should
4945  * appear on a given node's fallback list.  The node should not have appeared
4946  * already in @node's fallback list, and it should be the next closest node
4947  * according to the distance array (which contains arbitrary distance values
4948  * from each node to each node in the system), and should also prefer nodes
4949  * with no CPUs, since presumably they'll have very little allocation pressure
4950  * on them otherwise.
4951  *
4952  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4953  */
find_next_best_node(int node,nodemask_t * used_node_mask)4954 int find_next_best_node(int node, nodemask_t *used_node_mask)
4955 {
4956 	int n, val;
4957 	int min_val = INT_MAX;
4958 	int best_node = NUMA_NO_NODE;
4959 
4960 	/* Use the local node if we haven't already */
4961 	if (!node_isset(node, *used_node_mask)) {
4962 		node_set(node, *used_node_mask);
4963 		return node;
4964 	}
4965 
4966 	for_each_node_state(n, N_MEMORY) {
4967 
4968 		/* Don't want a node to appear more than once */
4969 		if (node_isset(n, *used_node_mask))
4970 			continue;
4971 
4972 		/* Use the distance array to find the distance */
4973 		val = node_distance(node, n);
4974 
4975 		/* Penalize nodes under us ("prefer the next node") */
4976 		val += (n < node);
4977 
4978 		/* Give preference to headless and unused nodes */
4979 		if (!cpumask_empty(cpumask_of_node(n)))
4980 			val += PENALTY_FOR_NODE_WITH_CPUS;
4981 
4982 		/* Slight preference for less loaded node */
4983 		val *= MAX_NUMNODES;
4984 		val += node_load[n];
4985 
4986 		if (val < min_val) {
4987 			min_val = val;
4988 			best_node = n;
4989 		}
4990 	}
4991 
4992 	if (best_node >= 0)
4993 		node_set(best_node, *used_node_mask);
4994 
4995 	return best_node;
4996 }
4997 
4998 
4999 /*
5000  * Build zonelists ordered by node and zones within node.
5001  * This results in maximum locality--normal zone overflows into local
5002  * DMA zone, if any--but risks exhausting DMA zone.
5003  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5004 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5005 		unsigned nr_nodes)
5006 {
5007 	struct zoneref *zonerefs;
5008 	int i;
5009 
5010 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5011 
5012 	for (i = 0; i < nr_nodes; i++) {
5013 		int nr_zones;
5014 
5015 		pg_data_t *node = NODE_DATA(node_order[i]);
5016 
5017 		nr_zones = build_zonerefs_node(node, zonerefs);
5018 		zonerefs += nr_zones;
5019 	}
5020 	zonerefs->zone = NULL;
5021 	zonerefs->zone_idx = 0;
5022 }
5023 
5024 /*
5025  * Build gfp_thisnode zonelists
5026  */
build_thisnode_zonelists(pg_data_t * pgdat)5027 static void build_thisnode_zonelists(pg_data_t *pgdat)
5028 {
5029 	struct zoneref *zonerefs;
5030 	int nr_zones;
5031 
5032 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5033 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5034 	zonerefs += nr_zones;
5035 	zonerefs->zone = NULL;
5036 	zonerefs->zone_idx = 0;
5037 }
5038 
5039 /*
5040  * Build zonelists ordered by zone and nodes within zones.
5041  * This results in conserving DMA zone[s] until all Normal memory is
5042  * exhausted, but results in overflowing to remote node while memory
5043  * may still exist in local DMA zone.
5044  */
5045 
build_zonelists(pg_data_t * pgdat)5046 static void build_zonelists(pg_data_t *pgdat)
5047 {
5048 	static int node_order[MAX_NUMNODES];
5049 	int node, nr_nodes = 0;
5050 	nodemask_t used_mask = NODE_MASK_NONE;
5051 	int local_node, prev_node;
5052 
5053 	/* NUMA-aware ordering of nodes */
5054 	local_node = pgdat->node_id;
5055 	prev_node = local_node;
5056 
5057 	memset(node_order, 0, sizeof(node_order));
5058 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5059 		/*
5060 		 * We don't want to pressure a particular node.
5061 		 * So adding penalty to the first node in same
5062 		 * distance group to make it round-robin.
5063 		 */
5064 		if (node_distance(local_node, node) !=
5065 		    node_distance(local_node, prev_node))
5066 			node_load[node] += 1;
5067 
5068 		node_order[nr_nodes++] = node;
5069 		prev_node = node;
5070 	}
5071 
5072 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5073 	build_thisnode_zonelists(pgdat);
5074 	pr_info("Fallback order for Node %d: ", local_node);
5075 	for (node = 0; node < nr_nodes; node++)
5076 		pr_cont("%d ", node_order[node]);
5077 	pr_cont("\n");
5078 }
5079 
5080 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5081 /*
5082  * Return node id of node used for "local" allocations.
5083  * I.e., first node id of first zone in arg node's generic zonelist.
5084  * Used for initializing percpu 'numa_mem', which is used primarily
5085  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5086  */
local_memory_node(int node)5087 int local_memory_node(int node)
5088 {
5089 	struct zoneref *z;
5090 
5091 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5092 				   gfp_zone(GFP_KERNEL),
5093 				   NULL);
5094 	return zone_to_nid(z->zone);
5095 }
5096 #endif
5097 
5098 static void setup_min_unmapped_ratio(void);
5099 static void setup_min_slab_ratio(void);
5100 #else	/* CONFIG_NUMA */
5101 
build_zonelists(pg_data_t * pgdat)5102 static void build_zonelists(pg_data_t *pgdat)
5103 {
5104 	int node, local_node;
5105 	struct zoneref *zonerefs;
5106 	int nr_zones;
5107 
5108 	local_node = pgdat->node_id;
5109 
5110 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5111 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5112 	zonerefs += nr_zones;
5113 
5114 	/*
5115 	 * Now we build the zonelist so that it contains the zones
5116 	 * of all the other nodes.
5117 	 * We don't want to pressure a particular node, so when
5118 	 * building the zones for node N, we make sure that the
5119 	 * zones coming right after the local ones are those from
5120 	 * node N+1 (modulo N)
5121 	 */
5122 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5123 		if (!node_online(node))
5124 			continue;
5125 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5126 		zonerefs += nr_zones;
5127 	}
5128 	for (node = 0; node < local_node; node++) {
5129 		if (!node_online(node))
5130 			continue;
5131 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5132 		zonerefs += nr_zones;
5133 	}
5134 
5135 	zonerefs->zone = NULL;
5136 	zonerefs->zone_idx = 0;
5137 }
5138 
5139 #endif	/* CONFIG_NUMA */
5140 
5141 /*
5142  * Boot pageset table. One per cpu which is going to be used for all
5143  * zones and all nodes. The parameters will be set in such a way
5144  * that an item put on a list will immediately be handed over to
5145  * the buddy list. This is safe since pageset manipulation is done
5146  * with interrupts disabled.
5147  *
5148  * The boot_pagesets must be kept even after bootup is complete for
5149  * unused processors and/or zones. They do play a role for bootstrapping
5150  * hotplugged processors.
5151  *
5152  * zoneinfo_show() and maybe other functions do
5153  * not check if the processor is online before following the pageset pointer.
5154  * Other parts of the kernel may not check if the zone is available.
5155  */
5156 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5157 /* These effectively disable the pcplists in the boot pageset completely */
5158 #define BOOT_PAGESET_HIGH	0
5159 #define BOOT_PAGESET_BATCH	1
5160 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5161 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5162 
__build_all_zonelists(void * data)5163 static void __build_all_zonelists(void *data)
5164 {
5165 	int nid;
5166 	int __maybe_unused cpu;
5167 	pg_data_t *self = data;
5168 	unsigned long flags;
5169 
5170 	/*
5171 	 * The zonelist_update_seq must be acquired with irqsave because the
5172 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5173 	 */
5174 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5175 	/*
5176 	 * Also disable synchronous printk() to prevent any printk() from
5177 	 * trying to hold port->lock, for
5178 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5179 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5180 	 */
5181 	printk_deferred_enter();
5182 
5183 #ifdef CONFIG_NUMA
5184 	memset(node_load, 0, sizeof(node_load));
5185 #endif
5186 
5187 	/*
5188 	 * This node is hotadded and no memory is yet present.   So just
5189 	 * building zonelists is fine - no need to touch other nodes.
5190 	 */
5191 	if (self && !node_online(self->node_id)) {
5192 		build_zonelists(self);
5193 	} else {
5194 		/*
5195 		 * All possible nodes have pgdat preallocated
5196 		 * in free_area_init
5197 		 */
5198 		for_each_node(nid) {
5199 			pg_data_t *pgdat = NODE_DATA(nid);
5200 
5201 			build_zonelists(pgdat);
5202 		}
5203 
5204 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5205 		/*
5206 		 * We now know the "local memory node" for each node--
5207 		 * i.e., the node of the first zone in the generic zonelist.
5208 		 * Set up numa_mem percpu variable for on-line cpus.  During
5209 		 * boot, only the boot cpu should be on-line;  we'll init the
5210 		 * secondary cpus' numa_mem as they come on-line.  During
5211 		 * node/memory hotplug, we'll fixup all on-line cpus.
5212 		 */
5213 		for_each_online_cpu(cpu)
5214 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5215 #endif
5216 	}
5217 
5218 	printk_deferred_exit();
5219 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5220 }
5221 
5222 static noinline void __init
build_all_zonelists_init(void)5223 build_all_zonelists_init(void)
5224 {
5225 	int cpu;
5226 
5227 	__build_all_zonelists(NULL);
5228 
5229 	/*
5230 	 * Initialize the boot_pagesets that are going to be used
5231 	 * for bootstrapping processors. The real pagesets for
5232 	 * each zone will be allocated later when the per cpu
5233 	 * allocator is available.
5234 	 *
5235 	 * boot_pagesets are used also for bootstrapping offline
5236 	 * cpus if the system is already booted because the pagesets
5237 	 * are needed to initialize allocators on a specific cpu too.
5238 	 * F.e. the percpu allocator needs the page allocator which
5239 	 * needs the percpu allocator in order to allocate its pagesets
5240 	 * (a chicken-egg dilemma).
5241 	 */
5242 	for_each_possible_cpu(cpu)
5243 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5244 
5245 	mminit_verify_zonelist();
5246 	cpuset_init_current_mems_allowed();
5247 }
5248 
5249 /*
5250  * unless system_state == SYSTEM_BOOTING.
5251  *
5252  * __ref due to call of __init annotated helper build_all_zonelists_init
5253  * [protected by SYSTEM_BOOTING].
5254  */
build_all_zonelists(pg_data_t * pgdat)5255 void __ref build_all_zonelists(pg_data_t *pgdat)
5256 {
5257 	unsigned long vm_total_pages;
5258 
5259 	if (system_state == SYSTEM_BOOTING) {
5260 		build_all_zonelists_init();
5261 	} else {
5262 		__build_all_zonelists(pgdat);
5263 		/* cpuset refresh routine should be here */
5264 	}
5265 	/* Get the number of free pages beyond high watermark in all zones. */
5266 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5267 	/*
5268 	 * Disable grouping by mobility if the number of pages in the
5269 	 * system is too low to allow the mechanism to work. It would be
5270 	 * more accurate, but expensive to check per-zone. This check is
5271 	 * made on memory-hotadd so a system can start with mobility
5272 	 * disabled and enable it later
5273 	 */
5274 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5275 		page_group_by_mobility_disabled = 1;
5276 	else
5277 		page_group_by_mobility_disabled = 0;
5278 
5279 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5280 		nr_online_nodes,
5281 		page_group_by_mobility_disabled ? "off" : "on",
5282 		vm_total_pages);
5283 #ifdef CONFIG_NUMA
5284 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5285 #endif
5286 }
5287 
zone_batchsize(struct zone * zone)5288 static int zone_batchsize(struct zone *zone)
5289 {
5290 #ifdef CONFIG_MMU
5291 	int batch;
5292 
5293 	/*
5294 	 * The number of pages to batch allocate is either ~0.1%
5295 	 * of the zone or 1MB, whichever is smaller. The batch
5296 	 * size is striking a balance between allocation latency
5297 	 * and zone lock contention.
5298 	 */
5299 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5300 	batch /= 4;		/* We effectively *= 4 below */
5301 	if (batch < 1)
5302 		batch = 1;
5303 
5304 	/*
5305 	 * Clamp the batch to a 2^n - 1 value. Having a power
5306 	 * of 2 value was found to be more likely to have
5307 	 * suboptimal cache aliasing properties in some cases.
5308 	 *
5309 	 * For example if 2 tasks are alternately allocating
5310 	 * batches of pages, one task can end up with a lot
5311 	 * of pages of one half of the possible page colors
5312 	 * and the other with pages of the other colors.
5313 	 */
5314 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5315 
5316 	return batch;
5317 
5318 #else
5319 	/* The deferral and batching of frees should be suppressed under NOMMU
5320 	 * conditions.
5321 	 *
5322 	 * The problem is that NOMMU needs to be able to allocate large chunks
5323 	 * of contiguous memory as there's no hardware page translation to
5324 	 * assemble apparent contiguous memory from discontiguous pages.
5325 	 *
5326 	 * Queueing large contiguous runs of pages for batching, however,
5327 	 * causes the pages to actually be freed in smaller chunks.  As there
5328 	 * can be a significant delay between the individual batches being
5329 	 * recycled, this leads to the once large chunks of space being
5330 	 * fragmented and becoming unavailable for high-order allocations.
5331 	 */
5332 	return 0;
5333 #endif
5334 }
5335 
5336 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5337 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5338 {
5339 #ifdef CONFIG_MMU
5340 	int high;
5341 	int nr_split_cpus;
5342 	unsigned long total_pages;
5343 
5344 	if (!percpu_pagelist_high_fraction) {
5345 		/*
5346 		 * By default, the high value of the pcp is based on the zone
5347 		 * low watermark so that if they are full then background
5348 		 * reclaim will not be started prematurely.
5349 		 */
5350 		total_pages = low_wmark_pages(zone);
5351 	} else {
5352 		/*
5353 		 * If percpu_pagelist_high_fraction is configured, the high
5354 		 * value is based on a fraction of the managed pages in the
5355 		 * zone.
5356 		 */
5357 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5358 	}
5359 
5360 	/*
5361 	 * Split the high value across all online CPUs local to the zone. Note
5362 	 * that early in boot that CPUs may not be online yet and that during
5363 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5364 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5365 	 * all online CPUs to mitigate the risk that reclaim is triggered
5366 	 * prematurely due to pages stored on pcp lists.
5367 	 */
5368 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5369 	if (!nr_split_cpus)
5370 		nr_split_cpus = num_online_cpus();
5371 	high = total_pages / nr_split_cpus;
5372 
5373 	/*
5374 	 * Ensure high is at least batch*4. The multiple is based on the
5375 	 * historical relationship between high and batch.
5376 	 */
5377 	high = max(high, batch << 2);
5378 
5379 	return high;
5380 #else
5381 	return 0;
5382 #endif
5383 }
5384 
5385 /*
5386  * pcp->high and pcp->batch values are related and generally batch is lower
5387  * than high. They are also related to pcp->count such that count is lower
5388  * than high, and as soon as it reaches high, the pcplist is flushed.
5389  *
5390  * However, guaranteeing these relations at all times would require e.g. write
5391  * barriers here but also careful usage of read barriers at the read side, and
5392  * thus be prone to error and bad for performance. Thus the update only prevents
5393  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5394  * can cope with those fields changing asynchronously, and fully trust only the
5395  * pcp->count field on the local CPU with interrupts disabled.
5396  *
5397  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5398  * outside of boot time (or some other assurance that no concurrent updaters
5399  * exist).
5400  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5401 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5402 		unsigned long batch)
5403 {
5404 	WRITE_ONCE(pcp->batch, batch);
5405 	WRITE_ONCE(pcp->high, high);
5406 }
5407 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5408 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5409 {
5410 	int pindex;
5411 
5412 	memset(pcp, 0, sizeof(*pcp));
5413 	memset(pzstats, 0, sizeof(*pzstats));
5414 
5415 	spin_lock_init(&pcp->lock);
5416 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5417 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5418 
5419 	/*
5420 	 * Set batch and high values safe for a boot pageset. A true percpu
5421 	 * pageset's initialization will update them subsequently. Here we don't
5422 	 * need to be as careful as pageset_update() as nobody can access the
5423 	 * pageset yet.
5424 	 */
5425 	pcp->high = BOOT_PAGESET_HIGH;
5426 	pcp->batch = BOOT_PAGESET_BATCH;
5427 	pcp->free_factor = 0;
5428 }
5429 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5430 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5431 		unsigned long batch)
5432 {
5433 	struct per_cpu_pages *pcp;
5434 	int cpu;
5435 
5436 	for_each_possible_cpu(cpu) {
5437 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5438 		pageset_update(pcp, high, batch);
5439 	}
5440 }
5441 
5442 /*
5443  * Calculate and set new high and batch values for all per-cpu pagesets of a
5444  * zone based on the zone's size.
5445  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5446 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5447 {
5448 	int new_high, new_batch;
5449 
5450 	new_batch = max(1, zone_batchsize(zone));
5451 	new_high = zone_highsize(zone, new_batch, cpu_online);
5452 
5453 	if (zone->pageset_high == new_high &&
5454 	    zone->pageset_batch == new_batch)
5455 		return;
5456 
5457 	zone->pageset_high = new_high;
5458 	zone->pageset_batch = new_batch;
5459 
5460 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5461 }
5462 
setup_zone_pageset(struct zone * zone)5463 void __meminit setup_zone_pageset(struct zone *zone)
5464 {
5465 	int cpu;
5466 
5467 	/* Size may be 0 on !SMP && !NUMA */
5468 	if (sizeof(struct per_cpu_zonestat) > 0)
5469 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5470 
5471 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5472 	for_each_possible_cpu(cpu) {
5473 		struct per_cpu_pages *pcp;
5474 		struct per_cpu_zonestat *pzstats;
5475 
5476 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5477 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5478 		per_cpu_pages_init(pcp, pzstats);
5479 	}
5480 
5481 	zone_set_pageset_high_and_batch(zone, 0);
5482 }
5483 
5484 /*
5485  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5486  * page high values need to be recalculated.
5487  */
zone_pcp_update(struct zone * zone,int cpu_online)5488 static void zone_pcp_update(struct zone *zone, int cpu_online)
5489 {
5490 	mutex_lock(&pcp_batch_high_lock);
5491 	zone_set_pageset_high_and_batch(zone, cpu_online);
5492 	mutex_unlock(&pcp_batch_high_lock);
5493 }
5494 
5495 /*
5496  * Allocate per cpu pagesets and initialize them.
5497  * Before this call only boot pagesets were available.
5498  */
setup_per_cpu_pageset(void)5499 void __init setup_per_cpu_pageset(void)
5500 {
5501 	struct pglist_data *pgdat;
5502 	struct zone *zone;
5503 	int __maybe_unused cpu;
5504 
5505 	for_each_populated_zone(zone)
5506 		setup_zone_pageset(zone);
5507 
5508 #ifdef CONFIG_NUMA
5509 	/*
5510 	 * Unpopulated zones continue using the boot pagesets.
5511 	 * The numa stats for these pagesets need to be reset.
5512 	 * Otherwise, they will end up skewing the stats of
5513 	 * the nodes these zones are associated with.
5514 	 */
5515 	for_each_possible_cpu(cpu) {
5516 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5517 		memset(pzstats->vm_numa_event, 0,
5518 		       sizeof(pzstats->vm_numa_event));
5519 	}
5520 #endif
5521 
5522 	for_each_online_pgdat(pgdat)
5523 		pgdat->per_cpu_nodestats =
5524 			alloc_percpu(struct per_cpu_nodestat);
5525 }
5526 
zone_pcp_init(struct zone * zone)5527 __meminit void zone_pcp_init(struct zone *zone)
5528 {
5529 	/*
5530 	 * per cpu subsystem is not up at this point. The following code
5531 	 * relies on the ability of the linker to provide the
5532 	 * offset of a (static) per cpu variable into the per cpu area.
5533 	 */
5534 	zone->per_cpu_pageset = &boot_pageset;
5535 	zone->per_cpu_zonestats = &boot_zonestats;
5536 	zone->pageset_high = BOOT_PAGESET_HIGH;
5537 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5538 
5539 	if (populated_zone(zone))
5540 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5541 			 zone->present_pages, zone_batchsize(zone));
5542 }
5543 
adjust_managed_page_count(struct page * page,long count)5544 void adjust_managed_page_count(struct page *page, long count)
5545 {
5546 	atomic_long_add(count, &page_zone(page)->managed_pages);
5547 	totalram_pages_add(count);
5548 #ifdef CONFIG_HIGHMEM
5549 	if (PageHighMem(page))
5550 		totalhigh_pages_add(count);
5551 #endif
5552 }
5553 EXPORT_SYMBOL(adjust_managed_page_count);
5554 
free_reserved_area(void * start,void * end,int poison,const char * s)5555 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5556 {
5557 	void *pos;
5558 	unsigned long pages = 0;
5559 
5560 	start = (void *)PAGE_ALIGN((unsigned long)start);
5561 	end = (void *)((unsigned long)end & PAGE_MASK);
5562 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5563 		struct page *page = virt_to_page(pos);
5564 		void *direct_map_addr;
5565 
5566 		/*
5567 		 * 'direct_map_addr' might be different from 'pos'
5568 		 * because some architectures' virt_to_page()
5569 		 * work with aliases.  Getting the direct map
5570 		 * address ensures that we get a _writeable_
5571 		 * alias for the memset().
5572 		 */
5573 		direct_map_addr = page_address(page);
5574 		/*
5575 		 * Perform a kasan-unchecked memset() since this memory
5576 		 * has not been initialized.
5577 		 */
5578 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5579 		if ((unsigned int)poison <= 0xFF)
5580 			memset(direct_map_addr, poison, PAGE_SIZE);
5581 
5582 		free_reserved_page(page);
5583 	}
5584 
5585 	if (pages && s)
5586 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5587 
5588 	return pages;
5589 }
5590 
page_alloc_cpu_dead(unsigned int cpu)5591 static int page_alloc_cpu_dead(unsigned int cpu)
5592 {
5593 	struct zone *zone;
5594 
5595 	lru_add_drain_cpu(cpu);
5596 	mlock_drain_remote(cpu);
5597 	drain_pages(cpu);
5598 
5599 	/*
5600 	 * Spill the event counters of the dead processor
5601 	 * into the current processors event counters.
5602 	 * This artificially elevates the count of the current
5603 	 * processor.
5604 	 */
5605 	vm_events_fold_cpu(cpu);
5606 
5607 	/*
5608 	 * Zero the differential counters of the dead processor
5609 	 * so that the vm statistics are consistent.
5610 	 *
5611 	 * This is only okay since the processor is dead and cannot
5612 	 * race with what we are doing.
5613 	 */
5614 	cpu_vm_stats_fold(cpu);
5615 
5616 	for_each_populated_zone(zone)
5617 		zone_pcp_update(zone, 0);
5618 
5619 	return 0;
5620 }
5621 
page_alloc_cpu_online(unsigned int cpu)5622 static int page_alloc_cpu_online(unsigned int cpu)
5623 {
5624 	struct zone *zone;
5625 
5626 	for_each_populated_zone(zone)
5627 		zone_pcp_update(zone, 1);
5628 	return 0;
5629 }
5630 
page_alloc_init_cpuhp(void)5631 void __init page_alloc_init_cpuhp(void)
5632 {
5633 	int ret;
5634 
5635 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5636 					"mm/page_alloc:pcp",
5637 					page_alloc_cpu_online,
5638 					page_alloc_cpu_dead);
5639 	WARN_ON(ret < 0);
5640 }
5641 
5642 /*
5643  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5644  *	or min_free_kbytes changes.
5645  */
calculate_totalreserve_pages(void)5646 static void calculate_totalreserve_pages(void)
5647 {
5648 	struct pglist_data *pgdat;
5649 	unsigned long reserve_pages = 0;
5650 	enum zone_type i, j;
5651 
5652 	for_each_online_pgdat(pgdat) {
5653 
5654 		pgdat->totalreserve_pages = 0;
5655 
5656 		for (i = 0; i < MAX_NR_ZONES; i++) {
5657 			struct zone *zone = pgdat->node_zones + i;
5658 			long max = 0;
5659 			unsigned long managed_pages = zone_managed_pages(zone);
5660 
5661 			/* Find valid and maximum lowmem_reserve in the zone */
5662 			for (j = i; j < MAX_NR_ZONES; j++) {
5663 				if (zone->lowmem_reserve[j] > max)
5664 					max = zone->lowmem_reserve[j];
5665 			}
5666 
5667 			/* we treat the high watermark as reserved pages. */
5668 			max += high_wmark_pages(zone);
5669 
5670 			if (max > managed_pages)
5671 				max = managed_pages;
5672 
5673 			pgdat->totalreserve_pages += max;
5674 
5675 			reserve_pages += max;
5676 		}
5677 	}
5678 	totalreserve_pages = reserve_pages;
5679 }
5680 
5681 /*
5682  * setup_per_zone_lowmem_reserve - called whenever
5683  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5684  *	has a correct pages reserved value, so an adequate number of
5685  *	pages are left in the zone after a successful __alloc_pages().
5686  */
setup_per_zone_lowmem_reserve(void)5687 static void setup_per_zone_lowmem_reserve(void)
5688 {
5689 	struct pglist_data *pgdat;
5690 	enum zone_type i, j;
5691 
5692 	for_each_online_pgdat(pgdat) {
5693 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5694 			struct zone *zone = &pgdat->node_zones[i];
5695 			int ratio = sysctl_lowmem_reserve_ratio[i];
5696 			bool clear = !ratio || !zone_managed_pages(zone);
5697 			unsigned long managed_pages = 0;
5698 
5699 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5700 				struct zone *upper_zone = &pgdat->node_zones[j];
5701 
5702 				managed_pages += zone_managed_pages(upper_zone);
5703 
5704 				if (clear)
5705 					zone->lowmem_reserve[j] = 0;
5706 				else
5707 					zone->lowmem_reserve[j] = managed_pages / ratio;
5708 			}
5709 		}
5710 	}
5711 
5712 	/* update totalreserve_pages */
5713 	calculate_totalreserve_pages();
5714 }
5715 
__setup_per_zone_wmarks(void)5716 static void __setup_per_zone_wmarks(void)
5717 {
5718 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5719 	unsigned long lowmem_pages = 0;
5720 	struct zone *zone;
5721 	unsigned long flags;
5722 
5723 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5724 	for_each_zone(zone) {
5725 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5726 			lowmem_pages += zone_managed_pages(zone);
5727 	}
5728 
5729 	for_each_zone(zone) {
5730 		u64 tmp;
5731 
5732 		spin_lock_irqsave(&zone->lock, flags);
5733 		tmp = (u64)pages_min * zone_managed_pages(zone);
5734 		do_div(tmp, lowmem_pages);
5735 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5736 			/*
5737 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5738 			 * need highmem and movable zones pages, so cap pages_min
5739 			 * to a small  value here.
5740 			 *
5741 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5742 			 * deltas control async page reclaim, and so should
5743 			 * not be capped for highmem and movable zones.
5744 			 */
5745 			unsigned long min_pages;
5746 
5747 			min_pages = zone_managed_pages(zone) / 1024;
5748 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5749 			zone->_watermark[WMARK_MIN] = min_pages;
5750 		} else {
5751 			/*
5752 			 * If it's a lowmem zone, reserve a number of pages
5753 			 * proportionate to the zone's size.
5754 			 */
5755 			zone->_watermark[WMARK_MIN] = tmp;
5756 		}
5757 
5758 		/*
5759 		 * Set the kswapd watermarks distance according to the
5760 		 * scale factor in proportion to available memory, but
5761 		 * ensure a minimum size on small systems.
5762 		 */
5763 		tmp = max_t(u64, tmp >> 2,
5764 			    mult_frac(zone_managed_pages(zone),
5765 				      watermark_scale_factor, 10000));
5766 
5767 		zone->watermark_boost = 0;
5768 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5769 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5770 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5771 
5772 		spin_unlock_irqrestore(&zone->lock, flags);
5773 	}
5774 
5775 	/* update totalreserve_pages */
5776 	calculate_totalreserve_pages();
5777 }
5778 
5779 /**
5780  * setup_per_zone_wmarks - called when min_free_kbytes changes
5781  * or when memory is hot-{added|removed}
5782  *
5783  * Ensures that the watermark[min,low,high] values for each zone are set
5784  * correctly with respect to min_free_kbytes.
5785  */
setup_per_zone_wmarks(void)5786 void setup_per_zone_wmarks(void)
5787 {
5788 	struct zone *zone;
5789 	static DEFINE_SPINLOCK(lock);
5790 
5791 	spin_lock(&lock);
5792 	__setup_per_zone_wmarks();
5793 	spin_unlock(&lock);
5794 
5795 	/*
5796 	 * The watermark size have changed so update the pcpu batch
5797 	 * and high limits or the limits may be inappropriate.
5798 	 */
5799 	for_each_zone(zone)
5800 		zone_pcp_update(zone, 0);
5801 }
5802 
5803 /*
5804  * Initialise min_free_kbytes.
5805  *
5806  * For small machines we want it small (128k min).  For large machines
5807  * we want it large (256MB max).  But it is not linear, because network
5808  * bandwidth does not increase linearly with machine size.  We use
5809  *
5810  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5811  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5812  *
5813  * which yields
5814  *
5815  * 16MB:	512k
5816  * 32MB:	724k
5817  * 64MB:	1024k
5818  * 128MB:	1448k
5819  * 256MB:	2048k
5820  * 512MB:	2896k
5821  * 1024MB:	4096k
5822  * 2048MB:	5792k
5823  * 4096MB:	8192k
5824  * 8192MB:	11584k
5825  * 16384MB:	16384k
5826  */
calculate_min_free_kbytes(void)5827 void calculate_min_free_kbytes(void)
5828 {
5829 	unsigned long lowmem_kbytes;
5830 	int new_min_free_kbytes;
5831 
5832 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5833 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5834 
5835 	if (new_min_free_kbytes > user_min_free_kbytes)
5836 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5837 	else
5838 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5839 				new_min_free_kbytes, user_min_free_kbytes);
5840 
5841 }
5842 
init_per_zone_wmark_min(void)5843 int __meminit init_per_zone_wmark_min(void)
5844 {
5845 	calculate_min_free_kbytes();
5846 	setup_per_zone_wmarks();
5847 	refresh_zone_stat_thresholds();
5848 	setup_per_zone_lowmem_reserve();
5849 
5850 #ifdef CONFIG_NUMA
5851 	setup_min_unmapped_ratio();
5852 	setup_min_slab_ratio();
5853 #endif
5854 
5855 	khugepaged_min_free_kbytes_update();
5856 
5857 	return 0;
5858 }
postcore_initcall(init_per_zone_wmark_min)5859 postcore_initcall(init_per_zone_wmark_min)
5860 
5861 /*
5862  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5863  *	that we can call two helper functions whenever min_free_kbytes
5864  *	changes.
5865  */
5866 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5867 		void *buffer, size_t *length, loff_t *ppos)
5868 {
5869 	int rc;
5870 
5871 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5872 	if (rc)
5873 		return rc;
5874 
5875 	if (write) {
5876 		user_min_free_kbytes = min_free_kbytes;
5877 		setup_per_zone_wmarks();
5878 	}
5879 	return 0;
5880 }
5881 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5882 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5883 		void *buffer, size_t *length, loff_t *ppos)
5884 {
5885 	int rc;
5886 
5887 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5888 	if (rc)
5889 		return rc;
5890 
5891 	if (write)
5892 		setup_per_zone_wmarks();
5893 
5894 	return 0;
5895 }
5896 
5897 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5898 static void setup_min_unmapped_ratio(void)
5899 {
5900 	pg_data_t *pgdat;
5901 	struct zone *zone;
5902 
5903 	for_each_online_pgdat(pgdat)
5904 		pgdat->min_unmapped_pages = 0;
5905 
5906 	for_each_zone(zone)
5907 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5908 						         sysctl_min_unmapped_ratio) / 100;
5909 }
5910 
5911 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5912 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5913 		void *buffer, size_t *length, loff_t *ppos)
5914 {
5915 	int rc;
5916 
5917 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5918 	if (rc)
5919 		return rc;
5920 
5921 	setup_min_unmapped_ratio();
5922 
5923 	return 0;
5924 }
5925 
setup_min_slab_ratio(void)5926 static void setup_min_slab_ratio(void)
5927 {
5928 	pg_data_t *pgdat;
5929 	struct zone *zone;
5930 
5931 	for_each_online_pgdat(pgdat)
5932 		pgdat->min_slab_pages = 0;
5933 
5934 	for_each_zone(zone)
5935 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5936 						     sysctl_min_slab_ratio) / 100;
5937 }
5938 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5939 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5940 		void *buffer, size_t *length, loff_t *ppos)
5941 {
5942 	int rc;
5943 
5944 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5945 	if (rc)
5946 		return rc;
5947 
5948 	setup_min_slab_ratio();
5949 
5950 	return 0;
5951 }
5952 #endif
5953 
5954 /*
5955  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5956  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5957  *	whenever sysctl_lowmem_reserve_ratio changes.
5958  *
5959  * The reserve ratio obviously has absolutely no relation with the
5960  * minimum watermarks. The lowmem reserve ratio can only make sense
5961  * if in function of the boot time zone sizes.
5962  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5963 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5964 		int write, void *buffer, size_t *length, loff_t *ppos)
5965 {
5966 	int i;
5967 
5968 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5969 
5970 	for (i = 0; i < MAX_NR_ZONES; i++) {
5971 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5972 			sysctl_lowmem_reserve_ratio[i] = 0;
5973 	}
5974 
5975 	setup_per_zone_lowmem_reserve();
5976 	return 0;
5977 }
5978 
5979 /*
5980  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5981  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5982  * pagelist can have before it gets flushed back to buddy allocator.
5983  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5984 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5985 		int write, void *buffer, size_t *length, loff_t *ppos)
5986 {
5987 	struct zone *zone;
5988 	int old_percpu_pagelist_high_fraction;
5989 	int ret;
5990 
5991 	mutex_lock(&pcp_batch_high_lock);
5992 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5993 
5994 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5995 	if (!write || ret < 0)
5996 		goto out;
5997 
5998 	/* Sanity checking to avoid pcp imbalance */
5999 	if (percpu_pagelist_high_fraction &&
6000 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6001 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6002 		ret = -EINVAL;
6003 		goto out;
6004 	}
6005 
6006 	/* No change? */
6007 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6008 		goto out;
6009 
6010 	for_each_populated_zone(zone)
6011 		zone_set_pageset_high_and_batch(zone, 0);
6012 out:
6013 	mutex_unlock(&pcp_batch_high_lock);
6014 	return ret;
6015 }
6016 
6017 static struct ctl_table page_alloc_sysctl_table[] = {
6018 	{
6019 		.procname	= "min_free_kbytes",
6020 		.data		= &min_free_kbytes,
6021 		.maxlen		= sizeof(min_free_kbytes),
6022 		.mode		= 0644,
6023 		.proc_handler	= min_free_kbytes_sysctl_handler,
6024 		.extra1		= SYSCTL_ZERO,
6025 	},
6026 	{
6027 		.procname	= "watermark_boost_factor",
6028 		.data		= &watermark_boost_factor,
6029 		.maxlen		= sizeof(watermark_boost_factor),
6030 		.mode		= 0644,
6031 		.proc_handler	= proc_dointvec_minmax,
6032 		.extra1		= SYSCTL_ZERO,
6033 	},
6034 	{
6035 		.procname	= "watermark_scale_factor",
6036 		.data		= &watermark_scale_factor,
6037 		.maxlen		= sizeof(watermark_scale_factor),
6038 		.mode		= 0644,
6039 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6040 		.extra1		= SYSCTL_ONE,
6041 		.extra2		= SYSCTL_THREE_THOUSAND,
6042 	},
6043 	{
6044 		.procname	= "percpu_pagelist_high_fraction",
6045 		.data		= &percpu_pagelist_high_fraction,
6046 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6047 		.mode		= 0644,
6048 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6049 		.extra1		= SYSCTL_ZERO,
6050 	},
6051 	{
6052 		.procname	= "lowmem_reserve_ratio",
6053 		.data		= &sysctl_lowmem_reserve_ratio,
6054 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6055 		.mode		= 0644,
6056 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6057 	},
6058 #ifdef CONFIG_NUMA
6059 	{
6060 		.procname	= "numa_zonelist_order",
6061 		.data		= &numa_zonelist_order,
6062 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6063 		.mode		= 0644,
6064 		.proc_handler	= numa_zonelist_order_handler,
6065 	},
6066 	{
6067 		.procname	= "min_unmapped_ratio",
6068 		.data		= &sysctl_min_unmapped_ratio,
6069 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6070 		.mode		= 0644,
6071 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6072 		.extra1		= SYSCTL_ZERO,
6073 		.extra2		= SYSCTL_ONE_HUNDRED,
6074 	},
6075 	{
6076 		.procname	= "min_slab_ratio",
6077 		.data		= &sysctl_min_slab_ratio,
6078 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6079 		.mode		= 0644,
6080 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6081 		.extra1		= SYSCTL_ZERO,
6082 		.extra2		= SYSCTL_ONE_HUNDRED,
6083 	},
6084 #endif
6085 	{}
6086 };
6087 
page_alloc_sysctl_init(void)6088 void __init page_alloc_sysctl_init(void)
6089 {
6090 	register_sysctl_init("vm", page_alloc_sysctl_table);
6091 }
6092 
6093 #ifdef CONFIG_CONTIG_ALLOC
6094 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6095 static void alloc_contig_dump_pages(struct list_head *page_list)
6096 {
6097 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6098 
6099 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6100 		struct page *page;
6101 
6102 		dump_stack();
6103 		list_for_each_entry(page, page_list, lru)
6104 			dump_page(page, "migration failure");
6105 	}
6106 }
6107 
6108 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6109 int __alloc_contig_migrate_range(struct compact_control *cc,
6110 					unsigned long start, unsigned long end)
6111 {
6112 	/* This function is based on compact_zone() from compaction.c. */
6113 	unsigned int nr_reclaimed;
6114 	unsigned long pfn = start;
6115 	unsigned int tries = 0;
6116 	int ret = 0;
6117 	struct migration_target_control mtc = {
6118 		.nid = zone_to_nid(cc->zone),
6119 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6120 	};
6121 
6122 	lru_cache_disable();
6123 
6124 	while (pfn < end || !list_empty(&cc->migratepages)) {
6125 		if (fatal_signal_pending(current)) {
6126 			ret = -EINTR;
6127 			break;
6128 		}
6129 
6130 		if (list_empty(&cc->migratepages)) {
6131 			cc->nr_migratepages = 0;
6132 			ret = isolate_migratepages_range(cc, pfn, end);
6133 			if (ret && ret != -EAGAIN)
6134 				break;
6135 			pfn = cc->migrate_pfn;
6136 			tries = 0;
6137 		} else if (++tries == 5) {
6138 			ret = -EBUSY;
6139 			break;
6140 		}
6141 
6142 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6143 							&cc->migratepages);
6144 		cc->nr_migratepages -= nr_reclaimed;
6145 
6146 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6147 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6148 
6149 		/*
6150 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6151 		 * to retry again over this error, so do the same here.
6152 		 */
6153 		if (ret == -ENOMEM)
6154 			break;
6155 	}
6156 
6157 	lru_cache_enable();
6158 	if (ret < 0) {
6159 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6160 			alloc_contig_dump_pages(&cc->migratepages);
6161 		putback_movable_pages(&cc->migratepages);
6162 		return ret;
6163 	}
6164 	return 0;
6165 }
6166 
6167 /**
6168  * alloc_contig_range() -- tries to allocate given range of pages
6169  * @start:	start PFN to allocate
6170  * @end:	one-past-the-last PFN to allocate
6171  * @migratetype:	migratetype of the underlying pageblocks (either
6172  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6173  *			in range must have the same migratetype and it must
6174  *			be either of the two.
6175  * @gfp_mask:	GFP mask to use during compaction
6176  *
6177  * The PFN range does not have to be pageblock aligned. The PFN range must
6178  * belong to a single zone.
6179  *
6180  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6181  * pageblocks in the range.  Once isolated, the pageblocks should not
6182  * be modified by others.
6183  *
6184  * Return: zero on success or negative error code.  On success all
6185  * pages which PFN is in [start, end) are allocated for the caller and
6186  * need to be freed with free_contig_range().
6187  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6188 int alloc_contig_range(unsigned long start, unsigned long end,
6189 		       unsigned migratetype, gfp_t gfp_mask)
6190 {
6191 	unsigned long outer_start, outer_end;
6192 	int order;
6193 	int ret = 0;
6194 
6195 	struct compact_control cc = {
6196 		.nr_migratepages = 0,
6197 		.order = -1,
6198 		.zone = page_zone(pfn_to_page(start)),
6199 		.mode = MIGRATE_SYNC,
6200 		.ignore_skip_hint = true,
6201 		.no_set_skip_hint = true,
6202 		.gfp_mask = current_gfp_context(gfp_mask),
6203 		.alloc_contig = true,
6204 	};
6205 	INIT_LIST_HEAD(&cc.migratepages);
6206 
6207 	/*
6208 	 * What we do here is we mark all pageblocks in range as
6209 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6210 	 * have different sizes, and due to the way page allocator
6211 	 * work, start_isolate_page_range() has special handlings for this.
6212 	 *
6213 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6214 	 * migrate the pages from an unaligned range (ie. pages that
6215 	 * we are interested in). This will put all the pages in
6216 	 * range back to page allocator as MIGRATE_ISOLATE.
6217 	 *
6218 	 * When this is done, we take the pages in range from page
6219 	 * allocator removing them from the buddy system.  This way
6220 	 * page allocator will never consider using them.
6221 	 *
6222 	 * This lets us mark the pageblocks back as
6223 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6224 	 * aligned range but not in the unaligned, original range are
6225 	 * put back to page allocator so that buddy can use them.
6226 	 */
6227 
6228 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6229 	if (ret)
6230 		goto done;
6231 
6232 	drain_all_pages(cc.zone);
6233 
6234 	/*
6235 	 * In case of -EBUSY, we'd like to know which page causes problem.
6236 	 * So, just fall through. test_pages_isolated() has a tracepoint
6237 	 * which will report the busy page.
6238 	 *
6239 	 * It is possible that busy pages could become available before
6240 	 * the call to test_pages_isolated, and the range will actually be
6241 	 * allocated.  So, if we fall through be sure to clear ret so that
6242 	 * -EBUSY is not accidentally used or returned to caller.
6243 	 */
6244 	ret = __alloc_contig_migrate_range(&cc, start, end);
6245 	if (ret && ret != -EBUSY)
6246 		goto done;
6247 	ret = 0;
6248 
6249 	/*
6250 	 * Pages from [start, end) are within a pageblock_nr_pages
6251 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6252 	 * more, all pages in [start, end) are free in page allocator.
6253 	 * What we are going to do is to allocate all pages from
6254 	 * [start, end) (that is remove them from page allocator).
6255 	 *
6256 	 * The only problem is that pages at the beginning and at the
6257 	 * end of interesting range may be not aligned with pages that
6258 	 * page allocator holds, ie. they can be part of higher order
6259 	 * pages.  Because of this, we reserve the bigger range and
6260 	 * once this is done free the pages we are not interested in.
6261 	 *
6262 	 * We don't have to hold zone->lock here because the pages are
6263 	 * isolated thus they won't get removed from buddy.
6264 	 */
6265 
6266 	order = 0;
6267 	outer_start = start;
6268 	while (!PageBuddy(pfn_to_page(outer_start))) {
6269 		if (++order > MAX_ORDER) {
6270 			outer_start = start;
6271 			break;
6272 		}
6273 		outer_start &= ~0UL << order;
6274 	}
6275 
6276 	if (outer_start != start) {
6277 		order = buddy_order(pfn_to_page(outer_start));
6278 
6279 		/*
6280 		 * outer_start page could be small order buddy page and
6281 		 * it doesn't include start page. Adjust outer_start
6282 		 * in this case to report failed page properly
6283 		 * on tracepoint in test_pages_isolated()
6284 		 */
6285 		if (outer_start + (1UL << order) <= start)
6286 			outer_start = start;
6287 	}
6288 
6289 	/* Make sure the range is really isolated. */
6290 	if (test_pages_isolated(outer_start, end, 0)) {
6291 		ret = -EBUSY;
6292 		goto done;
6293 	}
6294 
6295 	/* Grab isolated pages from freelists. */
6296 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6297 	if (!outer_end) {
6298 		ret = -EBUSY;
6299 		goto done;
6300 	}
6301 
6302 	/* Free head and tail (if any) */
6303 	if (start != outer_start)
6304 		free_contig_range(outer_start, start - outer_start);
6305 	if (end != outer_end)
6306 		free_contig_range(end, outer_end - end);
6307 
6308 done:
6309 	undo_isolate_page_range(start, end, migratetype);
6310 	return ret;
6311 }
6312 EXPORT_SYMBOL(alloc_contig_range);
6313 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6314 static int __alloc_contig_pages(unsigned long start_pfn,
6315 				unsigned long nr_pages, gfp_t gfp_mask)
6316 {
6317 	unsigned long end_pfn = start_pfn + nr_pages;
6318 
6319 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6320 				  gfp_mask);
6321 }
6322 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6323 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6324 				   unsigned long nr_pages)
6325 {
6326 	unsigned long i, end_pfn = start_pfn + nr_pages;
6327 	struct page *page;
6328 
6329 	for (i = start_pfn; i < end_pfn; i++) {
6330 		page = pfn_to_online_page(i);
6331 		if (!page)
6332 			return false;
6333 
6334 		if (page_zone(page) != z)
6335 			return false;
6336 
6337 		if (PageReserved(page))
6338 			return false;
6339 
6340 		if (PageHuge(page))
6341 			return false;
6342 	}
6343 	return true;
6344 }
6345 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6346 static bool zone_spans_last_pfn(const struct zone *zone,
6347 				unsigned long start_pfn, unsigned long nr_pages)
6348 {
6349 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6350 
6351 	return zone_spans_pfn(zone, last_pfn);
6352 }
6353 
6354 /**
6355  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6356  * @nr_pages:	Number of contiguous pages to allocate
6357  * @gfp_mask:	GFP mask to limit search and used during compaction
6358  * @nid:	Target node
6359  * @nodemask:	Mask for other possible nodes
6360  *
6361  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6362  * on an applicable zonelist to find a contiguous pfn range which can then be
6363  * tried for allocation with alloc_contig_range(). This routine is intended
6364  * for allocation requests which can not be fulfilled with the buddy allocator.
6365  *
6366  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6367  * power of two, then allocated range is also guaranteed to be aligned to same
6368  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6369  *
6370  * Allocated pages can be freed with free_contig_range() or by manually calling
6371  * __free_page() on each allocated page.
6372  *
6373  * Return: pointer to contiguous pages on success, or NULL if not successful.
6374  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6375 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6376 				int nid, nodemask_t *nodemask)
6377 {
6378 	unsigned long ret, pfn, flags;
6379 	struct zonelist *zonelist;
6380 	struct zone *zone;
6381 	struct zoneref *z;
6382 
6383 	zonelist = node_zonelist(nid, gfp_mask);
6384 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6385 					gfp_zone(gfp_mask), nodemask) {
6386 		spin_lock_irqsave(&zone->lock, flags);
6387 
6388 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6389 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6390 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6391 				/*
6392 				 * We release the zone lock here because
6393 				 * alloc_contig_range() will also lock the zone
6394 				 * at some point. If there's an allocation
6395 				 * spinning on this lock, it may win the race
6396 				 * and cause alloc_contig_range() to fail...
6397 				 */
6398 				spin_unlock_irqrestore(&zone->lock, flags);
6399 				ret = __alloc_contig_pages(pfn, nr_pages,
6400 							gfp_mask);
6401 				if (!ret)
6402 					return pfn_to_page(pfn);
6403 				spin_lock_irqsave(&zone->lock, flags);
6404 			}
6405 			pfn += nr_pages;
6406 		}
6407 		spin_unlock_irqrestore(&zone->lock, flags);
6408 	}
6409 	return NULL;
6410 }
6411 #endif /* CONFIG_CONTIG_ALLOC */
6412 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6413 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6414 {
6415 	unsigned long count = 0;
6416 
6417 	for (; nr_pages--; pfn++) {
6418 		struct page *page = pfn_to_page(pfn);
6419 
6420 		count += page_count(page) != 1;
6421 		__free_page(page);
6422 	}
6423 	WARN(count != 0, "%lu pages are still in use!\n", count);
6424 }
6425 EXPORT_SYMBOL(free_contig_range);
6426 
6427 /*
6428  * Effectively disable pcplists for the zone by setting the high limit to 0
6429  * and draining all cpus. A concurrent page freeing on another CPU that's about
6430  * to put the page on pcplist will either finish before the drain and the page
6431  * will be drained, or observe the new high limit and skip the pcplist.
6432  *
6433  * Must be paired with a call to zone_pcp_enable().
6434  */
zone_pcp_disable(struct zone * zone)6435 void zone_pcp_disable(struct zone *zone)
6436 {
6437 	mutex_lock(&pcp_batch_high_lock);
6438 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6439 	__drain_all_pages(zone, true);
6440 }
6441 
zone_pcp_enable(struct zone * zone)6442 void zone_pcp_enable(struct zone *zone)
6443 {
6444 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6445 	mutex_unlock(&pcp_batch_high_lock);
6446 }
6447 
zone_pcp_reset(struct zone * zone)6448 void zone_pcp_reset(struct zone *zone)
6449 {
6450 	int cpu;
6451 	struct per_cpu_zonestat *pzstats;
6452 
6453 	if (zone->per_cpu_pageset != &boot_pageset) {
6454 		for_each_online_cpu(cpu) {
6455 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6456 			drain_zonestat(zone, pzstats);
6457 		}
6458 		free_percpu(zone->per_cpu_pageset);
6459 		zone->per_cpu_pageset = &boot_pageset;
6460 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6461 			free_percpu(zone->per_cpu_zonestats);
6462 			zone->per_cpu_zonestats = &boot_zonestats;
6463 		}
6464 	}
6465 }
6466 
6467 #ifdef CONFIG_MEMORY_HOTREMOVE
6468 /*
6469  * All pages in the range must be in a single zone, must not contain holes,
6470  * must span full sections, and must be isolated before calling this function.
6471  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6472 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6473 {
6474 	unsigned long pfn = start_pfn;
6475 	struct page *page;
6476 	struct zone *zone;
6477 	unsigned int order;
6478 	unsigned long flags;
6479 
6480 	offline_mem_sections(pfn, end_pfn);
6481 	zone = page_zone(pfn_to_page(pfn));
6482 	spin_lock_irqsave(&zone->lock, flags);
6483 	while (pfn < end_pfn) {
6484 		page = pfn_to_page(pfn);
6485 		/*
6486 		 * The HWPoisoned page may be not in buddy system, and
6487 		 * page_count() is not 0.
6488 		 */
6489 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6490 			pfn++;
6491 			continue;
6492 		}
6493 		/*
6494 		 * At this point all remaining PageOffline() pages have a
6495 		 * reference count of 0 and can simply be skipped.
6496 		 */
6497 		if (PageOffline(page)) {
6498 			BUG_ON(page_count(page));
6499 			BUG_ON(PageBuddy(page));
6500 			pfn++;
6501 			continue;
6502 		}
6503 
6504 		BUG_ON(page_count(page));
6505 		BUG_ON(!PageBuddy(page));
6506 		order = buddy_order(page);
6507 		del_page_from_free_list(page, zone, order);
6508 		pfn += (1 << order);
6509 	}
6510 	spin_unlock_irqrestore(&zone->lock, flags);
6511 }
6512 #endif
6513 
6514 /*
6515  * This function returns a stable result only if called under zone lock.
6516  */
is_free_buddy_page(struct page * page)6517 bool is_free_buddy_page(struct page *page)
6518 {
6519 	unsigned long pfn = page_to_pfn(page);
6520 	unsigned int order;
6521 
6522 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6523 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6524 
6525 		if (PageBuddy(page_head) &&
6526 		    buddy_order_unsafe(page_head) >= order)
6527 			break;
6528 	}
6529 
6530 	return order <= MAX_ORDER;
6531 }
6532 EXPORT_SYMBOL(is_free_buddy_page);
6533 
6534 #ifdef CONFIG_MEMORY_FAILURE
6535 /*
6536  * Break down a higher-order page in sub-pages, and keep our target out of
6537  * buddy allocator.
6538  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6539 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6540 				   struct page *target, int low, int high,
6541 				   int migratetype)
6542 {
6543 	unsigned long size = 1 << high;
6544 	struct page *current_buddy, *next_page;
6545 
6546 	while (high > low) {
6547 		high--;
6548 		size >>= 1;
6549 
6550 		if (target >= &page[size]) {
6551 			next_page = page + size;
6552 			current_buddy = page;
6553 		} else {
6554 			next_page = page;
6555 			current_buddy = page + size;
6556 		}
6557 		page = next_page;
6558 
6559 		if (set_page_guard(zone, current_buddy, high, migratetype))
6560 			continue;
6561 
6562 		if (current_buddy != target) {
6563 			add_to_free_list(current_buddy, zone, high, migratetype);
6564 			set_buddy_order(current_buddy, high);
6565 		}
6566 	}
6567 }
6568 
6569 /*
6570  * Take a page that will be marked as poisoned off the buddy allocator.
6571  */
take_page_off_buddy(struct page * page)6572 bool take_page_off_buddy(struct page *page)
6573 {
6574 	struct zone *zone = page_zone(page);
6575 	unsigned long pfn = page_to_pfn(page);
6576 	unsigned long flags;
6577 	unsigned int order;
6578 	bool ret = false;
6579 
6580 	spin_lock_irqsave(&zone->lock, flags);
6581 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6582 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6583 		int page_order = buddy_order(page_head);
6584 
6585 		if (PageBuddy(page_head) && page_order >= order) {
6586 			unsigned long pfn_head = page_to_pfn(page_head);
6587 			int migratetype = get_pfnblock_migratetype(page_head,
6588 								   pfn_head);
6589 
6590 			del_page_from_free_list(page_head, zone, page_order);
6591 			break_down_buddy_pages(zone, page_head, page, 0,
6592 						page_order, migratetype);
6593 			SetPageHWPoisonTakenOff(page);
6594 			if (!is_migrate_isolate(migratetype))
6595 				__mod_zone_freepage_state(zone, -1, migratetype);
6596 			ret = true;
6597 			break;
6598 		}
6599 		if (page_count(page_head) > 0)
6600 			break;
6601 	}
6602 	spin_unlock_irqrestore(&zone->lock, flags);
6603 	return ret;
6604 }
6605 
6606 /*
6607  * Cancel takeoff done by take_page_off_buddy().
6608  */
put_page_back_buddy(struct page * page)6609 bool put_page_back_buddy(struct page *page)
6610 {
6611 	struct zone *zone = page_zone(page);
6612 	unsigned long pfn = page_to_pfn(page);
6613 	unsigned long flags;
6614 	int migratetype = get_pfnblock_migratetype(page, pfn);
6615 	bool ret = false;
6616 
6617 	spin_lock_irqsave(&zone->lock, flags);
6618 	if (put_page_testzero(page)) {
6619 		ClearPageHWPoisonTakenOff(page);
6620 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6621 		if (TestClearPageHWPoison(page)) {
6622 			ret = true;
6623 		}
6624 	}
6625 	spin_unlock_irqrestore(&zone->lock, flags);
6626 
6627 	return ret;
6628 }
6629 #endif
6630 
6631 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6632 bool has_managed_dma(void)
6633 {
6634 	struct pglist_data *pgdat;
6635 
6636 	for_each_online_pgdat(pgdat) {
6637 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6638 
6639 		if (managed_zone(zone))
6640 			return true;
6641 	}
6642 	return false;
6643 }
6644 #endif /* CONFIG_ZONE_DMA */
6645 
6646 #ifdef CONFIG_UNACCEPTED_MEMORY
6647 
6648 static bool lazy_accept = true;
6649 
accept_memory_parse(char * p)6650 static int __init accept_memory_parse(char *p)
6651 {
6652 	if (!strcmp(p, "lazy")) {
6653 		lazy_accept = true;
6654 		return 0;
6655 	} else if (!strcmp(p, "eager")) {
6656 		lazy_accept = false;
6657 		return 0;
6658 	} else {
6659 		return -EINVAL;
6660 	}
6661 }
6662 early_param("accept_memory", accept_memory_parse);
6663 
page_contains_unaccepted(struct page * page,unsigned int order)6664 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6665 {
6666 	phys_addr_t start = page_to_phys(page);
6667 	phys_addr_t end = start + (PAGE_SIZE << order);
6668 
6669 	return range_contains_unaccepted_memory(start, end);
6670 }
6671 
accept_page(struct page * page,unsigned int order)6672 static void accept_page(struct page *page, unsigned int order)
6673 {
6674 	phys_addr_t start = page_to_phys(page);
6675 
6676 	accept_memory(start, start + (PAGE_SIZE << order));
6677 }
6678 
try_to_accept_memory_one(struct zone * zone)6679 static bool try_to_accept_memory_one(struct zone *zone)
6680 {
6681 	unsigned long flags;
6682 	struct page *page;
6683 
6684 	spin_lock_irqsave(&zone->lock, flags);
6685 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6686 					struct page, lru);
6687 	if (!page) {
6688 		spin_unlock_irqrestore(&zone->lock, flags);
6689 		return false;
6690 	}
6691 
6692 	list_del(&page->lru);
6693 
6694 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6695 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6696 	spin_unlock_irqrestore(&zone->lock, flags);
6697 
6698 	accept_page(page, MAX_ORDER);
6699 
6700 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6701 
6702 	return true;
6703 }
6704 
cond_accept_memory(struct zone * zone,unsigned int order)6705 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6706 {
6707 	long to_accept, wmark;
6708 	bool ret = false;
6709 
6710 	if (list_empty(&zone->unaccepted_pages))
6711 		return false;
6712 
6713 	wmark = high_wmark_pages(zone);
6714 
6715 	/*
6716 	 * Watermarks have not been initialized yet.
6717 	 *
6718 	 * Accepting one MAX_ORDER page to ensure progress.
6719 	 */
6720 	if (!wmark)
6721 		return try_to_accept_memory_one(zone);
6722 
6723 	/* How much to accept to get to high watermark? */
6724 	to_accept = wmark -
6725 		    (zone_page_state(zone, NR_FREE_PAGES) -
6726 		    __zone_watermark_unusable_free(zone, order, 0) -
6727 		    zone_page_state(zone, NR_UNACCEPTED));
6728 
6729 	while (to_accept > 0) {
6730 		if (!try_to_accept_memory_one(zone))
6731 			break;
6732 		ret = true;
6733 		to_accept -= MAX_ORDER_NR_PAGES;
6734 	}
6735 
6736 	return ret;
6737 }
6738 
__free_unaccepted(struct page * page)6739 static bool __free_unaccepted(struct page *page)
6740 {
6741 	struct zone *zone = page_zone(page);
6742 	unsigned long flags;
6743 
6744 	if (!lazy_accept)
6745 		return false;
6746 
6747 	spin_lock_irqsave(&zone->lock, flags);
6748 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6749 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6750 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6751 	spin_unlock_irqrestore(&zone->lock, flags);
6752 
6753 	return true;
6754 }
6755 
6756 #else
6757 
page_contains_unaccepted(struct page * page,unsigned int order)6758 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6759 {
6760 	return false;
6761 }
6762 
accept_page(struct page * page,unsigned int order)6763 static void accept_page(struct page *page, unsigned int order)
6764 {
6765 }
6766 
cond_accept_memory(struct zone * zone,unsigned int order)6767 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6768 {
6769 	return false;
6770 }
6771 
__free_unaccepted(struct page * page)6772 static bool __free_unaccepted(struct page *page)
6773 {
6774 	BUILD_BUG();
6775 	return false;
6776 }
6777 
6778 #endif /* CONFIG_UNACCEPTED_MEMORY */
6779