1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h> /* for Unix socket types */
73 #include <net/af_unix.h> /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h> /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 #include <linux/io_uring.h>
95 #include <linux/hck/lite_hck_ced.h>
96
97 #include "avc.h"
98 #include "objsec.h"
99 #include "netif.h"
100 #include "netnode.h"
101 #include "netport.h"
102 #include "ibpkey.h"
103 #include "xfrm.h"
104 #include "netlabel.h"
105 #include "audit.h"
106 #include "avc_ss.h"
107
108 #define SELINUX_INODE_INIT_XATTRS 1
109
110 struct selinux_state selinux_state;
111
112 /* SECMARK reference count */
113 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
114
115 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
116 static int selinux_enforcing_boot __initdata;
117
enforcing_setup(char * str)118 static int __init enforcing_setup(char *str)
119 {
120 unsigned long enforcing;
121 if (!kstrtoul(str, 0, &enforcing))
122 selinux_enforcing_boot = enforcing ? 1 : 0;
123 return 1;
124 }
125 __setup("enforcing=", enforcing_setup);
126 #else
127 #define selinux_enforcing_boot 1
128 #endif
129
130 int selinux_enabled_boot __initdata = 1;
131 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
selinux_enabled_setup(char * str)132 static int __init selinux_enabled_setup(char *str)
133 {
134 unsigned long enabled;
135 if (!kstrtoul(str, 0, &enabled))
136 selinux_enabled_boot = enabled ? 1 : 0;
137 return 1;
138 }
139 __setup("selinux=", selinux_enabled_setup);
140 #endif
141
checkreqprot_setup(char * str)142 static int __init checkreqprot_setup(char *str)
143 {
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 if (checkreqprot)
148 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
149 }
150 return 1;
151 }
152 __setup("checkreqprot=", checkreqprot_setup);
153
154 /**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
selinux_secmark_enabled(void)165 static int selinux_secmark_enabled(void)
166 {
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169 }
170
171 /**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
selinux_peerlbl_enabled(void)181 static int selinux_peerlbl_enabled(void)
182 {
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185 }
186
selinux_netcache_avc_callback(u32 event)187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196 }
197
selinux_lsm_notifier_avc_callback(u32 event)198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206 }
207
208 /*
209 * initialise the security for the init task
210 */
cred_init_security(void)211 static void cred_init_security(void)
212 {
213 struct task_security_struct *tsec;
214
215 tsec = selinux_cred(unrcu_pointer(current->real_cred));
216 tsec->osid = tsec->sid = SECINITSID_KERNEL;
217 }
218
219 /*
220 * get the security ID of a set of credentials
221 */
cred_sid(const struct cred * cred)222 static inline u32 cred_sid(const struct cred *cred)
223 {
224 const struct task_security_struct *tsec;
225
226 tsec = selinux_cred(cred);
227 return tsec->sid;
228 }
229
__ad_net_init(struct common_audit_data * ad,struct lsm_network_audit * net,int ifindex,struct sock * sk,u16 family)230 static void __ad_net_init(struct common_audit_data *ad,
231 struct lsm_network_audit *net,
232 int ifindex, struct sock *sk, u16 family)
233 {
234 ad->type = LSM_AUDIT_DATA_NET;
235 ad->u.net = net;
236 net->netif = ifindex;
237 net->sk = sk;
238 net->family = family;
239 }
240
ad_net_init_from_sk(struct common_audit_data * ad,struct lsm_network_audit * net,struct sock * sk)241 static void ad_net_init_from_sk(struct common_audit_data *ad,
242 struct lsm_network_audit *net,
243 struct sock *sk)
244 {
245 __ad_net_init(ad, net, 0, sk, 0);
246 }
247
ad_net_init_from_iif(struct common_audit_data * ad,struct lsm_network_audit * net,int ifindex,u16 family)248 static void ad_net_init_from_iif(struct common_audit_data *ad,
249 struct lsm_network_audit *net,
250 int ifindex, u16 family)
251 {
252 __ad_net_init(ad, net, ifindex, NULL, family);
253 }
254
255 /*
256 * get the objective security ID of a task
257 */
task_sid_obj(const struct task_struct * task)258 static inline u32 task_sid_obj(const struct task_struct *task)
259 {
260 u32 sid;
261
262 rcu_read_lock();
263 sid = cred_sid(__task_cred(task));
264 rcu_read_unlock();
265 return sid;
266 }
267
268 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
269
270 /*
271 * Try reloading inode security labels that have been marked as invalid. The
272 * @may_sleep parameter indicates when sleeping and thus reloading labels is
273 * allowed; when set to false, returns -ECHILD when the label is
274 * invalid. The @dentry parameter should be set to a dentry of the inode.
275 */
__inode_security_revalidate(struct inode * inode,struct dentry * dentry,bool may_sleep)276 static int __inode_security_revalidate(struct inode *inode,
277 struct dentry *dentry,
278 bool may_sleep)
279 {
280 struct inode_security_struct *isec = selinux_inode(inode);
281
282 might_sleep_if(may_sleep);
283
284 if (selinux_initialized() &&
285 isec->initialized != LABEL_INITIALIZED) {
286 if (!may_sleep)
287 return -ECHILD;
288
289 /*
290 * Try reloading the inode security label. This will fail if
291 * @opt_dentry is NULL and no dentry for this inode can be
292 * found; in that case, continue using the old label.
293 */
294 inode_doinit_with_dentry(inode, dentry);
295 }
296 return 0;
297 }
298
inode_security_novalidate(struct inode * inode)299 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
300 {
301 return selinux_inode(inode);
302 }
303
inode_security_rcu(struct inode * inode,bool rcu)304 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
305 {
306 int error;
307
308 error = __inode_security_revalidate(inode, NULL, !rcu);
309 if (error)
310 return ERR_PTR(error);
311 return selinux_inode(inode);
312 }
313
314 /*
315 * Get the security label of an inode.
316 */
inode_security(struct inode * inode)317 static struct inode_security_struct *inode_security(struct inode *inode)
318 {
319 __inode_security_revalidate(inode, NULL, true);
320 return selinux_inode(inode);
321 }
322
backing_inode_security_novalidate(struct dentry * dentry)323 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
324 {
325 struct inode *inode = d_backing_inode(dentry);
326
327 return selinux_inode(inode);
328 }
329
330 /*
331 * Get the security label of a dentry's backing inode.
332 */
backing_inode_security(struct dentry * dentry)333 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
334 {
335 struct inode *inode = d_backing_inode(dentry);
336
337 __inode_security_revalidate(inode, dentry, true);
338 return selinux_inode(inode);
339 }
340
inode_free_security(struct inode * inode)341 static void inode_free_security(struct inode *inode)
342 {
343 struct inode_security_struct *isec = selinux_inode(inode);
344 struct superblock_security_struct *sbsec;
345
346 if (!isec)
347 return;
348 sbsec = selinux_superblock(inode->i_sb);
349 /*
350 * As not all inode security structures are in a list, we check for
351 * empty list outside of the lock to make sure that we won't waste
352 * time taking a lock doing nothing.
353 *
354 * The list_del_init() function can be safely called more than once.
355 * It should not be possible for this function to be called with
356 * concurrent list_add(), but for better safety against future changes
357 * in the code, we use list_empty_careful() here.
358 */
359 if (!list_empty_careful(&isec->list)) {
360 spin_lock(&sbsec->isec_lock);
361 list_del_init(&isec->list);
362 spin_unlock(&sbsec->isec_lock);
363 }
364 }
365
366 struct selinux_mnt_opts {
367 u32 fscontext_sid;
368 u32 context_sid;
369 u32 rootcontext_sid;
370 u32 defcontext_sid;
371 };
372
selinux_free_mnt_opts(void * mnt_opts)373 static void selinux_free_mnt_opts(void *mnt_opts)
374 {
375 kfree(mnt_opts);
376 }
377
378 enum {
379 Opt_error = -1,
380 Opt_context = 0,
381 Opt_defcontext = 1,
382 Opt_fscontext = 2,
383 Opt_rootcontext = 3,
384 Opt_seclabel = 4,
385 };
386
387 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
388 static const struct {
389 const char *name;
390 int len;
391 int opt;
392 bool has_arg;
393 } tokens[] = {
394 A(context, true),
395 A(fscontext, true),
396 A(defcontext, true),
397 A(rootcontext, true),
398 A(seclabel, false),
399 };
400 #undef A
401
match_opt_prefix(char * s,int l,char ** arg)402 static int match_opt_prefix(char *s, int l, char **arg)
403 {
404 int i;
405
406 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
407 size_t len = tokens[i].len;
408 if (len > l || memcmp(s, tokens[i].name, len))
409 continue;
410 if (tokens[i].has_arg) {
411 if (len == l || s[len] != '=')
412 continue;
413 *arg = s + len + 1;
414 } else if (len != l)
415 continue;
416 return tokens[i].opt;
417 }
418 return Opt_error;
419 }
420
421 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
422
may_context_mount_sb_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)423 static int may_context_mount_sb_relabel(u32 sid,
424 struct superblock_security_struct *sbsec,
425 const struct cred *cred)
426 {
427 const struct task_security_struct *tsec = selinux_cred(cred);
428 int rc;
429
430 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
431 FILESYSTEM__RELABELFROM, NULL);
432 if (rc)
433 return rc;
434
435 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
436 FILESYSTEM__RELABELTO, NULL);
437 return rc;
438 }
439
may_context_mount_inode_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)440 static int may_context_mount_inode_relabel(u32 sid,
441 struct superblock_security_struct *sbsec,
442 const struct cred *cred)
443 {
444 const struct task_security_struct *tsec = selinux_cred(cred);
445 int rc;
446 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
447 FILESYSTEM__RELABELFROM, NULL);
448 if (rc)
449 return rc;
450
451 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
452 FILESYSTEM__ASSOCIATE, NULL);
453 return rc;
454 }
455
selinux_is_genfs_special_handling(struct super_block * sb)456 static int selinux_is_genfs_special_handling(struct super_block *sb)
457 {
458 /* Special handling. Genfs but also in-core setxattr handler */
459 return !strcmp(sb->s_type->name, "sysfs") ||
460 !strcmp(sb->s_type->name, "pstore") ||
461 !strcmp(sb->s_type->name, "debugfs") ||
462 !strcmp(sb->s_type->name, "tracefs") ||
463 !strcmp(sb->s_type->name, "rootfs") ||
464 (selinux_policycap_cgroupseclabel() &&
465 (!strcmp(sb->s_type->name, "cgroup") ||
466 !strcmp(sb->s_type->name, "cgroup2")));
467 }
468
selinux_is_sblabel_mnt(struct super_block * sb)469 static int selinux_is_sblabel_mnt(struct super_block *sb)
470 {
471 struct superblock_security_struct *sbsec = selinux_superblock(sb);
472
473 /*
474 * IMPORTANT: Double-check logic in this function when adding a new
475 * SECURITY_FS_USE_* definition!
476 */
477 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
478
479 switch (sbsec->behavior) {
480 case SECURITY_FS_USE_XATTR:
481 case SECURITY_FS_USE_TRANS:
482 case SECURITY_FS_USE_TASK:
483 case SECURITY_FS_USE_NATIVE:
484 return 1;
485
486 case SECURITY_FS_USE_GENFS:
487 return selinux_is_genfs_special_handling(sb);
488
489 /* Never allow relabeling on context mounts */
490 case SECURITY_FS_USE_MNTPOINT:
491 case SECURITY_FS_USE_NONE:
492 default:
493 return 0;
494 }
495 }
496
sb_check_xattr_support(struct super_block * sb)497 static int sb_check_xattr_support(struct super_block *sb)
498 {
499 struct superblock_security_struct *sbsec = selinux_superblock(sb);
500 struct dentry *root = sb->s_root;
501 struct inode *root_inode = d_backing_inode(root);
502 u32 sid;
503 int rc;
504
505 /*
506 * Make sure that the xattr handler exists and that no
507 * error other than -ENODATA is returned by getxattr on
508 * the root directory. -ENODATA is ok, as this may be
509 * the first boot of the SELinux kernel before we have
510 * assigned xattr values to the filesystem.
511 */
512 if (!(root_inode->i_opflags & IOP_XATTR)) {
513 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
514 sb->s_id, sb->s_type->name);
515 goto fallback;
516 }
517
518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
519 if (rc < 0 && rc != -ENODATA) {
520 if (rc == -EOPNOTSUPP) {
521 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
522 sb->s_id, sb->s_type->name);
523 goto fallback;
524 } else {
525 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
526 sb->s_id, sb->s_type->name, -rc);
527 return rc;
528 }
529 }
530 return 0;
531
532 fallback:
533 /* No xattr support - try to fallback to genfs if possible. */
534 rc = security_genfs_sid(sb->s_type->name, "/",
535 SECCLASS_DIR, &sid);
536 if (rc)
537 return -EOPNOTSUPP;
538
539 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
540 sb->s_id, sb->s_type->name);
541 sbsec->behavior = SECURITY_FS_USE_GENFS;
542 sbsec->sid = sid;
543 return 0;
544 }
545
sb_finish_set_opts(struct super_block * sb)546 static int sb_finish_set_opts(struct super_block *sb)
547 {
548 struct superblock_security_struct *sbsec = selinux_superblock(sb);
549 struct dentry *root = sb->s_root;
550 struct inode *root_inode = d_backing_inode(root);
551 int rc = 0;
552
553 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
554 rc = sb_check_xattr_support(sb);
555 if (rc)
556 return rc;
557 }
558
559 sbsec->flags |= SE_SBINITIALIZED;
560
561 /*
562 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
563 * leave the flag untouched because sb_clone_mnt_opts might be handing
564 * us a superblock that needs the flag to be cleared.
565 */
566 if (selinux_is_sblabel_mnt(sb))
567 sbsec->flags |= SBLABEL_MNT;
568 else
569 sbsec->flags &= ~SBLABEL_MNT;
570
571 /* Initialize the root inode. */
572 rc = inode_doinit_with_dentry(root_inode, root);
573
574 /* Initialize any other inodes associated with the superblock, e.g.
575 inodes created prior to initial policy load or inodes created
576 during get_sb by a pseudo filesystem that directly
577 populates itself. */
578 spin_lock(&sbsec->isec_lock);
579 while (!list_empty(&sbsec->isec_head)) {
580 struct inode_security_struct *isec =
581 list_first_entry(&sbsec->isec_head,
582 struct inode_security_struct, list);
583 struct inode *inode = isec->inode;
584 list_del_init(&isec->list);
585 spin_unlock(&sbsec->isec_lock);
586 inode = igrab(inode);
587 if (inode) {
588 if (!IS_PRIVATE(inode))
589 inode_doinit_with_dentry(inode, NULL);
590 iput(inode);
591 }
592 spin_lock(&sbsec->isec_lock);
593 }
594 spin_unlock(&sbsec->isec_lock);
595 return rc;
596 }
597
bad_option(struct superblock_security_struct * sbsec,char flag,u32 old_sid,u32 new_sid)598 static int bad_option(struct superblock_security_struct *sbsec, char flag,
599 u32 old_sid, u32 new_sid)
600 {
601 char mnt_flags = sbsec->flags & SE_MNTMASK;
602
603 /* check if the old mount command had the same options */
604 if (sbsec->flags & SE_SBINITIALIZED)
605 if (!(sbsec->flags & flag) ||
606 (old_sid != new_sid))
607 return 1;
608
609 /* check if we were passed the same options twice,
610 * aka someone passed context=a,context=b
611 */
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 if (mnt_flags & flag)
614 return 1;
615 return 0;
616 }
617
618 /*
619 * Allow filesystems with binary mount data to explicitly set mount point
620 * labeling information.
621 */
selinux_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)622 static int selinux_set_mnt_opts(struct super_block *sb,
623 void *mnt_opts,
624 unsigned long kern_flags,
625 unsigned long *set_kern_flags)
626 {
627 const struct cred *cred = current_cred();
628 struct superblock_security_struct *sbsec = selinux_superblock(sb);
629 struct dentry *root = sb->s_root;
630 struct selinux_mnt_opts *opts = mnt_opts;
631 struct inode_security_struct *root_isec;
632 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
633 u32 defcontext_sid = 0;
634 int rc = 0;
635
636 /*
637 * Specifying internal flags without providing a place to
638 * place the results is not allowed
639 */
640 if (kern_flags && !set_kern_flags)
641 return -EINVAL;
642
643 mutex_lock(&sbsec->lock);
644
645 if (!selinux_initialized()) {
646 if (!opts) {
647 /* Defer initialization until selinux_complete_init,
648 after the initial policy is loaded and the security
649 server is ready to handle calls. */
650 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
651 sbsec->flags |= SE_SBNATIVE;
652 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
653 }
654 goto out;
655 }
656 rc = -EINVAL;
657 pr_warn("SELinux: Unable to set superblock options "
658 "before the security server is initialized\n");
659 goto out;
660 }
661
662 /*
663 * Binary mount data FS will come through this function twice. Once
664 * from an explicit call and once from the generic calls from the vfs.
665 * Since the generic VFS calls will not contain any security mount data
666 * we need to skip the double mount verification.
667 *
668 * This does open a hole in which we will not notice if the first
669 * mount using this sb set explicit options and a second mount using
670 * this sb does not set any security options. (The first options
671 * will be used for both mounts)
672 */
673 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
674 && !opts)
675 goto out;
676
677 root_isec = backing_inode_security_novalidate(root);
678
679 /*
680 * parse the mount options, check if they are valid sids.
681 * also check if someone is trying to mount the same sb more
682 * than once with different security options.
683 */
684 if (opts) {
685 if (opts->fscontext_sid) {
686 fscontext_sid = opts->fscontext_sid;
687 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
688 fscontext_sid))
689 goto out_double_mount;
690 sbsec->flags |= FSCONTEXT_MNT;
691 }
692 if (opts->context_sid) {
693 context_sid = opts->context_sid;
694 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
695 context_sid))
696 goto out_double_mount;
697 sbsec->flags |= CONTEXT_MNT;
698 }
699 if (opts->rootcontext_sid) {
700 rootcontext_sid = opts->rootcontext_sid;
701 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
702 rootcontext_sid))
703 goto out_double_mount;
704 sbsec->flags |= ROOTCONTEXT_MNT;
705 }
706 if (opts->defcontext_sid) {
707 defcontext_sid = opts->defcontext_sid;
708 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
709 defcontext_sid))
710 goto out_double_mount;
711 sbsec->flags |= DEFCONTEXT_MNT;
712 }
713 }
714
715 if (sbsec->flags & SE_SBINITIALIZED) {
716 /* previously mounted with options, but not on this attempt? */
717 if ((sbsec->flags & SE_MNTMASK) && !opts)
718 goto out_double_mount;
719 rc = 0;
720 goto out;
721 }
722
723 if (strcmp(sb->s_type->name, "proc") == 0)
724 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
725
726 if (!strcmp(sb->s_type->name, "debugfs") ||
727 !strcmp(sb->s_type->name, "tracefs") ||
728 !strcmp(sb->s_type->name, "binder") ||
729 !strcmp(sb->s_type->name, "bpf") ||
730 !strcmp(sb->s_type->name, "pstore") ||
731 !strcmp(sb->s_type->name, "securityfs"))
732 sbsec->flags |= SE_SBGENFS;
733
734 if (!strcmp(sb->s_type->name, "sysfs") ||
735 !strcmp(sb->s_type->name, "cgroup") ||
736 !strcmp(sb->s_type->name, "cgroup2"))
737 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
738
739 if (!sbsec->behavior) {
740 /*
741 * Determine the labeling behavior to use for this
742 * filesystem type.
743 */
744 rc = security_fs_use(sb);
745 if (rc) {
746 pr_warn("%s: security_fs_use(%s) returned %d\n",
747 __func__, sb->s_type->name, rc);
748 goto out;
749 }
750 }
751
752 /*
753 * If this is a user namespace mount and the filesystem type is not
754 * explicitly whitelisted, then no contexts are allowed on the command
755 * line and security labels must be ignored.
756 */
757 if (sb->s_user_ns != &init_user_ns &&
758 strcmp(sb->s_type->name, "tmpfs") &&
759 strcmp(sb->s_type->name, "ramfs") &&
760 strcmp(sb->s_type->name, "devpts") &&
761 strcmp(sb->s_type->name, "overlay")) {
762 if (context_sid || fscontext_sid || rootcontext_sid ||
763 defcontext_sid) {
764 rc = -EACCES;
765 goto out;
766 }
767 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
768 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
769 rc = security_transition_sid(current_sid(),
770 current_sid(),
771 SECCLASS_FILE, NULL,
772 &sbsec->mntpoint_sid);
773 if (rc)
774 goto out;
775 }
776 goto out_set_opts;
777 }
778
779 /* sets the context of the superblock for the fs being mounted. */
780 if (fscontext_sid) {
781 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
782 if (rc)
783 goto out;
784
785 sbsec->sid = fscontext_sid;
786 }
787
788 /*
789 * Switch to using mount point labeling behavior.
790 * sets the label used on all file below the mountpoint, and will set
791 * the superblock context if not already set.
792 */
793 if (sbsec->flags & SE_SBNATIVE) {
794 /*
795 * This means we are initializing a superblock that has been
796 * mounted before the SELinux was initialized and the
797 * filesystem requested native labeling. We had already
798 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
799 * in the original mount attempt, so now we just need to set
800 * the SECURITY_FS_USE_NATIVE behavior.
801 */
802 sbsec->behavior = SECURITY_FS_USE_NATIVE;
803 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
804 sbsec->behavior = SECURITY_FS_USE_NATIVE;
805 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
806 }
807
808 if (context_sid) {
809 if (!fscontext_sid) {
810 rc = may_context_mount_sb_relabel(context_sid, sbsec,
811 cred);
812 if (rc)
813 goto out;
814 sbsec->sid = context_sid;
815 } else {
816 rc = may_context_mount_inode_relabel(context_sid, sbsec,
817 cred);
818 if (rc)
819 goto out;
820 }
821 if (!rootcontext_sid)
822 rootcontext_sid = context_sid;
823
824 sbsec->mntpoint_sid = context_sid;
825 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
826 }
827
828 if (rootcontext_sid) {
829 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
830 cred);
831 if (rc)
832 goto out;
833
834 root_isec->sid = rootcontext_sid;
835 root_isec->initialized = LABEL_INITIALIZED;
836 }
837
838 if (defcontext_sid) {
839 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
840 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
841 rc = -EINVAL;
842 pr_warn("SELinux: defcontext option is "
843 "invalid for this filesystem type\n");
844 goto out;
845 }
846
847 if (defcontext_sid != sbsec->def_sid) {
848 rc = may_context_mount_inode_relabel(defcontext_sid,
849 sbsec, cred);
850 if (rc)
851 goto out;
852 }
853
854 sbsec->def_sid = defcontext_sid;
855 }
856
857 out_set_opts:
858 rc = sb_finish_set_opts(sb);
859 out:
860 mutex_unlock(&sbsec->lock);
861 return rc;
862 out_double_mount:
863 rc = -EINVAL;
864 pr_warn("SELinux: mount invalid. Same superblock, different "
865 "security settings for (dev %s, type %s)\n", sb->s_id,
866 sb->s_type->name);
867 goto out;
868 }
869
selinux_cmp_sb_context(const struct super_block * oldsb,const struct super_block * newsb)870 static int selinux_cmp_sb_context(const struct super_block *oldsb,
871 const struct super_block *newsb)
872 {
873 struct superblock_security_struct *old = selinux_superblock(oldsb);
874 struct superblock_security_struct *new = selinux_superblock(newsb);
875 char oldflags = old->flags & SE_MNTMASK;
876 char newflags = new->flags & SE_MNTMASK;
877
878 if (oldflags != newflags)
879 goto mismatch;
880 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
881 goto mismatch;
882 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
883 goto mismatch;
884 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
885 goto mismatch;
886 if (oldflags & ROOTCONTEXT_MNT) {
887 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
888 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
889 if (oldroot->sid != newroot->sid)
890 goto mismatch;
891 }
892 return 0;
893 mismatch:
894 pr_warn("SELinux: mount invalid. Same superblock, "
895 "different security settings for (dev %s, "
896 "type %s)\n", newsb->s_id, newsb->s_type->name);
897 return -EBUSY;
898 }
899
selinux_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)900 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
901 struct super_block *newsb,
902 unsigned long kern_flags,
903 unsigned long *set_kern_flags)
904 {
905 int rc = 0;
906 const struct superblock_security_struct *oldsbsec =
907 selinux_superblock(oldsb);
908 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
909
910 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
911 int set_context = (oldsbsec->flags & CONTEXT_MNT);
912 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
913
914 /*
915 * Specifying internal flags without providing a place to
916 * place the results is not allowed.
917 */
918 if (kern_flags && !set_kern_flags)
919 return -EINVAL;
920
921 mutex_lock(&newsbsec->lock);
922
923 /*
924 * if the parent was able to be mounted it clearly had no special lsm
925 * mount options. thus we can safely deal with this superblock later
926 */
927 if (!selinux_initialized()) {
928 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
929 newsbsec->flags |= SE_SBNATIVE;
930 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
931 }
932 goto out;
933 }
934
935 /* how can we clone if the old one wasn't set up?? */
936 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
937
938 /* if fs is reusing a sb, make sure that the contexts match */
939 if (newsbsec->flags & SE_SBINITIALIZED) {
940 mutex_unlock(&newsbsec->lock);
941 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
942 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
943 return selinux_cmp_sb_context(oldsb, newsb);
944 }
945
946 newsbsec->flags = oldsbsec->flags;
947
948 newsbsec->sid = oldsbsec->sid;
949 newsbsec->def_sid = oldsbsec->def_sid;
950 newsbsec->behavior = oldsbsec->behavior;
951
952 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
953 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
954 rc = security_fs_use(newsb);
955 if (rc)
956 goto out;
957 }
958
959 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
960 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
961 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
962 }
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 out:
984 mutex_unlock(&newsbsec->lock);
985 return rc;
986 }
987
988 /*
989 * NOTE: the caller is responsible for freeing the memory even if on error.
990 */
selinux_add_opt(int token,const char * s,void ** mnt_opts)991 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
992 {
993 struct selinux_mnt_opts *opts = *mnt_opts;
994 u32 *dst_sid;
995 int rc;
996
997 if (token == Opt_seclabel)
998 /* eaten and completely ignored */
999 return 0;
1000 if (!s)
1001 return -EINVAL;
1002
1003 if (!selinux_initialized()) {
1004 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1005 return -EINVAL;
1006 }
1007
1008 if (!opts) {
1009 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1010 if (!opts)
1011 return -ENOMEM;
1012 *mnt_opts = opts;
1013 }
1014
1015 switch (token) {
1016 case Opt_context:
1017 if (opts->context_sid || opts->defcontext_sid)
1018 goto err;
1019 dst_sid = &opts->context_sid;
1020 break;
1021 case Opt_fscontext:
1022 if (opts->fscontext_sid)
1023 goto err;
1024 dst_sid = &opts->fscontext_sid;
1025 break;
1026 case Opt_rootcontext:
1027 if (opts->rootcontext_sid)
1028 goto err;
1029 dst_sid = &opts->rootcontext_sid;
1030 break;
1031 case Opt_defcontext:
1032 if (opts->context_sid || opts->defcontext_sid)
1033 goto err;
1034 dst_sid = &opts->defcontext_sid;
1035 break;
1036 default:
1037 WARN_ON(1);
1038 return -EINVAL;
1039 }
1040 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1041 if (rc)
1042 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1043 s, rc);
1044 return rc;
1045
1046 err:
1047 pr_warn(SEL_MOUNT_FAIL_MSG);
1048 return -EINVAL;
1049 }
1050
show_sid(struct seq_file * m,u32 sid)1051 static int show_sid(struct seq_file *m, u32 sid)
1052 {
1053 char *context = NULL;
1054 u32 len;
1055 int rc;
1056
1057 rc = security_sid_to_context(sid, &context, &len);
1058 if (!rc) {
1059 bool has_comma = strchr(context, ',');
1060
1061 seq_putc(m, '=');
1062 if (has_comma)
1063 seq_putc(m, '\"');
1064 seq_escape(m, context, "\"\n\\");
1065 if (has_comma)
1066 seq_putc(m, '\"');
1067 }
1068 kfree(context);
1069 return rc;
1070 }
1071
selinux_sb_show_options(struct seq_file * m,struct super_block * sb)1072 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1073 {
1074 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1075 int rc;
1076
1077 if (!(sbsec->flags & SE_SBINITIALIZED))
1078 return 0;
1079
1080 if (!selinux_initialized())
1081 return 0;
1082
1083 if (sbsec->flags & FSCONTEXT_MNT) {
1084 seq_putc(m, ',');
1085 seq_puts(m, FSCONTEXT_STR);
1086 rc = show_sid(m, sbsec->sid);
1087 if (rc)
1088 return rc;
1089 }
1090 if (sbsec->flags & CONTEXT_MNT) {
1091 seq_putc(m, ',');
1092 seq_puts(m, CONTEXT_STR);
1093 rc = show_sid(m, sbsec->mntpoint_sid);
1094 if (rc)
1095 return rc;
1096 }
1097 if (sbsec->flags & DEFCONTEXT_MNT) {
1098 seq_putc(m, ',');
1099 seq_puts(m, DEFCONTEXT_STR);
1100 rc = show_sid(m, sbsec->def_sid);
1101 if (rc)
1102 return rc;
1103 }
1104 if (sbsec->flags & ROOTCONTEXT_MNT) {
1105 struct dentry *root = sb->s_root;
1106 struct inode_security_struct *isec = backing_inode_security(root);
1107 seq_putc(m, ',');
1108 seq_puts(m, ROOTCONTEXT_STR);
1109 rc = show_sid(m, isec->sid);
1110 if (rc)
1111 return rc;
1112 }
1113 if (sbsec->flags & SBLABEL_MNT) {
1114 seq_putc(m, ',');
1115 seq_puts(m, SECLABEL_STR);
1116 }
1117 return 0;
1118 }
1119
inode_mode_to_security_class(umode_t mode)1120 static inline u16 inode_mode_to_security_class(umode_t mode)
1121 {
1122 switch (mode & S_IFMT) {
1123 case S_IFSOCK:
1124 return SECCLASS_SOCK_FILE;
1125 case S_IFLNK:
1126 return SECCLASS_LNK_FILE;
1127 case S_IFREG:
1128 return SECCLASS_FILE;
1129 case S_IFBLK:
1130 return SECCLASS_BLK_FILE;
1131 case S_IFDIR:
1132 return SECCLASS_DIR;
1133 case S_IFCHR:
1134 return SECCLASS_CHR_FILE;
1135 case S_IFIFO:
1136 return SECCLASS_FIFO_FILE;
1137
1138 }
1139
1140 return SECCLASS_FILE;
1141 }
1142
default_protocol_stream(int protocol)1143 static inline int default_protocol_stream(int protocol)
1144 {
1145 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1146 protocol == IPPROTO_MPTCP);
1147 }
1148
default_protocol_dgram(int protocol)1149 static inline int default_protocol_dgram(int protocol)
1150 {
1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1152 }
1153
socket_type_to_security_class(int family,int type,int protocol)1154 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1155 {
1156 bool extsockclass = selinux_policycap_extsockclass();
1157
1158 switch (family) {
1159 case PF_UNIX:
1160 switch (type) {
1161 case SOCK_STREAM:
1162 case SOCK_SEQPACKET:
1163 return SECCLASS_UNIX_STREAM_SOCKET;
1164 case SOCK_DGRAM:
1165 case SOCK_RAW:
1166 return SECCLASS_UNIX_DGRAM_SOCKET;
1167 }
1168 break;
1169 case PF_INET:
1170 case PF_INET6:
1171 switch (type) {
1172 case SOCK_STREAM:
1173 case SOCK_SEQPACKET:
1174 if (default_protocol_stream(protocol))
1175 return SECCLASS_TCP_SOCKET;
1176 else if (extsockclass && protocol == IPPROTO_SCTP)
1177 return SECCLASS_SCTP_SOCKET;
1178 else
1179 return SECCLASS_RAWIP_SOCKET;
1180 case SOCK_DGRAM:
1181 if (default_protocol_dgram(protocol))
1182 return SECCLASS_UDP_SOCKET;
1183 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1184 protocol == IPPROTO_ICMPV6))
1185 return SECCLASS_ICMP_SOCKET;
1186 else
1187 return SECCLASS_RAWIP_SOCKET;
1188 case SOCK_DCCP:
1189 return SECCLASS_DCCP_SOCKET;
1190 default:
1191 return SECCLASS_RAWIP_SOCKET;
1192 }
1193 break;
1194 case PF_NETLINK:
1195 switch (protocol) {
1196 case NETLINK_ROUTE:
1197 return SECCLASS_NETLINK_ROUTE_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200 case NETLINK_NFLOG:
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1202 case NETLINK_XFRM:
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1206 case NETLINK_ISCSI:
1207 return SECCLASS_NETLINK_ISCSI_SOCKET;
1208 case NETLINK_AUDIT:
1209 return SECCLASS_NETLINK_AUDIT_SOCKET;
1210 case NETLINK_FIB_LOOKUP:
1211 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1212 case NETLINK_CONNECTOR:
1213 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1214 case NETLINK_NETFILTER:
1215 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1216 case NETLINK_DNRTMSG:
1217 return SECCLASS_NETLINK_DNRT_SOCKET;
1218 case NETLINK_KOBJECT_UEVENT:
1219 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1220 case NETLINK_GENERIC:
1221 return SECCLASS_NETLINK_GENERIC_SOCKET;
1222 case NETLINK_SCSITRANSPORT:
1223 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1224 case NETLINK_RDMA:
1225 return SECCLASS_NETLINK_RDMA_SOCKET;
1226 case NETLINK_CRYPTO:
1227 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1228 default:
1229 return SECCLASS_NETLINK_SOCKET;
1230 }
1231 case PF_PACKET:
1232 return SECCLASS_PACKET_SOCKET;
1233 case PF_KEY:
1234 return SECCLASS_KEY_SOCKET;
1235 case PF_APPLETALK:
1236 return SECCLASS_APPLETALK_SOCKET;
1237 }
1238
1239 if (extsockclass) {
1240 switch (family) {
1241 case PF_AX25:
1242 return SECCLASS_AX25_SOCKET;
1243 case PF_IPX:
1244 return SECCLASS_IPX_SOCKET;
1245 case PF_NETROM:
1246 return SECCLASS_NETROM_SOCKET;
1247 case PF_ATMPVC:
1248 return SECCLASS_ATMPVC_SOCKET;
1249 case PF_X25:
1250 return SECCLASS_X25_SOCKET;
1251 case PF_ROSE:
1252 return SECCLASS_ROSE_SOCKET;
1253 case PF_DECnet:
1254 return SECCLASS_DECNET_SOCKET;
1255 case PF_ATMSVC:
1256 return SECCLASS_ATMSVC_SOCKET;
1257 case PF_RDS:
1258 return SECCLASS_RDS_SOCKET;
1259 case PF_IRDA:
1260 return SECCLASS_IRDA_SOCKET;
1261 case PF_PPPOX:
1262 return SECCLASS_PPPOX_SOCKET;
1263 case PF_LLC:
1264 return SECCLASS_LLC_SOCKET;
1265 case PF_CAN:
1266 return SECCLASS_CAN_SOCKET;
1267 case PF_TIPC:
1268 return SECCLASS_TIPC_SOCKET;
1269 case PF_BLUETOOTH:
1270 return SECCLASS_BLUETOOTH_SOCKET;
1271 case PF_IUCV:
1272 return SECCLASS_IUCV_SOCKET;
1273 case PF_RXRPC:
1274 return SECCLASS_RXRPC_SOCKET;
1275 case PF_ISDN:
1276 return SECCLASS_ISDN_SOCKET;
1277 case PF_PHONET:
1278 return SECCLASS_PHONET_SOCKET;
1279 case PF_IEEE802154:
1280 return SECCLASS_IEEE802154_SOCKET;
1281 case PF_CAIF:
1282 return SECCLASS_CAIF_SOCKET;
1283 case PF_ALG:
1284 return SECCLASS_ALG_SOCKET;
1285 case PF_NFC:
1286 return SECCLASS_NFC_SOCKET;
1287 case PF_VSOCK:
1288 return SECCLASS_VSOCK_SOCKET;
1289 case PF_KCM:
1290 return SECCLASS_KCM_SOCKET;
1291 case PF_QIPCRTR:
1292 return SECCLASS_QIPCRTR_SOCKET;
1293 case PF_SMC:
1294 return SECCLASS_SMC_SOCKET;
1295 case PF_XDP:
1296 return SECCLASS_XDP_SOCKET;
1297 case PF_MCTP:
1298 return SECCLASS_MCTP_SOCKET;
1299 #if PF_MAX > 46
1300 #error New address family defined, please update this function.
1301 #endif
1302 }
1303 }
1304
1305 return SECCLASS_SOCKET;
1306 }
1307
selinux_genfs_get_sid(struct dentry * dentry,u16 tclass,u16 flags,u32 * sid)1308 static int selinux_genfs_get_sid(struct dentry *dentry,
1309 u16 tclass,
1310 u16 flags,
1311 u32 *sid)
1312 {
1313 int rc;
1314 struct super_block *sb = dentry->d_sb;
1315 char *buffer, *path;
1316
1317 buffer = (char *)__get_free_page(GFP_KERNEL);
1318 if (!buffer)
1319 return -ENOMEM;
1320
1321 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1322 if (IS_ERR(path))
1323 rc = PTR_ERR(path);
1324 else {
1325 if (flags & SE_SBPROC) {
1326 /* each process gets a /proc/PID/ entry. Strip off the
1327 * PID part to get a valid selinux labeling.
1328 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1329 while (path[1] >= '0' && path[1] <= '9') {
1330 path[1] = '/';
1331 path++;
1332 }
1333 }
1334 rc = security_genfs_sid(sb->s_type->name,
1335 path, tclass, sid);
1336 if (rc == -ENOENT) {
1337 /* No match in policy, mark as unlabeled. */
1338 *sid = SECINITSID_UNLABELED;
1339 rc = 0;
1340 }
1341 }
1342 free_page((unsigned long)buffer);
1343 return rc;
1344 }
1345
inode_doinit_use_xattr(struct inode * inode,struct dentry * dentry,u32 def_sid,u32 * sid)1346 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1347 u32 def_sid, u32 *sid)
1348 {
1349 #define INITCONTEXTLEN 255
1350 char *context;
1351 unsigned int len;
1352 int rc;
1353
1354 len = INITCONTEXTLEN;
1355 context = kmalloc(len + 1, GFP_NOFS);
1356 if (!context)
1357 return -ENOMEM;
1358
1359 context[len] = '\0';
1360 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1361 if (rc == -ERANGE) {
1362 kfree(context);
1363
1364 /* Need a larger buffer. Query for the right size. */
1365 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1366 if (rc < 0)
1367 return rc;
1368
1369 len = rc;
1370 context = kmalloc(len + 1, GFP_NOFS);
1371 if (!context)
1372 return -ENOMEM;
1373
1374 context[len] = '\0';
1375 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1376 context, len);
1377 }
1378 if (rc < 0) {
1379 kfree(context);
1380 if (rc != -ENODATA) {
1381 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1382 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1383 return rc;
1384 }
1385 *sid = def_sid;
1386 return 0;
1387 }
1388
1389 rc = security_context_to_sid_default(context, rc, sid,
1390 def_sid, GFP_NOFS);
1391 if (rc) {
1392 char *dev = inode->i_sb->s_id;
1393 unsigned long ino = inode->i_ino;
1394
1395 if (rc == -EINVAL) {
1396 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1397 ino, dev, context);
1398 } else {
1399 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1400 __func__, context, -rc, dev, ino);
1401 }
1402 }
1403 kfree(context);
1404 return 0;
1405 }
1406
1407 /* The inode's security attributes must be initialized before first use. */
inode_doinit_with_dentry(struct inode * inode,struct dentry * opt_dentry)1408 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1409 {
1410 struct superblock_security_struct *sbsec = NULL;
1411 struct inode_security_struct *isec = selinux_inode(inode);
1412 u32 task_sid, sid = 0;
1413 u16 sclass;
1414 struct dentry *dentry;
1415 int rc = 0;
1416
1417 if (isec->initialized == LABEL_INITIALIZED)
1418 return 0;
1419
1420 spin_lock(&isec->lock);
1421 if (isec->initialized == LABEL_INITIALIZED)
1422 goto out_unlock;
1423
1424 if (isec->sclass == SECCLASS_FILE)
1425 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1426
1427 sbsec = selinux_superblock(inode->i_sb);
1428 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1429 /* Defer initialization until selinux_complete_init,
1430 after the initial policy is loaded and the security
1431 server is ready to handle calls. */
1432 spin_lock(&sbsec->isec_lock);
1433 if (list_empty(&isec->list))
1434 list_add(&isec->list, &sbsec->isec_head);
1435 spin_unlock(&sbsec->isec_lock);
1436 goto out_unlock;
1437 }
1438
1439 sclass = isec->sclass;
1440 task_sid = isec->task_sid;
1441 sid = isec->sid;
1442 isec->initialized = LABEL_PENDING;
1443 spin_unlock(&isec->lock);
1444
1445 switch (sbsec->behavior) {
1446 /*
1447 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1448 * via xattr when called from delayed_superblock_init().
1449 */
1450 case SECURITY_FS_USE_NATIVE:
1451 case SECURITY_FS_USE_XATTR:
1452 if (!(inode->i_opflags & IOP_XATTR)) {
1453 sid = sbsec->def_sid;
1454 break;
1455 }
1456 /* Need a dentry, since the xattr API requires one.
1457 Life would be simpler if we could just pass the inode. */
1458 if (opt_dentry) {
1459 /* Called from d_instantiate or d_splice_alias. */
1460 dentry = dget(opt_dentry);
1461 } else {
1462 /*
1463 * Called from selinux_complete_init, try to find a dentry.
1464 * Some filesystems really want a connected one, so try
1465 * that first. We could split SECURITY_FS_USE_XATTR in
1466 * two, depending upon that...
1467 */
1468 dentry = d_find_alias(inode);
1469 if (!dentry)
1470 dentry = d_find_any_alias(inode);
1471 }
1472 if (!dentry) {
1473 /*
1474 * this is can be hit on boot when a file is accessed
1475 * before the policy is loaded. When we load policy we
1476 * may find inodes that have no dentry on the
1477 * sbsec->isec_head list. No reason to complain as these
1478 * will get fixed up the next time we go through
1479 * inode_doinit with a dentry, before these inodes could
1480 * be used again by userspace.
1481 */
1482 goto out_invalid;
1483 }
1484
1485 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1486 &sid);
1487 dput(dentry);
1488 if (rc)
1489 goto out;
1490 break;
1491 case SECURITY_FS_USE_TASK:
1492 sid = task_sid;
1493 break;
1494 case SECURITY_FS_USE_TRANS:
1495 /* Default to the fs SID. */
1496 sid = sbsec->sid;
1497
1498 /* Try to obtain a transition SID. */
1499 rc = security_transition_sid(task_sid, sid,
1500 sclass, NULL, &sid);
1501 if (rc)
1502 goto out;
1503 break;
1504 case SECURITY_FS_USE_MNTPOINT:
1505 sid = sbsec->mntpoint_sid;
1506 break;
1507 default:
1508 /* Default to the fs superblock SID. */
1509 sid = sbsec->sid;
1510
1511 if ((sbsec->flags & SE_SBGENFS) &&
1512 (!S_ISLNK(inode->i_mode) ||
1513 selinux_policycap_genfs_seclabel_symlinks())) {
1514 /* We must have a dentry to determine the label on
1515 * procfs inodes */
1516 if (opt_dentry) {
1517 /* Called from d_instantiate or
1518 * d_splice_alias. */
1519 dentry = dget(opt_dentry);
1520 } else {
1521 /* Called from selinux_complete_init, try to
1522 * find a dentry. Some filesystems really want
1523 * a connected one, so try that first.
1524 */
1525 dentry = d_find_alias(inode);
1526 if (!dentry)
1527 dentry = d_find_any_alias(inode);
1528 }
1529 /*
1530 * This can be hit on boot when a file is accessed
1531 * before the policy is loaded. When we load policy we
1532 * may find inodes that have no dentry on the
1533 * sbsec->isec_head list. No reason to complain as
1534 * these will get fixed up the next time we go through
1535 * inode_doinit() with a dentry, before these inodes
1536 * could be used again by userspace.
1537 */
1538 if (!dentry)
1539 goto out_invalid;
1540 rc = selinux_genfs_get_sid(dentry, sclass,
1541 sbsec->flags, &sid);
1542 if (rc) {
1543 dput(dentry);
1544 goto out;
1545 }
1546
1547 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1548 (inode->i_opflags & IOP_XATTR)) {
1549 rc = inode_doinit_use_xattr(inode, dentry,
1550 sid, &sid);
1551 if (rc) {
1552 dput(dentry);
1553 goto out;
1554 }
1555 }
1556 dput(dentry);
1557 }
1558 break;
1559 }
1560
1561 out:
1562 spin_lock(&isec->lock);
1563 if (isec->initialized == LABEL_PENDING) {
1564 if (rc) {
1565 isec->initialized = LABEL_INVALID;
1566 goto out_unlock;
1567 }
1568 isec->initialized = LABEL_INITIALIZED;
1569 isec->sid = sid;
1570 }
1571
1572 out_unlock:
1573 spin_unlock(&isec->lock);
1574 return rc;
1575
1576 out_invalid:
1577 spin_lock(&isec->lock);
1578 if (isec->initialized == LABEL_PENDING) {
1579 isec->initialized = LABEL_INVALID;
1580 isec->sid = sid;
1581 }
1582 spin_unlock(&isec->lock);
1583 return 0;
1584 }
1585
1586 /* Convert a Linux signal to an access vector. */
signal_to_av(int sig)1587 static inline u32 signal_to_av(int sig)
1588 {
1589 u32 perm = 0;
1590
1591 switch (sig) {
1592 case SIGCHLD:
1593 /* Commonly granted from child to parent. */
1594 perm = PROCESS__SIGCHLD;
1595 break;
1596 case SIGKILL:
1597 /* Cannot be caught or ignored */
1598 perm = PROCESS__SIGKILL;
1599 break;
1600 case SIGSTOP:
1601 /* Cannot be caught or ignored */
1602 perm = PROCESS__SIGSTOP;
1603 break;
1604 default:
1605 /* All other signals. */
1606 perm = PROCESS__SIGNAL;
1607 break;
1608 }
1609
1610 return perm;
1611 }
1612
1613 #if CAP_LAST_CAP > 63
1614 #error Fix SELinux to handle capabilities > 63.
1615 #endif
1616
1617 /* Check whether a task is allowed to use a capability. */
cred_has_capability(const struct cred * cred,int cap,unsigned int opts,bool initns)1618 static int cred_has_capability(const struct cred *cred,
1619 int cap, unsigned int opts, bool initns)
1620 {
1621 struct common_audit_data ad;
1622 struct av_decision avd;
1623 u16 sclass;
1624 u32 sid = cred_sid(cred);
1625 u32 av = CAP_TO_MASK(cap);
1626 int rc;
1627
1628 ad.type = LSM_AUDIT_DATA_CAP;
1629 ad.u.cap = cap;
1630
1631 switch (CAP_TO_INDEX(cap)) {
1632 case 0:
1633 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1634 break;
1635 case 1:
1636 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1637 break;
1638 default:
1639 pr_err("SELinux: out of range capability %d\n", cap);
1640 BUG();
1641 return -EINVAL;
1642 }
1643
1644 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1645 if (!(opts & CAP_OPT_NOAUDIT)) {
1646 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1647 if (rc2)
1648 return rc2;
1649 }
1650 return rc;
1651 }
1652
1653 /* Check whether a task has a particular permission to an inode.
1654 The 'adp' parameter is optional and allows other audit
1655 data to be passed (e.g. the dentry). */
inode_has_perm(const struct cred * cred,struct inode * inode,u32 perms,struct common_audit_data * adp)1656 static int inode_has_perm(const struct cred *cred,
1657 struct inode *inode,
1658 u32 perms,
1659 struct common_audit_data *adp)
1660 {
1661 struct inode_security_struct *isec;
1662 u32 sid;
1663
1664 if (unlikely(IS_PRIVATE(inode)))
1665 return 0;
1666
1667 sid = cred_sid(cred);
1668 isec = selinux_inode(inode);
1669
1670 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1671 }
1672
1673 /* Same as inode_has_perm, but pass explicit audit data containing
1674 the dentry to help the auditing code to more easily generate the
1675 pathname if needed. */
dentry_has_perm(const struct cred * cred,struct dentry * dentry,u32 av)1676 static inline int dentry_has_perm(const struct cred *cred,
1677 struct dentry *dentry,
1678 u32 av)
1679 {
1680 struct inode *inode = d_backing_inode(dentry);
1681 struct common_audit_data ad;
1682
1683 ad.type = LSM_AUDIT_DATA_DENTRY;
1684 ad.u.dentry = dentry;
1685 __inode_security_revalidate(inode, dentry, true);
1686 return inode_has_perm(cred, inode, av, &ad);
1687 }
1688
1689 /* Same as inode_has_perm, but pass explicit audit data containing
1690 the path to help the auditing code to more easily generate the
1691 pathname if needed. */
path_has_perm(const struct cred * cred,const struct path * path,u32 av)1692 static inline int path_has_perm(const struct cred *cred,
1693 const struct path *path,
1694 u32 av)
1695 {
1696 struct inode *inode = d_backing_inode(path->dentry);
1697 struct common_audit_data ad;
1698
1699 ad.type = LSM_AUDIT_DATA_PATH;
1700 ad.u.path = *path;
1701 __inode_security_revalidate(inode, path->dentry, true);
1702 return inode_has_perm(cred, inode, av, &ad);
1703 }
1704
1705 /* Same as path_has_perm, but uses the inode from the file struct. */
file_path_has_perm(const struct cred * cred,struct file * file,u32 av)1706 static inline int file_path_has_perm(const struct cred *cred,
1707 struct file *file,
1708 u32 av)
1709 {
1710 struct common_audit_data ad;
1711
1712 ad.type = LSM_AUDIT_DATA_FILE;
1713 ad.u.file = file;
1714 return inode_has_perm(cred, file_inode(file), av, &ad);
1715 }
1716
1717 #ifdef CONFIG_BPF_SYSCALL
1718 static int bpf_fd_pass(const struct file *file, u32 sid);
1719 #endif
1720
1721 /* Check whether a task can use an open file descriptor to
1722 access an inode in a given way. Check access to the
1723 descriptor itself, and then use dentry_has_perm to
1724 check a particular permission to the file.
1725 Access to the descriptor is implicitly granted if it
1726 has the same SID as the process. If av is zero, then
1727 access to the file is not checked, e.g. for cases
1728 where only the descriptor is affected like seek. */
file_has_perm(const struct cred * cred,struct file * file,u32 av)1729 static int file_has_perm(const struct cred *cred,
1730 struct file *file,
1731 u32 av)
1732 {
1733 struct file_security_struct *fsec = selinux_file(file);
1734 struct inode *inode = file_inode(file);
1735 struct common_audit_data ad;
1736 u32 sid = cred_sid(cred);
1737 int rc;
1738
1739 ad.type = LSM_AUDIT_DATA_FILE;
1740 ad.u.file = file;
1741
1742 if (sid != fsec->sid) {
1743 rc = avc_has_perm(sid, fsec->sid,
1744 SECCLASS_FD,
1745 FD__USE,
1746 &ad);
1747 if (rc)
1748 goto out;
1749 }
1750
1751 #ifdef CONFIG_BPF_SYSCALL
1752 rc = bpf_fd_pass(file, cred_sid(cred));
1753 if (rc)
1754 return rc;
1755 #endif
1756
1757 /* av is zero if only checking access to the descriptor. */
1758 rc = 0;
1759 if (av)
1760 rc = inode_has_perm(cred, inode, av, &ad);
1761
1762 out:
1763 return rc;
1764 }
1765
1766 /*
1767 * Determine the label for an inode that might be unioned.
1768 */
1769 static int
selinux_determine_inode_label(const struct task_security_struct * tsec,struct inode * dir,const struct qstr * name,u16 tclass,u32 * _new_isid)1770 selinux_determine_inode_label(const struct task_security_struct *tsec,
1771 struct inode *dir,
1772 const struct qstr *name, u16 tclass,
1773 u32 *_new_isid)
1774 {
1775 const struct superblock_security_struct *sbsec =
1776 selinux_superblock(dir->i_sb);
1777
1778 if ((sbsec->flags & SE_SBINITIALIZED) &&
1779 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1780 *_new_isid = sbsec->mntpoint_sid;
1781 } else if ((sbsec->flags & SBLABEL_MNT) &&
1782 tsec->create_sid) {
1783 *_new_isid = tsec->create_sid;
1784 } else {
1785 const struct inode_security_struct *dsec = inode_security(dir);
1786 return security_transition_sid(tsec->sid,
1787 dsec->sid, tclass,
1788 name, _new_isid);
1789 }
1790
1791 return 0;
1792 }
1793
1794 /* Check whether a task can create a file. */
may_create(struct inode * dir,struct dentry * dentry,u16 tclass)1795 static int may_create(struct inode *dir,
1796 struct dentry *dentry,
1797 u16 tclass)
1798 {
1799 const struct task_security_struct *tsec = selinux_cred(current_cred());
1800 struct inode_security_struct *dsec;
1801 struct superblock_security_struct *sbsec;
1802 u32 sid, newsid;
1803 struct common_audit_data ad;
1804 int rc;
1805
1806 dsec = inode_security(dir);
1807 sbsec = selinux_superblock(dir->i_sb);
1808
1809 sid = tsec->sid;
1810
1811 ad.type = LSM_AUDIT_DATA_DENTRY;
1812 ad.u.dentry = dentry;
1813
1814 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1815 DIR__ADD_NAME | DIR__SEARCH,
1816 &ad);
1817 if (rc)
1818 return rc;
1819
1820 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1821 &newsid);
1822 if (rc)
1823 return rc;
1824
1825 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1826 if (rc)
1827 return rc;
1828
1829 return avc_has_perm(newsid, sbsec->sid,
1830 SECCLASS_FILESYSTEM,
1831 FILESYSTEM__ASSOCIATE, &ad);
1832 }
1833
1834 #define MAY_LINK 0
1835 #define MAY_UNLINK 1
1836 #define MAY_RMDIR 2
1837
1838 /* Check whether a task can link, unlink, or rmdir a file/directory. */
may_link(struct inode * dir,struct dentry * dentry,int kind)1839 static int may_link(struct inode *dir,
1840 struct dentry *dentry,
1841 int kind)
1842
1843 {
1844 struct inode_security_struct *dsec, *isec;
1845 struct common_audit_data ad;
1846 u32 sid = current_sid();
1847 u32 av;
1848 int rc;
1849
1850 dsec = inode_security(dir);
1851 isec = backing_inode_security(dentry);
1852
1853 ad.type = LSM_AUDIT_DATA_DENTRY;
1854 ad.u.dentry = dentry;
1855
1856 av = DIR__SEARCH;
1857 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1858 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1859 if (rc)
1860 return rc;
1861
1862 switch (kind) {
1863 case MAY_LINK:
1864 av = FILE__LINK;
1865 break;
1866 case MAY_UNLINK:
1867 av = FILE__UNLINK;
1868 break;
1869 case MAY_RMDIR:
1870 av = DIR__RMDIR;
1871 break;
1872 default:
1873 pr_warn("SELinux: %s: unrecognized kind %d\n",
1874 __func__, kind);
1875 return 0;
1876 }
1877
1878 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1879 return rc;
1880 }
1881
may_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1882 static inline int may_rename(struct inode *old_dir,
1883 struct dentry *old_dentry,
1884 struct inode *new_dir,
1885 struct dentry *new_dentry)
1886 {
1887 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1888 struct common_audit_data ad;
1889 u32 sid = current_sid();
1890 u32 av;
1891 int old_is_dir, new_is_dir;
1892 int rc;
1893
1894 old_dsec = inode_security(old_dir);
1895 old_isec = backing_inode_security(old_dentry);
1896 old_is_dir = d_is_dir(old_dentry);
1897 new_dsec = inode_security(new_dir);
1898
1899 ad.type = LSM_AUDIT_DATA_DENTRY;
1900
1901 ad.u.dentry = old_dentry;
1902 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1903 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1904 if (rc)
1905 return rc;
1906 rc = avc_has_perm(sid, old_isec->sid,
1907 old_isec->sclass, FILE__RENAME, &ad);
1908 if (rc)
1909 return rc;
1910 if (old_is_dir && new_dir != old_dir) {
1911 rc = avc_has_perm(sid, old_isec->sid,
1912 old_isec->sclass, DIR__REPARENT, &ad);
1913 if (rc)
1914 return rc;
1915 }
1916
1917 ad.u.dentry = new_dentry;
1918 av = DIR__ADD_NAME | DIR__SEARCH;
1919 if (d_is_positive(new_dentry))
1920 av |= DIR__REMOVE_NAME;
1921 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1922 if (rc)
1923 return rc;
1924 if (d_is_positive(new_dentry)) {
1925 new_isec = backing_inode_security(new_dentry);
1926 new_is_dir = d_is_dir(new_dentry);
1927 rc = avc_has_perm(sid, new_isec->sid,
1928 new_isec->sclass,
1929 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1930 if (rc)
1931 return rc;
1932 }
1933
1934 return 0;
1935 }
1936
1937 /* Check whether a task can perform a filesystem operation. */
superblock_has_perm(const struct cred * cred,struct super_block * sb,u32 perms,struct common_audit_data * ad)1938 static int superblock_has_perm(const struct cred *cred,
1939 struct super_block *sb,
1940 u32 perms,
1941 struct common_audit_data *ad)
1942 {
1943 struct superblock_security_struct *sbsec;
1944 u32 sid = cred_sid(cred);
1945
1946 sbsec = selinux_superblock(sb);
1947 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1948 }
1949
1950 /* Convert a Linux mode and permission mask to an access vector. */
file_mask_to_av(int mode,int mask)1951 static inline u32 file_mask_to_av(int mode, int mask)
1952 {
1953 u32 av = 0;
1954
1955 if (!S_ISDIR(mode)) {
1956 if (mask & MAY_EXEC)
1957 av |= FILE__EXECUTE;
1958 if (mask & MAY_READ)
1959 av |= FILE__READ;
1960
1961 if (mask & MAY_APPEND)
1962 av |= FILE__APPEND;
1963 else if (mask & MAY_WRITE)
1964 av |= FILE__WRITE;
1965
1966 } else {
1967 if (mask & MAY_EXEC)
1968 av |= DIR__SEARCH;
1969 if (mask & MAY_WRITE)
1970 av |= DIR__WRITE;
1971 if (mask & MAY_READ)
1972 av |= DIR__READ;
1973 }
1974
1975 return av;
1976 }
1977
1978 /* Convert a Linux file to an access vector. */
file_to_av(const struct file * file)1979 static inline u32 file_to_av(const struct file *file)
1980 {
1981 u32 av = 0;
1982
1983 if (file->f_mode & FMODE_READ)
1984 av |= FILE__READ;
1985 if (file->f_mode & FMODE_WRITE) {
1986 if (file->f_flags & O_APPEND)
1987 av |= FILE__APPEND;
1988 else
1989 av |= FILE__WRITE;
1990 }
1991 if (!av) {
1992 /*
1993 * Special file opened with flags 3 for ioctl-only use.
1994 */
1995 av = FILE__IOCTL;
1996 }
1997
1998 return av;
1999 }
2000
2001 /*
2002 * Convert a file to an access vector and include the correct
2003 * open permission.
2004 */
open_file_to_av(struct file * file)2005 static inline u32 open_file_to_av(struct file *file)
2006 {
2007 u32 av = file_to_av(file);
2008 struct inode *inode = file_inode(file);
2009
2010 if (selinux_policycap_openperm() &&
2011 inode->i_sb->s_magic != SOCKFS_MAGIC)
2012 av |= FILE__OPEN;
2013
2014 return av;
2015 }
2016
2017 /* Hook functions begin here. */
2018
selinux_binder_set_context_mgr(const struct cred * mgr)2019 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2020 {
2021 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2022 BINDER__SET_CONTEXT_MGR, NULL);
2023 }
2024
selinux_binder_transaction(const struct cred * from,const struct cred * to)2025 static int selinux_binder_transaction(const struct cred *from,
2026 const struct cred *to)
2027 {
2028 u32 mysid = current_sid();
2029 u32 fromsid = cred_sid(from);
2030 u32 tosid = cred_sid(to);
2031 int rc;
2032
2033 if (mysid != fromsid) {
2034 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2035 BINDER__IMPERSONATE, NULL);
2036 if (rc)
2037 return rc;
2038 }
2039
2040 return avc_has_perm(fromsid, tosid,
2041 SECCLASS_BINDER, BINDER__CALL, NULL);
2042 }
2043
selinux_binder_transfer_binder(const struct cred * from,const struct cred * to)2044 static int selinux_binder_transfer_binder(const struct cred *from,
2045 const struct cred *to)
2046 {
2047 return avc_has_perm(cred_sid(from), cred_sid(to),
2048 SECCLASS_BINDER, BINDER__TRANSFER,
2049 NULL);
2050 }
2051
selinux_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)2052 static int selinux_binder_transfer_file(const struct cred *from,
2053 const struct cred *to,
2054 const struct file *file)
2055 {
2056 u32 sid = cred_sid(to);
2057 struct file_security_struct *fsec = selinux_file(file);
2058 struct dentry *dentry = file->f_path.dentry;
2059 struct inode_security_struct *isec;
2060 struct common_audit_data ad;
2061 int rc;
2062
2063 ad.type = LSM_AUDIT_DATA_PATH;
2064 ad.u.path = file->f_path;
2065
2066 if (sid != fsec->sid) {
2067 rc = avc_has_perm(sid, fsec->sid,
2068 SECCLASS_FD,
2069 FD__USE,
2070 &ad);
2071 if (rc)
2072 return rc;
2073 }
2074
2075 #ifdef CONFIG_BPF_SYSCALL
2076 rc = bpf_fd_pass(file, sid);
2077 if (rc)
2078 return rc;
2079 #endif
2080
2081 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2082 return 0;
2083
2084 isec = backing_inode_security(dentry);
2085 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2086 &ad);
2087 }
2088
selinux_ptrace_access_check(struct task_struct * child,unsigned int mode)2089 static int selinux_ptrace_access_check(struct task_struct *child,
2090 unsigned int mode)
2091 {
2092 u32 sid = current_sid();
2093 u32 csid = task_sid_obj(child);
2094
2095 if (mode & PTRACE_MODE_READ)
2096 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2097 NULL);
2098
2099 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2100 NULL);
2101 }
2102
selinux_ptrace_traceme(struct task_struct * parent)2103 static int selinux_ptrace_traceme(struct task_struct *parent)
2104 {
2105 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2106 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2107 }
2108
selinux_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)2109 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2110 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2111 {
2112 return avc_has_perm(current_sid(), task_sid_obj(target),
2113 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2114 }
2115
selinux_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)2116 static int selinux_capset(struct cred *new, const struct cred *old,
2117 const kernel_cap_t *effective,
2118 const kernel_cap_t *inheritable,
2119 const kernel_cap_t *permitted)
2120 {
2121 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2122 PROCESS__SETCAP, NULL);
2123 }
2124
2125 /*
2126 * (This comment used to live with the selinux_task_setuid hook,
2127 * which was removed).
2128 *
2129 * Since setuid only affects the current process, and since the SELinux
2130 * controls are not based on the Linux identity attributes, SELinux does not
2131 * need to control this operation. However, SELinux does control the use of
2132 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2133 */
2134
selinux_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)2135 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2136 int cap, unsigned int opts)
2137 {
2138 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2139 }
2140
selinux_quotactl(int cmds,int type,int id,struct super_block * sb)2141 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2142 {
2143 const struct cred *cred = current_cred();
2144 int rc = 0;
2145
2146 if (!sb)
2147 return 0;
2148
2149 switch (cmds) {
2150 case Q_SYNC:
2151 case Q_QUOTAON:
2152 case Q_QUOTAOFF:
2153 case Q_SETINFO:
2154 case Q_SETQUOTA:
2155 case Q_XQUOTAOFF:
2156 case Q_XQUOTAON:
2157 case Q_XSETQLIM:
2158 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2159 break;
2160 case Q_GETFMT:
2161 case Q_GETINFO:
2162 case Q_GETQUOTA:
2163 case Q_XGETQUOTA:
2164 case Q_XGETQSTAT:
2165 case Q_XGETQSTATV:
2166 case Q_XGETNEXTQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174 }
2175
selinux_quota_on(struct dentry * dentry)2176 static int selinux_quota_on(struct dentry *dentry)
2177 {
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181 }
2182
selinux_syslog(int type)2183 static int selinux_syslog(int type)
2184 {
2185 switch (type) {
2186 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2187 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2188 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2189 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2190 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2191 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2192 /* Set level of messages printed to console */
2193 case SYSLOG_ACTION_CONSOLE_LEVEL:
2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2196 NULL);
2197 }
2198 /* All other syslog types */
2199 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2200 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2201 }
2202
2203 /*
2204 * Check that a process has enough memory to allocate a new virtual
2205 * mapping. 0 means there is enough memory for the allocation to
2206 * succeed and -ENOMEM implies there is not.
2207 *
2208 * Do not audit the selinux permission check, as this is applied to all
2209 * processes that allocate mappings.
2210 */
selinux_vm_enough_memory(struct mm_struct * mm,long pages)2211 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2212 {
2213 int rc, cap_sys_admin = 0;
2214
2215 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2216 CAP_OPT_NOAUDIT, true);
2217 if (rc == 0)
2218 cap_sys_admin = 1;
2219
2220 return cap_sys_admin;
2221 }
2222
2223 /* binprm security operations */
2224
ptrace_parent_sid(void)2225 static u32 ptrace_parent_sid(void)
2226 {
2227 u32 sid = 0;
2228 struct task_struct *tracer;
2229
2230 rcu_read_lock();
2231 tracer = ptrace_parent(current);
2232 if (tracer)
2233 sid = task_sid_obj(tracer);
2234 rcu_read_unlock();
2235
2236 return sid;
2237 }
2238
check_nnp_nosuid(const struct linux_binprm * bprm,const struct task_security_struct * old_tsec,const struct task_security_struct * new_tsec)2239 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2240 const struct task_security_struct *old_tsec,
2241 const struct task_security_struct *new_tsec)
2242 {
2243 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2244 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2245 int rc;
2246 u32 av;
2247
2248 if (!nnp && !nosuid)
2249 return 0; /* neither NNP nor nosuid */
2250
2251 if (new_tsec->sid == old_tsec->sid)
2252 return 0; /* No change in credentials */
2253
2254 /*
2255 * If the policy enables the nnp_nosuid_transition policy capability,
2256 * then we permit transitions under NNP or nosuid if the
2257 * policy allows the corresponding permission between
2258 * the old and new contexts.
2259 */
2260 if (selinux_policycap_nnp_nosuid_transition()) {
2261 av = 0;
2262 if (nnp)
2263 av |= PROCESS2__NNP_TRANSITION;
2264 if (nosuid)
2265 av |= PROCESS2__NOSUID_TRANSITION;
2266 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2267 SECCLASS_PROCESS2, av, NULL);
2268 if (!rc)
2269 return 0;
2270 }
2271
2272 /*
2273 * We also permit NNP or nosuid transitions to bounded SIDs,
2274 * i.e. SIDs that are guaranteed to only be allowed a subset
2275 * of the permissions of the current SID.
2276 */
2277 rc = security_bounded_transition(old_tsec->sid,
2278 new_tsec->sid);
2279 if (!rc)
2280 return 0;
2281
2282 /*
2283 * On failure, preserve the errno values for NNP vs nosuid.
2284 * NNP: Operation not permitted for caller.
2285 * nosuid: Permission denied to file.
2286 */
2287 if (nnp)
2288 return -EPERM;
2289 return -EACCES;
2290 }
2291
selinux_bprm_creds_for_exec(struct linux_binprm * bprm)2292 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2293 {
2294 const struct task_security_struct *old_tsec;
2295 struct task_security_struct *new_tsec;
2296 struct inode_security_struct *isec;
2297 struct common_audit_data ad;
2298 struct inode *inode = file_inode(bprm->file);
2299 int rc;
2300
2301 /* SELinux context only depends on initial program or script and not
2302 * the script interpreter */
2303
2304 old_tsec = selinux_cred(current_cred());
2305 new_tsec = selinux_cred(bprm->cred);
2306 isec = inode_security(inode);
2307
2308 /* Default to the current task SID. */
2309 new_tsec->sid = old_tsec->sid;
2310 new_tsec->osid = old_tsec->sid;
2311
2312 /* Reset fs, key, and sock SIDs on execve. */
2313 new_tsec->create_sid = 0;
2314 new_tsec->keycreate_sid = 0;
2315 new_tsec->sockcreate_sid = 0;
2316
2317 if (old_tsec->exec_sid) {
2318 new_tsec->sid = old_tsec->exec_sid;
2319 /* Reset exec SID on execve. */
2320 new_tsec->exec_sid = 0;
2321
2322 /* Fail on NNP or nosuid if not an allowed transition. */
2323 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2324 if (rc)
2325 return rc;
2326 } else {
2327 /* Check for a default transition on this program. */
2328 rc = security_transition_sid(old_tsec->sid,
2329 isec->sid, SECCLASS_PROCESS, NULL,
2330 &new_tsec->sid);
2331 if (rc)
2332 return rc;
2333
2334 /*
2335 * Fallback to old SID on NNP or nosuid if not an allowed
2336 * transition.
2337 */
2338 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2339 if (rc)
2340 new_tsec->sid = old_tsec->sid;
2341 }
2342
2343 ad.type = LSM_AUDIT_DATA_FILE;
2344 ad.u.file = bprm->file;
2345
2346 if (new_tsec->sid == old_tsec->sid) {
2347 rc = avc_has_perm(old_tsec->sid, isec->sid,
2348 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2349 if (rc)
2350 return rc;
2351 } else {
2352 /* Check permissions for the transition. */
2353 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2354 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2355 if (rc)
2356 return rc;
2357
2358 rc = avc_has_perm(new_tsec->sid, isec->sid,
2359 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360 if (rc)
2361 return rc;
2362
2363 /* Check for shared state */
2364 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 SECCLASS_PROCESS, PROCESS__SHARE,
2367 NULL);
2368 if (rc)
2369 return -EPERM;
2370 }
2371
2372 /* Make sure that anyone attempting to ptrace over a task that
2373 * changes its SID has the appropriate permit */
2374 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2375 u32 ptsid = ptrace_parent_sid();
2376 if (ptsid != 0) {
2377 rc = avc_has_perm(ptsid, new_tsec->sid,
2378 SECCLASS_PROCESS,
2379 PROCESS__PTRACE, NULL);
2380 if (rc)
2381 return -EPERM;
2382 }
2383 }
2384
2385 /* Clear any possibly unsafe personality bits on exec: */
2386 bprm->per_clear |= PER_CLEAR_ON_SETID;
2387
2388 /* Enable secure mode for SIDs transitions unless
2389 the noatsecure permission is granted between
2390 the two SIDs, i.e. ahp returns 0. */
2391 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2392 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2393 NULL);
2394 bprm->secureexec |= !!rc;
2395 }
2396
2397 return 0;
2398 }
2399
match_file(const void * p,struct file * file,unsigned fd)2400 static int match_file(const void *p, struct file *file, unsigned fd)
2401 {
2402 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2403 }
2404
2405 /* Derived from fs/exec.c:flush_old_files. */
flush_unauthorized_files(const struct cred * cred,struct files_struct * files)2406 static inline void flush_unauthorized_files(const struct cred *cred,
2407 struct files_struct *files)
2408 {
2409 struct file *file, *devnull = NULL;
2410 struct tty_struct *tty;
2411 int drop_tty = 0;
2412 unsigned n;
2413
2414 tty = get_current_tty();
2415 if (tty) {
2416 spin_lock(&tty->files_lock);
2417 if (!list_empty(&tty->tty_files)) {
2418 struct tty_file_private *file_priv;
2419
2420 /* Revalidate access to controlling tty.
2421 Use file_path_has_perm on the tty path directly
2422 rather than using file_has_perm, as this particular
2423 open file may belong to another process and we are
2424 only interested in the inode-based check here. */
2425 file_priv = list_first_entry(&tty->tty_files,
2426 struct tty_file_private, list);
2427 file = file_priv->file;
2428 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2429 drop_tty = 1;
2430 }
2431 spin_unlock(&tty->files_lock);
2432 tty_kref_put(tty);
2433 }
2434 /* Reset controlling tty. */
2435 if (drop_tty)
2436 no_tty();
2437
2438 /* Revalidate access to inherited open files. */
2439 n = iterate_fd(files, 0, match_file, cred);
2440 if (!n) /* none found? */
2441 return;
2442
2443 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2444 if (IS_ERR(devnull))
2445 devnull = NULL;
2446 /* replace all the matching ones with this */
2447 do {
2448 replace_fd(n - 1, devnull, 0);
2449 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2450 if (devnull)
2451 fput(devnull);
2452 }
2453
2454 /*
2455 * Prepare a process for imminent new credential changes due to exec
2456 */
selinux_bprm_committing_creds(struct linux_binprm * bprm)2457 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2458 {
2459 struct task_security_struct *new_tsec;
2460 struct rlimit *rlim, *initrlim;
2461 int rc, i;
2462
2463 new_tsec = selinux_cred(bprm->cred);
2464 if (new_tsec->sid == new_tsec->osid)
2465 return;
2466
2467 /* Close files for which the new task SID is not authorized. */
2468 flush_unauthorized_files(bprm->cred, current->files);
2469
2470 /* Always clear parent death signal on SID transitions. */
2471 current->pdeath_signal = 0;
2472
2473 /* Check whether the new SID can inherit resource limits from the old
2474 * SID. If not, reset all soft limits to the lower of the current
2475 * task's hard limit and the init task's soft limit.
2476 *
2477 * Note that the setting of hard limits (even to lower them) can be
2478 * controlled by the setrlimit check. The inclusion of the init task's
2479 * soft limit into the computation is to avoid resetting soft limits
2480 * higher than the default soft limit for cases where the default is
2481 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2482 */
2483 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2484 PROCESS__RLIMITINH, NULL);
2485 if (rc) {
2486 /* protect against do_prlimit() */
2487 task_lock(current);
2488 for (i = 0; i < RLIM_NLIMITS; i++) {
2489 rlim = current->signal->rlim + i;
2490 initrlim = init_task.signal->rlim + i;
2491 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2492 }
2493 task_unlock(current);
2494 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2495 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2496 }
2497 }
2498
2499 /*
2500 * Clean up the process immediately after the installation of new credentials
2501 * due to exec
2502 */
selinux_bprm_committed_creds(struct linux_binprm * bprm)2503 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2504 {
2505 const struct task_security_struct *tsec = selinux_cred(current_cred());
2506 u32 osid, sid;
2507 int rc;
2508
2509 osid = tsec->osid;
2510 sid = tsec->sid;
2511
2512 if (sid == osid)
2513 return;
2514
2515 /* Check whether the new SID can inherit signal state from the old SID.
2516 * If not, clear itimers to avoid subsequent signal generation and
2517 * flush and unblock signals.
2518 *
2519 * This must occur _after_ the task SID has been updated so that any
2520 * kill done after the flush will be checked against the new SID.
2521 */
2522 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2523 if (rc) {
2524 clear_itimer();
2525
2526 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2527 if (!fatal_signal_pending(current)) {
2528 flush_sigqueue(¤t->pending);
2529 flush_sigqueue(¤t->signal->shared_pending);
2530 flush_signal_handlers(current, 1);
2531 sigemptyset(¤t->blocked);
2532 recalc_sigpending();
2533 }
2534 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2535 }
2536
2537 /* Wake up the parent if it is waiting so that it can recheck
2538 * wait permission to the new task SID. */
2539 read_lock(&tasklist_lock);
2540 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2541 read_unlock(&tasklist_lock);
2542 }
2543
2544 /* superblock security operations */
2545
selinux_sb_alloc_security(struct super_block * sb)2546 static int selinux_sb_alloc_security(struct super_block *sb)
2547 {
2548 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2549
2550 mutex_init(&sbsec->lock);
2551 INIT_LIST_HEAD(&sbsec->isec_head);
2552 spin_lock_init(&sbsec->isec_lock);
2553 sbsec->sid = SECINITSID_UNLABELED;
2554 sbsec->def_sid = SECINITSID_FILE;
2555 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2556
2557 return 0;
2558 }
2559
opt_len(const char * s)2560 static inline int opt_len(const char *s)
2561 {
2562 bool open_quote = false;
2563 int len;
2564 char c;
2565
2566 for (len = 0; (c = s[len]) != '\0'; len++) {
2567 if (c == '"')
2568 open_quote = !open_quote;
2569 if (c == ',' && !open_quote)
2570 break;
2571 }
2572 return len;
2573 }
2574
selinux_sb_eat_lsm_opts(char * options,void ** mnt_opts)2575 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2576 {
2577 char *from = options;
2578 char *to = options;
2579 bool first = true;
2580 int rc;
2581
2582 while (1) {
2583 int len = opt_len(from);
2584 int token;
2585 char *arg = NULL;
2586
2587 token = match_opt_prefix(from, len, &arg);
2588
2589 if (token != Opt_error) {
2590 char *p, *q;
2591
2592 /* strip quotes */
2593 if (arg) {
2594 for (p = q = arg; p < from + len; p++) {
2595 char c = *p;
2596 if (c != '"')
2597 *q++ = c;
2598 }
2599 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2600 if (!arg) {
2601 rc = -ENOMEM;
2602 goto free_opt;
2603 }
2604 }
2605 rc = selinux_add_opt(token, arg, mnt_opts);
2606 kfree(arg);
2607 arg = NULL;
2608 if (unlikely(rc)) {
2609 goto free_opt;
2610 }
2611 } else {
2612 if (!first) { // copy with preceding comma
2613 from--;
2614 len++;
2615 }
2616 if (to != from)
2617 memmove(to, from, len);
2618 to += len;
2619 first = false;
2620 }
2621 if (!from[len])
2622 break;
2623 from += len + 1;
2624 }
2625 *to = '\0';
2626 return 0;
2627
2628 free_opt:
2629 if (*mnt_opts) {
2630 selinux_free_mnt_opts(*mnt_opts);
2631 *mnt_opts = NULL;
2632 }
2633 return rc;
2634 }
2635
selinux_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)2636 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2637 {
2638 struct selinux_mnt_opts *opts = mnt_opts;
2639 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2640
2641 /*
2642 * Superblock not initialized (i.e. no options) - reject if any
2643 * options specified, otherwise accept.
2644 */
2645 if (!(sbsec->flags & SE_SBINITIALIZED))
2646 return opts ? 1 : 0;
2647
2648 /*
2649 * Superblock initialized and no options specified - reject if
2650 * superblock has any options set, otherwise accept.
2651 */
2652 if (!opts)
2653 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2654
2655 if (opts->fscontext_sid) {
2656 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2657 opts->fscontext_sid))
2658 return 1;
2659 }
2660 if (opts->context_sid) {
2661 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2662 opts->context_sid))
2663 return 1;
2664 }
2665 if (opts->rootcontext_sid) {
2666 struct inode_security_struct *root_isec;
2667
2668 root_isec = backing_inode_security(sb->s_root);
2669 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2670 opts->rootcontext_sid))
2671 return 1;
2672 }
2673 if (opts->defcontext_sid) {
2674 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2675 opts->defcontext_sid))
2676 return 1;
2677 }
2678 return 0;
2679 }
2680
selinux_sb_remount(struct super_block * sb,void * mnt_opts)2681 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2682 {
2683 struct selinux_mnt_opts *opts = mnt_opts;
2684 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2685
2686 if (!(sbsec->flags & SE_SBINITIALIZED))
2687 return 0;
2688
2689 if (!opts)
2690 return 0;
2691
2692 if (opts->fscontext_sid) {
2693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2694 opts->fscontext_sid))
2695 goto out_bad_option;
2696 }
2697 if (opts->context_sid) {
2698 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2699 opts->context_sid))
2700 goto out_bad_option;
2701 }
2702 if (opts->rootcontext_sid) {
2703 struct inode_security_struct *root_isec;
2704 root_isec = backing_inode_security(sb->s_root);
2705 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2706 opts->rootcontext_sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->defcontext_sid) {
2710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2711 opts->defcontext_sid))
2712 goto out_bad_option;
2713 }
2714 return 0;
2715
2716 out_bad_option:
2717 pr_warn("SELinux: unable to change security options "
2718 "during remount (dev %s, type=%s)\n", sb->s_id,
2719 sb->s_type->name);
2720 return -EINVAL;
2721 }
2722
selinux_sb_kern_mount(struct super_block * sb)2723 static int selinux_sb_kern_mount(struct super_block *sb)
2724 {
2725 const struct cred *cred = current_cred();
2726 struct common_audit_data ad;
2727
2728 ad.type = LSM_AUDIT_DATA_DENTRY;
2729 ad.u.dentry = sb->s_root;
2730 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2731 }
2732
selinux_sb_statfs(struct dentry * dentry)2733 static int selinux_sb_statfs(struct dentry *dentry)
2734 {
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737
2738 ad.type = LSM_AUDIT_DATA_DENTRY;
2739 ad.u.dentry = dentry->d_sb->s_root;
2740 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2741 }
2742
selinux_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)2743 static int selinux_mount(const char *dev_name,
2744 const struct path *path,
2745 const char *type,
2746 unsigned long flags,
2747 void *data)
2748 {
2749 const struct cred *cred = current_cred();
2750
2751 if (flags & MS_REMOUNT)
2752 return superblock_has_perm(cred, path->dentry->d_sb,
2753 FILESYSTEM__REMOUNT, NULL);
2754 else
2755 return path_has_perm(cred, path, FILE__MOUNTON);
2756 }
2757
selinux_move_mount(const struct path * from_path,const struct path * to_path)2758 static int selinux_move_mount(const struct path *from_path,
2759 const struct path *to_path)
2760 {
2761 const struct cred *cred = current_cred();
2762
2763 return path_has_perm(cred, to_path, FILE__MOUNTON);
2764 }
2765
selinux_umount(struct vfsmount * mnt,int flags)2766 static int selinux_umount(struct vfsmount *mnt, int flags)
2767 {
2768 const struct cred *cred = current_cred();
2769
2770 return superblock_has_perm(cred, mnt->mnt_sb,
2771 FILESYSTEM__UNMOUNT, NULL);
2772 }
2773
selinux_fs_context_submount(struct fs_context * fc,struct super_block * reference)2774 static int selinux_fs_context_submount(struct fs_context *fc,
2775 struct super_block *reference)
2776 {
2777 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2778 struct selinux_mnt_opts *opts;
2779
2780 /*
2781 * Ensure that fc->security remains NULL when no options are set
2782 * as expected by selinux_set_mnt_opts().
2783 */
2784 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2785 return 0;
2786
2787 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2788 if (!opts)
2789 return -ENOMEM;
2790
2791 if (sbsec->flags & FSCONTEXT_MNT)
2792 opts->fscontext_sid = sbsec->sid;
2793 if (sbsec->flags & CONTEXT_MNT)
2794 opts->context_sid = sbsec->mntpoint_sid;
2795 if (sbsec->flags & DEFCONTEXT_MNT)
2796 opts->defcontext_sid = sbsec->def_sid;
2797 fc->security = opts;
2798 return 0;
2799 }
2800
selinux_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)2801 static int selinux_fs_context_dup(struct fs_context *fc,
2802 struct fs_context *src_fc)
2803 {
2804 const struct selinux_mnt_opts *src = src_fc->security;
2805
2806 if (!src)
2807 return 0;
2808
2809 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2810 return fc->security ? 0 : -ENOMEM;
2811 }
2812
2813 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2814 fsparam_string(CONTEXT_STR, Opt_context),
2815 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2816 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2817 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2818 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2819 {}
2820 };
2821
selinux_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)2822 static int selinux_fs_context_parse_param(struct fs_context *fc,
2823 struct fs_parameter *param)
2824 {
2825 struct fs_parse_result result;
2826 int opt;
2827
2828 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2829 if (opt < 0)
2830 return opt;
2831
2832 return selinux_add_opt(opt, param->string, &fc->security);
2833 }
2834
2835 /* inode security operations */
2836
selinux_inode_alloc_security(struct inode * inode)2837 static int selinux_inode_alloc_security(struct inode *inode)
2838 {
2839 struct inode_security_struct *isec = selinux_inode(inode);
2840 u32 sid = current_sid();
2841
2842 spin_lock_init(&isec->lock);
2843 INIT_LIST_HEAD(&isec->list);
2844 isec->inode = inode;
2845 isec->sid = SECINITSID_UNLABELED;
2846 isec->sclass = SECCLASS_FILE;
2847 isec->task_sid = sid;
2848 isec->initialized = LABEL_INVALID;
2849
2850 return 0;
2851 }
2852
selinux_inode_free_security(struct inode * inode)2853 static void selinux_inode_free_security(struct inode *inode)
2854 {
2855 inode_free_security(inode);
2856 }
2857
selinux_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)2858 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2859 const struct qstr *name,
2860 const char **xattr_name, void **ctx,
2861 u32 *ctxlen)
2862 {
2863 u32 newsid;
2864 int rc;
2865
2866 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867 d_inode(dentry->d_parent), name,
2868 inode_mode_to_security_class(mode),
2869 &newsid);
2870 if (rc)
2871 return rc;
2872
2873 if (xattr_name)
2874 *xattr_name = XATTR_NAME_SELINUX;
2875
2876 return security_sid_to_context(newsid, (char **)ctx,
2877 ctxlen);
2878 }
2879
selinux_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)2880 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2881 struct qstr *name,
2882 const struct cred *old,
2883 struct cred *new)
2884 {
2885 u32 newsid;
2886 int rc;
2887 struct task_security_struct *tsec;
2888
2889 rc = selinux_determine_inode_label(selinux_cred(old),
2890 d_inode(dentry->d_parent), name,
2891 inode_mode_to_security_class(mode),
2892 &newsid);
2893 if (rc)
2894 return rc;
2895
2896 tsec = selinux_cred(new);
2897 tsec->create_sid = newsid;
2898 return 0;
2899 }
2900
selinux_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,struct xattr * xattrs,int * xattr_count)2901 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2902 const struct qstr *qstr,
2903 struct xattr *xattrs, int *xattr_count)
2904 {
2905 const struct task_security_struct *tsec = selinux_cred(current_cred());
2906 struct superblock_security_struct *sbsec;
2907 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2908 u32 newsid, clen;
2909 int rc;
2910 char *context;
2911
2912 sbsec = selinux_superblock(dir->i_sb);
2913
2914 newsid = tsec->create_sid;
2915
2916 rc = selinux_determine_inode_label(tsec, dir, qstr,
2917 inode_mode_to_security_class(inode->i_mode),
2918 &newsid);
2919 if (rc)
2920 return rc;
2921
2922 /* Possibly defer initialization to selinux_complete_init. */
2923 if (sbsec->flags & SE_SBINITIALIZED) {
2924 struct inode_security_struct *isec = selinux_inode(inode);
2925 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2926 isec->sid = newsid;
2927 isec->initialized = LABEL_INITIALIZED;
2928 }
2929
2930 if (!selinux_initialized() ||
2931 !(sbsec->flags & SBLABEL_MNT))
2932 return -EOPNOTSUPP;
2933
2934 if (xattr) {
2935 rc = security_sid_to_context_force(newsid,
2936 &context, &clen);
2937 if (rc)
2938 return rc;
2939 xattr->value = context;
2940 xattr->value_len = clen;
2941 xattr->name = XATTR_SELINUX_SUFFIX;
2942 }
2943
2944 return 0;
2945 }
2946
selinux_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)2947 static int selinux_inode_init_security_anon(struct inode *inode,
2948 const struct qstr *name,
2949 const struct inode *context_inode)
2950 {
2951 const struct task_security_struct *tsec = selinux_cred(current_cred());
2952 struct common_audit_data ad;
2953 struct inode_security_struct *isec;
2954 int rc;
2955
2956 if (unlikely(!selinux_initialized()))
2957 return 0;
2958
2959 isec = selinux_inode(inode);
2960
2961 /*
2962 * We only get here once per ephemeral inode. The inode has
2963 * been initialized via inode_alloc_security but is otherwise
2964 * untouched.
2965 */
2966
2967 if (context_inode) {
2968 struct inode_security_struct *context_isec =
2969 selinux_inode(context_inode);
2970 if (context_isec->initialized != LABEL_INITIALIZED) {
2971 pr_err("SELinux: context_inode is not initialized\n");
2972 return -EACCES;
2973 }
2974
2975 isec->sclass = context_isec->sclass;
2976 isec->sid = context_isec->sid;
2977 } else {
2978 isec->sclass = SECCLASS_ANON_INODE;
2979 rc = security_transition_sid(
2980 tsec->sid, tsec->sid,
2981 isec->sclass, name, &isec->sid);
2982 if (rc)
2983 return rc;
2984 }
2985
2986 isec->initialized = LABEL_INITIALIZED;
2987 /*
2988 * Now that we've initialized security, check whether we're
2989 * allowed to actually create this type of anonymous inode.
2990 */
2991
2992 ad.type = LSM_AUDIT_DATA_ANONINODE;
2993 ad.u.anonclass = name ? (const char *)name->name : "?";
2994
2995 return avc_has_perm(tsec->sid,
2996 isec->sid,
2997 isec->sclass,
2998 FILE__CREATE,
2999 &ad);
3000 }
3001
selinux_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)3002 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3003 {
3004 return may_create(dir, dentry, SECCLASS_FILE);
3005 }
3006
selinux_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)3007 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3008 {
3009 return may_link(dir, old_dentry, MAY_LINK);
3010 }
3011
selinux_inode_unlink(struct inode * dir,struct dentry * dentry)3012 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3013 {
3014 return may_link(dir, dentry, MAY_UNLINK);
3015 }
3016
selinux_inode_symlink(struct inode * dir,struct dentry * dentry,const char * name)3017 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3018 {
3019 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3020 }
3021
selinux_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mask)3022 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3023 {
3024 return may_create(dir, dentry, SECCLASS_DIR);
3025 }
3026
selinux_inode_rmdir(struct inode * dir,struct dentry * dentry)3027 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3028 {
3029 return may_link(dir, dentry, MAY_RMDIR);
3030 }
3031
selinux_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3032 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3033 {
3034 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3035 }
3036
selinux_inode_rename(struct inode * old_inode,struct dentry * old_dentry,struct inode * new_inode,struct dentry * new_dentry)3037 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3038 struct inode *new_inode, struct dentry *new_dentry)
3039 {
3040 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3041 }
3042
selinux_inode_readlink(struct dentry * dentry)3043 static int selinux_inode_readlink(struct dentry *dentry)
3044 {
3045 const struct cred *cred = current_cred();
3046
3047 return dentry_has_perm(cred, dentry, FILE__READ);
3048 }
3049
selinux_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)3050 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3051 bool rcu)
3052 {
3053 const struct cred *cred = current_cred();
3054 struct common_audit_data ad;
3055 struct inode_security_struct *isec;
3056 u32 sid;
3057
3058 ad.type = LSM_AUDIT_DATA_DENTRY;
3059 ad.u.dentry = dentry;
3060 sid = cred_sid(cred);
3061 isec = inode_security_rcu(inode, rcu);
3062 if (IS_ERR(isec))
3063 return PTR_ERR(isec);
3064
3065 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3066 }
3067
audit_inode_permission(struct inode * inode,u32 perms,u32 audited,u32 denied,int result)3068 static noinline int audit_inode_permission(struct inode *inode,
3069 u32 perms, u32 audited, u32 denied,
3070 int result)
3071 {
3072 struct common_audit_data ad;
3073 struct inode_security_struct *isec = selinux_inode(inode);
3074
3075 ad.type = LSM_AUDIT_DATA_INODE;
3076 ad.u.inode = inode;
3077
3078 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3079 audited, denied, result, &ad);
3080 }
3081
selinux_inode_permission(struct inode * inode,int mask)3082 static int selinux_inode_permission(struct inode *inode, int mask)
3083 {
3084 const struct cred *cred = current_cred();
3085 u32 perms;
3086 bool from_access;
3087 bool no_block = mask & MAY_NOT_BLOCK;
3088 struct inode_security_struct *isec;
3089 u32 sid;
3090 struct av_decision avd;
3091 int rc, rc2;
3092 u32 audited, denied;
3093
3094 from_access = mask & MAY_ACCESS;
3095 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3096
3097 /* No permission to check. Existence test. */
3098 if (!mask)
3099 return 0;
3100
3101 if (unlikely(IS_PRIVATE(inode)))
3102 return 0;
3103
3104 perms = file_mask_to_av(inode->i_mode, mask);
3105
3106 sid = cred_sid(cred);
3107 isec = inode_security_rcu(inode, no_block);
3108 if (IS_ERR(isec))
3109 return PTR_ERR(isec);
3110
3111 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3112 &avd);
3113 audited = avc_audit_required(perms, &avd, rc,
3114 from_access ? FILE__AUDIT_ACCESS : 0,
3115 &denied);
3116 if (likely(!audited))
3117 return rc;
3118
3119 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3120 if (rc2)
3121 return rc2;
3122 return rc;
3123 }
3124
selinux_inode_setattr(struct dentry * dentry,struct iattr * iattr)3125 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3126 {
3127 const struct cred *cred = current_cred();
3128 struct inode *inode = d_backing_inode(dentry);
3129 unsigned int ia_valid = iattr->ia_valid;
3130 __u32 av = FILE__WRITE;
3131
3132 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3133 if (ia_valid & ATTR_FORCE) {
3134 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3135 ATTR_FORCE);
3136 if (!ia_valid)
3137 return 0;
3138 }
3139
3140 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3141 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3142 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3143
3144 if (selinux_policycap_openperm() &&
3145 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3146 (ia_valid & ATTR_SIZE) &&
3147 !(ia_valid & ATTR_FILE))
3148 av |= FILE__OPEN;
3149
3150 return dentry_has_perm(cred, dentry, av);
3151 }
3152
selinux_inode_getattr(const struct path * path)3153 static int selinux_inode_getattr(const struct path *path)
3154 {
3155 return path_has_perm(current_cred(), path, FILE__GETATTR);
3156 }
3157
has_cap_mac_admin(bool audit)3158 static bool has_cap_mac_admin(bool audit)
3159 {
3160 const struct cred *cred = current_cred();
3161 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3162
3163 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3164 return false;
3165 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3166 return false;
3167 return true;
3168 }
3169
selinux_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)3170 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3171 struct dentry *dentry, const char *name,
3172 const void *value, size_t size, int flags)
3173 {
3174 struct inode *inode = d_backing_inode(dentry);
3175 struct inode_security_struct *isec;
3176 struct superblock_security_struct *sbsec;
3177 struct common_audit_data ad;
3178 u32 newsid, sid = current_sid();
3179 int rc = 0;
3180
3181 if (strcmp(name, XATTR_NAME_SELINUX)) {
3182 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3183 if (rc)
3184 return rc;
3185
3186 /* Not an attribute we recognize, so just check the
3187 ordinary setattr permission. */
3188 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3189 }
3190
3191 if (!selinux_initialized())
3192 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3193
3194 sbsec = selinux_superblock(inode->i_sb);
3195 if (!(sbsec->flags & SBLABEL_MNT))
3196 return -EOPNOTSUPP;
3197
3198 if (!inode_owner_or_capable(idmap, inode))
3199 return -EPERM;
3200
3201 ad.type = LSM_AUDIT_DATA_DENTRY;
3202 ad.u.dentry = dentry;
3203
3204 isec = backing_inode_security(dentry);
3205 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3206 FILE__RELABELFROM, &ad);
3207 if (rc)
3208 return rc;
3209
3210 rc = security_context_to_sid(value, size, &newsid,
3211 GFP_KERNEL);
3212 if (rc == -EINVAL) {
3213 if (!has_cap_mac_admin(true)) {
3214 struct audit_buffer *ab;
3215 size_t audit_size;
3216
3217 /* We strip a nul only if it is at the end, otherwise the
3218 * context contains a nul and we should audit that */
3219 if (value) {
3220 const char *str = value;
3221
3222 if (str[size - 1] == '\0')
3223 audit_size = size - 1;
3224 else
3225 audit_size = size;
3226 } else {
3227 audit_size = 0;
3228 }
3229 ab = audit_log_start(audit_context(),
3230 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3231 if (!ab)
3232 return rc;
3233 audit_log_format(ab, "op=setxattr invalid_context=");
3234 audit_log_n_untrustedstring(ab, value, audit_size);
3235 audit_log_end(ab);
3236
3237 return rc;
3238 }
3239 rc = security_context_to_sid_force(value,
3240 size, &newsid);
3241 }
3242 if (rc)
3243 return rc;
3244
3245 rc = avc_has_perm(sid, newsid, isec->sclass,
3246 FILE__RELABELTO, &ad);
3247 if (rc)
3248 return rc;
3249
3250 rc = security_validate_transition(isec->sid, newsid,
3251 sid, isec->sclass);
3252 if (rc)
3253 return rc;
3254
3255 return avc_has_perm(newsid,
3256 sbsec->sid,
3257 SECCLASS_FILESYSTEM,
3258 FILESYSTEM__ASSOCIATE,
3259 &ad);
3260 }
3261
selinux_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)3262 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3263 struct dentry *dentry, const char *acl_name,
3264 struct posix_acl *kacl)
3265 {
3266 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3267 }
3268
selinux_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)3269 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3270 struct dentry *dentry, const char *acl_name)
3271 {
3272 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3273 }
3274
selinux_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)3275 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3276 struct dentry *dentry, const char *acl_name)
3277 {
3278 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3279 }
3280
selinux_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)3281 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3282 const void *value, size_t size,
3283 int flags)
3284 {
3285 struct inode *inode = d_backing_inode(dentry);
3286 struct inode_security_struct *isec;
3287 u32 newsid;
3288 int rc;
3289
3290 if (strcmp(name, XATTR_NAME_SELINUX)) {
3291 /* Not an attribute we recognize, so nothing to do. */
3292 return;
3293 }
3294
3295 if (!selinux_initialized()) {
3296 /* If we haven't even been initialized, then we can't validate
3297 * against a policy, so leave the label as invalid. It may
3298 * resolve to a valid label on the next revalidation try if
3299 * we've since initialized.
3300 */
3301 return;
3302 }
3303
3304 rc = security_context_to_sid_force(value, size,
3305 &newsid);
3306 if (rc) {
3307 pr_err("SELinux: unable to map context to SID"
3308 "for (%s, %lu), rc=%d\n",
3309 inode->i_sb->s_id, inode->i_ino, -rc);
3310 return;
3311 }
3312
3313 isec = backing_inode_security(dentry);
3314 spin_lock(&isec->lock);
3315 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3316 isec->sid = newsid;
3317 isec->initialized = LABEL_INITIALIZED;
3318 spin_unlock(&isec->lock);
3319 }
3320
selinux_inode_getxattr(struct dentry * dentry,const char * name)3321 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3322 {
3323 const struct cred *cred = current_cred();
3324
3325 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3326 }
3327
selinux_inode_listxattr(struct dentry * dentry)3328 static int selinux_inode_listxattr(struct dentry *dentry)
3329 {
3330 const struct cred *cred = current_cred();
3331
3332 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3333 }
3334
selinux_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)3335 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3336 struct dentry *dentry, const char *name)
3337 {
3338 if (strcmp(name, XATTR_NAME_SELINUX)) {
3339 int rc = cap_inode_removexattr(idmap, dentry, name);
3340 if (rc)
3341 return rc;
3342
3343 /* Not an attribute we recognize, so just check the
3344 ordinary setattr permission. */
3345 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3346 }
3347
3348 if (!selinux_initialized())
3349 return 0;
3350
3351 /* No one is allowed to remove a SELinux security label.
3352 You can change the label, but all data must be labeled. */
3353 return -EACCES;
3354 }
3355
selinux_path_notify(const struct path * path,u64 mask,unsigned int obj_type)3356 static int selinux_path_notify(const struct path *path, u64 mask,
3357 unsigned int obj_type)
3358 {
3359 int ret;
3360 u32 perm;
3361
3362 struct common_audit_data ad;
3363
3364 ad.type = LSM_AUDIT_DATA_PATH;
3365 ad.u.path = *path;
3366
3367 /*
3368 * Set permission needed based on the type of mark being set.
3369 * Performs an additional check for sb watches.
3370 */
3371 switch (obj_type) {
3372 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3373 perm = FILE__WATCH_MOUNT;
3374 break;
3375 case FSNOTIFY_OBJ_TYPE_SB:
3376 perm = FILE__WATCH_SB;
3377 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3378 FILESYSTEM__WATCH, &ad);
3379 if (ret)
3380 return ret;
3381 break;
3382 case FSNOTIFY_OBJ_TYPE_INODE:
3383 perm = FILE__WATCH;
3384 break;
3385 default:
3386 return -EINVAL;
3387 }
3388
3389 /* blocking watches require the file:watch_with_perm permission */
3390 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3391 perm |= FILE__WATCH_WITH_PERM;
3392
3393 /* watches on read-like events need the file:watch_reads permission */
3394 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3395 perm |= FILE__WATCH_READS;
3396
3397 return path_has_perm(current_cred(), path, perm);
3398 }
3399
3400 /*
3401 * Copy the inode security context value to the user.
3402 *
3403 * Permission check is handled by selinux_inode_getxattr hook.
3404 */
selinux_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)3405 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3406 struct inode *inode, const char *name,
3407 void **buffer, bool alloc)
3408 {
3409 u32 size;
3410 int error;
3411 char *context = NULL;
3412 struct inode_security_struct *isec;
3413
3414 /*
3415 * If we're not initialized yet, then we can't validate contexts, so
3416 * just let vfs_getxattr fall back to using the on-disk xattr.
3417 */
3418 if (!selinux_initialized() ||
3419 strcmp(name, XATTR_SELINUX_SUFFIX))
3420 return -EOPNOTSUPP;
3421
3422 /*
3423 * If the caller has CAP_MAC_ADMIN, then get the raw context
3424 * value even if it is not defined by current policy; otherwise,
3425 * use the in-core value under current policy.
3426 * Use the non-auditing forms of the permission checks since
3427 * getxattr may be called by unprivileged processes commonly
3428 * and lack of permission just means that we fall back to the
3429 * in-core context value, not a denial.
3430 */
3431 isec = inode_security(inode);
3432 if (has_cap_mac_admin(false))
3433 error = security_sid_to_context_force(isec->sid, &context,
3434 &size);
3435 else
3436 error = security_sid_to_context(isec->sid,
3437 &context, &size);
3438 if (error)
3439 return error;
3440 error = size;
3441 if (alloc) {
3442 *buffer = context;
3443 goto out_nofree;
3444 }
3445 kfree(context);
3446 out_nofree:
3447 return error;
3448 }
3449
selinux_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)3450 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3451 const void *value, size_t size, int flags)
3452 {
3453 struct inode_security_struct *isec = inode_security_novalidate(inode);
3454 struct superblock_security_struct *sbsec;
3455 u32 newsid;
3456 int rc;
3457
3458 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3459 return -EOPNOTSUPP;
3460
3461 sbsec = selinux_superblock(inode->i_sb);
3462 if (!(sbsec->flags & SBLABEL_MNT))
3463 return -EOPNOTSUPP;
3464
3465 if (!value || !size)
3466 return -EACCES;
3467
3468 rc = security_context_to_sid(value, size, &newsid,
3469 GFP_KERNEL);
3470 if (rc)
3471 return rc;
3472
3473 spin_lock(&isec->lock);
3474 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3475 isec->sid = newsid;
3476 isec->initialized = LABEL_INITIALIZED;
3477 spin_unlock(&isec->lock);
3478 return 0;
3479 }
3480
selinux_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)3481 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3482 {
3483 const int len = sizeof(XATTR_NAME_SELINUX);
3484
3485 if (!selinux_initialized())
3486 return 0;
3487
3488 if (buffer && len <= buffer_size)
3489 memcpy(buffer, XATTR_NAME_SELINUX, len);
3490 return len;
3491 }
3492
selinux_inode_getsecid(struct inode * inode,u32 * secid)3493 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3494 {
3495 struct inode_security_struct *isec = inode_security_novalidate(inode);
3496 *secid = isec->sid;
3497 }
3498
selinux_inode_copy_up(struct dentry * src,struct cred ** new)3499 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3500 {
3501 u32 sid;
3502 struct task_security_struct *tsec;
3503 struct cred *new_creds = *new;
3504
3505 if (new_creds == NULL) {
3506 new_creds = prepare_creds();
3507 if (!new_creds)
3508 return -ENOMEM;
3509 }
3510
3511 tsec = selinux_cred(new_creds);
3512 /* Get label from overlay inode and set it in create_sid */
3513 selinux_inode_getsecid(d_inode(src), &sid);
3514 tsec->create_sid = sid;
3515 *new = new_creds;
3516 return 0;
3517 }
3518
selinux_inode_copy_up_xattr(const char * name)3519 static int selinux_inode_copy_up_xattr(const char *name)
3520 {
3521 /* The copy_up hook above sets the initial context on an inode, but we
3522 * don't then want to overwrite it by blindly copying all the lower
3523 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3524 */
3525 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3526 return 1; /* Discard */
3527 /*
3528 * Any other attribute apart from SELINUX is not claimed, supported
3529 * by selinux.
3530 */
3531 return -EOPNOTSUPP;
3532 }
3533
3534 /* kernfs node operations */
3535
selinux_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)3536 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3537 struct kernfs_node *kn)
3538 {
3539 const struct task_security_struct *tsec = selinux_cred(current_cred());
3540 u32 parent_sid, newsid, clen;
3541 int rc;
3542 char *context;
3543
3544 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3545 if (rc == -ENODATA)
3546 return 0;
3547 else if (rc < 0)
3548 return rc;
3549
3550 clen = (u32)rc;
3551 context = kmalloc(clen, GFP_KERNEL);
3552 if (!context)
3553 return -ENOMEM;
3554
3555 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3556 if (rc < 0) {
3557 kfree(context);
3558 return rc;
3559 }
3560
3561 rc = security_context_to_sid(context, clen, &parent_sid,
3562 GFP_KERNEL);
3563 kfree(context);
3564 if (rc)
3565 return rc;
3566
3567 if (tsec->create_sid) {
3568 newsid = tsec->create_sid;
3569 } else {
3570 u16 secclass = inode_mode_to_security_class(kn->mode);
3571 struct qstr q;
3572
3573 q.name = kn->name;
3574 q.hash_len = hashlen_string(kn_dir, kn->name);
3575
3576 rc = security_transition_sid(tsec->sid,
3577 parent_sid, secclass, &q,
3578 &newsid);
3579 if (rc)
3580 return rc;
3581 }
3582
3583 rc = security_sid_to_context_force(newsid,
3584 &context, &clen);
3585 if (rc)
3586 return rc;
3587
3588 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3589 XATTR_CREATE);
3590 kfree(context);
3591 return rc;
3592 }
3593
3594
3595 /* file security operations */
3596
selinux_revalidate_file_permission(struct file * file,int mask)3597 static int selinux_revalidate_file_permission(struct file *file, int mask)
3598 {
3599 const struct cred *cred = current_cred();
3600 struct inode *inode = file_inode(file);
3601
3602 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3603 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3604 mask |= MAY_APPEND;
3605
3606 return file_has_perm(cred, file,
3607 file_mask_to_av(inode->i_mode, mask));
3608 }
3609
selinux_file_permission(struct file * file,int mask)3610 static int selinux_file_permission(struct file *file, int mask)
3611 {
3612 struct inode *inode = file_inode(file);
3613 struct file_security_struct *fsec = selinux_file(file);
3614 struct inode_security_struct *isec;
3615 u32 sid = current_sid();
3616
3617 if (!mask)
3618 /* No permission to check. Existence test. */
3619 return 0;
3620
3621 isec = inode_security(inode);
3622 if (sid == fsec->sid && fsec->isid == isec->sid &&
3623 fsec->pseqno == avc_policy_seqno())
3624 /* No change since file_open check. */
3625 return 0;
3626
3627 return selinux_revalidate_file_permission(file, mask);
3628 }
3629
selinux_file_alloc_security(struct file * file)3630 static int selinux_file_alloc_security(struct file *file)
3631 {
3632 struct file_security_struct *fsec = selinux_file(file);
3633 u32 sid = current_sid();
3634
3635 fsec->sid = sid;
3636 fsec->fown_sid = sid;
3637
3638 return 0;
3639 }
3640
3641 /*
3642 * Check whether a task has the ioctl permission and cmd
3643 * operation to an inode.
3644 */
ioctl_has_perm(const struct cred * cred,struct file * file,u32 requested,u16 cmd)3645 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3646 u32 requested, u16 cmd)
3647 {
3648 struct common_audit_data ad;
3649 struct file_security_struct *fsec = selinux_file(file);
3650 struct inode *inode = file_inode(file);
3651 struct inode_security_struct *isec;
3652 struct lsm_ioctlop_audit ioctl;
3653 u32 ssid = cred_sid(cred);
3654 int rc;
3655 u8 driver = cmd >> 8;
3656 u8 xperm = cmd & 0xff;
3657
3658 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3659 ad.u.op = &ioctl;
3660 ad.u.op->cmd = cmd;
3661 ad.u.op->path = file->f_path;
3662
3663 if (ssid != fsec->sid) {
3664 rc = avc_has_perm(ssid, fsec->sid,
3665 SECCLASS_FD,
3666 FD__USE,
3667 &ad);
3668 if (rc)
3669 goto out;
3670 }
3671
3672 if (unlikely(IS_PRIVATE(inode)))
3673 return 0;
3674
3675 isec = inode_security(inode);
3676 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3677 requested, driver, xperm, &ad);
3678 out:
3679 return rc;
3680 }
3681
selinux_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3682 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3683 unsigned long arg)
3684 {
3685 const struct cred *cred = current_cred();
3686 int error = 0;
3687
3688 switch (cmd) {
3689 case FIONREAD:
3690 case FIBMAP:
3691 case FIGETBSZ:
3692 case FS_IOC_GETFLAGS:
3693 case FS_IOC_GETVERSION:
3694 error = file_has_perm(cred, file, FILE__GETATTR);
3695 break;
3696
3697 case FS_IOC_SETFLAGS:
3698 case FS_IOC_SETVERSION:
3699 error = file_has_perm(cred, file, FILE__SETATTR);
3700 break;
3701
3702 /* sys_ioctl() checks */
3703 case FIONBIO:
3704 case FIOASYNC:
3705 error = file_has_perm(cred, file, 0);
3706 break;
3707
3708 case KDSKBENT:
3709 case KDSKBSENT:
3710 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3711 CAP_OPT_NONE, true);
3712 break;
3713
3714 case FIOCLEX:
3715 case FIONCLEX:
3716 if (!selinux_policycap_ioctl_skip_cloexec())
3717 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3718 break;
3719
3720 /* default case assumes that the command will go
3721 * to the file's ioctl() function.
3722 */
3723 default:
3724 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3725 }
3726 return error;
3727 }
3728
selinux_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)3729 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3730 unsigned long arg)
3731 {
3732 /*
3733 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3734 * make sure we don't compare 32-bit flags to 64-bit flags.
3735 */
3736 switch (cmd) {
3737 case FS_IOC32_GETFLAGS:
3738 cmd = FS_IOC_GETFLAGS;
3739 break;
3740 case FS_IOC32_SETFLAGS:
3741 cmd = FS_IOC_SETFLAGS;
3742 break;
3743 case FS_IOC32_GETVERSION:
3744 cmd = FS_IOC_GETVERSION;
3745 break;
3746 case FS_IOC32_SETVERSION:
3747 cmd = FS_IOC_SETVERSION;
3748 break;
3749 default:
3750 break;
3751 }
3752
3753 return selinux_file_ioctl(file, cmd, arg);
3754 }
3755
3756 static int default_noexec __ro_after_init;
3757
file_map_prot_check(struct file * file,unsigned long prot,int shared)3758 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3759 {
3760 const struct cred *cred = current_cred();
3761 u32 sid = cred_sid(cred);
3762 int rc = 0;
3763
3764 if (default_noexec &&
3765 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3766 (!shared && (prot & PROT_WRITE)))) {
3767 /*
3768 * We are making executable an anonymous mapping or a
3769 * private file mapping that will also be writable.
3770 * This has an additional check.
3771 */
3772 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3773 PROCESS__EXECMEM, NULL);
3774 if (rc)
3775 goto error;
3776 }
3777
3778 if (file) {
3779 /* read access is always possible with a mapping */
3780 u32 av = FILE__READ;
3781
3782 /* write access only matters if the mapping is shared */
3783 if (shared && (prot & PROT_WRITE))
3784 av |= FILE__WRITE;
3785
3786 if (prot & PROT_EXEC)
3787 av |= FILE__EXECUTE;
3788
3789 return file_has_perm(cred, file, av);
3790 }
3791
3792 error:
3793 return rc;
3794 }
3795
selinux_mmap_addr(unsigned long addr)3796 static int selinux_mmap_addr(unsigned long addr)
3797 {
3798 int rc = 0;
3799
3800 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3801 u32 sid = current_sid();
3802 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3803 MEMPROTECT__MMAP_ZERO, NULL);
3804 }
3805
3806 return rc;
3807 }
3808
selinux_mmap_file(struct file * file,unsigned long reqprot __always_unused,unsigned long prot,unsigned long flags)3809 static int selinux_mmap_file(struct file *file,
3810 unsigned long reqprot __always_unused,
3811 unsigned long prot, unsigned long flags)
3812 {
3813 struct common_audit_data ad;
3814 int rc;
3815
3816 if (file) {
3817 ad.type = LSM_AUDIT_DATA_FILE;
3818 ad.u.file = file;
3819 rc = inode_has_perm(current_cred(), file_inode(file),
3820 FILE__MAP, &ad);
3821 if (rc)
3822 return rc;
3823 }
3824
3825 return file_map_prot_check(file, prot,
3826 (flags & MAP_TYPE) == MAP_SHARED);
3827 }
3828
selinux_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot __always_unused,unsigned long prot)3829 static int selinux_file_mprotect(struct vm_area_struct *vma,
3830 unsigned long reqprot __always_unused,
3831 unsigned long prot)
3832 {
3833 const struct cred *cred = current_cred();
3834 u32 sid = cred_sid(cred);
3835
3836 if (default_noexec &&
3837 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3838 int rc = 0;
3839 /*
3840 * We don't use the vma_is_initial_heap() helper as it has
3841 * a history of problems and is currently broken on systems
3842 * where there is no heap, e.g. brk == start_brk. Before
3843 * replacing the conditional below with vma_is_initial_heap(),
3844 * or something similar, please ensure that the logic is the
3845 * same as what we have below or you have tested every possible
3846 * corner case you can think to test.
3847 */
3848 if (vma->vm_start >= vma->vm_mm->start_brk &&
3849 vma->vm_end <= vma->vm_mm->brk) {
3850 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3851 PROCESS__EXECHEAP, NULL);
3852 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3853 vma_is_stack_for_current(vma))) {
3854 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3855 PROCESS__EXECSTACK, NULL);
3856 } else if (vma->vm_file && vma->anon_vma) {
3857 /*
3858 * We are making executable a file mapping that has
3859 * had some COW done. Since pages might have been
3860 * written, check ability to execute the possibly
3861 * modified content. This typically should only
3862 * occur for text relocations.
3863 */
3864 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3865 }
3866 if (rc)
3867 return rc;
3868 }
3869
3870 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3871 }
3872
selinux_file_lock(struct file * file,unsigned int cmd)3873 static int selinux_file_lock(struct file *file, unsigned int cmd)
3874 {
3875 const struct cred *cred = current_cred();
3876
3877 return file_has_perm(cred, file, FILE__LOCK);
3878 }
3879
selinux_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3880 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3881 unsigned long arg)
3882 {
3883 const struct cred *cred = current_cred();
3884 int err = 0;
3885
3886 switch (cmd) {
3887 case F_SETFL:
3888 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3889 err = file_has_perm(cred, file, FILE__WRITE);
3890 break;
3891 }
3892 fallthrough;
3893 case F_SETOWN:
3894 case F_SETSIG:
3895 case F_GETFL:
3896 case F_GETOWN:
3897 case F_GETSIG:
3898 case F_GETOWNER_UIDS:
3899 /* Just check FD__USE permission */
3900 err = file_has_perm(cred, file, 0);
3901 break;
3902 case F_GETLK:
3903 case F_SETLK:
3904 case F_SETLKW:
3905 case F_OFD_GETLK:
3906 case F_OFD_SETLK:
3907 case F_OFD_SETLKW:
3908 #if BITS_PER_LONG == 32
3909 case F_GETLK64:
3910 case F_SETLK64:
3911 case F_SETLKW64:
3912 #endif
3913 err = file_has_perm(cred, file, FILE__LOCK);
3914 break;
3915 }
3916
3917 return err;
3918 }
3919
selinux_file_set_fowner(struct file * file)3920 static void selinux_file_set_fowner(struct file *file)
3921 {
3922 struct file_security_struct *fsec;
3923
3924 fsec = selinux_file(file);
3925 fsec->fown_sid = current_sid();
3926 }
3927
selinux_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int signum)3928 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3929 struct fown_struct *fown, int signum)
3930 {
3931 struct file *file;
3932 u32 sid = task_sid_obj(tsk);
3933 u32 perm;
3934 struct file_security_struct *fsec;
3935
3936 /* struct fown_struct is never outside the context of a struct file */
3937 file = container_of(fown, struct file, f_owner);
3938
3939 fsec = selinux_file(file);
3940
3941 if (!signum)
3942 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3943 else
3944 perm = signal_to_av(signum);
3945
3946 return avc_has_perm(fsec->fown_sid, sid,
3947 SECCLASS_PROCESS, perm, NULL);
3948 }
3949
selinux_file_receive(struct file * file)3950 static int selinux_file_receive(struct file *file)
3951 {
3952 const struct cred *cred = current_cred();
3953
3954 return file_has_perm(cred, file, file_to_av(file));
3955 }
3956
selinux_file_open(struct file * file)3957 static int selinux_file_open(struct file *file)
3958 {
3959 struct file_security_struct *fsec;
3960 struct inode_security_struct *isec;
3961
3962 fsec = selinux_file(file);
3963 isec = inode_security(file_inode(file));
3964 /*
3965 * Save inode label and policy sequence number
3966 * at open-time so that selinux_file_permission
3967 * can determine whether revalidation is necessary.
3968 * Task label is already saved in the file security
3969 * struct as its SID.
3970 */
3971 fsec->isid = isec->sid;
3972 fsec->pseqno = avc_policy_seqno();
3973 /*
3974 * Since the inode label or policy seqno may have changed
3975 * between the selinux_inode_permission check and the saving
3976 * of state above, recheck that access is still permitted.
3977 * Otherwise, access might never be revalidated against the
3978 * new inode label or new policy.
3979 * This check is not redundant - do not remove.
3980 */
3981 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3982 }
3983
3984 /* task security operations */
3985
selinux_task_alloc(struct task_struct * task,unsigned long clone_flags)3986 static int selinux_task_alloc(struct task_struct *task,
3987 unsigned long clone_flags)
3988 {
3989 u32 sid = current_sid();
3990
3991 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3992 }
3993
3994 /*
3995 * prepare a new set of credentials for modification
3996 */
selinux_cred_prepare(struct cred * new,const struct cred * old,gfp_t gfp)3997 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3998 gfp_t gfp)
3999 {
4000 const struct task_security_struct *old_tsec = selinux_cred(old);
4001 struct task_security_struct *tsec = selinux_cred(new);
4002
4003 *tsec = *old_tsec;
4004 return 0;
4005 }
4006
4007 /*
4008 * transfer the SELinux data to a blank set of creds
4009 */
selinux_cred_transfer(struct cred * new,const struct cred * old)4010 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4011 {
4012 const struct task_security_struct *old_tsec = selinux_cred(old);
4013 struct task_security_struct *tsec = selinux_cred(new);
4014
4015 *tsec = *old_tsec;
4016 }
4017
selinux_cred_getsecid(const struct cred * c,u32 * secid)4018 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4019 {
4020 *secid = cred_sid(c);
4021 }
4022
4023 /*
4024 * set the security data for a kernel service
4025 * - all the creation contexts are set to unlabelled
4026 */
selinux_kernel_act_as(struct cred * new,u32 secid)4027 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4028 {
4029 struct task_security_struct *tsec = selinux_cred(new);
4030 u32 sid = current_sid();
4031 int ret;
4032
4033 ret = avc_has_perm(sid, secid,
4034 SECCLASS_KERNEL_SERVICE,
4035 KERNEL_SERVICE__USE_AS_OVERRIDE,
4036 NULL);
4037 if (ret == 0) {
4038 tsec->sid = secid;
4039 tsec->create_sid = 0;
4040 tsec->keycreate_sid = 0;
4041 tsec->sockcreate_sid = 0;
4042 }
4043 return ret;
4044 }
4045
4046 /*
4047 * set the file creation context in a security record to the same as the
4048 * objective context of the specified inode
4049 */
selinux_kernel_create_files_as(struct cred * new,struct inode * inode)4050 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4051 {
4052 struct inode_security_struct *isec = inode_security(inode);
4053 struct task_security_struct *tsec = selinux_cred(new);
4054 u32 sid = current_sid();
4055 int ret;
4056
4057 ret = avc_has_perm(sid, isec->sid,
4058 SECCLASS_KERNEL_SERVICE,
4059 KERNEL_SERVICE__CREATE_FILES_AS,
4060 NULL);
4061
4062 if (ret == 0)
4063 tsec->create_sid = isec->sid;
4064 return ret;
4065 }
4066
selinux_kernel_module_request(char * kmod_name)4067 static int selinux_kernel_module_request(char *kmod_name)
4068 {
4069 struct common_audit_data ad;
4070
4071 ad.type = LSM_AUDIT_DATA_KMOD;
4072 ad.u.kmod_name = kmod_name;
4073
4074 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4075 SYSTEM__MODULE_REQUEST, &ad);
4076 }
4077
selinux_kernel_module_from_file(struct file * file)4078 static int selinux_kernel_module_from_file(struct file *file)
4079 {
4080 struct common_audit_data ad;
4081 struct inode_security_struct *isec;
4082 struct file_security_struct *fsec;
4083 u32 sid = current_sid();
4084 int rc;
4085
4086 /* init_module */
4087 if (file == NULL)
4088 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4089 SYSTEM__MODULE_LOAD, NULL);
4090
4091 /* finit_module */
4092
4093 ad.type = LSM_AUDIT_DATA_FILE;
4094 ad.u.file = file;
4095
4096 fsec = selinux_file(file);
4097 if (sid != fsec->sid) {
4098 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4099 if (rc)
4100 return rc;
4101 }
4102
4103 isec = inode_security(file_inode(file));
4104 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4105 SYSTEM__MODULE_LOAD, &ad);
4106 }
4107
selinux_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)4108 static int selinux_kernel_read_file(struct file *file,
4109 enum kernel_read_file_id id,
4110 bool contents)
4111 {
4112 int rc = 0;
4113
4114 switch (id) {
4115 case READING_MODULE:
4116 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4117 break;
4118 default:
4119 break;
4120 }
4121
4122 return rc;
4123 }
4124
selinux_kernel_load_data(enum kernel_load_data_id id,bool contents)4125 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4126 {
4127 int rc = 0;
4128
4129 switch (id) {
4130 case LOADING_MODULE:
4131 rc = selinux_kernel_module_from_file(NULL);
4132 break;
4133 default:
4134 break;
4135 }
4136
4137 return rc;
4138 }
4139
selinux_task_setpgid(struct task_struct * p,pid_t pgid)4140 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4141 {
4142 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4143 PROCESS__SETPGID, NULL);
4144 }
4145
selinux_task_getpgid(struct task_struct * p)4146 static int selinux_task_getpgid(struct task_struct *p)
4147 {
4148 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149 PROCESS__GETPGID, NULL);
4150 }
4151
selinux_task_getsid(struct task_struct * p)4152 static int selinux_task_getsid(struct task_struct *p)
4153 {
4154 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4155 PROCESS__GETSESSION, NULL);
4156 }
4157
selinux_current_getsecid_subj(u32 * secid)4158 static void selinux_current_getsecid_subj(u32 *secid)
4159 {
4160 *secid = current_sid();
4161 }
4162
selinux_task_getsecid_obj(struct task_struct * p,u32 * secid)4163 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4164 {
4165 *secid = task_sid_obj(p);
4166 }
4167
selinux_task_setnice(struct task_struct * p,int nice)4168 static int selinux_task_setnice(struct task_struct *p, int nice)
4169 {
4170 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4171 PROCESS__SETSCHED, NULL);
4172 }
4173
selinux_task_setioprio(struct task_struct * p,int ioprio)4174 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4175 {
4176 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4177 PROCESS__SETSCHED, NULL);
4178 }
4179
selinux_task_getioprio(struct task_struct * p)4180 static int selinux_task_getioprio(struct task_struct *p)
4181 {
4182 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4183 PROCESS__GETSCHED, NULL);
4184 }
4185
selinux_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)4186 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4187 unsigned int flags)
4188 {
4189 u32 av = 0;
4190
4191 if (!flags)
4192 return 0;
4193 if (flags & LSM_PRLIMIT_WRITE)
4194 av |= PROCESS__SETRLIMIT;
4195 if (flags & LSM_PRLIMIT_READ)
4196 av |= PROCESS__GETRLIMIT;
4197 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4198 SECCLASS_PROCESS, av, NULL);
4199 }
4200
selinux_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)4201 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4202 struct rlimit *new_rlim)
4203 {
4204 struct rlimit *old_rlim = p->signal->rlim + resource;
4205
4206 /* Control the ability to change the hard limit (whether
4207 lowering or raising it), so that the hard limit can
4208 later be used as a safe reset point for the soft limit
4209 upon context transitions. See selinux_bprm_committing_creds. */
4210 if (old_rlim->rlim_max != new_rlim->rlim_max)
4211 return avc_has_perm(current_sid(), task_sid_obj(p),
4212 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4213
4214 return 0;
4215 }
4216
selinux_task_setscheduler(struct task_struct * p)4217 static int selinux_task_setscheduler(struct task_struct *p)
4218 {
4219 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4220 PROCESS__SETSCHED, NULL);
4221 }
4222
selinux_task_getscheduler(struct task_struct * p)4223 static int selinux_task_getscheduler(struct task_struct *p)
4224 {
4225 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4226 PROCESS__GETSCHED, NULL);
4227 }
4228
selinux_task_movememory(struct task_struct * p)4229 static int selinux_task_movememory(struct task_struct *p)
4230 {
4231 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4232 PROCESS__SETSCHED, NULL);
4233 }
4234
selinux_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)4235 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4236 int sig, const struct cred *cred)
4237 {
4238 u32 secid;
4239 u32 perm;
4240
4241 if (!sig)
4242 perm = PROCESS__SIGNULL; /* null signal; existence test */
4243 else
4244 perm = signal_to_av(sig);
4245 if (!cred)
4246 secid = current_sid();
4247 else
4248 secid = cred_sid(cred);
4249 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4250 }
4251
selinux_task_to_inode(struct task_struct * p,struct inode * inode)4252 static void selinux_task_to_inode(struct task_struct *p,
4253 struct inode *inode)
4254 {
4255 struct inode_security_struct *isec = selinux_inode(inode);
4256 u32 sid = task_sid_obj(p);
4257
4258 spin_lock(&isec->lock);
4259 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4260 isec->sid = sid;
4261 isec->initialized = LABEL_INITIALIZED;
4262 spin_unlock(&isec->lock);
4263 }
4264
selinux_userns_create(const struct cred * cred)4265 static int selinux_userns_create(const struct cred *cred)
4266 {
4267 u32 sid = current_sid();
4268
4269 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4270 USER_NAMESPACE__CREATE, NULL);
4271 }
4272
4273 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv4(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)4274 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4275 struct common_audit_data *ad, u8 *proto)
4276 {
4277 int offset, ihlen, ret = -EINVAL;
4278 struct iphdr _iph, *ih;
4279
4280 offset = skb_network_offset(skb);
4281 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4282 if (ih == NULL)
4283 goto out;
4284
4285 ihlen = ih->ihl * 4;
4286 if (ihlen < sizeof(_iph))
4287 goto out;
4288
4289 ad->u.net->v4info.saddr = ih->saddr;
4290 ad->u.net->v4info.daddr = ih->daddr;
4291 ret = 0;
4292
4293 if (proto)
4294 *proto = ih->protocol;
4295
4296 switch (ih->protocol) {
4297 case IPPROTO_TCP: {
4298 struct tcphdr _tcph, *th;
4299
4300 if (ntohs(ih->frag_off) & IP_OFFSET)
4301 break;
4302
4303 offset += ihlen;
4304 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4305 if (th == NULL)
4306 break;
4307
4308 ad->u.net->sport = th->source;
4309 ad->u.net->dport = th->dest;
4310 break;
4311 }
4312
4313 case IPPROTO_UDP: {
4314 struct udphdr _udph, *uh;
4315
4316 if (ntohs(ih->frag_off) & IP_OFFSET)
4317 break;
4318
4319 offset += ihlen;
4320 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4321 if (uh == NULL)
4322 break;
4323
4324 ad->u.net->sport = uh->source;
4325 ad->u.net->dport = uh->dest;
4326 break;
4327 }
4328
4329 case IPPROTO_DCCP: {
4330 struct dccp_hdr _dccph, *dh;
4331
4332 if (ntohs(ih->frag_off) & IP_OFFSET)
4333 break;
4334
4335 offset += ihlen;
4336 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4337 if (dh == NULL)
4338 break;
4339
4340 ad->u.net->sport = dh->dccph_sport;
4341 ad->u.net->dport = dh->dccph_dport;
4342 break;
4343 }
4344
4345 #if IS_ENABLED(CONFIG_IP_SCTP)
4346 case IPPROTO_SCTP: {
4347 struct sctphdr _sctph, *sh;
4348
4349 if (ntohs(ih->frag_off) & IP_OFFSET)
4350 break;
4351
4352 offset += ihlen;
4353 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4354 if (sh == NULL)
4355 break;
4356
4357 ad->u.net->sport = sh->source;
4358 ad->u.net->dport = sh->dest;
4359 break;
4360 }
4361 #endif
4362 default:
4363 break;
4364 }
4365 out:
4366 return ret;
4367 }
4368
4369 #if IS_ENABLED(CONFIG_IPV6)
4370
4371 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv6(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)4372 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4373 struct common_audit_data *ad, u8 *proto)
4374 {
4375 u8 nexthdr;
4376 int ret = -EINVAL, offset;
4377 struct ipv6hdr _ipv6h, *ip6;
4378 __be16 frag_off;
4379
4380 offset = skb_network_offset(skb);
4381 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4382 if (ip6 == NULL)
4383 goto out;
4384
4385 ad->u.net->v6info.saddr = ip6->saddr;
4386 ad->u.net->v6info.daddr = ip6->daddr;
4387 ret = 0;
4388
4389 nexthdr = ip6->nexthdr;
4390 offset += sizeof(_ipv6h);
4391 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4392 if (offset < 0)
4393 goto out;
4394
4395 if (proto)
4396 *proto = nexthdr;
4397
4398 switch (nexthdr) {
4399 case IPPROTO_TCP: {
4400 struct tcphdr _tcph, *th;
4401
4402 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4403 if (th == NULL)
4404 break;
4405
4406 ad->u.net->sport = th->source;
4407 ad->u.net->dport = th->dest;
4408 break;
4409 }
4410
4411 case IPPROTO_UDP: {
4412 struct udphdr _udph, *uh;
4413
4414 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4415 if (uh == NULL)
4416 break;
4417
4418 ad->u.net->sport = uh->source;
4419 ad->u.net->dport = uh->dest;
4420 break;
4421 }
4422
4423 case IPPROTO_DCCP: {
4424 struct dccp_hdr _dccph, *dh;
4425
4426 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4427 if (dh == NULL)
4428 break;
4429
4430 ad->u.net->sport = dh->dccph_sport;
4431 ad->u.net->dport = dh->dccph_dport;
4432 break;
4433 }
4434
4435 #if IS_ENABLED(CONFIG_IP_SCTP)
4436 case IPPROTO_SCTP: {
4437 struct sctphdr _sctph, *sh;
4438
4439 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4440 if (sh == NULL)
4441 break;
4442
4443 ad->u.net->sport = sh->source;
4444 ad->u.net->dport = sh->dest;
4445 break;
4446 }
4447 #endif
4448 /* includes fragments */
4449 default:
4450 break;
4451 }
4452 out:
4453 return ret;
4454 }
4455
4456 #endif /* IPV6 */
4457
selinux_parse_skb(struct sk_buff * skb,struct common_audit_data * ad,char ** _addrp,int src,u8 * proto)4458 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4459 char **_addrp, int src, u8 *proto)
4460 {
4461 char *addrp;
4462 int ret;
4463
4464 switch (ad->u.net->family) {
4465 case PF_INET:
4466 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4467 if (ret)
4468 goto parse_error;
4469 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4470 &ad->u.net->v4info.daddr);
4471 goto okay;
4472
4473 #if IS_ENABLED(CONFIG_IPV6)
4474 case PF_INET6:
4475 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4476 if (ret)
4477 goto parse_error;
4478 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4479 &ad->u.net->v6info.daddr);
4480 goto okay;
4481 #endif /* IPV6 */
4482 default:
4483 addrp = NULL;
4484 goto okay;
4485 }
4486
4487 parse_error:
4488 pr_warn(
4489 "SELinux: failure in selinux_parse_skb(),"
4490 " unable to parse packet\n");
4491 return ret;
4492
4493 okay:
4494 if (_addrp)
4495 *_addrp = addrp;
4496 return 0;
4497 }
4498
4499 /**
4500 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4501 * @skb: the packet
4502 * @family: protocol family
4503 * @sid: the packet's peer label SID
4504 *
4505 * Description:
4506 * Check the various different forms of network peer labeling and determine
4507 * the peer label/SID for the packet; most of the magic actually occurs in
4508 * the security server function security_net_peersid_cmp(). The function
4509 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4510 * or -EACCES if @sid is invalid due to inconsistencies with the different
4511 * peer labels.
4512 *
4513 */
selinux_skb_peerlbl_sid(struct sk_buff * skb,u16 family,u32 * sid)4514 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4515 {
4516 int err;
4517 u32 xfrm_sid;
4518 u32 nlbl_sid;
4519 u32 nlbl_type;
4520
4521 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4522 if (unlikely(err))
4523 return -EACCES;
4524 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4525 if (unlikely(err))
4526 return -EACCES;
4527
4528 err = security_net_peersid_resolve(nlbl_sid,
4529 nlbl_type, xfrm_sid, sid);
4530 if (unlikely(err)) {
4531 pr_warn(
4532 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4533 " unable to determine packet's peer label\n");
4534 return -EACCES;
4535 }
4536
4537 return 0;
4538 }
4539
4540 /**
4541 * selinux_conn_sid - Determine the child socket label for a connection
4542 * @sk_sid: the parent socket's SID
4543 * @skb_sid: the packet's SID
4544 * @conn_sid: the resulting connection SID
4545 *
4546 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4547 * combined with the MLS information from @skb_sid in order to create
4548 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4549 * of @sk_sid. Returns zero on success, negative values on failure.
4550 *
4551 */
selinux_conn_sid(u32 sk_sid,u32 skb_sid,u32 * conn_sid)4552 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4553 {
4554 int err = 0;
4555
4556 if (skb_sid != SECSID_NULL)
4557 err = security_sid_mls_copy(sk_sid, skb_sid,
4558 conn_sid);
4559 else
4560 *conn_sid = sk_sid;
4561
4562 return err;
4563 }
4564
4565 /* socket security operations */
4566
socket_sockcreate_sid(const struct task_security_struct * tsec,u16 secclass,u32 * socksid)4567 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4568 u16 secclass, u32 *socksid)
4569 {
4570 if (tsec->sockcreate_sid > SECSID_NULL) {
4571 *socksid = tsec->sockcreate_sid;
4572 return 0;
4573 }
4574
4575 return security_transition_sid(tsec->sid, tsec->sid,
4576 secclass, NULL, socksid);
4577 }
4578
sock_has_perm(struct sock * sk,u32 perms)4579 static int sock_has_perm(struct sock *sk, u32 perms)
4580 {
4581 struct sk_security_struct *sksec = sk->sk_security;
4582 struct common_audit_data ad;
4583 struct lsm_network_audit net;
4584
4585 if (sksec->sid == SECINITSID_KERNEL)
4586 return 0;
4587
4588 ad_net_init_from_sk(&ad, &net, sk);
4589
4590 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4591 &ad);
4592 }
4593
selinux_socket_create(int family,int type,int protocol,int kern)4594 static int selinux_socket_create(int family, int type,
4595 int protocol, int kern)
4596 {
4597 const struct task_security_struct *tsec = selinux_cred(current_cred());
4598 u32 newsid;
4599 u16 secclass;
4600 int rc;
4601
4602 if (kern)
4603 return 0;
4604
4605 secclass = socket_type_to_security_class(family, type, protocol);
4606 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4607 if (rc)
4608 return rc;
4609
4610 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4611 }
4612
selinux_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4613 static int selinux_socket_post_create(struct socket *sock, int family,
4614 int type, int protocol, int kern)
4615 {
4616 const struct task_security_struct *tsec = selinux_cred(current_cred());
4617 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4618 struct sk_security_struct *sksec;
4619 u16 sclass = socket_type_to_security_class(family, type, protocol);
4620 u32 sid = SECINITSID_KERNEL;
4621 int err = 0;
4622
4623 if (!kern) {
4624 err = socket_sockcreate_sid(tsec, sclass, &sid);
4625 if (err)
4626 return err;
4627 }
4628
4629 isec->sclass = sclass;
4630 isec->sid = sid;
4631 isec->initialized = LABEL_INITIALIZED;
4632
4633 if (sock->sk) {
4634 sksec = sock->sk->sk_security;
4635 sksec->sclass = sclass;
4636 sksec->sid = sid;
4637 /* Allows detection of the first association on this socket */
4638 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4639 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4640
4641 err = selinux_netlbl_socket_post_create(sock->sk, family);
4642 }
4643
4644 return err;
4645 }
4646
selinux_socket_socketpair(struct socket * socka,struct socket * sockb)4647 static int selinux_socket_socketpair(struct socket *socka,
4648 struct socket *sockb)
4649 {
4650 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4651 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4652
4653 sksec_a->peer_sid = sksec_b->sid;
4654 sksec_b->peer_sid = sksec_a->sid;
4655
4656 return 0;
4657 }
4658
4659 /* Range of port numbers used to automatically bind.
4660 Need to determine whether we should perform a name_bind
4661 permission check between the socket and the port number. */
4662
selinux_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4663 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4664 {
4665 struct sock *sk = sock->sk;
4666 struct sk_security_struct *sksec = sk->sk_security;
4667 u16 family;
4668 int err;
4669
4670 err = sock_has_perm(sk, SOCKET__BIND);
4671 if (err)
4672 goto out;
4673
4674 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4675 family = sk->sk_family;
4676 if (family == PF_INET || family == PF_INET6) {
4677 char *addrp;
4678 struct common_audit_data ad;
4679 struct lsm_network_audit net = {0,};
4680 struct sockaddr_in *addr4 = NULL;
4681 struct sockaddr_in6 *addr6 = NULL;
4682 u16 family_sa;
4683 unsigned short snum;
4684 u32 sid, node_perm;
4685
4686 /*
4687 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4688 * that validates multiple binding addresses. Because of this
4689 * need to check address->sa_family as it is possible to have
4690 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4691 */
4692 if (addrlen < offsetofend(struct sockaddr, sa_family))
4693 return -EINVAL;
4694 family_sa = address->sa_family;
4695 switch (family_sa) {
4696 case AF_UNSPEC:
4697 case AF_INET:
4698 if (addrlen < sizeof(struct sockaddr_in))
4699 return -EINVAL;
4700 addr4 = (struct sockaddr_in *)address;
4701 if (family_sa == AF_UNSPEC) {
4702 if (family == PF_INET6) {
4703 /* Length check from inet6_bind_sk() */
4704 if (addrlen < SIN6_LEN_RFC2133)
4705 return -EINVAL;
4706 /* Family check from __inet6_bind() */
4707 goto err_af;
4708 }
4709 /* see __inet_bind(), we only want to allow
4710 * AF_UNSPEC if the address is INADDR_ANY
4711 */
4712 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4713 goto err_af;
4714 family_sa = AF_INET;
4715 }
4716 snum = ntohs(addr4->sin_port);
4717 addrp = (char *)&addr4->sin_addr.s_addr;
4718 break;
4719 case AF_INET6:
4720 if (addrlen < SIN6_LEN_RFC2133)
4721 return -EINVAL;
4722 addr6 = (struct sockaddr_in6 *)address;
4723 snum = ntohs(addr6->sin6_port);
4724 addrp = (char *)&addr6->sin6_addr.s6_addr;
4725 break;
4726 default:
4727 goto err_af;
4728 }
4729
4730 ad.type = LSM_AUDIT_DATA_NET;
4731 ad.u.net = &net;
4732 ad.u.net->sport = htons(snum);
4733 ad.u.net->family = family_sa;
4734
4735 if (snum) {
4736 int low, high;
4737
4738 inet_get_local_port_range(sock_net(sk), &low, &high);
4739
4740 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4741 snum < low || snum > high) {
4742 err = sel_netport_sid(sk->sk_protocol,
4743 snum, &sid);
4744 if (err)
4745 goto out;
4746 err = avc_has_perm(sksec->sid, sid,
4747 sksec->sclass,
4748 SOCKET__NAME_BIND, &ad);
4749 if (err)
4750 goto out;
4751 }
4752 }
4753
4754 switch (sksec->sclass) {
4755 case SECCLASS_TCP_SOCKET:
4756 node_perm = TCP_SOCKET__NODE_BIND;
4757 break;
4758
4759 case SECCLASS_UDP_SOCKET:
4760 node_perm = UDP_SOCKET__NODE_BIND;
4761 break;
4762
4763 case SECCLASS_DCCP_SOCKET:
4764 node_perm = DCCP_SOCKET__NODE_BIND;
4765 break;
4766
4767 case SECCLASS_SCTP_SOCKET:
4768 node_perm = SCTP_SOCKET__NODE_BIND;
4769 break;
4770
4771 default:
4772 node_perm = RAWIP_SOCKET__NODE_BIND;
4773 break;
4774 }
4775
4776 err = sel_netnode_sid(addrp, family_sa, &sid);
4777 if (err)
4778 goto out;
4779
4780 if (family_sa == AF_INET)
4781 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4782 else
4783 ad.u.net->v6info.saddr = addr6->sin6_addr;
4784
4785 err = avc_has_perm(sksec->sid, sid,
4786 sksec->sclass, node_perm, &ad);
4787 if (err)
4788 goto out;
4789 }
4790 out:
4791 return err;
4792 err_af:
4793 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4794 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4795 return -EINVAL;
4796 return -EAFNOSUPPORT;
4797 }
4798
4799 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4800 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4801 */
selinux_socket_connect_helper(struct socket * sock,struct sockaddr * address,int addrlen)4802 static int selinux_socket_connect_helper(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804 {
4805 struct sock *sk = sock->sk;
4806 struct sk_security_struct *sksec = sk->sk_security;
4807 int err;
4808
4809 err = sock_has_perm(sk, SOCKET__CONNECT);
4810 if (err)
4811 return err;
4812 if (addrlen < offsetofend(struct sockaddr, sa_family))
4813 return -EINVAL;
4814
4815 /* connect(AF_UNSPEC) has special handling, as it is a documented
4816 * way to disconnect the socket
4817 */
4818 if (address->sa_family == AF_UNSPEC)
4819 return 0;
4820
4821 /*
4822 * If a TCP, DCCP or SCTP socket, check name_connect permission
4823 * for the port.
4824 */
4825 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4826 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4827 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4828 struct common_audit_data ad;
4829 struct lsm_network_audit net = {0,};
4830 struct sockaddr_in *addr4 = NULL;
4831 struct sockaddr_in6 *addr6 = NULL;
4832 unsigned short snum;
4833 u32 sid, perm;
4834
4835 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4836 * that validates multiple connect addresses. Because of this
4837 * need to check address->sa_family as it is possible to have
4838 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4839 */
4840 switch (address->sa_family) {
4841 case AF_INET:
4842 addr4 = (struct sockaddr_in *)address;
4843 if (addrlen < sizeof(struct sockaddr_in))
4844 return -EINVAL;
4845 snum = ntohs(addr4->sin_port);
4846 break;
4847 case AF_INET6:
4848 addr6 = (struct sockaddr_in6 *)address;
4849 if (addrlen < SIN6_LEN_RFC2133)
4850 return -EINVAL;
4851 snum = ntohs(addr6->sin6_port);
4852 break;
4853 default:
4854 /* Note that SCTP services expect -EINVAL, whereas
4855 * others expect -EAFNOSUPPORT.
4856 */
4857 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858 return -EINVAL;
4859 else
4860 return -EAFNOSUPPORT;
4861 }
4862
4863 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4864 if (err)
4865 return err;
4866
4867 switch (sksec->sclass) {
4868 case SECCLASS_TCP_SOCKET:
4869 perm = TCP_SOCKET__NAME_CONNECT;
4870 break;
4871 case SECCLASS_DCCP_SOCKET:
4872 perm = DCCP_SOCKET__NAME_CONNECT;
4873 break;
4874 case SECCLASS_SCTP_SOCKET:
4875 perm = SCTP_SOCKET__NAME_CONNECT;
4876 break;
4877 }
4878
4879 ad.type = LSM_AUDIT_DATA_NET;
4880 ad.u.net = &net;
4881 ad.u.net->dport = htons(snum);
4882 ad.u.net->family = address->sa_family;
4883 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4884 if (err)
4885 return err;
4886 }
4887
4888 return 0;
4889 }
4890
4891 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
selinux_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4892 static int selinux_socket_connect(struct socket *sock,
4893 struct sockaddr *address, int addrlen)
4894 {
4895 int err;
4896 struct sock *sk = sock->sk;
4897
4898 err = selinux_socket_connect_helper(sock, address, addrlen);
4899 if (err)
4900 return err;
4901
4902 return selinux_netlbl_socket_connect(sk, address);
4903 }
4904
selinux_socket_listen(struct socket * sock,int backlog)4905 static int selinux_socket_listen(struct socket *sock, int backlog)
4906 {
4907 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4908 }
4909
selinux_socket_accept(struct socket * sock,struct socket * newsock)4910 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4911 {
4912 int err;
4913 struct inode_security_struct *isec;
4914 struct inode_security_struct *newisec;
4915 u16 sclass;
4916 u32 sid;
4917
4918 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4919 if (err)
4920 return err;
4921
4922 isec = inode_security_novalidate(SOCK_INODE(sock));
4923 spin_lock(&isec->lock);
4924 sclass = isec->sclass;
4925 sid = isec->sid;
4926 spin_unlock(&isec->lock);
4927
4928 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4929 newisec->sclass = sclass;
4930 newisec->sid = sid;
4931 newisec->initialized = LABEL_INITIALIZED;
4932
4933 return 0;
4934 }
4935
selinux_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4936 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4937 int size)
4938 {
4939 return sock_has_perm(sock->sk, SOCKET__WRITE);
4940 }
4941
selinux_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4942 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4943 int size, int flags)
4944 {
4945 return sock_has_perm(sock->sk, SOCKET__READ);
4946 }
4947
selinux_socket_getsockname(struct socket * sock)4948 static int selinux_socket_getsockname(struct socket *sock)
4949 {
4950 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4951 }
4952
selinux_socket_getpeername(struct socket * sock)4953 static int selinux_socket_getpeername(struct socket *sock)
4954 {
4955 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4956 }
4957
selinux_socket_setsockopt(struct socket * sock,int level,int optname)4958 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4959 {
4960 int err;
4961
4962 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4963 if (err)
4964 return err;
4965
4966 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4967 }
4968
selinux_socket_getsockopt(struct socket * sock,int level,int optname)4969 static int selinux_socket_getsockopt(struct socket *sock, int level,
4970 int optname)
4971 {
4972 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4973 }
4974
selinux_socket_shutdown(struct socket * sock,int how)4975 static int selinux_socket_shutdown(struct socket *sock, int how)
4976 {
4977 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4978 }
4979
selinux_socket_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4980 static int selinux_socket_unix_stream_connect(struct sock *sock,
4981 struct sock *other,
4982 struct sock *newsk)
4983 {
4984 struct sk_security_struct *sksec_sock = sock->sk_security;
4985 struct sk_security_struct *sksec_other = other->sk_security;
4986 struct sk_security_struct *sksec_new = newsk->sk_security;
4987 struct common_audit_data ad;
4988 struct lsm_network_audit net;
4989 int err;
4990
4991 ad_net_init_from_sk(&ad, &net, other);
4992
4993 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4994 sksec_other->sclass,
4995 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4996 if (err)
4997 return err;
4998
4999 /* server child socket */
5000 sksec_new->peer_sid = sksec_sock->sid;
5001 err = security_sid_mls_copy(sksec_other->sid,
5002 sksec_sock->sid, &sksec_new->sid);
5003 if (err)
5004 return err;
5005
5006 /* connecting socket */
5007 sksec_sock->peer_sid = sksec_new->sid;
5008
5009 return 0;
5010 }
5011
selinux_socket_unix_may_send(struct socket * sock,struct socket * other)5012 static int selinux_socket_unix_may_send(struct socket *sock,
5013 struct socket *other)
5014 {
5015 struct sk_security_struct *ssec = sock->sk->sk_security;
5016 struct sk_security_struct *osec = other->sk->sk_security;
5017 struct common_audit_data ad;
5018 struct lsm_network_audit net;
5019
5020 ad_net_init_from_sk(&ad, &net, other->sk);
5021
5022 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5023 &ad);
5024 }
5025
selinux_inet_sys_rcv_skb(struct net * ns,int ifindex,char * addrp,u16 family,u32 peer_sid,struct common_audit_data * ad)5026 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5027 char *addrp, u16 family, u32 peer_sid,
5028 struct common_audit_data *ad)
5029 {
5030 int err;
5031 u32 if_sid;
5032 u32 node_sid;
5033
5034 err = sel_netif_sid(ns, ifindex, &if_sid);
5035 if (err)
5036 return err;
5037 err = avc_has_perm(peer_sid, if_sid,
5038 SECCLASS_NETIF, NETIF__INGRESS, ad);
5039 if (err)
5040 return err;
5041
5042 err = sel_netnode_sid(addrp, family, &node_sid);
5043 if (err)
5044 return err;
5045 return avc_has_perm(peer_sid, node_sid,
5046 SECCLASS_NODE, NODE__RECVFROM, ad);
5047 }
5048
selinux_sock_rcv_skb_compat(struct sock * sk,struct sk_buff * skb,u16 family)5049 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5050 u16 family)
5051 {
5052 int err = 0;
5053 struct sk_security_struct *sksec = sk->sk_security;
5054 u32 sk_sid = sksec->sid;
5055 struct common_audit_data ad;
5056 struct lsm_network_audit net;
5057 char *addrp;
5058
5059 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5060 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5061 if (err)
5062 return err;
5063
5064 if (selinux_secmark_enabled()) {
5065 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5066 PACKET__RECV, &ad);
5067 if (err)
5068 return err;
5069 }
5070
5071 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5072 if (err)
5073 return err;
5074 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5075
5076 return err;
5077 }
5078
selinux_socket_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)5079 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5080 {
5081 int err, peerlbl_active, secmark_active;
5082 struct sk_security_struct *sksec = sk->sk_security;
5083 u16 family = sk->sk_family;
5084 u32 sk_sid = sksec->sid;
5085 struct common_audit_data ad;
5086 struct lsm_network_audit net;
5087 char *addrp;
5088
5089 if (family != PF_INET && family != PF_INET6)
5090 return 0;
5091
5092 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5093 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5094 family = PF_INET;
5095
5096 /* If any sort of compatibility mode is enabled then handoff processing
5097 * to the selinux_sock_rcv_skb_compat() function to deal with the
5098 * special handling. We do this in an attempt to keep this function
5099 * as fast and as clean as possible. */
5100 if (!selinux_policycap_netpeer())
5101 return selinux_sock_rcv_skb_compat(sk, skb, family);
5102
5103 secmark_active = selinux_secmark_enabled();
5104 peerlbl_active = selinux_peerlbl_enabled();
5105 if (!secmark_active && !peerlbl_active)
5106 return 0;
5107
5108 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5109 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5110 if (err)
5111 return err;
5112
5113 if (peerlbl_active) {
5114 u32 peer_sid;
5115
5116 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5117 if (err)
5118 return err;
5119 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5120 addrp, family, peer_sid, &ad);
5121 if (err) {
5122 selinux_netlbl_err(skb, family, err, 0);
5123 return err;
5124 }
5125 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5126 PEER__RECV, &ad);
5127 if (err) {
5128 selinux_netlbl_err(skb, family, err, 0);
5129 return err;
5130 }
5131 }
5132
5133 if (secmark_active) {
5134 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5135 PACKET__RECV, &ad);
5136 if (err)
5137 return err;
5138 }
5139
5140 return err;
5141 }
5142
selinux_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)5143 static int selinux_socket_getpeersec_stream(struct socket *sock,
5144 sockptr_t optval, sockptr_t optlen,
5145 unsigned int len)
5146 {
5147 int err = 0;
5148 char *scontext = NULL;
5149 u32 scontext_len;
5150 struct sk_security_struct *sksec = sock->sk->sk_security;
5151 u32 peer_sid = SECSID_NULL;
5152
5153 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5154 sksec->sclass == SECCLASS_TCP_SOCKET ||
5155 sksec->sclass == SECCLASS_SCTP_SOCKET)
5156 peer_sid = sksec->peer_sid;
5157 if (peer_sid == SECSID_NULL)
5158 return -ENOPROTOOPT;
5159
5160 err = security_sid_to_context(peer_sid, &scontext,
5161 &scontext_len);
5162 if (err)
5163 return err;
5164 if (scontext_len > len) {
5165 err = -ERANGE;
5166 goto out_len;
5167 }
5168
5169 if (copy_to_sockptr(optval, scontext, scontext_len))
5170 err = -EFAULT;
5171 out_len:
5172 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5173 err = -EFAULT;
5174 kfree(scontext);
5175 return err;
5176 }
5177
selinux_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)5178 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5179 {
5180 u32 peer_secid = SECSID_NULL;
5181 u16 family;
5182 struct inode_security_struct *isec;
5183
5184 if (skb && skb->protocol == htons(ETH_P_IP))
5185 family = PF_INET;
5186 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5187 family = PF_INET6;
5188 else if (sock)
5189 family = sock->sk->sk_family;
5190 else
5191 goto out;
5192
5193 if (sock && family == PF_UNIX) {
5194 isec = inode_security_novalidate(SOCK_INODE(sock));
5195 peer_secid = isec->sid;
5196 } else if (skb)
5197 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5198
5199 out:
5200 *secid = peer_secid;
5201 if (peer_secid == SECSID_NULL)
5202 return -EINVAL;
5203 return 0;
5204 }
5205
selinux_sk_alloc_security(struct sock * sk,int family,gfp_t priority)5206 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5207 {
5208 struct sk_security_struct *sksec;
5209
5210 sksec = kzalloc(sizeof(*sksec), priority);
5211 if (!sksec)
5212 return -ENOMEM;
5213
5214 sksec->peer_sid = SECINITSID_UNLABELED;
5215 sksec->sid = SECINITSID_UNLABELED;
5216 sksec->sclass = SECCLASS_SOCKET;
5217 selinux_netlbl_sk_security_reset(sksec);
5218 sk->sk_security = sksec;
5219
5220 return 0;
5221 }
5222
selinux_sk_free_security(struct sock * sk)5223 static void selinux_sk_free_security(struct sock *sk)
5224 {
5225 struct sk_security_struct *sksec = sk->sk_security;
5226
5227 sk->sk_security = NULL;
5228 selinux_netlbl_sk_security_free(sksec);
5229 kfree(sksec);
5230 }
5231
selinux_sk_clone_security(const struct sock * sk,struct sock * newsk)5232 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5233 {
5234 struct sk_security_struct *sksec = sk->sk_security;
5235 struct sk_security_struct *newsksec = newsk->sk_security;
5236
5237 newsksec->sid = sksec->sid;
5238 newsksec->peer_sid = sksec->peer_sid;
5239 newsksec->sclass = sksec->sclass;
5240
5241 selinux_netlbl_sk_security_reset(newsksec);
5242 }
5243
selinux_sk_getsecid(const struct sock * sk,u32 * secid)5244 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5245 {
5246 if (!sk)
5247 *secid = SECINITSID_ANY_SOCKET;
5248 else {
5249 const struct sk_security_struct *sksec = sk->sk_security;
5250
5251 *secid = sksec->sid;
5252 }
5253 }
5254
selinux_sock_graft(struct sock * sk,struct socket * parent)5255 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5256 {
5257 struct inode_security_struct *isec =
5258 inode_security_novalidate(SOCK_INODE(parent));
5259 struct sk_security_struct *sksec = sk->sk_security;
5260
5261 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5262 sk->sk_family == PF_UNIX)
5263 isec->sid = sksec->sid;
5264 sksec->sclass = isec->sclass;
5265 }
5266
5267 /*
5268 * Determines peer_secid for the asoc and updates socket's peer label
5269 * if it's the first association on the socket.
5270 */
selinux_sctp_process_new_assoc(struct sctp_association * asoc,struct sk_buff * skb)5271 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5272 struct sk_buff *skb)
5273 {
5274 struct sock *sk = asoc->base.sk;
5275 u16 family = sk->sk_family;
5276 struct sk_security_struct *sksec = sk->sk_security;
5277 struct common_audit_data ad;
5278 struct lsm_network_audit net;
5279 int err;
5280
5281 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5282 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5283 family = PF_INET;
5284
5285 if (selinux_peerlbl_enabled()) {
5286 asoc->peer_secid = SECSID_NULL;
5287
5288 /* This will return peer_sid = SECSID_NULL if there are
5289 * no peer labels, see security_net_peersid_resolve().
5290 */
5291 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5292 if (err)
5293 return err;
5294
5295 if (asoc->peer_secid == SECSID_NULL)
5296 asoc->peer_secid = SECINITSID_UNLABELED;
5297 } else {
5298 asoc->peer_secid = SECINITSID_UNLABELED;
5299 }
5300
5301 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5302 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5303
5304 /* Here as first association on socket. As the peer SID
5305 * was allowed by peer recv (and the netif/node checks),
5306 * then it is approved by policy and used as the primary
5307 * peer SID for getpeercon(3).
5308 */
5309 sksec->peer_sid = asoc->peer_secid;
5310 } else if (sksec->peer_sid != asoc->peer_secid) {
5311 /* Other association peer SIDs are checked to enforce
5312 * consistency among the peer SIDs.
5313 */
5314 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5315 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5316 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5317 &ad);
5318 if (err)
5319 return err;
5320 }
5321 return 0;
5322 }
5323
5324 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5325 * happens on an incoming connect(2), sctp_connectx(3) or
5326 * sctp_sendmsg(3) (with no association already present).
5327 */
selinux_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)5328 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5329 struct sk_buff *skb)
5330 {
5331 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5332 u32 conn_sid;
5333 int err;
5334
5335 if (!selinux_policycap_extsockclass())
5336 return 0;
5337
5338 err = selinux_sctp_process_new_assoc(asoc, skb);
5339 if (err)
5340 return err;
5341
5342 /* Compute the MLS component for the connection and store
5343 * the information in asoc. This will be used by SCTP TCP type
5344 * sockets and peeled off connections as they cause a new
5345 * socket to be generated. selinux_sctp_sk_clone() will then
5346 * plug this into the new socket.
5347 */
5348 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5349 if (err)
5350 return err;
5351
5352 asoc->secid = conn_sid;
5353
5354 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5355 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5356 }
5357
5358 /* Called when SCTP receives a COOKIE ACK chunk as the final
5359 * response to an association request (initited by us).
5360 */
selinux_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)5361 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5362 struct sk_buff *skb)
5363 {
5364 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5365
5366 if (!selinux_policycap_extsockclass())
5367 return 0;
5368
5369 /* Inherit secid from the parent socket - this will be picked up
5370 * by selinux_sctp_sk_clone() if the association gets peeled off
5371 * into a new socket.
5372 */
5373 asoc->secid = sksec->sid;
5374
5375 return selinux_sctp_process_new_assoc(asoc, skb);
5376 }
5377
5378 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5379 * based on their @optname.
5380 */
selinux_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)5381 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5382 struct sockaddr *address,
5383 int addrlen)
5384 {
5385 int len, err = 0, walk_size = 0;
5386 void *addr_buf;
5387 struct sockaddr *addr;
5388 struct socket *sock;
5389
5390 if (!selinux_policycap_extsockclass())
5391 return 0;
5392
5393 /* Process one or more addresses that may be IPv4 or IPv6 */
5394 sock = sk->sk_socket;
5395 addr_buf = address;
5396
5397 while (walk_size < addrlen) {
5398 if (walk_size + sizeof(sa_family_t) > addrlen)
5399 return -EINVAL;
5400
5401 addr = addr_buf;
5402 switch (addr->sa_family) {
5403 case AF_UNSPEC:
5404 case AF_INET:
5405 len = sizeof(struct sockaddr_in);
5406 break;
5407 case AF_INET6:
5408 len = sizeof(struct sockaddr_in6);
5409 break;
5410 default:
5411 return -EINVAL;
5412 }
5413
5414 if (walk_size + len > addrlen)
5415 return -EINVAL;
5416
5417 err = -EINVAL;
5418 switch (optname) {
5419 /* Bind checks */
5420 case SCTP_PRIMARY_ADDR:
5421 case SCTP_SET_PEER_PRIMARY_ADDR:
5422 case SCTP_SOCKOPT_BINDX_ADD:
5423 err = selinux_socket_bind(sock, addr, len);
5424 break;
5425 /* Connect checks */
5426 case SCTP_SOCKOPT_CONNECTX:
5427 case SCTP_PARAM_SET_PRIMARY:
5428 case SCTP_PARAM_ADD_IP:
5429 case SCTP_SENDMSG_CONNECT:
5430 err = selinux_socket_connect_helper(sock, addr, len);
5431 if (err)
5432 return err;
5433
5434 /* As selinux_sctp_bind_connect() is called by the
5435 * SCTP protocol layer, the socket is already locked,
5436 * therefore selinux_netlbl_socket_connect_locked()
5437 * is called here. The situations handled are:
5438 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5439 * whenever a new IP address is added or when a new
5440 * primary address is selected.
5441 * Note that an SCTP connect(2) call happens before
5442 * the SCTP protocol layer and is handled via
5443 * selinux_socket_connect().
5444 */
5445 err = selinux_netlbl_socket_connect_locked(sk, addr);
5446 break;
5447 }
5448
5449 if (err)
5450 return err;
5451
5452 addr_buf += len;
5453 walk_size += len;
5454 }
5455
5456 return 0;
5457 }
5458
5459 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
selinux_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)5460 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5461 struct sock *newsk)
5462 {
5463 struct sk_security_struct *sksec = sk->sk_security;
5464 struct sk_security_struct *newsksec = newsk->sk_security;
5465
5466 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5467 * the non-sctp clone version.
5468 */
5469 if (!selinux_policycap_extsockclass())
5470 return selinux_sk_clone_security(sk, newsk);
5471
5472 newsksec->sid = asoc->secid;
5473 newsksec->peer_sid = asoc->peer_secid;
5474 newsksec->sclass = sksec->sclass;
5475 selinux_netlbl_sctp_sk_clone(sk, newsk);
5476 }
5477
selinux_mptcp_add_subflow(struct sock * sk,struct sock * ssk)5478 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5479 {
5480 struct sk_security_struct *ssksec = ssk->sk_security;
5481 struct sk_security_struct *sksec = sk->sk_security;
5482
5483 ssksec->sclass = sksec->sclass;
5484 ssksec->sid = sksec->sid;
5485
5486 /* replace the existing subflow label deleting the existing one
5487 * and re-recreating a new label using the updated context
5488 */
5489 selinux_netlbl_sk_security_free(ssksec);
5490 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5491 }
5492
selinux_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)5493 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5494 struct request_sock *req)
5495 {
5496 struct sk_security_struct *sksec = sk->sk_security;
5497 int err;
5498 u16 family = req->rsk_ops->family;
5499 u32 connsid;
5500 u32 peersid;
5501
5502 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5503 if (err)
5504 return err;
5505 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5506 if (err)
5507 return err;
5508 req->secid = connsid;
5509 req->peer_secid = peersid;
5510
5511 return selinux_netlbl_inet_conn_request(req, family);
5512 }
5513
selinux_inet_csk_clone(struct sock * newsk,const struct request_sock * req)5514 static void selinux_inet_csk_clone(struct sock *newsk,
5515 const struct request_sock *req)
5516 {
5517 struct sk_security_struct *newsksec = newsk->sk_security;
5518
5519 newsksec->sid = req->secid;
5520 newsksec->peer_sid = req->peer_secid;
5521 /* NOTE: Ideally, we should also get the isec->sid for the
5522 new socket in sync, but we don't have the isec available yet.
5523 So we will wait until sock_graft to do it, by which
5524 time it will have been created and available. */
5525
5526 /* We don't need to take any sort of lock here as we are the only
5527 * thread with access to newsksec */
5528 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5529 }
5530
selinux_inet_conn_established(struct sock * sk,struct sk_buff * skb)5531 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5532 {
5533 u16 family = sk->sk_family;
5534 struct sk_security_struct *sksec = sk->sk_security;
5535
5536 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5537 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5538 family = PF_INET;
5539
5540 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5541 }
5542
selinux_secmark_relabel_packet(u32 sid)5543 static int selinux_secmark_relabel_packet(u32 sid)
5544 {
5545 const struct task_security_struct *tsec;
5546 u32 tsid;
5547
5548 tsec = selinux_cred(current_cred());
5549 tsid = tsec->sid;
5550
5551 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5552 NULL);
5553 }
5554
selinux_secmark_refcount_inc(void)5555 static void selinux_secmark_refcount_inc(void)
5556 {
5557 atomic_inc(&selinux_secmark_refcount);
5558 }
5559
selinux_secmark_refcount_dec(void)5560 static void selinux_secmark_refcount_dec(void)
5561 {
5562 atomic_dec(&selinux_secmark_refcount);
5563 }
5564
selinux_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)5565 static void selinux_req_classify_flow(const struct request_sock *req,
5566 struct flowi_common *flic)
5567 {
5568 flic->flowic_secid = req->secid;
5569 }
5570
selinux_tun_dev_alloc_security(void ** security)5571 static int selinux_tun_dev_alloc_security(void **security)
5572 {
5573 struct tun_security_struct *tunsec;
5574
5575 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5576 if (!tunsec)
5577 return -ENOMEM;
5578 tunsec->sid = current_sid();
5579
5580 *security = tunsec;
5581 return 0;
5582 }
5583
selinux_tun_dev_free_security(void * security)5584 static void selinux_tun_dev_free_security(void *security)
5585 {
5586 kfree(security);
5587 }
5588
selinux_tun_dev_create(void)5589 static int selinux_tun_dev_create(void)
5590 {
5591 u32 sid = current_sid();
5592
5593 /* we aren't taking into account the "sockcreate" SID since the socket
5594 * that is being created here is not a socket in the traditional sense,
5595 * instead it is a private sock, accessible only to the kernel, and
5596 * representing a wide range of network traffic spanning multiple
5597 * connections unlike traditional sockets - check the TUN driver to
5598 * get a better understanding of why this socket is special */
5599
5600 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5601 NULL);
5602 }
5603
selinux_tun_dev_attach_queue(void * security)5604 static int selinux_tun_dev_attach_queue(void *security)
5605 {
5606 struct tun_security_struct *tunsec = security;
5607
5608 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5609 TUN_SOCKET__ATTACH_QUEUE, NULL);
5610 }
5611
selinux_tun_dev_attach(struct sock * sk,void * security)5612 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5613 {
5614 struct tun_security_struct *tunsec = security;
5615 struct sk_security_struct *sksec = sk->sk_security;
5616
5617 /* we don't currently perform any NetLabel based labeling here and it
5618 * isn't clear that we would want to do so anyway; while we could apply
5619 * labeling without the support of the TUN user the resulting labeled
5620 * traffic from the other end of the connection would almost certainly
5621 * cause confusion to the TUN user that had no idea network labeling
5622 * protocols were being used */
5623
5624 sksec->sid = tunsec->sid;
5625 sksec->sclass = SECCLASS_TUN_SOCKET;
5626
5627 return 0;
5628 }
5629
selinux_tun_dev_open(void * security)5630 static int selinux_tun_dev_open(void *security)
5631 {
5632 struct tun_security_struct *tunsec = security;
5633 u32 sid = current_sid();
5634 int err;
5635
5636 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5637 TUN_SOCKET__RELABELFROM, NULL);
5638 if (err)
5639 return err;
5640 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5641 TUN_SOCKET__RELABELTO, NULL);
5642 if (err)
5643 return err;
5644 tunsec->sid = sid;
5645
5646 return 0;
5647 }
5648
5649 #ifdef CONFIG_NETFILTER
5650
selinux_ip_forward(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5651 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5652 const struct nf_hook_state *state)
5653 {
5654 int ifindex;
5655 u16 family;
5656 char *addrp;
5657 u32 peer_sid;
5658 struct common_audit_data ad;
5659 struct lsm_network_audit net;
5660 int secmark_active, peerlbl_active;
5661
5662 if (!selinux_policycap_netpeer())
5663 return NF_ACCEPT;
5664
5665 secmark_active = selinux_secmark_enabled();
5666 peerlbl_active = selinux_peerlbl_enabled();
5667 if (!secmark_active && !peerlbl_active)
5668 return NF_ACCEPT;
5669
5670 family = state->pf;
5671 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5672 return NF_DROP;
5673
5674 ifindex = state->in->ifindex;
5675 ad_net_init_from_iif(&ad, &net, ifindex, family);
5676 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5677 return NF_DROP;
5678
5679 if (peerlbl_active) {
5680 int err;
5681
5682 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5683 addrp, family, peer_sid, &ad);
5684 if (err) {
5685 selinux_netlbl_err(skb, family, err, 1);
5686 return NF_DROP;
5687 }
5688 }
5689
5690 if (secmark_active)
5691 if (avc_has_perm(peer_sid, skb->secmark,
5692 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5693 return NF_DROP;
5694
5695 if (netlbl_enabled())
5696 /* we do this in the FORWARD path and not the POST_ROUTING
5697 * path because we want to make sure we apply the necessary
5698 * labeling before IPsec is applied so we can leverage AH
5699 * protection */
5700 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5701 return NF_DROP;
5702
5703 return NF_ACCEPT;
5704 }
5705
selinux_ip_output(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5706 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5707 const struct nf_hook_state *state)
5708 {
5709 struct sock *sk;
5710 u32 sid;
5711
5712 if (!netlbl_enabled())
5713 return NF_ACCEPT;
5714
5715 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5716 * because we want to make sure we apply the necessary labeling
5717 * before IPsec is applied so we can leverage AH protection */
5718 sk = skb->sk;
5719 if (sk) {
5720 struct sk_security_struct *sksec;
5721
5722 if (sk_listener(sk))
5723 /* if the socket is the listening state then this
5724 * packet is a SYN-ACK packet which means it needs to
5725 * be labeled based on the connection/request_sock and
5726 * not the parent socket. unfortunately, we can't
5727 * lookup the request_sock yet as it isn't queued on
5728 * the parent socket until after the SYN-ACK is sent.
5729 * the "solution" is to simply pass the packet as-is
5730 * as any IP option based labeling should be copied
5731 * from the initial connection request (in the IP
5732 * layer). it is far from ideal, but until we get a
5733 * security label in the packet itself this is the
5734 * best we can do. */
5735 return NF_ACCEPT;
5736
5737 /* standard practice, label using the parent socket */
5738 sksec = sk->sk_security;
5739 sid = sksec->sid;
5740 } else
5741 sid = SECINITSID_KERNEL;
5742 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5743 return NF_DROP;
5744
5745 return NF_ACCEPT;
5746 }
5747
5748
selinux_ip_postroute_compat(struct sk_buff * skb,const struct nf_hook_state * state)5749 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5750 const struct nf_hook_state *state)
5751 {
5752 struct sock *sk;
5753 struct sk_security_struct *sksec;
5754 struct common_audit_data ad;
5755 struct lsm_network_audit net;
5756 u8 proto = 0;
5757
5758 sk = skb_to_full_sk(skb);
5759 if (sk == NULL)
5760 return NF_ACCEPT;
5761 sksec = sk->sk_security;
5762
5763 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5764 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5765 return NF_DROP;
5766
5767 if (selinux_secmark_enabled())
5768 if (avc_has_perm(sksec->sid, skb->secmark,
5769 SECCLASS_PACKET, PACKET__SEND, &ad))
5770 return NF_DROP_ERR(-ECONNREFUSED);
5771
5772 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5773 return NF_DROP_ERR(-ECONNREFUSED);
5774
5775 return NF_ACCEPT;
5776 }
5777
selinux_ip_postroute(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5778 static unsigned int selinux_ip_postroute(void *priv,
5779 struct sk_buff *skb,
5780 const struct nf_hook_state *state)
5781 {
5782 u16 family;
5783 u32 secmark_perm;
5784 u32 peer_sid;
5785 int ifindex;
5786 struct sock *sk;
5787 struct common_audit_data ad;
5788 struct lsm_network_audit net;
5789 char *addrp;
5790 int secmark_active, peerlbl_active;
5791
5792 /* If any sort of compatibility mode is enabled then handoff processing
5793 * to the selinux_ip_postroute_compat() function to deal with the
5794 * special handling. We do this in an attempt to keep this function
5795 * as fast and as clean as possible. */
5796 if (!selinux_policycap_netpeer())
5797 return selinux_ip_postroute_compat(skb, state);
5798
5799 secmark_active = selinux_secmark_enabled();
5800 peerlbl_active = selinux_peerlbl_enabled();
5801 if (!secmark_active && !peerlbl_active)
5802 return NF_ACCEPT;
5803
5804 sk = skb_to_full_sk(skb);
5805
5806 #ifdef CONFIG_XFRM
5807 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5808 * packet transformation so allow the packet to pass without any checks
5809 * since we'll have another chance to perform access control checks
5810 * when the packet is on it's final way out.
5811 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5812 * is NULL, in this case go ahead and apply access control.
5813 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5814 * TCP listening state we cannot wait until the XFRM processing
5815 * is done as we will miss out on the SA label if we do;
5816 * unfortunately, this means more work, but it is only once per
5817 * connection. */
5818 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5819 !(sk && sk_listener(sk)))
5820 return NF_ACCEPT;
5821 #endif
5822
5823 family = state->pf;
5824 if (sk == NULL) {
5825 /* Without an associated socket the packet is either coming
5826 * from the kernel or it is being forwarded; check the packet
5827 * to determine which and if the packet is being forwarded
5828 * query the packet directly to determine the security label. */
5829 if (skb->skb_iif) {
5830 secmark_perm = PACKET__FORWARD_OUT;
5831 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5832 return NF_DROP;
5833 } else {
5834 secmark_perm = PACKET__SEND;
5835 peer_sid = SECINITSID_KERNEL;
5836 }
5837 } else if (sk_listener(sk)) {
5838 /* Locally generated packet but the associated socket is in the
5839 * listening state which means this is a SYN-ACK packet. In
5840 * this particular case the correct security label is assigned
5841 * to the connection/request_sock but unfortunately we can't
5842 * query the request_sock as it isn't queued on the parent
5843 * socket until after the SYN-ACK packet is sent; the only
5844 * viable choice is to regenerate the label like we do in
5845 * selinux_inet_conn_request(). See also selinux_ip_output()
5846 * for similar problems. */
5847 u32 skb_sid;
5848 struct sk_security_struct *sksec;
5849
5850 sksec = sk->sk_security;
5851 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5852 return NF_DROP;
5853 /* At this point, if the returned skb peerlbl is SECSID_NULL
5854 * and the packet has been through at least one XFRM
5855 * transformation then we must be dealing with the "final"
5856 * form of labeled IPsec packet; since we've already applied
5857 * all of our access controls on this packet we can safely
5858 * pass the packet. */
5859 if (skb_sid == SECSID_NULL) {
5860 switch (family) {
5861 case PF_INET:
5862 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5863 return NF_ACCEPT;
5864 break;
5865 case PF_INET6:
5866 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5867 return NF_ACCEPT;
5868 break;
5869 default:
5870 return NF_DROP_ERR(-ECONNREFUSED);
5871 }
5872 }
5873 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5874 return NF_DROP;
5875 secmark_perm = PACKET__SEND;
5876 } else {
5877 /* Locally generated packet, fetch the security label from the
5878 * associated socket. */
5879 struct sk_security_struct *sksec = sk->sk_security;
5880 peer_sid = sksec->sid;
5881 secmark_perm = PACKET__SEND;
5882 }
5883
5884 ifindex = state->out->ifindex;
5885 ad_net_init_from_iif(&ad, &net, ifindex, family);
5886 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5887 return NF_DROP;
5888
5889 if (secmark_active)
5890 if (avc_has_perm(peer_sid, skb->secmark,
5891 SECCLASS_PACKET, secmark_perm, &ad))
5892 return NF_DROP_ERR(-ECONNREFUSED);
5893
5894 if (peerlbl_active) {
5895 u32 if_sid;
5896 u32 node_sid;
5897
5898 if (sel_netif_sid(state->net, ifindex, &if_sid))
5899 return NF_DROP;
5900 if (avc_has_perm(peer_sid, if_sid,
5901 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5902 return NF_DROP_ERR(-ECONNREFUSED);
5903
5904 if (sel_netnode_sid(addrp, family, &node_sid))
5905 return NF_DROP;
5906 if (avc_has_perm(peer_sid, node_sid,
5907 SECCLASS_NODE, NODE__SENDTO, &ad))
5908 return NF_DROP_ERR(-ECONNREFUSED);
5909 }
5910
5911 return NF_ACCEPT;
5912 }
5913 #endif /* CONFIG_NETFILTER */
5914
selinux_netlink_send(struct sock * sk,struct sk_buff * skb)5915 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5916 {
5917 int rc = 0;
5918 unsigned int msg_len;
5919 unsigned int data_len = skb->len;
5920 unsigned char *data = skb->data;
5921 struct nlmsghdr *nlh;
5922 struct sk_security_struct *sksec = sk->sk_security;
5923 u16 sclass = sksec->sclass;
5924 u32 perm;
5925
5926 while (data_len >= nlmsg_total_size(0)) {
5927 nlh = (struct nlmsghdr *)data;
5928
5929 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5930 * users which means we can't reject skb's with bogus
5931 * length fields; our solution is to follow what
5932 * netlink_rcv_skb() does and simply skip processing at
5933 * messages with length fields that are clearly junk
5934 */
5935 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5936 return 0;
5937
5938 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5939 if (rc == 0) {
5940 rc = sock_has_perm(sk, perm);
5941 if (rc)
5942 return rc;
5943 } else if (rc == -EINVAL) {
5944 /* -EINVAL is a missing msg/perm mapping */
5945 pr_warn_ratelimited("SELinux: unrecognized netlink"
5946 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5947 " pid=%d comm=%s\n",
5948 sk->sk_protocol, nlh->nlmsg_type,
5949 secclass_map[sclass - 1].name,
5950 task_pid_nr(current), current->comm);
5951 if (enforcing_enabled() &&
5952 !security_get_allow_unknown())
5953 return rc;
5954 rc = 0;
5955 } else if (rc == -ENOENT) {
5956 /* -ENOENT is a missing socket/class mapping, ignore */
5957 rc = 0;
5958 } else {
5959 return rc;
5960 }
5961
5962 /* move to the next message after applying netlink padding */
5963 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5964 if (msg_len >= data_len)
5965 return 0;
5966 data_len -= msg_len;
5967 data += msg_len;
5968 }
5969
5970 return rc;
5971 }
5972
ipc_init_security(struct ipc_security_struct * isec,u16 sclass)5973 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5974 {
5975 isec->sclass = sclass;
5976 isec->sid = current_sid();
5977 }
5978
ipc_has_perm(struct kern_ipc_perm * ipc_perms,u32 perms)5979 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5980 u32 perms)
5981 {
5982 struct ipc_security_struct *isec;
5983 struct common_audit_data ad;
5984 u32 sid = current_sid();
5985
5986 isec = selinux_ipc(ipc_perms);
5987
5988 ad.type = LSM_AUDIT_DATA_IPC;
5989 ad.u.ipc_id = ipc_perms->key;
5990
5991 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5992 }
5993
selinux_msg_msg_alloc_security(struct msg_msg * msg)5994 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5995 {
5996 struct msg_security_struct *msec;
5997
5998 msec = selinux_msg_msg(msg);
5999 msec->sid = SECINITSID_UNLABELED;
6000
6001 return 0;
6002 }
6003
6004 /* message queue security operations */
selinux_msg_queue_alloc_security(struct kern_ipc_perm * msq)6005 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6006 {
6007 struct ipc_security_struct *isec;
6008 struct common_audit_data ad;
6009 u32 sid = current_sid();
6010
6011 isec = selinux_ipc(msq);
6012 ipc_init_security(isec, SECCLASS_MSGQ);
6013
6014 ad.type = LSM_AUDIT_DATA_IPC;
6015 ad.u.ipc_id = msq->key;
6016
6017 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6018 MSGQ__CREATE, &ad);
6019 }
6020
selinux_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)6021 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6022 {
6023 struct ipc_security_struct *isec;
6024 struct common_audit_data ad;
6025 u32 sid = current_sid();
6026
6027 isec = selinux_ipc(msq);
6028
6029 ad.type = LSM_AUDIT_DATA_IPC;
6030 ad.u.ipc_id = msq->key;
6031
6032 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6033 MSGQ__ASSOCIATE, &ad);
6034 }
6035
selinux_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)6036 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6037 {
6038 u32 perms;
6039
6040 switch (cmd) {
6041 case IPC_INFO:
6042 case MSG_INFO:
6043 /* No specific object, just general system-wide information. */
6044 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6045 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6046 case IPC_STAT:
6047 case MSG_STAT:
6048 case MSG_STAT_ANY:
6049 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6050 break;
6051 case IPC_SET:
6052 perms = MSGQ__SETATTR;
6053 break;
6054 case IPC_RMID:
6055 perms = MSGQ__DESTROY;
6056 break;
6057 default:
6058 return 0;
6059 }
6060
6061 return ipc_has_perm(msq, perms);
6062 }
6063
selinux_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)6064 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6065 {
6066 struct ipc_security_struct *isec;
6067 struct msg_security_struct *msec;
6068 struct common_audit_data ad;
6069 u32 sid = current_sid();
6070 int rc;
6071
6072 isec = selinux_ipc(msq);
6073 msec = selinux_msg_msg(msg);
6074
6075 /*
6076 * First time through, need to assign label to the message
6077 */
6078 if (msec->sid == SECINITSID_UNLABELED) {
6079 /*
6080 * Compute new sid based on current process and
6081 * message queue this message will be stored in
6082 */
6083 rc = security_transition_sid(sid, isec->sid,
6084 SECCLASS_MSG, NULL, &msec->sid);
6085 if (rc)
6086 return rc;
6087 }
6088
6089 ad.type = LSM_AUDIT_DATA_IPC;
6090 ad.u.ipc_id = msq->key;
6091
6092 /* Can this process write to the queue? */
6093 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6094 MSGQ__WRITE, &ad);
6095 if (!rc)
6096 /* Can this process send the message */
6097 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6098 MSG__SEND, &ad);
6099 if (!rc)
6100 /* Can the message be put in the queue? */
6101 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6102 MSGQ__ENQUEUE, &ad);
6103
6104 return rc;
6105 }
6106
selinux_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)6107 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6108 struct task_struct *target,
6109 long type, int mode)
6110 {
6111 struct ipc_security_struct *isec;
6112 struct msg_security_struct *msec;
6113 struct common_audit_data ad;
6114 u32 sid = task_sid_obj(target);
6115 int rc;
6116
6117 isec = selinux_ipc(msq);
6118 msec = selinux_msg_msg(msg);
6119
6120 ad.type = LSM_AUDIT_DATA_IPC;
6121 ad.u.ipc_id = msq->key;
6122
6123 rc = avc_has_perm(sid, isec->sid,
6124 SECCLASS_MSGQ, MSGQ__READ, &ad);
6125 if (!rc)
6126 rc = avc_has_perm(sid, msec->sid,
6127 SECCLASS_MSG, MSG__RECEIVE, &ad);
6128 return rc;
6129 }
6130
6131 /* Shared Memory security operations */
selinux_shm_alloc_security(struct kern_ipc_perm * shp)6132 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6133 {
6134 struct ipc_security_struct *isec;
6135 struct common_audit_data ad;
6136 u32 sid = current_sid();
6137
6138 isec = selinux_ipc(shp);
6139 ipc_init_security(isec, SECCLASS_SHM);
6140
6141 ad.type = LSM_AUDIT_DATA_IPC;
6142 ad.u.ipc_id = shp->key;
6143
6144 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6145 SHM__CREATE, &ad);
6146 }
6147
selinux_shm_associate(struct kern_ipc_perm * shp,int shmflg)6148 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149 {
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = selinux_ipc(shp);
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6160 SHM__ASSOCIATE, &ad);
6161 }
6162
6163 /* Note, at this point, shp is locked down */
selinux_shm_shmctl(struct kern_ipc_perm * shp,int cmd)6164 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6165 {
6166 u32 perms;
6167
6168 switch (cmd) {
6169 case IPC_INFO:
6170 case SHM_INFO:
6171 /* No specific object, just general system-wide information. */
6172 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6173 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6174 case IPC_STAT:
6175 case SHM_STAT:
6176 case SHM_STAT_ANY:
6177 perms = SHM__GETATTR | SHM__ASSOCIATE;
6178 break;
6179 case IPC_SET:
6180 perms = SHM__SETATTR;
6181 break;
6182 case SHM_LOCK:
6183 case SHM_UNLOCK:
6184 perms = SHM__LOCK;
6185 break;
6186 case IPC_RMID:
6187 perms = SHM__DESTROY;
6188 break;
6189 default:
6190 return 0;
6191 }
6192
6193 return ipc_has_perm(shp, perms);
6194 }
6195
selinux_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)6196 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6197 char __user *shmaddr, int shmflg)
6198 {
6199 u32 perms;
6200
6201 if (shmflg & SHM_RDONLY)
6202 perms = SHM__READ;
6203 else
6204 perms = SHM__READ | SHM__WRITE;
6205
6206 return ipc_has_perm(shp, perms);
6207 }
6208
6209 /* Semaphore security operations */
selinux_sem_alloc_security(struct kern_ipc_perm * sma)6210 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6211 {
6212 struct ipc_security_struct *isec;
6213 struct common_audit_data ad;
6214 u32 sid = current_sid();
6215
6216 isec = selinux_ipc(sma);
6217 ipc_init_security(isec, SECCLASS_SEM);
6218
6219 ad.type = LSM_AUDIT_DATA_IPC;
6220 ad.u.ipc_id = sma->key;
6221
6222 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6223 SEM__CREATE, &ad);
6224 }
6225
selinux_sem_associate(struct kern_ipc_perm * sma,int semflg)6226 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6227 {
6228 struct ipc_security_struct *isec;
6229 struct common_audit_data ad;
6230 u32 sid = current_sid();
6231
6232 isec = selinux_ipc(sma);
6233
6234 ad.type = LSM_AUDIT_DATA_IPC;
6235 ad.u.ipc_id = sma->key;
6236
6237 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6238 SEM__ASSOCIATE, &ad);
6239 }
6240
6241 /* Note, at this point, sma is locked down */
selinux_sem_semctl(struct kern_ipc_perm * sma,int cmd)6242 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6243 {
6244 int err;
6245 u32 perms;
6246
6247 switch (cmd) {
6248 case IPC_INFO:
6249 case SEM_INFO:
6250 /* No specific object, just general system-wide information. */
6251 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6252 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6253 case GETPID:
6254 case GETNCNT:
6255 case GETZCNT:
6256 perms = SEM__GETATTR;
6257 break;
6258 case GETVAL:
6259 case GETALL:
6260 perms = SEM__READ;
6261 break;
6262 case SETVAL:
6263 case SETALL:
6264 perms = SEM__WRITE;
6265 break;
6266 case IPC_RMID:
6267 perms = SEM__DESTROY;
6268 break;
6269 case IPC_SET:
6270 perms = SEM__SETATTR;
6271 break;
6272 case IPC_STAT:
6273 case SEM_STAT:
6274 case SEM_STAT_ANY:
6275 perms = SEM__GETATTR | SEM__ASSOCIATE;
6276 break;
6277 default:
6278 return 0;
6279 }
6280
6281 err = ipc_has_perm(sma, perms);
6282 return err;
6283 }
6284
selinux_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)6285 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6286 struct sembuf *sops, unsigned nsops, int alter)
6287 {
6288 u32 perms;
6289
6290 if (alter)
6291 perms = SEM__READ | SEM__WRITE;
6292 else
6293 perms = SEM__READ;
6294
6295 return ipc_has_perm(sma, perms);
6296 }
6297
selinux_ipc_permission(struct kern_ipc_perm * ipcp,short flag)6298 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6299 {
6300 u32 av = 0;
6301
6302 av = 0;
6303 if (flag & S_IRUGO)
6304 av |= IPC__UNIX_READ;
6305 if (flag & S_IWUGO)
6306 av |= IPC__UNIX_WRITE;
6307
6308 if (av == 0)
6309 return 0;
6310
6311 return ipc_has_perm(ipcp, av);
6312 }
6313
selinux_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)6314 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6315 {
6316 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6317 *secid = isec->sid;
6318 }
6319
selinux_d_instantiate(struct dentry * dentry,struct inode * inode)6320 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6321 {
6322 if (inode)
6323 inode_doinit_with_dentry(inode, dentry);
6324 }
6325
selinux_getprocattr(struct task_struct * p,const char * name,char ** value)6326 static int selinux_getprocattr(struct task_struct *p,
6327 const char *name, char **value)
6328 {
6329 const struct task_security_struct *__tsec;
6330 u32 sid;
6331 int error;
6332 unsigned len;
6333
6334 rcu_read_lock();
6335 __tsec = selinux_cred(__task_cred(p));
6336
6337 if (current != p) {
6338 error = avc_has_perm(current_sid(), __tsec->sid,
6339 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6340 if (error)
6341 goto bad;
6342 }
6343
6344 if (!strcmp(name, "current"))
6345 sid = __tsec->sid;
6346 else if (!strcmp(name, "prev"))
6347 sid = __tsec->osid;
6348 else if (!strcmp(name, "exec"))
6349 sid = __tsec->exec_sid;
6350 else if (!strcmp(name, "fscreate"))
6351 sid = __tsec->create_sid;
6352 else if (!strcmp(name, "keycreate"))
6353 sid = __tsec->keycreate_sid;
6354 else if (!strcmp(name, "sockcreate"))
6355 sid = __tsec->sockcreate_sid;
6356 else {
6357 error = -EINVAL;
6358 goto bad;
6359 }
6360 rcu_read_unlock();
6361
6362 if (!sid)
6363 return 0;
6364
6365 error = security_sid_to_context(sid, value, &len);
6366 if (error)
6367 return error;
6368 return len;
6369
6370 bad:
6371 rcu_read_unlock();
6372 return error;
6373 }
6374
selinux_setprocattr(const char * name,void * value,size_t size)6375 static int selinux_setprocattr(const char *name, void *value, size_t size)
6376 {
6377 struct task_security_struct *tsec;
6378 struct cred *new;
6379 u32 mysid = current_sid(), sid = 0, ptsid;
6380 int error;
6381 char *str = value;
6382
6383 /*
6384 * Basic control over ability to set these attributes at all.
6385 */
6386 if (!strcmp(name, "exec"))
6387 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6388 PROCESS__SETEXEC, NULL);
6389 else if (!strcmp(name, "fscreate"))
6390 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6391 PROCESS__SETFSCREATE, NULL);
6392 else if (!strcmp(name, "keycreate"))
6393 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6394 PROCESS__SETKEYCREATE, NULL);
6395 else if (!strcmp(name, "sockcreate"))
6396 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6397 PROCESS__SETSOCKCREATE, NULL);
6398 else if (!strcmp(name, "current"))
6399 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6400 PROCESS__SETCURRENT, NULL);
6401 else
6402 error = -EINVAL;
6403 if (error)
6404 return error;
6405
6406 /* Obtain a SID for the context, if one was specified. */
6407 if (size && str[0] && str[0] != '\n') {
6408 if (str[size-1] == '\n') {
6409 str[size-1] = 0;
6410 size--;
6411 }
6412 error = security_context_to_sid(value, size,
6413 &sid, GFP_KERNEL);
6414 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6415 if (!has_cap_mac_admin(true)) {
6416 struct audit_buffer *ab;
6417 size_t audit_size;
6418
6419 /* We strip a nul only if it is at the end, otherwise the
6420 * context contains a nul and we should audit that */
6421 if (str[size - 1] == '\0')
6422 audit_size = size - 1;
6423 else
6424 audit_size = size;
6425 ab = audit_log_start(audit_context(),
6426 GFP_ATOMIC,
6427 AUDIT_SELINUX_ERR);
6428 if (!ab)
6429 return error;
6430 audit_log_format(ab, "op=fscreate invalid_context=");
6431 audit_log_n_untrustedstring(ab, value, audit_size);
6432 audit_log_end(ab);
6433
6434 return error;
6435 }
6436 error = security_context_to_sid_force(value, size,
6437 &sid);
6438 }
6439 if (error)
6440 return error;
6441 }
6442
6443 new = prepare_creds();
6444 if (!new)
6445 return -ENOMEM;
6446
6447 /* Permission checking based on the specified context is
6448 performed during the actual operation (execve,
6449 open/mkdir/...), when we know the full context of the
6450 operation. See selinux_bprm_creds_for_exec for the execve
6451 checks and may_create for the file creation checks. The
6452 operation will then fail if the context is not permitted. */
6453 tsec = selinux_cred(new);
6454 if (!strcmp(name, "exec")) {
6455 tsec->exec_sid = sid;
6456 } else if (!strcmp(name, "fscreate")) {
6457 tsec->create_sid = sid;
6458 } else if (!strcmp(name, "keycreate")) {
6459 if (sid) {
6460 error = avc_has_perm(mysid, sid,
6461 SECCLASS_KEY, KEY__CREATE, NULL);
6462 if (error)
6463 goto abort_change;
6464 }
6465 tsec->keycreate_sid = sid;
6466 } else if (!strcmp(name, "sockcreate")) {
6467 tsec->sockcreate_sid = sid;
6468 } else if (!strcmp(name, "current")) {
6469 error = -EINVAL;
6470 if (sid == 0)
6471 goto abort_change;
6472
6473 /* Only allow single threaded processes to change context */
6474 if (!current_is_single_threaded()) {
6475 error = security_bounded_transition(tsec->sid, sid);
6476 if (error)
6477 goto abort_change;
6478 }
6479
6480 /* Check permissions for the transition. */
6481 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6482 PROCESS__DYNTRANSITION, NULL);
6483 if (error)
6484 goto abort_change;
6485
6486 /* Check for ptracing, and update the task SID if ok.
6487 Otherwise, leave SID unchanged and fail. */
6488 ptsid = ptrace_parent_sid();
6489 if (ptsid != 0) {
6490 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6491 PROCESS__PTRACE, NULL);
6492 if (error)
6493 goto abort_change;
6494 }
6495
6496 tsec->sid = sid;
6497 } else {
6498 error = -EINVAL;
6499 goto abort_change;
6500 }
6501
6502 commit_creds(new);
6503 CALL_HCK_LITE_HOOK(ced_setattr_insert_lhck, current);
6504 return size;
6505
6506 abort_change:
6507 abort_creds(new);
6508 return error;
6509 }
6510
selinux_ismaclabel(const char * name)6511 static int selinux_ismaclabel(const char *name)
6512 {
6513 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6514 }
6515
selinux_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)6516 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6517 {
6518 return security_sid_to_context(secid,
6519 secdata, seclen);
6520 }
6521
selinux_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)6522 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6523 {
6524 return security_context_to_sid(secdata, seclen,
6525 secid, GFP_KERNEL);
6526 }
6527
selinux_release_secctx(char * secdata,u32 seclen)6528 static void selinux_release_secctx(char *secdata, u32 seclen)
6529 {
6530 kfree(secdata);
6531 }
6532
selinux_inode_invalidate_secctx(struct inode * inode)6533 static void selinux_inode_invalidate_secctx(struct inode *inode)
6534 {
6535 struct inode_security_struct *isec = selinux_inode(inode);
6536
6537 spin_lock(&isec->lock);
6538 isec->initialized = LABEL_INVALID;
6539 spin_unlock(&isec->lock);
6540 }
6541
6542 /*
6543 * called with inode->i_mutex locked
6544 */
selinux_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)6545 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6546 {
6547 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6548 ctx, ctxlen, 0);
6549 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6550 return rc == -EOPNOTSUPP ? 0 : rc;
6551 }
6552
6553 /*
6554 * called with inode->i_mutex locked
6555 */
selinux_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)6556 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6557 {
6558 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6559 ctx, ctxlen, 0, NULL);
6560 }
6561
selinux_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)6562 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6563 {
6564 int len = 0;
6565 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6566 XATTR_SELINUX_SUFFIX, ctx, true);
6567 if (len < 0)
6568 return len;
6569 *ctxlen = len;
6570 return 0;
6571 }
6572 #ifdef CONFIG_KEYS
6573
selinux_key_alloc(struct key * k,const struct cred * cred,unsigned long flags)6574 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6575 unsigned long flags)
6576 {
6577 const struct task_security_struct *tsec;
6578 struct key_security_struct *ksec;
6579
6580 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6581 if (!ksec)
6582 return -ENOMEM;
6583
6584 tsec = selinux_cred(cred);
6585 if (tsec->keycreate_sid)
6586 ksec->sid = tsec->keycreate_sid;
6587 else
6588 ksec->sid = tsec->sid;
6589
6590 k->security = ksec;
6591 return 0;
6592 }
6593
selinux_key_free(struct key * k)6594 static void selinux_key_free(struct key *k)
6595 {
6596 struct key_security_struct *ksec = k->security;
6597
6598 k->security = NULL;
6599 kfree(ksec);
6600 }
6601
selinux_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)6602 static int selinux_key_permission(key_ref_t key_ref,
6603 const struct cred *cred,
6604 enum key_need_perm need_perm)
6605 {
6606 struct key *key;
6607 struct key_security_struct *ksec;
6608 u32 perm, sid;
6609
6610 switch (need_perm) {
6611 case KEY_NEED_VIEW:
6612 perm = KEY__VIEW;
6613 break;
6614 case KEY_NEED_READ:
6615 perm = KEY__READ;
6616 break;
6617 case KEY_NEED_WRITE:
6618 perm = KEY__WRITE;
6619 break;
6620 case KEY_NEED_SEARCH:
6621 perm = KEY__SEARCH;
6622 break;
6623 case KEY_NEED_LINK:
6624 perm = KEY__LINK;
6625 break;
6626 case KEY_NEED_SETATTR:
6627 perm = KEY__SETATTR;
6628 break;
6629 case KEY_NEED_UNLINK:
6630 case KEY_SYSADMIN_OVERRIDE:
6631 case KEY_AUTHTOKEN_OVERRIDE:
6632 case KEY_DEFER_PERM_CHECK:
6633 return 0;
6634 default:
6635 WARN_ON(1);
6636 return -EPERM;
6637
6638 }
6639
6640 sid = cred_sid(cred);
6641 key = key_ref_to_ptr(key_ref);
6642 ksec = key->security;
6643
6644 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645 }
6646
selinux_key_getsecurity(struct key * key,char ** _buffer)6647 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648 {
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660 }
6661
6662 #ifdef CONFIG_KEY_NOTIFICATIONS
selinux_watch_key(struct key * key)6663 static int selinux_watch_key(struct key *key)
6664 {
6665 struct key_security_struct *ksec = key->security;
6666 u32 sid = current_sid();
6667
6668 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6669 }
6670 #endif
6671 #endif
6672
6673 #ifdef CONFIG_SECURITY_INFINIBAND
selinux_ib_pkey_access(void * ib_sec,u64 subnet_prefix,u16 pkey_val)6674 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6675 {
6676 struct common_audit_data ad;
6677 int err;
6678 u32 sid = 0;
6679 struct ib_security_struct *sec = ib_sec;
6680 struct lsm_ibpkey_audit ibpkey;
6681
6682 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6683 if (err)
6684 return err;
6685
6686 ad.type = LSM_AUDIT_DATA_IBPKEY;
6687 ibpkey.subnet_prefix = subnet_prefix;
6688 ibpkey.pkey = pkey_val;
6689 ad.u.ibpkey = &ibpkey;
6690 return avc_has_perm(sec->sid, sid,
6691 SECCLASS_INFINIBAND_PKEY,
6692 INFINIBAND_PKEY__ACCESS, &ad);
6693 }
6694
selinux_ib_endport_manage_subnet(void * ib_sec,const char * dev_name,u8 port_num)6695 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6696 u8 port_num)
6697 {
6698 struct common_audit_data ad;
6699 int err;
6700 u32 sid = 0;
6701 struct ib_security_struct *sec = ib_sec;
6702 struct lsm_ibendport_audit ibendport;
6703
6704 err = security_ib_endport_sid(dev_name, port_num,
6705 &sid);
6706
6707 if (err)
6708 return err;
6709
6710 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6711 ibendport.dev_name = dev_name;
6712 ibendport.port = port_num;
6713 ad.u.ibendport = &ibendport;
6714 return avc_has_perm(sec->sid, sid,
6715 SECCLASS_INFINIBAND_ENDPORT,
6716 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6717 }
6718
selinux_ib_alloc_security(void ** ib_sec)6719 static int selinux_ib_alloc_security(void **ib_sec)
6720 {
6721 struct ib_security_struct *sec;
6722
6723 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6724 if (!sec)
6725 return -ENOMEM;
6726 sec->sid = current_sid();
6727
6728 *ib_sec = sec;
6729 return 0;
6730 }
6731
selinux_ib_free_security(void * ib_sec)6732 static void selinux_ib_free_security(void *ib_sec)
6733 {
6734 kfree(ib_sec);
6735 }
6736 #endif
6737
6738 #ifdef CONFIG_BPF_SYSCALL
selinux_bpf(int cmd,union bpf_attr * attr,unsigned int size)6739 static int selinux_bpf(int cmd, union bpf_attr *attr,
6740 unsigned int size)
6741 {
6742 u32 sid = current_sid();
6743 int ret;
6744
6745 switch (cmd) {
6746 case BPF_MAP_CREATE:
6747 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6748 NULL);
6749 break;
6750 case BPF_PROG_LOAD:
6751 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6752 NULL);
6753 break;
6754 default:
6755 ret = 0;
6756 break;
6757 }
6758
6759 return ret;
6760 }
6761
bpf_map_fmode_to_av(fmode_t fmode)6762 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6763 {
6764 u32 av = 0;
6765
6766 if (fmode & FMODE_READ)
6767 av |= BPF__MAP_READ;
6768 if (fmode & FMODE_WRITE)
6769 av |= BPF__MAP_WRITE;
6770 return av;
6771 }
6772
6773 /* This function will check the file pass through unix socket or binder to see
6774 * if it is a bpf related object. And apply corresponding checks on the bpf
6775 * object based on the type. The bpf maps and programs, not like other files and
6776 * socket, are using a shared anonymous inode inside the kernel as their inode.
6777 * So checking that inode cannot identify if the process have privilege to
6778 * access the bpf object and that's why we have to add this additional check in
6779 * selinux_file_receive and selinux_binder_transfer_files.
6780 */
bpf_fd_pass(const struct file * file,u32 sid)6781 static int bpf_fd_pass(const struct file *file, u32 sid)
6782 {
6783 struct bpf_security_struct *bpfsec;
6784 struct bpf_prog *prog;
6785 struct bpf_map *map;
6786 int ret;
6787
6788 if (file->f_op == &bpf_map_fops) {
6789 map = file->private_data;
6790 bpfsec = map->security;
6791 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6792 bpf_map_fmode_to_av(file->f_mode), NULL);
6793 if (ret)
6794 return ret;
6795 } else if (file->f_op == &bpf_prog_fops) {
6796 prog = file->private_data;
6797 bpfsec = prog->aux->security;
6798 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6799 BPF__PROG_RUN, NULL);
6800 if (ret)
6801 return ret;
6802 }
6803 return 0;
6804 }
6805
selinux_bpf_map(struct bpf_map * map,fmode_t fmode)6806 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6807 {
6808 u32 sid = current_sid();
6809 struct bpf_security_struct *bpfsec;
6810
6811 bpfsec = map->security;
6812 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6813 bpf_map_fmode_to_av(fmode), NULL);
6814 }
6815
selinux_bpf_prog(struct bpf_prog * prog)6816 static int selinux_bpf_prog(struct bpf_prog *prog)
6817 {
6818 u32 sid = current_sid();
6819 struct bpf_security_struct *bpfsec;
6820
6821 bpfsec = prog->aux->security;
6822 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6823 BPF__PROG_RUN, NULL);
6824 }
6825
selinux_bpf_map_alloc(struct bpf_map * map)6826 static int selinux_bpf_map_alloc(struct bpf_map *map)
6827 {
6828 struct bpf_security_struct *bpfsec;
6829
6830 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6831 if (!bpfsec)
6832 return -ENOMEM;
6833
6834 bpfsec->sid = current_sid();
6835 map->security = bpfsec;
6836
6837 return 0;
6838 }
6839
selinux_bpf_map_free(struct bpf_map * map)6840 static void selinux_bpf_map_free(struct bpf_map *map)
6841 {
6842 struct bpf_security_struct *bpfsec = map->security;
6843
6844 map->security = NULL;
6845 kfree(bpfsec);
6846 }
6847
selinux_bpf_prog_alloc(struct bpf_prog_aux * aux)6848 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6849 {
6850 struct bpf_security_struct *bpfsec;
6851
6852 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6853 if (!bpfsec)
6854 return -ENOMEM;
6855
6856 bpfsec->sid = current_sid();
6857 aux->security = bpfsec;
6858
6859 return 0;
6860 }
6861
selinux_bpf_prog_free(struct bpf_prog_aux * aux)6862 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6863 {
6864 struct bpf_security_struct *bpfsec = aux->security;
6865
6866 aux->security = NULL;
6867 kfree(bpfsec);
6868 }
6869 #endif
6870
6871 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6872 .lbs_cred = sizeof(struct task_security_struct),
6873 .lbs_file = sizeof(struct file_security_struct),
6874 .lbs_inode = sizeof(struct inode_security_struct),
6875 .lbs_ipc = sizeof(struct ipc_security_struct),
6876 .lbs_msg_msg = sizeof(struct msg_security_struct),
6877 .lbs_superblock = sizeof(struct superblock_security_struct),
6878 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6879 };
6880
6881 #ifdef CONFIG_PERF_EVENTS
selinux_perf_event_open(struct perf_event_attr * attr,int type)6882 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6883 {
6884 u32 requested, sid = current_sid();
6885
6886 if (type == PERF_SECURITY_OPEN)
6887 requested = PERF_EVENT__OPEN;
6888 else if (type == PERF_SECURITY_CPU)
6889 requested = PERF_EVENT__CPU;
6890 else if (type == PERF_SECURITY_KERNEL)
6891 requested = PERF_EVENT__KERNEL;
6892 else if (type == PERF_SECURITY_TRACEPOINT)
6893 requested = PERF_EVENT__TRACEPOINT;
6894 else
6895 return -EINVAL;
6896
6897 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6898 requested, NULL);
6899 }
6900
selinux_perf_event_alloc(struct perf_event * event)6901 static int selinux_perf_event_alloc(struct perf_event *event)
6902 {
6903 struct perf_event_security_struct *perfsec;
6904
6905 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6906 if (!perfsec)
6907 return -ENOMEM;
6908
6909 perfsec->sid = current_sid();
6910 event->security = perfsec;
6911
6912 return 0;
6913 }
6914
selinux_perf_event_free(struct perf_event * event)6915 static void selinux_perf_event_free(struct perf_event *event)
6916 {
6917 struct perf_event_security_struct *perfsec = event->security;
6918
6919 event->security = NULL;
6920 kfree(perfsec);
6921 }
6922
selinux_perf_event_read(struct perf_event * event)6923 static int selinux_perf_event_read(struct perf_event *event)
6924 {
6925 struct perf_event_security_struct *perfsec = event->security;
6926 u32 sid = current_sid();
6927
6928 return avc_has_perm(sid, perfsec->sid,
6929 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6930 }
6931
selinux_perf_event_write(struct perf_event * event)6932 static int selinux_perf_event_write(struct perf_event *event)
6933 {
6934 struct perf_event_security_struct *perfsec = event->security;
6935 u32 sid = current_sid();
6936
6937 return avc_has_perm(sid, perfsec->sid,
6938 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6939 }
6940 #endif
6941
6942 #ifdef CONFIG_IO_URING
6943 /**
6944 * selinux_uring_override_creds - check the requested cred override
6945 * @new: the target creds
6946 *
6947 * Check to see if the current task is allowed to override it's credentials
6948 * to service an io_uring operation.
6949 */
selinux_uring_override_creds(const struct cred * new)6950 static int selinux_uring_override_creds(const struct cred *new)
6951 {
6952 return avc_has_perm(current_sid(), cred_sid(new),
6953 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6954 }
6955
6956 /**
6957 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
6958 *
6959 * Check to see if the current task is allowed to create a new io_uring
6960 * kernel polling thread.
6961 */
selinux_uring_sqpoll(void)6962 static int selinux_uring_sqpoll(void)
6963 {
6964 u32 sid = current_sid();
6965
6966 return avc_has_perm(sid, sid,
6967 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
6968 }
6969
6970 /**
6971 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
6972 * @ioucmd: the io_uring command structure
6973 *
6974 * Check to see if the current domain is allowed to execute an
6975 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
6976 *
6977 */
selinux_uring_cmd(struct io_uring_cmd * ioucmd)6978 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
6979 {
6980 struct file *file = ioucmd->file;
6981 struct inode *inode = file_inode(file);
6982 struct inode_security_struct *isec = selinux_inode(inode);
6983 struct common_audit_data ad;
6984
6985 ad.type = LSM_AUDIT_DATA_FILE;
6986 ad.u.file = file;
6987
6988 return avc_has_perm(current_sid(), isec->sid,
6989 SECCLASS_IO_URING, IO_URING__CMD, &ad);
6990 }
6991 #endif /* CONFIG_IO_URING */
6992
6993 /*
6994 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6995 * 1. any hooks that don't belong to (2.) or (3.) below,
6996 * 2. hooks that both access structures allocated by other hooks, and allocate
6997 * structures that can be later accessed by other hooks (mostly "cloning"
6998 * hooks),
6999 * 3. hooks that only allocate structures that can be later accessed by other
7000 * hooks ("allocating" hooks).
7001 *
7002 * Please follow block comment delimiters in the list to keep this order.
7003 */
7004 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7005 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7006 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7007 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7008 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7009
7010 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7011 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7012 LSM_HOOK_INIT(capget, selinux_capget),
7013 LSM_HOOK_INIT(capset, selinux_capset),
7014 LSM_HOOK_INIT(capable, selinux_capable),
7015 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7016 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7017 LSM_HOOK_INIT(syslog, selinux_syslog),
7018 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7019
7020 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7021
7022 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7023 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7024 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7025
7026 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7027 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7028 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7029 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7030 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7031 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7032 LSM_HOOK_INIT(sb_mount, selinux_mount),
7033 LSM_HOOK_INIT(sb_umount, selinux_umount),
7034 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7035 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7036
7037 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7038
7039 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7040 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7041
7042 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7043 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7044 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7045 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7046 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7047 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7048 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7049 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7050 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7051 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7052 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7053 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7054 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7055 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7056 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7057 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7058 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7059 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7060 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7061 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7062 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7063 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7064 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7065 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7066 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7067 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7068 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7069 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7070 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7071 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7072 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7073
7074 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7075
7076 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7077 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7078 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7079 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7080 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7081 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7082 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7083 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7084 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7085 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7086 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7087 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7088
7089 LSM_HOOK_INIT(file_open, selinux_file_open),
7090
7091 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7092 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7093 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7094 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7095 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7096 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7097 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7098 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7099 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7100 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7101 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7102 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7103 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7104 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7105 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7106 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7107 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7108 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7109 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7110 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7111 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7112 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7113 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7114 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7115 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7116
7117 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7118 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7119
7120 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7121 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7122 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7123 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7124
7125 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7126 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7127 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7128
7129 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7130 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7131 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7132
7133 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7134
7135 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7136 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7137
7138 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7139 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7140 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7141 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7142 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7143 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7144
7145 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7146 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7147
7148 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7149 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7150 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7151 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7152 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7153 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7154 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7155 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7156 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7157 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7158 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7159 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7160 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7161 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7162 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7163 LSM_HOOK_INIT(socket_getpeersec_stream,
7164 selinux_socket_getpeersec_stream),
7165 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7166 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7167 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7168 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7169 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7170 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7171 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7172 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7173 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7174 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7175 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7176 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7177 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7178 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7179 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7180 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7181 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7182 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7183 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7184 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7185 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7186 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7187 #ifdef CONFIG_SECURITY_INFINIBAND
7188 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7189 LSM_HOOK_INIT(ib_endport_manage_subnet,
7190 selinux_ib_endport_manage_subnet),
7191 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7192 #endif
7193 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7194 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7195 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7196 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7197 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7198 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7199 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7200 selinux_xfrm_state_pol_flow_match),
7201 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7202 #endif
7203
7204 #ifdef CONFIG_KEYS
7205 LSM_HOOK_INIT(key_free, selinux_key_free),
7206 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7207 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7208 #ifdef CONFIG_KEY_NOTIFICATIONS
7209 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7210 #endif
7211 #endif
7212
7213 #ifdef CONFIG_AUDIT
7214 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7215 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7216 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7217 #endif
7218
7219 #ifdef CONFIG_BPF_SYSCALL
7220 LSM_HOOK_INIT(bpf, selinux_bpf),
7221 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7222 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7223 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7224 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7225 #endif
7226
7227 #ifdef CONFIG_PERF_EVENTS
7228 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7229 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7230 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7231 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7232 #endif
7233
7234 #ifdef CONFIG_IO_URING
7235 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7236 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7237 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7238 #endif
7239
7240 /*
7241 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7242 */
7243 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7244 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7245 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7246 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7247 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7248 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7249 #endif
7250
7251 /*
7252 * PUT "ALLOCATING" HOOKS HERE
7253 */
7254 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7255 LSM_HOOK_INIT(msg_queue_alloc_security,
7256 selinux_msg_queue_alloc_security),
7257 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7258 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7259 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7260 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7261 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7262 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7263 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7264 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7265 #ifdef CONFIG_SECURITY_INFINIBAND
7266 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7267 #endif
7268 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7269 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7270 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7271 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7272 selinux_xfrm_state_alloc_acquire),
7273 #endif
7274 #ifdef CONFIG_KEYS
7275 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7276 #endif
7277 #ifdef CONFIG_AUDIT
7278 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7279 #endif
7280 #ifdef CONFIG_BPF_SYSCALL
7281 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7282 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7283 #endif
7284 #ifdef CONFIG_PERF_EVENTS
7285 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7286 #endif
7287 };
7288
selinux_init(void)7289 static __init int selinux_init(void)
7290 {
7291 pr_info("SELinux: Initializing.\n");
7292
7293 memset(&selinux_state, 0, sizeof(selinux_state));
7294 enforcing_set(selinux_enforcing_boot);
7295 selinux_avc_init();
7296 mutex_init(&selinux_state.status_lock);
7297 mutex_init(&selinux_state.policy_mutex);
7298
7299 /* Set the security state for the initial task. */
7300 cred_init_security();
7301
7302 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7303 if (!default_noexec)
7304 pr_notice("SELinux: virtual memory is executable by default\n");
7305
7306 avc_init();
7307
7308 avtab_cache_init();
7309
7310 ebitmap_cache_init();
7311
7312 hashtab_cache_init();
7313
7314 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7315
7316 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7317 panic("SELinux: Unable to register AVC netcache callback\n");
7318
7319 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7320 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7321
7322 if (selinux_enforcing_boot)
7323 pr_debug("SELinux: Starting in enforcing mode\n");
7324 else
7325 pr_debug("SELinux: Starting in permissive mode\n");
7326
7327 fs_validate_description("selinux", selinux_fs_parameters);
7328
7329 return 0;
7330 }
7331
delayed_superblock_init(struct super_block * sb,void * unused)7332 static void delayed_superblock_init(struct super_block *sb, void *unused)
7333 {
7334 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7335 }
7336
selinux_complete_init(void)7337 void selinux_complete_init(void)
7338 {
7339 pr_debug("SELinux: Completing initialization.\n");
7340
7341 /* Set up any superblocks initialized prior to the policy load. */
7342 pr_debug("SELinux: Setting up existing superblocks.\n");
7343 iterate_supers(delayed_superblock_init, NULL);
7344 }
7345
7346 /* SELinux requires early initialization in order to label
7347 all processes and objects when they are created. */
7348 DEFINE_LSM(selinux) = {
7349 .name = "selinux",
7350 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7351 .enabled = &selinux_enabled_boot,
7352 .blobs = &selinux_blob_sizes,
7353 .init = selinux_init,
7354 };
7355
7356 #if defined(CONFIG_NETFILTER)
7357 static const struct nf_hook_ops selinux_nf_ops[] = {
7358 {
7359 .hook = selinux_ip_postroute,
7360 .pf = NFPROTO_IPV4,
7361 .hooknum = NF_INET_POST_ROUTING,
7362 .priority = NF_IP_PRI_SELINUX_LAST,
7363 },
7364 {
7365 .hook = selinux_ip_forward,
7366 .pf = NFPROTO_IPV4,
7367 .hooknum = NF_INET_FORWARD,
7368 .priority = NF_IP_PRI_SELINUX_FIRST,
7369 },
7370 {
7371 .hook = selinux_ip_output,
7372 .pf = NFPROTO_IPV4,
7373 .hooknum = NF_INET_LOCAL_OUT,
7374 .priority = NF_IP_PRI_SELINUX_FIRST,
7375 },
7376 #if IS_ENABLED(CONFIG_IPV6)
7377 {
7378 .hook = selinux_ip_postroute,
7379 .pf = NFPROTO_IPV6,
7380 .hooknum = NF_INET_POST_ROUTING,
7381 .priority = NF_IP6_PRI_SELINUX_LAST,
7382 },
7383 {
7384 .hook = selinux_ip_forward,
7385 .pf = NFPROTO_IPV6,
7386 .hooknum = NF_INET_FORWARD,
7387 .priority = NF_IP6_PRI_SELINUX_FIRST,
7388 },
7389 {
7390 .hook = selinux_ip_output,
7391 .pf = NFPROTO_IPV6,
7392 .hooknum = NF_INET_LOCAL_OUT,
7393 .priority = NF_IP6_PRI_SELINUX_FIRST,
7394 },
7395 #endif /* IPV6 */
7396 };
7397
selinux_nf_register(struct net * net)7398 static int __net_init selinux_nf_register(struct net *net)
7399 {
7400 return nf_register_net_hooks(net, selinux_nf_ops,
7401 ARRAY_SIZE(selinux_nf_ops));
7402 }
7403
selinux_nf_unregister(struct net * net)7404 static void __net_exit selinux_nf_unregister(struct net *net)
7405 {
7406 nf_unregister_net_hooks(net, selinux_nf_ops,
7407 ARRAY_SIZE(selinux_nf_ops));
7408 }
7409
7410 static struct pernet_operations selinux_net_ops = {
7411 .init = selinux_nf_register,
7412 .exit = selinux_nf_unregister,
7413 };
7414
selinux_nf_ip_init(void)7415 static int __init selinux_nf_ip_init(void)
7416 {
7417 int err;
7418
7419 if (!selinux_enabled_boot)
7420 return 0;
7421
7422 pr_debug("SELinux: Registering netfilter hooks\n");
7423
7424 err = register_pernet_subsys(&selinux_net_ops);
7425 if (err)
7426 panic("SELinux: register_pernet_subsys: error %d\n", err);
7427
7428 return 0;
7429 }
7430 __initcall(selinux_nf_ip_init);
7431 #endif /* CONFIG_NETFILTER */
7432