1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 FSL_SAI_CSR_FEIE)
31
32 static const unsigned int fsl_sai_rates[] = {
33 8000, 11025, 12000, 16000, 22050,
34 24000, 32000, 44100, 48000, 64000,
35 88200, 96000, 176400, 192000, 352800,
36 384000, 705600, 768000, 1411200, 2822400,
37 };
38
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 .count = ARRAY_SIZE(fsl_sai_rates),
41 .list = fsl_sai_rates,
42 };
43
44 /**
45 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46 *
47 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48 * or Receiver's for both streams. This function is used to check if clocks of
49 * the stream's are synced by the opposite stream.
50 *
51 * @sai: SAI context
52 * @dir: stream direction
53 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 int adir = (dir == TX) ? RX : TX;
57
58 /* current dir in async mode while opposite dir in sync mode */
59 return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 struct pinctrl_state *state = NULL;
65
66 if (sai->is_pdm_mode) {
67 /* DSD512@44.1kHz, DSD512@48kHz */
68 if (bclk >= 22579200)
69 state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70
71 /* Get default DSD state */
72 if (IS_ERR_OR_NULL(state))
73 state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 } else {
75 /* 706k32b2c, 768k32b2c, etc */
76 if (bclk >= 45158400)
77 state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 }
79
80 /* Get default state */
81 if (IS_ERR_OR_NULL(state))
82 state = pinctrl_lookup_state(sai->pinctrl, "default");
83
84 return state;
85 }
86
fsl_sai_isr(int irq,void * devid)87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 struct fsl_sai *sai = (struct fsl_sai *)devid;
90 unsigned int ofs = sai->soc_data->reg_offset;
91 struct device *dev = &sai->pdev->dev;
92 u32 flags, xcsr, mask;
93 irqreturn_t iret = IRQ_NONE;
94
95 /*
96 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 * different shifts. And we here create a mask only for those
98 * IRQs that we activated.
99 */
100 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101
102 /* Tx IRQ */
103 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 flags = xcsr & mask;
105
106 if (flags)
107 iret = IRQ_HANDLED;
108 else
109 goto irq_rx;
110
111 if (flags & FSL_SAI_CSR_WSF)
112 dev_dbg(dev, "isr: Start of Tx word detected\n");
113
114 if (flags & FSL_SAI_CSR_SEF)
115 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116
117 if (flags & FSL_SAI_CSR_FEF)
118 dev_dbg(dev, "isr: Transmit underrun detected\n");
119
120 if (flags & FSL_SAI_CSR_FWF)
121 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122
123 if (flags & FSL_SAI_CSR_FRF)
124 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125
126 flags &= FSL_SAI_CSR_xF_W_MASK;
127 xcsr &= ~FSL_SAI_CSR_xF_MASK;
128
129 if (flags)
130 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131
132 irq_rx:
133 /* Rx IRQ */
134 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 flags = xcsr & mask;
136
137 if (flags)
138 iret = IRQ_HANDLED;
139 else
140 goto out;
141
142 if (flags & FSL_SAI_CSR_WSF)
143 dev_dbg(dev, "isr: Start of Rx word detected\n");
144
145 if (flags & FSL_SAI_CSR_SEF)
146 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147
148 if (flags & FSL_SAI_CSR_FEF)
149 dev_dbg(dev, "isr: Receive overflow detected\n");
150
151 if (flags & FSL_SAI_CSR_FWF)
152 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153
154 if (flags & FSL_SAI_CSR_FRF)
155 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156
157 flags &= FSL_SAI_CSR_xF_W_MASK;
158 xcsr &= ~FSL_SAI_CSR_xF_MASK;
159
160 if (flags)
161 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162
163 out:
164 return iret;
165 }
166
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 u32 rx_mask, int slots, int slot_width)
169 {
170 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171
172 sai->slots = slots;
173 sai->slot_width = slot_width;
174
175 return 0;
176 }
177
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 unsigned int ratio)
180 {
181 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182
183 sai->bclk_ratio = ratio;
184
185 return 0;
186 }
187
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 int clk_id, unsigned int freq, bool tx)
190 {
191 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 unsigned int ofs = sai->soc_data->reg_offset;
193 u32 val_cr2 = 0;
194
195 switch (clk_id) {
196 case FSL_SAI_CLK_BUS:
197 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 break;
199 case FSL_SAI_CLK_MAST1:
200 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 break;
202 case FSL_SAI_CLK_MAST2:
203 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 break;
205 case FSL_SAI_CLK_MAST3:
206 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 break;
208 default:
209 return -EINVAL;
210 }
211
212 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 FSL_SAI_CR2_MSEL_MASK, val_cr2);
214
215 return 0;
216 }
217
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 int ret;
222
223 fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 sai->pll8k_clk, sai->pll11k_clk, freq);
225
226 ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 if (ret < 0)
228 dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229
230 return ret;
231 }
232
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 int clk_id, unsigned int freq, int dir)
235 {
236 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 int ret;
238
239 if (dir == SND_SOC_CLOCK_IN)
240 return 0;
241
242 if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 return -EINVAL;
246 }
247
248 if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 return -EINVAL;
251 }
252
253 if (sai->mclk_streams == 0) {
254 ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 if (ret < 0)
256 return ret;
257 }
258 }
259
260 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 if (ret) {
262 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 return ret;
264 }
265
266 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 if (ret)
268 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269
270 return ret;
271 }
272
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 unsigned int fmt, bool tx)
275 {
276 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 unsigned int ofs = sai->soc_data->reg_offset;
278 u32 val_cr2 = 0, val_cr4 = 0;
279
280 if (!sai->is_lsb_first)
281 val_cr4 |= FSL_SAI_CR4_MF;
282
283 sai->is_pdm_mode = false;
284 sai->is_dsp_mode = false;
285 /* DAI mode */
286 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287 case SND_SOC_DAIFMT_I2S:
288 /*
289 * Frame low, 1clk before data, one word length for frame sync,
290 * frame sync starts one serial clock cycle earlier,
291 * that is, together with the last bit of the previous
292 * data word.
293 */
294 val_cr2 |= FSL_SAI_CR2_BCP;
295 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296 break;
297 case SND_SOC_DAIFMT_LEFT_J:
298 /*
299 * Frame high, one word length for frame sync,
300 * frame sync asserts with the first bit of the frame.
301 */
302 val_cr2 |= FSL_SAI_CR2_BCP;
303 break;
304 case SND_SOC_DAIFMT_DSP_A:
305 /*
306 * Frame high, 1clk before data, one bit for frame sync,
307 * frame sync starts one serial clock cycle earlier,
308 * that is, together with the last bit of the previous
309 * data word.
310 */
311 val_cr2 |= FSL_SAI_CR2_BCP;
312 val_cr4 |= FSL_SAI_CR4_FSE;
313 sai->is_dsp_mode = true;
314 break;
315 case SND_SOC_DAIFMT_DSP_B:
316 /*
317 * Frame high, one bit for frame sync,
318 * frame sync asserts with the first bit of the frame.
319 */
320 val_cr2 |= FSL_SAI_CR2_BCP;
321 sai->is_dsp_mode = true;
322 break;
323 case SND_SOC_DAIFMT_PDM:
324 val_cr2 |= FSL_SAI_CR2_BCP;
325 val_cr4 &= ~FSL_SAI_CR4_MF;
326 sai->is_pdm_mode = true;
327 break;
328 case SND_SOC_DAIFMT_RIGHT_J:
329 /* To be done */
330 default:
331 return -EINVAL;
332 }
333
334 /* DAI clock inversion */
335 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336 case SND_SOC_DAIFMT_IB_IF:
337 /* Invert both clocks */
338 val_cr2 ^= FSL_SAI_CR2_BCP;
339 val_cr4 ^= FSL_SAI_CR4_FSP;
340 break;
341 case SND_SOC_DAIFMT_IB_NF:
342 /* Invert bit clock */
343 val_cr2 ^= FSL_SAI_CR2_BCP;
344 break;
345 case SND_SOC_DAIFMT_NB_IF:
346 /* Invert frame clock */
347 val_cr4 ^= FSL_SAI_CR4_FSP;
348 break;
349 case SND_SOC_DAIFMT_NB_NF:
350 /* Nothing to do for both normal cases */
351 break;
352 default:
353 return -EINVAL;
354 }
355
356 /* DAI clock provider masks */
357 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358 case SND_SOC_DAIFMT_BP_FP:
359 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361 sai->is_consumer_mode = false;
362 break;
363 case SND_SOC_DAIFMT_BC_FC:
364 sai->is_consumer_mode = true;
365 break;
366 case SND_SOC_DAIFMT_BP_FC:
367 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368 sai->is_consumer_mode = false;
369 break;
370 case SND_SOC_DAIFMT_BC_FP:
371 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372 sai->is_consumer_mode = true;
373 break;
374 default:
375 return -EINVAL;
376 }
377
378 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383
384 return 0;
385 }
386
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)387 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388 {
389 int ret;
390
391 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392 if (ret) {
393 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394 return ret;
395 }
396
397 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398 if (ret)
399 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400
401 return ret;
402 }
403
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)404 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405 {
406 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407 unsigned int reg, ofs = sai->soc_data->reg_offset;
408 unsigned long clk_rate;
409 u32 savediv = 0, ratio, bestdiff = freq;
410 int adir = tx ? RX : TX;
411 int dir = tx ? TX : RX;
412 u32 id;
413 bool support_1_1_ratio = sai->verid.version >= 0x0301;
414
415 /* Don't apply to consumer mode */
416 if (sai->is_consumer_mode)
417 return 0;
418
419 /*
420 * There is no point in polling MCLK0 if it is identical to MCLK1.
421 * And given that MQS use case has to use MCLK1 though two clocks
422 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423 */
424 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425
426 for (; id < FSL_SAI_MCLK_MAX; id++) {
427 int diff;
428
429 clk_rate = clk_get_rate(sai->mclk_clk[id]);
430 if (!clk_rate)
431 continue;
432
433 ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434 if (!ratio || ratio > 512)
435 continue;
436 if (ratio == 1 && !support_1_1_ratio)
437 continue;
438 if ((ratio & 1) && ratio > 1)
439 continue;
440
441 diff = abs((long)clk_rate - ratio * freq);
442
443 /*
444 * Drop the source that can not be
445 * divided into the required rate.
446 */
447 if (diff != 0 && clk_rate / diff < 1000)
448 continue;
449
450 dev_dbg(dai->dev,
451 "ratio %d for freq %dHz based on clock %ldHz\n",
452 ratio, freq, clk_rate);
453
454
455 if (diff < bestdiff) {
456 savediv = ratio;
457 sai->mclk_id[tx] = id;
458 bestdiff = diff;
459 }
460
461 if (diff == 0)
462 break;
463 }
464
465 if (savediv == 0) {
466 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467 tx ? 'T' : 'R', freq);
468 return -EINVAL;
469 }
470
471 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472 sai->mclk_id[tx], savediv, bestdiff);
473
474 /*
475 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476 * set TCR2 register for playback.
477 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478 * and capture.
479 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480 * and capture.
481 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482 * ignore it.
483 */
484 if (fsl_sai_dir_is_synced(sai, adir))
485 reg = FSL_SAI_xCR2(!tx, ofs);
486 else if (!sai->synchronous[dir])
487 reg = FSL_SAI_xCR2(tx, ofs);
488 else
489 return 0;
490
491 regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493
494 if (savediv == 1) {
495 regmap_update_bits(sai->regmap, reg,
496 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497 FSL_SAI_CR2_BYP);
498 if (fsl_sai_dir_is_synced(sai, adir))
499 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500 FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501 else
502 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503 FSL_SAI_CR2_BCI, 0);
504 } else {
505 regmap_update_bits(sai->regmap, reg,
506 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507 savediv / 2 - 1);
508 }
509
510 return 0;
511 }
512
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)513 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
514 struct snd_pcm_hw_params *params,
515 struct snd_soc_dai *cpu_dai)
516 {
517 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
518 unsigned int ofs = sai->soc_data->reg_offset;
519 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
520 unsigned int channels = params_channels(params);
521 struct snd_dmaengine_dai_dma_data *dma_params;
522 struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
523 u32 word_width = params_width(params);
524 int trce_mask = 0, dl_cfg_idx = 0;
525 int dl_cfg_cnt = sai->dl_cfg_cnt;
526 u32 dl_type = FSL_SAI_DL_I2S;
527 u32 val_cr4 = 0, val_cr5 = 0;
528 u32 slots = (channels == 1) ? 2 : channels;
529 u32 slot_width = word_width;
530 int adir = tx ? RX : TX;
531 u32 pins, bclk;
532 u32 watermark;
533 int ret, i;
534
535 if (sai->slot_width)
536 slot_width = sai->slot_width;
537
538 if (sai->slots)
539 slots = sai->slots;
540 else if (sai->bclk_ratio)
541 slots = sai->bclk_ratio / slot_width;
542
543 pins = DIV_ROUND_UP(channels, slots);
544
545 /*
546 * PDM mode, channels are independent
547 * each channels are on one dataline/FIFO.
548 */
549 if (sai->is_pdm_mode) {
550 pins = channels;
551 dl_type = FSL_SAI_DL_PDM;
552 }
553
554 for (i = 0; i < dl_cfg_cnt; i++) {
555 if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
556 dl_cfg_idx = i;
557 break;
558 }
559 }
560
561 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
562 dev_err(cpu_dai->dev, "channel not supported\n");
563 return -EINVAL;
564 }
565
566 bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
567
568 if (!IS_ERR_OR_NULL(sai->pinctrl)) {
569 sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
570 if (!IS_ERR_OR_NULL(sai->pins_state)) {
571 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
572 if (ret) {
573 dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
574 return ret;
575 }
576 }
577 }
578
579 if (!sai->is_consumer_mode) {
580 ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
581 if (ret)
582 return ret;
583
584 /* Do not enable the clock if it is already enabled */
585 if (!(sai->mclk_streams & BIT(substream->stream))) {
586 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
587 if (ret)
588 return ret;
589
590 sai->mclk_streams |= BIT(substream->stream);
591 }
592 }
593
594 if (!sai->is_dsp_mode && !sai->is_pdm_mode)
595 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
596
597 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
598 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
599
600 if (sai->is_lsb_first || sai->is_pdm_mode)
601 val_cr5 |= FSL_SAI_CR5_FBT(0);
602 else
603 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
604
605 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
606
607 /* Set to avoid channel swap */
608 val_cr4 |= FSL_SAI_CR4_FCONT;
609
610 /* Set to output mode to avoid tri-stated data pins */
611 if (tx)
612 val_cr4 |= FSL_SAI_CR4_CHMOD;
613
614 /*
615 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
616 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
617 * RCR5(TCR5) for playback(capture), or there will be sync error.
618 */
619
620 if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
621 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
622 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
623 FSL_SAI_CR4_CHMOD_MASK,
624 val_cr4);
625 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
626 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
627 FSL_SAI_CR5_FBT_MASK, val_cr5);
628 }
629
630 /*
631 * Combine mode has limation:
632 * - Can't used for singel dataline/FIFO case except the FIFO0
633 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
634 * are successive and start from FIFO0
635 *
636 * So for common usage, all multi fifo case disable the combine mode.
637 */
638 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
639 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
640 FSL_SAI_CR4_FCOMB_MASK, 0);
641 else
642 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
643 FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
644
645 dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
646 dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
647 dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
648
649 if (sai->is_multi_fifo_dma) {
650 sai->audio_config[tx].words_per_fifo = min(slots, channels);
651 if (tx) {
652 sai->audio_config[tx].n_fifos_dst = pins;
653 sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
654 } else {
655 sai->audio_config[tx].n_fifos_src = pins;
656 sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
657 }
658 dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
659 dma_params->peripheral_config = &sai->audio_config[tx];
660 dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
661
662 watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
663 (dma_params->maxburst - 1);
664 regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
665 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
666 watermark);
667 }
668
669 /* Find a proper tcre setting */
670 for (i = 0; i < sai->soc_data->pins; i++) {
671 trce_mask = (1 << (i + 1)) - 1;
672 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
673 break;
674 }
675
676 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
677 FSL_SAI_CR3_TRCE_MASK,
678 FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
679
680 /*
681 * When the TERE and FSD_MSTR enabled before configuring the word width
682 * There will be no frame sync clock issue, because word width impact
683 * the generation of frame sync clock.
684 *
685 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
686 * We need to disable FSD_MSTR before configuring word width, then enable
687 * FSD_MSTR bit for this specific case.
688 */
689 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
690 !sai->is_consumer_mode)
691 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
692 FSL_SAI_CR4_FSD_MSTR, 0);
693
694 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
695 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
696 FSL_SAI_CR4_CHMOD_MASK | FSL_SAI_CR4_FCONT_MASK,
697 val_cr4);
698 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
699 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
700 FSL_SAI_CR5_FBT_MASK, val_cr5);
701
702 /* Enable FSD_MSTR after configuring word width */
703 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
704 !sai->is_consumer_mode)
705 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
706 FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
707
708 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
709 ~0UL - ((1 << min(channels, slots)) - 1));
710
711 return 0;
712 }
713
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)714 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
715 struct snd_soc_dai *cpu_dai)
716 {
717 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
718 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
719 unsigned int ofs = sai->soc_data->reg_offset;
720
721 /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
722 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
723
724 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
725 FSL_SAI_CR3_TRCE_MASK, 0);
726
727 if (!sai->is_consumer_mode &&
728 sai->mclk_streams & BIT(substream->stream)) {
729 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
730 sai->mclk_streams &= ~BIT(substream->stream);
731 }
732
733 return 0;
734 }
735
fsl_sai_config_disable(struct fsl_sai * sai,int dir)736 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
737 {
738 unsigned int ofs = sai->soc_data->reg_offset;
739 bool tx = dir == TX;
740 u32 xcsr, count = 100, mask;
741
742 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
743 mask = FSL_SAI_CSR_TERE;
744 else
745 mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
746
747 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
748 mask, 0);
749
750 /* TERE will remain set till the end of current frame */
751 do {
752 udelay(10);
753 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
754 } while (--count && xcsr & FSL_SAI_CSR_TERE);
755
756 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
757 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
758
759 /*
760 * For sai master mode, after several open/close sai,
761 * there will be no frame clock, and can't recover
762 * anymore. Add software reset to fix this issue.
763 * This is a hardware bug, and will be fix in the
764 * next sai version.
765 *
766 * In consumer mode, this can happen even after a
767 * single open/close, especially if both tx and rx
768 * are running concurrently.
769 */
770 /* Software Reset */
771 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
772 /* Clear SR bit to finish the reset */
773 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
774 }
775
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)776 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
777 struct snd_soc_dai *cpu_dai)
778 {
779 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
780 unsigned int ofs = sai->soc_data->reg_offset;
781
782 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
783 int adir = tx ? RX : TX;
784 int dir = tx ? TX : RX;
785 u32 xcsr;
786
787 /*
788 * Asynchronous mode: Clear SYNC for both Tx and Rx.
789 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
790 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
791 */
792 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
793 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
794 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
795 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
796
797 /*
798 * It is recommended that the transmitter is the last enabled
799 * and the first disabled.
800 */
801 switch (cmd) {
802 case SNDRV_PCM_TRIGGER_START:
803 case SNDRV_PCM_TRIGGER_RESUME:
804 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
805 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
806 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
807
808 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
809 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
810 /*
811 * Enable the opposite direction for synchronous mode
812 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
813 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
814 *
815 * RM recommends to enable RE after TE for case 1 and to enable
816 * TE after RE for case 2, but we here may not always guarantee
817 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
818 * TE after RE, which is against what RM recommends but should
819 * be safe to do, judging by years of testing results.
820 */
821 if (fsl_sai_dir_is_synced(sai, adir))
822 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
823 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
824
825 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
826 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
827 break;
828 case SNDRV_PCM_TRIGGER_STOP:
829 case SNDRV_PCM_TRIGGER_SUSPEND:
830 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
831 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
832 FSL_SAI_CSR_FRDE, 0);
833 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
834 FSL_SAI_CSR_xIE_MASK, 0);
835
836 /* Check if the opposite FRDE is also disabled */
837 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
838
839 /*
840 * If opposite stream provides clocks for synchronous mode and
841 * it is inactive, disable it before disabling the current one
842 */
843 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
844 fsl_sai_config_disable(sai, adir);
845
846 /*
847 * Disable current stream if either of:
848 * 1. current stream doesn't provide clocks for synchronous mode
849 * 2. current stream provides clocks for synchronous mode but no
850 * more stream is active.
851 */
852 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
853 fsl_sai_config_disable(sai, dir);
854
855 break;
856 default:
857 return -EINVAL;
858 }
859
860 return 0;
861 }
862
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)863 static int fsl_sai_startup(struct snd_pcm_substream *substream,
864 struct snd_soc_dai *cpu_dai)
865 {
866 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
867 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
868 int ret;
869
870 /*
871 * EDMA controller needs period size to be a multiple of
872 * tx/rx maxburst
873 */
874 if (sai->soc_data->use_edma)
875 snd_pcm_hw_constraint_step(substream->runtime, 0,
876 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
877 tx ? sai->dma_params_tx.maxburst :
878 sai->dma_params_rx.maxburst);
879
880 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
881 SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
882
883 return ret;
884 }
885
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)886 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
887 {
888 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
889 unsigned int ofs = sai->soc_data->reg_offset;
890
891 /* Software Reset for both Tx and Rx */
892 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
893 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
894 /* Clear SR bit to finish the reset */
895 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
896 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
897
898 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
899 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
900 sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
901 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
902 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
903 sai->dma_params_rx.maxburst - 1);
904
905 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
906 &sai->dma_params_rx);
907
908 return 0;
909 }
910
911 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
912 .probe = fsl_sai_dai_probe,
913 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
914 .set_sysclk = fsl_sai_set_dai_sysclk,
915 .set_fmt = fsl_sai_set_dai_fmt,
916 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
917 .hw_params = fsl_sai_hw_params,
918 .hw_free = fsl_sai_hw_free,
919 .trigger = fsl_sai_trigger,
920 .startup = fsl_sai_startup,
921 };
922
fsl_sai_dai_resume(struct snd_soc_component * component)923 static int fsl_sai_dai_resume(struct snd_soc_component *component)
924 {
925 struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
926 struct device *dev = &sai->pdev->dev;
927 int ret;
928
929 if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
930 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
931 if (ret) {
932 dev_err(dev, "failed to set proper pins state: %d\n", ret);
933 return ret;
934 }
935 }
936
937 return 0;
938 }
939
940 static struct snd_soc_dai_driver fsl_sai_dai_template = {
941 .playback = {
942 .stream_name = "CPU-Playback",
943 .channels_min = 1,
944 .channels_max = 32,
945 .rate_min = 8000,
946 .rate_max = 2822400,
947 .rates = SNDRV_PCM_RATE_KNOT,
948 .formats = FSL_SAI_FORMATS,
949 },
950 .capture = {
951 .stream_name = "CPU-Capture",
952 .channels_min = 1,
953 .channels_max = 32,
954 .rate_min = 8000,
955 .rate_max = 2822400,
956 .rates = SNDRV_PCM_RATE_KNOT,
957 .formats = FSL_SAI_FORMATS,
958 },
959 .ops = &fsl_sai_pcm_dai_ops,
960 };
961
962 static const struct snd_soc_component_driver fsl_component = {
963 .name = "fsl-sai",
964 .resume = fsl_sai_dai_resume,
965 .legacy_dai_naming = 1,
966 };
967
968 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
969 {FSL_SAI_TCR1(0), 0},
970 {FSL_SAI_TCR2(0), 0},
971 {FSL_SAI_TCR3(0), 0},
972 {FSL_SAI_TCR4(0), 0},
973 {FSL_SAI_TCR5(0), 0},
974 {FSL_SAI_TDR0, 0},
975 {FSL_SAI_TDR1, 0},
976 {FSL_SAI_TDR2, 0},
977 {FSL_SAI_TDR3, 0},
978 {FSL_SAI_TDR4, 0},
979 {FSL_SAI_TDR5, 0},
980 {FSL_SAI_TDR6, 0},
981 {FSL_SAI_TDR7, 0},
982 {FSL_SAI_TMR, 0},
983 {FSL_SAI_RCR1(0), 0},
984 {FSL_SAI_RCR2(0), 0},
985 {FSL_SAI_RCR3(0), 0},
986 {FSL_SAI_RCR4(0), 0},
987 {FSL_SAI_RCR5(0), 0},
988 {FSL_SAI_RMR, 0},
989 };
990
991 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
992 {FSL_SAI_TCR1(8), 0},
993 {FSL_SAI_TCR2(8), 0},
994 {FSL_SAI_TCR3(8), 0},
995 {FSL_SAI_TCR4(8), 0},
996 {FSL_SAI_TCR5(8), 0},
997 {FSL_SAI_TDR0, 0},
998 {FSL_SAI_TDR1, 0},
999 {FSL_SAI_TDR2, 0},
1000 {FSL_SAI_TDR3, 0},
1001 {FSL_SAI_TDR4, 0},
1002 {FSL_SAI_TDR5, 0},
1003 {FSL_SAI_TDR6, 0},
1004 {FSL_SAI_TDR7, 0},
1005 {FSL_SAI_TMR, 0},
1006 {FSL_SAI_RCR1(8), 0},
1007 {FSL_SAI_RCR2(8), 0},
1008 {FSL_SAI_RCR3(8), 0},
1009 {FSL_SAI_RCR4(8), 0},
1010 {FSL_SAI_RCR5(8), 0},
1011 {FSL_SAI_RMR, 0},
1012 {FSL_SAI_MCTL, 0},
1013 {FSL_SAI_MDIV, 0},
1014 };
1015
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1016 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1017 {
1018 struct fsl_sai *sai = dev_get_drvdata(dev);
1019 unsigned int ofs = sai->soc_data->reg_offset;
1020
1021 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1022 return true;
1023
1024 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1025 return true;
1026
1027 switch (reg) {
1028 case FSL_SAI_TFR0:
1029 case FSL_SAI_TFR1:
1030 case FSL_SAI_TFR2:
1031 case FSL_SAI_TFR3:
1032 case FSL_SAI_TFR4:
1033 case FSL_SAI_TFR5:
1034 case FSL_SAI_TFR6:
1035 case FSL_SAI_TFR7:
1036 case FSL_SAI_TMR:
1037 case FSL_SAI_RDR0:
1038 case FSL_SAI_RDR1:
1039 case FSL_SAI_RDR2:
1040 case FSL_SAI_RDR3:
1041 case FSL_SAI_RDR4:
1042 case FSL_SAI_RDR5:
1043 case FSL_SAI_RDR6:
1044 case FSL_SAI_RDR7:
1045 case FSL_SAI_RFR0:
1046 case FSL_SAI_RFR1:
1047 case FSL_SAI_RFR2:
1048 case FSL_SAI_RFR3:
1049 case FSL_SAI_RFR4:
1050 case FSL_SAI_RFR5:
1051 case FSL_SAI_RFR6:
1052 case FSL_SAI_RFR7:
1053 case FSL_SAI_RMR:
1054 case FSL_SAI_MCTL:
1055 case FSL_SAI_MDIV:
1056 case FSL_SAI_VERID:
1057 case FSL_SAI_PARAM:
1058 case FSL_SAI_TTCTN:
1059 case FSL_SAI_RTCTN:
1060 case FSL_SAI_TTCTL:
1061 case FSL_SAI_TBCTN:
1062 case FSL_SAI_TTCAP:
1063 case FSL_SAI_RTCTL:
1064 case FSL_SAI_RBCTN:
1065 case FSL_SAI_RTCAP:
1066 return true;
1067 default:
1068 return false;
1069 }
1070 }
1071
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1072 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1073 {
1074 struct fsl_sai *sai = dev_get_drvdata(dev);
1075 unsigned int ofs = sai->soc_data->reg_offset;
1076
1077 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1078 return true;
1079
1080 /* Set VERID and PARAM be volatile for reading value in probe */
1081 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1082 return true;
1083
1084 switch (reg) {
1085 case FSL_SAI_TFR0:
1086 case FSL_SAI_TFR1:
1087 case FSL_SAI_TFR2:
1088 case FSL_SAI_TFR3:
1089 case FSL_SAI_TFR4:
1090 case FSL_SAI_TFR5:
1091 case FSL_SAI_TFR6:
1092 case FSL_SAI_TFR7:
1093 case FSL_SAI_RFR0:
1094 case FSL_SAI_RFR1:
1095 case FSL_SAI_RFR2:
1096 case FSL_SAI_RFR3:
1097 case FSL_SAI_RFR4:
1098 case FSL_SAI_RFR5:
1099 case FSL_SAI_RFR6:
1100 case FSL_SAI_RFR7:
1101 case FSL_SAI_RDR0:
1102 case FSL_SAI_RDR1:
1103 case FSL_SAI_RDR2:
1104 case FSL_SAI_RDR3:
1105 case FSL_SAI_RDR4:
1106 case FSL_SAI_RDR5:
1107 case FSL_SAI_RDR6:
1108 case FSL_SAI_RDR7:
1109 return true;
1110 default:
1111 return false;
1112 }
1113 }
1114
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1115 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1116 {
1117 struct fsl_sai *sai = dev_get_drvdata(dev);
1118 unsigned int ofs = sai->soc_data->reg_offset;
1119
1120 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1121 return true;
1122
1123 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1124 return true;
1125
1126 switch (reg) {
1127 case FSL_SAI_TDR0:
1128 case FSL_SAI_TDR1:
1129 case FSL_SAI_TDR2:
1130 case FSL_SAI_TDR3:
1131 case FSL_SAI_TDR4:
1132 case FSL_SAI_TDR5:
1133 case FSL_SAI_TDR6:
1134 case FSL_SAI_TDR7:
1135 case FSL_SAI_TMR:
1136 case FSL_SAI_RMR:
1137 case FSL_SAI_MCTL:
1138 case FSL_SAI_MDIV:
1139 case FSL_SAI_TTCTL:
1140 case FSL_SAI_RTCTL:
1141 return true;
1142 default:
1143 return false;
1144 }
1145 }
1146
1147 static struct regmap_config fsl_sai_regmap_config = {
1148 .reg_bits = 32,
1149 .reg_stride = 4,
1150 .val_bits = 32,
1151 .fast_io = true,
1152
1153 .max_register = FSL_SAI_RMR,
1154 .reg_defaults = fsl_sai_reg_defaults_ofs0,
1155 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1156 .readable_reg = fsl_sai_readable_reg,
1157 .volatile_reg = fsl_sai_volatile_reg,
1158 .writeable_reg = fsl_sai_writeable_reg,
1159 .cache_type = REGCACHE_FLAT,
1160 };
1161
fsl_sai_check_version(struct device * dev)1162 static int fsl_sai_check_version(struct device *dev)
1163 {
1164 struct fsl_sai *sai = dev_get_drvdata(dev);
1165 unsigned char ofs = sai->soc_data->reg_offset;
1166 unsigned int val;
1167 int ret;
1168
1169 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1170 return 0;
1171
1172 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1173 if (ret < 0)
1174 return ret;
1175
1176 dev_dbg(dev, "VERID: 0x%016X\n", val);
1177
1178 sai->verid.version = val &
1179 (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1180 sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1181 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1182
1183 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1184 if (ret < 0)
1185 return ret;
1186
1187 dev_dbg(dev, "PARAM: 0x%016X\n", val);
1188
1189 /* Max slots per frame, power of 2 */
1190 sai->param.slot_num = 1 <<
1191 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1192
1193 /* Words per fifo, power of 2 */
1194 sai->param.fifo_depth = 1 <<
1195 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1196
1197 /* Number of datalines implemented */
1198 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Calculate the offset between first two datalines, don't
1205 * different offset in one case.
1206 */
fsl_sai_calc_dl_off(unsigned long dl_mask)1207 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1208 {
1209 int fbidx, nbidx, offset;
1210
1211 fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1212 nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1213 offset = nbidx - fbidx - 1;
1214
1215 return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1216 }
1217
1218 /*
1219 * read the fsl,dataline property from dts file.
1220 * It has 3 value for each configuration, first one means the type:
1221 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1222 * dataline mask for 'tx'. for example
1223 *
1224 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1225 *
1226 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1227 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1228 *
1229 */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1230 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1231 {
1232 struct platform_device *pdev = sai->pdev;
1233 struct device_node *np = pdev->dev.of_node;
1234 struct device *dev = &pdev->dev;
1235 int ret, elems, i, index, num_cfg;
1236 char *propname = "fsl,dataline";
1237 struct fsl_sai_dl_cfg *cfg;
1238 unsigned long dl_mask;
1239 unsigned int soc_dl;
1240 u32 rx, tx, type;
1241
1242 elems = of_property_count_u32_elems(np, propname);
1243
1244 if (elems <= 0) {
1245 elems = 0;
1246 } else if (elems % 3) {
1247 dev_err(dev, "Number of elements must be divisible to 3.\n");
1248 return -EINVAL;
1249 }
1250
1251 num_cfg = elems / 3;
1252 /* Add one more for default value */
1253 cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1254 if (!cfg)
1255 return -ENOMEM;
1256
1257 /* Consider default value "0 0xFF 0xFF" if property is missing */
1258 soc_dl = BIT(sai->soc_data->pins) - 1;
1259 cfg[0].type = FSL_SAI_DL_DEFAULT;
1260 cfg[0].pins[0] = sai->soc_data->pins;
1261 cfg[0].mask[0] = soc_dl;
1262 cfg[0].start_off[0] = 0;
1263 cfg[0].next_off[0] = 0;
1264
1265 cfg[0].pins[1] = sai->soc_data->pins;
1266 cfg[0].mask[1] = soc_dl;
1267 cfg[0].start_off[1] = 0;
1268 cfg[0].next_off[1] = 0;
1269 for (i = 1, index = 0; i < num_cfg + 1; i++) {
1270 /*
1271 * type of dataline
1272 * 0 means default mode
1273 * 1 means I2S mode
1274 * 2 means PDM mode
1275 */
1276 ret = of_property_read_u32_index(np, propname, index++, &type);
1277 if (ret)
1278 return -EINVAL;
1279
1280 ret = of_property_read_u32_index(np, propname, index++, &rx);
1281 if (ret)
1282 return -EINVAL;
1283
1284 ret = of_property_read_u32_index(np, propname, index++, &tx);
1285 if (ret)
1286 return -EINVAL;
1287
1288 if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1289 dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1290 return -EINVAL;
1291 }
1292
1293 rx = rx & soc_dl;
1294 tx = tx & soc_dl;
1295
1296 cfg[i].type = type;
1297 cfg[i].pins[0] = hweight8(rx);
1298 cfg[i].mask[0] = rx;
1299 dl_mask = rx;
1300 cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1301 cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1302
1303 cfg[i].pins[1] = hweight8(tx);
1304 cfg[i].mask[1] = tx;
1305 dl_mask = tx;
1306 cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1307 cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1308 }
1309
1310 sai->dl_cfg = cfg;
1311 sai->dl_cfg_cnt = num_cfg + 1;
1312 return 0;
1313 }
1314
1315 static int fsl_sai_runtime_suspend(struct device *dev);
1316 static int fsl_sai_runtime_resume(struct device *dev);
1317
fsl_sai_probe(struct platform_device * pdev)1318 static int fsl_sai_probe(struct platform_device *pdev)
1319 {
1320 struct device_node *np = pdev->dev.of_node;
1321 struct device *dev = &pdev->dev;
1322 struct fsl_sai *sai;
1323 struct regmap *gpr;
1324 void __iomem *base;
1325 char tmp[8];
1326 int irq, ret, i;
1327 int index;
1328 u32 dmas[4];
1329
1330 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1331 if (!sai)
1332 return -ENOMEM;
1333
1334 sai->pdev = pdev;
1335 sai->soc_data = of_device_get_match_data(dev);
1336
1337 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1338
1339 base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1340 if (IS_ERR(base))
1341 return PTR_ERR(base);
1342
1343 if (sai->soc_data->reg_offset == 8) {
1344 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1345 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1346 fsl_sai_regmap_config.num_reg_defaults =
1347 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1348 }
1349
1350 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1351 if (IS_ERR(sai->regmap)) {
1352 dev_err(dev, "regmap init failed\n");
1353 return PTR_ERR(sai->regmap);
1354 }
1355
1356 sai->bus_clk = devm_clk_get(dev, "bus");
1357 /* Compatible with old DTB cases */
1358 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1359 sai->bus_clk = devm_clk_get(dev, "sai");
1360 if (IS_ERR(sai->bus_clk)) {
1361 dev_err(dev, "failed to get bus clock: %ld\n",
1362 PTR_ERR(sai->bus_clk));
1363 /* -EPROBE_DEFER */
1364 return PTR_ERR(sai->bus_clk);
1365 }
1366
1367 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1368 sprintf(tmp, "mclk%d", i);
1369 sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1370 if (IS_ERR(sai->mclk_clk[i])) {
1371 dev_err(dev, "failed to get mclk%d clock: %ld\n",
1372 i, PTR_ERR(sai->mclk_clk[i]));
1373 sai->mclk_clk[i] = NULL;
1374 }
1375 }
1376
1377 if (sai->soc_data->mclk0_is_mclk1)
1378 sai->mclk_clk[0] = sai->mclk_clk[1];
1379 else
1380 sai->mclk_clk[0] = sai->bus_clk;
1381
1382 fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1383 &sai->pll11k_clk);
1384
1385 /* Use Multi FIFO mode depending on the support from SDMA script */
1386 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1387 if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1388 sai->is_multi_fifo_dma = true;
1389
1390 /* read dataline mask for rx and tx*/
1391 ret = fsl_sai_read_dlcfg(sai);
1392 if (ret < 0) {
1393 dev_err(dev, "failed to read dlcfg %d\n", ret);
1394 return ret;
1395 }
1396
1397 irq = platform_get_irq(pdev, 0);
1398 if (irq < 0)
1399 return irq;
1400
1401 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1402 np->name, sai);
1403 if (ret) {
1404 dev_err(dev, "failed to claim irq %u\n", irq);
1405 return ret;
1406 }
1407
1408 memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1409 sizeof(fsl_sai_dai_template));
1410
1411 /* Sync Tx with Rx as default by following old DT binding */
1412 sai->synchronous[RX] = true;
1413 sai->synchronous[TX] = false;
1414 sai->cpu_dai_drv.symmetric_rate = 1;
1415 sai->cpu_dai_drv.symmetric_channels = 1;
1416 sai->cpu_dai_drv.symmetric_sample_bits = 1;
1417
1418 if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1419 of_property_read_bool(np, "fsl,sai-asynchronous")) {
1420 /* error out if both synchronous and asynchronous are present */
1421 dev_err(dev, "invalid binding for synchronous mode\n");
1422 return -EINVAL;
1423 }
1424
1425 if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1426 /* Sync Rx with Tx */
1427 sai->synchronous[RX] = false;
1428 sai->synchronous[TX] = true;
1429 } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1430 /* Discard all settings for asynchronous mode */
1431 sai->synchronous[RX] = false;
1432 sai->synchronous[TX] = false;
1433 sai->cpu_dai_drv.symmetric_rate = 0;
1434 sai->cpu_dai_drv.symmetric_channels = 0;
1435 sai->cpu_dai_drv.symmetric_sample_bits = 0;
1436 }
1437
1438 sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1439
1440 if (sai->mclk_direction_output &&
1441 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1442 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1443 if (IS_ERR(gpr)) {
1444 dev_err(dev, "cannot find iomuxc registers\n");
1445 return PTR_ERR(gpr);
1446 }
1447
1448 index = of_alias_get_id(np, "sai");
1449 if (index < 0)
1450 return index;
1451
1452 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1453 MCLK_DIR(index));
1454 }
1455
1456 sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1457 sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1458 sai->dma_params_rx.maxburst =
1459 sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1460 sai->dma_params_tx.maxburst =
1461 sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1462
1463 sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1464
1465 platform_set_drvdata(pdev, sai);
1466 pm_runtime_enable(dev);
1467 if (!pm_runtime_enabled(dev)) {
1468 ret = fsl_sai_runtime_resume(dev);
1469 if (ret)
1470 goto err_pm_disable;
1471 }
1472
1473 ret = pm_runtime_resume_and_get(dev);
1474 if (ret < 0)
1475 goto err_pm_get_sync;
1476
1477 /* Get sai version */
1478 ret = fsl_sai_check_version(dev);
1479 if (ret < 0)
1480 dev_warn(dev, "Error reading SAI version: %d\n", ret);
1481
1482 /* Select MCLK direction */
1483 if (sai->mclk_direction_output &&
1484 sai->soc_data->max_register >= FSL_SAI_MCTL) {
1485 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1486 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1487 }
1488
1489 ret = pm_runtime_put_sync(dev);
1490 if (ret < 0 && ret != -ENOSYS)
1491 goto err_pm_get_sync;
1492
1493 /*
1494 * Register platform component before registering cpu dai for there
1495 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1496 */
1497 if (sai->soc_data->use_imx_pcm) {
1498 ret = imx_pcm_dma_init(pdev);
1499 if (ret) {
1500 dev_err_probe(dev, ret, "PCM DMA init failed\n");
1501 if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1502 dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1503 goto err_pm_get_sync;
1504 }
1505 } else {
1506 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1507 if (ret) {
1508 dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1509 goto err_pm_get_sync;
1510 }
1511 }
1512
1513 ret = devm_snd_soc_register_component(dev, &fsl_component,
1514 &sai->cpu_dai_drv, 1);
1515 if (ret)
1516 goto err_pm_get_sync;
1517
1518 return ret;
1519
1520 err_pm_get_sync:
1521 if (!pm_runtime_status_suspended(dev))
1522 fsl_sai_runtime_suspend(dev);
1523 err_pm_disable:
1524 pm_runtime_disable(dev);
1525
1526 return ret;
1527 }
1528
fsl_sai_remove(struct platform_device * pdev)1529 static void fsl_sai_remove(struct platform_device *pdev)
1530 {
1531 pm_runtime_disable(&pdev->dev);
1532 if (!pm_runtime_status_suspended(&pdev->dev))
1533 fsl_sai_runtime_suspend(&pdev->dev);
1534 }
1535
1536 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1537 .use_imx_pcm = false,
1538 .use_edma = false,
1539 .fifo_depth = 32,
1540 .pins = 1,
1541 .reg_offset = 0,
1542 .mclk0_is_mclk1 = false,
1543 .flags = 0,
1544 .max_register = FSL_SAI_RMR,
1545 };
1546
1547 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1548 .use_imx_pcm = true,
1549 .use_edma = false,
1550 .fifo_depth = 32,
1551 .pins = 1,
1552 .reg_offset = 0,
1553 .mclk0_is_mclk1 = true,
1554 .flags = 0,
1555 .max_register = FSL_SAI_RMR,
1556 };
1557
1558 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1559 .use_imx_pcm = true,
1560 .use_edma = false,
1561 .fifo_depth = 16,
1562 .pins = 2,
1563 .reg_offset = 8,
1564 .mclk0_is_mclk1 = false,
1565 .flags = PMQOS_CPU_LATENCY,
1566 .max_register = FSL_SAI_RMR,
1567 };
1568
1569 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1570 .use_imx_pcm = true,
1571 .use_edma = false,
1572 .fifo_depth = 128,
1573 .pins = 8,
1574 .reg_offset = 8,
1575 .mclk0_is_mclk1 = false,
1576 .flags = 0,
1577 .max_register = FSL_SAI_RMR,
1578 };
1579
1580 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1581 .use_imx_pcm = true,
1582 .use_edma = true,
1583 .fifo_depth = 64,
1584 .pins = 4,
1585 .reg_offset = 0,
1586 .mclk0_is_mclk1 = false,
1587 .flags = 0,
1588 .max_register = FSL_SAI_RMR,
1589 };
1590
1591 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1592 .use_imx_pcm = true,
1593 .use_edma = false,
1594 .fifo_depth = 128,
1595 .reg_offset = 8,
1596 .mclk0_is_mclk1 = false,
1597 .pins = 8,
1598 .flags = 0,
1599 .max_register = FSL_SAI_MCTL,
1600 };
1601
1602 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1603 .use_imx_pcm = true,
1604 .use_edma = false,
1605 .fifo_depth = 128,
1606 .reg_offset = 8,
1607 .mclk0_is_mclk1 = false,
1608 .pins = 8,
1609 .flags = 0,
1610 .max_register = FSL_SAI_MDIV,
1611 };
1612
1613 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1614 .use_imx_pcm = true,
1615 .use_edma = false,
1616 .fifo_depth = 128,
1617 .reg_offset = 8,
1618 .mclk0_is_mclk1 = false,
1619 .pins = 8,
1620 .flags = 0,
1621 .max_register = FSL_SAI_MDIV,
1622 .mclk_with_tere = true,
1623 };
1624
1625 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1626 .use_imx_pcm = true,
1627 .use_edma = true,
1628 .fifo_depth = 16,
1629 .reg_offset = 8,
1630 .mclk0_is_mclk1 = false,
1631 .pins = 4,
1632 .flags = PMQOS_CPU_LATENCY,
1633 .max_register = FSL_SAI_RTCAP,
1634 };
1635
1636 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1637 .use_imx_pcm = true,
1638 .use_edma = true,
1639 .fifo_depth = 128,
1640 .reg_offset = 8,
1641 .mclk0_is_mclk1 = false,
1642 .pins = 4,
1643 .flags = 0,
1644 .max_register = FSL_SAI_MCTL,
1645 .max_burst = {8, 8},
1646 };
1647
1648 static const struct of_device_id fsl_sai_ids[] = {
1649 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1650 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1651 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1652 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1653 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1654 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1655 { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1656 { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1657 { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1658 { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1659 { .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1660 { /* sentinel */ }
1661 };
1662 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1663
fsl_sai_runtime_suspend(struct device * dev)1664 static int fsl_sai_runtime_suspend(struct device *dev)
1665 {
1666 struct fsl_sai *sai = dev_get_drvdata(dev);
1667
1668 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1669 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1670
1671 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1672 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1673
1674 clk_disable_unprepare(sai->bus_clk);
1675
1676 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1677 cpu_latency_qos_remove_request(&sai->pm_qos_req);
1678
1679 regcache_cache_only(sai->regmap, true);
1680
1681 return 0;
1682 }
1683
fsl_sai_runtime_resume(struct device * dev)1684 static int fsl_sai_runtime_resume(struct device *dev)
1685 {
1686 struct fsl_sai *sai = dev_get_drvdata(dev);
1687 unsigned int ofs = sai->soc_data->reg_offset;
1688 int ret;
1689
1690 ret = clk_prepare_enable(sai->bus_clk);
1691 if (ret) {
1692 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1693 return ret;
1694 }
1695
1696 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1697 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1698 if (ret)
1699 goto disable_bus_clk;
1700 }
1701
1702 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1703 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1704 if (ret)
1705 goto disable_tx_clk;
1706 }
1707
1708 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1709 cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1710
1711 regcache_cache_only(sai->regmap, false);
1712 regcache_mark_dirty(sai->regmap);
1713 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1714 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1715 usleep_range(1000, 2000);
1716 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1717 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1718
1719 ret = regcache_sync(sai->regmap);
1720 if (ret)
1721 goto disable_rx_clk;
1722
1723 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1724 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1725 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1726
1727 return 0;
1728
1729 disable_rx_clk:
1730 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1731 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1732 disable_tx_clk:
1733 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1734 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1735 disable_bus_clk:
1736 clk_disable_unprepare(sai->bus_clk);
1737
1738 return ret;
1739 }
1740
1741 static const struct dev_pm_ops fsl_sai_pm_ops = {
1742 SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1743 fsl_sai_runtime_resume, NULL)
1744 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1745 pm_runtime_force_resume)
1746 };
1747
1748 static struct platform_driver fsl_sai_driver = {
1749 .probe = fsl_sai_probe,
1750 .remove_new = fsl_sai_remove,
1751 .driver = {
1752 .name = "fsl-sai",
1753 .pm = &fsl_sai_pm_ops,
1754 .of_match_table = fsl_sai_ids,
1755 },
1756 };
1757 module_platform_driver(fsl_sai_driver);
1758
1759 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1760 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1761 MODULE_ALIAS("platform:fsl-sai");
1762 MODULE_LICENSE("GPL");
1763