• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 
111 		mptcp_sockopt_sync(msk, msk->first);
112 	}
113 
114 	return msk->first;
115 }
116 
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 	sk_drops_add(sk, skb);
120 	__kfree_skb(skb);
121 }
122 
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128 
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 	mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 			       struct sk_buff *from)
136 {
137 	bool fragstolen;
138 	int delta;
139 
140 	if (MPTCP_SKB_CB(from)->offset ||
141 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
142 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
143 		return false;
144 
145 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
146 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
147 		 to->len, MPTCP_SKB_CB(from)->end_seq);
148 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
149 
150 	/* note the fwd memory can reach a negative value after accounting
151 	 * for the delta, but the later skb free will restore a non
152 	 * negative one
153 	 */
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	kfree_skb_partial(from, fragstolen);
157 
158 	return true;
159 }
160 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)161 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
162 				   struct sk_buff *from)
163 {
164 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
165 		return false;
166 
167 	return mptcp_try_coalesce((struct sock *)msk, to, from);
168 }
169 
__mptcp_rmem_reclaim(struct sock * sk,int amount)170 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
171 {
172 	amount >>= PAGE_SHIFT;
173 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
174 	__sk_mem_reduce_allocated(sk, amount);
175 }
176 
mptcp_rmem_uncharge(struct sock * sk,int size)177 static void mptcp_rmem_uncharge(struct sock *sk, int size)
178 {
179 	struct mptcp_sock *msk = mptcp_sk(sk);
180 	int reclaimable;
181 
182 	mptcp_rmem_fwd_alloc_add(sk, size);
183 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
184 
185 	/* see sk_mem_uncharge() for the rationale behind the following schema */
186 	if (unlikely(reclaimable >= PAGE_SIZE))
187 		__mptcp_rmem_reclaim(sk, reclaimable);
188 }
189 
mptcp_rfree(struct sk_buff * skb)190 static void mptcp_rfree(struct sk_buff *skb)
191 {
192 	unsigned int len = skb->truesize;
193 	struct sock *sk = skb->sk;
194 
195 	atomic_sub(len, &sk->sk_rmem_alloc);
196 	mptcp_rmem_uncharge(sk, len);
197 }
198 
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)199 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
200 {
201 	skb_orphan(skb);
202 	skb->sk = sk;
203 	skb->destructor = mptcp_rfree;
204 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
205 	mptcp_rmem_charge(sk, skb->truesize);
206 }
207 
208 /* "inspired" by tcp_data_queue_ofo(), main differences:
209  * - use mptcp seqs
210  * - don't cope with sacks
211  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)212 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
213 {
214 	struct sock *sk = (struct sock *)msk;
215 	struct rb_node **p, *parent;
216 	u64 seq, end_seq, max_seq;
217 	struct sk_buff *skb1;
218 
219 	seq = MPTCP_SKB_CB(skb)->map_seq;
220 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
221 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
222 
223 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
224 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
225 	if (after64(end_seq, max_seq)) {
226 		/* out of window */
227 		mptcp_drop(sk, skb);
228 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
229 			 (unsigned long long)end_seq - (unsigned long)max_seq,
230 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
231 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
232 		return;
233 	}
234 
235 	p = &msk->out_of_order_queue.rb_node;
236 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
237 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
238 		rb_link_node(&skb->rbnode, NULL, p);
239 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
240 		msk->ooo_last_skb = skb;
241 		goto end;
242 	}
243 
244 	/* with 2 subflows, adding at end of ooo queue is quite likely
245 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
246 	 */
247 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
248 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
249 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
250 		return;
251 	}
252 
253 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
254 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
255 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
256 		parent = &msk->ooo_last_skb->rbnode;
257 		p = &parent->rb_right;
258 		goto insert;
259 	}
260 
261 	/* Find place to insert this segment. Handle overlaps on the way. */
262 	parent = NULL;
263 	while (*p) {
264 		parent = *p;
265 		skb1 = rb_to_skb(parent);
266 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
267 			p = &parent->rb_left;
268 			continue;
269 		}
270 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
272 				/* All the bits are present. Drop. */
273 				mptcp_drop(sk, skb);
274 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
275 				return;
276 			}
277 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
278 				/* partial overlap:
279 				 *     |     skb      |
280 				 *  |     skb1    |
281 				 * continue traversing
282 				 */
283 			} else {
284 				/* skb's seq == skb1's seq and skb covers skb1.
285 				 * Replace skb1 with skb.
286 				 */
287 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
288 						&msk->out_of_order_queue);
289 				mptcp_drop(sk, skb1);
290 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
291 				goto merge_right;
292 			}
293 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
294 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
295 			return;
296 		}
297 		p = &parent->rb_right;
298 	}
299 
300 insert:
301 	/* Insert segment into RB tree. */
302 	rb_link_node(&skb->rbnode, parent, p);
303 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
304 
305 merge_right:
306 	/* Remove other segments covered by skb. */
307 	while ((skb1 = skb_rb_next(skb)) != NULL) {
308 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
309 			break;
310 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
311 		mptcp_drop(sk, skb1);
312 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
313 	}
314 	/* If there is no skb after us, we are the last_skb ! */
315 	if (!skb1)
316 		msk->ooo_last_skb = skb;
317 
318 end:
319 	skb_condense(skb);
320 	mptcp_set_owner_r(skb, sk);
321 }
322 
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)323 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
324 {
325 	struct mptcp_sock *msk = mptcp_sk(sk);
326 	int amt, amount;
327 
328 	if (size <= msk->rmem_fwd_alloc)
329 		return true;
330 
331 	size -= msk->rmem_fwd_alloc;
332 	amt = sk_mem_pages(size);
333 	amount = amt << PAGE_SHIFT;
334 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
335 		return false;
336 
337 	mptcp_rmem_fwd_alloc_add(sk, amount);
338 	return true;
339 }
340 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)341 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
342 			     struct sk_buff *skb, unsigned int offset,
343 			     size_t copy_len)
344 {
345 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
346 	struct sock *sk = (struct sock *)msk;
347 	struct sk_buff *tail;
348 	bool has_rxtstamp;
349 
350 	__skb_unlink(skb, &ssk->sk_receive_queue);
351 
352 	skb_ext_reset(skb);
353 	skb_orphan(skb);
354 
355 	/* try to fetch required memory from subflow */
356 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
357 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
358 		goto drop;
359 	}
360 
361 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362 
363 	/* the skb map_seq accounts for the skb offset:
364 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 	 * value
366 	 */
367 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 	MPTCP_SKB_CB(skb)->offset = offset;
370 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371 
372 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 		/* in sequence */
374 		msk->bytes_received += copy_len;
375 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
376 		tail = skb_peek_tail(&sk->sk_receive_queue);
377 		if (tail && mptcp_try_coalesce(sk, tail, skb))
378 			return true;
379 
380 		mptcp_set_owner_r(skb, sk);
381 		__skb_queue_tail(&sk->sk_receive_queue, skb);
382 		return true;
383 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
384 		mptcp_data_queue_ofo(msk, skb);
385 		return false;
386 	}
387 
388 	/* old data, keep it simple and drop the whole pkt, sender
389 	 * will retransmit as needed, if needed.
390 	 */
391 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
392 drop:
393 	mptcp_drop(sk, skb);
394 	return false;
395 }
396 
mptcp_stop_rtx_timer(struct sock * sk)397 static void mptcp_stop_rtx_timer(struct sock *sk)
398 {
399 	struct inet_connection_sock *icsk = inet_csk(sk);
400 
401 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
402 	mptcp_sk(sk)->timer_ival = 0;
403 }
404 
mptcp_close_wake_up(struct sock * sk)405 static void mptcp_close_wake_up(struct sock *sk)
406 {
407 	if (sock_flag(sk, SOCK_DEAD))
408 		return;
409 
410 	sk->sk_state_change(sk);
411 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
412 	    sk->sk_state == TCP_CLOSE)
413 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
414 	else
415 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
416 }
417 
mptcp_pending_data_fin_ack(struct sock * sk)418 static bool mptcp_pending_data_fin_ack(struct sock *sk)
419 {
420 	struct mptcp_sock *msk = mptcp_sk(sk);
421 
422 	return ((1 << sk->sk_state) &
423 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 	       msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426 
mptcp_check_data_fin_ack(struct sock * sk)427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 	struct mptcp_sock *msk = mptcp_sk(sk);
430 
431 	/* Look for an acknowledged DATA_FIN */
432 	if (mptcp_pending_data_fin_ack(sk)) {
433 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
434 
435 		switch (sk->sk_state) {
436 		case TCP_FIN_WAIT1:
437 			mptcp_set_state(sk, TCP_FIN_WAIT2);
438 			break;
439 		case TCP_CLOSING:
440 		case TCP_LAST_ACK:
441 			mptcp_set_state(sk, TCP_CLOSE);
442 			break;
443 		}
444 
445 		mptcp_close_wake_up(sk);
446 	}
447 }
448 
mptcp_pending_data_fin(struct sock * sk,u64 * seq)449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 	struct mptcp_sock *msk = mptcp_sk(sk);
452 
453 	if (READ_ONCE(msk->rcv_data_fin) &&
454 	    ((1 << sk->sk_state) &
455 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457 
458 		if (msk->ack_seq == rcv_data_fin_seq) {
459 			if (seq)
460 				*seq = rcv_data_fin_seq;
461 
462 			return true;
463 		}
464 	}
465 
466 	return false;
467 }
468 
mptcp_set_datafin_timeout(struct sock * sk)469 static void mptcp_set_datafin_timeout(struct sock *sk)
470 {
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	u32 retransmits;
473 
474 	retransmits = min_t(u32, icsk->icsk_retransmits,
475 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476 
477 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479 
__mptcp_set_timeout(struct sock * sk,long tout)480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488 
489 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492 
mptcp_set_timeout(struct sock * sk)493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 	struct mptcp_subflow_context *subflow;
496 	long tout = 0;
497 
498 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 	__mptcp_set_timeout(sk, tout);
501 }
502 
tcp_can_send_ack(const struct sock * ssk)503 static inline bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 	return !((1 << inet_sk_state_load(ssk)) &
506 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508 
__mptcp_subflow_send_ack(struct sock * ssk)509 void __mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 	if (tcp_can_send_ack(ssk))
512 		tcp_send_ack(ssk);
513 }
514 
mptcp_subflow_send_ack(struct sock * ssk)515 static void mptcp_subflow_send_ack(struct sock *ssk)
516 {
517 	bool slow;
518 
519 	slow = lock_sock_fast(ssk);
520 	__mptcp_subflow_send_ack(ssk);
521 	unlock_sock_fast(ssk, slow);
522 }
523 
mptcp_send_ack(struct mptcp_sock * msk)524 static void mptcp_send_ack(struct mptcp_sock *msk)
525 {
526 	struct mptcp_subflow_context *subflow;
527 
528 	mptcp_for_each_subflow(msk, subflow)
529 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
530 }
531 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)532 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
533 {
534 	bool slow;
535 
536 	slow = lock_sock_fast(ssk);
537 	if (tcp_can_send_ack(ssk))
538 		tcp_cleanup_rbuf(ssk, copied);
539 	unlock_sock_fast(ssk, slow);
540 }
541 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)542 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
543 {
544 	const struct inet_connection_sock *icsk = inet_csk(ssk);
545 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
546 	const struct tcp_sock *tp = tcp_sk(ssk);
547 
548 	return (ack_pending & ICSK_ACK_SCHED) &&
549 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
550 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
551 		 (rx_empty && ack_pending &
552 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
553 }
554 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)555 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
556 {
557 	int old_space = READ_ONCE(msk->old_wspace);
558 	struct mptcp_subflow_context *subflow;
559 	struct sock *sk = (struct sock *)msk;
560 	int space =  __mptcp_space(sk);
561 	bool cleanup, rx_empty;
562 
563 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
564 	rx_empty = !__mptcp_rmem(sk) && copied;
565 
566 	mptcp_for_each_subflow(msk, subflow) {
567 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
568 
569 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
570 			mptcp_subflow_cleanup_rbuf(ssk, copied);
571 	}
572 }
573 
mptcp_check_data_fin(struct sock * sk)574 static bool mptcp_check_data_fin(struct sock *sk)
575 {
576 	struct mptcp_sock *msk = mptcp_sk(sk);
577 	u64 rcv_data_fin_seq;
578 	bool ret = false;
579 
580 	/* Need to ack a DATA_FIN received from a peer while this side
581 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
582 	 * msk->rcv_data_fin was set when parsing the incoming options
583 	 * at the subflow level and the msk lock was not held, so this
584 	 * is the first opportunity to act on the DATA_FIN and change
585 	 * the msk state.
586 	 *
587 	 * If we are caught up to the sequence number of the incoming
588 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
589 	 * not caught up, do nothing and let the recv code send DATA_ACK
590 	 * when catching up.
591 	 */
592 
593 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
594 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
595 		WRITE_ONCE(msk->rcv_data_fin, 0);
596 
597 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
598 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
599 
600 		switch (sk->sk_state) {
601 		case TCP_ESTABLISHED:
602 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
603 			break;
604 		case TCP_FIN_WAIT1:
605 			mptcp_set_state(sk, TCP_CLOSING);
606 			break;
607 		case TCP_FIN_WAIT2:
608 			mptcp_set_state(sk, TCP_CLOSE);
609 			break;
610 		default:
611 			/* Other states not expected */
612 			WARN_ON_ONCE(1);
613 			break;
614 		}
615 
616 		ret = true;
617 		if (!__mptcp_check_fallback(msk))
618 			mptcp_send_ack(msk);
619 		mptcp_close_wake_up(sk);
620 	}
621 	return ret;
622 }
623 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)624 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
625 {
626 	if (mptcp_try_fallback(ssk)) {
627 		MPTCP_INC_STATS(sock_net(ssk),
628 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
629 	} else {
630 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
631 		mptcp_subflow_reset(ssk);
632 	}
633 }
634 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 					   struct sock *ssk,
637 					   unsigned int *bytes)
638 {
639 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 	struct sock *sk = (struct sock *)msk;
641 	unsigned int moved = 0;
642 	bool more_data_avail;
643 	struct tcp_sock *tp;
644 	bool done = false;
645 	int sk_rbuf;
646 
647 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648 
649 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651 
652 		if (unlikely(ssk_rbuf > sk_rbuf)) {
653 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 			sk_rbuf = ssk_rbuf;
655 		}
656 	}
657 
658 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		/* try to move as much data as available */
667 		map_remaining = subflow->map_data_len -
668 				mptcp_subflow_get_map_offset(subflow);
669 
670 		skb = skb_peek(&ssk->sk_receive_queue);
671 		if (!skb) {
672 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 			 * a different CPU can have already processed the pending
674 			 * data, stop here or we can enter an infinite loop
675 			 */
676 			if (!moved)
677 				done = true;
678 			break;
679 		}
680 
681 		if (__mptcp_check_fallback(msk)) {
682 			/* Under fallback skbs have no MPTCP extension and TCP could
683 			 * collapse them between the dummy map creation and the
684 			 * current dequeue. Be sure to adjust the map size.
685 			 */
686 			map_remaining = skb->len;
687 			subflow->map_data_len = skb->len;
688 		}
689 
690 		offset = seq - TCP_SKB_CB(skb)->seq;
691 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 		if (fin) {
693 			done = true;
694 			seq++;
695 		}
696 
697 		if (offset < skb->len) {
698 			size_t len = skb->len - offset;
699 
700 			if (tp->urg_data)
701 				done = true;
702 
703 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 				moved += len;
705 			seq += len;
706 
707 			if (unlikely(map_remaining < len)) {
708 				DEBUG_NET_WARN_ON_ONCE(1);
709 				mptcp_dss_corruption(msk, ssk);
710 			}
711 		} else {
712 			if (unlikely(!fin)) {
713 				DEBUG_NET_WARN_ON_ONCE(1);
714 				mptcp_dss_corruption(msk, ssk);
715 			}
716 
717 			sk_eat_skb(ssk, skb);
718 			done = true;
719 		}
720 
721 		WRITE_ONCE(tp->copied_seq, seq);
722 		more_data_avail = mptcp_subflow_data_available(ssk);
723 
724 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
725 			done = true;
726 			break;
727 		}
728 	} while (more_data_avail);
729 
730 	*bytes += moved;
731 	return done;
732 }
733 
__mptcp_ofo_queue(struct mptcp_sock * msk)734 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
735 {
736 	struct sock *sk = (struct sock *)msk;
737 	struct sk_buff *skb, *tail;
738 	bool moved = false;
739 	struct rb_node *p;
740 	u64 end_seq;
741 
742 	p = rb_first(&msk->out_of_order_queue);
743 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
744 	while (p) {
745 		skb = rb_to_skb(p);
746 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
747 			break;
748 
749 		p = rb_next(p);
750 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
751 
752 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
753 				      msk->ack_seq))) {
754 			mptcp_drop(sk, skb);
755 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
756 			continue;
757 		}
758 
759 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
760 		tail = skb_peek_tail(&sk->sk_receive_queue);
761 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
762 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
763 
764 			/* skip overlapping data, if any */
765 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
766 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
767 				 delta);
768 			MPTCP_SKB_CB(skb)->offset += delta;
769 			MPTCP_SKB_CB(skb)->map_seq += delta;
770 			__skb_queue_tail(&sk->sk_receive_queue, skb);
771 		}
772 		msk->bytes_received += end_seq - msk->ack_seq;
773 		msk->ack_seq = end_seq;
774 		moved = true;
775 	}
776 	return moved;
777 }
778 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)779 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
780 {
781 	int err = sock_error(ssk);
782 	int ssk_state;
783 
784 	if (!err)
785 		return false;
786 
787 	/* only propagate errors on fallen-back sockets or
788 	 * on MPC connect
789 	 */
790 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
791 		return false;
792 
793 	/* We need to propagate only transition to CLOSE state.
794 	 * Orphaned socket will see such state change via
795 	 * subflow_sched_work_if_closed() and that path will properly
796 	 * destroy the msk as needed.
797 	 */
798 	ssk_state = inet_sk_state_load(ssk);
799 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
800 		mptcp_set_state(sk, ssk_state);
801 	WRITE_ONCE(sk->sk_err, -err);
802 
803 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
804 	smp_wmb();
805 	sk_error_report(sk);
806 	return true;
807 }
808 
__mptcp_error_report(struct sock * sk)809 void __mptcp_error_report(struct sock *sk)
810 {
811 	struct mptcp_subflow_context *subflow;
812 	struct mptcp_sock *msk = mptcp_sk(sk);
813 
814 	mptcp_for_each_subflow(msk, subflow)
815 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
816 			break;
817 }
818 
819 /* In most cases we will be able to lock the mptcp socket.  If its already
820  * owned, we need to defer to the work queue to avoid ABBA deadlock.
821  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)822 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
823 {
824 	struct sock *sk = (struct sock *)msk;
825 	unsigned int moved = 0;
826 
827 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
828 	__mptcp_ofo_queue(msk);
829 	if (unlikely(ssk->sk_err)) {
830 		if (!sock_owned_by_user(sk))
831 			__mptcp_error_report(sk);
832 		else
833 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
834 	}
835 
836 	/* If the moves have caught up with the DATA_FIN sequence number
837 	 * it's time to ack the DATA_FIN and change socket state, but
838 	 * this is not a good place to change state. Let the workqueue
839 	 * do it.
840 	 */
841 	if (mptcp_pending_data_fin(sk, NULL))
842 		mptcp_schedule_work(sk);
843 	return moved > 0;
844 }
845 
mptcp_data_ready(struct sock * sk,struct sock * ssk)846 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
847 {
848 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
849 	struct mptcp_sock *msk = mptcp_sk(sk);
850 	int sk_rbuf, ssk_rbuf;
851 
852 	/* The peer can send data while we are shutting down this
853 	 * subflow at msk destruction time, but we must avoid enqueuing
854 	 * more data to the msk receive queue
855 	 */
856 	if (unlikely(subflow->disposable))
857 		return;
858 
859 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
860 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
861 	if (unlikely(ssk_rbuf > sk_rbuf))
862 		sk_rbuf = ssk_rbuf;
863 
864 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
865 	if (__mptcp_rmem(sk) > sk_rbuf)
866 		return;
867 
868 	/* Wake-up the reader only for in-sequence data */
869 	mptcp_data_lock(sk);
870 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
871 		sk->sk_data_ready(sk);
872 	mptcp_data_unlock(sk);
873 }
874 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)875 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
876 {
877 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
878 	msk->allow_infinite_fallback = false;
879 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
880 }
881 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)882 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
883 {
884 	struct sock *sk = (struct sock *)msk;
885 
886 	if (sk->sk_state != TCP_ESTABLISHED)
887 		return false;
888 
889 	spin_lock_bh(&msk->fallback_lock);
890 	if (!msk->allow_subflows) {
891 		spin_unlock_bh(&msk->fallback_lock);
892 		return false;
893 	}
894 	mptcp_subflow_joined(msk, ssk);
895 	spin_unlock_bh(&msk->fallback_lock);
896 
897 	/* attach to msk socket only after we are sure we will deal with it
898 	 * at close time
899 	 */
900 	if (sk->sk_socket && !ssk->sk_socket)
901 		mptcp_sock_graft(ssk, sk->sk_socket);
902 
903 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
904 	mptcp_sockopt_sync_locked(msk, ssk);
905 	mptcp_stop_tout_timer(sk);
906 	__mptcp_propagate_sndbuf(sk, ssk);
907 	return true;
908 }
909 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)910 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
911 {
912 	struct mptcp_subflow_context *tmp, *subflow;
913 	struct mptcp_sock *msk = mptcp_sk(sk);
914 
915 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
916 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
917 		bool slow = lock_sock_fast(ssk);
918 
919 		list_move_tail(&subflow->node, &msk->conn_list);
920 		if (!__mptcp_finish_join(msk, ssk))
921 			mptcp_subflow_reset(ssk);
922 		unlock_sock_fast(ssk, slow);
923 	}
924 }
925 
mptcp_rtx_timer_pending(struct sock * sk)926 static bool mptcp_rtx_timer_pending(struct sock *sk)
927 {
928 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
929 }
930 
mptcp_reset_rtx_timer(struct sock * sk)931 static void mptcp_reset_rtx_timer(struct sock *sk)
932 {
933 	struct inet_connection_sock *icsk = inet_csk(sk);
934 	unsigned long tout;
935 
936 	/* prevent rescheduling on close */
937 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
938 		return;
939 
940 	tout = mptcp_sk(sk)->timer_ival;
941 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
942 }
943 
mptcp_schedule_work(struct sock * sk)944 bool mptcp_schedule_work(struct sock *sk)
945 {
946 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
947 	    schedule_work(&mptcp_sk(sk)->work)) {
948 		/* each subflow already holds a reference to the sk, and the
949 		 * workqueue is invoked by a subflow, so sk can't go away here.
950 		 */
951 		sock_hold(sk);
952 		return true;
953 	}
954 	return false;
955 }
956 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)957 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
958 {
959 	struct mptcp_subflow_context *subflow;
960 
961 	msk_owned_by_me(msk);
962 
963 	mptcp_for_each_subflow(msk, subflow) {
964 		if (READ_ONCE(subflow->data_avail))
965 			return mptcp_subflow_tcp_sock(subflow);
966 	}
967 
968 	return NULL;
969 }
970 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)971 static bool mptcp_skb_can_collapse_to(u64 write_seq,
972 				      const struct sk_buff *skb,
973 				      const struct mptcp_ext *mpext)
974 {
975 	if (!tcp_skb_can_collapse_to(skb))
976 		return false;
977 
978 	/* can collapse only if MPTCP level sequence is in order and this
979 	 * mapping has not been xmitted yet
980 	 */
981 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
982 	       !mpext->frozen;
983 }
984 
985 /* we can append data to the given data frag if:
986  * - there is space available in the backing page_frag
987  * - the data frag tail matches the current page_frag free offset
988  * - the data frag end sequence number matches the current write seq
989  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)990 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
991 				       const struct page_frag *pfrag,
992 				       const struct mptcp_data_frag *df)
993 {
994 	return df && pfrag->page == df->page &&
995 		pfrag->size - pfrag->offset > 0 &&
996 		pfrag->offset == (df->offset + df->data_len) &&
997 		df->data_seq + df->data_len == msk->write_seq;
998 }
999 
dfrag_uncharge(struct sock * sk,int len)1000 static void dfrag_uncharge(struct sock *sk, int len)
1001 {
1002 	sk_mem_uncharge(sk, len);
1003 	sk_wmem_queued_add(sk, -len);
1004 }
1005 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1006 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1007 {
1008 	int len = dfrag->data_len + dfrag->overhead;
1009 
1010 	list_del(&dfrag->list);
1011 	dfrag_uncharge(sk, len);
1012 	put_page(dfrag->page);
1013 }
1014 
__mptcp_clean_una(struct sock * sk)1015 static void __mptcp_clean_una(struct sock *sk)
1016 {
1017 	struct mptcp_sock *msk = mptcp_sk(sk);
1018 	struct mptcp_data_frag *dtmp, *dfrag;
1019 	u64 snd_una;
1020 
1021 	snd_una = msk->snd_una;
1022 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1023 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1024 			break;
1025 
1026 		if (unlikely(dfrag == msk->first_pending)) {
1027 			/* in recovery mode can see ack after the current snd head */
1028 			if (WARN_ON_ONCE(!msk->recovery))
1029 				break;
1030 
1031 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1032 		}
1033 
1034 		dfrag_clear(sk, dfrag);
1035 	}
1036 
1037 	dfrag = mptcp_rtx_head(sk);
1038 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1039 		u64 delta = snd_una - dfrag->data_seq;
1040 
1041 		/* prevent wrap around in recovery mode */
1042 		if (unlikely(delta > dfrag->already_sent)) {
1043 			if (WARN_ON_ONCE(!msk->recovery))
1044 				goto out;
1045 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1046 				goto out;
1047 			dfrag->already_sent += delta - dfrag->already_sent;
1048 		}
1049 
1050 		dfrag->data_seq += delta;
1051 		dfrag->offset += delta;
1052 		dfrag->data_len -= delta;
1053 		dfrag->already_sent -= delta;
1054 
1055 		dfrag_uncharge(sk, delta);
1056 	}
1057 
1058 	/* all retransmitted data acked, recovery completed */
1059 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1060 		msk->recovery = false;
1061 
1062 out:
1063 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1064 	    snd_una == READ_ONCE(msk->write_seq)) {
1065 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1066 			mptcp_stop_rtx_timer(sk);
1067 	} else {
1068 		mptcp_reset_rtx_timer(sk);
1069 	}
1070 }
1071 
__mptcp_clean_una_wakeup(struct sock * sk)1072 static void __mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 	lockdep_assert_held_once(&sk->sk_lock.slock);
1075 
1076 	__mptcp_clean_una(sk);
1077 	mptcp_write_space(sk);
1078 }
1079 
mptcp_clean_una_wakeup(struct sock * sk)1080 static void mptcp_clean_una_wakeup(struct sock *sk)
1081 {
1082 	mptcp_data_lock(sk);
1083 	__mptcp_clean_una_wakeup(sk);
1084 	mptcp_data_unlock(sk);
1085 }
1086 
mptcp_enter_memory_pressure(struct sock * sk)1087 static void mptcp_enter_memory_pressure(struct sock *sk)
1088 {
1089 	struct mptcp_subflow_context *subflow;
1090 	struct mptcp_sock *msk = mptcp_sk(sk);
1091 	bool first = true;
1092 
1093 	mptcp_for_each_subflow(msk, subflow) {
1094 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1095 
1096 		if (first)
1097 			tcp_enter_memory_pressure(ssk);
1098 		sk_stream_moderate_sndbuf(ssk);
1099 
1100 		first = false;
1101 	}
1102 	__mptcp_sync_sndbuf(sk);
1103 }
1104 
1105 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1106  * data
1107  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1108 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1109 {
1110 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1111 					pfrag, sk->sk_allocation)))
1112 		return true;
1113 
1114 	mptcp_enter_memory_pressure(sk);
1115 	return false;
1116 }
1117 
1118 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1119 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1120 		      int orig_offset)
1121 {
1122 	int offset = ALIGN(orig_offset, sizeof(long));
1123 	struct mptcp_data_frag *dfrag;
1124 
1125 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1126 	dfrag->data_len = 0;
1127 	dfrag->data_seq = msk->write_seq;
1128 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1129 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1130 	dfrag->already_sent = 0;
1131 	dfrag->page = pfrag->page;
1132 
1133 	return dfrag;
1134 }
1135 
1136 struct mptcp_sendmsg_info {
1137 	int mss_now;
1138 	int size_goal;
1139 	u16 limit;
1140 	u16 sent;
1141 	unsigned int flags;
1142 	bool data_lock_held;
1143 };
1144 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1145 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1146 				    u64 data_seq, int avail_size)
1147 {
1148 	u64 window_end = mptcp_wnd_end(msk);
1149 	u64 mptcp_snd_wnd;
1150 
1151 	if (__mptcp_check_fallback(msk))
1152 		return avail_size;
1153 
1154 	mptcp_snd_wnd = window_end - data_seq;
1155 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1156 
1157 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1158 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1159 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1160 	}
1161 
1162 	return avail_size;
1163 }
1164 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1165 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1166 {
1167 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1168 
1169 	if (!mpext)
1170 		return false;
1171 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1172 	return true;
1173 }
1174 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1175 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1176 {
1177 	struct sk_buff *skb;
1178 
1179 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1180 	if (likely(skb)) {
1181 		if (likely(__mptcp_add_ext(skb, gfp))) {
1182 			skb_reserve(skb, MAX_TCP_HEADER);
1183 			skb->ip_summed = CHECKSUM_PARTIAL;
1184 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1185 			return skb;
1186 		}
1187 		__kfree_skb(skb);
1188 	} else {
1189 		mptcp_enter_memory_pressure(sk);
1190 	}
1191 	return NULL;
1192 }
1193 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1194 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1195 {
1196 	struct sk_buff *skb;
1197 
1198 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1199 	if (!skb)
1200 		return NULL;
1201 
1202 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1203 		tcp_skb_entail(ssk, skb);
1204 		return skb;
1205 	}
1206 	tcp_skb_tsorted_anchor_cleanup(skb);
1207 	kfree_skb(skb);
1208 	return NULL;
1209 }
1210 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1211 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1212 {
1213 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1214 
1215 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1216 }
1217 
1218 /* note: this always recompute the csum on the whole skb, even
1219  * if we just appended a single frag. More status info needed
1220  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1221 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1222 {
1223 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1224 	__wsum csum = ~csum_unfold(mpext->csum);
1225 	int offset = skb->len - added;
1226 
1227 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1228 }
1229 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1230 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1231 				      struct sock *ssk,
1232 				      struct mptcp_ext *mpext)
1233 {
1234 	if (!mpext)
1235 		return;
1236 
1237 	mpext->infinite_map = 1;
1238 	mpext->data_len = 0;
1239 
1240 	if (!mptcp_try_fallback(ssk)) {
1241 		mptcp_subflow_reset(ssk);
1242 		return;
1243 	}
1244 
1245 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1246 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1247 	pr_fallback(msk);
1248 }
1249 
1250 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1251 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1252 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1253 			      struct mptcp_data_frag *dfrag,
1254 			      struct mptcp_sendmsg_info *info)
1255 {
1256 	u64 data_seq = dfrag->data_seq + info->sent;
1257 	int offset = dfrag->offset + info->sent;
1258 	struct mptcp_sock *msk = mptcp_sk(sk);
1259 	bool zero_window_probe = false;
1260 	struct mptcp_ext *mpext = NULL;
1261 	bool can_coalesce = false;
1262 	bool reuse_skb = true;
1263 	struct sk_buff *skb;
1264 	size_t copy;
1265 	int i;
1266 
1267 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1268 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1269 
1270 	if (WARN_ON_ONCE(info->sent > info->limit ||
1271 			 info->limit > dfrag->data_len))
1272 		return 0;
1273 
1274 	if (unlikely(!__tcp_can_send(ssk)))
1275 		return -EAGAIN;
1276 
1277 	/* compute send limit */
1278 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1279 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1280 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1281 	copy = info->size_goal;
1282 
1283 	skb = tcp_write_queue_tail(ssk);
1284 	if (skb && copy > skb->len) {
1285 		/* Limit the write to the size available in the
1286 		 * current skb, if any, so that we create at most a new skb.
1287 		 * Explicitly tells TCP internals to avoid collapsing on later
1288 		 * queue management operation, to avoid breaking the ext <->
1289 		 * SSN association set here
1290 		 */
1291 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1292 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1293 			TCP_SKB_CB(skb)->eor = 1;
1294 			tcp_mark_push(tcp_sk(ssk), skb);
1295 			goto alloc_skb;
1296 		}
1297 
1298 		i = skb_shinfo(skb)->nr_frags;
1299 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1300 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1301 			tcp_mark_push(tcp_sk(ssk), skb);
1302 			goto alloc_skb;
1303 		}
1304 
1305 		copy -= skb->len;
1306 	} else {
1307 alloc_skb:
1308 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1309 		if (!skb)
1310 			return -ENOMEM;
1311 
1312 		i = skb_shinfo(skb)->nr_frags;
1313 		reuse_skb = false;
1314 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1315 	}
1316 
1317 	/* Zero window and all data acked? Probe. */
1318 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1319 	if (copy == 0) {
1320 		u64 snd_una = READ_ONCE(msk->snd_una);
1321 
1322 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1323 			tcp_remove_empty_skb(ssk);
1324 			return 0;
1325 		}
1326 
1327 		zero_window_probe = true;
1328 		data_seq = snd_una - 1;
1329 		copy = 1;
1330 	}
1331 
1332 	copy = min_t(size_t, copy, info->limit - info->sent);
1333 	if (!sk_wmem_schedule(ssk, copy)) {
1334 		tcp_remove_empty_skb(ssk);
1335 		return -ENOMEM;
1336 	}
1337 
1338 	if (can_coalesce) {
1339 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1340 	} else {
1341 		get_page(dfrag->page);
1342 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1343 	}
1344 
1345 	skb->len += copy;
1346 	skb->data_len += copy;
1347 	skb->truesize += copy;
1348 	sk_wmem_queued_add(ssk, copy);
1349 	sk_mem_charge(ssk, copy);
1350 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1351 	TCP_SKB_CB(skb)->end_seq += copy;
1352 	tcp_skb_pcount_set(skb, 0);
1353 
1354 	/* on skb reuse we just need to update the DSS len */
1355 	if (reuse_skb) {
1356 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1357 		mpext->data_len += copy;
1358 		goto out;
1359 	}
1360 
1361 	memset(mpext, 0, sizeof(*mpext));
1362 	mpext->data_seq = data_seq;
1363 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1364 	mpext->data_len = copy;
1365 	mpext->use_map = 1;
1366 	mpext->dsn64 = 1;
1367 
1368 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1369 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1370 		 mpext->dsn64);
1371 
1372 	if (zero_window_probe) {
1373 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1374 		mpext->frozen = 1;
1375 		if (READ_ONCE(msk->csum_enabled))
1376 			mptcp_update_data_checksum(skb, copy);
1377 		tcp_push_pending_frames(ssk);
1378 		return 0;
1379 	}
1380 out:
1381 	if (READ_ONCE(msk->csum_enabled))
1382 		mptcp_update_data_checksum(skb, copy);
1383 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1384 		mptcp_update_infinite_map(msk, ssk, mpext);
1385 	trace_mptcp_sendmsg_frag(mpext);
1386 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1387 	return copy;
1388 }
1389 
1390 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1391 					 sizeof(struct tcphdr) - \
1392 					 MAX_TCP_OPTION_SPACE - \
1393 					 sizeof(struct ipv6hdr) - \
1394 					 sizeof(struct frag_hdr))
1395 
1396 struct subflow_send_info {
1397 	struct sock *ssk;
1398 	u64 linger_time;
1399 };
1400 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1401 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1402 {
1403 	if (!subflow->stale)
1404 		return;
1405 
1406 	subflow->stale = 0;
1407 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1408 }
1409 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1410 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1411 {
1412 	if (unlikely(subflow->stale)) {
1413 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1414 
1415 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1416 			return false;
1417 
1418 		mptcp_subflow_set_active(subflow);
1419 	}
1420 	return __mptcp_subflow_active(subflow);
1421 }
1422 
1423 #define SSK_MODE_ACTIVE	0
1424 #define SSK_MODE_BACKUP	1
1425 #define SSK_MODE_MAX	2
1426 
1427 /* implement the mptcp packet scheduler;
1428  * returns the subflow that will transmit the next DSS
1429  * additionally updates the rtx timeout
1430  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1431 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1432 {
1433 	struct subflow_send_info send_info[SSK_MODE_MAX];
1434 	struct mptcp_subflow_context *subflow;
1435 	struct sock *sk = (struct sock *)msk;
1436 	u32 pace, burst, wmem;
1437 	int i, nr_active = 0;
1438 	struct sock *ssk;
1439 	u64 linger_time;
1440 	long tout = 0;
1441 
1442 	/* pick the subflow with the lower wmem/wspace ratio */
1443 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1444 		send_info[i].ssk = NULL;
1445 		send_info[i].linger_time = -1;
1446 	}
1447 
1448 	mptcp_for_each_subflow(msk, subflow) {
1449 		bool backup = subflow->backup || subflow->request_bkup;
1450 
1451 		trace_mptcp_subflow_get_send(subflow);
1452 		ssk =  mptcp_subflow_tcp_sock(subflow);
1453 		if (!mptcp_subflow_active(subflow))
1454 			continue;
1455 
1456 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1457 		nr_active += !backup;
1458 		pace = subflow->avg_pacing_rate;
1459 		if (unlikely(!pace)) {
1460 			/* init pacing rate from socket */
1461 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1462 			pace = subflow->avg_pacing_rate;
1463 			if (!pace)
1464 				continue;
1465 		}
1466 
1467 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1468 		if (linger_time < send_info[backup].linger_time) {
1469 			send_info[backup].ssk = ssk;
1470 			send_info[backup].linger_time = linger_time;
1471 		}
1472 	}
1473 	__mptcp_set_timeout(sk, tout);
1474 
1475 	/* pick the best backup if no other subflow is active */
1476 	if (!nr_active)
1477 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1478 
1479 	/* According to the blest algorithm, to avoid HoL blocking for the
1480 	 * faster flow, we need to:
1481 	 * - estimate the faster flow linger time
1482 	 * - use the above to estimate the amount of byte transferred
1483 	 *   by the faster flow
1484 	 * - check that the amount of queued data is greter than the above,
1485 	 *   otherwise do not use the picked, slower, subflow
1486 	 * We select the subflow with the shorter estimated time to flush
1487 	 * the queued mem, which basically ensure the above. We just need
1488 	 * to check that subflow has a non empty cwin.
1489 	 */
1490 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1491 	if (!ssk || !sk_stream_memory_free(ssk))
1492 		return NULL;
1493 
1494 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1495 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1496 	if (!burst)
1497 		return ssk;
1498 
1499 	subflow = mptcp_subflow_ctx(ssk);
1500 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1501 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1502 					   burst + wmem);
1503 	msk->snd_burst = burst;
1504 	return ssk;
1505 }
1506 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1507 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1508 {
1509 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1510 	release_sock(ssk);
1511 }
1512 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1513 static void mptcp_update_post_push(struct mptcp_sock *msk,
1514 				   struct mptcp_data_frag *dfrag,
1515 				   u32 sent)
1516 {
1517 	u64 snd_nxt_new = dfrag->data_seq;
1518 
1519 	dfrag->already_sent += sent;
1520 
1521 	msk->snd_burst -= sent;
1522 
1523 	snd_nxt_new += dfrag->already_sent;
1524 
1525 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1526 	 * is recovering after a failover. In that event, this re-sends
1527 	 * old segments.
1528 	 *
1529 	 * Thus compute snd_nxt_new candidate based on
1530 	 * the dfrag->data_seq that was sent and the data
1531 	 * that has been handed to the subflow for transmission
1532 	 * and skip update in case it was old dfrag.
1533 	 */
1534 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1535 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1536 		msk->snd_nxt = snd_nxt_new;
1537 	}
1538 }
1539 
mptcp_check_and_set_pending(struct sock * sk)1540 void mptcp_check_and_set_pending(struct sock *sk)
1541 {
1542 	if (mptcp_send_head(sk)) {
1543 		mptcp_data_lock(sk);
1544 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1545 		mptcp_data_unlock(sk);
1546 	}
1547 }
1548 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1549 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1550 				  struct mptcp_sendmsg_info *info)
1551 {
1552 	struct mptcp_sock *msk = mptcp_sk(sk);
1553 	struct mptcp_data_frag *dfrag;
1554 	int len, copied = 0, err = 0;
1555 
1556 	while ((dfrag = mptcp_send_head(sk))) {
1557 		info->sent = dfrag->already_sent;
1558 		info->limit = dfrag->data_len;
1559 		len = dfrag->data_len - dfrag->already_sent;
1560 		while (len > 0) {
1561 			int ret = 0;
1562 
1563 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1564 			if (ret <= 0) {
1565 				err = copied ? : ret;
1566 				goto out;
1567 			}
1568 
1569 			info->sent += ret;
1570 			copied += ret;
1571 			len -= ret;
1572 
1573 			mptcp_update_post_push(msk, dfrag, ret);
1574 		}
1575 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1576 
1577 		if (msk->snd_burst <= 0 ||
1578 		    !sk_stream_memory_free(ssk) ||
1579 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1580 			err = copied;
1581 			goto out;
1582 		}
1583 		mptcp_set_timeout(sk);
1584 	}
1585 	err = copied;
1586 
1587 out:
1588 	return err;
1589 }
1590 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1591 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1592 {
1593 	struct sock *prev_ssk = NULL, *ssk = NULL;
1594 	struct mptcp_sock *msk = mptcp_sk(sk);
1595 	struct mptcp_sendmsg_info info = {
1596 				.flags = flags,
1597 	};
1598 	bool do_check_data_fin = false;
1599 	int push_count = 1;
1600 
1601 	while (mptcp_send_head(sk) && (push_count > 0)) {
1602 		struct mptcp_subflow_context *subflow;
1603 		int ret = 0;
1604 
1605 		if (mptcp_sched_get_send(msk))
1606 			break;
1607 
1608 		push_count = 0;
1609 
1610 		mptcp_for_each_subflow(msk, subflow) {
1611 			if (READ_ONCE(subflow->scheduled)) {
1612 				mptcp_subflow_set_scheduled(subflow, false);
1613 
1614 				prev_ssk = ssk;
1615 				ssk = mptcp_subflow_tcp_sock(subflow);
1616 				if (ssk != prev_ssk) {
1617 					/* First check. If the ssk has changed since
1618 					 * the last round, release prev_ssk
1619 					 */
1620 					if (prev_ssk)
1621 						mptcp_push_release(prev_ssk, &info);
1622 
1623 					/* Need to lock the new subflow only if different
1624 					 * from the previous one, otherwise we are still
1625 					 * helding the relevant lock
1626 					 */
1627 					lock_sock(ssk);
1628 				}
1629 
1630 				push_count++;
1631 
1632 				ret = __subflow_push_pending(sk, ssk, &info);
1633 				if (ret <= 0) {
1634 					if (ret != -EAGAIN ||
1635 					    (1 << ssk->sk_state) &
1636 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1637 						push_count--;
1638 					continue;
1639 				}
1640 				do_check_data_fin = true;
1641 			}
1642 		}
1643 	}
1644 
1645 	/* at this point we held the socket lock for the last subflow we used */
1646 	if (ssk)
1647 		mptcp_push_release(ssk, &info);
1648 
1649 	/* ensure the rtx timer is running */
1650 	if (!mptcp_rtx_timer_pending(sk))
1651 		mptcp_reset_rtx_timer(sk);
1652 	if (do_check_data_fin)
1653 		mptcp_check_send_data_fin(sk);
1654 }
1655 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1656 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1657 {
1658 	struct mptcp_sock *msk = mptcp_sk(sk);
1659 	struct mptcp_sendmsg_info info = {
1660 		.data_lock_held = true,
1661 	};
1662 	bool keep_pushing = true;
1663 	struct sock *xmit_ssk;
1664 	int copied = 0;
1665 
1666 	info.flags = 0;
1667 	while (mptcp_send_head(sk) && keep_pushing) {
1668 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1669 		int ret = 0;
1670 
1671 		/* check for a different subflow usage only after
1672 		 * spooling the first chunk of data
1673 		 */
1674 		if (first) {
1675 			mptcp_subflow_set_scheduled(subflow, false);
1676 			ret = __subflow_push_pending(sk, ssk, &info);
1677 			first = false;
1678 			if (ret <= 0)
1679 				break;
1680 			copied += ret;
1681 			continue;
1682 		}
1683 
1684 		if (mptcp_sched_get_send(msk))
1685 			goto out;
1686 
1687 		if (READ_ONCE(subflow->scheduled)) {
1688 			mptcp_subflow_set_scheduled(subflow, false);
1689 			ret = __subflow_push_pending(sk, ssk, &info);
1690 			if (ret <= 0)
1691 				keep_pushing = false;
1692 			copied += ret;
1693 		}
1694 
1695 		mptcp_for_each_subflow(msk, subflow) {
1696 			if (READ_ONCE(subflow->scheduled)) {
1697 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1698 				if (xmit_ssk != ssk) {
1699 					mptcp_subflow_delegate(subflow,
1700 							       MPTCP_DELEGATE_SEND);
1701 					keep_pushing = false;
1702 				}
1703 			}
1704 		}
1705 	}
1706 
1707 out:
1708 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1709 	 * not going to flush it via release_sock()
1710 	 */
1711 	if (copied) {
1712 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1713 			 info.size_goal);
1714 		if (!mptcp_rtx_timer_pending(sk))
1715 			mptcp_reset_rtx_timer(sk);
1716 
1717 		if (msk->snd_data_fin_enable &&
1718 		    msk->snd_nxt + 1 == msk->write_seq)
1719 			mptcp_schedule_work(sk);
1720 	}
1721 }
1722 
mptcp_set_nospace(struct sock * sk)1723 static void mptcp_set_nospace(struct sock *sk)
1724 {
1725 	/* enable autotune */
1726 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1727 
1728 	/* will be cleared on avail space */
1729 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1730 }
1731 
1732 static int mptcp_disconnect(struct sock *sk, int flags);
1733 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1734 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1735 				  size_t len, int *copied_syn)
1736 {
1737 	unsigned int saved_flags = msg->msg_flags;
1738 	struct mptcp_sock *msk = mptcp_sk(sk);
1739 	struct sock *ssk;
1740 	int ret;
1741 
1742 	/* on flags based fastopen the mptcp is supposed to create the
1743 	 * first subflow right now. Otherwise we are in the defer_connect
1744 	 * path, and the first subflow must be already present.
1745 	 * Since the defer_connect flag is cleared after the first succsful
1746 	 * fastopen attempt, no need to check for additional subflow status.
1747 	 */
1748 	if (msg->msg_flags & MSG_FASTOPEN) {
1749 		ssk = __mptcp_nmpc_sk(msk);
1750 		if (IS_ERR(ssk))
1751 			return PTR_ERR(ssk);
1752 	}
1753 	if (!msk->first)
1754 		return -EINVAL;
1755 
1756 	ssk = msk->first;
1757 
1758 	lock_sock(ssk);
1759 	msg->msg_flags |= MSG_DONTWAIT;
1760 	msk->fastopening = 1;
1761 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1762 	msk->fastopening = 0;
1763 	msg->msg_flags = saved_flags;
1764 	release_sock(ssk);
1765 
1766 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1767 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1768 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1769 					    msg->msg_namelen, msg->msg_flags, 1);
1770 
1771 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1772 		 * case of any error, except timeout or signal
1773 		 */
1774 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1775 			*copied_syn = 0;
1776 	} else if (ret && ret != -EINPROGRESS) {
1777 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1778 		 * __inet_stream_connect() can fail, due to looking check,
1779 		 * see mptcp_disconnect().
1780 		 * Attempt it again outside the problematic scope.
1781 		 */
1782 		if (!mptcp_disconnect(sk, 0)) {
1783 			sk->sk_disconnects++;
1784 			sk->sk_socket->state = SS_UNCONNECTED;
1785 		}
1786 	}
1787 	inet_clear_bit(DEFER_CONNECT, sk);
1788 
1789 	return ret;
1790 }
1791 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1792 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1793 {
1794 	struct mptcp_sock *msk = mptcp_sk(sk);
1795 	struct page_frag *pfrag;
1796 	size_t copied = 0;
1797 	int ret = 0;
1798 	long timeo;
1799 
1800 	/* silently ignore everything else */
1801 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1802 
1803 	lock_sock(sk);
1804 
1805 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1806 		     msg->msg_flags & MSG_FASTOPEN)) {
1807 		int copied_syn = 0;
1808 
1809 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1810 		copied += copied_syn;
1811 		if (ret == -EINPROGRESS && copied_syn > 0)
1812 			goto out;
1813 		else if (ret)
1814 			goto do_error;
1815 	}
1816 
1817 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1818 
1819 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1820 		ret = sk_stream_wait_connect(sk, &timeo);
1821 		if (ret)
1822 			goto do_error;
1823 	}
1824 
1825 	ret = -EPIPE;
1826 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1827 		goto do_error;
1828 
1829 	pfrag = sk_page_frag(sk);
1830 
1831 	while (msg_data_left(msg)) {
1832 		int total_ts, frag_truesize = 0;
1833 		struct mptcp_data_frag *dfrag;
1834 		bool dfrag_collapsed;
1835 		size_t psize, offset;
1836 
1837 		/* reuse tail pfrag, if possible, or carve a new one from the
1838 		 * page allocator
1839 		 */
1840 		dfrag = mptcp_pending_tail(sk);
1841 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1842 		if (!dfrag_collapsed) {
1843 			if (!sk_stream_memory_free(sk))
1844 				goto wait_for_memory;
1845 
1846 			if (!mptcp_page_frag_refill(sk, pfrag))
1847 				goto wait_for_memory;
1848 
1849 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1850 			frag_truesize = dfrag->overhead;
1851 		}
1852 
1853 		/* we do not bound vs wspace, to allow a single packet.
1854 		 * memory accounting will prevent execessive memory usage
1855 		 * anyway
1856 		 */
1857 		offset = dfrag->offset + dfrag->data_len;
1858 		psize = pfrag->size - offset;
1859 		psize = min_t(size_t, psize, msg_data_left(msg));
1860 		total_ts = psize + frag_truesize;
1861 
1862 		if (!sk_wmem_schedule(sk, total_ts))
1863 			goto wait_for_memory;
1864 
1865 		if (copy_page_from_iter(dfrag->page, offset, psize,
1866 					&msg->msg_iter) != psize) {
1867 			ret = -EFAULT;
1868 			goto do_error;
1869 		}
1870 
1871 		/* data successfully copied into the write queue */
1872 		sk_forward_alloc_add(sk, -total_ts);
1873 		copied += psize;
1874 		dfrag->data_len += psize;
1875 		frag_truesize += psize;
1876 		pfrag->offset += frag_truesize;
1877 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1878 
1879 		/* charge data on mptcp pending queue to the msk socket
1880 		 * Note: we charge such data both to sk and ssk
1881 		 */
1882 		sk_wmem_queued_add(sk, frag_truesize);
1883 		if (!dfrag_collapsed) {
1884 			get_page(dfrag->page);
1885 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1886 			if (!msk->first_pending)
1887 				WRITE_ONCE(msk->first_pending, dfrag);
1888 		}
1889 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1890 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1891 			 !dfrag_collapsed);
1892 
1893 		continue;
1894 
1895 wait_for_memory:
1896 		mptcp_set_nospace(sk);
1897 		__mptcp_push_pending(sk, msg->msg_flags);
1898 		ret = sk_stream_wait_memory(sk, &timeo);
1899 		if (ret)
1900 			goto do_error;
1901 	}
1902 
1903 	if (copied)
1904 		__mptcp_push_pending(sk, msg->msg_flags);
1905 
1906 out:
1907 	release_sock(sk);
1908 	return copied;
1909 
1910 do_error:
1911 	if (copied)
1912 		goto out;
1913 
1914 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1915 	goto out;
1916 }
1917 
1918 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1919 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1920 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1921 				struct msghdr *msg,
1922 				size_t len, int flags,
1923 				struct scm_timestamping_internal *tss,
1924 				int *cmsg_flags)
1925 {
1926 	struct sk_buff *skb, *tmp;
1927 	int copied = 0;
1928 
1929 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1930 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1931 		u32 data_len = skb->len - offset;
1932 		u32 count = min_t(size_t, len - copied, data_len);
1933 		int err;
1934 
1935 		if (!(flags & MSG_TRUNC)) {
1936 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1937 			if (unlikely(err < 0)) {
1938 				if (!copied)
1939 					return err;
1940 				break;
1941 			}
1942 		}
1943 
1944 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1945 			tcp_update_recv_tstamps(skb, tss);
1946 			*cmsg_flags |= MPTCP_CMSG_TS;
1947 		}
1948 
1949 		copied += count;
1950 
1951 		if (count < data_len) {
1952 			if (!(flags & MSG_PEEK)) {
1953 				MPTCP_SKB_CB(skb)->offset += count;
1954 				MPTCP_SKB_CB(skb)->map_seq += count;
1955 				msk->bytes_consumed += count;
1956 			}
1957 			break;
1958 		}
1959 
1960 		if (!(flags & MSG_PEEK)) {
1961 			/* we will bulk release the skb memory later */
1962 			skb->destructor = NULL;
1963 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1964 			__skb_unlink(skb, &msk->receive_queue);
1965 			__kfree_skb(skb);
1966 			msk->bytes_consumed += count;
1967 		}
1968 
1969 		if (copied >= len)
1970 			break;
1971 	}
1972 
1973 	mptcp_rcv_space_adjust(msk, copied);
1974 	return copied;
1975 }
1976 
1977 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1978  *
1979  * Only difference: Use highest rtt estimate of the subflows in use.
1980  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1981 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1982 {
1983 	struct mptcp_subflow_context *subflow;
1984 	struct sock *sk = (struct sock *)msk;
1985 	u8 scaling_ratio = U8_MAX;
1986 	u32 time, advmss = 1;
1987 	u64 rtt_us, mstamp;
1988 
1989 	msk_owned_by_me(msk);
1990 
1991 	if (copied <= 0)
1992 		return;
1993 
1994 	if (!msk->rcvspace_init)
1995 		mptcp_rcv_space_init(msk, msk->first);
1996 
1997 	msk->rcvq_space.copied += copied;
1998 
1999 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2000 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2001 
2002 	rtt_us = msk->rcvq_space.rtt_us;
2003 	if (rtt_us && time < (rtt_us >> 3))
2004 		return;
2005 
2006 	rtt_us = 0;
2007 	mptcp_for_each_subflow(msk, subflow) {
2008 		const struct tcp_sock *tp;
2009 		u64 sf_rtt_us;
2010 		u32 sf_advmss;
2011 
2012 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2013 
2014 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2015 		sf_advmss = READ_ONCE(tp->advmss);
2016 
2017 		rtt_us = max(sf_rtt_us, rtt_us);
2018 		advmss = max(sf_advmss, advmss);
2019 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2020 	}
2021 
2022 	msk->rcvq_space.rtt_us = rtt_us;
2023 	msk->scaling_ratio = scaling_ratio;
2024 	if (time < (rtt_us >> 3) || rtt_us == 0)
2025 		return;
2026 
2027 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2028 		goto new_measure;
2029 
2030 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2031 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2032 		u64 rcvwin, grow;
2033 		int rcvbuf;
2034 
2035 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2036 
2037 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2038 
2039 		do_div(grow, msk->rcvq_space.space);
2040 		rcvwin += (grow << 1);
2041 
2042 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2043 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2044 
2045 		if (rcvbuf > sk->sk_rcvbuf) {
2046 			u32 window_clamp;
2047 
2048 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2049 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2050 
2051 			/* Make subflows follow along.  If we do not do this, we
2052 			 * get drops at subflow level if skbs can't be moved to
2053 			 * the mptcp rx queue fast enough (announced rcv_win can
2054 			 * exceed ssk->sk_rcvbuf).
2055 			 */
2056 			mptcp_for_each_subflow(msk, subflow) {
2057 				struct sock *ssk;
2058 				bool slow;
2059 
2060 				ssk = mptcp_subflow_tcp_sock(subflow);
2061 				slow = lock_sock_fast(ssk);
2062 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2063 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2064 				if (tcp_can_send_ack(ssk))
2065 					tcp_cleanup_rbuf(ssk, 1);
2066 				unlock_sock_fast(ssk, slow);
2067 			}
2068 		}
2069 	}
2070 
2071 	msk->rcvq_space.space = msk->rcvq_space.copied;
2072 new_measure:
2073 	msk->rcvq_space.copied = 0;
2074 	msk->rcvq_space.time = mstamp;
2075 }
2076 
__mptcp_update_rmem(struct sock * sk)2077 static void __mptcp_update_rmem(struct sock *sk)
2078 {
2079 	struct mptcp_sock *msk = mptcp_sk(sk);
2080 
2081 	if (!msk->rmem_released)
2082 		return;
2083 
2084 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2085 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2086 	WRITE_ONCE(msk->rmem_released, 0);
2087 }
2088 
__mptcp_splice_receive_queue(struct sock * sk)2089 static void __mptcp_splice_receive_queue(struct sock *sk)
2090 {
2091 	struct mptcp_sock *msk = mptcp_sk(sk);
2092 
2093 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2094 }
2095 
__mptcp_move_skbs(struct mptcp_sock * msk)2096 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2097 {
2098 	struct sock *sk = (struct sock *)msk;
2099 	unsigned int moved = 0;
2100 	bool ret, done;
2101 
2102 	do {
2103 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2104 		bool slowpath;
2105 
2106 		/* we can have data pending in the subflows only if the msk
2107 		 * receive buffer was full at subflow_data_ready() time,
2108 		 * that is an unlikely slow path.
2109 		 */
2110 		if (likely(!ssk))
2111 			break;
2112 
2113 		slowpath = lock_sock_fast(ssk);
2114 		mptcp_data_lock(sk);
2115 		__mptcp_update_rmem(sk);
2116 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2117 		mptcp_data_unlock(sk);
2118 
2119 		if (unlikely(ssk->sk_err))
2120 			__mptcp_error_report(sk);
2121 		unlock_sock_fast(ssk, slowpath);
2122 	} while (!done);
2123 
2124 	/* acquire the data lock only if some input data is pending */
2125 	ret = moved > 0;
2126 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2127 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2128 		mptcp_data_lock(sk);
2129 		__mptcp_update_rmem(sk);
2130 		ret |= __mptcp_ofo_queue(msk);
2131 		__mptcp_splice_receive_queue(sk);
2132 		mptcp_data_unlock(sk);
2133 	}
2134 	if (ret)
2135 		mptcp_check_data_fin((struct sock *)msk);
2136 	return !skb_queue_empty(&msk->receive_queue);
2137 }
2138 
mptcp_inq_hint(const struct sock * sk)2139 static unsigned int mptcp_inq_hint(const struct sock *sk)
2140 {
2141 	const struct mptcp_sock *msk = mptcp_sk(sk);
2142 	const struct sk_buff *skb;
2143 
2144 	skb = skb_peek(&msk->receive_queue);
2145 	if (skb) {
2146 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2147 
2148 		if (hint_val >= INT_MAX)
2149 			return INT_MAX;
2150 
2151 		return (unsigned int)hint_val;
2152 	}
2153 
2154 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2155 		return 1;
2156 
2157 	return 0;
2158 }
2159 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2160 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2161 			 int flags, int *addr_len)
2162 {
2163 	struct mptcp_sock *msk = mptcp_sk(sk);
2164 	struct scm_timestamping_internal tss;
2165 	int copied = 0, cmsg_flags = 0;
2166 	int target;
2167 	long timeo;
2168 
2169 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2170 	if (unlikely(flags & MSG_ERRQUEUE))
2171 		return inet_recv_error(sk, msg, len, addr_len);
2172 
2173 	lock_sock(sk);
2174 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2175 		copied = -ENOTCONN;
2176 		goto out_err;
2177 	}
2178 
2179 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2180 
2181 	len = min_t(size_t, len, INT_MAX);
2182 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2183 
2184 	if (unlikely(msk->recvmsg_inq))
2185 		cmsg_flags = MPTCP_CMSG_INQ;
2186 
2187 	while (copied < len) {
2188 		int err, bytes_read;
2189 
2190 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2191 		if (unlikely(bytes_read < 0)) {
2192 			if (!copied)
2193 				copied = bytes_read;
2194 			goto out_err;
2195 		}
2196 
2197 		copied += bytes_read;
2198 
2199 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2200 			continue;
2201 
2202 		/* only the master socket status is relevant here. The exit
2203 		 * conditions mirror closely tcp_recvmsg()
2204 		 */
2205 		if (copied >= target)
2206 			break;
2207 
2208 		if (copied) {
2209 			if (sk->sk_err ||
2210 			    sk->sk_state == TCP_CLOSE ||
2211 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2212 			    !timeo ||
2213 			    signal_pending(current))
2214 				break;
2215 		} else {
2216 			if (sk->sk_err) {
2217 				copied = sock_error(sk);
2218 				break;
2219 			}
2220 
2221 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2222 				/* race breaker: the shutdown could be after the
2223 				 * previous receive queue check
2224 				 */
2225 				if (__mptcp_move_skbs(msk))
2226 					continue;
2227 				break;
2228 			}
2229 
2230 			if (sk->sk_state == TCP_CLOSE) {
2231 				copied = -ENOTCONN;
2232 				break;
2233 			}
2234 
2235 			if (!timeo) {
2236 				copied = -EAGAIN;
2237 				break;
2238 			}
2239 
2240 			if (signal_pending(current)) {
2241 				copied = sock_intr_errno(timeo);
2242 				break;
2243 			}
2244 		}
2245 
2246 		pr_debug("block timeout %ld\n", timeo);
2247 		mptcp_cleanup_rbuf(msk, copied);
2248 		err = sk_wait_data(sk, &timeo, NULL);
2249 		if (err < 0) {
2250 			err = copied ? : err;
2251 			goto out_err;
2252 		}
2253 	}
2254 
2255 	mptcp_cleanup_rbuf(msk, copied);
2256 
2257 out_err:
2258 	if (cmsg_flags && copied >= 0) {
2259 		if (cmsg_flags & MPTCP_CMSG_TS)
2260 			tcp_recv_timestamp(msg, sk, &tss);
2261 
2262 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2263 			unsigned int inq = mptcp_inq_hint(sk);
2264 
2265 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2266 		}
2267 	}
2268 
2269 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2270 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2271 		 skb_queue_empty(&msk->receive_queue), copied);
2272 
2273 	release_sock(sk);
2274 	return copied;
2275 }
2276 
mptcp_retransmit_timer(struct timer_list * t)2277 static void mptcp_retransmit_timer(struct timer_list *t)
2278 {
2279 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2280 						       icsk_retransmit_timer);
2281 	struct sock *sk = &icsk->icsk_inet.sk;
2282 	struct mptcp_sock *msk = mptcp_sk(sk);
2283 
2284 	bh_lock_sock(sk);
2285 	if (!sock_owned_by_user(sk)) {
2286 		/* we need a process context to retransmit */
2287 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2288 			mptcp_schedule_work(sk);
2289 	} else {
2290 		/* delegate our work to tcp_release_cb() */
2291 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2292 	}
2293 	bh_unlock_sock(sk);
2294 	sock_put(sk);
2295 }
2296 
mptcp_tout_timer(struct timer_list * t)2297 static void mptcp_tout_timer(struct timer_list *t)
2298 {
2299 	struct sock *sk = from_timer(sk, t, sk_timer);
2300 
2301 	mptcp_schedule_work(sk);
2302 	sock_put(sk);
2303 }
2304 
2305 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2306  * level.
2307  *
2308  * A backup subflow is returned only if that is the only kind available.
2309  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2310 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2311 {
2312 	struct sock *backup = NULL, *pick = NULL;
2313 	struct mptcp_subflow_context *subflow;
2314 	int min_stale_count = INT_MAX;
2315 
2316 	mptcp_for_each_subflow(msk, subflow) {
2317 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2318 
2319 		if (!__mptcp_subflow_active(subflow))
2320 			continue;
2321 
2322 		/* still data outstanding at TCP level? skip this */
2323 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2324 			mptcp_pm_subflow_chk_stale(msk, ssk);
2325 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2326 			continue;
2327 		}
2328 
2329 		if (subflow->backup || subflow->request_bkup) {
2330 			if (!backup)
2331 				backup = ssk;
2332 			continue;
2333 		}
2334 
2335 		if (!pick)
2336 			pick = ssk;
2337 	}
2338 
2339 	if (pick)
2340 		return pick;
2341 
2342 	/* use backup only if there are no progresses anywhere */
2343 	return min_stale_count > 1 ? backup : NULL;
2344 }
2345 
__mptcp_retransmit_pending_data(struct sock * sk)2346 bool __mptcp_retransmit_pending_data(struct sock *sk)
2347 {
2348 	struct mptcp_data_frag *cur, *rtx_head;
2349 	struct mptcp_sock *msk = mptcp_sk(sk);
2350 
2351 	if (__mptcp_check_fallback(msk))
2352 		return false;
2353 
2354 	/* the closing socket has some data untransmitted and/or unacked:
2355 	 * some data in the mptcp rtx queue has not really xmitted yet.
2356 	 * keep it simple and re-inject the whole mptcp level rtx queue
2357 	 */
2358 	mptcp_data_lock(sk);
2359 	__mptcp_clean_una_wakeup(sk);
2360 	rtx_head = mptcp_rtx_head(sk);
2361 	if (!rtx_head) {
2362 		mptcp_data_unlock(sk);
2363 		return false;
2364 	}
2365 
2366 	msk->recovery_snd_nxt = msk->snd_nxt;
2367 	msk->recovery = true;
2368 	mptcp_data_unlock(sk);
2369 
2370 	msk->first_pending = rtx_head;
2371 	msk->snd_burst = 0;
2372 
2373 	/* be sure to clear the "sent status" on all re-injected fragments */
2374 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2375 		if (!cur->already_sent)
2376 			break;
2377 		cur->already_sent = 0;
2378 	}
2379 
2380 	return true;
2381 }
2382 
2383 /* flags for __mptcp_close_ssk() */
2384 #define MPTCP_CF_PUSH		BIT(1)
2385 #define MPTCP_CF_FASTCLOSE	BIT(2)
2386 
2387 /* be sure to send a reset only if the caller asked for it, also
2388  * clean completely the subflow status when the subflow reaches
2389  * TCP_CLOSE state
2390  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2391 static void __mptcp_subflow_disconnect(struct sock *ssk,
2392 				       struct mptcp_subflow_context *subflow,
2393 				       unsigned int flags)
2394 {
2395 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2396 	    (flags & MPTCP_CF_FASTCLOSE)) {
2397 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2398 		 * disconnect should never fail
2399 		 */
2400 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2401 		mptcp_subflow_ctx_reset(subflow);
2402 	} else {
2403 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2404 	}
2405 }
2406 
2407 /* subflow sockets can be either outgoing (connect) or incoming
2408  * (accept).
2409  *
2410  * Outgoing subflows use in-kernel sockets.
2411  * Incoming subflows do not have their own 'struct socket' allocated,
2412  * so we need to use tcp_close() after detaching them from the mptcp
2413  * parent socket.
2414  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2415 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2416 			      struct mptcp_subflow_context *subflow,
2417 			      unsigned int flags)
2418 {
2419 	struct mptcp_sock *msk = mptcp_sk(sk);
2420 	bool dispose_it, need_push = false;
2421 
2422 	/* If the first subflow moved to a close state before accept, e.g. due
2423 	 * to an incoming reset or listener shutdown, the subflow socket is
2424 	 * already deleted by inet_child_forget() and the mptcp socket can't
2425 	 * survive too.
2426 	 */
2427 	if (msk->in_accept_queue && msk->first == ssk &&
2428 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2429 		/* ensure later check in mptcp_worker() will dispose the msk */
2430 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2431 		sock_set_flag(sk, SOCK_DEAD);
2432 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2433 		mptcp_subflow_drop_ctx(ssk);
2434 		goto out_release;
2435 	}
2436 
2437 	dispose_it = msk->free_first || ssk != msk->first;
2438 	if (dispose_it)
2439 		list_del(&subflow->node);
2440 
2441 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2442 
2443 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2444 		/* be sure to force the tcp_close path
2445 		 * to generate the egress reset
2446 		 */
2447 		ssk->sk_lingertime = 0;
2448 		sock_set_flag(ssk, SOCK_LINGER);
2449 		subflow->send_fastclose = 1;
2450 	}
2451 
2452 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2453 	if (!dispose_it) {
2454 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2455 		release_sock(ssk);
2456 
2457 		goto out;
2458 	}
2459 
2460 	subflow->disposable = 1;
2461 
2462 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2463 	 * the ssk has been already destroyed, we just need to release the
2464 	 * reference owned by msk;
2465 	 */
2466 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2467 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2468 		kfree_rcu(subflow, rcu);
2469 	} else {
2470 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2471 		__tcp_close(ssk, 0);
2472 
2473 		/* close acquired an extra ref */
2474 		__sock_put(ssk);
2475 	}
2476 
2477 out_release:
2478 	__mptcp_subflow_error_report(sk, ssk);
2479 	release_sock(ssk);
2480 
2481 	sock_put(ssk);
2482 
2483 	if (ssk == msk->first)
2484 		WRITE_ONCE(msk->first, NULL);
2485 
2486 out:
2487 	__mptcp_sync_sndbuf(sk);
2488 	if (need_push)
2489 		__mptcp_push_pending(sk, 0);
2490 
2491 	/* Catch every 'all subflows closed' scenario, including peers silently
2492 	 * closing them, e.g. due to timeout.
2493 	 * For established sockets, allow an additional timeout before closing,
2494 	 * as the protocol can still create more subflows.
2495 	 */
2496 	if (list_is_singular(&msk->conn_list) && msk->first &&
2497 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2498 		if (sk->sk_state != TCP_ESTABLISHED ||
2499 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2500 			mptcp_set_state(sk, TCP_CLOSE);
2501 			mptcp_close_wake_up(sk);
2502 		} else {
2503 			mptcp_start_tout_timer(sk);
2504 		}
2505 	}
2506 }
2507 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2508 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2509 		     struct mptcp_subflow_context *subflow)
2510 {
2511 	/* The first subflow can already be closed and still in the list */
2512 	if (subflow->close_event_done)
2513 		return;
2514 
2515 	subflow->close_event_done = true;
2516 
2517 	if (sk->sk_state == TCP_ESTABLISHED)
2518 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2519 
2520 	/* subflow aborted before reaching the fully_established status
2521 	 * attempt the creation of the next subflow
2522 	 */
2523 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2524 
2525 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2526 }
2527 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2528 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2529 {
2530 	return 0;
2531 }
2532 
__mptcp_close_subflow(struct sock * sk)2533 static void __mptcp_close_subflow(struct sock *sk)
2534 {
2535 	struct mptcp_subflow_context *subflow, *tmp;
2536 	struct mptcp_sock *msk = mptcp_sk(sk);
2537 
2538 	might_sleep();
2539 
2540 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2541 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2542 		int ssk_state = inet_sk_state_load(ssk);
2543 
2544 		if (ssk_state != TCP_CLOSE &&
2545 		    (ssk_state != TCP_CLOSE_WAIT ||
2546 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2547 			continue;
2548 
2549 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2550 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2551 			continue;
2552 
2553 		mptcp_close_ssk(sk, ssk, subflow);
2554 	}
2555 
2556 }
2557 
mptcp_close_tout_expired(const struct sock * sk)2558 static bool mptcp_close_tout_expired(const struct sock *sk)
2559 {
2560 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2561 	    sk->sk_state == TCP_CLOSE)
2562 		return false;
2563 
2564 	return time_after32(tcp_jiffies32,
2565 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2566 }
2567 
mptcp_check_fastclose(struct mptcp_sock * msk)2568 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2569 {
2570 	struct mptcp_subflow_context *subflow, *tmp;
2571 	struct sock *sk = (struct sock *)msk;
2572 
2573 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2574 		return;
2575 
2576 	mptcp_token_destroy(msk);
2577 
2578 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2579 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2580 		bool slow;
2581 
2582 		slow = lock_sock_fast(tcp_sk);
2583 		if (tcp_sk->sk_state != TCP_CLOSE) {
2584 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2585 			tcp_set_state(tcp_sk, TCP_CLOSE);
2586 		}
2587 		unlock_sock_fast(tcp_sk, slow);
2588 	}
2589 
2590 	/* Mirror the tcp_reset() error propagation */
2591 	switch (sk->sk_state) {
2592 	case TCP_SYN_SENT:
2593 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2594 		break;
2595 	case TCP_CLOSE_WAIT:
2596 		WRITE_ONCE(sk->sk_err, EPIPE);
2597 		break;
2598 	case TCP_CLOSE:
2599 		return;
2600 	default:
2601 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2602 	}
2603 
2604 	mptcp_set_state(sk, TCP_CLOSE);
2605 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2606 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2607 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2608 
2609 	/* the calling mptcp_worker will properly destroy the socket */
2610 	if (sock_flag(sk, SOCK_DEAD))
2611 		return;
2612 
2613 	sk->sk_state_change(sk);
2614 	sk_error_report(sk);
2615 }
2616 
__mptcp_retrans(struct sock * sk)2617 static void __mptcp_retrans(struct sock *sk)
2618 {
2619 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2620 	struct mptcp_sock *msk = mptcp_sk(sk);
2621 	struct mptcp_subflow_context *subflow;
2622 	struct mptcp_data_frag *dfrag;
2623 	struct sock *ssk;
2624 	int ret, err;
2625 	u16 len = 0;
2626 
2627 	mptcp_clean_una_wakeup(sk);
2628 
2629 	/* first check ssk: need to kick "stale" logic */
2630 	err = mptcp_sched_get_retrans(msk);
2631 	dfrag = mptcp_rtx_head(sk);
2632 	if (!dfrag) {
2633 		if (mptcp_data_fin_enabled(msk)) {
2634 			struct inet_connection_sock *icsk = inet_csk(sk);
2635 
2636 			icsk->icsk_retransmits++;
2637 			mptcp_set_datafin_timeout(sk);
2638 			mptcp_send_ack(msk);
2639 
2640 			goto reset_timer;
2641 		}
2642 
2643 		if (!mptcp_send_head(sk))
2644 			return;
2645 
2646 		goto reset_timer;
2647 	}
2648 
2649 	if (err)
2650 		goto reset_timer;
2651 
2652 	mptcp_for_each_subflow(msk, subflow) {
2653 		if (READ_ONCE(subflow->scheduled)) {
2654 			u16 copied = 0;
2655 
2656 			mptcp_subflow_set_scheduled(subflow, false);
2657 
2658 			ssk = mptcp_subflow_tcp_sock(subflow);
2659 
2660 			lock_sock(ssk);
2661 
2662 			/* limit retransmission to the bytes already sent on some subflows */
2663 			info.sent = 0;
2664 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2665 								    dfrag->already_sent;
2666 
2667 			/*
2668 			 * make the whole retrans decision, xmit, disallow
2669 			 * fallback atomic
2670 			 */
2671 			spin_lock_bh(&msk->fallback_lock);
2672 			if (__mptcp_check_fallback(msk)) {
2673 				spin_unlock_bh(&msk->fallback_lock);
2674 				release_sock(ssk);
2675 				return;
2676 			}
2677 
2678 			while (info.sent < info.limit) {
2679 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2680 				if (ret <= 0)
2681 					break;
2682 
2683 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2684 				copied += ret;
2685 				info.sent += ret;
2686 			}
2687 			if (copied) {
2688 				len = max(copied, len);
2689 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2690 					 info.size_goal);
2691 				msk->allow_infinite_fallback = false;
2692 			}
2693 			spin_unlock_bh(&msk->fallback_lock);
2694 
2695 			release_sock(ssk);
2696 		}
2697 	}
2698 
2699 	msk->bytes_retrans += len;
2700 	dfrag->already_sent = max(dfrag->already_sent, len);
2701 
2702 reset_timer:
2703 	mptcp_check_and_set_pending(sk);
2704 
2705 	if (!mptcp_rtx_timer_pending(sk))
2706 		mptcp_reset_rtx_timer(sk);
2707 }
2708 
2709 /* schedule the timeout timer for the relevant event: either close timeout
2710  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2711  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2712 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2713 {
2714 	struct sock *sk = (struct sock *)msk;
2715 	unsigned long timeout, close_timeout;
2716 
2717 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2718 		return;
2719 
2720 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2721 			tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2722 
2723 	/* the close timeout takes precedence on the fail one, and here at least one of
2724 	 * them is active
2725 	 */
2726 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2727 
2728 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2729 }
2730 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2731 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2732 {
2733 	struct sock *ssk = msk->first;
2734 	bool slow;
2735 
2736 	if (!ssk)
2737 		return;
2738 
2739 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2740 
2741 	slow = lock_sock_fast(ssk);
2742 	mptcp_subflow_reset(ssk);
2743 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2744 	unlock_sock_fast(ssk, slow);
2745 }
2746 
mptcp_do_fastclose(struct sock * sk)2747 static void mptcp_do_fastclose(struct sock *sk)
2748 {
2749 	struct mptcp_subflow_context *subflow, *tmp;
2750 	struct mptcp_sock *msk = mptcp_sk(sk);
2751 
2752 	mptcp_set_state(sk, TCP_CLOSE);
2753 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2754 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2755 				  subflow, MPTCP_CF_FASTCLOSE);
2756 }
2757 
mptcp_worker(struct work_struct * work)2758 static void mptcp_worker(struct work_struct *work)
2759 {
2760 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2761 	struct sock *sk = (struct sock *)msk;
2762 	unsigned long fail_tout;
2763 	int state;
2764 
2765 	lock_sock(sk);
2766 	state = sk->sk_state;
2767 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2768 		goto unlock;
2769 
2770 	mptcp_check_fastclose(msk);
2771 
2772 	mptcp_pm_nl_work(msk);
2773 
2774 	mptcp_check_send_data_fin(sk);
2775 	mptcp_check_data_fin_ack(sk);
2776 	mptcp_check_data_fin(sk);
2777 
2778 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2779 		__mptcp_close_subflow(sk);
2780 
2781 	if (mptcp_close_tout_expired(sk)) {
2782 		mptcp_do_fastclose(sk);
2783 		mptcp_close_wake_up(sk);
2784 	}
2785 
2786 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2787 		__mptcp_destroy_sock(sk);
2788 		goto unlock;
2789 	}
2790 
2791 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2792 		__mptcp_retrans(sk);
2793 
2794 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2795 	if (fail_tout && time_after(jiffies, fail_tout))
2796 		mptcp_mp_fail_no_response(msk);
2797 
2798 unlock:
2799 	release_sock(sk);
2800 	sock_put(sk);
2801 }
2802 
__mptcp_init_sock(struct sock * sk)2803 static void __mptcp_init_sock(struct sock *sk)
2804 {
2805 	struct mptcp_sock *msk = mptcp_sk(sk);
2806 
2807 	INIT_LIST_HEAD(&msk->conn_list);
2808 	INIT_LIST_HEAD(&msk->join_list);
2809 	INIT_LIST_HEAD(&msk->rtx_queue);
2810 	INIT_WORK(&msk->work, mptcp_worker);
2811 	__skb_queue_head_init(&msk->receive_queue);
2812 	msk->out_of_order_queue = RB_ROOT;
2813 	msk->first_pending = NULL;
2814 	msk->rmem_fwd_alloc = 0;
2815 	WRITE_ONCE(msk->rmem_released, 0);
2816 	msk->timer_ival = TCP_RTO_MIN;
2817 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2818 
2819 	WRITE_ONCE(msk->first, NULL);
2820 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2821 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2822 	msk->allow_infinite_fallback = true;
2823 	msk->allow_subflows = true;
2824 	msk->recovery = false;
2825 	msk->subflow_id = 1;
2826 
2827 	mptcp_pm_data_init(msk);
2828 	spin_lock_init(&msk->fallback_lock);
2829 
2830 	/* re-use the csk retrans timer for MPTCP-level retrans */
2831 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2832 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2833 }
2834 
mptcp_ca_reset(struct sock * sk)2835 static void mptcp_ca_reset(struct sock *sk)
2836 {
2837 	struct inet_connection_sock *icsk = inet_csk(sk);
2838 
2839 	tcp_assign_congestion_control(sk);
2840 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2841 
2842 	/* no need to keep a reference to the ops, the name will suffice */
2843 	tcp_cleanup_congestion_control(sk);
2844 	icsk->icsk_ca_ops = NULL;
2845 }
2846 
mptcp_init_sock(struct sock * sk)2847 static int mptcp_init_sock(struct sock *sk)
2848 {
2849 	struct net *net = sock_net(sk);
2850 	int ret;
2851 
2852 	__mptcp_init_sock(sk);
2853 
2854 	if (!mptcp_is_enabled(net))
2855 		return -ENOPROTOOPT;
2856 
2857 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2858 		return -ENOMEM;
2859 
2860 	rcu_read_lock();
2861 	ret = mptcp_init_sched(mptcp_sk(sk),
2862 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2863 	rcu_read_unlock();
2864 	if (ret)
2865 		return ret;
2866 
2867 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2868 
2869 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2870 	 * propagate the correct value
2871 	 */
2872 	mptcp_ca_reset(sk);
2873 
2874 	sk_sockets_allocated_inc(sk);
2875 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2876 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2877 
2878 	return 0;
2879 }
2880 
__mptcp_clear_xmit(struct sock * sk)2881 static void __mptcp_clear_xmit(struct sock *sk)
2882 {
2883 	struct mptcp_sock *msk = mptcp_sk(sk);
2884 	struct mptcp_data_frag *dtmp, *dfrag;
2885 
2886 	WRITE_ONCE(msk->first_pending, NULL);
2887 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2888 		dfrag_clear(sk, dfrag);
2889 }
2890 
mptcp_cancel_work(struct sock * sk)2891 void mptcp_cancel_work(struct sock *sk)
2892 {
2893 	struct mptcp_sock *msk = mptcp_sk(sk);
2894 
2895 	if (cancel_work_sync(&msk->work))
2896 		__sock_put(sk);
2897 }
2898 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2899 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2900 {
2901 	lock_sock(ssk);
2902 
2903 	switch (ssk->sk_state) {
2904 	case TCP_LISTEN:
2905 		if (!(how & RCV_SHUTDOWN))
2906 			break;
2907 		fallthrough;
2908 	case TCP_SYN_SENT:
2909 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2910 		break;
2911 	default:
2912 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2913 			pr_debug("Fallback\n");
2914 			ssk->sk_shutdown |= how;
2915 			tcp_shutdown(ssk, how);
2916 
2917 			/* simulate the data_fin ack reception to let the state
2918 			 * machine move forward
2919 			 */
2920 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2921 			mptcp_schedule_work(sk);
2922 		} else {
2923 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2924 			tcp_send_ack(ssk);
2925 			if (!mptcp_rtx_timer_pending(sk))
2926 				mptcp_reset_rtx_timer(sk);
2927 		}
2928 		break;
2929 	}
2930 
2931 	release_sock(ssk);
2932 }
2933 
mptcp_set_state(struct sock * sk,int state)2934 void mptcp_set_state(struct sock *sk, int state)
2935 {
2936 	int oldstate = sk->sk_state;
2937 
2938 	switch (state) {
2939 	case TCP_ESTABLISHED:
2940 		if (oldstate != TCP_ESTABLISHED)
2941 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2942 		break;
2943 	case TCP_CLOSE_WAIT:
2944 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2945 		 * MPTCP "accepted" sockets will be created later on. So no
2946 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2947 		 */
2948 		break;
2949 	default:
2950 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2951 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2952 	}
2953 
2954 	inet_sk_state_store(sk, state);
2955 }
2956 
2957 static const unsigned char new_state[16] = {
2958 	/* current state:     new state:      action:	*/
2959 	[0 /* (Invalid) */] = TCP_CLOSE,
2960 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2961 	[TCP_SYN_SENT]      = TCP_CLOSE,
2962 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2963 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2964 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2965 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2966 	[TCP_CLOSE]         = TCP_CLOSE,
2967 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2968 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2969 	[TCP_LISTEN]        = TCP_CLOSE,
2970 	[TCP_CLOSING]       = TCP_CLOSING,
2971 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2972 };
2973 
mptcp_close_state(struct sock * sk)2974 static int mptcp_close_state(struct sock *sk)
2975 {
2976 	int next = (int)new_state[sk->sk_state];
2977 	int ns = next & TCP_STATE_MASK;
2978 
2979 	mptcp_set_state(sk, ns);
2980 
2981 	return next & TCP_ACTION_FIN;
2982 }
2983 
mptcp_check_send_data_fin(struct sock * sk)2984 static void mptcp_check_send_data_fin(struct sock *sk)
2985 {
2986 	struct mptcp_subflow_context *subflow;
2987 	struct mptcp_sock *msk = mptcp_sk(sk);
2988 
2989 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2990 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2991 		 msk->snd_nxt, msk->write_seq);
2992 
2993 	/* we still need to enqueue subflows or not really shutting down,
2994 	 * skip this
2995 	 */
2996 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2997 	    mptcp_send_head(sk))
2998 		return;
2999 
3000 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3001 
3002 	mptcp_for_each_subflow(msk, subflow) {
3003 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3004 
3005 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3006 	}
3007 }
3008 
__mptcp_wr_shutdown(struct sock * sk)3009 static void __mptcp_wr_shutdown(struct sock *sk)
3010 {
3011 	struct mptcp_sock *msk = mptcp_sk(sk);
3012 
3013 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3014 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3015 		 !!mptcp_send_head(sk));
3016 
3017 	/* will be ignored by fallback sockets */
3018 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3019 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3020 
3021 	mptcp_check_send_data_fin(sk);
3022 }
3023 
__mptcp_destroy_sock(struct sock * sk)3024 static void __mptcp_destroy_sock(struct sock *sk)
3025 {
3026 	struct mptcp_sock *msk = mptcp_sk(sk);
3027 
3028 	pr_debug("msk=%p\n", msk);
3029 
3030 	might_sleep();
3031 
3032 	mptcp_stop_rtx_timer(sk);
3033 	sk_stop_timer(sk, &sk->sk_timer);
3034 	msk->pm.status = 0;
3035 	mptcp_release_sched(msk);
3036 
3037 	sk->sk_prot->destroy(sk);
3038 
3039 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
3040 	WARN_ON_ONCE(msk->rmem_released);
3041 	sk_stream_kill_queues(sk);
3042 	xfrm_sk_free_policy(sk);
3043 
3044 	sock_put(sk);
3045 }
3046 
__mptcp_unaccepted_force_close(struct sock * sk)3047 void __mptcp_unaccepted_force_close(struct sock *sk)
3048 {
3049 	sock_set_flag(sk, SOCK_DEAD);
3050 	mptcp_do_fastclose(sk);
3051 	__mptcp_destroy_sock(sk);
3052 }
3053 
mptcp_check_readable(struct sock * sk)3054 static __poll_t mptcp_check_readable(struct sock *sk)
3055 {
3056 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3057 }
3058 
mptcp_check_listen_stop(struct sock * sk)3059 static void mptcp_check_listen_stop(struct sock *sk)
3060 {
3061 	struct sock *ssk;
3062 
3063 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3064 		return;
3065 
3066 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3067 	ssk = mptcp_sk(sk)->first;
3068 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3069 		return;
3070 
3071 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3072 	tcp_set_state(ssk, TCP_CLOSE);
3073 	mptcp_subflow_queue_clean(sk, ssk);
3074 	inet_csk_listen_stop(ssk);
3075 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3076 	release_sock(ssk);
3077 }
3078 
__mptcp_close(struct sock * sk,long timeout)3079 bool __mptcp_close(struct sock *sk, long timeout)
3080 {
3081 	struct mptcp_subflow_context *subflow;
3082 	struct mptcp_sock *msk = mptcp_sk(sk);
3083 	bool do_cancel_work = false;
3084 	int subflows_alive = 0;
3085 
3086 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3087 
3088 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3089 		mptcp_check_listen_stop(sk);
3090 		mptcp_set_state(sk, TCP_CLOSE);
3091 		goto cleanup;
3092 	}
3093 
3094 	if (mptcp_data_avail(msk) || timeout < 0) {
3095 		/* If the msk has read data, or the caller explicitly ask it,
3096 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3097 		 */
3098 		mptcp_do_fastclose(sk);
3099 		timeout = 0;
3100 	} else if (mptcp_close_state(sk)) {
3101 		__mptcp_wr_shutdown(sk);
3102 	}
3103 
3104 	sk_stream_wait_close(sk, timeout);
3105 
3106 cleanup:
3107 	/* orphan all the subflows */
3108 	mptcp_for_each_subflow(msk, subflow) {
3109 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3110 		bool slow = lock_sock_fast_nested(ssk);
3111 
3112 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3113 
3114 		/* since the close timeout takes precedence on the fail one,
3115 		 * cancel the latter
3116 		 */
3117 		if (ssk == msk->first)
3118 			subflow->fail_tout = 0;
3119 
3120 		/* detach from the parent socket, but allow data_ready to
3121 		 * push incoming data into the mptcp stack, to properly ack it
3122 		 */
3123 		ssk->sk_socket = NULL;
3124 		ssk->sk_wq = NULL;
3125 		unlock_sock_fast(ssk, slow);
3126 	}
3127 	sock_orphan(sk);
3128 
3129 	/* all the subflows are closed, only timeout can change the msk
3130 	 * state, let's not keep resources busy for no reasons
3131 	 */
3132 	if (subflows_alive == 0)
3133 		mptcp_set_state(sk, TCP_CLOSE);
3134 
3135 	sock_hold(sk);
3136 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3137 	if (msk->token)
3138 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3139 
3140 	if (sk->sk_state == TCP_CLOSE) {
3141 		__mptcp_destroy_sock(sk);
3142 		do_cancel_work = true;
3143 	} else {
3144 		mptcp_start_tout_timer(sk);
3145 	}
3146 
3147 	return do_cancel_work;
3148 }
3149 
mptcp_close(struct sock * sk,long timeout)3150 static void mptcp_close(struct sock *sk, long timeout)
3151 {
3152 	bool do_cancel_work;
3153 
3154 	lock_sock(sk);
3155 
3156 	do_cancel_work = __mptcp_close(sk, timeout);
3157 	release_sock(sk);
3158 	if (do_cancel_work)
3159 		mptcp_cancel_work(sk);
3160 
3161 	sock_put(sk);
3162 }
3163 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3164 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3165 {
3166 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3167 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3168 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3169 
3170 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3171 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3172 
3173 	if (msk6 && ssk6) {
3174 		msk6->saddr = ssk6->saddr;
3175 		msk6->flow_label = ssk6->flow_label;
3176 	}
3177 #endif
3178 
3179 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3180 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3181 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3182 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3183 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3184 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3185 }
3186 
mptcp_disconnect(struct sock * sk,int flags)3187 static int mptcp_disconnect(struct sock *sk, int flags)
3188 {
3189 	struct mptcp_sock *msk = mptcp_sk(sk);
3190 
3191 	/* We are on the fastopen error path. We can't call straight into the
3192 	 * subflows cleanup code due to lock nesting (we are already under
3193 	 * msk->firstsocket lock).
3194 	 */
3195 	if (msk->fastopening)
3196 		return -EBUSY;
3197 
3198 	mptcp_check_listen_stop(sk);
3199 	mptcp_set_state(sk, TCP_CLOSE);
3200 
3201 	mptcp_stop_rtx_timer(sk);
3202 	mptcp_stop_tout_timer(sk);
3203 
3204 	if (msk->token)
3205 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3206 
3207 	/* msk->subflow is still intact, the following will not free the first
3208 	 * subflow
3209 	 */
3210 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3211 
3212 	/* The first subflow is already in TCP_CLOSE status, the following
3213 	 * can't overlap with a fallback anymore
3214 	 */
3215 	spin_lock_bh(&msk->fallback_lock);
3216 	msk->allow_subflows = true;
3217 	msk->allow_infinite_fallback = true;
3218 	WRITE_ONCE(msk->flags, 0);
3219 	spin_unlock_bh(&msk->fallback_lock);
3220 
3221 	msk->cb_flags = 0;
3222 	msk->recovery = false;
3223 	msk->can_ack = false;
3224 	msk->fully_established = false;
3225 	msk->rcv_data_fin = false;
3226 	msk->snd_data_fin_enable = false;
3227 	msk->rcv_fastclose = false;
3228 	msk->use_64bit_ack = false;
3229 	msk->bytes_consumed = 0;
3230 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3231 	mptcp_pm_data_reset(msk);
3232 	mptcp_ca_reset(sk);
3233 	msk->bytes_acked = 0;
3234 	msk->bytes_received = 0;
3235 	msk->bytes_sent = 0;
3236 	msk->bytes_retrans = 0;
3237 	msk->rcvspace_init = 0;
3238 
3239 	WRITE_ONCE(sk->sk_shutdown, 0);
3240 	sk_error_report(sk);
3241 	return 0;
3242 }
3243 
3244 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3245 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3246 {
3247 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3248 
3249 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3250 }
3251 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3252 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3253 {
3254 	const struct ipv6_pinfo *np = inet6_sk(sk);
3255 	struct ipv6_txoptions *opt;
3256 	struct ipv6_pinfo *newnp;
3257 
3258 	newnp = inet6_sk(newsk);
3259 
3260 	rcu_read_lock();
3261 	opt = rcu_dereference(np->opt);
3262 	if (opt) {
3263 		opt = ipv6_dup_options(newsk, opt);
3264 		if (!opt)
3265 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3266 	}
3267 	RCU_INIT_POINTER(newnp->opt, opt);
3268 	rcu_read_unlock();
3269 }
3270 #endif
3271 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3272 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3273 {
3274 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3275 	const struct inet_sock *inet = inet_sk(sk);
3276 	struct inet_sock *newinet;
3277 
3278 	newinet = inet_sk(newsk);
3279 
3280 	rcu_read_lock();
3281 	inet_opt = rcu_dereference(inet->inet_opt);
3282 	if (inet_opt) {
3283 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3284 				      inet_opt->opt.optlen, GFP_ATOMIC);
3285 		if (newopt)
3286 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3287 			       inet_opt->opt.optlen);
3288 		else
3289 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3290 	}
3291 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3292 	rcu_read_unlock();
3293 }
3294 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3295 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3296 				 const struct mptcp_options_received *mp_opt,
3297 				 struct sock *ssk,
3298 				 struct request_sock *req)
3299 {
3300 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3301 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3302 	struct mptcp_subflow_context *subflow;
3303 	struct mptcp_sock *msk;
3304 
3305 	if (!nsk)
3306 		return NULL;
3307 
3308 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3309 	if (nsk->sk_family == AF_INET6)
3310 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3311 #endif
3312 
3313 	__mptcp_init_sock(nsk);
3314 
3315 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3316 	if (nsk->sk_family == AF_INET6)
3317 		mptcp_copy_ip6_options(nsk, sk);
3318 	else
3319 #endif
3320 		mptcp_copy_ip_options(nsk, sk);
3321 
3322 	msk = mptcp_sk(nsk);
3323 	msk->local_key = subflow_req->local_key;
3324 	msk->token = subflow_req->token;
3325 	msk->in_accept_queue = 1;
3326 	WRITE_ONCE(msk->fully_established, false);
3327 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3328 		WRITE_ONCE(msk->csum_enabled, true);
3329 
3330 	msk->write_seq = subflow_req->idsn + 1;
3331 	msk->snd_nxt = msk->write_seq;
3332 	msk->snd_una = msk->write_seq;
3333 	msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3334 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3335 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3336 
3337 	/* passive msk is created after the first/MPC subflow */
3338 	msk->subflow_id = 2;
3339 
3340 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3341 	security_inet_csk_clone(nsk, req);
3342 
3343 	/* this can't race with mptcp_close(), as the msk is
3344 	 * not yet exposted to user-space
3345 	 */
3346 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3347 
3348 	/* The msk maintain a ref to each subflow in the connections list */
3349 	WRITE_ONCE(msk->first, ssk);
3350 	subflow = mptcp_subflow_ctx(ssk);
3351 	list_add(&subflow->node, &msk->conn_list);
3352 	sock_hold(ssk);
3353 
3354 	/* new mpc subflow takes ownership of the newly
3355 	 * created mptcp socket
3356 	 */
3357 	mptcp_token_accept(subflow_req, msk);
3358 
3359 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3360 	 * uses the correct data
3361 	 */
3362 	mptcp_copy_inaddrs(nsk, ssk);
3363 	__mptcp_propagate_sndbuf(nsk, ssk);
3364 
3365 	mptcp_rcv_space_init(msk, ssk);
3366 
3367 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3368 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3369 	bh_unlock_sock(nsk);
3370 
3371 	/* note: the newly allocated socket refcount is 2 now */
3372 	return nsk;
3373 }
3374 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3375 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3376 {
3377 	const struct tcp_sock *tp = tcp_sk(ssk);
3378 
3379 	msk->rcvspace_init = 1;
3380 	msk->rcvq_space.copied = 0;
3381 	msk->rcvq_space.rtt_us = 0;
3382 
3383 	msk->rcvq_space.time = tp->tcp_mstamp;
3384 
3385 	/* initial rcv_space offering made to peer */
3386 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3387 				      TCP_INIT_CWND * tp->advmss);
3388 	if (msk->rcvq_space.space == 0)
3389 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3390 }
3391 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3392 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3393 {
3394 	struct mptcp_subflow_context *subflow, *tmp;
3395 	struct sock *sk = (struct sock *)msk;
3396 
3397 	__mptcp_clear_xmit(sk);
3398 
3399 	/* join list will be eventually flushed (with rst) at sock lock release time */
3400 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3401 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3402 
3403 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3404 	mptcp_data_lock(sk);
3405 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3406 	__skb_queue_purge(&sk->sk_receive_queue);
3407 	skb_rbtree_purge(&msk->out_of_order_queue);
3408 	mptcp_data_unlock(sk);
3409 
3410 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3411 	 * inet_sock_destruct() will dispose it
3412 	 */
3413 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3414 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3415 	mptcp_token_destroy(msk);
3416 	mptcp_pm_free_anno_list(msk);
3417 	mptcp_free_local_addr_list(msk);
3418 }
3419 
mptcp_destroy(struct sock * sk)3420 static void mptcp_destroy(struct sock *sk)
3421 {
3422 	struct mptcp_sock *msk = mptcp_sk(sk);
3423 
3424 	/* allow the following to close even the initial subflow */
3425 	msk->free_first = 1;
3426 	mptcp_destroy_common(msk, 0);
3427 	sk_sockets_allocated_dec(sk);
3428 }
3429 
__mptcp_data_acked(struct sock * sk)3430 void __mptcp_data_acked(struct sock *sk)
3431 {
3432 	if (!sock_owned_by_user(sk))
3433 		__mptcp_clean_una(sk);
3434 	else
3435 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3436 
3437 	if (mptcp_pending_data_fin_ack(sk))
3438 		mptcp_schedule_work(sk);
3439 }
3440 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3441 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3442 {
3443 	if (!mptcp_send_head(sk))
3444 		return;
3445 
3446 	if (!sock_owned_by_user(sk))
3447 		__mptcp_subflow_push_pending(sk, ssk, false);
3448 	else
3449 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3450 }
3451 
3452 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3453 				      BIT(MPTCP_RETRANSMIT) | \
3454 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3455 
3456 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3457 static void mptcp_release_cb(struct sock *sk)
3458 	__must_hold(&sk->sk_lock.slock)
3459 {
3460 	struct mptcp_sock *msk = mptcp_sk(sk);
3461 
3462 	for (;;) {
3463 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3464 		struct list_head join_list;
3465 
3466 		if (!flags)
3467 			break;
3468 
3469 		INIT_LIST_HEAD(&join_list);
3470 		list_splice_init(&msk->join_list, &join_list);
3471 
3472 		/* the following actions acquire the subflow socket lock
3473 		 *
3474 		 * 1) can't be invoked in atomic scope
3475 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3476 		 *    datapath acquires the msk socket spinlock while helding
3477 		 *    the subflow socket lock
3478 		 */
3479 		msk->cb_flags &= ~flags;
3480 		spin_unlock_bh(&sk->sk_lock.slock);
3481 
3482 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3483 			__mptcp_flush_join_list(sk, &join_list);
3484 		if (flags & BIT(MPTCP_PUSH_PENDING))
3485 			__mptcp_push_pending(sk, 0);
3486 		if (flags & BIT(MPTCP_RETRANSMIT))
3487 			__mptcp_retrans(sk);
3488 
3489 		cond_resched();
3490 		spin_lock_bh(&sk->sk_lock.slock);
3491 	}
3492 
3493 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3494 		__mptcp_clean_una_wakeup(sk);
3495 	if (unlikely(msk->cb_flags)) {
3496 		/* be sure to sync the msk state before taking actions
3497 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3498 		 * On sk release avoid actions depending on the first subflow
3499 		 */
3500 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3501 			__mptcp_sync_state(sk, msk->pending_state);
3502 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3503 			__mptcp_error_report(sk);
3504 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3505 			__mptcp_sync_sndbuf(sk);
3506 	}
3507 
3508 	__mptcp_update_rmem(sk);
3509 }
3510 
3511 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3512  * TCP can't schedule delack timer before the subflow is fully established.
3513  * MPTCP uses the delack timer to do 3rd ack retransmissions
3514  */
schedule_3rdack_retransmission(struct sock * ssk)3515 static void schedule_3rdack_retransmission(struct sock *ssk)
3516 {
3517 	struct inet_connection_sock *icsk = inet_csk(ssk);
3518 	struct tcp_sock *tp = tcp_sk(ssk);
3519 	unsigned long timeout;
3520 
3521 	if (mptcp_subflow_ctx(ssk)->fully_established)
3522 		return;
3523 
3524 	/* reschedule with a timeout above RTT, as we must look only for drop */
3525 	if (tp->srtt_us)
3526 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3527 	else
3528 		timeout = TCP_TIMEOUT_INIT;
3529 	timeout += jiffies;
3530 
3531 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3532 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3533 	icsk->icsk_ack.timeout = timeout;
3534 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3535 }
3536 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3537 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3538 {
3539 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3540 	struct sock *sk = subflow->conn;
3541 
3542 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3543 		mptcp_data_lock(sk);
3544 		if (!sock_owned_by_user(sk))
3545 			__mptcp_subflow_push_pending(sk, ssk, true);
3546 		else
3547 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3548 		mptcp_data_unlock(sk);
3549 	}
3550 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3551 		mptcp_data_lock(sk);
3552 		if (!sock_owned_by_user(sk))
3553 			__mptcp_sync_sndbuf(sk);
3554 		else
3555 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3556 		mptcp_data_unlock(sk);
3557 	}
3558 	if (status & BIT(MPTCP_DELEGATE_ACK))
3559 		schedule_3rdack_retransmission(ssk);
3560 }
3561 
mptcp_hash(struct sock * sk)3562 static int mptcp_hash(struct sock *sk)
3563 {
3564 	/* should never be called,
3565 	 * we hash the TCP subflows not the master socket
3566 	 */
3567 	WARN_ON_ONCE(1);
3568 	return 0;
3569 }
3570 
mptcp_unhash(struct sock * sk)3571 static void mptcp_unhash(struct sock *sk)
3572 {
3573 	/* called from sk_common_release(), but nothing to do here */
3574 }
3575 
mptcp_get_port(struct sock * sk,unsigned short snum)3576 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3577 {
3578 	struct mptcp_sock *msk = mptcp_sk(sk);
3579 
3580 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3581 	if (WARN_ON_ONCE(!msk->first))
3582 		return -EINVAL;
3583 
3584 	return inet_csk_get_port(msk->first, snum);
3585 }
3586 
mptcp_finish_connect(struct sock * ssk)3587 void mptcp_finish_connect(struct sock *ssk)
3588 {
3589 	struct mptcp_subflow_context *subflow;
3590 	struct mptcp_sock *msk;
3591 	struct sock *sk;
3592 
3593 	subflow = mptcp_subflow_ctx(ssk);
3594 	sk = subflow->conn;
3595 	msk = mptcp_sk(sk);
3596 
3597 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3598 
3599 	subflow->map_seq = subflow->iasn;
3600 	subflow->map_subflow_seq = 1;
3601 
3602 	/* the socket is not connected yet, no msk/subflow ops can access/race
3603 	 * accessing the field below
3604 	 */
3605 	WRITE_ONCE(msk->local_key, subflow->local_key);
3606 
3607 	mptcp_pm_new_connection(msk, ssk, 0);
3608 }
3609 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3610 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3611 {
3612 	write_lock_bh(&sk->sk_callback_lock);
3613 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3614 	sk_set_socket(sk, parent);
3615 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3616 	write_unlock_bh(&sk->sk_callback_lock);
3617 }
3618 
mptcp_finish_join(struct sock * ssk)3619 bool mptcp_finish_join(struct sock *ssk)
3620 {
3621 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3622 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3623 	struct sock *parent = (void *)msk;
3624 	bool ret = true;
3625 
3626 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3627 
3628 	/* mptcp socket already closing? */
3629 	if (!mptcp_is_fully_established(parent)) {
3630 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3631 		return false;
3632 	}
3633 
3634 	/* active subflow, already present inside the conn_list */
3635 	if (!list_empty(&subflow->node)) {
3636 		spin_lock_bh(&msk->fallback_lock);
3637 		if (!msk->allow_subflows) {
3638 			spin_unlock_bh(&msk->fallback_lock);
3639 			return false;
3640 		}
3641 		mptcp_subflow_joined(msk, ssk);
3642 		spin_unlock_bh(&msk->fallback_lock);
3643 		mptcp_propagate_sndbuf(parent, ssk);
3644 		return true;
3645 	}
3646 
3647 	if (!mptcp_pm_allow_new_subflow(msk))
3648 		goto err_prohibited;
3649 
3650 	/* If we can't acquire msk socket lock here, let the release callback
3651 	 * handle it
3652 	 */
3653 	mptcp_data_lock(parent);
3654 	if (!sock_owned_by_user(parent)) {
3655 		ret = __mptcp_finish_join(msk, ssk);
3656 		if (ret) {
3657 			sock_hold(ssk);
3658 			list_add_tail(&subflow->node, &msk->conn_list);
3659 		}
3660 	} else {
3661 		sock_hold(ssk);
3662 		list_add_tail(&subflow->node, &msk->join_list);
3663 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3664 	}
3665 	mptcp_data_unlock(parent);
3666 
3667 	if (!ret) {
3668 err_prohibited:
3669 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3670 		return false;
3671 	}
3672 
3673 	return true;
3674 }
3675 
mptcp_shutdown(struct sock * sk,int how)3676 static void mptcp_shutdown(struct sock *sk, int how)
3677 {
3678 	pr_debug("sk=%p, how=%d\n", sk, how);
3679 
3680 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3681 		__mptcp_wr_shutdown(sk);
3682 }
3683 
mptcp_forward_alloc_get(const struct sock * sk)3684 static int mptcp_forward_alloc_get(const struct sock *sk)
3685 {
3686 	return READ_ONCE(sk->sk_forward_alloc) +
3687 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3688 }
3689 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3690 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3691 {
3692 	const struct sock *sk = (void *)msk;
3693 	u64 delta;
3694 
3695 	if (sk->sk_state == TCP_LISTEN)
3696 		return -EINVAL;
3697 
3698 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3699 		return 0;
3700 
3701 	delta = msk->write_seq - v;
3702 	if (__mptcp_check_fallback(msk) && msk->first) {
3703 		struct tcp_sock *tp = tcp_sk(msk->first);
3704 
3705 		/* the first subflow is disconnected after close - see
3706 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3707 		 * so ignore that status, too.
3708 		 */
3709 		if (!((1 << msk->first->sk_state) &
3710 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3711 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3712 	}
3713 	if (delta > INT_MAX)
3714 		delta = INT_MAX;
3715 
3716 	return (int)delta;
3717 }
3718 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3719 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3720 {
3721 	struct mptcp_sock *msk = mptcp_sk(sk);
3722 	bool slow;
3723 
3724 	switch (cmd) {
3725 	case SIOCINQ:
3726 		if (sk->sk_state == TCP_LISTEN)
3727 			return -EINVAL;
3728 
3729 		lock_sock(sk);
3730 		__mptcp_move_skbs(msk);
3731 		*karg = mptcp_inq_hint(sk);
3732 		release_sock(sk);
3733 		break;
3734 	case SIOCOUTQ:
3735 		slow = lock_sock_fast(sk);
3736 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3737 		unlock_sock_fast(sk, slow);
3738 		break;
3739 	case SIOCOUTQNSD:
3740 		slow = lock_sock_fast(sk);
3741 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3742 		unlock_sock_fast(sk, slow);
3743 		break;
3744 	default:
3745 		return -ENOIOCTLCMD;
3746 	}
3747 
3748 	return 0;
3749 }
3750 
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3751 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3752 					 struct mptcp_subflow_context *subflow)
3753 {
3754 	subflow->request_mptcp = 0;
3755 	WARN_ON_ONCE(!__mptcp_try_fallback(msk));
3756 }
3757 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3758 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3759 {
3760 	struct mptcp_subflow_context *subflow;
3761 	struct mptcp_sock *msk = mptcp_sk(sk);
3762 	int err = -EINVAL;
3763 	struct sock *ssk;
3764 
3765 	ssk = __mptcp_nmpc_sk(msk);
3766 	if (IS_ERR(ssk))
3767 		return PTR_ERR(ssk);
3768 
3769 	mptcp_set_state(sk, TCP_SYN_SENT);
3770 	subflow = mptcp_subflow_ctx(ssk);
3771 #ifdef CONFIG_TCP_MD5SIG
3772 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3773 	 * TCP option space.
3774 	 */
3775 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3776 		mptcp_subflow_early_fallback(msk, subflow);
3777 #endif
3778 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3779 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3780 		mptcp_subflow_early_fallback(msk, subflow);
3781 	}
3782 
3783 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3784 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3785 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3786 	if (likely(!__mptcp_check_fallback(msk)))
3787 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3788 
3789 	/* if reaching here via the fastopen/sendmsg path, the caller already
3790 	 * acquired the subflow socket lock, too.
3791 	 */
3792 	if (!msk->fastopening)
3793 		lock_sock(ssk);
3794 
3795 	/* the following mirrors closely a very small chunk of code from
3796 	 * __inet_stream_connect()
3797 	 */
3798 	if (ssk->sk_state != TCP_CLOSE)
3799 		goto out;
3800 
3801 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3802 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3803 		if (err)
3804 			goto out;
3805 	}
3806 
3807 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3808 	if (err < 0)
3809 		goto out;
3810 
3811 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3812 
3813 out:
3814 	if (!msk->fastopening)
3815 		release_sock(ssk);
3816 
3817 	/* on successful connect, the msk state will be moved to established by
3818 	 * subflow_finish_connect()
3819 	 */
3820 	if (unlikely(err)) {
3821 		/* avoid leaving a dangling token in an unconnected socket */
3822 		mptcp_token_destroy(msk);
3823 		mptcp_set_state(sk, TCP_CLOSE);
3824 		return err;
3825 	}
3826 
3827 	mptcp_copy_inaddrs(sk, ssk);
3828 	return 0;
3829 }
3830 
3831 static struct proto mptcp_prot = {
3832 	.name		= "MPTCP",
3833 	.owner		= THIS_MODULE,
3834 	.init		= mptcp_init_sock,
3835 	.connect	= mptcp_connect,
3836 	.disconnect	= mptcp_disconnect,
3837 	.close		= mptcp_close,
3838 	.setsockopt	= mptcp_setsockopt,
3839 	.getsockopt	= mptcp_getsockopt,
3840 	.shutdown	= mptcp_shutdown,
3841 	.destroy	= mptcp_destroy,
3842 	.sendmsg	= mptcp_sendmsg,
3843 	.ioctl		= mptcp_ioctl,
3844 	.recvmsg	= mptcp_recvmsg,
3845 	.release_cb	= mptcp_release_cb,
3846 	.hash		= mptcp_hash,
3847 	.unhash		= mptcp_unhash,
3848 	.get_port	= mptcp_get_port,
3849 	.forward_alloc_get	= mptcp_forward_alloc_get,
3850 	.sockets_allocated	= &mptcp_sockets_allocated,
3851 
3852 	.memory_allocated	= &tcp_memory_allocated,
3853 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3854 
3855 	.memory_pressure	= &tcp_memory_pressure,
3856 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3857 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3858 	.sysctl_mem	= sysctl_tcp_mem,
3859 	.obj_size	= sizeof(struct mptcp_sock),
3860 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3861 	.no_autobind	= true,
3862 };
3863 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3864 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3865 {
3866 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3867 	struct sock *ssk, *sk = sock->sk;
3868 	int err = -EINVAL;
3869 
3870 	lock_sock(sk);
3871 	ssk = __mptcp_nmpc_sk(msk);
3872 	if (IS_ERR(ssk)) {
3873 		err = PTR_ERR(ssk);
3874 		goto unlock;
3875 	}
3876 
3877 	if (sk->sk_family == AF_INET)
3878 		err = inet_bind_sk(ssk, uaddr, addr_len);
3879 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3880 	else if (sk->sk_family == AF_INET6)
3881 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3882 #endif
3883 	if (!err)
3884 		mptcp_copy_inaddrs(sk, ssk);
3885 
3886 unlock:
3887 	release_sock(sk);
3888 	return err;
3889 }
3890 
mptcp_listen(struct socket * sock,int backlog)3891 static int mptcp_listen(struct socket *sock, int backlog)
3892 {
3893 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3894 	struct sock *sk = sock->sk;
3895 	struct sock *ssk;
3896 	int err;
3897 
3898 	pr_debug("msk=%p\n", msk);
3899 
3900 	lock_sock(sk);
3901 
3902 	err = -EINVAL;
3903 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3904 		goto unlock;
3905 
3906 	ssk = __mptcp_nmpc_sk(msk);
3907 	if (IS_ERR(ssk)) {
3908 		err = PTR_ERR(ssk);
3909 		goto unlock;
3910 	}
3911 
3912 	mptcp_set_state(sk, TCP_LISTEN);
3913 	sock_set_flag(sk, SOCK_RCU_FREE);
3914 
3915 	lock_sock(ssk);
3916 	err = __inet_listen_sk(ssk, backlog);
3917 	release_sock(ssk);
3918 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3919 
3920 	if (!err) {
3921 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3922 		mptcp_copy_inaddrs(sk, ssk);
3923 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3924 	}
3925 
3926 unlock:
3927 	release_sock(sk);
3928 	return err;
3929 }
3930 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3931 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3932 			       int flags, bool kern)
3933 {
3934 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3935 	struct sock *ssk, *newsk;
3936 	int err;
3937 
3938 	pr_debug("msk=%p\n", msk);
3939 
3940 	/* Buggy applications can call accept on socket states other then LISTEN
3941 	 * but no need to allocate the first subflow just to error out.
3942 	 */
3943 	ssk = READ_ONCE(msk->first);
3944 	if (!ssk)
3945 		return -EINVAL;
3946 
3947 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3948 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3949 	if (!newsk)
3950 		return err;
3951 
3952 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3953 	if (sk_is_mptcp(newsk)) {
3954 		struct mptcp_subflow_context *subflow;
3955 		struct sock *new_mptcp_sock;
3956 
3957 		subflow = mptcp_subflow_ctx(newsk);
3958 		new_mptcp_sock = subflow->conn;
3959 
3960 		/* is_mptcp should be false if subflow->conn is missing, see
3961 		 * subflow_syn_recv_sock()
3962 		 */
3963 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3964 			tcp_sk(newsk)->is_mptcp = 0;
3965 			goto tcpfallback;
3966 		}
3967 
3968 		newsk = new_mptcp_sock;
3969 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3970 
3971 		newsk->sk_kern_sock = kern;
3972 		lock_sock(newsk);
3973 		__inet_accept(sock, newsock, newsk);
3974 
3975 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3976 		msk = mptcp_sk(newsk);
3977 		msk->in_accept_queue = 0;
3978 
3979 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3980 		 * This is needed so NOSPACE flag can be set from tcp stack.
3981 		 */
3982 		mptcp_for_each_subflow(msk, subflow) {
3983 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3984 
3985 			if (!ssk->sk_socket)
3986 				mptcp_sock_graft(ssk, newsock);
3987 		}
3988 
3989 		/* Do late cleanup for the first subflow as necessary. Also
3990 		 * deal with bad peers not doing a complete shutdown.
3991 		 */
3992 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3993 			__mptcp_close_ssk(newsk, msk->first,
3994 					  mptcp_subflow_ctx(msk->first), 0);
3995 			if (unlikely(list_is_singular(&msk->conn_list)))
3996 				mptcp_set_state(newsk, TCP_CLOSE);
3997 		}
3998 	} else {
3999 tcpfallback:
4000 		newsk->sk_kern_sock = kern;
4001 		lock_sock(newsk);
4002 		__inet_accept(sock, newsock, newsk);
4003 		/* we are being invoked after accepting a non-mp-capable
4004 		 * flow: sk is a tcp_sk, not an mptcp one.
4005 		 *
4006 		 * Hand the socket over to tcp so all further socket ops
4007 		 * bypass mptcp.
4008 		 */
4009 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4010 			   mptcp_fallback_tcp_ops(newsock->sk));
4011 	}
4012 	release_sock(newsk);
4013 
4014 	return 0;
4015 }
4016 
mptcp_check_writeable(struct mptcp_sock * msk)4017 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4018 {
4019 	struct sock *sk = (struct sock *)msk;
4020 
4021 	if (sk_stream_is_writeable(sk))
4022 		return EPOLLOUT | EPOLLWRNORM;
4023 
4024 	mptcp_set_nospace(sk);
4025 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
4026 	if (sk_stream_is_writeable(sk))
4027 		return EPOLLOUT | EPOLLWRNORM;
4028 
4029 	return 0;
4030 }
4031 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4032 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4033 			   struct poll_table_struct *wait)
4034 {
4035 	struct sock *sk = sock->sk;
4036 	struct mptcp_sock *msk;
4037 	__poll_t mask = 0;
4038 	u8 shutdown;
4039 	int state;
4040 
4041 	msk = mptcp_sk(sk);
4042 	sock_poll_wait(file, sock, wait);
4043 
4044 	state = inet_sk_state_load(sk);
4045 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4046 	if (state == TCP_LISTEN) {
4047 		struct sock *ssk = READ_ONCE(msk->first);
4048 
4049 		if (WARN_ON_ONCE(!ssk))
4050 			return 0;
4051 
4052 		return inet_csk_listen_poll(ssk);
4053 	}
4054 
4055 	shutdown = READ_ONCE(sk->sk_shutdown);
4056 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4057 		mask |= EPOLLHUP;
4058 	if (shutdown & RCV_SHUTDOWN)
4059 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4060 
4061 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4062 		mask |= mptcp_check_readable(sk);
4063 		if (shutdown & SEND_SHUTDOWN)
4064 			mask |= EPOLLOUT | EPOLLWRNORM;
4065 		else
4066 			mask |= mptcp_check_writeable(msk);
4067 	} else if (state == TCP_SYN_SENT &&
4068 		   inet_test_bit(DEFER_CONNECT, sk)) {
4069 		/* cf tcp_poll() note about TFO */
4070 		mask |= EPOLLOUT | EPOLLWRNORM;
4071 	}
4072 
4073 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4074 	smp_rmb();
4075 	if (READ_ONCE(sk->sk_err))
4076 		mask |= EPOLLERR;
4077 
4078 	return mask;
4079 }
4080 
4081 static const struct proto_ops mptcp_stream_ops = {
4082 	.family		   = PF_INET,
4083 	.owner		   = THIS_MODULE,
4084 	.release	   = inet_release,
4085 	.bind		   = mptcp_bind,
4086 	.connect	   = inet_stream_connect,
4087 	.socketpair	   = sock_no_socketpair,
4088 	.accept		   = mptcp_stream_accept,
4089 	.getname	   = inet_getname,
4090 	.poll		   = mptcp_poll,
4091 	.ioctl		   = inet_ioctl,
4092 	.gettstamp	   = sock_gettstamp,
4093 	.listen		   = mptcp_listen,
4094 	.shutdown	   = inet_shutdown,
4095 	.setsockopt	   = sock_common_setsockopt,
4096 	.getsockopt	   = sock_common_getsockopt,
4097 	.sendmsg	   = inet_sendmsg,
4098 	.recvmsg	   = inet_recvmsg,
4099 	.mmap		   = sock_no_mmap,
4100 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4101 };
4102 
4103 static struct inet_protosw mptcp_protosw = {
4104 	.type		= SOCK_STREAM,
4105 	.protocol	= IPPROTO_MPTCP,
4106 	.prot		= &mptcp_prot,
4107 	.ops		= &mptcp_stream_ops,
4108 	.flags		= INET_PROTOSW_ICSK,
4109 };
4110 
mptcp_napi_poll(struct napi_struct * napi,int budget)4111 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4112 {
4113 	struct mptcp_delegated_action *delegated;
4114 	struct mptcp_subflow_context *subflow;
4115 	int work_done = 0;
4116 
4117 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4118 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4119 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4120 
4121 		bh_lock_sock_nested(ssk);
4122 		if (!sock_owned_by_user(ssk)) {
4123 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4124 		} else {
4125 			/* tcp_release_cb_override already processed
4126 			 * the action or will do at next release_sock().
4127 			 * In both case must dequeue the subflow here - on the same
4128 			 * CPU that scheduled it.
4129 			 */
4130 			smp_wmb();
4131 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4132 		}
4133 		bh_unlock_sock(ssk);
4134 		sock_put(ssk);
4135 
4136 		if (++work_done == budget)
4137 			return budget;
4138 	}
4139 
4140 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4141 	 * will not try accessing the NULL napi->dev ptr
4142 	 */
4143 	napi_complete_done(napi, 0);
4144 	return work_done;
4145 }
4146 
mptcp_proto_init(void)4147 void __init mptcp_proto_init(void)
4148 {
4149 	struct mptcp_delegated_action *delegated;
4150 	int cpu;
4151 
4152 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4153 
4154 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4155 		panic("Failed to allocate MPTCP pcpu counter\n");
4156 
4157 	init_dummy_netdev(&mptcp_napi_dev);
4158 	for_each_possible_cpu(cpu) {
4159 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4160 		INIT_LIST_HEAD(&delegated->head);
4161 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4162 				  mptcp_napi_poll);
4163 		napi_enable(&delegated->napi);
4164 	}
4165 
4166 	mptcp_subflow_init();
4167 	mptcp_pm_init();
4168 	mptcp_sched_init();
4169 	mptcp_token_init();
4170 
4171 	if (proto_register(&mptcp_prot, 1) != 0)
4172 		panic("Failed to register MPTCP proto.\n");
4173 
4174 	inet_register_protosw(&mptcp_protosw);
4175 
4176 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4177 }
4178 
4179 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4180 static const struct proto_ops mptcp_v6_stream_ops = {
4181 	.family		   = PF_INET6,
4182 	.owner		   = THIS_MODULE,
4183 	.release	   = inet6_release,
4184 	.bind		   = mptcp_bind,
4185 	.connect	   = inet_stream_connect,
4186 	.socketpair	   = sock_no_socketpair,
4187 	.accept		   = mptcp_stream_accept,
4188 	.getname	   = inet6_getname,
4189 	.poll		   = mptcp_poll,
4190 	.ioctl		   = inet6_ioctl,
4191 	.gettstamp	   = sock_gettstamp,
4192 	.listen		   = mptcp_listen,
4193 	.shutdown	   = inet_shutdown,
4194 	.setsockopt	   = sock_common_setsockopt,
4195 	.getsockopt	   = sock_common_getsockopt,
4196 	.sendmsg	   = inet6_sendmsg,
4197 	.recvmsg	   = inet6_recvmsg,
4198 	.mmap		   = sock_no_mmap,
4199 #ifdef CONFIG_COMPAT
4200 	.compat_ioctl	   = inet6_compat_ioctl,
4201 #endif
4202 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4203 };
4204 
4205 static struct proto mptcp_v6_prot;
4206 
4207 static struct inet_protosw mptcp_v6_protosw = {
4208 	.type		= SOCK_STREAM,
4209 	.protocol	= IPPROTO_MPTCP,
4210 	.prot		= &mptcp_v6_prot,
4211 	.ops		= &mptcp_v6_stream_ops,
4212 	.flags		= INET_PROTOSW_ICSK,
4213 };
4214 
mptcp_proto_v6_init(void)4215 int __init mptcp_proto_v6_init(void)
4216 {
4217 	int err;
4218 
4219 	mptcp_v6_prot = mptcp_prot;
4220 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4221 	mptcp_v6_prot.slab = NULL;
4222 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4223 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4224 
4225 	err = proto_register(&mptcp_v6_prot, 1);
4226 	if (err)
4227 		return err;
4228 
4229 	err = inet6_register_protosw(&mptcp_v6_protosw);
4230 	if (err)
4231 		proto_unregister(&mptcp_v6_prot);
4232 
4233 	return err;
4234 }
4235 #endif
4236