1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110
111 mptcp_sockopt_sync(msk, msk->first);
112 }
113
114 return msk->first;
115 }
116
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 sk_drops_add(sk, skb);
120 __kfree_skb(skb);
121 }
122
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 struct sk_buff *from)
136 {
137 bool fragstolen;
138 int delta;
139
140 if (MPTCP_SKB_CB(from)->offset ||
141 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
142 !skb_try_coalesce(to, from, &fragstolen, &delta))
143 return false;
144
145 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
146 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
147 to->len, MPTCP_SKB_CB(from)->end_seq);
148 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
149
150 /* note the fwd memory can reach a negative value after accounting
151 * for the delta, but the later skb free will restore a non
152 * negative one
153 */
154 atomic_add(delta, &sk->sk_rmem_alloc);
155 mptcp_rmem_charge(sk, delta);
156 kfree_skb_partial(from, fragstolen);
157
158 return true;
159 }
160
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)161 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
162 struct sk_buff *from)
163 {
164 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
165 return false;
166
167 return mptcp_try_coalesce((struct sock *)msk, to, from);
168 }
169
__mptcp_rmem_reclaim(struct sock * sk,int amount)170 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
171 {
172 amount >>= PAGE_SHIFT;
173 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
174 __sk_mem_reduce_allocated(sk, amount);
175 }
176
mptcp_rmem_uncharge(struct sock * sk,int size)177 static void mptcp_rmem_uncharge(struct sock *sk, int size)
178 {
179 struct mptcp_sock *msk = mptcp_sk(sk);
180 int reclaimable;
181
182 mptcp_rmem_fwd_alloc_add(sk, size);
183 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
184
185 /* see sk_mem_uncharge() for the rationale behind the following schema */
186 if (unlikely(reclaimable >= PAGE_SIZE))
187 __mptcp_rmem_reclaim(sk, reclaimable);
188 }
189
mptcp_rfree(struct sk_buff * skb)190 static void mptcp_rfree(struct sk_buff *skb)
191 {
192 unsigned int len = skb->truesize;
193 struct sock *sk = skb->sk;
194
195 atomic_sub(len, &sk->sk_rmem_alloc);
196 mptcp_rmem_uncharge(sk, len);
197 }
198
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)199 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
200 {
201 skb_orphan(skb);
202 skb->sk = sk;
203 skb->destructor = mptcp_rfree;
204 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
205 mptcp_rmem_charge(sk, skb->truesize);
206 }
207
208 /* "inspired" by tcp_data_queue_ofo(), main differences:
209 * - use mptcp seqs
210 * - don't cope with sacks
211 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)212 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
213 {
214 struct sock *sk = (struct sock *)msk;
215 struct rb_node **p, *parent;
216 u64 seq, end_seq, max_seq;
217 struct sk_buff *skb1;
218
219 seq = MPTCP_SKB_CB(skb)->map_seq;
220 end_seq = MPTCP_SKB_CB(skb)->end_seq;
221 max_seq = atomic64_read(&msk->rcv_wnd_sent);
222
223 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
224 RB_EMPTY_ROOT(&msk->out_of_order_queue));
225 if (after64(end_seq, max_seq)) {
226 /* out of window */
227 mptcp_drop(sk, skb);
228 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
229 (unsigned long long)end_seq - (unsigned long)max_seq,
230 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
232 return;
233 }
234
235 p = &msk->out_of_order_queue.rb_node;
236 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
237 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
238 rb_link_node(&skb->rbnode, NULL, p);
239 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
240 msk->ooo_last_skb = skb;
241 goto end;
242 }
243
244 /* with 2 subflows, adding at end of ooo queue is quite likely
245 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
246 */
247 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
250 return;
251 }
252
253 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
254 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
255 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
256 parent = &msk->ooo_last_skb->rbnode;
257 p = &parent->rb_right;
258 goto insert;
259 }
260
261 /* Find place to insert this segment. Handle overlaps on the way. */
262 parent = NULL;
263 while (*p) {
264 parent = *p;
265 skb1 = rb_to_skb(parent);
266 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
267 p = &parent->rb_left;
268 continue;
269 }
270 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
272 /* All the bits are present. Drop. */
273 mptcp_drop(sk, skb);
274 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
275 return;
276 }
277 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
278 /* partial overlap:
279 * | skb |
280 * | skb1 |
281 * continue traversing
282 */
283 } else {
284 /* skb's seq == skb1's seq and skb covers skb1.
285 * Replace skb1 with skb.
286 */
287 rb_replace_node(&skb1->rbnode, &skb->rbnode,
288 &msk->out_of_order_queue);
289 mptcp_drop(sk, skb1);
290 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
291 goto merge_right;
292 }
293 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
295 return;
296 }
297 p = &parent->rb_right;
298 }
299
300 insert:
301 /* Insert segment into RB tree. */
302 rb_link_node(&skb->rbnode, parent, p);
303 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
304
305 merge_right:
306 /* Remove other segments covered by skb. */
307 while ((skb1 = skb_rb_next(skb)) != NULL) {
308 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
309 break;
310 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
311 mptcp_drop(sk, skb1);
312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
313 }
314 /* If there is no skb after us, we are the last_skb ! */
315 if (!skb1)
316 msk->ooo_last_skb = skb;
317
318 end:
319 skb_condense(skb);
320 mptcp_set_owner_r(skb, sk);
321 }
322
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)323 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
324 {
325 struct mptcp_sock *msk = mptcp_sk(sk);
326 int amt, amount;
327
328 if (size <= msk->rmem_fwd_alloc)
329 return true;
330
331 size -= msk->rmem_fwd_alloc;
332 amt = sk_mem_pages(size);
333 amount = amt << PAGE_SHIFT;
334 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
335 return false;
336
337 mptcp_rmem_fwd_alloc_add(sk, amount);
338 return true;
339 }
340
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)341 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
342 struct sk_buff *skb, unsigned int offset,
343 size_t copy_len)
344 {
345 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
346 struct sock *sk = (struct sock *)msk;
347 struct sk_buff *tail;
348 bool has_rxtstamp;
349
350 __skb_unlink(skb, &ssk->sk_receive_queue);
351
352 skb_ext_reset(skb);
353 skb_orphan(skb);
354
355 /* try to fetch required memory from subflow */
356 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
357 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
358 goto drop;
359 }
360
361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362
363 /* the skb map_seq accounts for the skb offset:
364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 * value
366 */
367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 MPTCP_SKB_CB(skb)->offset = offset;
370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371
372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 /* in sequence */
374 msk->bytes_received += copy_len;
375 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
376 tail = skb_peek_tail(&sk->sk_receive_queue);
377 if (tail && mptcp_try_coalesce(sk, tail, skb))
378 return true;
379
380 mptcp_set_owner_r(skb, sk);
381 __skb_queue_tail(&sk->sk_receive_queue, skb);
382 return true;
383 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
384 mptcp_data_queue_ofo(msk, skb);
385 return false;
386 }
387
388 /* old data, keep it simple and drop the whole pkt, sender
389 * will retransmit as needed, if needed.
390 */
391 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
392 drop:
393 mptcp_drop(sk, skb);
394 return false;
395 }
396
mptcp_stop_rtx_timer(struct sock * sk)397 static void mptcp_stop_rtx_timer(struct sock *sk)
398 {
399 struct inet_connection_sock *icsk = inet_csk(sk);
400
401 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
402 mptcp_sk(sk)->timer_ival = 0;
403 }
404
mptcp_close_wake_up(struct sock * sk)405 static void mptcp_close_wake_up(struct sock *sk)
406 {
407 if (sock_flag(sk, SOCK_DEAD))
408 return;
409
410 sk->sk_state_change(sk);
411 if (sk->sk_shutdown == SHUTDOWN_MASK ||
412 sk->sk_state == TCP_CLOSE)
413 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
414 else
415 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
416 }
417
mptcp_pending_data_fin_ack(struct sock * sk)418 static bool mptcp_pending_data_fin_ack(struct sock *sk)
419 {
420 struct mptcp_sock *msk = mptcp_sk(sk);
421
422 return ((1 << sk->sk_state) &
423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426
mptcp_check_data_fin_ack(struct sock * sk)427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 struct mptcp_sock *msk = mptcp_sk(sk);
430
431 /* Look for an acknowledged DATA_FIN */
432 if (mptcp_pending_data_fin_ack(sk)) {
433 WRITE_ONCE(msk->snd_data_fin_enable, 0);
434
435 switch (sk->sk_state) {
436 case TCP_FIN_WAIT1:
437 mptcp_set_state(sk, TCP_FIN_WAIT2);
438 break;
439 case TCP_CLOSING:
440 case TCP_LAST_ACK:
441 mptcp_set_state(sk, TCP_CLOSE);
442 break;
443 }
444
445 mptcp_close_wake_up(sk);
446 }
447 }
448
mptcp_pending_data_fin(struct sock * sk,u64 * seq)449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 struct mptcp_sock *msk = mptcp_sk(sk);
452
453 if (READ_ONCE(msk->rcv_data_fin) &&
454 ((1 << sk->sk_state) &
455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457
458 if (msk->ack_seq == rcv_data_fin_seq) {
459 if (seq)
460 *seq = rcv_data_fin_seq;
461
462 return true;
463 }
464 }
465
466 return false;
467 }
468
mptcp_set_datafin_timeout(struct sock * sk)469 static void mptcp_set_datafin_timeout(struct sock *sk)
470 {
471 struct inet_connection_sock *icsk = inet_csk(sk);
472 u32 retransmits;
473
474 retransmits = min_t(u32, icsk->icsk_retransmits,
475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476
477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479
__mptcp_set_timeout(struct sock * sk,long tout)480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488
489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492
mptcp_set_timeout(struct sock * sk)493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 struct mptcp_subflow_context *subflow;
496 long tout = 0;
497
498 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 __mptcp_set_timeout(sk, tout);
501 }
502
tcp_can_send_ack(const struct sock * ssk)503 static inline bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 return !((1 << inet_sk_state_load(ssk)) &
506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508
__mptcp_subflow_send_ack(struct sock * ssk)509 void __mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 if (tcp_can_send_ack(ssk))
512 tcp_send_ack(ssk);
513 }
514
mptcp_subflow_send_ack(struct sock * ssk)515 static void mptcp_subflow_send_ack(struct sock *ssk)
516 {
517 bool slow;
518
519 slow = lock_sock_fast(ssk);
520 __mptcp_subflow_send_ack(ssk);
521 unlock_sock_fast(ssk, slow);
522 }
523
mptcp_send_ack(struct mptcp_sock * msk)524 static void mptcp_send_ack(struct mptcp_sock *msk)
525 {
526 struct mptcp_subflow_context *subflow;
527
528 mptcp_for_each_subflow(msk, subflow)
529 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
530 }
531
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)532 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
533 {
534 bool slow;
535
536 slow = lock_sock_fast(ssk);
537 if (tcp_can_send_ack(ssk))
538 tcp_cleanup_rbuf(ssk, copied);
539 unlock_sock_fast(ssk, slow);
540 }
541
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)542 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
543 {
544 const struct inet_connection_sock *icsk = inet_csk(ssk);
545 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
546 const struct tcp_sock *tp = tcp_sk(ssk);
547
548 return (ack_pending & ICSK_ACK_SCHED) &&
549 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
550 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
551 (rx_empty && ack_pending &
552 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
553 }
554
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)555 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
556 {
557 int old_space = READ_ONCE(msk->old_wspace);
558 struct mptcp_subflow_context *subflow;
559 struct sock *sk = (struct sock *)msk;
560 int space = __mptcp_space(sk);
561 bool cleanup, rx_empty;
562
563 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
564 rx_empty = !__mptcp_rmem(sk) && copied;
565
566 mptcp_for_each_subflow(msk, subflow) {
567 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
568
569 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
570 mptcp_subflow_cleanup_rbuf(ssk, copied);
571 }
572 }
573
mptcp_check_data_fin(struct sock * sk)574 static bool mptcp_check_data_fin(struct sock *sk)
575 {
576 struct mptcp_sock *msk = mptcp_sk(sk);
577 u64 rcv_data_fin_seq;
578 bool ret = false;
579
580 /* Need to ack a DATA_FIN received from a peer while this side
581 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
582 * msk->rcv_data_fin was set when parsing the incoming options
583 * at the subflow level and the msk lock was not held, so this
584 * is the first opportunity to act on the DATA_FIN and change
585 * the msk state.
586 *
587 * If we are caught up to the sequence number of the incoming
588 * DATA_FIN, send the DATA_ACK now and do state transition. If
589 * not caught up, do nothing and let the recv code send DATA_ACK
590 * when catching up.
591 */
592
593 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
594 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
595 WRITE_ONCE(msk->rcv_data_fin, 0);
596
597 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
598 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
599
600 switch (sk->sk_state) {
601 case TCP_ESTABLISHED:
602 mptcp_set_state(sk, TCP_CLOSE_WAIT);
603 break;
604 case TCP_FIN_WAIT1:
605 mptcp_set_state(sk, TCP_CLOSING);
606 break;
607 case TCP_FIN_WAIT2:
608 mptcp_set_state(sk, TCP_CLOSE);
609 break;
610 default:
611 /* Other states not expected */
612 WARN_ON_ONCE(1);
613 break;
614 }
615
616 ret = true;
617 if (!__mptcp_check_fallback(msk))
618 mptcp_send_ack(msk);
619 mptcp_close_wake_up(sk);
620 }
621 return ret;
622 }
623
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)624 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
625 {
626 if (mptcp_try_fallback(ssk)) {
627 MPTCP_INC_STATS(sock_net(ssk),
628 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
629 } else {
630 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
631 mptcp_subflow_reset(ssk);
632 }
633 }
634
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 struct sock *ssk,
637 unsigned int *bytes)
638 {
639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 struct sock *sk = (struct sock *)msk;
641 unsigned int moved = 0;
642 bool more_data_avail;
643 struct tcp_sock *tp;
644 bool done = false;
645 int sk_rbuf;
646
647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648
649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651
652 if (unlikely(ssk_rbuf > sk_rbuf)) {
653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 sk_rbuf = ssk_rbuf;
655 }
656 }
657
658 pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 tp = tcp_sk(ssk);
660 do {
661 u32 map_remaining, offset;
662 u32 seq = tp->copied_seq;
663 struct sk_buff *skb;
664 bool fin;
665
666 /* try to move as much data as available */
667 map_remaining = subflow->map_data_len -
668 mptcp_subflow_get_map_offset(subflow);
669
670 skb = skb_peek(&ssk->sk_receive_queue);
671 if (!skb) {
672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 * a different CPU can have already processed the pending
674 * data, stop here or we can enter an infinite loop
675 */
676 if (!moved)
677 done = true;
678 break;
679 }
680
681 if (__mptcp_check_fallback(msk)) {
682 /* Under fallback skbs have no MPTCP extension and TCP could
683 * collapse them between the dummy map creation and the
684 * current dequeue. Be sure to adjust the map size.
685 */
686 map_remaining = skb->len;
687 subflow->map_data_len = skb->len;
688 }
689
690 offset = seq - TCP_SKB_CB(skb)->seq;
691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 if (fin) {
693 done = true;
694 seq++;
695 }
696
697 if (offset < skb->len) {
698 size_t len = skb->len - offset;
699
700 if (tp->urg_data)
701 done = true;
702
703 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 moved += len;
705 seq += len;
706
707 if (unlikely(map_remaining < len)) {
708 DEBUG_NET_WARN_ON_ONCE(1);
709 mptcp_dss_corruption(msk, ssk);
710 }
711 } else {
712 if (unlikely(!fin)) {
713 DEBUG_NET_WARN_ON_ONCE(1);
714 mptcp_dss_corruption(msk, ssk);
715 }
716
717 sk_eat_skb(ssk, skb);
718 done = true;
719 }
720
721 WRITE_ONCE(tp->copied_seq, seq);
722 more_data_avail = mptcp_subflow_data_available(ssk);
723
724 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
725 done = true;
726 break;
727 }
728 } while (more_data_avail);
729
730 *bytes += moved;
731 return done;
732 }
733
__mptcp_ofo_queue(struct mptcp_sock * msk)734 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
735 {
736 struct sock *sk = (struct sock *)msk;
737 struct sk_buff *skb, *tail;
738 bool moved = false;
739 struct rb_node *p;
740 u64 end_seq;
741
742 p = rb_first(&msk->out_of_order_queue);
743 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
744 while (p) {
745 skb = rb_to_skb(p);
746 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
747 break;
748
749 p = rb_next(p);
750 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
751
752 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
753 msk->ack_seq))) {
754 mptcp_drop(sk, skb);
755 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
756 continue;
757 }
758
759 end_seq = MPTCP_SKB_CB(skb)->end_seq;
760 tail = skb_peek_tail(&sk->sk_receive_queue);
761 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
762 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
763
764 /* skip overlapping data, if any */
765 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
766 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
767 delta);
768 MPTCP_SKB_CB(skb)->offset += delta;
769 MPTCP_SKB_CB(skb)->map_seq += delta;
770 __skb_queue_tail(&sk->sk_receive_queue, skb);
771 }
772 msk->bytes_received += end_seq - msk->ack_seq;
773 msk->ack_seq = end_seq;
774 moved = true;
775 }
776 return moved;
777 }
778
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)779 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
780 {
781 int err = sock_error(ssk);
782 int ssk_state;
783
784 if (!err)
785 return false;
786
787 /* only propagate errors on fallen-back sockets or
788 * on MPC connect
789 */
790 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
791 return false;
792
793 /* We need to propagate only transition to CLOSE state.
794 * Orphaned socket will see such state change via
795 * subflow_sched_work_if_closed() and that path will properly
796 * destroy the msk as needed.
797 */
798 ssk_state = inet_sk_state_load(ssk);
799 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
800 mptcp_set_state(sk, ssk_state);
801 WRITE_ONCE(sk->sk_err, -err);
802
803 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
804 smp_wmb();
805 sk_error_report(sk);
806 return true;
807 }
808
__mptcp_error_report(struct sock * sk)809 void __mptcp_error_report(struct sock *sk)
810 {
811 struct mptcp_subflow_context *subflow;
812 struct mptcp_sock *msk = mptcp_sk(sk);
813
814 mptcp_for_each_subflow(msk, subflow)
815 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
816 break;
817 }
818
819 /* In most cases we will be able to lock the mptcp socket. If its already
820 * owned, we need to defer to the work queue to avoid ABBA deadlock.
821 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)822 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
823 {
824 struct sock *sk = (struct sock *)msk;
825 unsigned int moved = 0;
826
827 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
828 __mptcp_ofo_queue(msk);
829 if (unlikely(ssk->sk_err)) {
830 if (!sock_owned_by_user(sk))
831 __mptcp_error_report(sk);
832 else
833 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
834 }
835
836 /* If the moves have caught up with the DATA_FIN sequence number
837 * it's time to ack the DATA_FIN and change socket state, but
838 * this is not a good place to change state. Let the workqueue
839 * do it.
840 */
841 if (mptcp_pending_data_fin(sk, NULL))
842 mptcp_schedule_work(sk);
843 return moved > 0;
844 }
845
mptcp_data_ready(struct sock * sk,struct sock * ssk)846 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
847 {
848 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
849 struct mptcp_sock *msk = mptcp_sk(sk);
850 int sk_rbuf, ssk_rbuf;
851
852 /* The peer can send data while we are shutting down this
853 * subflow at msk destruction time, but we must avoid enqueuing
854 * more data to the msk receive queue
855 */
856 if (unlikely(subflow->disposable))
857 return;
858
859 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
860 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
861 if (unlikely(ssk_rbuf > sk_rbuf))
862 sk_rbuf = ssk_rbuf;
863
864 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
865 if (__mptcp_rmem(sk) > sk_rbuf)
866 return;
867
868 /* Wake-up the reader only for in-sequence data */
869 mptcp_data_lock(sk);
870 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
871 sk->sk_data_ready(sk);
872 mptcp_data_unlock(sk);
873 }
874
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)875 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
876 {
877 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
878 msk->allow_infinite_fallback = false;
879 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
880 }
881
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)882 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
883 {
884 struct sock *sk = (struct sock *)msk;
885
886 if (sk->sk_state != TCP_ESTABLISHED)
887 return false;
888
889 spin_lock_bh(&msk->fallback_lock);
890 if (!msk->allow_subflows) {
891 spin_unlock_bh(&msk->fallback_lock);
892 return false;
893 }
894 mptcp_subflow_joined(msk, ssk);
895 spin_unlock_bh(&msk->fallback_lock);
896
897 /* attach to msk socket only after we are sure we will deal with it
898 * at close time
899 */
900 if (sk->sk_socket && !ssk->sk_socket)
901 mptcp_sock_graft(ssk, sk->sk_socket);
902
903 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
904 mptcp_sockopt_sync_locked(msk, ssk);
905 mptcp_stop_tout_timer(sk);
906 __mptcp_propagate_sndbuf(sk, ssk);
907 return true;
908 }
909
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)910 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
911 {
912 struct mptcp_subflow_context *tmp, *subflow;
913 struct mptcp_sock *msk = mptcp_sk(sk);
914
915 list_for_each_entry_safe(subflow, tmp, join_list, node) {
916 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
917 bool slow = lock_sock_fast(ssk);
918
919 list_move_tail(&subflow->node, &msk->conn_list);
920 if (!__mptcp_finish_join(msk, ssk))
921 mptcp_subflow_reset(ssk);
922 unlock_sock_fast(ssk, slow);
923 }
924 }
925
mptcp_rtx_timer_pending(struct sock * sk)926 static bool mptcp_rtx_timer_pending(struct sock *sk)
927 {
928 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
929 }
930
mptcp_reset_rtx_timer(struct sock * sk)931 static void mptcp_reset_rtx_timer(struct sock *sk)
932 {
933 struct inet_connection_sock *icsk = inet_csk(sk);
934 unsigned long tout;
935
936 /* prevent rescheduling on close */
937 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
938 return;
939
940 tout = mptcp_sk(sk)->timer_ival;
941 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
942 }
943
mptcp_schedule_work(struct sock * sk)944 bool mptcp_schedule_work(struct sock *sk)
945 {
946 if (inet_sk_state_load(sk) != TCP_CLOSE &&
947 schedule_work(&mptcp_sk(sk)->work)) {
948 /* each subflow already holds a reference to the sk, and the
949 * workqueue is invoked by a subflow, so sk can't go away here.
950 */
951 sock_hold(sk);
952 return true;
953 }
954 return false;
955 }
956
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)957 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
958 {
959 struct mptcp_subflow_context *subflow;
960
961 msk_owned_by_me(msk);
962
963 mptcp_for_each_subflow(msk, subflow) {
964 if (READ_ONCE(subflow->data_avail))
965 return mptcp_subflow_tcp_sock(subflow);
966 }
967
968 return NULL;
969 }
970
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)971 static bool mptcp_skb_can_collapse_to(u64 write_seq,
972 const struct sk_buff *skb,
973 const struct mptcp_ext *mpext)
974 {
975 if (!tcp_skb_can_collapse_to(skb))
976 return false;
977
978 /* can collapse only if MPTCP level sequence is in order and this
979 * mapping has not been xmitted yet
980 */
981 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
982 !mpext->frozen;
983 }
984
985 /* we can append data to the given data frag if:
986 * - there is space available in the backing page_frag
987 * - the data frag tail matches the current page_frag free offset
988 * - the data frag end sequence number matches the current write seq
989 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)990 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
991 const struct page_frag *pfrag,
992 const struct mptcp_data_frag *df)
993 {
994 return df && pfrag->page == df->page &&
995 pfrag->size - pfrag->offset > 0 &&
996 pfrag->offset == (df->offset + df->data_len) &&
997 df->data_seq + df->data_len == msk->write_seq;
998 }
999
dfrag_uncharge(struct sock * sk,int len)1000 static void dfrag_uncharge(struct sock *sk, int len)
1001 {
1002 sk_mem_uncharge(sk, len);
1003 sk_wmem_queued_add(sk, -len);
1004 }
1005
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1006 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1007 {
1008 int len = dfrag->data_len + dfrag->overhead;
1009
1010 list_del(&dfrag->list);
1011 dfrag_uncharge(sk, len);
1012 put_page(dfrag->page);
1013 }
1014
__mptcp_clean_una(struct sock * sk)1015 static void __mptcp_clean_una(struct sock *sk)
1016 {
1017 struct mptcp_sock *msk = mptcp_sk(sk);
1018 struct mptcp_data_frag *dtmp, *dfrag;
1019 u64 snd_una;
1020
1021 snd_una = msk->snd_una;
1022 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1023 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1024 break;
1025
1026 if (unlikely(dfrag == msk->first_pending)) {
1027 /* in recovery mode can see ack after the current snd head */
1028 if (WARN_ON_ONCE(!msk->recovery))
1029 break;
1030
1031 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1032 }
1033
1034 dfrag_clear(sk, dfrag);
1035 }
1036
1037 dfrag = mptcp_rtx_head(sk);
1038 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1039 u64 delta = snd_una - dfrag->data_seq;
1040
1041 /* prevent wrap around in recovery mode */
1042 if (unlikely(delta > dfrag->already_sent)) {
1043 if (WARN_ON_ONCE(!msk->recovery))
1044 goto out;
1045 if (WARN_ON_ONCE(delta > dfrag->data_len))
1046 goto out;
1047 dfrag->already_sent += delta - dfrag->already_sent;
1048 }
1049
1050 dfrag->data_seq += delta;
1051 dfrag->offset += delta;
1052 dfrag->data_len -= delta;
1053 dfrag->already_sent -= delta;
1054
1055 dfrag_uncharge(sk, delta);
1056 }
1057
1058 /* all retransmitted data acked, recovery completed */
1059 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1060 msk->recovery = false;
1061
1062 out:
1063 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1064 snd_una == READ_ONCE(msk->write_seq)) {
1065 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1066 mptcp_stop_rtx_timer(sk);
1067 } else {
1068 mptcp_reset_rtx_timer(sk);
1069 }
1070 }
1071
__mptcp_clean_una_wakeup(struct sock * sk)1072 static void __mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 lockdep_assert_held_once(&sk->sk_lock.slock);
1075
1076 __mptcp_clean_una(sk);
1077 mptcp_write_space(sk);
1078 }
1079
mptcp_clean_una_wakeup(struct sock * sk)1080 static void mptcp_clean_una_wakeup(struct sock *sk)
1081 {
1082 mptcp_data_lock(sk);
1083 __mptcp_clean_una_wakeup(sk);
1084 mptcp_data_unlock(sk);
1085 }
1086
mptcp_enter_memory_pressure(struct sock * sk)1087 static void mptcp_enter_memory_pressure(struct sock *sk)
1088 {
1089 struct mptcp_subflow_context *subflow;
1090 struct mptcp_sock *msk = mptcp_sk(sk);
1091 bool first = true;
1092
1093 mptcp_for_each_subflow(msk, subflow) {
1094 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1095
1096 if (first)
1097 tcp_enter_memory_pressure(ssk);
1098 sk_stream_moderate_sndbuf(ssk);
1099
1100 first = false;
1101 }
1102 __mptcp_sync_sndbuf(sk);
1103 }
1104
1105 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1106 * data
1107 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1108 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1109 {
1110 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1111 pfrag, sk->sk_allocation)))
1112 return true;
1113
1114 mptcp_enter_memory_pressure(sk);
1115 return false;
1116 }
1117
1118 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1119 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1120 int orig_offset)
1121 {
1122 int offset = ALIGN(orig_offset, sizeof(long));
1123 struct mptcp_data_frag *dfrag;
1124
1125 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1126 dfrag->data_len = 0;
1127 dfrag->data_seq = msk->write_seq;
1128 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1129 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1130 dfrag->already_sent = 0;
1131 dfrag->page = pfrag->page;
1132
1133 return dfrag;
1134 }
1135
1136 struct mptcp_sendmsg_info {
1137 int mss_now;
1138 int size_goal;
1139 u16 limit;
1140 u16 sent;
1141 unsigned int flags;
1142 bool data_lock_held;
1143 };
1144
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1145 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1146 u64 data_seq, int avail_size)
1147 {
1148 u64 window_end = mptcp_wnd_end(msk);
1149 u64 mptcp_snd_wnd;
1150
1151 if (__mptcp_check_fallback(msk))
1152 return avail_size;
1153
1154 mptcp_snd_wnd = window_end - data_seq;
1155 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1156
1157 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1158 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1159 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1160 }
1161
1162 return avail_size;
1163 }
1164
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1165 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1166 {
1167 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1168
1169 if (!mpext)
1170 return false;
1171 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1172 return true;
1173 }
1174
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1175 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1176 {
1177 struct sk_buff *skb;
1178
1179 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1180 if (likely(skb)) {
1181 if (likely(__mptcp_add_ext(skb, gfp))) {
1182 skb_reserve(skb, MAX_TCP_HEADER);
1183 skb->ip_summed = CHECKSUM_PARTIAL;
1184 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1185 return skb;
1186 }
1187 __kfree_skb(skb);
1188 } else {
1189 mptcp_enter_memory_pressure(sk);
1190 }
1191 return NULL;
1192 }
1193
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1194 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1195 {
1196 struct sk_buff *skb;
1197
1198 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1199 if (!skb)
1200 return NULL;
1201
1202 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1203 tcp_skb_entail(ssk, skb);
1204 return skb;
1205 }
1206 tcp_skb_tsorted_anchor_cleanup(skb);
1207 kfree_skb(skb);
1208 return NULL;
1209 }
1210
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1211 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1212 {
1213 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1214
1215 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1216 }
1217
1218 /* note: this always recompute the csum on the whole skb, even
1219 * if we just appended a single frag. More status info needed
1220 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1221 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1222 {
1223 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1224 __wsum csum = ~csum_unfold(mpext->csum);
1225 int offset = skb->len - added;
1226
1227 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1228 }
1229
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1230 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1231 struct sock *ssk,
1232 struct mptcp_ext *mpext)
1233 {
1234 if (!mpext)
1235 return;
1236
1237 mpext->infinite_map = 1;
1238 mpext->data_len = 0;
1239
1240 if (!mptcp_try_fallback(ssk)) {
1241 mptcp_subflow_reset(ssk);
1242 return;
1243 }
1244
1245 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1246 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1247 pr_fallback(msk);
1248 }
1249
1250 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1251
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1252 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1253 struct mptcp_data_frag *dfrag,
1254 struct mptcp_sendmsg_info *info)
1255 {
1256 u64 data_seq = dfrag->data_seq + info->sent;
1257 int offset = dfrag->offset + info->sent;
1258 struct mptcp_sock *msk = mptcp_sk(sk);
1259 bool zero_window_probe = false;
1260 struct mptcp_ext *mpext = NULL;
1261 bool can_coalesce = false;
1262 bool reuse_skb = true;
1263 struct sk_buff *skb;
1264 size_t copy;
1265 int i;
1266
1267 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1268 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1269
1270 if (WARN_ON_ONCE(info->sent > info->limit ||
1271 info->limit > dfrag->data_len))
1272 return 0;
1273
1274 if (unlikely(!__tcp_can_send(ssk)))
1275 return -EAGAIN;
1276
1277 /* compute send limit */
1278 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1279 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1280 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1281 copy = info->size_goal;
1282
1283 skb = tcp_write_queue_tail(ssk);
1284 if (skb && copy > skb->len) {
1285 /* Limit the write to the size available in the
1286 * current skb, if any, so that we create at most a new skb.
1287 * Explicitly tells TCP internals to avoid collapsing on later
1288 * queue management operation, to avoid breaking the ext <->
1289 * SSN association set here
1290 */
1291 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1292 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1293 TCP_SKB_CB(skb)->eor = 1;
1294 tcp_mark_push(tcp_sk(ssk), skb);
1295 goto alloc_skb;
1296 }
1297
1298 i = skb_shinfo(skb)->nr_frags;
1299 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1300 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1301 tcp_mark_push(tcp_sk(ssk), skb);
1302 goto alloc_skb;
1303 }
1304
1305 copy -= skb->len;
1306 } else {
1307 alloc_skb:
1308 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1309 if (!skb)
1310 return -ENOMEM;
1311
1312 i = skb_shinfo(skb)->nr_frags;
1313 reuse_skb = false;
1314 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1315 }
1316
1317 /* Zero window and all data acked? Probe. */
1318 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1319 if (copy == 0) {
1320 u64 snd_una = READ_ONCE(msk->snd_una);
1321
1322 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1323 tcp_remove_empty_skb(ssk);
1324 return 0;
1325 }
1326
1327 zero_window_probe = true;
1328 data_seq = snd_una - 1;
1329 copy = 1;
1330 }
1331
1332 copy = min_t(size_t, copy, info->limit - info->sent);
1333 if (!sk_wmem_schedule(ssk, copy)) {
1334 tcp_remove_empty_skb(ssk);
1335 return -ENOMEM;
1336 }
1337
1338 if (can_coalesce) {
1339 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1340 } else {
1341 get_page(dfrag->page);
1342 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1343 }
1344
1345 skb->len += copy;
1346 skb->data_len += copy;
1347 skb->truesize += copy;
1348 sk_wmem_queued_add(ssk, copy);
1349 sk_mem_charge(ssk, copy);
1350 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1351 TCP_SKB_CB(skb)->end_seq += copy;
1352 tcp_skb_pcount_set(skb, 0);
1353
1354 /* on skb reuse we just need to update the DSS len */
1355 if (reuse_skb) {
1356 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1357 mpext->data_len += copy;
1358 goto out;
1359 }
1360
1361 memset(mpext, 0, sizeof(*mpext));
1362 mpext->data_seq = data_seq;
1363 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1364 mpext->data_len = copy;
1365 mpext->use_map = 1;
1366 mpext->dsn64 = 1;
1367
1368 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1369 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1370 mpext->dsn64);
1371
1372 if (zero_window_probe) {
1373 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1374 mpext->frozen = 1;
1375 if (READ_ONCE(msk->csum_enabled))
1376 mptcp_update_data_checksum(skb, copy);
1377 tcp_push_pending_frames(ssk);
1378 return 0;
1379 }
1380 out:
1381 if (READ_ONCE(msk->csum_enabled))
1382 mptcp_update_data_checksum(skb, copy);
1383 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1384 mptcp_update_infinite_map(msk, ssk, mpext);
1385 trace_mptcp_sendmsg_frag(mpext);
1386 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1387 return copy;
1388 }
1389
1390 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1391 sizeof(struct tcphdr) - \
1392 MAX_TCP_OPTION_SPACE - \
1393 sizeof(struct ipv6hdr) - \
1394 sizeof(struct frag_hdr))
1395
1396 struct subflow_send_info {
1397 struct sock *ssk;
1398 u64 linger_time;
1399 };
1400
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1401 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1402 {
1403 if (!subflow->stale)
1404 return;
1405
1406 subflow->stale = 0;
1407 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1408 }
1409
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1410 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1411 {
1412 if (unlikely(subflow->stale)) {
1413 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1414
1415 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1416 return false;
1417
1418 mptcp_subflow_set_active(subflow);
1419 }
1420 return __mptcp_subflow_active(subflow);
1421 }
1422
1423 #define SSK_MODE_ACTIVE 0
1424 #define SSK_MODE_BACKUP 1
1425 #define SSK_MODE_MAX 2
1426
1427 /* implement the mptcp packet scheduler;
1428 * returns the subflow that will transmit the next DSS
1429 * additionally updates the rtx timeout
1430 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1431 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1432 {
1433 struct subflow_send_info send_info[SSK_MODE_MAX];
1434 struct mptcp_subflow_context *subflow;
1435 struct sock *sk = (struct sock *)msk;
1436 u32 pace, burst, wmem;
1437 int i, nr_active = 0;
1438 struct sock *ssk;
1439 u64 linger_time;
1440 long tout = 0;
1441
1442 /* pick the subflow with the lower wmem/wspace ratio */
1443 for (i = 0; i < SSK_MODE_MAX; ++i) {
1444 send_info[i].ssk = NULL;
1445 send_info[i].linger_time = -1;
1446 }
1447
1448 mptcp_for_each_subflow(msk, subflow) {
1449 bool backup = subflow->backup || subflow->request_bkup;
1450
1451 trace_mptcp_subflow_get_send(subflow);
1452 ssk = mptcp_subflow_tcp_sock(subflow);
1453 if (!mptcp_subflow_active(subflow))
1454 continue;
1455
1456 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1457 nr_active += !backup;
1458 pace = subflow->avg_pacing_rate;
1459 if (unlikely(!pace)) {
1460 /* init pacing rate from socket */
1461 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1462 pace = subflow->avg_pacing_rate;
1463 if (!pace)
1464 continue;
1465 }
1466
1467 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1468 if (linger_time < send_info[backup].linger_time) {
1469 send_info[backup].ssk = ssk;
1470 send_info[backup].linger_time = linger_time;
1471 }
1472 }
1473 __mptcp_set_timeout(sk, tout);
1474
1475 /* pick the best backup if no other subflow is active */
1476 if (!nr_active)
1477 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1478
1479 /* According to the blest algorithm, to avoid HoL blocking for the
1480 * faster flow, we need to:
1481 * - estimate the faster flow linger time
1482 * - use the above to estimate the amount of byte transferred
1483 * by the faster flow
1484 * - check that the amount of queued data is greter than the above,
1485 * otherwise do not use the picked, slower, subflow
1486 * We select the subflow with the shorter estimated time to flush
1487 * the queued mem, which basically ensure the above. We just need
1488 * to check that subflow has a non empty cwin.
1489 */
1490 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1491 if (!ssk || !sk_stream_memory_free(ssk))
1492 return NULL;
1493
1494 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1495 wmem = READ_ONCE(ssk->sk_wmem_queued);
1496 if (!burst)
1497 return ssk;
1498
1499 subflow = mptcp_subflow_ctx(ssk);
1500 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1501 READ_ONCE(ssk->sk_pacing_rate) * burst,
1502 burst + wmem);
1503 msk->snd_burst = burst;
1504 return ssk;
1505 }
1506
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1507 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1508 {
1509 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1510 release_sock(ssk);
1511 }
1512
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1513 static void mptcp_update_post_push(struct mptcp_sock *msk,
1514 struct mptcp_data_frag *dfrag,
1515 u32 sent)
1516 {
1517 u64 snd_nxt_new = dfrag->data_seq;
1518
1519 dfrag->already_sent += sent;
1520
1521 msk->snd_burst -= sent;
1522
1523 snd_nxt_new += dfrag->already_sent;
1524
1525 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1526 * is recovering after a failover. In that event, this re-sends
1527 * old segments.
1528 *
1529 * Thus compute snd_nxt_new candidate based on
1530 * the dfrag->data_seq that was sent and the data
1531 * that has been handed to the subflow for transmission
1532 * and skip update in case it was old dfrag.
1533 */
1534 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1535 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1536 msk->snd_nxt = snd_nxt_new;
1537 }
1538 }
1539
mptcp_check_and_set_pending(struct sock * sk)1540 void mptcp_check_and_set_pending(struct sock *sk)
1541 {
1542 if (mptcp_send_head(sk)) {
1543 mptcp_data_lock(sk);
1544 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1545 mptcp_data_unlock(sk);
1546 }
1547 }
1548
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1549 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1550 struct mptcp_sendmsg_info *info)
1551 {
1552 struct mptcp_sock *msk = mptcp_sk(sk);
1553 struct mptcp_data_frag *dfrag;
1554 int len, copied = 0, err = 0;
1555
1556 while ((dfrag = mptcp_send_head(sk))) {
1557 info->sent = dfrag->already_sent;
1558 info->limit = dfrag->data_len;
1559 len = dfrag->data_len - dfrag->already_sent;
1560 while (len > 0) {
1561 int ret = 0;
1562
1563 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1564 if (ret <= 0) {
1565 err = copied ? : ret;
1566 goto out;
1567 }
1568
1569 info->sent += ret;
1570 copied += ret;
1571 len -= ret;
1572
1573 mptcp_update_post_push(msk, dfrag, ret);
1574 }
1575 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1576
1577 if (msk->snd_burst <= 0 ||
1578 !sk_stream_memory_free(ssk) ||
1579 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1580 err = copied;
1581 goto out;
1582 }
1583 mptcp_set_timeout(sk);
1584 }
1585 err = copied;
1586
1587 out:
1588 return err;
1589 }
1590
__mptcp_push_pending(struct sock * sk,unsigned int flags)1591 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1592 {
1593 struct sock *prev_ssk = NULL, *ssk = NULL;
1594 struct mptcp_sock *msk = mptcp_sk(sk);
1595 struct mptcp_sendmsg_info info = {
1596 .flags = flags,
1597 };
1598 bool do_check_data_fin = false;
1599 int push_count = 1;
1600
1601 while (mptcp_send_head(sk) && (push_count > 0)) {
1602 struct mptcp_subflow_context *subflow;
1603 int ret = 0;
1604
1605 if (mptcp_sched_get_send(msk))
1606 break;
1607
1608 push_count = 0;
1609
1610 mptcp_for_each_subflow(msk, subflow) {
1611 if (READ_ONCE(subflow->scheduled)) {
1612 mptcp_subflow_set_scheduled(subflow, false);
1613
1614 prev_ssk = ssk;
1615 ssk = mptcp_subflow_tcp_sock(subflow);
1616 if (ssk != prev_ssk) {
1617 /* First check. If the ssk has changed since
1618 * the last round, release prev_ssk
1619 */
1620 if (prev_ssk)
1621 mptcp_push_release(prev_ssk, &info);
1622
1623 /* Need to lock the new subflow only if different
1624 * from the previous one, otherwise we are still
1625 * helding the relevant lock
1626 */
1627 lock_sock(ssk);
1628 }
1629
1630 push_count++;
1631
1632 ret = __subflow_push_pending(sk, ssk, &info);
1633 if (ret <= 0) {
1634 if (ret != -EAGAIN ||
1635 (1 << ssk->sk_state) &
1636 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1637 push_count--;
1638 continue;
1639 }
1640 do_check_data_fin = true;
1641 }
1642 }
1643 }
1644
1645 /* at this point we held the socket lock for the last subflow we used */
1646 if (ssk)
1647 mptcp_push_release(ssk, &info);
1648
1649 /* ensure the rtx timer is running */
1650 if (!mptcp_rtx_timer_pending(sk))
1651 mptcp_reset_rtx_timer(sk);
1652 if (do_check_data_fin)
1653 mptcp_check_send_data_fin(sk);
1654 }
1655
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1656 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1657 {
1658 struct mptcp_sock *msk = mptcp_sk(sk);
1659 struct mptcp_sendmsg_info info = {
1660 .data_lock_held = true,
1661 };
1662 bool keep_pushing = true;
1663 struct sock *xmit_ssk;
1664 int copied = 0;
1665
1666 info.flags = 0;
1667 while (mptcp_send_head(sk) && keep_pushing) {
1668 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1669 int ret = 0;
1670
1671 /* check for a different subflow usage only after
1672 * spooling the first chunk of data
1673 */
1674 if (first) {
1675 mptcp_subflow_set_scheduled(subflow, false);
1676 ret = __subflow_push_pending(sk, ssk, &info);
1677 first = false;
1678 if (ret <= 0)
1679 break;
1680 copied += ret;
1681 continue;
1682 }
1683
1684 if (mptcp_sched_get_send(msk))
1685 goto out;
1686
1687 if (READ_ONCE(subflow->scheduled)) {
1688 mptcp_subflow_set_scheduled(subflow, false);
1689 ret = __subflow_push_pending(sk, ssk, &info);
1690 if (ret <= 0)
1691 keep_pushing = false;
1692 copied += ret;
1693 }
1694
1695 mptcp_for_each_subflow(msk, subflow) {
1696 if (READ_ONCE(subflow->scheduled)) {
1697 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1698 if (xmit_ssk != ssk) {
1699 mptcp_subflow_delegate(subflow,
1700 MPTCP_DELEGATE_SEND);
1701 keep_pushing = false;
1702 }
1703 }
1704 }
1705 }
1706
1707 out:
1708 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1709 * not going to flush it via release_sock()
1710 */
1711 if (copied) {
1712 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1713 info.size_goal);
1714 if (!mptcp_rtx_timer_pending(sk))
1715 mptcp_reset_rtx_timer(sk);
1716
1717 if (msk->snd_data_fin_enable &&
1718 msk->snd_nxt + 1 == msk->write_seq)
1719 mptcp_schedule_work(sk);
1720 }
1721 }
1722
mptcp_set_nospace(struct sock * sk)1723 static void mptcp_set_nospace(struct sock *sk)
1724 {
1725 /* enable autotune */
1726 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1727
1728 /* will be cleared on avail space */
1729 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1730 }
1731
1732 static int mptcp_disconnect(struct sock *sk, int flags);
1733
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1734 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1735 size_t len, int *copied_syn)
1736 {
1737 unsigned int saved_flags = msg->msg_flags;
1738 struct mptcp_sock *msk = mptcp_sk(sk);
1739 struct sock *ssk;
1740 int ret;
1741
1742 /* on flags based fastopen the mptcp is supposed to create the
1743 * first subflow right now. Otherwise we are in the defer_connect
1744 * path, and the first subflow must be already present.
1745 * Since the defer_connect flag is cleared after the first succsful
1746 * fastopen attempt, no need to check for additional subflow status.
1747 */
1748 if (msg->msg_flags & MSG_FASTOPEN) {
1749 ssk = __mptcp_nmpc_sk(msk);
1750 if (IS_ERR(ssk))
1751 return PTR_ERR(ssk);
1752 }
1753 if (!msk->first)
1754 return -EINVAL;
1755
1756 ssk = msk->first;
1757
1758 lock_sock(ssk);
1759 msg->msg_flags |= MSG_DONTWAIT;
1760 msk->fastopening = 1;
1761 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1762 msk->fastopening = 0;
1763 msg->msg_flags = saved_flags;
1764 release_sock(ssk);
1765
1766 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1767 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1768 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1769 msg->msg_namelen, msg->msg_flags, 1);
1770
1771 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1772 * case of any error, except timeout or signal
1773 */
1774 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1775 *copied_syn = 0;
1776 } else if (ret && ret != -EINPROGRESS) {
1777 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1778 * __inet_stream_connect() can fail, due to looking check,
1779 * see mptcp_disconnect().
1780 * Attempt it again outside the problematic scope.
1781 */
1782 if (!mptcp_disconnect(sk, 0)) {
1783 sk->sk_disconnects++;
1784 sk->sk_socket->state = SS_UNCONNECTED;
1785 }
1786 }
1787 inet_clear_bit(DEFER_CONNECT, sk);
1788
1789 return ret;
1790 }
1791
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1792 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1793 {
1794 struct mptcp_sock *msk = mptcp_sk(sk);
1795 struct page_frag *pfrag;
1796 size_t copied = 0;
1797 int ret = 0;
1798 long timeo;
1799
1800 /* silently ignore everything else */
1801 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1802
1803 lock_sock(sk);
1804
1805 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1806 msg->msg_flags & MSG_FASTOPEN)) {
1807 int copied_syn = 0;
1808
1809 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1810 copied += copied_syn;
1811 if (ret == -EINPROGRESS && copied_syn > 0)
1812 goto out;
1813 else if (ret)
1814 goto do_error;
1815 }
1816
1817 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1818
1819 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1820 ret = sk_stream_wait_connect(sk, &timeo);
1821 if (ret)
1822 goto do_error;
1823 }
1824
1825 ret = -EPIPE;
1826 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1827 goto do_error;
1828
1829 pfrag = sk_page_frag(sk);
1830
1831 while (msg_data_left(msg)) {
1832 int total_ts, frag_truesize = 0;
1833 struct mptcp_data_frag *dfrag;
1834 bool dfrag_collapsed;
1835 size_t psize, offset;
1836
1837 /* reuse tail pfrag, if possible, or carve a new one from the
1838 * page allocator
1839 */
1840 dfrag = mptcp_pending_tail(sk);
1841 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1842 if (!dfrag_collapsed) {
1843 if (!sk_stream_memory_free(sk))
1844 goto wait_for_memory;
1845
1846 if (!mptcp_page_frag_refill(sk, pfrag))
1847 goto wait_for_memory;
1848
1849 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1850 frag_truesize = dfrag->overhead;
1851 }
1852
1853 /* we do not bound vs wspace, to allow a single packet.
1854 * memory accounting will prevent execessive memory usage
1855 * anyway
1856 */
1857 offset = dfrag->offset + dfrag->data_len;
1858 psize = pfrag->size - offset;
1859 psize = min_t(size_t, psize, msg_data_left(msg));
1860 total_ts = psize + frag_truesize;
1861
1862 if (!sk_wmem_schedule(sk, total_ts))
1863 goto wait_for_memory;
1864
1865 if (copy_page_from_iter(dfrag->page, offset, psize,
1866 &msg->msg_iter) != psize) {
1867 ret = -EFAULT;
1868 goto do_error;
1869 }
1870
1871 /* data successfully copied into the write queue */
1872 sk_forward_alloc_add(sk, -total_ts);
1873 copied += psize;
1874 dfrag->data_len += psize;
1875 frag_truesize += psize;
1876 pfrag->offset += frag_truesize;
1877 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1878
1879 /* charge data on mptcp pending queue to the msk socket
1880 * Note: we charge such data both to sk and ssk
1881 */
1882 sk_wmem_queued_add(sk, frag_truesize);
1883 if (!dfrag_collapsed) {
1884 get_page(dfrag->page);
1885 list_add_tail(&dfrag->list, &msk->rtx_queue);
1886 if (!msk->first_pending)
1887 WRITE_ONCE(msk->first_pending, dfrag);
1888 }
1889 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1890 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1891 !dfrag_collapsed);
1892
1893 continue;
1894
1895 wait_for_memory:
1896 mptcp_set_nospace(sk);
1897 __mptcp_push_pending(sk, msg->msg_flags);
1898 ret = sk_stream_wait_memory(sk, &timeo);
1899 if (ret)
1900 goto do_error;
1901 }
1902
1903 if (copied)
1904 __mptcp_push_pending(sk, msg->msg_flags);
1905
1906 out:
1907 release_sock(sk);
1908 return copied;
1909
1910 do_error:
1911 if (copied)
1912 goto out;
1913
1914 copied = sk_stream_error(sk, msg->msg_flags, ret);
1915 goto out;
1916 }
1917
1918 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1919
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1920 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1921 struct msghdr *msg,
1922 size_t len, int flags,
1923 struct scm_timestamping_internal *tss,
1924 int *cmsg_flags)
1925 {
1926 struct sk_buff *skb, *tmp;
1927 int copied = 0;
1928
1929 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1930 u32 offset = MPTCP_SKB_CB(skb)->offset;
1931 u32 data_len = skb->len - offset;
1932 u32 count = min_t(size_t, len - copied, data_len);
1933 int err;
1934
1935 if (!(flags & MSG_TRUNC)) {
1936 err = skb_copy_datagram_msg(skb, offset, msg, count);
1937 if (unlikely(err < 0)) {
1938 if (!copied)
1939 return err;
1940 break;
1941 }
1942 }
1943
1944 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1945 tcp_update_recv_tstamps(skb, tss);
1946 *cmsg_flags |= MPTCP_CMSG_TS;
1947 }
1948
1949 copied += count;
1950
1951 if (count < data_len) {
1952 if (!(flags & MSG_PEEK)) {
1953 MPTCP_SKB_CB(skb)->offset += count;
1954 MPTCP_SKB_CB(skb)->map_seq += count;
1955 msk->bytes_consumed += count;
1956 }
1957 break;
1958 }
1959
1960 if (!(flags & MSG_PEEK)) {
1961 /* we will bulk release the skb memory later */
1962 skb->destructor = NULL;
1963 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1964 __skb_unlink(skb, &msk->receive_queue);
1965 __kfree_skb(skb);
1966 msk->bytes_consumed += count;
1967 }
1968
1969 if (copied >= len)
1970 break;
1971 }
1972
1973 mptcp_rcv_space_adjust(msk, copied);
1974 return copied;
1975 }
1976
1977 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1978 *
1979 * Only difference: Use highest rtt estimate of the subflows in use.
1980 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1981 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1982 {
1983 struct mptcp_subflow_context *subflow;
1984 struct sock *sk = (struct sock *)msk;
1985 u8 scaling_ratio = U8_MAX;
1986 u32 time, advmss = 1;
1987 u64 rtt_us, mstamp;
1988
1989 msk_owned_by_me(msk);
1990
1991 if (copied <= 0)
1992 return;
1993
1994 if (!msk->rcvspace_init)
1995 mptcp_rcv_space_init(msk, msk->first);
1996
1997 msk->rcvq_space.copied += copied;
1998
1999 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2000 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2001
2002 rtt_us = msk->rcvq_space.rtt_us;
2003 if (rtt_us && time < (rtt_us >> 3))
2004 return;
2005
2006 rtt_us = 0;
2007 mptcp_for_each_subflow(msk, subflow) {
2008 const struct tcp_sock *tp;
2009 u64 sf_rtt_us;
2010 u32 sf_advmss;
2011
2012 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2013
2014 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2015 sf_advmss = READ_ONCE(tp->advmss);
2016
2017 rtt_us = max(sf_rtt_us, rtt_us);
2018 advmss = max(sf_advmss, advmss);
2019 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2020 }
2021
2022 msk->rcvq_space.rtt_us = rtt_us;
2023 msk->scaling_ratio = scaling_ratio;
2024 if (time < (rtt_us >> 3) || rtt_us == 0)
2025 return;
2026
2027 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2028 goto new_measure;
2029
2030 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2031 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2032 u64 rcvwin, grow;
2033 int rcvbuf;
2034
2035 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2036
2037 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2038
2039 do_div(grow, msk->rcvq_space.space);
2040 rcvwin += (grow << 1);
2041
2042 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2043 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2044
2045 if (rcvbuf > sk->sk_rcvbuf) {
2046 u32 window_clamp;
2047
2048 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2049 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2050
2051 /* Make subflows follow along. If we do not do this, we
2052 * get drops at subflow level if skbs can't be moved to
2053 * the mptcp rx queue fast enough (announced rcv_win can
2054 * exceed ssk->sk_rcvbuf).
2055 */
2056 mptcp_for_each_subflow(msk, subflow) {
2057 struct sock *ssk;
2058 bool slow;
2059
2060 ssk = mptcp_subflow_tcp_sock(subflow);
2061 slow = lock_sock_fast(ssk);
2062 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2063 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2064 if (tcp_can_send_ack(ssk))
2065 tcp_cleanup_rbuf(ssk, 1);
2066 unlock_sock_fast(ssk, slow);
2067 }
2068 }
2069 }
2070
2071 msk->rcvq_space.space = msk->rcvq_space.copied;
2072 new_measure:
2073 msk->rcvq_space.copied = 0;
2074 msk->rcvq_space.time = mstamp;
2075 }
2076
__mptcp_update_rmem(struct sock * sk)2077 static void __mptcp_update_rmem(struct sock *sk)
2078 {
2079 struct mptcp_sock *msk = mptcp_sk(sk);
2080
2081 if (!msk->rmem_released)
2082 return;
2083
2084 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2085 mptcp_rmem_uncharge(sk, msk->rmem_released);
2086 WRITE_ONCE(msk->rmem_released, 0);
2087 }
2088
__mptcp_splice_receive_queue(struct sock * sk)2089 static void __mptcp_splice_receive_queue(struct sock *sk)
2090 {
2091 struct mptcp_sock *msk = mptcp_sk(sk);
2092
2093 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2094 }
2095
__mptcp_move_skbs(struct mptcp_sock * msk)2096 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2097 {
2098 struct sock *sk = (struct sock *)msk;
2099 unsigned int moved = 0;
2100 bool ret, done;
2101
2102 do {
2103 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2104 bool slowpath;
2105
2106 /* we can have data pending in the subflows only if the msk
2107 * receive buffer was full at subflow_data_ready() time,
2108 * that is an unlikely slow path.
2109 */
2110 if (likely(!ssk))
2111 break;
2112
2113 slowpath = lock_sock_fast(ssk);
2114 mptcp_data_lock(sk);
2115 __mptcp_update_rmem(sk);
2116 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2117 mptcp_data_unlock(sk);
2118
2119 if (unlikely(ssk->sk_err))
2120 __mptcp_error_report(sk);
2121 unlock_sock_fast(ssk, slowpath);
2122 } while (!done);
2123
2124 /* acquire the data lock only if some input data is pending */
2125 ret = moved > 0;
2126 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2127 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2128 mptcp_data_lock(sk);
2129 __mptcp_update_rmem(sk);
2130 ret |= __mptcp_ofo_queue(msk);
2131 __mptcp_splice_receive_queue(sk);
2132 mptcp_data_unlock(sk);
2133 }
2134 if (ret)
2135 mptcp_check_data_fin((struct sock *)msk);
2136 return !skb_queue_empty(&msk->receive_queue);
2137 }
2138
mptcp_inq_hint(const struct sock * sk)2139 static unsigned int mptcp_inq_hint(const struct sock *sk)
2140 {
2141 const struct mptcp_sock *msk = mptcp_sk(sk);
2142 const struct sk_buff *skb;
2143
2144 skb = skb_peek(&msk->receive_queue);
2145 if (skb) {
2146 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2147
2148 if (hint_val >= INT_MAX)
2149 return INT_MAX;
2150
2151 return (unsigned int)hint_val;
2152 }
2153
2154 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2155 return 1;
2156
2157 return 0;
2158 }
2159
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2160 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2161 int flags, int *addr_len)
2162 {
2163 struct mptcp_sock *msk = mptcp_sk(sk);
2164 struct scm_timestamping_internal tss;
2165 int copied = 0, cmsg_flags = 0;
2166 int target;
2167 long timeo;
2168
2169 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2170 if (unlikely(flags & MSG_ERRQUEUE))
2171 return inet_recv_error(sk, msg, len, addr_len);
2172
2173 lock_sock(sk);
2174 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2175 copied = -ENOTCONN;
2176 goto out_err;
2177 }
2178
2179 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2180
2181 len = min_t(size_t, len, INT_MAX);
2182 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2183
2184 if (unlikely(msk->recvmsg_inq))
2185 cmsg_flags = MPTCP_CMSG_INQ;
2186
2187 while (copied < len) {
2188 int err, bytes_read;
2189
2190 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2191 if (unlikely(bytes_read < 0)) {
2192 if (!copied)
2193 copied = bytes_read;
2194 goto out_err;
2195 }
2196
2197 copied += bytes_read;
2198
2199 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2200 continue;
2201
2202 /* only the master socket status is relevant here. The exit
2203 * conditions mirror closely tcp_recvmsg()
2204 */
2205 if (copied >= target)
2206 break;
2207
2208 if (copied) {
2209 if (sk->sk_err ||
2210 sk->sk_state == TCP_CLOSE ||
2211 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2212 !timeo ||
2213 signal_pending(current))
2214 break;
2215 } else {
2216 if (sk->sk_err) {
2217 copied = sock_error(sk);
2218 break;
2219 }
2220
2221 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2222 /* race breaker: the shutdown could be after the
2223 * previous receive queue check
2224 */
2225 if (__mptcp_move_skbs(msk))
2226 continue;
2227 break;
2228 }
2229
2230 if (sk->sk_state == TCP_CLOSE) {
2231 copied = -ENOTCONN;
2232 break;
2233 }
2234
2235 if (!timeo) {
2236 copied = -EAGAIN;
2237 break;
2238 }
2239
2240 if (signal_pending(current)) {
2241 copied = sock_intr_errno(timeo);
2242 break;
2243 }
2244 }
2245
2246 pr_debug("block timeout %ld\n", timeo);
2247 mptcp_cleanup_rbuf(msk, copied);
2248 err = sk_wait_data(sk, &timeo, NULL);
2249 if (err < 0) {
2250 err = copied ? : err;
2251 goto out_err;
2252 }
2253 }
2254
2255 mptcp_cleanup_rbuf(msk, copied);
2256
2257 out_err:
2258 if (cmsg_flags && copied >= 0) {
2259 if (cmsg_flags & MPTCP_CMSG_TS)
2260 tcp_recv_timestamp(msg, sk, &tss);
2261
2262 if (cmsg_flags & MPTCP_CMSG_INQ) {
2263 unsigned int inq = mptcp_inq_hint(sk);
2264
2265 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2266 }
2267 }
2268
2269 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2270 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2271 skb_queue_empty(&msk->receive_queue), copied);
2272
2273 release_sock(sk);
2274 return copied;
2275 }
2276
mptcp_retransmit_timer(struct timer_list * t)2277 static void mptcp_retransmit_timer(struct timer_list *t)
2278 {
2279 struct inet_connection_sock *icsk = from_timer(icsk, t,
2280 icsk_retransmit_timer);
2281 struct sock *sk = &icsk->icsk_inet.sk;
2282 struct mptcp_sock *msk = mptcp_sk(sk);
2283
2284 bh_lock_sock(sk);
2285 if (!sock_owned_by_user(sk)) {
2286 /* we need a process context to retransmit */
2287 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2288 mptcp_schedule_work(sk);
2289 } else {
2290 /* delegate our work to tcp_release_cb() */
2291 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2292 }
2293 bh_unlock_sock(sk);
2294 sock_put(sk);
2295 }
2296
mptcp_tout_timer(struct timer_list * t)2297 static void mptcp_tout_timer(struct timer_list *t)
2298 {
2299 struct sock *sk = from_timer(sk, t, sk_timer);
2300
2301 mptcp_schedule_work(sk);
2302 sock_put(sk);
2303 }
2304
2305 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2306 * level.
2307 *
2308 * A backup subflow is returned only if that is the only kind available.
2309 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2310 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2311 {
2312 struct sock *backup = NULL, *pick = NULL;
2313 struct mptcp_subflow_context *subflow;
2314 int min_stale_count = INT_MAX;
2315
2316 mptcp_for_each_subflow(msk, subflow) {
2317 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2318
2319 if (!__mptcp_subflow_active(subflow))
2320 continue;
2321
2322 /* still data outstanding at TCP level? skip this */
2323 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2324 mptcp_pm_subflow_chk_stale(msk, ssk);
2325 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2326 continue;
2327 }
2328
2329 if (subflow->backup || subflow->request_bkup) {
2330 if (!backup)
2331 backup = ssk;
2332 continue;
2333 }
2334
2335 if (!pick)
2336 pick = ssk;
2337 }
2338
2339 if (pick)
2340 return pick;
2341
2342 /* use backup only if there are no progresses anywhere */
2343 return min_stale_count > 1 ? backup : NULL;
2344 }
2345
__mptcp_retransmit_pending_data(struct sock * sk)2346 bool __mptcp_retransmit_pending_data(struct sock *sk)
2347 {
2348 struct mptcp_data_frag *cur, *rtx_head;
2349 struct mptcp_sock *msk = mptcp_sk(sk);
2350
2351 if (__mptcp_check_fallback(msk))
2352 return false;
2353
2354 /* the closing socket has some data untransmitted and/or unacked:
2355 * some data in the mptcp rtx queue has not really xmitted yet.
2356 * keep it simple and re-inject the whole mptcp level rtx queue
2357 */
2358 mptcp_data_lock(sk);
2359 __mptcp_clean_una_wakeup(sk);
2360 rtx_head = mptcp_rtx_head(sk);
2361 if (!rtx_head) {
2362 mptcp_data_unlock(sk);
2363 return false;
2364 }
2365
2366 msk->recovery_snd_nxt = msk->snd_nxt;
2367 msk->recovery = true;
2368 mptcp_data_unlock(sk);
2369
2370 msk->first_pending = rtx_head;
2371 msk->snd_burst = 0;
2372
2373 /* be sure to clear the "sent status" on all re-injected fragments */
2374 list_for_each_entry(cur, &msk->rtx_queue, list) {
2375 if (!cur->already_sent)
2376 break;
2377 cur->already_sent = 0;
2378 }
2379
2380 return true;
2381 }
2382
2383 /* flags for __mptcp_close_ssk() */
2384 #define MPTCP_CF_PUSH BIT(1)
2385 #define MPTCP_CF_FASTCLOSE BIT(2)
2386
2387 /* be sure to send a reset only if the caller asked for it, also
2388 * clean completely the subflow status when the subflow reaches
2389 * TCP_CLOSE state
2390 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2391 static void __mptcp_subflow_disconnect(struct sock *ssk,
2392 struct mptcp_subflow_context *subflow,
2393 unsigned int flags)
2394 {
2395 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2396 (flags & MPTCP_CF_FASTCLOSE)) {
2397 /* The MPTCP code never wait on the subflow sockets, TCP-level
2398 * disconnect should never fail
2399 */
2400 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2401 mptcp_subflow_ctx_reset(subflow);
2402 } else {
2403 tcp_shutdown(ssk, SEND_SHUTDOWN);
2404 }
2405 }
2406
2407 /* subflow sockets can be either outgoing (connect) or incoming
2408 * (accept).
2409 *
2410 * Outgoing subflows use in-kernel sockets.
2411 * Incoming subflows do not have their own 'struct socket' allocated,
2412 * so we need to use tcp_close() after detaching them from the mptcp
2413 * parent socket.
2414 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2415 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2416 struct mptcp_subflow_context *subflow,
2417 unsigned int flags)
2418 {
2419 struct mptcp_sock *msk = mptcp_sk(sk);
2420 bool dispose_it, need_push = false;
2421
2422 /* If the first subflow moved to a close state before accept, e.g. due
2423 * to an incoming reset or listener shutdown, the subflow socket is
2424 * already deleted by inet_child_forget() and the mptcp socket can't
2425 * survive too.
2426 */
2427 if (msk->in_accept_queue && msk->first == ssk &&
2428 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2429 /* ensure later check in mptcp_worker() will dispose the msk */
2430 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2431 sock_set_flag(sk, SOCK_DEAD);
2432 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2433 mptcp_subflow_drop_ctx(ssk);
2434 goto out_release;
2435 }
2436
2437 dispose_it = msk->free_first || ssk != msk->first;
2438 if (dispose_it)
2439 list_del(&subflow->node);
2440
2441 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2442
2443 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2444 /* be sure to force the tcp_close path
2445 * to generate the egress reset
2446 */
2447 ssk->sk_lingertime = 0;
2448 sock_set_flag(ssk, SOCK_LINGER);
2449 subflow->send_fastclose = 1;
2450 }
2451
2452 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2453 if (!dispose_it) {
2454 __mptcp_subflow_disconnect(ssk, subflow, flags);
2455 release_sock(ssk);
2456
2457 goto out;
2458 }
2459
2460 subflow->disposable = 1;
2461
2462 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2463 * the ssk has been already destroyed, we just need to release the
2464 * reference owned by msk;
2465 */
2466 if (!inet_csk(ssk)->icsk_ulp_ops) {
2467 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2468 kfree_rcu(subflow, rcu);
2469 } else {
2470 /* otherwise tcp will dispose of the ssk and subflow ctx */
2471 __tcp_close(ssk, 0);
2472
2473 /* close acquired an extra ref */
2474 __sock_put(ssk);
2475 }
2476
2477 out_release:
2478 __mptcp_subflow_error_report(sk, ssk);
2479 release_sock(ssk);
2480
2481 sock_put(ssk);
2482
2483 if (ssk == msk->first)
2484 WRITE_ONCE(msk->first, NULL);
2485
2486 out:
2487 __mptcp_sync_sndbuf(sk);
2488 if (need_push)
2489 __mptcp_push_pending(sk, 0);
2490
2491 /* Catch every 'all subflows closed' scenario, including peers silently
2492 * closing them, e.g. due to timeout.
2493 * For established sockets, allow an additional timeout before closing,
2494 * as the protocol can still create more subflows.
2495 */
2496 if (list_is_singular(&msk->conn_list) && msk->first &&
2497 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2498 if (sk->sk_state != TCP_ESTABLISHED ||
2499 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2500 mptcp_set_state(sk, TCP_CLOSE);
2501 mptcp_close_wake_up(sk);
2502 } else {
2503 mptcp_start_tout_timer(sk);
2504 }
2505 }
2506 }
2507
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2508 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2509 struct mptcp_subflow_context *subflow)
2510 {
2511 /* The first subflow can already be closed and still in the list */
2512 if (subflow->close_event_done)
2513 return;
2514
2515 subflow->close_event_done = true;
2516
2517 if (sk->sk_state == TCP_ESTABLISHED)
2518 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2519
2520 /* subflow aborted before reaching the fully_established status
2521 * attempt the creation of the next subflow
2522 */
2523 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2524
2525 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2526 }
2527
mptcp_sync_mss(struct sock * sk,u32 pmtu)2528 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2529 {
2530 return 0;
2531 }
2532
__mptcp_close_subflow(struct sock * sk)2533 static void __mptcp_close_subflow(struct sock *sk)
2534 {
2535 struct mptcp_subflow_context *subflow, *tmp;
2536 struct mptcp_sock *msk = mptcp_sk(sk);
2537
2538 might_sleep();
2539
2540 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2541 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2542 int ssk_state = inet_sk_state_load(ssk);
2543
2544 if (ssk_state != TCP_CLOSE &&
2545 (ssk_state != TCP_CLOSE_WAIT ||
2546 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2547 continue;
2548
2549 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2550 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2551 continue;
2552
2553 mptcp_close_ssk(sk, ssk, subflow);
2554 }
2555
2556 }
2557
mptcp_close_tout_expired(const struct sock * sk)2558 static bool mptcp_close_tout_expired(const struct sock *sk)
2559 {
2560 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2561 sk->sk_state == TCP_CLOSE)
2562 return false;
2563
2564 return time_after32(tcp_jiffies32,
2565 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2566 }
2567
mptcp_check_fastclose(struct mptcp_sock * msk)2568 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2569 {
2570 struct mptcp_subflow_context *subflow, *tmp;
2571 struct sock *sk = (struct sock *)msk;
2572
2573 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2574 return;
2575
2576 mptcp_token_destroy(msk);
2577
2578 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2579 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2580 bool slow;
2581
2582 slow = lock_sock_fast(tcp_sk);
2583 if (tcp_sk->sk_state != TCP_CLOSE) {
2584 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2585 tcp_set_state(tcp_sk, TCP_CLOSE);
2586 }
2587 unlock_sock_fast(tcp_sk, slow);
2588 }
2589
2590 /* Mirror the tcp_reset() error propagation */
2591 switch (sk->sk_state) {
2592 case TCP_SYN_SENT:
2593 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2594 break;
2595 case TCP_CLOSE_WAIT:
2596 WRITE_ONCE(sk->sk_err, EPIPE);
2597 break;
2598 case TCP_CLOSE:
2599 return;
2600 default:
2601 WRITE_ONCE(sk->sk_err, ECONNRESET);
2602 }
2603
2604 mptcp_set_state(sk, TCP_CLOSE);
2605 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2606 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2607 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2608
2609 /* the calling mptcp_worker will properly destroy the socket */
2610 if (sock_flag(sk, SOCK_DEAD))
2611 return;
2612
2613 sk->sk_state_change(sk);
2614 sk_error_report(sk);
2615 }
2616
__mptcp_retrans(struct sock * sk)2617 static void __mptcp_retrans(struct sock *sk)
2618 {
2619 struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2620 struct mptcp_sock *msk = mptcp_sk(sk);
2621 struct mptcp_subflow_context *subflow;
2622 struct mptcp_data_frag *dfrag;
2623 struct sock *ssk;
2624 int ret, err;
2625 u16 len = 0;
2626
2627 mptcp_clean_una_wakeup(sk);
2628
2629 /* first check ssk: need to kick "stale" logic */
2630 err = mptcp_sched_get_retrans(msk);
2631 dfrag = mptcp_rtx_head(sk);
2632 if (!dfrag) {
2633 if (mptcp_data_fin_enabled(msk)) {
2634 struct inet_connection_sock *icsk = inet_csk(sk);
2635
2636 icsk->icsk_retransmits++;
2637 mptcp_set_datafin_timeout(sk);
2638 mptcp_send_ack(msk);
2639
2640 goto reset_timer;
2641 }
2642
2643 if (!mptcp_send_head(sk))
2644 return;
2645
2646 goto reset_timer;
2647 }
2648
2649 if (err)
2650 goto reset_timer;
2651
2652 mptcp_for_each_subflow(msk, subflow) {
2653 if (READ_ONCE(subflow->scheduled)) {
2654 u16 copied = 0;
2655
2656 mptcp_subflow_set_scheduled(subflow, false);
2657
2658 ssk = mptcp_subflow_tcp_sock(subflow);
2659
2660 lock_sock(ssk);
2661
2662 /* limit retransmission to the bytes already sent on some subflows */
2663 info.sent = 0;
2664 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2665 dfrag->already_sent;
2666
2667 /*
2668 * make the whole retrans decision, xmit, disallow
2669 * fallback atomic
2670 */
2671 spin_lock_bh(&msk->fallback_lock);
2672 if (__mptcp_check_fallback(msk)) {
2673 spin_unlock_bh(&msk->fallback_lock);
2674 release_sock(ssk);
2675 return;
2676 }
2677
2678 while (info.sent < info.limit) {
2679 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2680 if (ret <= 0)
2681 break;
2682
2683 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2684 copied += ret;
2685 info.sent += ret;
2686 }
2687 if (copied) {
2688 len = max(copied, len);
2689 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2690 info.size_goal);
2691 msk->allow_infinite_fallback = false;
2692 }
2693 spin_unlock_bh(&msk->fallback_lock);
2694
2695 release_sock(ssk);
2696 }
2697 }
2698
2699 msk->bytes_retrans += len;
2700 dfrag->already_sent = max(dfrag->already_sent, len);
2701
2702 reset_timer:
2703 mptcp_check_and_set_pending(sk);
2704
2705 if (!mptcp_rtx_timer_pending(sk))
2706 mptcp_reset_rtx_timer(sk);
2707 }
2708
2709 /* schedule the timeout timer for the relevant event: either close timeout
2710 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2711 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2712 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2713 {
2714 struct sock *sk = (struct sock *)msk;
2715 unsigned long timeout, close_timeout;
2716
2717 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2718 return;
2719
2720 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2721 tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2722
2723 /* the close timeout takes precedence on the fail one, and here at least one of
2724 * them is active
2725 */
2726 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2727
2728 sk_reset_timer(sk, &sk->sk_timer, timeout);
2729 }
2730
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2731 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2732 {
2733 struct sock *ssk = msk->first;
2734 bool slow;
2735
2736 if (!ssk)
2737 return;
2738
2739 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2740
2741 slow = lock_sock_fast(ssk);
2742 mptcp_subflow_reset(ssk);
2743 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2744 unlock_sock_fast(ssk, slow);
2745 }
2746
mptcp_do_fastclose(struct sock * sk)2747 static void mptcp_do_fastclose(struct sock *sk)
2748 {
2749 struct mptcp_subflow_context *subflow, *tmp;
2750 struct mptcp_sock *msk = mptcp_sk(sk);
2751
2752 mptcp_set_state(sk, TCP_CLOSE);
2753 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2754 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2755 subflow, MPTCP_CF_FASTCLOSE);
2756 }
2757
mptcp_worker(struct work_struct * work)2758 static void mptcp_worker(struct work_struct *work)
2759 {
2760 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2761 struct sock *sk = (struct sock *)msk;
2762 unsigned long fail_tout;
2763 int state;
2764
2765 lock_sock(sk);
2766 state = sk->sk_state;
2767 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2768 goto unlock;
2769
2770 mptcp_check_fastclose(msk);
2771
2772 mptcp_pm_nl_work(msk);
2773
2774 mptcp_check_send_data_fin(sk);
2775 mptcp_check_data_fin_ack(sk);
2776 mptcp_check_data_fin(sk);
2777
2778 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2779 __mptcp_close_subflow(sk);
2780
2781 if (mptcp_close_tout_expired(sk)) {
2782 mptcp_do_fastclose(sk);
2783 mptcp_close_wake_up(sk);
2784 }
2785
2786 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2787 __mptcp_destroy_sock(sk);
2788 goto unlock;
2789 }
2790
2791 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2792 __mptcp_retrans(sk);
2793
2794 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2795 if (fail_tout && time_after(jiffies, fail_tout))
2796 mptcp_mp_fail_no_response(msk);
2797
2798 unlock:
2799 release_sock(sk);
2800 sock_put(sk);
2801 }
2802
__mptcp_init_sock(struct sock * sk)2803 static void __mptcp_init_sock(struct sock *sk)
2804 {
2805 struct mptcp_sock *msk = mptcp_sk(sk);
2806
2807 INIT_LIST_HEAD(&msk->conn_list);
2808 INIT_LIST_HEAD(&msk->join_list);
2809 INIT_LIST_HEAD(&msk->rtx_queue);
2810 INIT_WORK(&msk->work, mptcp_worker);
2811 __skb_queue_head_init(&msk->receive_queue);
2812 msk->out_of_order_queue = RB_ROOT;
2813 msk->first_pending = NULL;
2814 msk->rmem_fwd_alloc = 0;
2815 WRITE_ONCE(msk->rmem_released, 0);
2816 msk->timer_ival = TCP_RTO_MIN;
2817 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2818
2819 WRITE_ONCE(msk->first, NULL);
2820 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2821 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2822 msk->allow_infinite_fallback = true;
2823 msk->allow_subflows = true;
2824 msk->recovery = false;
2825 msk->subflow_id = 1;
2826
2827 mptcp_pm_data_init(msk);
2828 spin_lock_init(&msk->fallback_lock);
2829
2830 /* re-use the csk retrans timer for MPTCP-level retrans */
2831 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2832 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2833 }
2834
mptcp_ca_reset(struct sock * sk)2835 static void mptcp_ca_reset(struct sock *sk)
2836 {
2837 struct inet_connection_sock *icsk = inet_csk(sk);
2838
2839 tcp_assign_congestion_control(sk);
2840 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2841
2842 /* no need to keep a reference to the ops, the name will suffice */
2843 tcp_cleanup_congestion_control(sk);
2844 icsk->icsk_ca_ops = NULL;
2845 }
2846
mptcp_init_sock(struct sock * sk)2847 static int mptcp_init_sock(struct sock *sk)
2848 {
2849 struct net *net = sock_net(sk);
2850 int ret;
2851
2852 __mptcp_init_sock(sk);
2853
2854 if (!mptcp_is_enabled(net))
2855 return -ENOPROTOOPT;
2856
2857 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2858 return -ENOMEM;
2859
2860 rcu_read_lock();
2861 ret = mptcp_init_sched(mptcp_sk(sk),
2862 mptcp_sched_find(mptcp_get_scheduler(net)));
2863 rcu_read_unlock();
2864 if (ret)
2865 return ret;
2866
2867 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2868
2869 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2870 * propagate the correct value
2871 */
2872 mptcp_ca_reset(sk);
2873
2874 sk_sockets_allocated_inc(sk);
2875 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2876 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2877
2878 return 0;
2879 }
2880
__mptcp_clear_xmit(struct sock * sk)2881 static void __mptcp_clear_xmit(struct sock *sk)
2882 {
2883 struct mptcp_sock *msk = mptcp_sk(sk);
2884 struct mptcp_data_frag *dtmp, *dfrag;
2885
2886 WRITE_ONCE(msk->first_pending, NULL);
2887 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2888 dfrag_clear(sk, dfrag);
2889 }
2890
mptcp_cancel_work(struct sock * sk)2891 void mptcp_cancel_work(struct sock *sk)
2892 {
2893 struct mptcp_sock *msk = mptcp_sk(sk);
2894
2895 if (cancel_work_sync(&msk->work))
2896 __sock_put(sk);
2897 }
2898
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2899 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2900 {
2901 lock_sock(ssk);
2902
2903 switch (ssk->sk_state) {
2904 case TCP_LISTEN:
2905 if (!(how & RCV_SHUTDOWN))
2906 break;
2907 fallthrough;
2908 case TCP_SYN_SENT:
2909 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2910 break;
2911 default:
2912 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2913 pr_debug("Fallback\n");
2914 ssk->sk_shutdown |= how;
2915 tcp_shutdown(ssk, how);
2916
2917 /* simulate the data_fin ack reception to let the state
2918 * machine move forward
2919 */
2920 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2921 mptcp_schedule_work(sk);
2922 } else {
2923 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2924 tcp_send_ack(ssk);
2925 if (!mptcp_rtx_timer_pending(sk))
2926 mptcp_reset_rtx_timer(sk);
2927 }
2928 break;
2929 }
2930
2931 release_sock(ssk);
2932 }
2933
mptcp_set_state(struct sock * sk,int state)2934 void mptcp_set_state(struct sock *sk, int state)
2935 {
2936 int oldstate = sk->sk_state;
2937
2938 switch (state) {
2939 case TCP_ESTABLISHED:
2940 if (oldstate != TCP_ESTABLISHED)
2941 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2942 break;
2943 case TCP_CLOSE_WAIT:
2944 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2945 * MPTCP "accepted" sockets will be created later on. So no
2946 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2947 */
2948 break;
2949 default:
2950 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2951 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2952 }
2953
2954 inet_sk_state_store(sk, state);
2955 }
2956
2957 static const unsigned char new_state[16] = {
2958 /* current state: new state: action: */
2959 [0 /* (Invalid) */] = TCP_CLOSE,
2960 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2961 [TCP_SYN_SENT] = TCP_CLOSE,
2962 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2963 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2964 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2965 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2966 [TCP_CLOSE] = TCP_CLOSE,
2967 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2968 [TCP_LAST_ACK] = TCP_LAST_ACK,
2969 [TCP_LISTEN] = TCP_CLOSE,
2970 [TCP_CLOSING] = TCP_CLOSING,
2971 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2972 };
2973
mptcp_close_state(struct sock * sk)2974 static int mptcp_close_state(struct sock *sk)
2975 {
2976 int next = (int)new_state[sk->sk_state];
2977 int ns = next & TCP_STATE_MASK;
2978
2979 mptcp_set_state(sk, ns);
2980
2981 return next & TCP_ACTION_FIN;
2982 }
2983
mptcp_check_send_data_fin(struct sock * sk)2984 static void mptcp_check_send_data_fin(struct sock *sk)
2985 {
2986 struct mptcp_subflow_context *subflow;
2987 struct mptcp_sock *msk = mptcp_sk(sk);
2988
2989 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2990 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2991 msk->snd_nxt, msk->write_seq);
2992
2993 /* we still need to enqueue subflows or not really shutting down,
2994 * skip this
2995 */
2996 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2997 mptcp_send_head(sk))
2998 return;
2999
3000 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3001
3002 mptcp_for_each_subflow(msk, subflow) {
3003 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3004
3005 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3006 }
3007 }
3008
__mptcp_wr_shutdown(struct sock * sk)3009 static void __mptcp_wr_shutdown(struct sock *sk)
3010 {
3011 struct mptcp_sock *msk = mptcp_sk(sk);
3012
3013 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3014 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3015 !!mptcp_send_head(sk));
3016
3017 /* will be ignored by fallback sockets */
3018 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3019 WRITE_ONCE(msk->snd_data_fin_enable, 1);
3020
3021 mptcp_check_send_data_fin(sk);
3022 }
3023
__mptcp_destroy_sock(struct sock * sk)3024 static void __mptcp_destroy_sock(struct sock *sk)
3025 {
3026 struct mptcp_sock *msk = mptcp_sk(sk);
3027
3028 pr_debug("msk=%p\n", msk);
3029
3030 might_sleep();
3031
3032 mptcp_stop_rtx_timer(sk);
3033 sk_stop_timer(sk, &sk->sk_timer);
3034 msk->pm.status = 0;
3035 mptcp_release_sched(msk);
3036
3037 sk->sk_prot->destroy(sk);
3038
3039 WARN_ON_ONCE(msk->rmem_fwd_alloc);
3040 WARN_ON_ONCE(msk->rmem_released);
3041 sk_stream_kill_queues(sk);
3042 xfrm_sk_free_policy(sk);
3043
3044 sock_put(sk);
3045 }
3046
__mptcp_unaccepted_force_close(struct sock * sk)3047 void __mptcp_unaccepted_force_close(struct sock *sk)
3048 {
3049 sock_set_flag(sk, SOCK_DEAD);
3050 mptcp_do_fastclose(sk);
3051 __mptcp_destroy_sock(sk);
3052 }
3053
mptcp_check_readable(struct sock * sk)3054 static __poll_t mptcp_check_readable(struct sock *sk)
3055 {
3056 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3057 }
3058
mptcp_check_listen_stop(struct sock * sk)3059 static void mptcp_check_listen_stop(struct sock *sk)
3060 {
3061 struct sock *ssk;
3062
3063 if (inet_sk_state_load(sk) != TCP_LISTEN)
3064 return;
3065
3066 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3067 ssk = mptcp_sk(sk)->first;
3068 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3069 return;
3070
3071 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3072 tcp_set_state(ssk, TCP_CLOSE);
3073 mptcp_subflow_queue_clean(sk, ssk);
3074 inet_csk_listen_stop(ssk);
3075 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3076 release_sock(ssk);
3077 }
3078
__mptcp_close(struct sock * sk,long timeout)3079 bool __mptcp_close(struct sock *sk, long timeout)
3080 {
3081 struct mptcp_subflow_context *subflow;
3082 struct mptcp_sock *msk = mptcp_sk(sk);
3083 bool do_cancel_work = false;
3084 int subflows_alive = 0;
3085
3086 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3087
3088 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3089 mptcp_check_listen_stop(sk);
3090 mptcp_set_state(sk, TCP_CLOSE);
3091 goto cleanup;
3092 }
3093
3094 if (mptcp_data_avail(msk) || timeout < 0) {
3095 /* If the msk has read data, or the caller explicitly ask it,
3096 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3097 */
3098 mptcp_do_fastclose(sk);
3099 timeout = 0;
3100 } else if (mptcp_close_state(sk)) {
3101 __mptcp_wr_shutdown(sk);
3102 }
3103
3104 sk_stream_wait_close(sk, timeout);
3105
3106 cleanup:
3107 /* orphan all the subflows */
3108 mptcp_for_each_subflow(msk, subflow) {
3109 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3110 bool slow = lock_sock_fast_nested(ssk);
3111
3112 subflows_alive += ssk->sk_state != TCP_CLOSE;
3113
3114 /* since the close timeout takes precedence on the fail one,
3115 * cancel the latter
3116 */
3117 if (ssk == msk->first)
3118 subflow->fail_tout = 0;
3119
3120 /* detach from the parent socket, but allow data_ready to
3121 * push incoming data into the mptcp stack, to properly ack it
3122 */
3123 ssk->sk_socket = NULL;
3124 ssk->sk_wq = NULL;
3125 unlock_sock_fast(ssk, slow);
3126 }
3127 sock_orphan(sk);
3128
3129 /* all the subflows are closed, only timeout can change the msk
3130 * state, let's not keep resources busy for no reasons
3131 */
3132 if (subflows_alive == 0)
3133 mptcp_set_state(sk, TCP_CLOSE);
3134
3135 sock_hold(sk);
3136 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3137 if (msk->token)
3138 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3139
3140 if (sk->sk_state == TCP_CLOSE) {
3141 __mptcp_destroy_sock(sk);
3142 do_cancel_work = true;
3143 } else {
3144 mptcp_start_tout_timer(sk);
3145 }
3146
3147 return do_cancel_work;
3148 }
3149
mptcp_close(struct sock * sk,long timeout)3150 static void mptcp_close(struct sock *sk, long timeout)
3151 {
3152 bool do_cancel_work;
3153
3154 lock_sock(sk);
3155
3156 do_cancel_work = __mptcp_close(sk, timeout);
3157 release_sock(sk);
3158 if (do_cancel_work)
3159 mptcp_cancel_work(sk);
3160
3161 sock_put(sk);
3162 }
3163
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3164 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3165 {
3166 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3167 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3168 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3169
3170 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3171 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3172
3173 if (msk6 && ssk6) {
3174 msk6->saddr = ssk6->saddr;
3175 msk6->flow_label = ssk6->flow_label;
3176 }
3177 #endif
3178
3179 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3180 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3181 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3182 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3183 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3184 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3185 }
3186
mptcp_disconnect(struct sock * sk,int flags)3187 static int mptcp_disconnect(struct sock *sk, int flags)
3188 {
3189 struct mptcp_sock *msk = mptcp_sk(sk);
3190
3191 /* We are on the fastopen error path. We can't call straight into the
3192 * subflows cleanup code due to lock nesting (we are already under
3193 * msk->firstsocket lock).
3194 */
3195 if (msk->fastopening)
3196 return -EBUSY;
3197
3198 mptcp_check_listen_stop(sk);
3199 mptcp_set_state(sk, TCP_CLOSE);
3200
3201 mptcp_stop_rtx_timer(sk);
3202 mptcp_stop_tout_timer(sk);
3203
3204 if (msk->token)
3205 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3206
3207 /* msk->subflow is still intact, the following will not free the first
3208 * subflow
3209 */
3210 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3211
3212 /* The first subflow is already in TCP_CLOSE status, the following
3213 * can't overlap with a fallback anymore
3214 */
3215 spin_lock_bh(&msk->fallback_lock);
3216 msk->allow_subflows = true;
3217 msk->allow_infinite_fallback = true;
3218 WRITE_ONCE(msk->flags, 0);
3219 spin_unlock_bh(&msk->fallback_lock);
3220
3221 msk->cb_flags = 0;
3222 msk->recovery = false;
3223 msk->can_ack = false;
3224 msk->fully_established = false;
3225 msk->rcv_data_fin = false;
3226 msk->snd_data_fin_enable = false;
3227 msk->rcv_fastclose = false;
3228 msk->use_64bit_ack = false;
3229 msk->bytes_consumed = 0;
3230 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3231 mptcp_pm_data_reset(msk);
3232 mptcp_ca_reset(sk);
3233 msk->bytes_acked = 0;
3234 msk->bytes_received = 0;
3235 msk->bytes_sent = 0;
3236 msk->bytes_retrans = 0;
3237 msk->rcvspace_init = 0;
3238
3239 WRITE_ONCE(sk->sk_shutdown, 0);
3240 sk_error_report(sk);
3241 return 0;
3242 }
3243
3244 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3245 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3246 {
3247 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3248
3249 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3250 }
3251
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3252 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3253 {
3254 const struct ipv6_pinfo *np = inet6_sk(sk);
3255 struct ipv6_txoptions *opt;
3256 struct ipv6_pinfo *newnp;
3257
3258 newnp = inet6_sk(newsk);
3259
3260 rcu_read_lock();
3261 opt = rcu_dereference(np->opt);
3262 if (opt) {
3263 opt = ipv6_dup_options(newsk, opt);
3264 if (!opt)
3265 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3266 }
3267 RCU_INIT_POINTER(newnp->opt, opt);
3268 rcu_read_unlock();
3269 }
3270 #endif
3271
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3272 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3273 {
3274 struct ip_options_rcu *inet_opt, *newopt = NULL;
3275 const struct inet_sock *inet = inet_sk(sk);
3276 struct inet_sock *newinet;
3277
3278 newinet = inet_sk(newsk);
3279
3280 rcu_read_lock();
3281 inet_opt = rcu_dereference(inet->inet_opt);
3282 if (inet_opt) {
3283 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3284 inet_opt->opt.optlen, GFP_ATOMIC);
3285 if (newopt)
3286 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3287 inet_opt->opt.optlen);
3288 else
3289 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3290 }
3291 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3292 rcu_read_unlock();
3293 }
3294
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3295 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3296 const struct mptcp_options_received *mp_opt,
3297 struct sock *ssk,
3298 struct request_sock *req)
3299 {
3300 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3301 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3302 struct mptcp_subflow_context *subflow;
3303 struct mptcp_sock *msk;
3304
3305 if (!nsk)
3306 return NULL;
3307
3308 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3309 if (nsk->sk_family == AF_INET6)
3310 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3311 #endif
3312
3313 __mptcp_init_sock(nsk);
3314
3315 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3316 if (nsk->sk_family == AF_INET6)
3317 mptcp_copy_ip6_options(nsk, sk);
3318 else
3319 #endif
3320 mptcp_copy_ip_options(nsk, sk);
3321
3322 msk = mptcp_sk(nsk);
3323 msk->local_key = subflow_req->local_key;
3324 msk->token = subflow_req->token;
3325 msk->in_accept_queue = 1;
3326 WRITE_ONCE(msk->fully_established, false);
3327 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3328 WRITE_ONCE(msk->csum_enabled, true);
3329
3330 msk->write_seq = subflow_req->idsn + 1;
3331 msk->snd_nxt = msk->write_seq;
3332 msk->snd_una = msk->write_seq;
3333 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3334 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3335 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3336
3337 /* passive msk is created after the first/MPC subflow */
3338 msk->subflow_id = 2;
3339
3340 sock_reset_flag(nsk, SOCK_RCU_FREE);
3341 security_inet_csk_clone(nsk, req);
3342
3343 /* this can't race with mptcp_close(), as the msk is
3344 * not yet exposted to user-space
3345 */
3346 mptcp_set_state(nsk, TCP_ESTABLISHED);
3347
3348 /* The msk maintain a ref to each subflow in the connections list */
3349 WRITE_ONCE(msk->first, ssk);
3350 subflow = mptcp_subflow_ctx(ssk);
3351 list_add(&subflow->node, &msk->conn_list);
3352 sock_hold(ssk);
3353
3354 /* new mpc subflow takes ownership of the newly
3355 * created mptcp socket
3356 */
3357 mptcp_token_accept(subflow_req, msk);
3358
3359 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3360 * uses the correct data
3361 */
3362 mptcp_copy_inaddrs(nsk, ssk);
3363 __mptcp_propagate_sndbuf(nsk, ssk);
3364
3365 mptcp_rcv_space_init(msk, ssk);
3366
3367 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3368 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3369 bh_unlock_sock(nsk);
3370
3371 /* note: the newly allocated socket refcount is 2 now */
3372 return nsk;
3373 }
3374
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3375 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3376 {
3377 const struct tcp_sock *tp = tcp_sk(ssk);
3378
3379 msk->rcvspace_init = 1;
3380 msk->rcvq_space.copied = 0;
3381 msk->rcvq_space.rtt_us = 0;
3382
3383 msk->rcvq_space.time = tp->tcp_mstamp;
3384
3385 /* initial rcv_space offering made to peer */
3386 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3387 TCP_INIT_CWND * tp->advmss);
3388 if (msk->rcvq_space.space == 0)
3389 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3390 }
3391
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3392 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3393 {
3394 struct mptcp_subflow_context *subflow, *tmp;
3395 struct sock *sk = (struct sock *)msk;
3396
3397 __mptcp_clear_xmit(sk);
3398
3399 /* join list will be eventually flushed (with rst) at sock lock release time */
3400 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3401 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3402
3403 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3404 mptcp_data_lock(sk);
3405 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3406 __skb_queue_purge(&sk->sk_receive_queue);
3407 skb_rbtree_purge(&msk->out_of_order_queue);
3408 mptcp_data_unlock(sk);
3409
3410 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3411 * inet_sock_destruct() will dispose it
3412 */
3413 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3414 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3415 mptcp_token_destroy(msk);
3416 mptcp_pm_free_anno_list(msk);
3417 mptcp_free_local_addr_list(msk);
3418 }
3419
mptcp_destroy(struct sock * sk)3420 static void mptcp_destroy(struct sock *sk)
3421 {
3422 struct mptcp_sock *msk = mptcp_sk(sk);
3423
3424 /* allow the following to close even the initial subflow */
3425 msk->free_first = 1;
3426 mptcp_destroy_common(msk, 0);
3427 sk_sockets_allocated_dec(sk);
3428 }
3429
__mptcp_data_acked(struct sock * sk)3430 void __mptcp_data_acked(struct sock *sk)
3431 {
3432 if (!sock_owned_by_user(sk))
3433 __mptcp_clean_una(sk);
3434 else
3435 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3436
3437 if (mptcp_pending_data_fin_ack(sk))
3438 mptcp_schedule_work(sk);
3439 }
3440
__mptcp_check_push(struct sock * sk,struct sock * ssk)3441 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3442 {
3443 if (!mptcp_send_head(sk))
3444 return;
3445
3446 if (!sock_owned_by_user(sk))
3447 __mptcp_subflow_push_pending(sk, ssk, false);
3448 else
3449 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3450 }
3451
3452 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3453 BIT(MPTCP_RETRANSMIT) | \
3454 BIT(MPTCP_FLUSH_JOIN_LIST))
3455
3456 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3457 static void mptcp_release_cb(struct sock *sk)
3458 __must_hold(&sk->sk_lock.slock)
3459 {
3460 struct mptcp_sock *msk = mptcp_sk(sk);
3461
3462 for (;;) {
3463 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3464 struct list_head join_list;
3465
3466 if (!flags)
3467 break;
3468
3469 INIT_LIST_HEAD(&join_list);
3470 list_splice_init(&msk->join_list, &join_list);
3471
3472 /* the following actions acquire the subflow socket lock
3473 *
3474 * 1) can't be invoked in atomic scope
3475 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3476 * datapath acquires the msk socket spinlock while helding
3477 * the subflow socket lock
3478 */
3479 msk->cb_flags &= ~flags;
3480 spin_unlock_bh(&sk->sk_lock.slock);
3481
3482 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3483 __mptcp_flush_join_list(sk, &join_list);
3484 if (flags & BIT(MPTCP_PUSH_PENDING))
3485 __mptcp_push_pending(sk, 0);
3486 if (flags & BIT(MPTCP_RETRANSMIT))
3487 __mptcp_retrans(sk);
3488
3489 cond_resched();
3490 spin_lock_bh(&sk->sk_lock.slock);
3491 }
3492
3493 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3494 __mptcp_clean_una_wakeup(sk);
3495 if (unlikely(msk->cb_flags)) {
3496 /* be sure to sync the msk state before taking actions
3497 * depending on sk_state (MPTCP_ERROR_REPORT)
3498 * On sk release avoid actions depending on the first subflow
3499 */
3500 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3501 __mptcp_sync_state(sk, msk->pending_state);
3502 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3503 __mptcp_error_report(sk);
3504 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3505 __mptcp_sync_sndbuf(sk);
3506 }
3507
3508 __mptcp_update_rmem(sk);
3509 }
3510
3511 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3512 * TCP can't schedule delack timer before the subflow is fully established.
3513 * MPTCP uses the delack timer to do 3rd ack retransmissions
3514 */
schedule_3rdack_retransmission(struct sock * ssk)3515 static void schedule_3rdack_retransmission(struct sock *ssk)
3516 {
3517 struct inet_connection_sock *icsk = inet_csk(ssk);
3518 struct tcp_sock *tp = tcp_sk(ssk);
3519 unsigned long timeout;
3520
3521 if (mptcp_subflow_ctx(ssk)->fully_established)
3522 return;
3523
3524 /* reschedule with a timeout above RTT, as we must look only for drop */
3525 if (tp->srtt_us)
3526 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3527 else
3528 timeout = TCP_TIMEOUT_INIT;
3529 timeout += jiffies;
3530
3531 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3532 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3533 icsk->icsk_ack.timeout = timeout;
3534 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3535 }
3536
mptcp_subflow_process_delegated(struct sock * ssk,long status)3537 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3538 {
3539 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3540 struct sock *sk = subflow->conn;
3541
3542 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3543 mptcp_data_lock(sk);
3544 if (!sock_owned_by_user(sk))
3545 __mptcp_subflow_push_pending(sk, ssk, true);
3546 else
3547 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3548 mptcp_data_unlock(sk);
3549 }
3550 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3551 mptcp_data_lock(sk);
3552 if (!sock_owned_by_user(sk))
3553 __mptcp_sync_sndbuf(sk);
3554 else
3555 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3556 mptcp_data_unlock(sk);
3557 }
3558 if (status & BIT(MPTCP_DELEGATE_ACK))
3559 schedule_3rdack_retransmission(ssk);
3560 }
3561
mptcp_hash(struct sock * sk)3562 static int mptcp_hash(struct sock *sk)
3563 {
3564 /* should never be called,
3565 * we hash the TCP subflows not the master socket
3566 */
3567 WARN_ON_ONCE(1);
3568 return 0;
3569 }
3570
mptcp_unhash(struct sock * sk)3571 static void mptcp_unhash(struct sock *sk)
3572 {
3573 /* called from sk_common_release(), but nothing to do here */
3574 }
3575
mptcp_get_port(struct sock * sk,unsigned short snum)3576 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3577 {
3578 struct mptcp_sock *msk = mptcp_sk(sk);
3579
3580 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3581 if (WARN_ON_ONCE(!msk->first))
3582 return -EINVAL;
3583
3584 return inet_csk_get_port(msk->first, snum);
3585 }
3586
mptcp_finish_connect(struct sock * ssk)3587 void mptcp_finish_connect(struct sock *ssk)
3588 {
3589 struct mptcp_subflow_context *subflow;
3590 struct mptcp_sock *msk;
3591 struct sock *sk;
3592
3593 subflow = mptcp_subflow_ctx(ssk);
3594 sk = subflow->conn;
3595 msk = mptcp_sk(sk);
3596
3597 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3598
3599 subflow->map_seq = subflow->iasn;
3600 subflow->map_subflow_seq = 1;
3601
3602 /* the socket is not connected yet, no msk/subflow ops can access/race
3603 * accessing the field below
3604 */
3605 WRITE_ONCE(msk->local_key, subflow->local_key);
3606
3607 mptcp_pm_new_connection(msk, ssk, 0);
3608 }
3609
mptcp_sock_graft(struct sock * sk,struct socket * parent)3610 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3611 {
3612 write_lock_bh(&sk->sk_callback_lock);
3613 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3614 sk_set_socket(sk, parent);
3615 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3616 write_unlock_bh(&sk->sk_callback_lock);
3617 }
3618
mptcp_finish_join(struct sock * ssk)3619 bool mptcp_finish_join(struct sock *ssk)
3620 {
3621 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3622 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3623 struct sock *parent = (void *)msk;
3624 bool ret = true;
3625
3626 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3627
3628 /* mptcp socket already closing? */
3629 if (!mptcp_is_fully_established(parent)) {
3630 subflow->reset_reason = MPTCP_RST_EMPTCP;
3631 return false;
3632 }
3633
3634 /* active subflow, already present inside the conn_list */
3635 if (!list_empty(&subflow->node)) {
3636 spin_lock_bh(&msk->fallback_lock);
3637 if (!msk->allow_subflows) {
3638 spin_unlock_bh(&msk->fallback_lock);
3639 return false;
3640 }
3641 mptcp_subflow_joined(msk, ssk);
3642 spin_unlock_bh(&msk->fallback_lock);
3643 mptcp_propagate_sndbuf(parent, ssk);
3644 return true;
3645 }
3646
3647 if (!mptcp_pm_allow_new_subflow(msk))
3648 goto err_prohibited;
3649
3650 /* If we can't acquire msk socket lock here, let the release callback
3651 * handle it
3652 */
3653 mptcp_data_lock(parent);
3654 if (!sock_owned_by_user(parent)) {
3655 ret = __mptcp_finish_join(msk, ssk);
3656 if (ret) {
3657 sock_hold(ssk);
3658 list_add_tail(&subflow->node, &msk->conn_list);
3659 }
3660 } else {
3661 sock_hold(ssk);
3662 list_add_tail(&subflow->node, &msk->join_list);
3663 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3664 }
3665 mptcp_data_unlock(parent);
3666
3667 if (!ret) {
3668 err_prohibited:
3669 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3670 return false;
3671 }
3672
3673 return true;
3674 }
3675
mptcp_shutdown(struct sock * sk,int how)3676 static void mptcp_shutdown(struct sock *sk, int how)
3677 {
3678 pr_debug("sk=%p, how=%d\n", sk, how);
3679
3680 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3681 __mptcp_wr_shutdown(sk);
3682 }
3683
mptcp_forward_alloc_get(const struct sock * sk)3684 static int mptcp_forward_alloc_get(const struct sock *sk)
3685 {
3686 return READ_ONCE(sk->sk_forward_alloc) +
3687 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3688 }
3689
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3690 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3691 {
3692 const struct sock *sk = (void *)msk;
3693 u64 delta;
3694
3695 if (sk->sk_state == TCP_LISTEN)
3696 return -EINVAL;
3697
3698 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3699 return 0;
3700
3701 delta = msk->write_seq - v;
3702 if (__mptcp_check_fallback(msk) && msk->first) {
3703 struct tcp_sock *tp = tcp_sk(msk->first);
3704
3705 /* the first subflow is disconnected after close - see
3706 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3707 * so ignore that status, too.
3708 */
3709 if (!((1 << msk->first->sk_state) &
3710 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3711 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3712 }
3713 if (delta > INT_MAX)
3714 delta = INT_MAX;
3715
3716 return (int)delta;
3717 }
3718
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3719 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3720 {
3721 struct mptcp_sock *msk = mptcp_sk(sk);
3722 bool slow;
3723
3724 switch (cmd) {
3725 case SIOCINQ:
3726 if (sk->sk_state == TCP_LISTEN)
3727 return -EINVAL;
3728
3729 lock_sock(sk);
3730 __mptcp_move_skbs(msk);
3731 *karg = mptcp_inq_hint(sk);
3732 release_sock(sk);
3733 break;
3734 case SIOCOUTQ:
3735 slow = lock_sock_fast(sk);
3736 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3737 unlock_sock_fast(sk, slow);
3738 break;
3739 case SIOCOUTQNSD:
3740 slow = lock_sock_fast(sk);
3741 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3742 unlock_sock_fast(sk, slow);
3743 break;
3744 default:
3745 return -ENOIOCTLCMD;
3746 }
3747
3748 return 0;
3749 }
3750
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3751 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3752 struct mptcp_subflow_context *subflow)
3753 {
3754 subflow->request_mptcp = 0;
3755 WARN_ON_ONCE(!__mptcp_try_fallback(msk));
3756 }
3757
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3758 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3759 {
3760 struct mptcp_subflow_context *subflow;
3761 struct mptcp_sock *msk = mptcp_sk(sk);
3762 int err = -EINVAL;
3763 struct sock *ssk;
3764
3765 ssk = __mptcp_nmpc_sk(msk);
3766 if (IS_ERR(ssk))
3767 return PTR_ERR(ssk);
3768
3769 mptcp_set_state(sk, TCP_SYN_SENT);
3770 subflow = mptcp_subflow_ctx(ssk);
3771 #ifdef CONFIG_TCP_MD5SIG
3772 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3773 * TCP option space.
3774 */
3775 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3776 mptcp_subflow_early_fallback(msk, subflow);
3777 #endif
3778 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3779 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3780 mptcp_subflow_early_fallback(msk, subflow);
3781 }
3782
3783 WRITE_ONCE(msk->write_seq, subflow->idsn);
3784 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3785 WRITE_ONCE(msk->snd_una, subflow->idsn);
3786 if (likely(!__mptcp_check_fallback(msk)))
3787 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3788
3789 /* if reaching here via the fastopen/sendmsg path, the caller already
3790 * acquired the subflow socket lock, too.
3791 */
3792 if (!msk->fastopening)
3793 lock_sock(ssk);
3794
3795 /* the following mirrors closely a very small chunk of code from
3796 * __inet_stream_connect()
3797 */
3798 if (ssk->sk_state != TCP_CLOSE)
3799 goto out;
3800
3801 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3802 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3803 if (err)
3804 goto out;
3805 }
3806
3807 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3808 if (err < 0)
3809 goto out;
3810
3811 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3812
3813 out:
3814 if (!msk->fastopening)
3815 release_sock(ssk);
3816
3817 /* on successful connect, the msk state will be moved to established by
3818 * subflow_finish_connect()
3819 */
3820 if (unlikely(err)) {
3821 /* avoid leaving a dangling token in an unconnected socket */
3822 mptcp_token_destroy(msk);
3823 mptcp_set_state(sk, TCP_CLOSE);
3824 return err;
3825 }
3826
3827 mptcp_copy_inaddrs(sk, ssk);
3828 return 0;
3829 }
3830
3831 static struct proto mptcp_prot = {
3832 .name = "MPTCP",
3833 .owner = THIS_MODULE,
3834 .init = mptcp_init_sock,
3835 .connect = mptcp_connect,
3836 .disconnect = mptcp_disconnect,
3837 .close = mptcp_close,
3838 .setsockopt = mptcp_setsockopt,
3839 .getsockopt = mptcp_getsockopt,
3840 .shutdown = mptcp_shutdown,
3841 .destroy = mptcp_destroy,
3842 .sendmsg = mptcp_sendmsg,
3843 .ioctl = mptcp_ioctl,
3844 .recvmsg = mptcp_recvmsg,
3845 .release_cb = mptcp_release_cb,
3846 .hash = mptcp_hash,
3847 .unhash = mptcp_unhash,
3848 .get_port = mptcp_get_port,
3849 .forward_alloc_get = mptcp_forward_alloc_get,
3850 .sockets_allocated = &mptcp_sockets_allocated,
3851
3852 .memory_allocated = &tcp_memory_allocated,
3853 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3854
3855 .memory_pressure = &tcp_memory_pressure,
3856 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3857 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3858 .sysctl_mem = sysctl_tcp_mem,
3859 .obj_size = sizeof(struct mptcp_sock),
3860 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3861 .no_autobind = true,
3862 };
3863
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3864 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3865 {
3866 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3867 struct sock *ssk, *sk = sock->sk;
3868 int err = -EINVAL;
3869
3870 lock_sock(sk);
3871 ssk = __mptcp_nmpc_sk(msk);
3872 if (IS_ERR(ssk)) {
3873 err = PTR_ERR(ssk);
3874 goto unlock;
3875 }
3876
3877 if (sk->sk_family == AF_INET)
3878 err = inet_bind_sk(ssk, uaddr, addr_len);
3879 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3880 else if (sk->sk_family == AF_INET6)
3881 err = inet6_bind_sk(ssk, uaddr, addr_len);
3882 #endif
3883 if (!err)
3884 mptcp_copy_inaddrs(sk, ssk);
3885
3886 unlock:
3887 release_sock(sk);
3888 return err;
3889 }
3890
mptcp_listen(struct socket * sock,int backlog)3891 static int mptcp_listen(struct socket *sock, int backlog)
3892 {
3893 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3894 struct sock *sk = sock->sk;
3895 struct sock *ssk;
3896 int err;
3897
3898 pr_debug("msk=%p\n", msk);
3899
3900 lock_sock(sk);
3901
3902 err = -EINVAL;
3903 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3904 goto unlock;
3905
3906 ssk = __mptcp_nmpc_sk(msk);
3907 if (IS_ERR(ssk)) {
3908 err = PTR_ERR(ssk);
3909 goto unlock;
3910 }
3911
3912 mptcp_set_state(sk, TCP_LISTEN);
3913 sock_set_flag(sk, SOCK_RCU_FREE);
3914
3915 lock_sock(ssk);
3916 err = __inet_listen_sk(ssk, backlog);
3917 release_sock(ssk);
3918 mptcp_set_state(sk, inet_sk_state_load(ssk));
3919
3920 if (!err) {
3921 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3922 mptcp_copy_inaddrs(sk, ssk);
3923 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3924 }
3925
3926 unlock:
3927 release_sock(sk);
3928 return err;
3929 }
3930
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3931 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3932 int flags, bool kern)
3933 {
3934 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3935 struct sock *ssk, *newsk;
3936 int err;
3937
3938 pr_debug("msk=%p\n", msk);
3939
3940 /* Buggy applications can call accept on socket states other then LISTEN
3941 * but no need to allocate the first subflow just to error out.
3942 */
3943 ssk = READ_ONCE(msk->first);
3944 if (!ssk)
3945 return -EINVAL;
3946
3947 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3948 newsk = inet_csk_accept(ssk, flags, &err, kern);
3949 if (!newsk)
3950 return err;
3951
3952 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3953 if (sk_is_mptcp(newsk)) {
3954 struct mptcp_subflow_context *subflow;
3955 struct sock *new_mptcp_sock;
3956
3957 subflow = mptcp_subflow_ctx(newsk);
3958 new_mptcp_sock = subflow->conn;
3959
3960 /* is_mptcp should be false if subflow->conn is missing, see
3961 * subflow_syn_recv_sock()
3962 */
3963 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3964 tcp_sk(newsk)->is_mptcp = 0;
3965 goto tcpfallback;
3966 }
3967
3968 newsk = new_mptcp_sock;
3969 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3970
3971 newsk->sk_kern_sock = kern;
3972 lock_sock(newsk);
3973 __inet_accept(sock, newsock, newsk);
3974
3975 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3976 msk = mptcp_sk(newsk);
3977 msk->in_accept_queue = 0;
3978
3979 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3980 * This is needed so NOSPACE flag can be set from tcp stack.
3981 */
3982 mptcp_for_each_subflow(msk, subflow) {
3983 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3984
3985 if (!ssk->sk_socket)
3986 mptcp_sock_graft(ssk, newsock);
3987 }
3988
3989 /* Do late cleanup for the first subflow as necessary. Also
3990 * deal with bad peers not doing a complete shutdown.
3991 */
3992 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3993 __mptcp_close_ssk(newsk, msk->first,
3994 mptcp_subflow_ctx(msk->first), 0);
3995 if (unlikely(list_is_singular(&msk->conn_list)))
3996 mptcp_set_state(newsk, TCP_CLOSE);
3997 }
3998 } else {
3999 tcpfallback:
4000 newsk->sk_kern_sock = kern;
4001 lock_sock(newsk);
4002 __inet_accept(sock, newsock, newsk);
4003 /* we are being invoked after accepting a non-mp-capable
4004 * flow: sk is a tcp_sk, not an mptcp one.
4005 *
4006 * Hand the socket over to tcp so all further socket ops
4007 * bypass mptcp.
4008 */
4009 WRITE_ONCE(newsock->sk->sk_socket->ops,
4010 mptcp_fallback_tcp_ops(newsock->sk));
4011 }
4012 release_sock(newsk);
4013
4014 return 0;
4015 }
4016
mptcp_check_writeable(struct mptcp_sock * msk)4017 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4018 {
4019 struct sock *sk = (struct sock *)msk;
4020
4021 if (sk_stream_is_writeable(sk))
4022 return EPOLLOUT | EPOLLWRNORM;
4023
4024 mptcp_set_nospace(sk);
4025 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
4026 if (sk_stream_is_writeable(sk))
4027 return EPOLLOUT | EPOLLWRNORM;
4028
4029 return 0;
4030 }
4031
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4032 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4033 struct poll_table_struct *wait)
4034 {
4035 struct sock *sk = sock->sk;
4036 struct mptcp_sock *msk;
4037 __poll_t mask = 0;
4038 u8 shutdown;
4039 int state;
4040
4041 msk = mptcp_sk(sk);
4042 sock_poll_wait(file, sock, wait);
4043
4044 state = inet_sk_state_load(sk);
4045 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4046 if (state == TCP_LISTEN) {
4047 struct sock *ssk = READ_ONCE(msk->first);
4048
4049 if (WARN_ON_ONCE(!ssk))
4050 return 0;
4051
4052 return inet_csk_listen_poll(ssk);
4053 }
4054
4055 shutdown = READ_ONCE(sk->sk_shutdown);
4056 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4057 mask |= EPOLLHUP;
4058 if (shutdown & RCV_SHUTDOWN)
4059 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4060
4061 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4062 mask |= mptcp_check_readable(sk);
4063 if (shutdown & SEND_SHUTDOWN)
4064 mask |= EPOLLOUT | EPOLLWRNORM;
4065 else
4066 mask |= mptcp_check_writeable(msk);
4067 } else if (state == TCP_SYN_SENT &&
4068 inet_test_bit(DEFER_CONNECT, sk)) {
4069 /* cf tcp_poll() note about TFO */
4070 mask |= EPOLLOUT | EPOLLWRNORM;
4071 }
4072
4073 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4074 smp_rmb();
4075 if (READ_ONCE(sk->sk_err))
4076 mask |= EPOLLERR;
4077
4078 return mask;
4079 }
4080
4081 static const struct proto_ops mptcp_stream_ops = {
4082 .family = PF_INET,
4083 .owner = THIS_MODULE,
4084 .release = inet_release,
4085 .bind = mptcp_bind,
4086 .connect = inet_stream_connect,
4087 .socketpair = sock_no_socketpair,
4088 .accept = mptcp_stream_accept,
4089 .getname = inet_getname,
4090 .poll = mptcp_poll,
4091 .ioctl = inet_ioctl,
4092 .gettstamp = sock_gettstamp,
4093 .listen = mptcp_listen,
4094 .shutdown = inet_shutdown,
4095 .setsockopt = sock_common_setsockopt,
4096 .getsockopt = sock_common_getsockopt,
4097 .sendmsg = inet_sendmsg,
4098 .recvmsg = inet_recvmsg,
4099 .mmap = sock_no_mmap,
4100 .set_rcvlowat = mptcp_set_rcvlowat,
4101 };
4102
4103 static struct inet_protosw mptcp_protosw = {
4104 .type = SOCK_STREAM,
4105 .protocol = IPPROTO_MPTCP,
4106 .prot = &mptcp_prot,
4107 .ops = &mptcp_stream_ops,
4108 .flags = INET_PROTOSW_ICSK,
4109 };
4110
mptcp_napi_poll(struct napi_struct * napi,int budget)4111 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4112 {
4113 struct mptcp_delegated_action *delegated;
4114 struct mptcp_subflow_context *subflow;
4115 int work_done = 0;
4116
4117 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4118 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4119 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4120
4121 bh_lock_sock_nested(ssk);
4122 if (!sock_owned_by_user(ssk)) {
4123 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4124 } else {
4125 /* tcp_release_cb_override already processed
4126 * the action or will do at next release_sock().
4127 * In both case must dequeue the subflow here - on the same
4128 * CPU that scheduled it.
4129 */
4130 smp_wmb();
4131 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4132 }
4133 bh_unlock_sock(ssk);
4134 sock_put(ssk);
4135
4136 if (++work_done == budget)
4137 return budget;
4138 }
4139
4140 /* always provide a 0 'work_done' argument, so that napi_complete_done
4141 * will not try accessing the NULL napi->dev ptr
4142 */
4143 napi_complete_done(napi, 0);
4144 return work_done;
4145 }
4146
mptcp_proto_init(void)4147 void __init mptcp_proto_init(void)
4148 {
4149 struct mptcp_delegated_action *delegated;
4150 int cpu;
4151
4152 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4153
4154 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4155 panic("Failed to allocate MPTCP pcpu counter\n");
4156
4157 init_dummy_netdev(&mptcp_napi_dev);
4158 for_each_possible_cpu(cpu) {
4159 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4160 INIT_LIST_HEAD(&delegated->head);
4161 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4162 mptcp_napi_poll);
4163 napi_enable(&delegated->napi);
4164 }
4165
4166 mptcp_subflow_init();
4167 mptcp_pm_init();
4168 mptcp_sched_init();
4169 mptcp_token_init();
4170
4171 if (proto_register(&mptcp_prot, 1) != 0)
4172 panic("Failed to register MPTCP proto.\n");
4173
4174 inet_register_protosw(&mptcp_protosw);
4175
4176 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4177 }
4178
4179 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4180 static const struct proto_ops mptcp_v6_stream_ops = {
4181 .family = PF_INET6,
4182 .owner = THIS_MODULE,
4183 .release = inet6_release,
4184 .bind = mptcp_bind,
4185 .connect = inet_stream_connect,
4186 .socketpair = sock_no_socketpair,
4187 .accept = mptcp_stream_accept,
4188 .getname = inet6_getname,
4189 .poll = mptcp_poll,
4190 .ioctl = inet6_ioctl,
4191 .gettstamp = sock_gettstamp,
4192 .listen = mptcp_listen,
4193 .shutdown = inet_shutdown,
4194 .setsockopt = sock_common_setsockopt,
4195 .getsockopt = sock_common_getsockopt,
4196 .sendmsg = inet6_sendmsg,
4197 .recvmsg = inet6_recvmsg,
4198 .mmap = sock_no_mmap,
4199 #ifdef CONFIG_COMPAT
4200 .compat_ioctl = inet6_compat_ioctl,
4201 #endif
4202 .set_rcvlowat = mptcp_set_rcvlowat,
4203 };
4204
4205 static struct proto mptcp_v6_prot;
4206
4207 static struct inet_protosw mptcp_v6_protosw = {
4208 .type = SOCK_STREAM,
4209 .protocol = IPPROTO_MPTCP,
4210 .prot = &mptcp_v6_prot,
4211 .ops = &mptcp_v6_stream_ops,
4212 .flags = INET_PROTOSW_ICSK,
4213 };
4214
mptcp_proto_v6_init(void)4215 int __init mptcp_proto_v6_init(void)
4216 {
4217 int err;
4218
4219 mptcp_v6_prot = mptcp_prot;
4220 strcpy(mptcp_v6_prot.name, "MPTCPv6");
4221 mptcp_v6_prot.slab = NULL;
4222 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4223 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4224
4225 err = proto_register(&mptcp_v6_prot, 1);
4226 if (err)
4227 return err;
4228
4229 err = inet6_register_protosw(&mptcp_v6_protosw);
4230 if (err)
4231 proto_unregister(&mptcp_v6_prot);
4232
4233 return err;
4234 }
4235 #endif
4236