1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
udp_get_table_prot(struct sock * sk)136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 const struct udp_hslot *hslot,
143 unsigned long *bitmap,
144 struct sock *sk, unsigned int log)
145 {
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 inet_rcv_saddr_equal(sk, sk2, true)) {
157 if (sk2->sk_reuseport && sk->sk_reuseport &&
158 !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 uid_eq(uid, sock_i_uid(sk2))) {
160 if (!bitmap)
161 return 0;
162 } else {
163 if (!bitmap)
164 return 1;
165 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 bitmap);
167 }
168 }
169 }
170 return 0;
171 }
172
173 /*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 struct udp_hslot *hslot2,
179 struct sock *sk)
180 {
181 struct sock *sk2;
182 kuid_t uid = sock_i_uid(sk);
183 int res = 0;
184
185 spin_lock(&hslot2->lock);
186 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 if (net_eq(sock_net(sk2), net) &&
188 sk2 != sk &&
189 (udp_sk(sk2)->udp_port_hash == num) &&
190 (!sk2->sk_reuse || !sk->sk_reuse) &&
191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 inet_rcv_saddr_equal(sk, sk2, true)) {
194 if (sk2->sk_reuseport && sk->sk_reuseport &&
195 !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 uid_eq(uid, sock_i_uid(sk2))) {
197 res = 0;
198 } else {
199 res = 1;
200 }
201 break;
202 }
203 }
204 spin_unlock(&hslot2->lock);
205 return res;
206 }
207
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 struct net *net = sock_net(sk);
211 kuid_t uid = sock_i_uid(sk);
212 struct sock *sk2;
213
214 sk_for_each(sk2, &hslot->head) {
215 if (net_eq(sock_net(sk2), net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 inet_rcv_saddr_equal(sk, sk2, false)) {
223 return reuseport_add_sock(sk, sk2,
224 inet_rcv_saddr_any(sk));
225 }
226 }
227
228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230
231 /**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
241 {
242 struct udp_table *udptable = udp_get_table_prot(sk);
243 struct udp_hslot *hslot, *hslot2;
244 struct net *net = sock_net(sk);
245 int error = -EADDRINUSE;
246
247 if (!snum) {
248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 unsigned short first, last;
250 int low, high, remaining;
251 unsigned int rand;
252
253 inet_sk_get_local_port_range(sk, &low, &high);
254 remaining = (high - low) + 1;
255
256 rand = get_random_u32();
257 first = reciprocal_scale(rand, remaining) + low;
258 /*
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 */
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
263 do {
264 hslot = udp_hashslot(udptable, net, first);
265 bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(&hslot->lock);
267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 udptable->log);
269
270 snum = first;
271 /*
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
275 */
276 do {
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, snum))
280 goto found;
281 snum += rand;
282 } while (snum != first);
283 spin_unlock_bh(&hslot->lock);
284 cond_resched();
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(udptable, net, snum);
289 spin_lock_bh(&hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(udptable, slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 sk);
306 }
307 if (exist)
308 goto fail_unlock;
309 else
310 goto found;
311 }
312 scan_primary_hash:
313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 goto fail_unlock;
315 }
316 found:
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 goto fail_unlock;
327 }
328
329 sock_set_flag(sk, SOCK_RCU_FREE);
330
331 sk_add_node_rcu(sk, &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334
335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(&hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 &hslot2->head);
341 else
342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347
348 error = 0;
349 fail_unlock:
350 spin_unlock_bh(&hslot->lock);
351 fail:
352 return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355
udp_v4_get_port(struct sock * sk,unsigned short snum)356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 unsigned int hash2_nulladdr =
359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 unsigned int hash2_partial =
361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362
363 /* precompute partial secondary hash */
364 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)368 static int compute_score(struct sock *sk, struct net *net,
369 __be32 saddr, __be16 sport,
370 __be32 daddr, unsigned short hnum,
371 int dif, int sdif)
372 {
373 int score;
374 struct inet_sock *inet;
375 bool dev_match;
376
377 if (!net_eq(sock_net(sk), net) ||
378 udp_sk(sk)->udp_port_hash != hnum ||
379 ipv6_only_sock(sk))
380 return -1;
381
382 if (sk->sk_rcv_saddr != daddr)
383 return -1;
384
385 score = (sk->sk_family == PF_INET) ? 2 : 1;
386
387 inet = inet_sk(sk);
388 if (inet->inet_daddr) {
389 if (inet->inet_daddr != saddr)
390 return -1;
391 score += 4;
392 }
393
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
396 return -1;
397 score += 4;
398 }
399
400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 dif, sdif);
402 if (!dev_match)
403 return -1;
404 if (sk->sk_bound_dev_if)
405 score += 4;
406
407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 score++;
409 return score;
410 }
411
412 INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 const __be32 faddr, const __be16 fport)
415 {
416 static u32 udp_ehash_secret __read_mostly;
417
418 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419
420 return __inet_ehashfn(laddr, lport, faddr, fport,
421 udp_ehash_secret + net_hash_mix(net));
422 }
423
424 /**
425 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
426 * @net: Network namespace
427 * @saddr: Source address, network order
428 * @sport: Source port, network order
429 * @daddr: Destination address, network order
430 * @hnum: Destination port, host order
431 * @dif: Destination interface index
432 * @sdif: Destination bridge port index, if relevant
433 * @udptable: Set of UDP hash tables
434 *
435 * Simplified lookup to be used as fallback if no sockets are found due to a
436 * potential race between (receive) address change, and lookup happening before
437 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
438 * result sockets, because if we have one, we don't need the fallback at all.
439 *
440 * Called under rcu_read_lock().
441 *
442 * Return: socket with highest matching score if any, NULL if none
443 */
udp4_lib_lookup1(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,const struct udp_table * udptable)444 static struct sock *udp4_lib_lookup1(const struct net *net,
445 __be32 saddr, __be16 sport,
446 __be32 daddr, unsigned int hnum,
447 int dif, int sdif,
448 const struct udp_table *udptable)
449 {
450 unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
451 struct udp_hslot *hslot = &udptable->hash[slot];
452 struct sock *sk, *result = NULL;
453 int score, badness = 0;
454
455 sk_for_each_rcu(sk, &hslot->head) {
456 score = compute_score(sk, (struct net *)net,
457 saddr, sport, daddr, hnum, dif, sdif);
458 if (score > badness) {
459 result = sk;
460 badness = score;
461 }
462 }
463
464 return result;
465 }
466
467 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)468 static struct sock *udp4_lib_lookup2(struct net *net,
469 __be32 saddr, __be16 sport,
470 __be32 daddr, unsigned int hnum,
471 int dif, int sdif,
472 struct udp_hslot *hslot2,
473 struct sk_buff *skb)
474 {
475 struct sock *sk, *result;
476 int score, badness;
477 bool need_rescore;
478
479 result = NULL;
480 badness = 0;
481 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
482 need_rescore = false;
483 rescore:
484 score = compute_score(need_rescore ? result : sk, net, saddr,
485 sport, daddr, hnum, dif, sdif);
486 if (score > badness) {
487 badness = score;
488
489 if (need_rescore)
490 continue;
491
492 if (sk->sk_state == TCP_ESTABLISHED) {
493 result = sk;
494 continue;
495 }
496
497 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
498 saddr, sport, daddr, hnum, udp_ehashfn);
499 if (!result) {
500 result = sk;
501 continue;
502 }
503
504 /* Fall back to scoring if group has connections */
505 if (!reuseport_has_conns(sk))
506 return result;
507
508 /* Reuseport logic returned an error, keep original score. */
509 if (IS_ERR(result))
510 continue;
511
512 /* compute_score is too long of a function to be
513 * inlined, and calling it again here yields
514 * measureable overhead for some
515 * workloads. Work around it by jumping
516 * backwards to rescore 'result'.
517 */
518 need_rescore = true;
519 goto rescore;
520 }
521 }
522 return result;
523 }
524
525 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
526 * harder than this. -DaveM
527 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)528 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
529 __be16 sport, __be32 daddr, __be16 dport, int dif,
530 int sdif, struct udp_table *udptable, struct sk_buff *skb)
531 {
532 unsigned short hnum = ntohs(dport);
533 unsigned int hash2, slot2;
534 struct udp_hslot *hslot2;
535 struct sock *result, *sk;
536
537 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
538 slot2 = hash2 & udptable->mask;
539 hslot2 = &udptable->hash2[slot2];
540
541 /* Lookup connected or non-wildcard socket */
542 result = udp4_lib_lookup2(net, saddr, sport,
543 daddr, hnum, dif, sdif,
544 hslot2, skb);
545 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
546 goto done;
547
548 /* Lookup redirect from BPF */
549 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
550 udptable == net->ipv4.udp_table) {
551 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
552 saddr, sport, daddr, hnum, dif,
553 udp_ehashfn);
554 if (sk) {
555 result = sk;
556 goto done;
557 }
558 }
559
560 /* Got non-wildcard socket or error on first lookup */
561 if (result)
562 goto done;
563
564 /* Lookup wildcard sockets */
565 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
566 slot2 = hash2 & udptable->mask;
567 hslot2 = &udptable->hash2[slot2];
568
569 result = udp4_lib_lookup2(net, saddr, sport,
570 htonl(INADDR_ANY), hnum, dif, sdif,
571 hslot2, skb);
572 if (!IS_ERR_OR_NULL(result))
573 goto done;
574
575 /* Primary hash (destination port) lookup as fallback for this race:
576 * 1. __ip4_datagram_connect() sets sk_rcv_saddr
577 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
578 * 3. rehash operation updating _secondary and four-tuple_ hashes
579 * The primary hash doesn't need an update after 1., so, thanks to this
580 * further step, 1. and 3. don't need to be atomic against the lookup.
581 */
582 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
583 udptable);
584
585 done:
586 if (IS_ERR(result))
587 return NULL;
588 return result;
589 }
590 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
591
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)592 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
593 __be16 sport, __be16 dport,
594 struct udp_table *udptable)
595 {
596 const struct iphdr *iph = ip_hdr(skb);
597
598 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
599 iph->daddr, dport, inet_iif(skb),
600 inet_sdif(skb), udptable, skb);
601 }
602
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)603 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
604 __be16 sport, __be16 dport)
605 {
606 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
607 const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
608 struct net *net = dev_net(skb->dev);
609 int iif, sdif;
610
611 inet_get_iif_sdif(skb, &iif, &sdif);
612
613 return __udp4_lib_lookup(net, iph->saddr, sport,
614 iph->daddr, dport, iif,
615 sdif, net->ipv4.udp_table, NULL);
616 }
617
618 /* Must be called under rcu_read_lock().
619 * Does increment socket refcount.
620 */
621 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)622 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
623 __be32 daddr, __be16 dport, int dif)
624 {
625 struct sock *sk;
626
627 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
628 dif, 0, net->ipv4.udp_table, NULL);
629 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
630 sk = NULL;
631 return sk;
632 }
633 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
634 #endif
635
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)636 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
637 __be16 loc_port, __be32 loc_addr,
638 __be16 rmt_port, __be32 rmt_addr,
639 int dif, int sdif, unsigned short hnum)
640 {
641 const struct inet_sock *inet = inet_sk(sk);
642
643 if (!net_eq(sock_net(sk), net) ||
644 udp_sk(sk)->udp_port_hash != hnum ||
645 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
646 (inet->inet_dport != rmt_port && inet->inet_dport) ||
647 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
648 ipv6_only_sock(sk) ||
649 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
650 return false;
651 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
652 return false;
653 return true;
654 }
655
656 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
657 EXPORT_SYMBOL(udp_encap_needed_key);
658
659 #if IS_ENABLED(CONFIG_IPV6)
660 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
661 EXPORT_SYMBOL(udpv6_encap_needed_key);
662 #endif
663
udp_encap_enable(void)664 void udp_encap_enable(void)
665 {
666 static_branch_inc(&udp_encap_needed_key);
667 }
668 EXPORT_SYMBOL(udp_encap_enable);
669
udp_encap_disable(void)670 void udp_encap_disable(void)
671 {
672 static_branch_dec(&udp_encap_needed_key);
673 }
674 EXPORT_SYMBOL(udp_encap_disable);
675
676 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
677 * through error handlers in encapsulations looking for a match.
678 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)679 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
680 {
681 int i;
682
683 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
684 int (*handler)(struct sk_buff *skb, u32 info);
685 const struct ip_tunnel_encap_ops *encap;
686
687 encap = rcu_dereference(iptun_encaps[i]);
688 if (!encap)
689 continue;
690 handler = encap->err_handler;
691 if (handler && !handler(skb, info))
692 return 0;
693 }
694
695 return -ENOENT;
696 }
697
698 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
699 * reversing source and destination port: this will match tunnels that force the
700 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
701 * lwtunnels might actually break this assumption by being configured with
702 * different destination ports on endpoints, in this case we won't be able to
703 * trace ICMP messages back to them.
704 *
705 * If this doesn't match any socket, probe tunnels with arbitrary destination
706 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
707 * we've sent packets to won't necessarily match the local destination port.
708 *
709 * Then ask the tunnel implementation to match the error against a valid
710 * association.
711 *
712 * Return an error if we can't find a match, the socket if we need further
713 * processing, zero otherwise.
714 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)715 static struct sock *__udp4_lib_err_encap(struct net *net,
716 const struct iphdr *iph,
717 struct udphdr *uh,
718 struct udp_table *udptable,
719 struct sock *sk,
720 struct sk_buff *skb, u32 info)
721 {
722 int (*lookup)(struct sock *sk, struct sk_buff *skb);
723 int network_offset, transport_offset;
724 struct udp_sock *up;
725
726 network_offset = skb_network_offset(skb);
727 transport_offset = skb_transport_offset(skb);
728
729 /* Network header needs to point to the outer IPv4 header inside ICMP */
730 skb_reset_network_header(skb);
731
732 /* Transport header needs to point to the UDP header */
733 skb_set_transport_header(skb, iph->ihl << 2);
734
735 if (sk) {
736 up = udp_sk(sk);
737
738 lookup = READ_ONCE(up->encap_err_lookup);
739 if (lookup && lookup(sk, skb))
740 sk = NULL;
741
742 goto out;
743 }
744
745 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
746 iph->saddr, uh->dest, skb->dev->ifindex, 0,
747 udptable, NULL);
748 if (sk) {
749 up = udp_sk(sk);
750
751 lookup = READ_ONCE(up->encap_err_lookup);
752 if (!lookup || lookup(sk, skb))
753 sk = NULL;
754 }
755
756 out:
757 if (!sk)
758 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
759
760 skb_set_transport_header(skb, transport_offset);
761 skb_set_network_header(skb, network_offset);
762
763 return sk;
764 }
765
766 /*
767 * This routine is called by the ICMP module when it gets some
768 * sort of error condition. If err < 0 then the socket should
769 * be closed and the error returned to the user. If err > 0
770 * it's just the icmp type << 8 | icmp code.
771 * Header points to the ip header of the error packet. We move
772 * on past this. Then (as it used to claim before adjustment)
773 * header points to the first 8 bytes of the udp header. We need
774 * to find the appropriate port.
775 */
776
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)777 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
778 {
779 struct inet_sock *inet;
780 const struct iphdr *iph = (const struct iphdr *)skb->data;
781 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
782 const int type = icmp_hdr(skb)->type;
783 const int code = icmp_hdr(skb)->code;
784 bool tunnel = false;
785 struct sock *sk;
786 int harderr;
787 int err;
788 struct net *net = dev_net(skb->dev);
789
790 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
791 iph->saddr, uh->source, skb->dev->ifindex,
792 inet_sdif(skb), udptable, NULL);
793
794 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
795 /* No socket for error: try tunnels before discarding */
796 if (static_branch_unlikely(&udp_encap_needed_key)) {
797 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
798 info);
799 if (!sk)
800 return 0;
801 } else
802 sk = ERR_PTR(-ENOENT);
803
804 if (IS_ERR(sk)) {
805 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
806 return PTR_ERR(sk);
807 }
808
809 tunnel = true;
810 }
811
812 err = 0;
813 harderr = 0;
814 inet = inet_sk(sk);
815
816 switch (type) {
817 default:
818 case ICMP_TIME_EXCEEDED:
819 err = EHOSTUNREACH;
820 break;
821 case ICMP_SOURCE_QUENCH:
822 goto out;
823 case ICMP_PARAMETERPROB:
824 err = EPROTO;
825 harderr = 1;
826 break;
827 case ICMP_DEST_UNREACH:
828 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
829 ipv4_sk_update_pmtu(skb, sk, info);
830 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
831 err = EMSGSIZE;
832 harderr = 1;
833 break;
834 }
835 goto out;
836 }
837 err = EHOSTUNREACH;
838 if (code <= NR_ICMP_UNREACH) {
839 harderr = icmp_err_convert[code].fatal;
840 err = icmp_err_convert[code].errno;
841 }
842 break;
843 case ICMP_REDIRECT:
844 ipv4_sk_redirect(skb, sk);
845 goto out;
846 }
847
848 /*
849 * RFC1122: OK. Passes ICMP errors back to application, as per
850 * 4.1.3.3.
851 */
852 if (tunnel) {
853 /* ...not for tunnels though: we don't have a sending socket */
854 if (udp_sk(sk)->encap_err_rcv)
855 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
856 (u8 *)(uh+1));
857 goto out;
858 }
859 if (!inet_test_bit(RECVERR, sk)) {
860 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
861 goto out;
862 } else
863 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
864
865 sk->sk_err = err;
866 sk_error_report(sk);
867 out:
868 return 0;
869 }
870
udp_err(struct sk_buff * skb,u32 info)871 int udp_err(struct sk_buff *skb, u32 info)
872 {
873 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
874 }
875
876 /*
877 * Throw away all pending data and cancel the corking. Socket is locked.
878 */
udp_flush_pending_frames(struct sock * sk)879 void udp_flush_pending_frames(struct sock *sk)
880 {
881 struct udp_sock *up = udp_sk(sk);
882
883 if (up->pending) {
884 up->len = 0;
885 WRITE_ONCE(up->pending, 0);
886 ip_flush_pending_frames(sk);
887 }
888 }
889 EXPORT_SYMBOL(udp_flush_pending_frames);
890
891 /**
892 * udp4_hwcsum - handle outgoing HW checksumming
893 * @skb: sk_buff containing the filled-in UDP header
894 * (checksum field must be zeroed out)
895 * @src: source IP address
896 * @dst: destination IP address
897 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)898 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
899 {
900 struct udphdr *uh = udp_hdr(skb);
901 int offset = skb_transport_offset(skb);
902 int len = skb->len - offset;
903 int hlen = len;
904 __wsum csum = 0;
905
906 if (!skb_has_frag_list(skb)) {
907 /*
908 * Only one fragment on the socket.
909 */
910 skb->csum_start = skb_transport_header(skb) - skb->head;
911 skb->csum_offset = offsetof(struct udphdr, check);
912 uh->check = ~csum_tcpudp_magic(src, dst, len,
913 IPPROTO_UDP, 0);
914 } else {
915 struct sk_buff *frags;
916
917 /*
918 * HW-checksum won't work as there are two or more
919 * fragments on the socket so that all csums of sk_buffs
920 * should be together
921 */
922 skb_walk_frags(skb, frags) {
923 csum = csum_add(csum, frags->csum);
924 hlen -= frags->len;
925 }
926
927 csum = skb_checksum(skb, offset, hlen, csum);
928 skb->ip_summed = CHECKSUM_NONE;
929
930 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
931 if (uh->check == 0)
932 uh->check = CSUM_MANGLED_0;
933 }
934 }
935 EXPORT_SYMBOL_GPL(udp4_hwcsum);
936
937 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
938 * for the simple case like when setting the checksum for a UDP tunnel.
939 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)940 void udp_set_csum(bool nocheck, struct sk_buff *skb,
941 __be32 saddr, __be32 daddr, int len)
942 {
943 struct udphdr *uh = udp_hdr(skb);
944
945 if (nocheck) {
946 uh->check = 0;
947 } else if (skb_is_gso(skb)) {
948 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
949 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
950 uh->check = 0;
951 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
952 if (uh->check == 0)
953 uh->check = CSUM_MANGLED_0;
954 } else {
955 skb->ip_summed = CHECKSUM_PARTIAL;
956 skb->csum_start = skb_transport_header(skb) - skb->head;
957 skb->csum_offset = offsetof(struct udphdr, check);
958 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
959 }
960 }
961 EXPORT_SYMBOL(udp_set_csum);
962
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)963 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
964 struct inet_cork *cork)
965 {
966 struct sock *sk = skb->sk;
967 struct inet_sock *inet = inet_sk(sk);
968 struct udphdr *uh;
969 int err;
970 int is_udplite = IS_UDPLITE(sk);
971 int offset = skb_transport_offset(skb);
972 int len = skb->len - offset;
973 int datalen = len - sizeof(*uh);
974 __wsum csum = 0;
975
976 /*
977 * Create a UDP header
978 */
979 uh = udp_hdr(skb);
980 uh->source = inet->inet_sport;
981 uh->dest = fl4->fl4_dport;
982 uh->len = htons(len);
983 uh->check = 0;
984
985 if (cork->gso_size) {
986 const int hlen = skb_network_header_len(skb) +
987 sizeof(struct udphdr);
988
989 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
990 kfree_skb(skb);
991 return -EMSGSIZE;
992 }
993 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
994 kfree_skb(skb);
995 return -EINVAL;
996 }
997 if (sk->sk_no_check_tx) {
998 kfree_skb(skb);
999 return -EINVAL;
1000 }
1001 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
1002 dst_xfrm(skb_dst(skb))) {
1003 kfree_skb(skb);
1004 return -EIO;
1005 }
1006
1007 if (datalen > cork->gso_size) {
1008 skb_shinfo(skb)->gso_size = cork->gso_size;
1009 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1010 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1011 cork->gso_size);
1012 }
1013 goto csum_partial;
1014 }
1015
1016 if (is_udplite) /* UDP-Lite */
1017 csum = udplite_csum(skb);
1018
1019 else if (sk->sk_no_check_tx) { /* UDP csum off */
1020
1021 skb->ip_summed = CHECKSUM_NONE;
1022 goto send;
1023
1024 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1025 csum_partial:
1026
1027 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1028 goto send;
1029
1030 } else
1031 csum = udp_csum(skb);
1032
1033 /* add protocol-dependent pseudo-header */
1034 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1035 sk->sk_protocol, csum);
1036 if (uh->check == 0)
1037 uh->check = CSUM_MANGLED_0;
1038
1039 send:
1040 err = ip_send_skb(sock_net(sk), skb);
1041 if (err) {
1042 if (err == -ENOBUFS &&
1043 !inet_test_bit(RECVERR, sk)) {
1044 UDP_INC_STATS(sock_net(sk),
1045 UDP_MIB_SNDBUFERRORS, is_udplite);
1046 err = 0;
1047 }
1048 } else
1049 UDP_INC_STATS(sock_net(sk),
1050 UDP_MIB_OUTDATAGRAMS, is_udplite);
1051 return err;
1052 }
1053
1054 /*
1055 * Push out all pending data as one UDP datagram. Socket is locked.
1056 */
udp_push_pending_frames(struct sock * sk)1057 int udp_push_pending_frames(struct sock *sk)
1058 {
1059 struct udp_sock *up = udp_sk(sk);
1060 struct inet_sock *inet = inet_sk(sk);
1061 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1062 struct sk_buff *skb;
1063 int err = 0;
1064
1065 skb = ip_finish_skb(sk, fl4);
1066 if (!skb)
1067 goto out;
1068
1069 err = udp_send_skb(skb, fl4, &inet->cork.base);
1070
1071 out:
1072 up->len = 0;
1073 WRITE_ONCE(up->pending, 0);
1074 return err;
1075 }
1076 EXPORT_SYMBOL(udp_push_pending_frames);
1077
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1078 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1079 {
1080 switch (cmsg->cmsg_type) {
1081 case UDP_SEGMENT:
1082 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1083 return -EINVAL;
1084 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1085 return 0;
1086 default:
1087 return -EINVAL;
1088 }
1089 }
1090
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1091 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1092 {
1093 struct cmsghdr *cmsg;
1094 bool need_ip = false;
1095 int err;
1096
1097 for_each_cmsghdr(cmsg, msg) {
1098 if (!CMSG_OK(msg, cmsg))
1099 return -EINVAL;
1100
1101 if (cmsg->cmsg_level != SOL_UDP) {
1102 need_ip = true;
1103 continue;
1104 }
1105
1106 err = __udp_cmsg_send(cmsg, gso_size);
1107 if (err)
1108 return err;
1109 }
1110
1111 return need_ip;
1112 }
1113 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1114
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1115 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1116 {
1117 struct inet_sock *inet = inet_sk(sk);
1118 struct udp_sock *up = udp_sk(sk);
1119 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1120 struct flowi4 fl4_stack;
1121 struct flowi4 *fl4;
1122 int ulen = len;
1123 struct ipcm_cookie ipc;
1124 struct rtable *rt = NULL;
1125 int free = 0;
1126 int connected = 0;
1127 __be32 daddr, faddr, saddr;
1128 u8 tos, scope;
1129 __be16 dport;
1130 int err, is_udplite = IS_UDPLITE(sk);
1131 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1132 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1133 struct sk_buff *skb;
1134 struct ip_options_data opt_copy;
1135
1136 if (len > 0xFFFF)
1137 return -EMSGSIZE;
1138
1139 /*
1140 * Check the flags.
1141 */
1142
1143 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1144 return -EOPNOTSUPP;
1145
1146 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1147
1148 fl4 = &inet->cork.fl.u.ip4;
1149 if (READ_ONCE(up->pending)) {
1150 /*
1151 * There are pending frames.
1152 * The socket lock must be held while it's corked.
1153 */
1154 lock_sock(sk);
1155 if (likely(up->pending)) {
1156 if (unlikely(up->pending != AF_INET)) {
1157 release_sock(sk);
1158 return -EINVAL;
1159 }
1160 goto do_append_data;
1161 }
1162 release_sock(sk);
1163 }
1164 ulen += sizeof(struct udphdr);
1165
1166 /*
1167 * Get and verify the address.
1168 */
1169 if (usin) {
1170 if (msg->msg_namelen < sizeof(*usin))
1171 return -EINVAL;
1172 if (usin->sin_family != AF_INET) {
1173 if (usin->sin_family != AF_UNSPEC)
1174 return -EAFNOSUPPORT;
1175 }
1176
1177 daddr = usin->sin_addr.s_addr;
1178 dport = usin->sin_port;
1179 if (dport == 0)
1180 return -EINVAL;
1181 } else {
1182 if (sk->sk_state != TCP_ESTABLISHED)
1183 return -EDESTADDRREQ;
1184 daddr = inet->inet_daddr;
1185 dport = inet->inet_dport;
1186 /* Open fast path for connected socket.
1187 Route will not be used, if at least one option is set.
1188 */
1189 connected = 1;
1190 }
1191
1192 ipcm_init_sk(&ipc, inet);
1193 ipc.gso_size = READ_ONCE(up->gso_size);
1194
1195 if (msg->msg_controllen) {
1196 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1197 if (err > 0) {
1198 err = ip_cmsg_send(sk, msg, &ipc,
1199 sk->sk_family == AF_INET6);
1200 connected = 0;
1201 }
1202 if (unlikely(err < 0)) {
1203 kfree(ipc.opt);
1204 return err;
1205 }
1206 if (ipc.opt)
1207 free = 1;
1208 }
1209 if (!ipc.opt) {
1210 struct ip_options_rcu *inet_opt;
1211
1212 rcu_read_lock();
1213 inet_opt = rcu_dereference(inet->inet_opt);
1214 if (inet_opt) {
1215 memcpy(&opt_copy, inet_opt,
1216 sizeof(*inet_opt) + inet_opt->opt.optlen);
1217 ipc.opt = &opt_copy.opt;
1218 }
1219 rcu_read_unlock();
1220 }
1221
1222 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1223 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1224 (struct sockaddr *)usin,
1225 &msg->msg_namelen,
1226 &ipc.addr);
1227 if (err)
1228 goto out_free;
1229 if (usin) {
1230 if (usin->sin_port == 0) {
1231 /* BPF program set invalid port. Reject it. */
1232 err = -EINVAL;
1233 goto out_free;
1234 }
1235 daddr = usin->sin_addr.s_addr;
1236 dport = usin->sin_port;
1237 }
1238 }
1239
1240 saddr = ipc.addr;
1241 ipc.addr = faddr = daddr;
1242
1243 if (ipc.opt && ipc.opt->opt.srr) {
1244 if (!daddr) {
1245 err = -EINVAL;
1246 goto out_free;
1247 }
1248 faddr = ipc.opt->opt.faddr;
1249 connected = 0;
1250 }
1251 tos = get_rttos(&ipc, inet);
1252 scope = ip_sendmsg_scope(inet, &ipc, msg);
1253 if (scope == RT_SCOPE_LINK)
1254 connected = 0;
1255
1256 if (ipv4_is_multicast(daddr)) {
1257 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1258 ipc.oif = inet->mc_index;
1259 if (!saddr)
1260 saddr = inet->mc_addr;
1261 connected = 0;
1262 } else if (!ipc.oif) {
1263 ipc.oif = inet->uc_index;
1264 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1265 /* oif is set, packet is to local broadcast and
1266 * uc_index is set. oif is most likely set
1267 * by sk_bound_dev_if. If uc_index != oif check if the
1268 * oif is an L3 master and uc_index is an L3 slave.
1269 * If so, we want to allow the send using the uc_index.
1270 */
1271 if (ipc.oif != inet->uc_index &&
1272 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1273 inet->uc_index)) {
1274 ipc.oif = inet->uc_index;
1275 }
1276 }
1277
1278 if (connected)
1279 rt = (struct rtable *)sk_dst_check(sk, 0);
1280
1281 if (!rt) {
1282 struct net *net = sock_net(sk);
1283 __u8 flow_flags = inet_sk_flowi_flags(sk);
1284
1285 fl4 = &fl4_stack;
1286
1287 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1288 sk->sk_protocol, flow_flags, faddr, saddr,
1289 dport, inet->inet_sport, sk->sk_uid);
1290
1291 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1292 rt = ip_route_output_flow(net, fl4, sk);
1293 if (IS_ERR(rt)) {
1294 err = PTR_ERR(rt);
1295 rt = NULL;
1296 if (err == -ENETUNREACH)
1297 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1298 goto out;
1299 }
1300
1301 err = -EACCES;
1302 if ((rt->rt_flags & RTCF_BROADCAST) &&
1303 !sock_flag(sk, SOCK_BROADCAST))
1304 goto out;
1305 if (connected)
1306 sk_dst_set(sk, dst_clone(&rt->dst));
1307 }
1308
1309 if (msg->msg_flags&MSG_CONFIRM)
1310 goto do_confirm;
1311 back_from_confirm:
1312
1313 saddr = fl4->saddr;
1314 if (!ipc.addr)
1315 daddr = ipc.addr = fl4->daddr;
1316
1317 /* Lockless fast path for the non-corking case. */
1318 if (!corkreq) {
1319 struct inet_cork cork;
1320
1321 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1322 sizeof(struct udphdr), &ipc, &rt,
1323 &cork, msg->msg_flags);
1324 err = PTR_ERR(skb);
1325 if (!IS_ERR_OR_NULL(skb))
1326 err = udp_send_skb(skb, fl4, &cork);
1327 goto out;
1328 }
1329
1330 lock_sock(sk);
1331 if (unlikely(up->pending)) {
1332 /* The socket is already corked while preparing it. */
1333 /* ... which is an evident application bug. --ANK */
1334 release_sock(sk);
1335
1336 net_dbg_ratelimited("socket already corked\n");
1337 err = -EINVAL;
1338 goto out;
1339 }
1340 /*
1341 * Now cork the socket to pend data.
1342 */
1343 fl4 = &inet->cork.fl.u.ip4;
1344 fl4->daddr = daddr;
1345 fl4->saddr = saddr;
1346 fl4->fl4_dport = dport;
1347 fl4->fl4_sport = inet->inet_sport;
1348 WRITE_ONCE(up->pending, AF_INET);
1349
1350 do_append_data:
1351 up->len += ulen;
1352 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1353 sizeof(struct udphdr), &ipc, &rt,
1354 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1355 if (err)
1356 udp_flush_pending_frames(sk);
1357 else if (!corkreq)
1358 err = udp_push_pending_frames(sk);
1359 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1360 WRITE_ONCE(up->pending, 0);
1361 release_sock(sk);
1362
1363 out:
1364 ip_rt_put(rt);
1365 out_free:
1366 if (free)
1367 kfree(ipc.opt);
1368 if (!err)
1369 return len;
1370 /*
1371 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1372 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1373 * we don't have a good statistic (IpOutDiscards but it can be too many
1374 * things). We could add another new stat but at least for now that
1375 * seems like overkill.
1376 */
1377 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1378 UDP_INC_STATS(sock_net(sk),
1379 UDP_MIB_SNDBUFERRORS, is_udplite);
1380 }
1381 return err;
1382
1383 do_confirm:
1384 if (msg->msg_flags & MSG_PROBE)
1385 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1386 if (!(msg->msg_flags&MSG_PROBE) || len)
1387 goto back_from_confirm;
1388 err = 0;
1389 goto out;
1390 }
1391 EXPORT_SYMBOL(udp_sendmsg);
1392
udp_splice_eof(struct socket * sock)1393 void udp_splice_eof(struct socket *sock)
1394 {
1395 struct sock *sk = sock->sk;
1396 struct udp_sock *up = udp_sk(sk);
1397
1398 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1399 return;
1400
1401 lock_sock(sk);
1402 if (up->pending && !udp_test_bit(CORK, sk))
1403 udp_push_pending_frames(sk);
1404 release_sock(sk);
1405 }
1406 EXPORT_SYMBOL_GPL(udp_splice_eof);
1407
1408 #define UDP_SKB_IS_STATELESS 0x80000000
1409
1410 /* all head states (dst, sk, nf conntrack) except skb extensions are
1411 * cleared by udp_rcv().
1412 *
1413 * We need to preserve secpath, if present, to eventually process
1414 * IP_CMSG_PASSSEC at recvmsg() time.
1415 *
1416 * Other extensions can be cleared.
1417 */
udp_try_make_stateless(struct sk_buff * skb)1418 static bool udp_try_make_stateless(struct sk_buff *skb)
1419 {
1420 if (!skb_has_extensions(skb))
1421 return true;
1422
1423 if (!secpath_exists(skb)) {
1424 skb_ext_reset(skb);
1425 return true;
1426 }
1427
1428 return false;
1429 }
1430
udp_set_dev_scratch(struct sk_buff * skb)1431 static void udp_set_dev_scratch(struct sk_buff *skb)
1432 {
1433 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1434
1435 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1436 scratch->_tsize_state = skb->truesize;
1437 #if BITS_PER_LONG == 64
1438 scratch->len = skb->len;
1439 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1440 scratch->is_linear = !skb_is_nonlinear(skb);
1441 #endif
1442 if (udp_try_make_stateless(skb))
1443 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1444 }
1445
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1446 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1447 {
1448 /* We come here after udp_lib_checksum_complete() returned 0.
1449 * This means that __skb_checksum_complete() might have
1450 * set skb->csum_valid to 1.
1451 * On 64bit platforms, we can set csum_unnecessary
1452 * to true, but only if the skb is not shared.
1453 */
1454 #if BITS_PER_LONG == 64
1455 if (!skb_shared(skb))
1456 udp_skb_scratch(skb)->csum_unnecessary = true;
1457 #endif
1458 }
1459
udp_skb_truesize(struct sk_buff * skb)1460 static int udp_skb_truesize(struct sk_buff *skb)
1461 {
1462 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1463 }
1464
udp_skb_has_head_state(struct sk_buff * skb)1465 static bool udp_skb_has_head_state(struct sk_buff *skb)
1466 {
1467 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1468 }
1469
1470 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,unsigned int size,int partial,bool rx_queue_lock_held)1471 static void udp_rmem_release(struct sock *sk, unsigned int size,
1472 int partial, bool rx_queue_lock_held)
1473 {
1474 struct udp_sock *up = udp_sk(sk);
1475 struct sk_buff_head *sk_queue;
1476 unsigned int amt;
1477
1478 if (likely(partial)) {
1479 up->forward_deficit += size;
1480 size = up->forward_deficit;
1481 if (size < READ_ONCE(up->forward_threshold) &&
1482 !skb_queue_empty(&up->reader_queue))
1483 return;
1484 } else {
1485 size += up->forward_deficit;
1486 }
1487 up->forward_deficit = 0;
1488
1489 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1490 * if the called don't held it already
1491 */
1492 sk_queue = &sk->sk_receive_queue;
1493 if (!rx_queue_lock_held)
1494 spin_lock(&sk_queue->lock);
1495
1496 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1497 sk_forward_alloc_add(sk, size - amt);
1498
1499 if (amt)
1500 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1501
1502 atomic_sub(size, &sk->sk_rmem_alloc);
1503
1504 /* this can save us from acquiring the rx queue lock on next receive */
1505 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1506
1507 if (!rx_queue_lock_held)
1508 spin_unlock(&sk_queue->lock);
1509 }
1510
1511 /* Note: called with reader_queue.lock held.
1512 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1513 * This avoids a cache line miss while receive_queue lock is held.
1514 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1515 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1516 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1517 {
1518 prefetch(&skb->data);
1519 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1520 }
1521 EXPORT_SYMBOL(udp_skb_destructor);
1522
1523 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1524 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1525 {
1526 prefetch(&skb->data);
1527 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1528 }
1529
1530 /* Idea of busylocks is to let producers grab an extra spinlock
1531 * to relieve pressure on the receive_queue spinlock shared by consumer.
1532 * Under flood, this means that only one producer can be in line
1533 * trying to acquire the receive_queue spinlock.
1534 * These busylock can be allocated on a per cpu manner, instead of a
1535 * per socket one (that would consume a cache line per socket)
1536 */
1537 static int udp_busylocks_log __read_mostly;
1538 static spinlock_t *udp_busylocks __read_mostly;
1539
busylock_acquire(void * ptr)1540 static spinlock_t *busylock_acquire(void *ptr)
1541 {
1542 spinlock_t *busy;
1543
1544 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1545 spin_lock(busy);
1546 return busy;
1547 }
1548
busylock_release(spinlock_t * busy)1549 static void busylock_release(spinlock_t *busy)
1550 {
1551 if (busy)
1552 spin_unlock(busy);
1553 }
1554
udp_rmem_schedule(struct sock * sk,int size)1555 static int udp_rmem_schedule(struct sock *sk, int size)
1556 {
1557 int delta;
1558
1559 delta = size - sk->sk_forward_alloc;
1560 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1561 return -ENOBUFS;
1562
1563 return 0;
1564 }
1565
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1566 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1567 {
1568 struct sk_buff_head *list = &sk->sk_receive_queue;
1569 int rmem, err = -ENOMEM;
1570 spinlock_t *busy = NULL;
1571 int size;
1572
1573 /* try to avoid the costly atomic add/sub pair when the receive
1574 * queue is full; always allow at least a packet
1575 */
1576 rmem = atomic_read(&sk->sk_rmem_alloc);
1577 if (rmem > sk->sk_rcvbuf)
1578 goto drop;
1579
1580 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1581 * having linear skbs :
1582 * - Reduce memory overhead and thus increase receive queue capacity
1583 * - Less cache line misses at copyout() time
1584 * - Less work at consume_skb() (less alien page frag freeing)
1585 */
1586 if (rmem > (sk->sk_rcvbuf >> 1)) {
1587 skb_condense(skb);
1588
1589 busy = busylock_acquire(sk);
1590 }
1591 size = skb->truesize;
1592 udp_set_dev_scratch(skb);
1593
1594 /* we drop only if the receive buf is full and the receive
1595 * queue contains some other skb
1596 */
1597 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1598 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1599 goto uncharge_drop;
1600
1601 spin_lock(&list->lock);
1602 err = udp_rmem_schedule(sk, size);
1603 if (err) {
1604 spin_unlock(&list->lock);
1605 goto uncharge_drop;
1606 }
1607
1608 sk_forward_alloc_add(sk, -size);
1609
1610 /* no need to setup a destructor, we will explicitly release the
1611 * forward allocated memory on dequeue
1612 */
1613 sock_skb_set_dropcount(sk, skb);
1614
1615 __skb_queue_tail(list, skb);
1616 spin_unlock(&list->lock);
1617
1618 if (!sock_flag(sk, SOCK_DEAD))
1619 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1620
1621 busylock_release(busy);
1622 return 0;
1623
1624 uncharge_drop:
1625 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1626
1627 drop:
1628 atomic_inc(&sk->sk_drops);
1629 busylock_release(busy);
1630 return err;
1631 }
1632 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1633
udp_destruct_common(struct sock * sk)1634 void udp_destruct_common(struct sock *sk)
1635 {
1636 /* reclaim completely the forward allocated memory */
1637 struct udp_sock *up = udp_sk(sk);
1638 unsigned int total = 0;
1639 struct sk_buff *skb;
1640
1641 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1642 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1643 total += skb->truesize;
1644 kfree_skb(skb);
1645 }
1646 udp_rmem_release(sk, total, 0, true);
1647 }
1648 EXPORT_SYMBOL_GPL(udp_destruct_common);
1649
udp_destruct_sock(struct sock * sk)1650 static void udp_destruct_sock(struct sock *sk)
1651 {
1652 udp_destruct_common(sk);
1653 inet_sock_destruct(sk);
1654 }
1655
udp_init_sock(struct sock * sk)1656 int udp_init_sock(struct sock *sk)
1657 {
1658 udp_lib_init_sock(sk);
1659 sk->sk_destruct = udp_destruct_sock;
1660 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1661 return 0;
1662 }
1663
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1664 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1665 {
1666 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1667 bool slow = lock_sock_fast(sk);
1668
1669 sk_peek_offset_bwd(sk, len);
1670 unlock_sock_fast(sk, slow);
1671 }
1672
1673 if (!skb_unref(skb))
1674 return;
1675
1676 /* In the more common cases we cleared the head states previously,
1677 * see __udp_queue_rcv_skb().
1678 */
1679 if (unlikely(udp_skb_has_head_state(skb)))
1680 skb_release_head_state(skb);
1681 __consume_stateless_skb(skb);
1682 }
1683 EXPORT_SYMBOL_GPL(skb_consume_udp);
1684
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,unsigned int * total)1685 static struct sk_buff *__first_packet_length(struct sock *sk,
1686 struct sk_buff_head *rcvq,
1687 unsigned int *total)
1688 {
1689 struct sk_buff *skb;
1690
1691 while ((skb = skb_peek(rcvq)) != NULL) {
1692 if (udp_lib_checksum_complete(skb)) {
1693 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1694 IS_UDPLITE(sk));
1695 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1696 IS_UDPLITE(sk));
1697 atomic_inc(&sk->sk_drops);
1698 __skb_unlink(skb, rcvq);
1699 *total += skb->truesize;
1700 kfree_skb(skb);
1701 } else {
1702 udp_skb_csum_unnecessary_set(skb);
1703 break;
1704 }
1705 }
1706 return skb;
1707 }
1708
1709 /**
1710 * first_packet_length - return length of first packet in receive queue
1711 * @sk: socket
1712 *
1713 * Drops all bad checksum frames, until a valid one is found.
1714 * Returns the length of found skb, or -1 if none is found.
1715 */
first_packet_length(struct sock * sk)1716 static int first_packet_length(struct sock *sk)
1717 {
1718 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1719 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1720 unsigned int total = 0;
1721 struct sk_buff *skb;
1722 int res;
1723
1724 spin_lock_bh(&rcvq->lock);
1725 skb = __first_packet_length(sk, rcvq, &total);
1726 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1727 spin_lock(&sk_queue->lock);
1728 skb_queue_splice_tail_init(sk_queue, rcvq);
1729 spin_unlock(&sk_queue->lock);
1730
1731 skb = __first_packet_length(sk, rcvq, &total);
1732 }
1733 res = skb ? skb->len : -1;
1734 if (total)
1735 udp_rmem_release(sk, total, 1, false);
1736 spin_unlock_bh(&rcvq->lock);
1737 return res;
1738 }
1739
1740 /*
1741 * IOCTL requests applicable to the UDP protocol
1742 */
1743
udp_ioctl(struct sock * sk,int cmd,int * karg)1744 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1745 {
1746 switch (cmd) {
1747 case SIOCOUTQ:
1748 {
1749 *karg = sk_wmem_alloc_get(sk);
1750 return 0;
1751 }
1752
1753 case SIOCINQ:
1754 {
1755 *karg = max_t(int, 0, first_packet_length(sk));
1756 return 0;
1757 }
1758
1759 default:
1760 return -ENOIOCTLCMD;
1761 }
1762
1763 return 0;
1764 }
1765 EXPORT_SYMBOL(udp_ioctl);
1766
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1767 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1768 int *off, int *err)
1769 {
1770 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1771 struct sk_buff_head *queue;
1772 struct sk_buff *last;
1773 long timeo;
1774 int error;
1775
1776 queue = &udp_sk(sk)->reader_queue;
1777 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1778 do {
1779 struct sk_buff *skb;
1780
1781 error = sock_error(sk);
1782 if (error)
1783 break;
1784
1785 error = -EAGAIN;
1786 do {
1787 spin_lock_bh(&queue->lock);
1788 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1789 err, &last);
1790 if (skb) {
1791 if (!(flags & MSG_PEEK))
1792 udp_skb_destructor(sk, skb);
1793 spin_unlock_bh(&queue->lock);
1794 return skb;
1795 }
1796
1797 if (skb_queue_empty_lockless(sk_queue)) {
1798 spin_unlock_bh(&queue->lock);
1799 goto busy_check;
1800 }
1801
1802 /* refill the reader queue and walk it again
1803 * keep both queues locked to avoid re-acquiring
1804 * the sk_receive_queue lock if fwd memory scheduling
1805 * is needed.
1806 */
1807 spin_lock(&sk_queue->lock);
1808 skb_queue_splice_tail_init(sk_queue, queue);
1809
1810 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1811 err, &last);
1812 if (skb && !(flags & MSG_PEEK))
1813 udp_skb_dtor_locked(sk, skb);
1814 spin_unlock(&sk_queue->lock);
1815 spin_unlock_bh(&queue->lock);
1816 if (skb)
1817 return skb;
1818
1819 busy_check:
1820 if (!sk_can_busy_loop(sk))
1821 break;
1822
1823 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1824 } while (!skb_queue_empty_lockless(sk_queue));
1825
1826 /* sk_queue is empty, reader_queue may contain peeked packets */
1827 } while (timeo &&
1828 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1829 &error, &timeo,
1830 (struct sk_buff *)sk_queue));
1831
1832 *err = error;
1833 return NULL;
1834 }
1835 EXPORT_SYMBOL(__skb_recv_udp);
1836
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1837 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1838 {
1839 struct sk_buff *skb;
1840 int err;
1841
1842 try_again:
1843 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1844 if (!skb)
1845 return err;
1846
1847 if (udp_lib_checksum_complete(skb)) {
1848 int is_udplite = IS_UDPLITE(sk);
1849 struct net *net = sock_net(sk);
1850
1851 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1852 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1853 atomic_inc(&sk->sk_drops);
1854 kfree_skb(skb);
1855 goto try_again;
1856 }
1857
1858 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1859 return recv_actor(sk, skb);
1860 }
1861 EXPORT_SYMBOL(udp_read_skb);
1862
1863 /*
1864 * This should be easy, if there is something there we
1865 * return it, otherwise we block.
1866 */
1867
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1868 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1869 int *addr_len)
1870 {
1871 struct inet_sock *inet = inet_sk(sk);
1872 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1873 struct sk_buff *skb;
1874 unsigned int ulen, copied;
1875 int off, err, peeking = flags & MSG_PEEK;
1876 int is_udplite = IS_UDPLITE(sk);
1877 bool checksum_valid = false;
1878
1879 if (flags & MSG_ERRQUEUE)
1880 return ip_recv_error(sk, msg, len, addr_len);
1881
1882 try_again:
1883 off = sk_peek_offset(sk, flags);
1884 skb = __skb_recv_udp(sk, flags, &off, &err);
1885 if (!skb)
1886 return err;
1887
1888 ulen = udp_skb_len(skb);
1889 copied = len;
1890 if (copied > ulen - off)
1891 copied = ulen - off;
1892 else if (copied < ulen)
1893 msg->msg_flags |= MSG_TRUNC;
1894
1895 /*
1896 * If checksum is needed at all, try to do it while copying the
1897 * data. If the data is truncated, or if we only want a partial
1898 * coverage checksum (UDP-Lite), do it before the copy.
1899 */
1900
1901 if (copied < ulen || peeking ||
1902 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1903 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1904 !__udp_lib_checksum_complete(skb);
1905 if (!checksum_valid)
1906 goto csum_copy_err;
1907 }
1908
1909 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1910 if (udp_skb_is_linear(skb))
1911 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1912 else
1913 err = skb_copy_datagram_msg(skb, off, msg, copied);
1914 } else {
1915 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1916
1917 if (err == -EINVAL)
1918 goto csum_copy_err;
1919 }
1920
1921 if (unlikely(err)) {
1922 if (!peeking) {
1923 atomic_inc(&sk->sk_drops);
1924 UDP_INC_STATS(sock_net(sk),
1925 UDP_MIB_INERRORS, is_udplite);
1926 }
1927 kfree_skb(skb);
1928 return err;
1929 }
1930
1931 if (!peeking)
1932 UDP_INC_STATS(sock_net(sk),
1933 UDP_MIB_INDATAGRAMS, is_udplite);
1934
1935 sock_recv_cmsgs(msg, sk, skb);
1936
1937 /* Copy the address. */
1938 if (sin) {
1939 sin->sin_family = AF_INET;
1940 sin->sin_port = udp_hdr(skb)->source;
1941 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1942 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1943 *addr_len = sizeof(*sin);
1944
1945 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1946 (struct sockaddr *)sin,
1947 addr_len);
1948 }
1949
1950 if (udp_test_bit(GRO_ENABLED, sk))
1951 udp_cmsg_recv(msg, sk, skb);
1952
1953 if (inet_cmsg_flags(inet))
1954 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1955
1956 err = copied;
1957 if (flags & MSG_TRUNC)
1958 err = ulen;
1959
1960 skb_consume_udp(sk, skb, peeking ? -err : err);
1961 return err;
1962
1963 csum_copy_err:
1964 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1965 udp_skb_destructor)) {
1966 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1967 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1968 }
1969 kfree_skb(skb);
1970
1971 /* starting over for a new packet, but check if we need to yield */
1972 cond_resched();
1973 msg->msg_flags &= ~MSG_TRUNC;
1974 goto try_again;
1975 }
1976
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1977 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1978 {
1979 /* This check is replicated from __ip4_datagram_connect() and
1980 * intended to prevent BPF program called below from accessing bytes
1981 * that are out of the bound specified by user in addr_len.
1982 */
1983 if (addr_len < sizeof(struct sockaddr_in))
1984 return -EINVAL;
1985
1986 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1987 }
1988 EXPORT_SYMBOL(udp_pre_connect);
1989
__udp_disconnect(struct sock * sk,int flags)1990 int __udp_disconnect(struct sock *sk, int flags)
1991 {
1992 struct inet_sock *inet = inet_sk(sk);
1993 /*
1994 * 1003.1g - break association.
1995 */
1996
1997 sk->sk_state = TCP_CLOSE;
1998 inet->inet_daddr = 0;
1999 inet->inet_dport = 0;
2000 sock_rps_reset_rxhash(sk);
2001 sk->sk_bound_dev_if = 0;
2002 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2003 inet_reset_saddr(sk);
2004 if (sk->sk_prot->rehash &&
2005 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2006 sk->sk_prot->rehash(sk);
2007 }
2008
2009 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2010 sk->sk_prot->unhash(sk);
2011 inet->inet_sport = 0;
2012 }
2013 sk_dst_reset(sk);
2014 return 0;
2015 }
2016 EXPORT_SYMBOL(__udp_disconnect);
2017
udp_disconnect(struct sock * sk,int flags)2018 int udp_disconnect(struct sock *sk, int flags)
2019 {
2020 lock_sock(sk);
2021 __udp_disconnect(sk, flags);
2022 release_sock(sk);
2023 return 0;
2024 }
2025 EXPORT_SYMBOL(udp_disconnect);
2026
udp_lib_unhash(struct sock * sk)2027 void udp_lib_unhash(struct sock *sk)
2028 {
2029 if (sk_hashed(sk)) {
2030 struct udp_table *udptable = udp_get_table_prot(sk);
2031 struct udp_hslot *hslot, *hslot2;
2032
2033 hslot = udp_hashslot(udptable, sock_net(sk),
2034 udp_sk(sk)->udp_port_hash);
2035 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2036
2037 spin_lock_bh(&hslot->lock);
2038 if (rcu_access_pointer(sk->sk_reuseport_cb))
2039 reuseport_detach_sock(sk);
2040 if (sk_del_node_init_rcu(sk)) {
2041 hslot->count--;
2042 inet_sk(sk)->inet_num = 0;
2043 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2044
2045 spin_lock(&hslot2->lock);
2046 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2047 hslot2->count--;
2048 spin_unlock(&hslot2->lock);
2049 }
2050 spin_unlock_bh(&hslot->lock);
2051 }
2052 }
2053 EXPORT_SYMBOL(udp_lib_unhash);
2054
2055 /*
2056 * inet_rcv_saddr was changed, we must rehash secondary hash
2057 */
udp_lib_rehash(struct sock * sk,u16 newhash)2058 void udp_lib_rehash(struct sock *sk, u16 newhash)
2059 {
2060 if (sk_hashed(sk)) {
2061 struct udp_table *udptable = udp_get_table_prot(sk);
2062 struct udp_hslot *hslot, *hslot2, *nhslot2;
2063
2064 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2065 nhslot2 = udp_hashslot2(udptable, newhash);
2066 udp_sk(sk)->udp_portaddr_hash = newhash;
2067
2068 if (hslot2 != nhslot2 ||
2069 rcu_access_pointer(sk->sk_reuseport_cb)) {
2070 hslot = udp_hashslot(udptable, sock_net(sk),
2071 udp_sk(sk)->udp_port_hash);
2072 /* we must lock primary chain too */
2073 spin_lock_bh(&hslot->lock);
2074 if (rcu_access_pointer(sk->sk_reuseport_cb))
2075 reuseport_detach_sock(sk);
2076
2077 if (hslot2 != nhslot2) {
2078 spin_lock(&hslot2->lock);
2079 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2080 hslot2->count--;
2081 spin_unlock(&hslot2->lock);
2082
2083 spin_lock(&nhslot2->lock);
2084 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2085 &nhslot2->head);
2086 nhslot2->count++;
2087 spin_unlock(&nhslot2->lock);
2088 }
2089
2090 spin_unlock_bh(&hslot->lock);
2091 }
2092 }
2093 }
2094 EXPORT_SYMBOL(udp_lib_rehash);
2095
udp_v4_rehash(struct sock * sk)2096 void udp_v4_rehash(struct sock *sk)
2097 {
2098 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2099 inet_sk(sk)->inet_rcv_saddr,
2100 inet_sk(sk)->inet_num);
2101 udp_lib_rehash(sk, new_hash);
2102 }
2103
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2104 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2105 {
2106 int rc;
2107
2108 if (inet_sk(sk)->inet_daddr) {
2109 sock_rps_save_rxhash(sk, skb);
2110 sk_mark_napi_id(sk, skb);
2111 sk_incoming_cpu_update(sk);
2112 } else {
2113 sk_mark_napi_id_once(sk, skb);
2114 }
2115
2116 rc = __udp_enqueue_schedule_skb(sk, skb);
2117 if (rc < 0) {
2118 int is_udplite = IS_UDPLITE(sk);
2119 int drop_reason;
2120
2121 /* Note that an ENOMEM error is charged twice */
2122 if (rc == -ENOMEM) {
2123 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2124 is_udplite);
2125 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2126 } else {
2127 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2128 is_udplite);
2129 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2130 }
2131 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2132 kfree_skb_reason(skb, drop_reason);
2133 trace_udp_fail_queue_rcv_skb(rc, sk);
2134 return -1;
2135 }
2136
2137 return 0;
2138 }
2139
2140 /* returns:
2141 * -1: error
2142 * 0: success
2143 * >0: "udp encap" protocol resubmission
2144 *
2145 * Note that in the success and error cases, the skb is assumed to
2146 * have either been requeued or freed.
2147 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2148 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2149 {
2150 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2151 struct udp_sock *up = udp_sk(sk);
2152 int is_udplite = IS_UDPLITE(sk);
2153
2154 /*
2155 * Charge it to the socket, dropping if the queue is full.
2156 */
2157 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2158 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2159 goto drop;
2160 }
2161 nf_reset_ct(skb);
2162
2163 if (static_branch_unlikely(&udp_encap_needed_key) &&
2164 READ_ONCE(up->encap_type)) {
2165 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2166
2167 /*
2168 * This is an encapsulation socket so pass the skb to
2169 * the socket's udp_encap_rcv() hook. Otherwise, just
2170 * fall through and pass this up the UDP socket.
2171 * up->encap_rcv() returns the following value:
2172 * =0 if skb was successfully passed to the encap
2173 * handler or was discarded by it.
2174 * >0 if skb should be passed on to UDP.
2175 * <0 if skb should be resubmitted as proto -N
2176 */
2177
2178 /* if we're overly short, let UDP handle it */
2179 encap_rcv = READ_ONCE(up->encap_rcv);
2180 if (encap_rcv) {
2181 int ret;
2182
2183 /* Verify checksum before giving to encap */
2184 if (udp_lib_checksum_complete(skb))
2185 goto csum_error;
2186
2187 ret = encap_rcv(sk, skb);
2188 if (ret <= 0) {
2189 __UDP_INC_STATS(sock_net(sk),
2190 UDP_MIB_INDATAGRAMS,
2191 is_udplite);
2192 return -ret;
2193 }
2194 }
2195
2196 /* FALLTHROUGH -- it's a UDP Packet */
2197 }
2198
2199 /*
2200 * UDP-Lite specific tests, ignored on UDP sockets
2201 */
2202 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2203 u16 pcrlen = READ_ONCE(up->pcrlen);
2204
2205 /*
2206 * MIB statistics other than incrementing the error count are
2207 * disabled for the following two types of errors: these depend
2208 * on the application settings, not on the functioning of the
2209 * protocol stack as such.
2210 *
2211 * RFC 3828 here recommends (sec 3.3): "There should also be a
2212 * way ... to ... at least let the receiving application block
2213 * delivery of packets with coverage values less than a value
2214 * provided by the application."
2215 */
2216 if (pcrlen == 0) { /* full coverage was set */
2217 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2218 UDP_SKB_CB(skb)->cscov, skb->len);
2219 goto drop;
2220 }
2221 /* The next case involves violating the min. coverage requested
2222 * by the receiver. This is subtle: if receiver wants x and x is
2223 * greater than the buffersize/MTU then receiver will complain
2224 * that it wants x while sender emits packets of smaller size y.
2225 * Therefore the above ...()->partial_cov statement is essential.
2226 */
2227 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2228 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2229 UDP_SKB_CB(skb)->cscov, pcrlen);
2230 goto drop;
2231 }
2232 }
2233
2234 prefetch(&sk->sk_rmem_alloc);
2235 if (rcu_access_pointer(sk->sk_filter) &&
2236 udp_lib_checksum_complete(skb))
2237 goto csum_error;
2238
2239 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2240 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2241 goto drop;
2242 }
2243
2244 udp_csum_pull_header(skb);
2245
2246 ipv4_pktinfo_prepare(sk, skb, true);
2247 return __udp_queue_rcv_skb(sk, skb);
2248
2249 csum_error:
2250 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2251 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2252 drop:
2253 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2254 atomic_inc(&sk->sk_drops);
2255 kfree_skb_reason(skb, drop_reason);
2256 return -1;
2257 }
2258
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2259 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2260 {
2261 struct sk_buff *next, *segs;
2262 int ret;
2263
2264 if (likely(!udp_unexpected_gso(sk, skb)))
2265 return udp_queue_rcv_one_skb(sk, skb);
2266
2267 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2268 __skb_push(skb, -skb_mac_offset(skb));
2269 segs = udp_rcv_segment(sk, skb, true);
2270 skb_list_walk_safe(segs, skb, next) {
2271 __skb_pull(skb, skb_transport_offset(skb));
2272
2273 udp_post_segment_fix_csum(skb);
2274 ret = udp_queue_rcv_one_skb(sk, skb);
2275 if (ret > 0)
2276 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2277 }
2278 return 0;
2279 }
2280
2281 /* For TCP sockets, sk_rx_dst is protected by socket lock
2282 * For UDP, we use xchg() to guard against concurrent changes.
2283 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2284 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2285 {
2286 struct dst_entry *old;
2287
2288 if (dst_hold_safe(dst)) {
2289 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2290 dst_release(old);
2291 return old != dst;
2292 }
2293 return false;
2294 }
2295 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2296
2297 /*
2298 * Multicasts and broadcasts go to each listener.
2299 *
2300 * Note: called only from the BH handler context.
2301 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2302 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2303 struct udphdr *uh,
2304 __be32 saddr, __be32 daddr,
2305 struct udp_table *udptable,
2306 int proto)
2307 {
2308 struct sock *sk, *first = NULL;
2309 unsigned short hnum = ntohs(uh->dest);
2310 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2311 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2312 unsigned int offset = offsetof(typeof(*sk), sk_node);
2313 int dif = skb->dev->ifindex;
2314 int sdif = inet_sdif(skb);
2315 struct hlist_node *node;
2316 struct sk_buff *nskb;
2317
2318 if (use_hash2) {
2319 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2320 udptable->mask;
2321 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2322 start_lookup:
2323 hslot = &udptable->hash2[hash2];
2324 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2325 }
2326
2327 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2328 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2329 uh->source, saddr, dif, sdif, hnum))
2330 continue;
2331
2332 if (!first) {
2333 first = sk;
2334 continue;
2335 }
2336 nskb = skb_clone(skb, GFP_ATOMIC);
2337
2338 if (unlikely(!nskb)) {
2339 atomic_inc(&sk->sk_drops);
2340 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2341 IS_UDPLITE(sk));
2342 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2343 IS_UDPLITE(sk));
2344 continue;
2345 }
2346 if (udp_queue_rcv_skb(sk, nskb) > 0)
2347 consume_skb(nskb);
2348 }
2349
2350 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2351 if (use_hash2 && hash2 != hash2_any) {
2352 hash2 = hash2_any;
2353 goto start_lookup;
2354 }
2355
2356 if (first) {
2357 if (udp_queue_rcv_skb(first, skb) > 0)
2358 consume_skb(skb);
2359 } else {
2360 kfree_skb(skb);
2361 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2362 proto == IPPROTO_UDPLITE);
2363 }
2364 return 0;
2365 }
2366
2367 /* Initialize UDP checksum. If exited with zero value (success),
2368 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2369 * Otherwise, csum completion requires checksumming packet body,
2370 * including udp header and folding it to skb->csum.
2371 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2372 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2373 int proto)
2374 {
2375 int err;
2376
2377 UDP_SKB_CB(skb)->partial_cov = 0;
2378 UDP_SKB_CB(skb)->cscov = skb->len;
2379
2380 if (proto == IPPROTO_UDPLITE) {
2381 err = udplite_checksum_init(skb, uh);
2382 if (err)
2383 return err;
2384
2385 if (UDP_SKB_CB(skb)->partial_cov) {
2386 skb->csum = inet_compute_pseudo(skb, proto);
2387 return 0;
2388 }
2389 }
2390
2391 /* Note, we are only interested in != 0 or == 0, thus the
2392 * force to int.
2393 */
2394 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2395 inet_compute_pseudo);
2396 if (err)
2397 return err;
2398
2399 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2400 /* If SW calculated the value, we know it's bad */
2401 if (skb->csum_complete_sw)
2402 return 1;
2403
2404 /* HW says the value is bad. Let's validate that.
2405 * skb->csum is no longer the full packet checksum,
2406 * so don't treat it as such.
2407 */
2408 skb_checksum_complete_unset(skb);
2409 }
2410
2411 return 0;
2412 }
2413
2414 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2415 * return code conversion for ip layer consumption
2416 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2417 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2418 struct udphdr *uh)
2419 {
2420 int ret;
2421
2422 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2423 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2424
2425 ret = udp_queue_rcv_skb(sk, skb);
2426
2427 /* a return value > 0 means to resubmit the input, but
2428 * it wants the return to be -protocol, or 0
2429 */
2430 if (ret > 0)
2431 return -ret;
2432 return 0;
2433 }
2434
2435 /*
2436 * All we need to do is get the socket, and then do a checksum.
2437 */
2438
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2439 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2440 int proto)
2441 {
2442 struct sock *sk;
2443 struct udphdr *uh;
2444 unsigned short ulen;
2445 struct rtable *rt = skb_rtable(skb);
2446 __be32 saddr, daddr;
2447 struct net *net = dev_net(skb->dev);
2448 bool refcounted;
2449 int drop_reason;
2450
2451 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2452
2453 /*
2454 * Validate the packet.
2455 */
2456 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2457 goto drop; /* No space for header. */
2458
2459 uh = udp_hdr(skb);
2460 ulen = ntohs(uh->len);
2461 saddr = ip_hdr(skb)->saddr;
2462 daddr = ip_hdr(skb)->daddr;
2463
2464 if (ulen > skb->len)
2465 goto short_packet;
2466
2467 if (proto == IPPROTO_UDP) {
2468 /* UDP validates ulen. */
2469 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2470 goto short_packet;
2471 uh = udp_hdr(skb);
2472 }
2473
2474 if (udp4_csum_init(skb, uh, proto))
2475 goto csum_error;
2476
2477 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2478 &refcounted, udp_ehashfn);
2479 if (IS_ERR(sk))
2480 goto no_sk;
2481
2482 if (sk) {
2483 struct dst_entry *dst = skb_dst(skb);
2484 int ret;
2485
2486 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2487 udp_sk_rx_dst_set(sk, dst);
2488
2489 ret = udp_unicast_rcv_skb(sk, skb, uh);
2490 if (refcounted)
2491 sock_put(sk);
2492 return ret;
2493 }
2494
2495 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2496 return __udp4_lib_mcast_deliver(net, skb, uh,
2497 saddr, daddr, udptable, proto);
2498
2499 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2500 if (sk)
2501 return udp_unicast_rcv_skb(sk, skb, uh);
2502 no_sk:
2503 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2504 goto drop;
2505 nf_reset_ct(skb);
2506
2507 /* No socket. Drop packet silently, if checksum is wrong */
2508 if (udp_lib_checksum_complete(skb))
2509 goto csum_error;
2510
2511 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2512 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2513 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2514
2515 /*
2516 * Hmm. We got an UDP packet to a port to which we
2517 * don't wanna listen. Ignore it.
2518 */
2519 kfree_skb_reason(skb, drop_reason);
2520 return 0;
2521
2522 short_packet:
2523 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2524 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2525 proto == IPPROTO_UDPLITE ? "Lite" : "",
2526 &saddr, ntohs(uh->source),
2527 ulen, skb->len,
2528 &daddr, ntohs(uh->dest));
2529 goto drop;
2530
2531 csum_error:
2532 /*
2533 * RFC1122: OK. Discards the bad packet silently (as far as
2534 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2535 */
2536 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2537 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2538 proto == IPPROTO_UDPLITE ? "Lite" : "",
2539 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2540 ulen);
2541 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2542 drop:
2543 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2544 kfree_skb_reason(skb, drop_reason);
2545 return 0;
2546 }
2547
2548 /* We can only early demux multicast if there is a single matching socket.
2549 * If more than one socket found returns NULL
2550 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2551 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2552 __be16 loc_port, __be32 loc_addr,
2553 __be16 rmt_port, __be32 rmt_addr,
2554 int dif, int sdif)
2555 {
2556 struct udp_table *udptable = net->ipv4.udp_table;
2557 unsigned short hnum = ntohs(loc_port);
2558 struct sock *sk, *result;
2559 struct udp_hslot *hslot;
2560 unsigned int slot;
2561
2562 slot = udp_hashfn(net, hnum, udptable->mask);
2563 hslot = &udptable->hash[slot];
2564
2565 /* Do not bother scanning a too big list */
2566 if (hslot->count > 10)
2567 return NULL;
2568
2569 result = NULL;
2570 sk_for_each_rcu(sk, &hslot->head) {
2571 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2572 rmt_port, rmt_addr, dif, sdif, hnum)) {
2573 if (result)
2574 return NULL;
2575 result = sk;
2576 }
2577 }
2578
2579 return result;
2580 }
2581
2582 /* For unicast we should only early demux connected sockets or we can
2583 * break forwarding setups. The chains here can be long so only check
2584 * if the first socket is an exact match and if not move on.
2585 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2586 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2587 __be16 loc_port, __be32 loc_addr,
2588 __be16 rmt_port, __be32 rmt_addr,
2589 int dif, int sdif)
2590 {
2591 struct udp_table *udptable = net->ipv4.udp_table;
2592 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2593 unsigned short hnum = ntohs(loc_port);
2594 unsigned int hash2, slot2;
2595 struct udp_hslot *hslot2;
2596 __portpair ports;
2597 struct sock *sk;
2598
2599 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2600 slot2 = hash2 & udptable->mask;
2601 hslot2 = &udptable->hash2[slot2];
2602 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2603
2604 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2605 if (inet_match(net, sk, acookie, ports, dif, sdif))
2606 return sk;
2607 /* Only check first socket in chain */
2608 break;
2609 }
2610 return NULL;
2611 }
2612
udp_v4_early_demux(struct sk_buff * skb)2613 int udp_v4_early_demux(struct sk_buff *skb)
2614 {
2615 struct net *net = dev_net(skb->dev);
2616 struct in_device *in_dev = NULL;
2617 const struct iphdr *iph;
2618 const struct udphdr *uh;
2619 struct sock *sk = NULL;
2620 struct dst_entry *dst;
2621 int dif = skb->dev->ifindex;
2622 int sdif = inet_sdif(skb);
2623 int ours;
2624
2625 /* validate the packet */
2626 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2627 return 0;
2628
2629 iph = ip_hdr(skb);
2630 uh = udp_hdr(skb);
2631
2632 if (skb->pkt_type == PACKET_MULTICAST) {
2633 in_dev = __in_dev_get_rcu(skb->dev);
2634
2635 if (!in_dev)
2636 return 0;
2637
2638 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2639 iph->protocol);
2640 if (!ours)
2641 return 0;
2642
2643 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2644 uh->source, iph->saddr,
2645 dif, sdif);
2646 } else if (skb->pkt_type == PACKET_HOST) {
2647 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2648 uh->source, iph->saddr, dif, sdif);
2649 }
2650
2651 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2652 return 0;
2653
2654 skb->sk = sk;
2655 skb->destructor = sock_efree;
2656 dst = rcu_dereference(sk->sk_rx_dst);
2657
2658 if (dst)
2659 dst = dst_check(dst, 0);
2660 if (dst) {
2661 u32 itag = 0;
2662
2663 /* set noref for now.
2664 * any place which wants to hold dst has to call
2665 * dst_hold_safe()
2666 */
2667 skb_dst_set_noref(skb, dst);
2668
2669 /* for unconnected multicast sockets we need to validate
2670 * the source on each packet
2671 */
2672 if (!inet_sk(sk)->inet_daddr && in_dev)
2673 return ip_mc_validate_source(skb, iph->daddr,
2674 iph->saddr,
2675 iph->tos & IPTOS_RT_MASK,
2676 skb->dev, in_dev, &itag);
2677 }
2678 return 0;
2679 }
2680
udp_rcv(struct sk_buff * skb)2681 int udp_rcv(struct sk_buff *skb)
2682 {
2683 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2684 }
2685
udp_destroy_sock(struct sock * sk)2686 void udp_destroy_sock(struct sock *sk)
2687 {
2688 struct udp_sock *up = udp_sk(sk);
2689 bool slow = lock_sock_fast(sk);
2690
2691 /* protects from races with udp_abort() */
2692 sock_set_flag(sk, SOCK_DEAD);
2693 udp_flush_pending_frames(sk);
2694 unlock_sock_fast(sk, slow);
2695 if (static_branch_unlikely(&udp_encap_needed_key)) {
2696 if (up->encap_type) {
2697 void (*encap_destroy)(struct sock *sk);
2698 encap_destroy = READ_ONCE(up->encap_destroy);
2699 if (encap_destroy)
2700 encap_destroy(sk);
2701 }
2702 if (udp_test_bit(ENCAP_ENABLED, sk))
2703 static_branch_dec(&udp_encap_needed_key);
2704 }
2705 }
2706
2707 /*
2708 * Socket option code for UDP
2709 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2710 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2711 sockptr_t optval, unsigned int optlen,
2712 int (*push_pending_frames)(struct sock *))
2713 {
2714 struct udp_sock *up = udp_sk(sk);
2715 int val, valbool;
2716 int err = 0;
2717 int is_udplite = IS_UDPLITE(sk);
2718
2719 if (level == SOL_SOCKET) {
2720 err = sk_setsockopt(sk, level, optname, optval, optlen);
2721
2722 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2723 sockopt_lock_sock(sk);
2724 /* paired with READ_ONCE in udp_rmem_release() */
2725 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2726 sockopt_release_sock(sk);
2727 }
2728 return err;
2729 }
2730
2731 if (optlen < sizeof(int))
2732 return -EINVAL;
2733
2734 if (copy_from_sockptr(&val, optval, sizeof(val)))
2735 return -EFAULT;
2736
2737 valbool = val ? 1 : 0;
2738
2739 switch (optname) {
2740 case UDP_CORK:
2741 if (val != 0) {
2742 udp_set_bit(CORK, sk);
2743 } else {
2744 udp_clear_bit(CORK, sk);
2745 lock_sock(sk);
2746 push_pending_frames(sk);
2747 release_sock(sk);
2748 }
2749 break;
2750
2751 case UDP_ENCAP:
2752 switch (val) {
2753 case 0:
2754 #ifdef CONFIG_XFRM
2755 case UDP_ENCAP_ESPINUDP:
2756 case UDP_ENCAP_ESPINUDP_NON_IKE:
2757 #if IS_ENABLED(CONFIG_IPV6)
2758 if (sk->sk_family == AF_INET6)
2759 WRITE_ONCE(up->encap_rcv,
2760 ipv6_stub->xfrm6_udp_encap_rcv);
2761 else
2762 #endif
2763 WRITE_ONCE(up->encap_rcv,
2764 xfrm4_udp_encap_rcv);
2765 #endif
2766 fallthrough;
2767 case UDP_ENCAP_L2TPINUDP:
2768 WRITE_ONCE(up->encap_type, val);
2769 udp_tunnel_encap_enable(sk);
2770 break;
2771 default:
2772 err = -ENOPROTOOPT;
2773 break;
2774 }
2775 break;
2776
2777 case UDP_NO_CHECK6_TX:
2778 udp_set_no_check6_tx(sk, valbool);
2779 break;
2780
2781 case UDP_NO_CHECK6_RX:
2782 udp_set_no_check6_rx(sk, valbool);
2783 break;
2784
2785 case UDP_SEGMENT:
2786 if (val < 0 || val > USHRT_MAX)
2787 return -EINVAL;
2788 WRITE_ONCE(up->gso_size, val);
2789 break;
2790
2791 case UDP_GRO:
2792
2793 /* when enabling GRO, accept the related GSO packet type */
2794 if (valbool)
2795 udp_tunnel_encap_enable(sk);
2796 udp_assign_bit(GRO_ENABLED, sk, valbool);
2797 udp_assign_bit(ACCEPT_L4, sk, valbool);
2798 break;
2799
2800 /*
2801 * UDP-Lite's partial checksum coverage (RFC 3828).
2802 */
2803 /* The sender sets actual checksum coverage length via this option.
2804 * The case coverage > packet length is handled by send module. */
2805 case UDPLITE_SEND_CSCOV:
2806 if (!is_udplite) /* Disable the option on UDP sockets */
2807 return -ENOPROTOOPT;
2808 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2809 val = 8;
2810 else if (val > USHRT_MAX)
2811 val = USHRT_MAX;
2812 WRITE_ONCE(up->pcslen, val);
2813 udp_set_bit(UDPLITE_SEND_CC, sk);
2814 break;
2815
2816 /* The receiver specifies a minimum checksum coverage value. To make
2817 * sense, this should be set to at least 8 (as done below). If zero is
2818 * used, this again means full checksum coverage. */
2819 case UDPLITE_RECV_CSCOV:
2820 if (!is_udplite) /* Disable the option on UDP sockets */
2821 return -ENOPROTOOPT;
2822 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2823 val = 8;
2824 else if (val > USHRT_MAX)
2825 val = USHRT_MAX;
2826 WRITE_ONCE(up->pcrlen, val);
2827 udp_set_bit(UDPLITE_RECV_CC, sk);
2828 break;
2829
2830 default:
2831 err = -ENOPROTOOPT;
2832 break;
2833 }
2834
2835 return err;
2836 }
2837 EXPORT_SYMBOL(udp_lib_setsockopt);
2838
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2839 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2840 unsigned int optlen)
2841 {
2842 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
2843 return udp_lib_setsockopt(sk, level, optname,
2844 optval, optlen,
2845 udp_push_pending_frames);
2846 return ip_setsockopt(sk, level, optname, optval, optlen);
2847 }
2848
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2849 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2850 char __user *optval, int __user *optlen)
2851 {
2852 struct udp_sock *up = udp_sk(sk);
2853 int val, len;
2854
2855 if (get_user(len, optlen))
2856 return -EFAULT;
2857
2858 if (len < 0)
2859 return -EINVAL;
2860
2861 len = min_t(unsigned int, len, sizeof(int));
2862
2863 switch (optname) {
2864 case UDP_CORK:
2865 val = udp_test_bit(CORK, sk);
2866 break;
2867
2868 case UDP_ENCAP:
2869 val = READ_ONCE(up->encap_type);
2870 break;
2871
2872 case UDP_NO_CHECK6_TX:
2873 val = udp_get_no_check6_tx(sk);
2874 break;
2875
2876 case UDP_NO_CHECK6_RX:
2877 val = udp_get_no_check6_rx(sk);
2878 break;
2879
2880 case UDP_SEGMENT:
2881 val = READ_ONCE(up->gso_size);
2882 break;
2883
2884 case UDP_GRO:
2885 val = udp_test_bit(GRO_ENABLED, sk);
2886 break;
2887
2888 /* The following two cannot be changed on UDP sockets, the return is
2889 * always 0 (which corresponds to the full checksum coverage of UDP). */
2890 case UDPLITE_SEND_CSCOV:
2891 val = READ_ONCE(up->pcslen);
2892 break;
2893
2894 case UDPLITE_RECV_CSCOV:
2895 val = READ_ONCE(up->pcrlen);
2896 break;
2897
2898 default:
2899 return -ENOPROTOOPT;
2900 }
2901
2902 if (put_user(len, optlen))
2903 return -EFAULT;
2904 if (copy_to_user(optval, &val, len))
2905 return -EFAULT;
2906 return 0;
2907 }
2908 EXPORT_SYMBOL(udp_lib_getsockopt);
2909
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2910 int udp_getsockopt(struct sock *sk, int level, int optname,
2911 char __user *optval, int __user *optlen)
2912 {
2913 if (level == SOL_UDP || level == SOL_UDPLITE)
2914 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2915 return ip_getsockopt(sk, level, optname, optval, optlen);
2916 }
2917
2918 /**
2919 * udp_poll - wait for a UDP event.
2920 * @file: - file struct
2921 * @sock: - socket
2922 * @wait: - poll table
2923 *
2924 * This is same as datagram poll, except for the special case of
2925 * blocking sockets. If application is using a blocking fd
2926 * and a packet with checksum error is in the queue;
2927 * then it could get return from select indicating data available
2928 * but then block when reading it. Add special case code
2929 * to work around these arguably broken applications.
2930 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2931 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2932 {
2933 __poll_t mask = datagram_poll(file, sock, wait);
2934 struct sock *sk = sock->sk;
2935
2936 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2937 mask |= EPOLLIN | EPOLLRDNORM;
2938
2939 /* Check for false positives due to checksum errors */
2940 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2941 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2942 mask &= ~(EPOLLIN | EPOLLRDNORM);
2943
2944 /* psock ingress_msg queue should not contain any bad checksum frames */
2945 if (sk_is_readable(sk))
2946 mask |= EPOLLIN | EPOLLRDNORM;
2947 return mask;
2948
2949 }
2950 EXPORT_SYMBOL(udp_poll);
2951
udp_abort(struct sock * sk,int err)2952 int udp_abort(struct sock *sk, int err)
2953 {
2954 if (!has_current_bpf_ctx())
2955 lock_sock(sk);
2956
2957 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2958 * with close()
2959 */
2960 if (sock_flag(sk, SOCK_DEAD))
2961 goto out;
2962
2963 sk->sk_err = err;
2964 sk_error_report(sk);
2965 __udp_disconnect(sk, 0);
2966
2967 out:
2968 if (!has_current_bpf_ctx())
2969 release_sock(sk);
2970
2971 return 0;
2972 }
2973 EXPORT_SYMBOL_GPL(udp_abort);
2974
2975 struct proto udp_prot = {
2976 .name = "UDP",
2977 .owner = THIS_MODULE,
2978 .close = udp_lib_close,
2979 .pre_connect = udp_pre_connect,
2980 .connect = ip4_datagram_connect,
2981 .disconnect = udp_disconnect,
2982 .ioctl = udp_ioctl,
2983 .init = udp_init_sock,
2984 .destroy = udp_destroy_sock,
2985 .setsockopt = udp_setsockopt,
2986 .getsockopt = udp_getsockopt,
2987 .sendmsg = udp_sendmsg,
2988 .recvmsg = udp_recvmsg,
2989 .splice_eof = udp_splice_eof,
2990 .release_cb = ip4_datagram_release_cb,
2991 .hash = udp_lib_hash,
2992 .unhash = udp_lib_unhash,
2993 .rehash = udp_v4_rehash,
2994 .get_port = udp_v4_get_port,
2995 .put_port = udp_lib_unhash,
2996 #ifdef CONFIG_BPF_SYSCALL
2997 .psock_update_sk_prot = udp_bpf_update_proto,
2998 #endif
2999 .memory_allocated = &udp_memory_allocated,
3000 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
3001
3002 .sysctl_mem = sysctl_udp_mem,
3003 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3004 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3005 .obj_size = sizeof(struct udp_sock),
3006 .h.udp_table = NULL,
3007 .diag_destroy = udp_abort,
3008 };
3009 EXPORT_SYMBOL(udp_prot);
3010
3011 /* ------------------------------------------------------------------------ */
3012 #ifdef CONFIG_PROC_FS
3013
3014 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)3015 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3016 {
3017 unsigned short family = seq_file_family(seq);
3018
3019 /* AF_UNSPEC is used as a match all */
3020 return ((family == AF_UNSPEC || family == sk->sk_family) &&
3021 net_eq(sock_net(sk), seq_file_net(seq)));
3022 }
3023
3024 #ifdef CONFIG_BPF_SYSCALL
3025 static const struct seq_operations bpf_iter_udp_seq_ops;
3026 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)3027 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3028 struct net *net)
3029 {
3030 const struct udp_seq_afinfo *afinfo;
3031
3032 #ifdef CONFIG_BPF_SYSCALL
3033 if (seq->op == &bpf_iter_udp_seq_ops)
3034 return net->ipv4.udp_table;
3035 #endif
3036
3037 afinfo = pde_data(file_inode(seq->file));
3038 return afinfo->udp_table ? : net->ipv4.udp_table;
3039 }
3040
udp_get_first(struct seq_file * seq,int start)3041 static struct sock *udp_get_first(struct seq_file *seq, int start)
3042 {
3043 struct udp_iter_state *state = seq->private;
3044 struct net *net = seq_file_net(seq);
3045 struct udp_table *udptable;
3046 struct sock *sk;
3047
3048 udptable = udp_get_table_seq(seq, net);
3049
3050 for (state->bucket = start; state->bucket <= udptable->mask;
3051 ++state->bucket) {
3052 struct udp_hslot *hslot = &udptable->hash[state->bucket];
3053
3054 if (hlist_empty(&hslot->head))
3055 continue;
3056
3057 spin_lock_bh(&hslot->lock);
3058 sk_for_each(sk, &hslot->head) {
3059 if (seq_sk_match(seq, sk))
3060 goto found;
3061 }
3062 spin_unlock_bh(&hslot->lock);
3063 }
3064 sk = NULL;
3065 found:
3066 return sk;
3067 }
3068
udp_get_next(struct seq_file * seq,struct sock * sk)3069 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3070 {
3071 struct udp_iter_state *state = seq->private;
3072 struct net *net = seq_file_net(seq);
3073 struct udp_table *udptable;
3074
3075 do {
3076 sk = sk_next(sk);
3077 } while (sk && !seq_sk_match(seq, sk));
3078
3079 if (!sk) {
3080 udptable = udp_get_table_seq(seq, net);
3081
3082 if (state->bucket <= udptable->mask)
3083 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3084
3085 return udp_get_first(seq, state->bucket + 1);
3086 }
3087 return sk;
3088 }
3089
udp_get_idx(struct seq_file * seq,loff_t pos)3090 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3091 {
3092 struct sock *sk = udp_get_first(seq, 0);
3093
3094 if (sk)
3095 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3096 --pos;
3097 return pos ? NULL : sk;
3098 }
3099
udp_seq_start(struct seq_file * seq,loff_t * pos)3100 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3101 {
3102 struct udp_iter_state *state = seq->private;
3103 state->bucket = MAX_UDP_PORTS;
3104
3105 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3106 }
3107 EXPORT_SYMBOL(udp_seq_start);
3108
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3109 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3110 {
3111 struct sock *sk;
3112
3113 if (v == SEQ_START_TOKEN)
3114 sk = udp_get_idx(seq, 0);
3115 else
3116 sk = udp_get_next(seq, v);
3117
3118 ++*pos;
3119 return sk;
3120 }
3121 EXPORT_SYMBOL(udp_seq_next);
3122
udp_seq_stop(struct seq_file * seq,void * v)3123 void udp_seq_stop(struct seq_file *seq, void *v)
3124 {
3125 struct udp_iter_state *state = seq->private;
3126 struct udp_table *udptable;
3127
3128 udptable = udp_get_table_seq(seq, seq_file_net(seq));
3129
3130 if (state->bucket <= udptable->mask)
3131 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3132 }
3133 EXPORT_SYMBOL(udp_seq_stop);
3134
3135 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3136 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3137 int bucket)
3138 {
3139 struct inet_sock *inet = inet_sk(sp);
3140 __be32 dest = inet->inet_daddr;
3141 __be32 src = inet->inet_rcv_saddr;
3142 __u16 destp = ntohs(inet->inet_dport);
3143 __u16 srcp = ntohs(inet->inet_sport);
3144
3145 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3146 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3147 bucket, src, srcp, dest, destp, sp->sk_state,
3148 sk_wmem_alloc_get(sp),
3149 udp_rqueue_get(sp),
3150 0, 0L, 0,
3151 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3152 0, sock_i_ino(sp),
3153 refcount_read(&sp->sk_refcnt), sp,
3154 atomic_read(&sp->sk_drops));
3155 }
3156
udp4_seq_show(struct seq_file * seq,void * v)3157 int udp4_seq_show(struct seq_file *seq, void *v)
3158 {
3159 seq_setwidth(seq, 127);
3160 if (v == SEQ_START_TOKEN)
3161 seq_puts(seq, " sl local_address rem_address st tx_queue "
3162 "rx_queue tr tm->when retrnsmt uid timeout "
3163 "inode ref pointer drops");
3164 else {
3165 struct udp_iter_state *state = seq->private;
3166
3167 udp4_format_sock(v, seq, state->bucket);
3168 }
3169 seq_pad(seq, '\n');
3170 return 0;
3171 }
3172
3173 #ifdef CONFIG_BPF_SYSCALL
3174 struct bpf_iter__udp {
3175 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3176 __bpf_md_ptr(struct udp_sock *, udp_sk);
3177 uid_t uid __aligned(8);
3178 int bucket __aligned(8);
3179 };
3180
3181 struct bpf_udp_iter_state {
3182 struct udp_iter_state state;
3183 unsigned int cur_sk;
3184 unsigned int end_sk;
3185 unsigned int max_sk;
3186 int offset;
3187 struct sock **batch;
3188 bool st_bucket_done;
3189 };
3190
3191 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3192 unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3193 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3194 {
3195 struct bpf_udp_iter_state *iter = seq->private;
3196 struct udp_iter_state *state = &iter->state;
3197 struct net *net = seq_file_net(seq);
3198 int resume_bucket, resume_offset;
3199 struct udp_table *udptable;
3200 unsigned int batch_sks = 0;
3201 bool resized = false;
3202 struct sock *sk;
3203
3204 resume_bucket = state->bucket;
3205 resume_offset = iter->offset;
3206
3207 /* The current batch is done, so advance the bucket. */
3208 if (iter->st_bucket_done)
3209 state->bucket++;
3210
3211 udptable = udp_get_table_seq(seq, net);
3212
3213 again:
3214 /* New batch for the next bucket.
3215 * Iterate over the hash table to find a bucket with sockets matching
3216 * the iterator attributes, and return the first matching socket from
3217 * the bucket. The remaining matched sockets from the bucket are batched
3218 * before releasing the bucket lock. This allows BPF programs that are
3219 * called in seq_show to acquire the bucket lock if needed.
3220 */
3221 iter->cur_sk = 0;
3222 iter->end_sk = 0;
3223 iter->st_bucket_done = false;
3224 batch_sks = 0;
3225
3226 for (; state->bucket <= udptable->mask; state->bucket++) {
3227 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3228
3229 if (hlist_empty(&hslot2->head))
3230 continue;
3231
3232 iter->offset = 0;
3233 spin_lock_bh(&hslot2->lock);
3234 udp_portaddr_for_each_entry(sk, &hslot2->head) {
3235 if (seq_sk_match(seq, sk)) {
3236 /* Resume from the last iterated socket at the
3237 * offset in the bucket before iterator was stopped.
3238 */
3239 if (state->bucket == resume_bucket &&
3240 iter->offset < resume_offset) {
3241 ++iter->offset;
3242 continue;
3243 }
3244 if (iter->end_sk < iter->max_sk) {
3245 sock_hold(sk);
3246 iter->batch[iter->end_sk++] = sk;
3247 }
3248 batch_sks++;
3249 }
3250 }
3251 spin_unlock_bh(&hslot2->lock);
3252
3253 if (iter->end_sk)
3254 break;
3255 }
3256
3257 /* All done: no batch made. */
3258 if (!iter->end_sk)
3259 return NULL;
3260
3261 if (iter->end_sk == batch_sks) {
3262 /* Batching is done for the current bucket; return the first
3263 * socket to be iterated from the batch.
3264 */
3265 iter->st_bucket_done = true;
3266 goto done;
3267 }
3268 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3269 resized = true;
3270 /* After allocating a larger batch, retry one more time to grab
3271 * the whole bucket.
3272 */
3273 goto again;
3274 }
3275 done:
3276 return iter->batch[0];
3277 }
3278
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3279 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3280 {
3281 struct bpf_udp_iter_state *iter = seq->private;
3282 struct sock *sk;
3283
3284 /* Whenever seq_next() is called, the iter->cur_sk is
3285 * done with seq_show(), so unref the iter->cur_sk.
3286 */
3287 if (iter->cur_sk < iter->end_sk) {
3288 sock_put(iter->batch[iter->cur_sk++]);
3289 ++iter->offset;
3290 }
3291
3292 /* After updating iter->cur_sk, check if there are more sockets
3293 * available in the current bucket batch.
3294 */
3295 if (iter->cur_sk < iter->end_sk)
3296 sk = iter->batch[iter->cur_sk];
3297 else
3298 /* Prepare a new batch. */
3299 sk = bpf_iter_udp_batch(seq);
3300
3301 ++*pos;
3302 return sk;
3303 }
3304
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3305 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3306 {
3307 /* bpf iter does not support lseek, so it always
3308 * continue from where it was stop()-ped.
3309 */
3310 if (*pos)
3311 return bpf_iter_udp_batch(seq);
3312
3313 return SEQ_START_TOKEN;
3314 }
3315
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3316 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3317 struct udp_sock *udp_sk, uid_t uid, int bucket)
3318 {
3319 struct bpf_iter__udp ctx;
3320
3321 meta->seq_num--; /* skip SEQ_START_TOKEN */
3322 ctx.meta = meta;
3323 ctx.udp_sk = udp_sk;
3324 ctx.uid = uid;
3325 ctx.bucket = bucket;
3326 return bpf_iter_run_prog(prog, &ctx);
3327 }
3328
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3329 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3330 {
3331 struct udp_iter_state *state = seq->private;
3332 struct bpf_iter_meta meta;
3333 struct bpf_prog *prog;
3334 struct sock *sk = v;
3335 uid_t uid;
3336 int ret;
3337
3338 if (v == SEQ_START_TOKEN)
3339 return 0;
3340
3341 lock_sock(sk);
3342
3343 if (unlikely(sk_unhashed(sk))) {
3344 ret = SEQ_SKIP;
3345 goto unlock;
3346 }
3347
3348 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3349 meta.seq = seq;
3350 prog = bpf_iter_get_info(&meta, false);
3351 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3352
3353 unlock:
3354 release_sock(sk);
3355 return ret;
3356 }
3357
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3358 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3359 {
3360 while (iter->cur_sk < iter->end_sk)
3361 sock_put(iter->batch[iter->cur_sk++]);
3362 }
3363
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3364 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3365 {
3366 struct bpf_udp_iter_state *iter = seq->private;
3367 struct bpf_iter_meta meta;
3368 struct bpf_prog *prog;
3369
3370 if (!v) {
3371 meta.seq = seq;
3372 prog = bpf_iter_get_info(&meta, true);
3373 if (prog)
3374 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3375 }
3376
3377 if (iter->cur_sk < iter->end_sk) {
3378 bpf_iter_udp_put_batch(iter);
3379 iter->st_bucket_done = false;
3380 }
3381 }
3382
3383 static const struct seq_operations bpf_iter_udp_seq_ops = {
3384 .start = bpf_iter_udp_seq_start,
3385 .next = bpf_iter_udp_seq_next,
3386 .stop = bpf_iter_udp_seq_stop,
3387 .show = bpf_iter_udp_seq_show,
3388 };
3389 #endif
3390
seq_file_family(const struct seq_file * seq)3391 static unsigned short seq_file_family(const struct seq_file *seq)
3392 {
3393 const struct udp_seq_afinfo *afinfo;
3394
3395 #ifdef CONFIG_BPF_SYSCALL
3396 /* BPF iterator: bpf programs to filter sockets. */
3397 if (seq->op == &bpf_iter_udp_seq_ops)
3398 return AF_UNSPEC;
3399 #endif
3400
3401 /* Proc fs iterator */
3402 afinfo = pde_data(file_inode(seq->file));
3403 return afinfo->family;
3404 }
3405
3406 const struct seq_operations udp_seq_ops = {
3407 .start = udp_seq_start,
3408 .next = udp_seq_next,
3409 .stop = udp_seq_stop,
3410 .show = udp4_seq_show,
3411 };
3412 EXPORT_SYMBOL(udp_seq_ops);
3413
3414 static struct udp_seq_afinfo udp4_seq_afinfo = {
3415 .family = AF_INET,
3416 .udp_table = NULL,
3417 };
3418
udp4_proc_init_net(struct net * net)3419 static int __net_init udp4_proc_init_net(struct net *net)
3420 {
3421 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3422 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3423 return -ENOMEM;
3424 return 0;
3425 }
3426
udp4_proc_exit_net(struct net * net)3427 static void __net_exit udp4_proc_exit_net(struct net *net)
3428 {
3429 remove_proc_entry("udp", net->proc_net);
3430 }
3431
3432 static struct pernet_operations udp4_net_ops = {
3433 .init = udp4_proc_init_net,
3434 .exit = udp4_proc_exit_net,
3435 };
3436
udp4_proc_init(void)3437 int __init udp4_proc_init(void)
3438 {
3439 return register_pernet_subsys(&udp4_net_ops);
3440 }
3441
udp4_proc_exit(void)3442 void udp4_proc_exit(void)
3443 {
3444 unregister_pernet_subsys(&udp4_net_ops);
3445 }
3446 #endif /* CONFIG_PROC_FS */
3447
3448 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3449 static int __init set_uhash_entries(char *str)
3450 {
3451 ssize_t ret;
3452
3453 if (!str)
3454 return 0;
3455
3456 ret = kstrtoul(str, 0, &uhash_entries);
3457 if (ret)
3458 return 0;
3459
3460 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3461 uhash_entries = UDP_HTABLE_SIZE_MIN;
3462 return 1;
3463 }
3464 __setup("uhash_entries=", set_uhash_entries);
3465
udp_table_init(struct udp_table * table,const char * name)3466 void __init udp_table_init(struct udp_table *table, const char *name)
3467 {
3468 unsigned int i;
3469
3470 table->hash = alloc_large_system_hash(name,
3471 2 * sizeof(struct udp_hslot),
3472 uhash_entries,
3473 21, /* one slot per 2 MB */
3474 0,
3475 &table->log,
3476 &table->mask,
3477 UDP_HTABLE_SIZE_MIN,
3478 UDP_HTABLE_SIZE_MAX);
3479
3480 table->hash2 = table->hash + (table->mask + 1);
3481 for (i = 0; i <= table->mask; i++) {
3482 INIT_HLIST_HEAD(&table->hash[i].head);
3483 table->hash[i].count = 0;
3484 spin_lock_init(&table->hash[i].lock);
3485 }
3486 for (i = 0; i <= table->mask; i++) {
3487 INIT_HLIST_HEAD(&table->hash2[i].head);
3488 table->hash2[i].count = 0;
3489 spin_lock_init(&table->hash2[i].lock);
3490 }
3491 }
3492
udp_flow_hashrnd(void)3493 u32 udp_flow_hashrnd(void)
3494 {
3495 static u32 hashrnd __read_mostly;
3496
3497 net_get_random_once(&hashrnd, sizeof(hashrnd));
3498
3499 return hashrnd;
3500 }
3501 EXPORT_SYMBOL(udp_flow_hashrnd);
3502
udp_sysctl_init(struct net * net)3503 static void __net_init udp_sysctl_init(struct net *net)
3504 {
3505 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3506 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3507
3508 #ifdef CONFIG_NET_L3_MASTER_DEV
3509 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3510 #endif
3511 }
3512
udp_pernet_table_alloc(unsigned int hash_entries)3513 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3514 {
3515 struct udp_table *udptable;
3516 int i;
3517
3518 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3519 if (!udptable)
3520 goto out;
3521
3522 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3523 GFP_KERNEL_ACCOUNT);
3524 if (!udptable->hash)
3525 goto free_table;
3526
3527 udptable->hash2 = udptable->hash + hash_entries;
3528 udptable->mask = hash_entries - 1;
3529 udptable->log = ilog2(hash_entries);
3530
3531 for (i = 0; i < hash_entries; i++) {
3532 INIT_HLIST_HEAD(&udptable->hash[i].head);
3533 udptable->hash[i].count = 0;
3534 spin_lock_init(&udptable->hash[i].lock);
3535
3536 INIT_HLIST_HEAD(&udptable->hash2[i].head);
3537 udptable->hash2[i].count = 0;
3538 spin_lock_init(&udptable->hash2[i].lock);
3539 }
3540
3541 return udptable;
3542
3543 free_table:
3544 kfree(udptable);
3545 out:
3546 return NULL;
3547 }
3548
udp_pernet_table_free(struct net * net)3549 static void __net_exit udp_pernet_table_free(struct net *net)
3550 {
3551 struct udp_table *udptable = net->ipv4.udp_table;
3552
3553 if (udptable == &udp_table)
3554 return;
3555
3556 kvfree(udptable->hash);
3557 kfree(udptable);
3558 }
3559
udp_set_table(struct net * net)3560 static void __net_init udp_set_table(struct net *net)
3561 {
3562 struct udp_table *udptable;
3563 unsigned int hash_entries;
3564 struct net *old_net;
3565
3566 if (net_eq(net, &init_net))
3567 goto fallback;
3568
3569 old_net = current->nsproxy->net_ns;
3570 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3571 if (!hash_entries)
3572 goto fallback;
3573
3574 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3575 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3576 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3577 else
3578 hash_entries = roundup_pow_of_two(hash_entries);
3579
3580 udptable = udp_pernet_table_alloc(hash_entries);
3581 if (udptable) {
3582 net->ipv4.udp_table = udptable;
3583 } else {
3584 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3585 "for a netns, fallback to the global one\n",
3586 hash_entries);
3587 fallback:
3588 net->ipv4.udp_table = &udp_table;
3589 }
3590 }
3591
udp_pernet_init(struct net * net)3592 static int __net_init udp_pernet_init(struct net *net)
3593 {
3594 udp_sysctl_init(net);
3595 udp_set_table(net);
3596
3597 return 0;
3598 }
3599
udp_pernet_exit(struct net * net)3600 static void __net_exit udp_pernet_exit(struct net *net)
3601 {
3602 udp_pernet_table_free(net);
3603 }
3604
3605 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3606 .init = udp_pernet_init,
3607 .exit = udp_pernet_exit,
3608 };
3609
3610 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3611 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3612 struct udp_sock *udp_sk, uid_t uid, int bucket)
3613
3614 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3615 unsigned int new_batch_sz)
3616 {
3617 struct sock **new_batch;
3618
3619 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3620 GFP_USER | __GFP_NOWARN);
3621 if (!new_batch)
3622 return -ENOMEM;
3623
3624 bpf_iter_udp_put_batch(iter);
3625 kvfree(iter->batch);
3626 iter->batch = new_batch;
3627 iter->max_sk = new_batch_sz;
3628
3629 return 0;
3630 }
3631
3632 #define INIT_BATCH_SZ 16
3633
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3634 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3635 {
3636 struct bpf_udp_iter_state *iter = priv_data;
3637 int ret;
3638
3639 ret = bpf_iter_init_seq_net(priv_data, aux);
3640 if (ret)
3641 return ret;
3642
3643 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3644 if (ret)
3645 bpf_iter_fini_seq_net(priv_data);
3646
3647 return ret;
3648 }
3649
bpf_iter_fini_udp(void * priv_data)3650 static void bpf_iter_fini_udp(void *priv_data)
3651 {
3652 struct bpf_udp_iter_state *iter = priv_data;
3653
3654 bpf_iter_fini_seq_net(priv_data);
3655 kvfree(iter->batch);
3656 }
3657
3658 static const struct bpf_iter_seq_info udp_seq_info = {
3659 .seq_ops = &bpf_iter_udp_seq_ops,
3660 .init_seq_private = bpf_iter_init_udp,
3661 .fini_seq_private = bpf_iter_fini_udp,
3662 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
3663 };
3664
3665 static struct bpf_iter_reg udp_reg_info = {
3666 .target = "udp",
3667 .ctx_arg_info_size = 1,
3668 .ctx_arg_info = {
3669 { offsetof(struct bpf_iter__udp, udp_sk),
3670 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3671 },
3672 .seq_info = &udp_seq_info,
3673 };
3674
bpf_iter_register(void)3675 static void __init bpf_iter_register(void)
3676 {
3677 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3678 if (bpf_iter_reg_target(&udp_reg_info))
3679 pr_warn("Warning: could not register bpf iterator udp\n");
3680 }
3681 #endif
3682
udp_init(void)3683 void __init udp_init(void)
3684 {
3685 unsigned long limit;
3686 unsigned int i;
3687
3688 udp_table_init(&udp_table, "UDP");
3689 limit = nr_free_buffer_pages() / 8;
3690 limit = max(limit, 128UL);
3691 sysctl_udp_mem[0] = limit / 4 * 3;
3692 sysctl_udp_mem[1] = limit;
3693 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3694
3695 /* 16 spinlocks per cpu */
3696 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3697 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3698 GFP_KERNEL);
3699 if (!udp_busylocks)
3700 panic("UDP: failed to alloc udp_busylocks\n");
3701 for (i = 0; i < (1U << udp_busylocks_log); i++)
3702 spin_lock_init(udp_busylocks + i);
3703
3704 if (register_pernet_subsys(&udp_sysctl_ops))
3705 panic("UDP: failed to init sysctl parameters.\n");
3706
3707 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3708 bpf_iter_register();
3709 #endif
3710 }
3711