1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34 * lock ordering:
35 * page_lock
36 * pool->lock
37 * zspage->lock
38 */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC 0x58
67
68 /*
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74 #define ZS_ALIGN 8
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * a single (unsigned long) handle value.
81 *
82 * Note that object index <obj_idx> starts from 0.
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108 #define OBJ_ALLOCATED_TAG 1
109
110 #define OBJ_TAG_BITS 1
111 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
112
113 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
114 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115
116 #define HUGE_BITS 1
117 #define FULLNESS_BITS 4
118 #define CLASS_BITS 8
119 #define ISOLATED_BITS 5
120 #define MAGIC_VAL_BITS 8
121
122 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
123
124 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
131
132 /*
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 *
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
144 */
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
148
149 /*
150 * Pages are distinguished by the ratio of used memory (that is the ratio
151 * of ->inuse objects to all objects that page can store). For example,
152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153 *
154 * The number of fullness groups is not random. It allows us to keep
155 * difference between the least busy page in the group (minimum permitted
156 * number of ->inuse objects) and the most busy page (maximum permitted
157 * number of ->inuse objects) at a reasonable value.
158 */
159 enum fullness_group {
160 ZS_INUSE_RATIO_0,
161 ZS_INUSE_RATIO_10,
162 /* NOTE: 8 more fullness groups here */
163 ZS_INUSE_RATIO_99 = 10,
164 ZS_INUSE_RATIO_100,
165 NR_FULLNESS_GROUPS,
166 };
167
168 enum class_stat_type {
169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
171 ZS_OBJS_INUSE,
172 NR_CLASS_STAT_TYPES,
173 };
174
175 struct zs_size_stat {
176 unsigned long objs[NR_CLASS_STAT_TYPES];
177 };
178
179 #ifdef CONFIG_ZSMALLOC_STAT
180 static struct dentry *zs_stat_root;
181 #endif
182
183 static size_t huge_class_size;
184
185 struct size_class {
186 struct list_head fullness_list[NR_FULLNESS_GROUPS];
187 /*
188 * Size of objects stored in this class. Must be multiple
189 * of ZS_ALIGN.
190 */
191 int size;
192 int objs_per_zspage;
193 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194 int pages_per_zspage;
195
196 unsigned int index;
197 struct zs_size_stat stats;
198 };
199
200 /*
201 * Placed within free objects to form a singly linked list.
202 * For every zspage, zspage->freeobj gives head of this list.
203 *
204 * This must be power of 2 and less than or equal to ZS_ALIGN
205 */
206 struct link_free {
207 union {
208 /*
209 * Free object index;
210 * It's valid for non-allocated object
211 */
212 unsigned long next;
213 /*
214 * Handle of allocated object.
215 */
216 unsigned long handle;
217 };
218 };
219
220 struct zs_pool {
221 const char *name;
222
223 struct size_class *size_class[ZS_SIZE_CLASSES];
224 struct kmem_cache *handle_cachep;
225 struct kmem_cache *zspage_cachep;
226
227 atomic_long_t pages_allocated;
228
229 struct zs_pool_stats stats;
230
231 /* Compact classes */
232 struct shrinker shrinker;
233
234 #ifdef CONFIG_ZSMALLOC_STAT
235 struct dentry *stat_dentry;
236 #endif
237 #ifdef CONFIG_COMPACTION
238 struct work_struct free_work;
239 #endif
240 spinlock_t lock;
241 atomic_t compaction_in_progress;
242 };
243
244 struct zspage {
245 struct {
246 unsigned int huge:HUGE_BITS;
247 unsigned int fullness:FULLNESS_BITS;
248 unsigned int class:CLASS_BITS + 1;
249 unsigned int isolated:ISOLATED_BITS;
250 unsigned int magic:MAGIC_VAL_BITS;
251 };
252 unsigned int inuse;
253 unsigned int freeobj;
254 struct page *first_page;
255 struct list_head list; /* fullness list */
256 struct zs_pool *pool;
257 rwlock_t lock;
258 };
259
260 struct mapping_area {
261 local_lock_t lock;
262 char *vm_buf; /* copy buffer for objects that span pages */
263 char *vm_addr; /* address of kmap_atomic()'ed pages */
264 enum zs_mapmode vm_mm; /* mapping mode */
265 };
266
267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)268 static void SetZsHugePage(struct zspage *zspage)
269 {
270 zspage->huge = 1;
271 }
272
ZsHugePage(struct zspage * zspage)273 static bool ZsHugePage(struct zspage *zspage)
274 {
275 return zspage->huge;
276 }
277
278 static void migrate_lock_init(struct zspage *zspage);
279 static void migrate_read_lock(struct zspage *zspage);
280 static void migrate_read_unlock(struct zspage *zspage);
281
282 #ifdef CONFIG_COMPACTION
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_lock_nested(struct zspage *zspage);
285 static void migrate_write_unlock(struct zspage *zspage);
286 static void kick_deferred_free(struct zs_pool *pool);
287 static void init_deferred_free(struct zs_pool *pool);
288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289 #else
migrate_write_lock(struct zspage * zspage)290 static void migrate_write_lock(struct zspage *zspage) {}
migrate_write_lock_nested(struct zspage * zspage)291 static void migrate_write_lock_nested(struct zspage *zspage) {}
migrate_write_unlock(struct zspage * zspage)292 static void migrate_write_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool * pool)293 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)294 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)295 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296 #endif
297
create_cache(struct zs_pool * pool)298 static int create_cache(struct zs_pool *pool)
299 {
300 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
301 0, 0, NULL);
302 if (!pool->handle_cachep)
303 return 1;
304
305 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
306 0, 0, NULL);
307 if (!pool->zspage_cachep) {
308 kmem_cache_destroy(pool->handle_cachep);
309 pool->handle_cachep = NULL;
310 return 1;
311 }
312
313 return 0;
314 }
315
destroy_cache(struct zs_pool * pool)316 static void destroy_cache(struct zs_pool *pool)
317 {
318 kmem_cache_destroy(pool->handle_cachep);
319 kmem_cache_destroy(pool->zspage_cachep);
320 }
321
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)322 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
323 {
324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
325 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
326 }
327
cache_free_handle(struct zs_pool * pool,unsigned long handle)328 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
329 {
330 kmem_cache_free(pool->handle_cachep, (void *)handle);
331 }
332
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)333 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
334 {
335 return kmem_cache_zalloc(pool->zspage_cachep,
336 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
337 }
338
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)339 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
340 {
341 kmem_cache_free(pool->zspage_cachep, zspage);
342 }
343
344 /* pool->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)345 static void record_obj(unsigned long handle, unsigned long obj)
346 {
347 *(unsigned long *)handle = obj;
348 }
349
350 /* zpool driver */
351
352 #ifdef CONFIG_ZPOOL
353
zs_zpool_create(const char * name,gfp_t gfp)354 static void *zs_zpool_create(const char *name, gfp_t gfp)
355 {
356 /*
357 * Ignore global gfp flags: zs_malloc() may be invoked from
358 * different contexts and its caller must provide a valid
359 * gfp mask.
360 */
361 return zs_create_pool(name);
362 }
363
zs_zpool_destroy(void * pool)364 static void zs_zpool_destroy(void *pool)
365 {
366 zs_destroy_pool(pool);
367 }
368
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)369 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
370 unsigned long *handle)
371 {
372 *handle = zs_malloc(pool, size, gfp);
373
374 if (IS_ERR_VALUE(*handle))
375 return PTR_ERR((void *)*handle);
376 return 0;
377 }
zs_zpool_free(void * pool,unsigned long handle)378 static void zs_zpool_free(void *pool, unsigned long handle)
379 {
380 zs_free(pool, handle);
381 }
382
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)383 static void *zs_zpool_map(void *pool, unsigned long handle,
384 enum zpool_mapmode mm)
385 {
386 enum zs_mapmode zs_mm;
387
388 switch (mm) {
389 case ZPOOL_MM_RO:
390 zs_mm = ZS_MM_RO;
391 break;
392 case ZPOOL_MM_WO:
393 zs_mm = ZS_MM_WO;
394 break;
395 case ZPOOL_MM_RW:
396 default:
397 zs_mm = ZS_MM_RW;
398 break;
399 }
400
401 return zs_map_object(pool, handle, zs_mm);
402 }
zs_zpool_unmap(void * pool,unsigned long handle)403 static void zs_zpool_unmap(void *pool, unsigned long handle)
404 {
405 zs_unmap_object(pool, handle);
406 }
407
zs_zpool_total_size(void * pool)408 static u64 zs_zpool_total_size(void *pool)
409 {
410 return zs_get_total_pages(pool) << PAGE_SHIFT;
411 }
412
413 static struct zpool_driver zs_zpool_driver = {
414 .type = "zsmalloc",
415 .owner = THIS_MODULE,
416 .create = zs_zpool_create,
417 .destroy = zs_zpool_destroy,
418 .malloc_support_movable = true,
419 .malloc = zs_zpool_malloc,
420 .free = zs_zpool_free,
421 .map = zs_zpool_map,
422 .unmap = zs_zpool_unmap,
423 .total_size = zs_zpool_total_size,
424 };
425
426 MODULE_ALIAS("zpool-zsmalloc");
427 #endif /* CONFIG_ZPOOL */
428
429 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
430 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
431 .lock = INIT_LOCAL_LOCK(lock),
432 };
433
is_first_page(struct page * page)434 static __maybe_unused int is_first_page(struct page *page)
435 {
436 return PagePrivate(page);
437 }
438
439 /* Protected by pool->lock */
get_zspage_inuse(struct zspage * zspage)440 static inline int get_zspage_inuse(struct zspage *zspage)
441 {
442 return zspage->inuse;
443 }
444
445
mod_zspage_inuse(struct zspage * zspage,int val)446 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447 {
448 zspage->inuse += val;
449 }
450
get_first_page(struct zspage * zspage)451 static inline struct page *get_first_page(struct zspage *zspage)
452 {
453 struct page *first_page = zspage->first_page;
454
455 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
456 return first_page;
457 }
458
get_first_obj_offset(struct page * page)459 static inline unsigned int get_first_obj_offset(struct page *page)
460 {
461 return page->page_type;
462 }
463
set_first_obj_offset(struct page * page,unsigned int offset)464 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
465 {
466 page->page_type = offset;
467 }
468
get_freeobj(struct zspage * zspage)469 static inline unsigned int get_freeobj(struct zspage *zspage)
470 {
471 return zspage->freeobj;
472 }
473
set_freeobj(struct zspage * zspage,unsigned int obj)474 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
475 {
476 zspage->freeobj = obj;
477 }
478
get_zspage_mapping(struct zspage * zspage,unsigned int * class_idx,int * fullness)479 static void get_zspage_mapping(struct zspage *zspage,
480 unsigned int *class_idx,
481 int *fullness)
482 {
483 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
484
485 *fullness = zspage->fullness;
486 *class_idx = zspage->class;
487 }
488
zspage_class(struct zs_pool * pool,struct zspage * zspage)489 static struct size_class *zspage_class(struct zs_pool *pool,
490 struct zspage *zspage)
491 {
492 return pool->size_class[zspage->class];
493 }
494
set_zspage_mapping(struct zspage * zspage,unsigned int class_idx,int fullness)495 static void set_zspage_mapping(struct zspage *zspage,
496 unsigned int class_idx,
497 int fullness)
498 {
499 zspage->class = class_idx;
500 zspage->fullness = fullness;
501 }
502
503 /*
504 * zsmalloc divides the pool into various size classes where each
505 * class maintains a list of zspages where each zspage is divided
506 * into equal sized chunks. Each allocation falls into one of these
507 * classes depending on its size. This function returns index of the
508 * size class which has chunk size big enough to hold the given size.
509 */
get_size_class_index(int size)510 static int get_size_class_index(int size)
511 {
512 int idx = 0;
513
514 if (likely(size > ZS_MIN_ALLOC_SIZE))
515 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
516 ZS_SIZE_CLASS_DELTA);
517
518 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
519 }
520
class_stat_inc(struct size_class * class,int type,unsigned long cnt)521 static inline void class_stat_inc(struct size_class *class,
522 int type, unsigned long cnt)
523 {
524 class->stats.objs[type] += cnt;
525 }
526
class_stat_dec(struct size_class * class,int type,unsigned long cnt)527 static inline void class_stat_dec(struct size_class *class,
528 int type, unsigned long cnt)
529 {
530 class->stats.objs[type] -= cnt;
531 }
532
zs_stat_get(struct size_class * class,int type)533 static inline unsigned long zs_stat_get(struct size_class *class, int type)
534 {
535 return class->stats.objs[type];
536 }
537
538 #ifdef CONFIG_ZSMALLOC_STAT
539
zs_stat_init(void)540 static void __init zs_stat_init(void)
541 {
542 if (!debugfs_initialized()) {
543 pr_warn("debugfs not available, stat dir not created\n");
544 return;
545 }
546
547 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
548 }
549
zs_stat_exit(void)550 static void __exit zs_stat_exit(void)
551 {
552 debugfs_remove_recursive(zs_stat_root);
553 }
554
555 static unsigned long zs_can_compact(struct size_class *class);
556
zs_stats_size_show(struct seq_file * s,void * v)557 static int zs_stats_size_show(struct seq_file *s, void *v)
558 {
559 int i, fg;
560 struct zs_pool *pool = s->private;
561 struct size_class *class;
562 int objs_per_zspage;
563 unsigned long obj_allocated, obj_used, pages_used, freeable;
564 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
565 unsigned long total_freeable = 0;
566 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
567
568 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
569 "class", "size", "10%", "20%", "30%", "40%",
570 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
571 "obj_allocated", "obj_used", "pages_used",
572 "pages_per_zspage", "freeable");
573
574 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
575
576 class = pool->size_class[i];
577
578 if (class->index != i)
579 continue;
580
581 spin_lock(&pool->lock);
582
583 seq_printf(s, " %5u %5u ", i, class->size);
584 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
585 inuse_totals[fg] += zs_stat_get(class, fg);
586 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
587 }
588
589 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
590 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
591 freeable = zs_can_compact(class);
592 spin_unlock(&pool->lock);
593
594 objs_per_zspage = class->objs_per_zspage;
595 pages_used = obj_allocated / objs_per_zspage *
596 class->pages_per_zspage;
597
598 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
599 obj_allocated, obj_used, pages_used,
600 class->pages_per_zspage, freeable);
601
602 total_objs += obj_allocated;
603 total_used_objs += obj_used;
604 total_pages += pages_used;
605 total_freeable += freeable;
606 }
607
608 seq_puts(s, "\n");
609 seq_printf(s, " %5s %5s ", "Total", "");
610
611 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
612 seq_printf(s, "%9lu ", inuse_totals[fg]);
613
614 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
615 total_objs, total_used_objs, total_pages, "",
616 total_freeable);
617
618 return 0;
619 }
620 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
621
zs_pool_stat_create(struct zs_pool * pool,const char * name)622 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
623 {
624 if (!zs_stat_root) {
625 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
626 return;
627 }
628
629 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
630
631 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
632 &zs_stats_size_fops);
633 }
634
zs_pool_stat_destroy(struct zs_pool * pool)635 static void zs_pool_stat_destroy(struct zs_pool *pool)
636 {
637 debugfs_remove_recursive(pool->stat_dentry);
638 }
639
640 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)641 static void __init zs_stat_init(void)
642 {
643 }
644
zs_stat_exit(void)645 static void __exit zs_stat_exit(void)
646 {
647 }
648
zs_pool_stat_create(struct zs_pool * pool,const char * name)649 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651 }
652
zs_pool_stat_destroy(struct zs_pool * pool)653 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654 {
655 }
656 #endif
657
658
659 /*
660 * For each size class, zspages are divided into different groups
661 * depending on their usage ratio. This function returns fullness
662 * status of the given page.
663 */
get_fullness_group(struct size_class * class,struct zspage * zspage)664 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
665 {
666 int inuse, objs_per_zspage, ratio;
667
668 inuse = get_zspage_inuse(zspage);
669 objs_per_zspage = class->objs_per_zspage;
670
671 if (inuse == 0)
672 return ZS_INUSE_RATIO_0;
673 if (inuse == objs_per_zspage)
674 return ZS_INUSE_RATIO_100;
675
676 ratio = 100 * inuse / objs_per_zspage;
677 /*
678 * Take integer division into consideration: a page with one inuse
679 * object out of 127 possible, will end up having 0 usage ratio,
680 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
681 */
682 return ratio / 10 + 1;
683 }
684
685 /*
686 * Each size class maintains various freelists and zspages are assigned
687 * to one of these freelists based on the number of live objects they
688 * have. This functions inserts the given zspage into the freelist
689 * identified by <class, fullness_group>.
690 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)691 static void insert_zspage(struct size_class *class,
692 struct zspage *zspage,
693 int fullness)
694 {
695 class_stat_inc(class, fullness, 1);
696 list_add(&zspage->list, &class->fullness_list[fullness]);
697 }
698
699 /*
700 * This function removes the given zspage from the freelist identified
701 * by <class, fullness_group>.
702 */
remove_zspage(struct size_class * class,struct zspage * zspage,int fullness)703 static void remove_zspage(struct size_class *class,
704 struct zspage *zspage,
705 int fullness)
706 {
707 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708
709 list_del_init(&zspage->list);
710 class_stat_dec(class, fullness, 1);
711 }
712
713 /*
714 * Each size class maintains zspages in different fullness groups depending
715 * on the number of live objects they contain. When allocating or freeing
716 * objects, the fullness status of the page can change, for instance, from
717 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718 * checks if such a status change has occurred for the given page and
719 * accordingly moves the page from the list of the old fullness group to that
720 * of the new fullness group.
721 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723 {
724 int class_idx;
725 int currfg, newfg;
726
727 get_zspage_mapping(zspage, &class_idx, &currfg);
728 newfg = get_fullness_group(class, zspage);
729 if (newfg == currfg)
730 goto out;
731
732 remove_zspage(class, zspage, currfg);
733 insert_zspage(class, zspage, newfg);
734 set_zspage_mapping(zspage, class_idx, newfg);
735 out:
736 return newfg;
737 }
738
get_zspage(struct page * page)739 static struct zspage *get_zspage(struct page *page)
740 {
741 struct zspage *zspage = (struct zspage *)page_private(page);
742
743 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
744 return zspage;
745 }
746
get_next_page(struct page * page)747 static struct page *get_next_page(struct page *page)
748 {
749 struct zspage *zspage = get_zspage(page);
750
751 if (unlikely(ZsHugePage(zspage)))
752 return NULL;
753
754 return (struct page *)page->index;
755 }
756
757 /**
758 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
759 * @obj: the encoded object value
760 * @page: page object resides in zspage
761 * @obj_idx: object index
762 */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)763 static void obj_to_location(unsigned long obj, struct page **page,
764 unsigned int *obj_idx)
765 {
766 obj >>= OBJ_TAG_BITS;
767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 *obj_idx = (obj & OBJ_INDEX_MASK);
769 }
770
obj_to_page(unsigned long obj,struct page ** page)771 static void obj_to_page(unsigned long obj, struct page **page)
772 {
773 obj >>= OBJ_TAG_BITS;
774 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
775 }
776
777 /**
778 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779 * @page: page object resides in zspage
780 * @obj_idx: object index
781 */
location_to_obj(struct page * page,unsigned int obj_idx)782 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
783 {
784 unsigned long obj;
785
786 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
787 obj |= obj_idx & OBJ_INDEX_MASK;
788 obj <<= OBJ_TAG_BITS;
789
790 return obj;
791 }
792
handle_to_obj(unsigned long handle)793 static unsigned long handle_to_obj(unsigned long handle)
794 {
795 return *(unsigned long *)handle;
796 }
797
obj_allocated(struct page * page,void * obj,unsigned long * phandle)798 static inline bool obj_allocated(struct page *page, void *obj,
799 unsigned long *phandle)
800 {
801 unsigned long handle;
802 struct zspage *zspage = get_zspage(page);
803
804 if (unlikely(ZsHugePage(zspage))) {
805 VM_BUG_ON_PAGE(!is_first_page(page), page);
806 handle = page->index;
807 } else
808 handle = *(unsigned long *)obj;
809
810 if (!(handle & OBJ_ALLOCATED_TAG))
811 return false;
812
813 /* Clear all tags before returning the handle */
814 *phandle = handle & ~OBJ_TAG_MASK;
815 return true;
816 }
817
reset_page(struct page * page)818 static void reset_page(struct page *page)
819 {
820 __ClearPageMovable(page);
821 ClearPagePrivate(page);
822 set_page_private(page, 0);
823 page_mapcount_reset(page);
824 page->index = 0;
825 }
826
trylock_zspage(struct zspage * zspage)827 static int trylock_zspage(struct zspage *zspage)
828 {
829 struct page *cursor, *fail;
830
831 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
832 get_next_page(cursor)) {
833 if (!trylock_page(cursor)) {
834 fail = cursor;
835 goto unlock;
836 }
837 }
838
839 return 1;
840 unlock:
841 for (cursor = get_first_page(zspage); cursor != fail; cursor =
842 get_next_page(cursor))
843 unlock_page(cursor);
844
845 return 0;
846 }
847
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)848 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
849 struct zspage *zspage)
850 {
851 struct page *page, *next;
852 int fg;
853 unsigned int class_idx;
854
855 get_zspage_mapping(zspage, &class_idx, &fg);
856
857 assert_spin_locked(&pool->lock);
858
859 VM_BUG_ON(get_zspage_inuse(zspage));
860 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
861
862 next = page = get_first_page(zspage);
863 do {
864 VM_BUG_ON_PAGE(!PageLocked(page), page);
865 next = get_next_page(page);
866 reset_page(page);
867 unlock_page(page);
868 dec_zone_page_state(page, NR_ZSPAGES);
869 put_page(page);
870 page = next;
871 } while (page != NULL);
872
873 cache_free_zspage(pool, zspage);
874
875 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
876 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
877 }
878
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)879 static void free_zspage(struct zs_pool *pool, struct size_class *class,
880 struct zspage *zspage)
881 {
882 VM_BUG_ON(get_zspage_inuse(zspage));
883 VM_BUG_ON(list_empty(&zspage->list));
884
885 /*
886 * Since zs_free couldn't be sleepable, this function cannot call
887 * lock_page. The page locks trylock_zspage got will be released
888 * by __free_zspage.
889 */
890 if (!trylock_zspage(zspage)) {
891 kick_deferred_free(pool);
892 return;
893 }
894
895 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
896 __free_zspage(pool, class, zspage);
897 }
898
899 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)900 static void init_zspage(struct size_class *class, struct zspage *zspage)
901 {
902 unsigned int freeobj = 1;
903 unsigned long off = 0;
904 struct page *page = get_first_page(zspage);
905
906 while (page) {
907 struct page *next_page;
908 struct link_free *link;
909 void *vaddr;
910
911 set_first_obj_offset(page, off);
912
913 vaddr = kmap_atomic(page);
914 link = (struct link_free *)vaddr + off / sizeof(*link);
915
916 while ((off += class->size) < PAGE_SIZE) {
917 link->next = freeobj++ << OBJ_TAG_BITS;
918 link += class->size / sizeof(*link);
919 }
920
921 /*
922 * We now come to the last (full or partial) object on this
923 * page, which must point to the first object on the next
924 * page (if present)
925 */
926 next_page = get_next_page(page);
927 if (next_page) {
928 link->next = freeobj++ << OBJ_TAG_BITS;
929 } else {
930 /*
931 * Reset OBJ_TAG_BITS bit to last link to tell
932 * whether it's allocated object or not.
933 */
934 link->next = -1UL << OBJ_TAG_BITS;
935 }
936 kunmap_atomic(vaddr);
937 page = next_page;
938 off %= PAGE_SIZE;
939 }
940
941 set_freeobj(zspage, 0);
942 }
943
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])944 static void create_page_chain(struct size_class *class, struct zspage *zspage,
945 struct page *pages[])
946 {
947 int i;
948 struct page *page;
949 struct page *prev_page = NULL;
950 int nr_pages = class->pages_per_zspage;
951
952 /*
953 * Allocate individual pages and link them together as:
954 * 1. all pages are linked together using page->index
955 * 2. each sub-page point to zspage using page->private
956 *
957 * we set PG_private to identify the first page (i.e. no other sub-page
958 * has this flag set).
959 */
960 for (i = 0; i < nr_pages; i++) {
961 page = pages[i];
962 set_page_private(page, (unsigned long)zspage);
963 page->index = 0;
964 if (i == 0) {
965 zspage->first_page = page;
966 SetPagePrivate(page);
967 if (unlikely(class->objs_per_zspage == 1 &&
968 class->pages_per_zspage == 1))
969 SetZsHugePage(zspage);
970 } else {
971 prev_page->index = (unsigned long)page;
972 }
973 prev_page = page;
974 }
975 }
976
977 /*
978 * Allocate a zspage for the given size class
979 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)980 static struct zspage *alloc_zspage(struct zs_pool *pool,
981 struct size_class *class,
982 gfp_t gfp)
983 {
984 int i;
985 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
986 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
987
988 if (!zspage)
989 return NULL;
990
991 if (!IS_ENABLED(CONFIG_COMPACTION))
992 gfp &= ~__GFP_MOVABLE;
993
994 zspage->magic = ZSPAGE_MAGIC;
995 migrate_lock_init(zspage);
996
997 for (i = 0; i < class->pages_per_zspage; i++) {
998 struct page *page;
999
1000 page = alloc_page(gfp);
1001 if (!page) {
1002 while (--i >= 0) {
1003 dec_zone_page_state(pages[i], NR_ZSPAGES);
1004 __free_page(pages[i]);
1005 }
1006 cache_free_zspage(pool, zspage);
1007 return NULL;
1008 }
1009
1010 inc_zone_page_state(page, NR_ZSPAGES);
1011 pages[i] = page;
1012 }
1013
1014 create_page_chain(class, zspage, pages);
1015 init_zspage(class, zspage);
1016 zspage->pool = pool;
1017
1018 return zspage;
1019 }
1020
find_get_zspage(struct size_class * class)1021 static struct zspage *find_get_zspage(struct size_class *class)
1022 {
1023 int i;
1024 struct zspage *zspage;
1025
1026 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1027 zspage = list_first_entry_or_null(&class->fullness_list[i],
1028 struct zspage, list);
1029 if (zspage)
1030 break;
1031 }
1032
1033 return zspage;
1034 }
1035
__zs_cpu_up(struct mapping_area * area)1036 static inline int __zs_cpu_up(struct mapping_area *area)
1037 {
1038 /*
1039 * Make sure we don't leak memory if a cpu UP notification
1040 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041 */
1042 if (area->vm_buf)
1043 return 0;
1044 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1045 if (!area->vm_buf)
1046 return -ENOMEM;
1047 return 0;
1048 }
1049
__zs_cpu_down(struct mapping_area * area)1050 static inline void __zs_cpu_down(struct mapping_area *area)
1051 {
1052 kfree(area->vm_buf);
1053 area->vm_buf = NULL;
1054 }
1055
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1056 static void *__zs_map_object(struct mapping_area *area,
1057 struct page *pages[2], int off, int size)
1058 {
1059 int sizes[2];
1060 void *addr;
1061 char *buf = area->vm_buf;
1062
1063 /* disable page faults to match kmap_atomic() return conditions */
1064 pagefault_disable();
1065
1066 /* no read fastpath */
1067 if (area->vm_mm == ZS_MM_WO)
1068 goto out;
1069
1070 sizes[0] = PAGE_SIZE - off;
1071 sizes[1] = size - sizes[0];
1072
1073 /* copy object to per-cpu buffer */
1074 addr = kmap_atomic(pages[0]);
1075 memcpy(buf, addr + off, sizes[0]);
1076 kunmap_atomic(addr);
1077 addr = kmap_atomic(pages[1]);
1078 memcpy(buf + sizes[0], addr, sizes[1]);
1079 kunmap_atomic(addr);
1080 out:
1081 return area->vm_buf;
1082 }
1083
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1084 static void __zs_unmap_object(struct mapping_area *area,
1085 struct page *pages[2], int off, int size)
1086 {
1087 int sizes[2];
1088 void *addr;
1089 char *buf;
1090
1091 /* no write fastpath */
1092 if (area->vm_mm == ZS_MM_RO)
1093 goto out;
1094
1095 buf = area->vm_buf;
1096 buf = buf + ZS_HANDLE_SIZE;
1097 size -= ZS_HANDLE_SIZE;
1098 off += ZS_HANDLE_SIZE;
1099
1100 sizes[0] = PAGE_SIZE - off;
1101 sizes[1] = size - sizes[0];
1102
1103 /* copy per-cpu buffer to object */
1104 addr = kmap_atomic(pages[0]);
1105 memcpy(addr + off, buf, sizes[0]);
1106 kunmap_atomic(addr);
1107 addr = kmap_atomic(pages[1]);
1108 memcpy(addr, buf + sizes[0], sizes[1]);
1109 kunmap_atomic(addr);
1110
1111 out:
1112 /* enable page faults to match kunmap_atomic() return conditions */
1113 pagefault_enable();
1114 }
1115
zs_cpu_prepare(unsigned int cpu)1116 static int zs_cpu_prepare(unsigned int cpu)
1117 {
1118 struct mapping_area *area;
1119
1120 area = &per_cpu(zs_map_area, cpu);
1121 return __zs_cpu_up(area);
1122 }
1123
zs_cpu_dead(unsigned int cpu)1124 static int zs_cpu_dead(unsigned int cpu)
1125 {
1126 struct mapping_area *area;
1127
1128 area = &per_cpu(zs_map_area, cpu);
1129 __zs_cpu_down(area);
1130 return 0;
1131 }
1132
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1133 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1134 int objs_per_zspage)
1135 {
1136 if (prev->pages_per_zspage == pages_per_zspage &&
1137 prev->objs_per_zspage == objs_per_zspage)
1138 return true;
1139
1140 return false;
1141 }
1142
zspage_full(struct size_class * class,struct zspage * zspage)1143 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1144 {
1145 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1146 }
1147
zspage_empty(struct zspage * zspage)1148 static bool zspage_empty(struct zspage *zspage)
1149 {
1150 return get_zspage_inuse(zspage) == 0;
1151 }
1152
1153 /**
1154 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1155 * that hold objects of the provided size.
1156 * @pool: zsmalloc pool to use
1157 * @size: object size
1158 *
1159 * Context: Any context.
1160 *
1161 * Return: the index of the zsmalloc &size_class that hold objects of the
1162 * provided size.
1163 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1164 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1165 {
1166 struct size_class *class;
1167
1168 class = pool->size_class[get_size_class_index(size)];
1169
1170 return class->index;
1171 }
1172 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1173
zs_get_total_pages(struct zs_pool * pool)1174 unsigned long zs_get_total_pages(struct zs_pool *pool)
1175 {
1176 return atomic_long_read(&pool->pages_allocated);
1177 }
1178 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1179
1180 /**
1181 * zs_map_object - get address of allocated object from handle.
1182 * @pool: pool from which the object was allocated
1183 * @handle: handle returned from zs_malloc
1184 * @mm: mapping mode to use
1185 *
1186 * Before using an object allocated from zs_malloc, it must be mapped using
1187 * this function. When done with the object, it must be unmapped using
1188 * zs_unmap_object.
1189 *
1190 * Only one object can be mapped per cpu at a time. There is no protection
1191 * against nested mappings.
1192 *
1193 * This function returns with preemption and page faults disabled.
1194 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1195 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1196 enum zs_mapmode mm)
1197 {
1198 struct zspage *zspage;
1199 struct page *page;
1200 unsigned long obj, off;
1201 unsigned int obj_idx;
1202
1203 struct size_class *class;
1204 struct mapping_area *area;
1205 struct page *pages[2];
1206 void *ret;
1207
1208 /*
1209 * Because we use per-cpu mapping areas shared among the
1210 * pools/users, we can't allow mapping in interrupt context
1211 * because it can corrupt another users mappings.
1212 */
1213 BUG_ON(in_interrupt());
1214
1215 /* It guarantees it can get zspage from handle safely */
1216 spin_lock(&pool->lock);
1217 obj = handle_to_obj(handle);
1218 obj_to_location(obj, &page, &obj_idx);
1219 zspage = get_zspage(page);
1220
1221 /*
1222 * migration cannot move any zpages in this zspage. Here, pool->lock
1223 * is too heavy since callers would take some time until they calls
1224 * zs_unmap_object API so delegate the locking from class to zspage
1225 * which is smaller granularity.
1226 */
1227 migrate_read_lock(zspage);
1228 spin_unlock(&pool->lock);
1229
1230 class = zspage_class(pool, zspage);
1231 off = offset_in_page(class->size * obj_idx);
1232
1233 local_lock(&zs_map_area.lock);
1234 area = this_cpu_ptr(&zs_map_area);
1235 area->vm_mm = mm;
1236 if (off + class->size <= PAGE_SIZE) {
1237 /* this object is contained entirely within a page */
1238 area->vm_addr = kmap_atomic(page);
1239 ret = area->vm_addr + off;
1240 goto out;
1241 }
1242
1243 /* this object spans two pages */
1244 pages[0] = page;
1245 pages[1] = get_next_page(page);
1246 BUG_ON(!pages[1]);
1247
1248 ret = __zs_map_object(area, pages, off, class->size);
1249 out:
1250 if (likely(!ZsHugePage(zspage)))
1251 ret += ZS_HANDLE_SIZE;
1252
1253 return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(zs_map_object);
1256
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1257 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1258 {
1259 struct zspage *zspage;
1260 struct page *page;
1261 unsigned long obj, off;
1262 unsigned int obj_idx;
1263
1264 struct size_class *class;
1265 struct mapping_area *area;
1266
1267 obj = handle_to_obj(handle);
1268 obj_to_location(obj, &page, &obj_idx);
1269 zspage = get_zspage(page);
1270 class = zspage_class(pool, zspage);
1271 off = offset_in_page(class->size * obj_idx);
1272
1273 area = this_cpu_ptr(&zs_map_area);
1274 if (off + class->size <= PAGE_SIZE)
1275 kunmap_atomic(area->vm_addr);
1276 else {
1277 struct page *pages[2];
1278
1279 pages[0] = page;
1280 pages[1] = get_next_page(page);
1281 BUG_ON(!pages[1]);
1282
1283 __zs_unmap_object(area, pages, off, class->size);
1284 }
1285 local_unlock(&zs_map_area.lock);
1286
1287 migrate_read_unlock(zspage);
1288 }
1289 EXPORT_SYMBOL_GPL(zs_unmap_object);
1290
1291 /**
1292 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1293 * zsmalloc &size_class.
1294 * @pool: zsmalloc pool to use
1295 *
1296 * The function returns the size of the first huge class - any object of equal
1297 * or bigger size will be stored in zspage consisting of a single physical
1298 * page.
1299 *
1300 * Context: Any context.
1301 *
1302 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1303 */
zs_huge_class_size(struct zs_pool * pool)1304 size_t zs_huge_class_size(struct zs_pool *pool)
1305 {
1306 return huge_class_size;
1307 }
1308 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1309
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1310 static unsigned long obj_malloc(struct zs_pool *pool,
1311 struct zspage *zspage, unsigned long handle)
1312 {
1313 int i, nr_page, offset;
1314 unsigned long obj;
1315 struct link_free *link;
1316 struct size_class *class;
1317
1318 struct page *m_page;
1319 unsigned long m_offset;
1320 void *vaddr;
1321
1322 class = pool->size_class[zspage->class];
1323 handle |= OBJ_ALLOCATED_TAG;
1324 obj = get_freeobj(zspage);
1325
1326 offset = obj * class->size;
1327 nr_page = offset >> PAGE_SHIFT;
1328 m_offset = offset_in_page(offset);
1329 m_page = get_first_page(zspage);
1330
1331 for (i = 0; i < nr_page; i++)
1332 m_page = get_next_page(m_page);
1333
1334 vaddr = kmap_atomic(m_page);
1335 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1336 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1337 if (likely(!ZsHugePage(zspage)))
1338 /* record handle in the header of allocated chunk */
1339 link->handle = handle;
1340 else
1341 /* record handle to page->index */
1342 zspage->first_page->index = handle;
1343
1344 kunmap_atomic(vaddr);
1345 mod_zspage_inuse(zspage, 1);
1346
1347 obj = location_to_obj(m_page, obj);
1348
1349 return obj;
1350 }
1351
1352
1353 /**
1354 * zs_malloc - Allocate block of given size from pool.
1355 * @pool: pool to allocate from
1356 * @size: size of block to allocate
1357 * @gfp: gfp flags when allocating object
1358 *
1359 * On success, handle to the allocated object is returned,
1360 * otherwise an ERR_PTR().
1361 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1362 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1363 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1364 {
1365 unsigned long handle, obj;
1366 struct size_class *class;
1367 int newfg;
1368 struct zspage *zspage;
1369
1370 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1371 return (unsigned long)ERR_PTR(-EINVAL);
1372
1373 handle = cache_alloc_handle(pool, gfp);
1374 if (!handle)
1375 return (unsigned long)ERR_PTR(-ENOMEM);
1376
1377 /* extra space in chunk to keep the handle */
1378 size += ZS_HANDLE_SIZE;
1379 class = pool->size_class[get_size_class_index(size)];
1380
1381 /* pool->lock effectively protects the zpage migration */
1382 spin_lock(&pool->lock);
1383 zspage = find_get_zspage(class);
1384 if (likely(zspage)) {
1385 obj = obj_malloc(pool, zspage, handle);
1386 /* Now move the zspage to another fullness group, if required */
1387 fix_fullness_group(class, zspage);
1388 record_obj(handle, obj);
1389 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1390
1391 goto out;
1392 }
1393
1394 spin_unlock(&pool->lock);
1395
1396 zspage = alloc_zspage(pool, class, gfp);
1397 if (!zspage) {
1398 cache_free_handle(pool, handle);
1399 return (unsigned long)ERR_PTR(-ENOMEM);
1400 }
1401
1402 spin_lock(&pool->lock);
1403 obj = obj_malloc(pool, zspage, handle);
1404 newfg = get_fullness_group(class, zspage);
1405 insert_zspage(class, zspage, newfg);
1406 set_zspage_mapping(zspage, class->index, newfg);
1407 record_obj(handle, obj);
1408 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1409 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1410 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1411
1412 /* We completely set up zspage so mark them as movable */
1413 SetZsPageMovable(pool, zspage);
1414 out:
1415 spin_unlock(&pool->lock);
1416
1417 return handle;
1418 }
1419 EXPORT_SYMBOL_GPL(zs_malloc);
1420
obj_free(int class_size,unsigned long obj)1421 static void obj_free(int class_size, unsigned long obj)
1422 {
1423 struct link_free *link;
1424 struct zspage *zspage;
1425 struct page *f_page;
1426 unsigned long f_offset;
1427 unsigned int f_objidx;
1428 void *vaddr;
1429
1430 obj_to_location(obj, &f_page, &f_objidx);
1431 f_offset = offset_in_page(class_size * f_objidx);
1432 zspage = get_zspage(f_page);
1433
1434 vaddr = kmap_atomic(f_page);
1435 link = (struct link_free *)(vaddr + f_offset);
1436
1437 /* Insert this object in containing zspage's freelist */
1438 if (likely(!ZsHugePage(zspage)))
1439 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1440 else
1441 f_page->index = 0;
1442 set_freeobj(zspage, f_objidx);
1443
1444 kunmap_atomic(vaddr);
1445 mod_zspage_inuse(zspage, -1);
1446 }
1447
zs_free(struct zs_pool * pool,unsigned long handle)1448 void zs_free(struct zs_pool *pool, unsigned long handle)
1449 {
1450 struct zspage *zspage;
1451 struct page *f_page;
1452 unsigned long obj;
1453 struct size_class *class;
1454 int fullness;
1455
1456 if (IS_ERR_OR_NULL((void *)handle))
1457 return;
1458
1459 /*
1460 * The pool->lock protects the race with zpage's migration
1461 * so it's safe to get the page from handle.
1462 */
1463 spin_lock(&pool->lock);
1464 obj = handle_to_obj(handle);
1465 obj_to_page(obj, &f_page);
1466 zspage = get_zspage(f_page);
1467 class = zspage_class(pool, zspage);
1468
1469 class_stat_dec(class, ZS_OBJS_INUSE, 1);
1470 obj_free(class->size, obj);
1471
1472 fullness = fix_fullness_group(class, zspage);
1473 if (fullness == ZS_INUSE_RATIO_0)
1474 free_zspage(pool, class, zspage);
1475
1476 spin_unlock(&pool->lock);
1477 cache_free_handle(pool, handle);
1478 }
1479 EXPORT_SYMBOL_GPL(zs_free);
1480
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1481 static void zs_object_copy(struct size_class *class, unsigned long dst,
1482 unsigned long src)
1483 {
1484 struct page *s_page, *d_page;
1485 unsigned int s_objidx, d_objidx;
1486 unsigned long s_off, d_off;
1487 void *s_addr, *d_addr;
1488 int s_size, d_size, size;
1489 int written = 0;
1490
1491 s_size = d_size = class->size;
1492
1493 obj_to_location(src, &s_page, &s_objidx);
1494 obj_to_location(dst, &d_page, &d_objidx);
1495
1496 s_off = offset_in_page(class->size * s_objidx);
1497 d_off = offset_in_page(class->size * d_objidx);
1498
1499 if (s_off + class->size > PAGE_SIZE)
1500 s_size = PAGE_SIZE - s_off;
1501
1502 if (d_off + class->size > PAGE_SIZE)
1503 d_size = PAGE_SIZE - d_off;
1504
1505 s_addr = kmap_atomic(s_page);
1506 d_addr = kmap_atomic(d_page);
1507
1508 while (1) {
1509 size = min(s_size, d_size);
1510 memcpy(d_addr + d_off, s_addr + s_off, size);
1511 written += size;
1512
1513 if (written == class->size)
1514 break;
1515
1516 s_off += size;
1517 s_size -= size;
1518 d_off += size;
1519 d_size -= size;
1520
1521 /*
1522 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1523 * calls must occurs in reverse order of calls to kmap_atomic().
1524 * So, to call kunmap_atomic(s_addr) we should first call
1525 * kunmap_atomic(d_addr). For more details see
1526 * Documentation/mm/highmem.rst.
1527 */
1528 if (s_off >= PAGE_SIZE) {
1529 kunmap_atomic(d_addr);
1530 kunmap_atomic(s_addr);
1531 s_page = get_next_page(s_page);
1532 s_addr = kmap_atomic(s_page);
1533 d_addr = kmap_atomic(d_page);
1534 s_size = class->size - written;
1535 s_off = 0;
1536 }
1537
1538 if (d_off >= PAGE_SIZE) {
1539 kunmap_atomic(d_addr);
1540 d_page = get_next_page(d_page);
1541 d_addr = kmap_atomic(d_page);
1542 d_size = class->size - written;
1543 d_off = 0;
1544 }
1545 }
1546
1547 kunmap_atomic(d_addr);
1548 kunmap_atomic(s_addr);
1549 }
1550
1551 /*
1552 * Find alloced object in zspage from index object and
1553 * return handle.
1554 */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1555 static unsigned long find_alloced_obj(struct size_class *class,
1556 struct page *page, int *obj_idx)
1557 {
1558 unsigned int offset;
1559 int index = *obj_idx;
1560 unsigned long handle = 0;
1561 void *addr = kmap_atomic(page);
1562
1563 offset = get_first_obj_offset(page);
1564 offset += class->size * index;
1565
1566 while (offset < PAGE_SIZE) {
1567 if (obj_allocated(page, addr + offset, &handle))
1568 break;
1569
1570 offset += class->size;
1571 index++;
1572 }
1573
1574 kunmap_atomic(addr);
1575
1576 *obj_idx = index;
1577
1578 return handle;
1579 }
1580
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1581 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1582 struct zspage *dst_zspage)
1583 {
1584 unsigned long used_obj, free_obj;
1585 unsigned long handle;
1586 int obj_idx = 0;
1587 struct page *s_page = get_first_page(src_zspage);
1588 struct size_class *class = pool->size_class[src_zspage->class];
1589
1590 while (1) {
1591 handle = find_alloced_obj(class, s_page, &obj_idx);
1592 if (!handle) {
1593 s_page = get_next_page(s_page);
1594 if (!s_page)
1595 break;
1596 obj_idx = 0;
1597 continue;
1598 }
1599
1600 used_obj = handle_to_obj(handle);
1601 free_obj = obj_malloc(pool, dst_zspage, handle);
1602 zs_object_copy(class, free_obj, used_obj);
1603 obj_idx++;
1604 record_obj(handle, free_obj);
1605 obj_free(class->size, used_obj);
1606
1607 /* Stop if there is no more space */
1608 if (zspage_full(class, dst_zspage))
1609 break;
1610
1611 /* Stop if there are no more objects to migrate */
1612 if (zspage_empty(src_zspage))
1613 break;
1614 }
1615 }
1616
isolate_src_zspage(struct size_class * class)1617 static struct zspage *isolate_src_zspage(struct size_class *class)
1618 {
1619 struct zspage *zspage;
1620 int fg;
1621
1622 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1623 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1624 struct zspage, list);
1625 if (zspage) {
1626 remove_zspage(class, zspage, fg);
1627 return zspage;
1628 }
1629 }
1630
1631 return zspage;
1632 }
1633
isolate_dst_zspage(struct size_class * class)1634 static struct zspage *isolate_dst_zspage(struct size_class *class)
1635 {
1636 struct zspage *zspage;
1637 int fg;
1638
1639 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1640 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1641 struct zspage, list);
1642 if (zspage) {
1643 remove_zspage(class, zspage, fg);
1644 return zspage;
1645 }
1646 }
1647
1648 return zspage;
1649 }
1650
1651 /*
1652 * putback_zspage - add @zspage into right class's fullness list
1653 * @class: destination class
1654 * @zspage: target page
1655 *
1656 * Return @zspage's fullness status
1657 */
putback_zspage(struct size_class * class,struct zspage * zspage)1658 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1659 {
1660 int fullness;
1661
1662 fullness = get_fullness_group(class, zspage);
1663 insert_zspage(class, zspage, fullness);
1664 set_zspage_mapping(zspage, class->index, fullness);
1665
1666 return fullness;
1667 }
1668
1669 #ifdef CONFIG_COMPACTION
1670 /*
1671 * To prevent zspage destroy during migration, zspage freeing should
1672 * hold locks of all pages in the zspage.
1673 */
lock_zspage(struct zspage * zspage)1674 static void lock_zspage(struct zspage *zspage)
1675 {
1676 struct page *curr_page, *page;
1677
1678 /*
1679 * Pages we haven't locked yet can be migrated off the list while we're
1680 * trying to lock them, so we need to be careful and only attempt to
1681 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1682 * may no longer belong to the zspage. This means that we may wait for
1683 * the wrong page to unlock, so we must take a reference to the page
1684 * prior to waiting for it to unlock outside migrate_read_lock().
1685 */
1686 while (1) {
1687 migrate_read_lock(zspage);
1688 page = get_first_page(zspage);
1689 if (trylock_page(page))
1690 break;
1691 get_page(page);
1692 migrate_read_unlock(zspage);
1693 wait_on_page_locked(page);
1694 put_page(page);
1695 }
1696
1697 curr_page = page;
1698 while ((page = get_next_page(curr_page))) {
1699 if (trylock_page(page)) {
1700 curr_page = page;
1701 } else {
1702 get_page(page);
1703 migrate_read_unlock(zspage);
1704 wait_on_page_locked(page);
1705 put_page(page);
1706 migrate_read_lock(zspage);
1707 }
1708 }
1709 migrate_read_unlock(zspage);
1710 }
1711 #endif /* CONFIG_COMPACTION */
1712
migrate_lock_init(struct zspage * zspage)1713 static void migrate_lock_init(struct zspage *zspage)
1714 {
1715 rwlock_init(&zspage->lock);
1716 }
1717
migrate_read_lock(struct zspage * zspage)1718 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1719 {
1720 read_lock(&zspage->lock);
1721 }
1722
migrate_read_unlock(struct zspage * zspage)1723 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1724 {
1725 read_unlock(&zspage->lock);
1726 }
1727
1728 #ifdef CONFIG_COMPACTION
migrate_write_lock(struct zspage * zspage)1729 static void migrate_write_lock(struct zspage *zspage)
1730 {
1731 write_lock(&zspage->lock);
1732 }
1733
migrate_write_lock_nested(struct zspage * zspage)1734 static void migrate_write_lock_nested(struct zspage *zspage)
1735 {
1736 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1737 }
1738
migrate_write_unlock(struct zspage * zspage)1739 static void migrate_write_unlock(struct zspage *zspage)
1740 {
1741 write_unlock(&zspage->lock);
1742 }
1743
1744 /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage * zspage)1745 static void inc_zspage_isolation(struct zspage *zspage)
1746 {
1747 zspage->isolated++;
1748 }
1749
dec_zspage_isolation(struct zspage * zspage)1750 static void dec_zspage_isolation(struct zspage *zspage)
1751 {
1752 VM_BUG_ON(zspage->isolated == 0);
1753 zspage->isolated--;
1754 }
1755
1756 static const struct movable_operations zsmalloc_mops;
1757
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1758 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1759 struct page *newpage, struct page *oldpage)
1760 {
1761 struct page *page;
1762 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1763 int idx = 0;
1764
1765 page = get_first_page(zspage);
1766 do {
1767 if (page == oldpage)
1768 pages[idx] = newpage;
1769 else
1770 pages[idx] = page;
1771 idx++;
1772 } while ((page = get_next_page(page)) != NULL);
1773
1774 create_page_chain(class, zspage, pages);
1775 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1776 if (unlikely(ZsHugePage(zspage)))
1777 newpage->index = oldpage->index;
1778 __SetPageMovable(newpage, &zsmalloc_mops);
1779 }
1780
zs_page_isolate(struct page * page,isolate_mode_t mode)1781 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1782 {
1783 struct zs_pool *pool;
1784 struct zspage *zspage;
1785
1786 /*
1787 * Page is locked so zspage couldn't be destroyed. For detail, look at
1788 * lock_zspage in free_zspage.
1789 */
1790 VM_BUG_ON_PAGE(PageIsolated(page), page);
1791
1792 zspage = get_zspage(page);
1793 pool = zspage->pool;
1794 spin_lock(&pool->lock);
1795 inc_zspage_isolation(zspage);
1796 spin_unlock(&pool->lock);
1797
1798 return true;
1799 }
1800
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1801 static int zs_page_migrate(struct page *newpage, struct page *page,
1802 enum migrate_mode mode)
1803 {
1804 struct zs_pool *pool;
1805 struct size_class *class;
1806 struct zspage *zspage;
1807 struct page *dummy;
1808 void *s_addr, *d_addr, *addr;
1809 unsigned int offset;
1810 unsigned long handle;
1811 unsigned long old_obj, new_obj;
1812 unsigned int obj_idx;
1813
1814 /*
1815 * We cannot support the _NO_COPY case here, because copy needs to
1816 * happen under the zs lock, which does not work with
1817 * MIGRATE_SYNC_NO_COPY workflow.
1818 */
1819 if (mode == MIGRATE_SYNC_NO_COPY)
1820 return -EINVAL;
1821
1822 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1823
1824 /* The page is locked, so this pointer must remain valid */
1825 zspage = get_zspage(page);
1826 pool = zspage->pool;
1827
1828 /*
1829 * The pool's lock protects the race between zpage migration
1830 * and zs_free.
1831 */
1832 spin_lock(&pool->lock);
1833 class = zspage_class(pool, zspage);
1834
1835 /* the migrate_write_lock protects zpage access via zs_map_object */
1836 migrate_write_lock(zspage);
1837
1838 offset = get_first_obj_offset(page);
1839 s_addr = kmap_atomic(page);
1840
1841 /*
1842 * Here, any user cannot access all objects in the zspage so let's move.
1843 */
1844 d_addr = kmap_atomic(newpage);
1845 memcpy(d_addr, s_addr, PAGE_SIZE);
1846 kunmap_atomic(d_addr);
1847
1848 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1849 addr += class->size) {
1850 if (obj_allocated(page, addr, &handle)) {
1851
1852 old_obj = handle_to_obj(handle);
1853 obj_to_location(old_obj, &dummy, &obj_idx);
1854 new_obj = (unsigned long)location_to_obj(newpage,
1855 obj_idx);
1856 record_obj(handle, new_obj);
1857 }
1858 }
1859 kunmap_atomic(s_addr);
1860
1861 replace_sub_page(class, zspage, newpage, page);
1862 dec_zspage_isolation(zspage);
1863 /*
1864 * Since we complete the data copy and set up new zspage structure,
1865 * it's okay to release the pool's lock.
1866 */
1867 spin_unlock(&pool->lock);
1868 migrate_write_unlock(zspage);
1869
1870 get_page(newpage);
1871 if (page_zone(newpage) != page_zone(page)) {
1872 dec_zone_page_state(page, NR_ZSPAGES);
1873 inc_zone_page_state(newpage, NR_ZSPAGES);
1874 }
1875
1876 reset_page(page);
1877 put_page(page);
1878
1879 return MIGRATEPAGE_SUCCESS;
1880 }
1881
zs_page_putback(struct page * page)1882 static void zs_page_putback(struct page *page)
1883 {
1884 struct zs_pool *pool;
1885 struct zspage *zspage;
1886
1887 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1888
1889 zspage = get_zspage(page);
1890 pool = zspage->pool;
1891 spin_lock(&pool->lock);
1892 dec_zspage_isolation(zspage);
1893 spin_unlock(&pool->lock);
1894 }
1895
1896 static const struct movable_operations zsmalloc_mops = {
1897 .isolate_page = zs_page_isolate,
1898 .migrate_page = zs_page_migrate,
1899 .putback_page = zs_page_putback,
1900 };
1901
1902 /*
1903 * Caller should hold page_lock of all pages in the zspage
1904 * In here, we cannot use zspage meta data.
1905 */
async_free_zspage(struct work_struct * work)1906 static void async_free_zspage(struct work_struct *work)
1907 {
1908 int i;
1909 struct size_class *class;
1910 unsigned int class_idx;
1911 int fullness;
1912 struct zspage *zspage, *tmp;
1913 LIST_HEAD(free_pages);
1914 struct zs_pool *pool = container_of(work, struct zs_pool,
1915 free_work);
1916
1917 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1918 class = pool->size_class[i];
1919 if (class->index != i)
1920 continue;
1921
1922 spin_lock(&pool->lock);
1923 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1924 &free_pages);
1925 spin_unlock(&pool->lock);
1926 }
1927
1928 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1929 list_del(&zspage->list);
1930 lock_zspage(zspage);
1931
1932 get_zspage_mapping(zspage, &class_idx, &fullness);
1933 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
1934 class = pool->size_class[class_idx];
1935 spin_lock(&pool->lock);
1936 __free_zspage(pool, class, zspage);
1937 spin_unlock(&pool->lock);
1938 }
1939 };
1940
kick_deferred_free(struct zs_pool * pool)1941 static void kick_deferred_free(struct zs_pool *pool)
1942 {
1943 schedule_work(&pool->free_work);
1944 }
1945
zs_flush_migration(struct zs_pool * pool)1946 static void zs_flush_migration(struct zs_pool *pool)
1947 {
1948 flush_work(&pool->free_work);
1949 }
1950
init_deferred_free(struct zs_pool * pool)1951 static void init_deferred_free(struct zs_pool *pool)
1952 {
1953 INIT_WORK(&pool->free_work, async_free_zspage);
1954 }
1955
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1956 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1957 {
1958 struct page *page = get_first_page(zspage);
1959
1960 do {
1961 WARN_ON(!trylock_page(page));
1962 __SetPageMovable(page, &zsmalloc_mops);
1963 unlock_page(page);
1964 } while ((page = get_next_page(page)) != NULL);
1965 }
1966 #else
zs_flush_migration(struct zs_pool * pool)1967 static inline void zs_flush_migration(struct zs_pool *pool) { }
1968 #endif
1969
1970 /*
1971 *
1972 * Based on the number of unused allocated objects calculate
1973 * and return the number of pages that we can free.
1974 */
zs_can_compact(struct size_class * class)1975 static unsigned long zs_can_compact(struct size_class *class)
1976 {
1977 unsigned long obj_wasted;
1978 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1979 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1980
1981 if (obj_allocated <= obj_used)
1982 return 0;
1983
1984 obj_wasted = obj_allocated - obj_used;
1985 obj_wasted /= class->objs_per_zspage;
1986
1987 return obj_wasted * class->pages_per_zspage;
1988 }
1989
__zs_compact(struct zs_pool * pool,struct size_class * class)1990 static unsigned long __zs_compact(struct zs_pool *pool,
1991 struct size_class *class)
1992 {
1993 struct zspage *src_zspage = NULL;
1994 struct zspage *dst_zspage = NULL;
1995 unsigned long pages_freed = 0;
1996
1997 /*
1998 * protect the race between zpage migration and zs_free
1999 * as well as zpage allocation/free
2000 */
2001 spin_lock(&pool->lock);
2002 while (zs_can_compact(class)) {
2003 int fg;
2004
2005 if (!dst_zspage) {
2006 dst_zspage = isolate_dst_zspage(class);
2007 if (!dst_zspage)
2008 break;
2009 migrate_write_lock(dst_zspage);
2010 }
2011
2012 src_zspage = isolate_src_zspage(class);
2013 if (!src_zspage)
2014 break;
2015
2016 migrate_write_lock_nested(src_zspage);
2017
2018 migrate_zspage(pool, src_zspage, dst_zspage);
2019 fg = putback_zspage(class, src_zspage);
2020 migrate_write_unlock(src_zspage);
2021
2022 if (fg == ZS_INUSE_RATIO_0) {
2023 free_zspage(pool, class, src_zspage);
2024 pages_freed += class->pages_per_zspage;
2025 }
2026 src_zspage = NULL;
2027
2028 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2029 || spin_is_contended(&pool->lock)) {
2030 putback_zspage(class, dst_zspage);
2031 migrate_write_unlock(dst_zspage);
2032 dst_zspage = NULL;
2033
2034 spin_unlock(&pool->lock);
2035 cond_resched();
2036 spin_lock(&pool->lock);
2037 }
2038 }
2039
2040 if (src_zspage) {
2041 putback_zspage(class, src_zspage);
2042 migrate_write_unlock(src_zspage);
2043 }
2044
2045 if (dst_zspage) {
2046 putback_zspage(class, dst_zspage);
2047 migrate_write_unlock(dst_zspage);
2048 }
2049 spin_unlock(&pool->lock);
2050
2051 return pages_freed;
2052 }
2053
zs_compact(struct zs_pool * pool)2054 unsigned long zs_compact(struct zs_pool *pool)
2055 {
2056 int i;
2057 struct size_class *class;
2058 unsigned long pages_freed = 0;
2059
2060 /*
2061 * Pool compaction is performed under pool->lock so it is basically
2062 * single-threaded. Having more than one thread in __zs_compact()
2063 * will increase pool->lock contention, which will impact other
2064 * zsmalloc operations that need pool->lock.
2065 */
2066 if (atomic_xchg(&pool->compaction_in_progress, 1))
2067 return 0;
2068
2069 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2070 class = pool->size_class[i];
2071 if (class->index != i)
2072 continue;
2073 pages_freed += __zs_compact(pool, class);
2074 }
2075 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2076 atomic_set(&pool->compaction_in_progress, 0);
2077
2078 return pages_freed;
2079 }
2080 EXPORT_SYMBOL_GPL(zs_compact);
2081
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2082 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2083 {
2084 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2085 }
2086 EXPORT_SYMBOL_GPL(zs_pool_stats);
2087
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2088 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2089 struct shrink_control *sc)
2090 {
2091 unsigned long pages_freed;
2092 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2093 shrinker);
2094
2095 /*
2096 * Compact classes and calculate compaction delta.
2097 * Can run concurrently with a manually triggered
2098 * (by user) compaction.
2099 */
2100 pages_freed = zs_compact(pool);
2101
2102 return pages_freed ? pages_freed : SHRINK_STOP;
2103 }
2104
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2105 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2106 struct shrink_control *sc)
2107 {
2108 int i;
2109 struct size_class *class;
2110 unsigned long pages_to_free = 0;
2111 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2112 shrinker);
2113
2114 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2115 class = pool->size_class[i];
2116 if (class->index != i)
2117 continue;
2118
2119 pages_to_free += zs_can_compact(class);
2120 }
2121
2122 return pages_to_free;
2123 }
2124
zs_unregister_shrinker(struct zs_pool * pool)2125 static void zs_unregister_shrinker(struct zs_pool *pool)
2126 {
2127 unregister_shrinker(&pool->shrinker);
2128 }
2129
zs_register_shrinker(struct zs_pool * pool)2130 static int zs_register_shrinker(struct zs_pool *pool)
2131 {
2132 pool->shrinker.scan_objects = zs_shrinker_scan;
2133 pool->shrinker.count_objects = zs_shrinker_count;
2134 pool->shrinker.batch = 0;
2135 pool->shrinker.seeks = DEFAULT_SEEKS;
2136
2137 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2138 pool->name);
2139 }
2140
calculate_zspage_chain_size(int class_size)2141 static int calculate_zspage_chain_size(int class_size)
2142 {
2143 int i, min_waste = INT_MAX;
2144 int chain_size = 1;
2145
2146 if (is_power_of_2(class_size))
2147 return chain_size;
2148
2149 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2150 int waste;
2151
2152 waste = (i * PAGE_SIZE) % class_size;
2153 if (waste < min_waste) {
2154 min_waste = waste;
2155 chain_size = i;
2156 }
2157 }
2158
2159 return chain_size;
2160 }
2161
2162 /**
2163 * zs_create_pool - Creates an allocation pool to work from.
2164 * @name: pool name to be created
2165 *
2166 * This function must be called before anything when using
2167 * the zsmalloc allocator.
2168 *
2169 * On success, a pointer to the newly created pool is returned,
2170 * otherwise NULL.
2171 */
zs_create_pool(const char * name)2172 struct zs_pool *zs_create_pool(const char *name)
2173 {
2174 int i;
2175 struct zs_pool *pool;
2176 struct size_class *prev_class = NULL;
2177
2178 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2179 if (!pool)
2180 return NULL;
2181
2182 init_deferred_free(pool);
2183 spin_lock_init(&pool->lock);
2184 atomic_set(&pool->compaction_in_progress, 0);
2185
2186 pool->name = kstrdup(name, GFP_KERNEL);
2187 if (!pool->name)
2188 goto err;
2189
2190 if (create_cache(pool))
2191 goto err;
2192
2193 /*
2194 * Iterate reversely, because, size of size_class that we want to use
2195 * for merging should be larger or equal to current size.
2196 */
2197 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2198 int size;
2199 int pages_per_zspage;
2200 int objs_per_zspage;
2201 struct size_class *class;
2202 int fullness;
2203
2204 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2205 if (size > ZS_MAX_ALLOC_SIZE)
2206 size = ZS_MAX_ALLOC_SIZE;
2207 pages_per_zspage = calculate_zspage_chain_size(size);
2208 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2209
2210 /*
2211 * We iterate from biggest down to smallest classes,
2212 * so huge_class_size holds the size of the first huge
2213 * class. Any object bigger than or equal to that will
2214 * endup in the huge class.
2215 */
2216 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2217 !huge_class_size) {
2218 huge_class_size = size;
2219 /*
2220 * The object uses ZS_HANDLE_SIZE bytes to store the
2221 * handle. We need to subtract it, because zs_malloc()
2222 * unconditionally adds handle size before it performs
2223 * size class search - so object may be smaller than
2224 * huge class size, yet it still can end up in the huge
2225 * class because it grows by ZS_HANDLE_SIZE extra bytes
2226 * right before class lookup.
2227 */
2228 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2229 }
2230
2231 /*
2232 * size_class is used for normal zsmalloc operation such
2233 * as alloc/free for that size. Although it is natural that we
2234 * have one size_class for each size, there is a chance that we
2235 * can get more memory utilization if we use one size_class for
2236 * many different sizes whose size_class have same
2237 * characteristics. So, we makes size_class point to
2238 * previous size_class if possible.
2239 */
2240 if (prev_class) {
2241 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2242 pool->size_class[i] = prev_class;
2243 continue;
2244 }
2245 }
2246
2247 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2248 if (!class)
2249 goto err;
2250
2251 class->size = size;
2252 class->index = i;
2253 class->pages_per_zspage = pages_per_zspage;
2254 class->objs_per_zspage = objs_per_zspage;
2255 pool->size_class[i] = class;
2256
2257 fullness = ZS_INUSE_RATIO_0;
2258 while (fullness < NR_FULLNESS_GROUPS) {
2259 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2260 fullness++;
2261 }
2262
2263 prev_class = class;
2264 }
2265
2266 /* debug only, don't abort if it fails */
2267 zs_pool_stat_create(pool, name);
2268
2269 /*
2270 * Not critical since shrinker is only used to trigger internal
2271 * defragmentation of the pool which is pretty optional thing. If
2272 * registration fails we still can use the pool normally and user can
2273 * trigger compaction manually. Thus, ignore return code.
2274 */
2275 zs_register_shrinker(pool);
2276
2277 return pool;
2278
2279 err:
2280 zs_destroy_pool(pool);
2281 return NULL;
2282 }
2283 EXPORT_SYMBOL_GPL(zs_create_pool);
2284
zs_destroy_pool(struct zs_pool * pool)2285 void zs_destroy_pool(struct zs_pool *pool)
2286 {
2287 int i;
2288
2289 zs_unregister_shrinker(pool);
2290 zs_flush_migration(pool);
2291 zs_pool_stat_destroy(pool);
2292
2293 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2294 int fg;
2295 struct size_class *class = pool->size_class[i];
2296
2297 if (!class)
2298 continue;
2299
2300 if (class->index != i)
2301 continue;
2302
2303 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2304 if (list_empty(&class->fullness_list[fg]))
2305 continue;
2306
2307 pr_err("Class-%d fullness group %d is not empty\n",
2308 class->size, fg);
2309 }
2310 kfree(class);
2311 }
2312
2313 destroy_cache(pool);
2314 kfree(pool->name);
2315 kfree(pool);
2316 }
2317 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2318
zs_init(void)2319 static int __init zs_init(void)
2320 {
2321 int ret;
2322
2323 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2324 zs_cpu_prepare, zs_cpu_dead);
2325 if (ret)
2326 goto out;
2327
2328 #ifdef CONFIG_ZPOOL
2329 zpool_register_driver(&zs_zpool_driver);
2330 #endif
2331
2332 zs_stat_init();
2333
2334 return 0;
2335
2336 out:
2337 return ret;
2338 }
2339
zs_exit(void)2340 static void __exit zs_exit(void)
2341 {
2342 #ifdef CONFIG_ZPOOL
2343 zpool_unregister_driver(&zs_zpool_driver);
2344 #endif
2345 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2346
2347 zs_stat_exit();
2348 }
2349
2350 module_init(zs_init);
2351 module_exit(zs_exit);
2352
2353 MODULE_LICENSE("Dual BSD/GPL");
2354 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2355