• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2024 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief Functions and data declarations.
20  */
21 
22 #ifndef ASTCENC_INTERNAL_INCLUDED
23 #define ASTCENC_INTERNAL_INCLUDED
24 
25 #include <algorithm>
26 #include <cstddef>
27 #include <cstdint>
28 #if defined(ASTCENC_DIAGNOSTICS)
29 	#include <cstdio>
30 #endif
31 #include <cstdlib>
32 #include <limits>
33 #include <mutex>
34 
35 #ifdef ASTC_CUSTOMIZED_ENABLE
36 #include <unistd.h>
37 #include <string>
38 #if defined(_WIN32) && !defined(__CYGWIN__)
39 #define NOMINMAX
40 #include <windows.h>
41 #include <io.h>
42 #else
43 #include <dlfcn.h>
44 #endif
45 #endif
46 
47 #include "astcenc.h"
48 #include "astcenc_mathlib.h"
49 #include "astcenc_vecmathlib.h"
50 
51 /**
52  * @brief Make a promise to the compiler's optimizer.
53  *
54  * A promise is an expression that the optimizer is can assume is true for to help it generate
55  * faster code. Common use cases for this are to promise that a for loop will iterate more than
56  * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
57  * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
58  */
59 #if defined(NDEBUG)
60 	#if !defined(__clang__) && defined(_MSC_VER)
61 		#define promise(cond) __assume(cond)
62 	#elif defined(__clang__)
63 		#if __has_builtin(__builtin_assume)
64 			#define promise(cond) __builtin_assume(cond)
65 		#elif __has_builtin(__builtin_unreachable)
66 			#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
67 		#else
68 			#define promise(cond)
69 		#endif
70 	#else // Assume GCC
71 		#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
72 	#endif
73 #else
74 	#define promise(cond) assert(cond)
75 #endif
76 
77 /* ============================================================================
78   Constants
79 ============================================================================ */
80 #if !defined(ASTCENC_BLOCK_MAX_TEXELS)
81 	#define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
82 #endif
83 
84 /** @brief The maximum number of texels a block can support (6x6x6 block). */
85 static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
86 
87 /** @brief The maximum number of components a block can support. */
88 static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
89 
90 /** @brief The maximum number of partitions a block can support. */
91 static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
92 
93 /** @brief The number of partitionings, per partition count, suported by the ASTC format. */
94 static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
95 
96 /** @brief The maximum number of texels used during partition selection for texel clustering. */
97 static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
98 
99 /** @brief The maximum number of weights a block can support. */
100 static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
101 
102 /** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
103 static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
104 
105 /** @brief The minimum number of weight bits a candidate encoding must encode. */
106 static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
107 
108 /** @brief The maximum number of weight bits a candidate encoding can encode. */
109 static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
110 
111 /** @brief The index indicating a bad (unused) block mode in the remap array. */
112 static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
113 
114 /** @brief The index indicating a bad (unused) partitioning in the remap array. */
115 static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
116 
117 /** @brief The number of partition index bits supported by the ASTC format . */
118 static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
119 
120 /** @brief The offset of the plane 2 weights in shared weight arrays. */
121 static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
122 
123 /** @brief The sum of quantized weights for one texel. */
124 static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
125 
126 /** @brief The number of block modes supported by the ASTC format. */
127 static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
128 
129 /** @brief The number of weight grid decimation modes supported by the ASTC format. */
130 static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
131 
132 /** @brief The high default error used to initialize error trackers. */
133 static constexpr float ERROR_CALC_DEFAULT { 1e30f };
134 
135 /**
136  * @brief The minimum tuning setting threshold for the one partition fast path.
137  */
138 static constexpr float TUNE_MIN_SEARCH_MODE0 { 0.85f };
139 
140 /**
141  * @brief The maximum number of candidate encodings tested for each encoding mode.
142  *
143  * This can be dynamically reduced by the compression quality preset.
144  */
145 static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
146 
147 /**
148  * @brief The maximum number of candidate partitionings tested for each encoding mode.
149  *
150  * This can be dynamically reduced by the compression quality preset.
151  */
152 static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 8 };
153 
154 /**
155  * @brief The maximum quant level using full angular endpoint search method.
156  *
157  * The angular endpoint search is used to find the min/max weight that should
158  * be used for a given quantization level. It is effective but expensive, so
159  * we only use it where it has the most value - low quant levels with wide
160  * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
161  * assume the min weight is 0.0f, and the max weight is 1.0f.
162  *
163  * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
164  * one 8-wide vector. Decreasing by one doesn't buy much performance, and
165  * increasing by one is disproportionately expensive.
166  */
167 static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
168 
169 static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
170               "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
171 
172 static_assert(BLOCK_MAX_TEXELS <= 216,
173               "BLOCK_MAX_TEXELS must not be greater than 216");
174 
175 static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
176               "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
177 
178 static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
179               "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
180 
181 
182 /* ============================================================================
183   Commonly used data structures
184 ============================================================================ */
185 
186 /**
187  * @brief The ASTC endpoint formats.
188  *
189  * Note, the values here are used directly in the encoding in the format so do not rearrange.
190  */
191 enum endpoint_formats
192 {
193 	FMT_LUMINANCE = 0,
194 	FMT_LUMINANCE_DELTA = 1,
195 	FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
196 	FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
197 	FMT_LUMINANCE_ALPHA = 4,
198 	FMT_LUMINANCE_ALPHA_DELTA = 5,
199 	FMT_RGB_SCALE = 6,
200 	FMT_HDR_RGB_SCALE = 7,
201 	FMT_RGB = 8,
202 	FMT_RGB_DELTA = 9,
203 	FMT_RGB_SCALE_ALPHA = 10,
204 	FMT_HDR_RGB = 11,
205 	FMT_RGBA = 12,
206 	FMT_RGBA_DELTA = 13,
207 	FMT_HDR_RGB_LDR_ALPHA = 14,
208 	FMT_HDR_RGBA = 15
209 };
210 
211 /**
212  * @brief The ASTC quantization methods.
213  *
214  * Note, the values here are used directly in the encoding in the format so do not rearrange.
215  */
216 enum quant_method
217 {
218 	QUANT_2 = 0,
219 	QUANT_3 = 1,
220 	QUANT_4 = 2,
221 	QUANT_5 = 3,
222 	QUANT_6 = 4,
223 	QUANT_8 = 5,
224 	QUANT_10 = 6,
225 	QUANT_12 = 7,
226 	QUANT_16 = 8,
227 	QUANT_20 = 9,
228 	QUANT_24 = 10,
229 	QUANT_32 = 11,
230 	QUANT_40 = 12,
231 	QUANT_48 = 13,
232 	QUANT_64 = 14,
233 	QUANT_80 = 15,
234 	QUANT_96 = 16,
235 	QUANT_128 = 17,
236 	QUANT_160 = 18,
237 	QUANT_192 = 19,
238 	QUANT_256 = 20
239 };
240 
241 /**
242  * @brief The number of levels use by an ASTC quantization method.
243  *
244  * @param method   The quantization method
245  *
246  * @return   The number of levels used by @c method.
247  */
get_quant_level(quant_method method)248 static inline unsigned int get_quant_level(quant_method method)
249 {
250 	switch (method)
251 	{
252 	case QUANT_2:   return   2;
253 	case QUANT_3:   return   3;
254 	case QUANT_4:   return   4;
255 	case QUANT_5:   return   5;
256 	case QUANT_6:   return   6;
257 	case QUANT_8:   return   8;
258 	case QUANT_10:  return  10;
259 	case QUANT_12:  return  12;
260 	case QUANT_16:  return  16;
261 	case QUANT_20:  return  20;
262 	case QUANT_24:  return  24;
263 	case QUANT_32:  return  32;
264 	case QUANT_40:  return  40;
265 	case QUANT_48:  return  48;
266 	case QUANT_64:  return  64;
267 	case QUANT_80:  return  80;
268 	case QUANT_96:  return  96;
269 	case QUANT_128: return 128;
270 	case QUANT_160: return 160;
271 	case QUANT_192: return 192;
272 	case QUANT_256: return 256;
273 	}
274 
275 	// Unreachable - the enum is fully described
276 	return 0;
277 }
278 
279 /**
280  * @brief Computed metrics about a partition in a block.
281  */
282 struct partition_metrics
283 {
284 	/** @brief The error-weighted average color in the partition. */
285 	vfloat4 avg;
286 
287 	/** @brief The dominant error-weighted direction in the partition. */
288 	vfloat4 dir;
289 };
290 
291 /**
292  * @brief Computed lines for a a three component analysis.
293  */
294 struct partition_lines3
295 {
296 	/** @brief Line for uncorrelated chroma. */
297 	line3 uncor_line;
298 
299 	/** @brief Line for correlated chroma, passing though the origin. */
300 	line3 samec_line;
301 
302 	/** @brief Post-processed line for uncorrelated chroma. */
303 	processed_line3 uncor_pline;
304 
305 	/** @brief Post-processed line for correlated chroma, passing though the origin. */
306 	processed_line3 samec_pline;
307 
308 	/**
309 	 * @brief The length of the line for uncorrelated chroma.
310 	 *
311 	 * This is used for both the uncorrelated and same chroma lines - they are normally very similar
312 	 * and only used for the relative ranking of partitionings against one another.
313 	 */
314 	float line_length;
315 };
316 
317 /**
318  * @brief The partition information for a single partition.
319  *
320  * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
321  * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
322  * empty partitions. These are both valid encodings, but astcenc will skip both during compression
323  * as they are not useful.
324  */
325 struct partition_info
326 {
327 	/** @brief The number of partitions in this partitioning. */
328 	uint16_t partition_count;
329 
330 	/** @brief The index (seed) of this partitioning. */
331 	uint16_t partition_index;
332 
333 	/**
334 	 * @brief The number of texels in each partition.
335 	 *
336 	 * Note that some seeds result in zero texels assigned to a partition. These are valid, but are
337 	 * skipped by this compressor as there is no point spending bits encoding an unused endpoints.
338 	 */
339 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
340 
341 	/** @brief The partition of each texel in the block. */
342 	uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
343 
344 	/** @brief The list of texels in each partition. */
345 	uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
346 };
347 
348 /**
349  * @brief The weight grid information for a single decimation pattern.
350  *
351  * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
352  * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
353  * can free up a substantial amount of bits that we can then spend on more useful things, such as
354  * more accurate endpoints and weights, or additional partitions.
355  *
356  * This data structure is used to store information about a single weight grid decimation pattern,
357  * for a single block size.
358  */
359 struct decimation_info
360 {
361 	/** @brief The total number of texels in the block. */
362 	uint8_t texel_count;
363 
364 	/** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
365 	uint8_t max_texel_weight_count;
366 
367 	/** @brief The total number of weights stored. */
368 	uint8_t weight_count;
369 
370 	/** @brief The number of stored weights in the X dimension. */
371 	uint8_t weight_x;
372 
373 	/** @brief The number of stored weights in the Y dimension. */
374 	uint8_t weight_y;
375 
376 	/** @brief The number of stored weights in the Z dimension. */
377 	uint8_t weight_z;
378 
379 	/**
380 	 * @brief The number of weights that contribute to each texel.
381 	 * Value is between 1 and 4.
382 	 */
383 	uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
384 
385 	/**
386 	 * @brief The weight index of the N weights that are interpolated for each texel.
387 	 * Stored transposed to improve vectorization.
388 	 */
389 	uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS];
390 
391 	/**
392 	 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
393 	 * Value is between 0 and 16, stored transposed to improve vectorization.
394 	 */
395 	uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS];
396 
397 	/**
398 	 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
399 	 * Value is between 0 and 1, stored transposed to improve vectorization.
400 	 */
401 	ASTCENC_ALIGNAS float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS];
402 
403 	/** @brief The number of texels that each stored weight contributes to. */
404 	uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
405 
406 	/**
407 	 * @brief The list of texels that use a specific weight index.
408 	 * Stored transposed to improve vectorization.
409 	 */
410 	uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
411 
412 	/**
413 	 * @brief The bilinear contribution to the N texels that use each weight.
414 	 * Value is between 0 and 1, stored transposed to improve vectorization.
415 	 */
416 	ASTCENC_ALIGNAS float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
417 
418 	/**
419 	 * @brief The bilinear contribution to the Nth texel that uses each weight.
420 	 * Value is between 0 and 1, stored transposed to improve vectorization.
421 	 */
422 	float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
423 };
424 
425 /**
426  * @brief Metadata for single block mode for a specific block size.
427  */
428 struct block_mode
429 {
430 	/** @brief The block mode index in the ASTC encoded form. */
431 	uint16_t mode_index;
432 
433 	/** @brief The decimation mode index in the compressor reindexed list. */
434 	uint8_t decimation_mode;
435 
436 	/** @brief The weight quantization used by this block mode. */
437 	uint8_t quant_mode;
438 
439 	/** @brief The weight quantization used by this block mode. */
440 	uint8_t weight_bits;
441 
442 	/** @brief Is a dual weight plane used by this block mode? */
443 	uint8_t is_dual_plane : 1;
444 
445 	/**
446 	 * @brief Get the weight quantization used by this block mode.
447 	 *
448 	 * @return The quantization level.
449 	 */
get_weight_quant_modeblock_mode450 	inline quant_method get_weight_quant_mode() const
451 	{
452 		return static_cast<quant_method>(this->quant_mode);
453 	}
454 };
455 
456 /**
457  * @brief Metadata for single decimation mode for a specific block size.
458  */
459 struct decimation_mode
460 {
461 	/** @brief The max weight precision for 1 plane, or -1 if not supported. */
462 	int8_t maxprec_1plane;
463 
464 	/** @brief The max weight precision for 2 planes, or -1 if not supported. */
465 	int8_t maxprec_2planes;
466 
467 	/**
468 	 * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
469 	 *
470 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
471 	 */
472 	uint16_t refprec_1plane;
473 
474 	/**
475 	 * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
476 	 *
477 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
478 	 */
479 	uint16_t refprec_2planes;
480 
481 	/**
482 	 * @brief Set a 1 plane weight quant as active.
483 	 *
484 	 * @param weight_quant   The quant method to set.
485 	 */
set_ref_1planedecimation_mode486 	void set_ref_1plane(quant_method weight_quant)
487 	{
488 		refprec_1plane |= (1 << weight_quant);
489 	}
490 
491 	/**
492 	 * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
493 	 *
494 	 * @param max_weight_quant   The max quant method to test.
495 	 */
is_ref_1planedecimation_mode496 	bool is_ref_1plane(quant_method max_weight_quant) const
497 	{
498 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
499 		return (refprec_1plane & mask) != 0;
500 	}
501 
502 	/**
503 	 * @brief Set a 2 plane weight quant as active.
504 	 *
505 	 * @param weight_quant   The quant method to set.
506 	 */
set_ref_2planedecimation_mode507 	void set_ref_2plane(quant_method weight_quant)
508 	{
509 		refprec_2planes |= static_cast<uint16_t>(1 << weight_quant);
510 	}
511 
512 	/**
513 	 * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
514 	 *
515 	 * @param max_weight_quant   The max quant method to test.
516 	 */
is_ref_2planedecimation_mode517 	bool is_ref_2plane(quant_method max_weight_quant) const
518 	{
519 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
520 		return (refprec_2planes & mask) != 0;
521 	}
522 };
523 
524 /**
525  * @brief Data tables for a single block size.
526  *
527  * The decimation tables store the information to apply weight grid dimension reductions. We only
528  * store the decimation modes that are actually needed by the current context; many of the possible
529  * modes will be unused (too many weights for the current block size or disabled by heuristics). The
530  * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
531  * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
532  * entries are not stored in any particular order.
533  *
534  * The block mode tables store the unpacked block mode settings. Block modes are stored in the
535  * compressed block as an 11 bit field, but for any given block size and set of compressor
536  * heuristics, only a subset of the block modes will be used. The actual number of block modes
537  * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
538  * contiguously at the start of the array. These entries are stored in incrementing "packed" value
539  * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
540  * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
541  * actual remapped array index.
542  */
543 struct block_size_descriptor
544 {
545 	/** @brief The block X dimension, in texels. */
546 	uint8_t xdim;
547 
548 	/** @brief The block Y dimension, in texels. */
549 	uint8_t ydim;
550 
551 	/** @brief The block Z dimension, in texels. */
552 	uint8_t zdim;
553 
554 	/** @brief The block total texel count. */
555 	uint8_t texel_count;
556 
557 	/**
558 	 * @brief The number of stored decimation modes which are "always" modes.
559 	 *
560 	 * Always modes are stored at the start of the decimation_modes list.
561 	 */
562 	unsigned int decimation_mode_count_always;
563 
564 	/** @brief The number of stored decimation modes for selected encodings. */
565 	unsigned int decimation_mode_count_selected;
566 
567 	/** @brief The number of stored decimation modes for any encoding. */
568 	unsigned int decimation_mode_count_all;
569 
570 	/**
571 	 * @brief The number of stored block modes which are "always" modes.
572 	 *
573 	 * Always modes are stored at the start of the block_modes list.
574 	 */
575 	unsigned int block_mode_count_1plane_always;
576 
577 	/** @brief The number of stored block modes for active 1 plane encodings. */
578 	unsigned int block_mode_count_1plane_selected;
579 
580 	/** @brief The number of stored block modes for active 1 and 2 plane encodings. */
581 	unsigned int block_mode_count_1plane_2plane_selected;
582 
583 	/** @brief The number of stored block modes for any encoding. */
584 	unsigned int block_mode_count_all;
585 
586 	/** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
587 	unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
588 
589 	/** @brief The number of partitionings for 1/2/3/4 partitionings. */
590 	unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
591 
592 	/** @brief The active decimation modes, stored in low indices. */
593 	decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
594 
595 	/** @brief The active decimation tables, stored in low indices. */
596 	ASTCENC_ALIGNAS decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
597 
598 	/** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
599 	uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
600 
601 	/** @brief The active block modes, stored in low indices. */
602 	block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
603 
604 	/** @brief The active partition tables, stored in low indices per-count. */
605 	partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
606 
607 	/**
608 	 * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
609 	 *
610 	 * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
611 	 */
612 	uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
613 
614 	/** @brief The active texels for k-means partition selection. */
615 	uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
616 
617 	/**
618 	 * @brief The canonical 2-partition coverage pattern used during block partition search.
619 	 *
620 	 * Indexed by remapped index, not physical index.
621 	 */
622 	uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
623 
624 	/**
625 	 * @brief The canonical 3-partition coverage pattern used during block partition search.
626 	 *
627 	 * Indexed by remapped index, not physical index.
628 	 */
629 	uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
630 
631 	/**
632 	 * @brief The canonical 4-partition coverage pattern used during block partition search.
633 	 *
634 	 * Indexed by remapped index, not physical index.
635 	 */
636 	uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
637 
638 	/**
639 	 * @brief Get the block mode structure for index @c block_mode.
640 	 *
641 	 * This function can only return block modes that are enabled by the current compressor config.
642 	 * Decompression from an arbitrary source should not use this without first checking that the
643 	 * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
644 	 *
645 	 * @param block_mode   The packed block mode index.
646 	 *
647 	 * @return The block mode structure.
648 	 */
get_block_modeblock_size_descriptor649 	const block_mode& get_block_mode(unsigned int block_mode) const
650 	{
651 		unsigned int packed_index = this->block_mode_packed_index[block_mode];
652 		assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
653 		return this->block_modes[packed_index];
654 	}
655 
656 	/**
657 	 * @brief Get the decimation mode structure for index @c decimation_mode.
658 	 *
659 	 * This function can only return decimation modes that are enabled by the current compressor
660 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
661 	 * stored in the @c block_mode and never exists in an unpacked form.
662 	 *
663 	 * @param decimation_mode   The packed decimation mode index.
664 	 *
665 	 * @return The decimation mode structure.
666 	 */
get_decimation_modeblock_size_descriptor667 	const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
668 	{
669 		return this->decimation_modes[decimation_mode];
670 	}
671 
672 	/**
673 	 * @brief Get the decimation info structure for index @c decimation_mode.
674 	 *
675 	 * This function can only return decimation modes that are enabled by the current compressor
676 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
677 	 * stored in the @c block_mode and never exists in an unpacked form.
678 	 *
679 	 * @param decimation_mode   The packed decimation mode index.
680 	 *
681 	 * @return The decimation info structure.
682 	 */
get_decimation_infoblock_size_descriptor683 	const decimation_info& get_decimation_info(unsigned int decimation_mode) const
684 	{
685 		return this->decimation_tables[decimation_mode];
686 	}
687 
688 	/**
689 	 * @brief Get the partition info table for a given partition count.
690 	 *
691 	 * @param partition_count   The number of partitions we want the table for.
692 	 *
693 	 * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
694 	 */
get_partition_tableblock_size_descriptor695 	const partition_info* get_partition_table(unsigned int partition_count) const
696 	{
697 		if (partition_count == 1)
698 		{
699 			partition_count = 5;
700 		}
701 		unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
702 		return this->partitionings + index;
703 	}
704 
705 	/**
706 	 * @brief Get the partition info structure for a given partition count and seed.
707 	 *
708 	 * @param partition_count   The number of partitions we want the info for.
709 	 * @param index             The partition seed (between 0 and 1023).
710 	 *
711 	 * @return The partition info structure.
712 	 */
get_partition_infoblock_size_descriptor713 	const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
714 	{
715 		unsigned int packed_index = 0;
716 		if (partition_count >= 2)
717 		{
718 			packed_index = this->partitioning_packed_index[partition_count - 2][index];
719 		}
720 
721 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
722 		auto& result = get_partition_table(partition_count)[packed_index];
723 		assert(index == result.partition_index);
724 		return result;
725 	}
726 
727 	/**
728 	 * @brief Get the partition info structure for a given partition count and seed.
729 	 *
730 	 * @param partition_count   The number of partitions we want the info for.
731 	 * @param packed_index      The raw array offset.
732 	 *
733 	 * @return The partition info structure.
734 	 */
get_raw_partition_infoblock_size_descriptor735 	const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
736 	{
737 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
738 		auto& result = get_partition_table(partition_count)[packed_index];
739 		return result;
740 	}
741 };
742 
743 /**
744  * @brief The image data for a single block.
745  *
746  * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
747  * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
748  * data is stored as direct UNORM data, HDR data is stored as LNS data.
749  *
750  * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
751  * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
752  */
753 struct image_block
754 {
755 	/** @brief The input (compress) or output (decompress) data for the red color component. */
756 	ASTCENC_ALIGNAS float data_r[BLOCK_MAX_TEXELS];
757 
758 	/** @brief The input (compress) or output (decompress) data for the green color component. */
759 	ASTCENC_ALIGNAS float data_g[BLOCK_MAX_TEXELS];
760 
761 	/** @brief The input (compress) or output (decompress) data for the blue color component. */
762 	ASTCENC_ALIGNAS float data_b[BLOCK_MAX_TEXELS];
763 
764 	/** @brief The input (compress) or output (decompress) data for the alpha color component. */
765 	ASTCENC_ALIGNAS float data_a[BLOCK_MAX_TEXELS];
766 
767 	mutable partition_metrics pms[BLOCK_MAX_PARTITIONS];
768 
769 	/** @brief The number of texels in the block. */
770 	uint8_t texel_count;
771 
772 	/** @brief The original data for texel 0 for constant color block encoding. */
773 	vfloat4 origin_texel;
774 
775 	/** @brief The min component value of all texels in the block. */
776 	vfloat4 data_min;
777 
778 	/** @brief The mean component value of all texels in the block. */
779 	vfloat4 data_mean;
780 
781 	/** @brief The max component value of all texels in the block. */
782 	vfloat4 data_max;
783 
784 	/** @brief The relative error significance of the color channels. */
785 	vfloat4 channel_weight;
786 
787 	/** @brief Is this grayscale block where R == G == B for all texels? */
788 	bool grayscale;
789 
790 	/** @brief Is the eventual decode using decode_unorm8 rounding? */
791 	bool decode_unorm8;
792 
793 	/** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
794 	uint8_t rgb_lns[BLOCK_MAX_TEXELS];
795 
796 	/** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
797 	uint8_t alpha_lns[BLOCK_MAX_TEXELS];
798 
799 	/** @brief The X position of this block in the input or output image. */
800 	unsigned int xpos;
801 
802 	/** @brief The Y position of this block in the input or output image. */
803 	unsigned int ypos;
804 
805 	/** @brief The Z position of this block in the input or output image. */
806 	unsigned int zpos;
807 
808 	/**
809 	 * @brief Get an RGBA texel value from the data.
810 	 *
811 	 * @param index   The texel index.
812 	 *
813 	 * @return The texel in RGBA component ordering.
814 	 */
texelimage_block815 	inline vfloat4 texel(unsigned int index) const
816 	{
817 		return vfloat4(data_r[index],
818 		               data_g[index],
819 		               data_b[index],
820 		               data_a[index]);
821 	}
822 
823 	/**
824 	 * @brief Get an RGB texel value from the data.
825 	 *
826 	 * @param index   The texel index.
827 	 *
828 	 * @return The texel in RGB0 component ordering.
829 	 */
texel3image_block830 	inline vfloat4 texel3(unsigned int index) const
831 	{
832 		return vfloat3(data_r[index],
833 		               data_g[index],
834 		               data_b[index]);
835 	}
836 
837 	/**
838 	 * @brief Get the default alpha value for endpoints that don't store it.
839 	 *
840 	 * The default depends on whether the alpha endpoint is LDR or HDR.
841 	 *
842 	 * @return The alpha value in the scaled range used by the compressor.
843 	 */
get_default_alphaimage_block844 	inline float get_default_alpha() const
845 	{
846 		return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
847 	}
848 
849 	/**
850 	 * @brief Test if a single color channel is constant across the block.
851 	 *
852 	 * Constant color channels are easier to compress as interpolating between two identical colors
853 	 * always returns the same value, irrespective of the weight used. They therefore can be ignored
854 	 * for the purposes of weight selection and use of a second weight plane.
855 	 *
856 	 * @return @c true if the channel is constant across the block, @c false otherwise.
857 	 */
is_constant_channelimage_block858 	inline bool is_constant_channel(int channel) const
859 	{
860 		vmask4 lane_mask = vint4::lane_id() == vint4(channel);
861 		vmask4 color_mask = this->data_min == this->data_max;
862 		return any(lane_mask & color_mask);
863 	}
864 
865 	/**
866 	 * @brief Test if this block is a luminance block with constant 1.0 alpha.
867 	 *
868 	 * @return @c true if the block is a luminance block , @c false otherwise.
869 	 */
is_luminanceimage_block870 	inline bool is_luminance() const
871 	{
872 		float default_alpha = this->get_default_alpha();
873 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
874 		              (this->data_max.lane<3>() == default_alpha);
875 		return this->grayscale && alpha1;
876 	}
877 
878 	/**
879 	 * @brief Test if this block is a luminance block with variable alpha.
880 	 *
881 	 * @return @c true if the block is a luminance + alpha block , @c false otherwise.
882 	 */
is_luminancealphaimage_block883 	inline bool is_luminancealpha() const
884 	{
885 		float default_alpha = this->get_default_alpha();
886 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
887 		              (this->data_max.lane<3>() == default_alpha);
888 		return this->grayscale && !alpha1;
889 	}
890 };
891 
892 /**
893  * @brief Data structure storing the color endpoints for a block.
894  */
895 struct endpoints
896 {
897 	/** @brief The number of partition endpoints stored. */
898 	unsigned int partition_count;
899 
900 	/** @brief The colors for endpoint 0. */
901 	vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
902 
903 	/** @brief The colors for endpoint 1. */
904 	vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
905 };
906 
907 /**
908  * @brief Data structure storing the color endpoints and weights.
909  */
910 struct endpoints_and_weights
911 {
912 	/** @brief True if all active values in weight_error_scale are the same. */
913 	bool is_constant_weight_error_scale;
914 
915 	/** @brief The color endpoints. */
916 	endpoints ep;
917 
918 	/** @brief The ideal weight for each texel; may be undecimated or decimated. */
919 	ASTCENC_ALIGNAS float weights[BLOCK_MAX_TEXELS];
920 
921 	/** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
922 	ASTCENC_ALIGNAS float weight_error_scale[BLOCK_MAX_TEXELS];
923 };
924 
925 /**
926  * @brief Utility storing estimated errors from choosing particular endpoint encodings.
927  */
928 struct encoding_choice_errors
929 {
930 	/** @brief Error of using LDR RGB-scale instead of complete endpoints. */
931 	float rgb_scale_error;
932 
933 	/** @brief Error of using HDR RGB-scale instead of complete endpoints. */
934 	float rgb_luma_error;
935 
936 	/** @brief Error of using luminance instead of RGB. */
937 	float luminance_error;
938 
939 	/** @brief Error of discarding alpha and using a constant 1.0 alpha. */
940 	float alpha_drop_error;
941 
942 	/** @brief Can we use delta offset encoding? */
943 	bool can_offset_encode;
944 
945 	/** @brief Can we use blue contraction encoding? */
946 	bool can_blue_contract;
947 };
948 
949 /**
950  * @brief Preallocated working buffers, allocated per thread during context creation.
951  */
952 struct ASTCENC_ALIGNAS compression_working_buffers
953 {
954 	/** @brief Ideal endpoints and weights for plane 1. */
955 	endpoints_and_weights ei1;
956 
957 	/** @brief Ideal endpoints and weights for plane 2. */
958 	endpoints_and_weights ei2;
959 
960 	/**
961 	 * @brief Decimated ideal weight values in the ~0-1 range.
962 	 *
963 	 * Note that values can be slightly below zero or higher than one due to
964 	 * endpoint extents being inside the ideal color representation.
965 	 *
966 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
967 	 */
968 	ASTCENC_ALIGNAS float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
969 
970 	/**
971 	 * @brief Decimated quantized weight values in the unquantized 0-64 range.
972 	 *
973 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
974 	 */
975 	uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
976 
977 	/** @brief Error of the best encoding combination for each block mode. */
978 	ASTCENC_ALIGNAS float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
979 
980 	/** @brief The best color quant for each block mode. */
981 	uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
982 
983 	/** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
984 	uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
985 
986 	/** @brief The best endpoint format for each partition. */
987 	uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
988 
989 	/** @brief The total bit storage needed for quantized weights for each block mode. */
990 	int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
991 
992 	/** @brief The cumulative error for quantized weights for each block mode. */
993 	float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
994 
995 	/** @brief The low weight value in plane 1 for each block mode. */
996 	float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
997 
998 	/** @brief The high weight value in plane 1 for each block mode. */
999 	float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
1000 
1001 	/** @brief The low weight value in plane 1 for each quant level and decimation mode. */
1002 	float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1003 
1004 	/** @brief The high weight value in plane 1 for each quant level and decimation mode. */
1005 	float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1006 
1007 	/** @brief The low weight value in plane 2 for each block mode. */
1008 	float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
1009 
1010 	/** @brief The high weight value in plane 2 for each block mode. */
1011 	float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
1012 
1013 	/** @brief The low weight value in plane 2 for each quant level and decimation mode. */
1014 	float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1015 
1016 	/** @brief The high weight value in plane 2 for each quant level and decimation mode. */
1017 	float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1018 };
1019 
1020 struct dt_init_working_buffers
1021 {
1022 	uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
1023 	uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
1024 	uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
1025 
1026 	uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
1027 	uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1028 	uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1029 };
1030 
1031 /**
1032  * @brief Weight quantization transfer table.
1033  *
1034  * ASTC can store texel weights at many quantization levels, so for performance we store essential
1035  * information about each level as a precomputed data structure. Unquantized weights are integers
1036  * or floats in the range [0, 64].
1037  *
1038  * This structure provides a table, used to estimate the closest quantized weight for a given
1039  * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1040  * quantized weight, a previous-value and a next-value.
1041 */
1042 struct quant_and_transfer_table
1043 {
1044 	/** @brief The unscrambled unquantized value. */
1045 	uint8_t quant_to_unquant[32];
1046 
1047 	/** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1048 	uint8_t scramble_map[32];
1049 
1050 	/** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1051 	uint8_t unscramble_and_unquant_map[32];
1052 
1053 	/**
1054 	 * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1055 	 *  * bits 7:0 = previous-index, unquantized
1056 	 *  * bits 15:8 = next-index, unquantized
1057 	 */
1058 	uint16_t prev_next_values[65];
1059 };
1060 
1061 /** @brief The precomputed quant and transfer table. */
1062 extern const quant_and_transfer_table quant_and_xfer_tables[12];
1063 
1064 /** @brief The block is an error block, and will return error color or NaN. */
1065 static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1066 
1067 /** @brief The block is a constant color block using FP16 colors. */
1068 static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1069 
1070 /** @brief The block is a constant color block using UNORM16 colors. */
1071 static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1072 
1073 /** @brief The block is a normal non-constant color block. */
1074 static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1075 
1076 /**
1077  * @brief A symbolic representation of a compressed block.
1078  *
1079  * The symbolic representation stores the unpacked content of a single
1080  * physical compressed block, in a form which is much easier to access for
1081  * the rest of the compressor code.
1082  */
1083 struct symbolic_compressed_block
1084 {
1085 	/** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1086 	uint8_t block_type;
1087 
1088 	/** @brief The number of partitions; valid for @c NONCONST blocks. */
1089 	uint8_t partition_count;
1090 
1091 	/** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1092 	uint8_t color_formats_matched;
1093 
1094 	/** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1095 	int8_t plane2_component;
1096 
1097 	/** @brief The block mode; valid for @c NONCONST blocks. */
1098 	uint16_t block_mode;
1099 
1100 	/** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1101 	uint16_t partition_index;
1102 
1103 	/** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1104 	uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1105 
1106 	/** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1107 	quant_method quant_mode;
1108 
1109 	/** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1110 	float errorval;
1111 
1112 	// We can't have both of these at the same time
1113 	union {
1114 		/** @brief The constant color; valid for @c CONST blocks. */
1115 		int constant_color[BLOCK_MAX_COMPONENTS];
1116 
1117 		/** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1118 		uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1119 	};
1120 
1121 	/** @brief The quantized and decimated weights.
1122 	 *
1123 	 * Weights are stored in the 0-64 unpacked range allowing them to be used
1124 	 * directly in encoding passes without per-use unpacking. Packing happens
1125 	 * when converting to/from the physical bitstream encoding.
1126 	 *
1127 	 * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1128 	 */
1129 	uint8_t weights[BLOCK_MAX_WEIGHTS];
1130 
1131 	/**
1132 	 * @brief Get the weight quantization used by this block mode.
1133 	 *
1134 	 * @return The quantization level.
1135 	 */
get_color_quant_modesymbolic_compressed_block1136 	inline quant_method get_color_quant_mode() const
1137 	{
1138 		return this->quant_mode;
1139 	}
1140 	QualityProfile privateProfile;
1141 };
1142 
1143 /**
1144  * @brief Parameter structure for @c compute_pixel_region_variance().
1145  *
1146  * This function takes a structure to avoid spilling arguments to the stack on every function
1147  * invocation, as there are a lot of parameters.
1148  */
1149 struct pixel_region_args
1150 {
1151 	/** @brief The image to analyze. */
1152 	const astcenc_image* img;
1153 
1154 	/** @brief The component swizzle pattern. */
1155 	astcenc_swizzle swz;
1156 
1157 	/** @brief Should the algorithm bother with Z axis processing? */
1158 	bool have_z;
1159 
1160 	/** @brief The kernel radius for alpha processing. */
1161 	unsigned int alpha_kernel_radius;
1162 
1163 	/** @brief The X dimension of the working data to process. */
1164 	unsigned int size_x;
1165 
1166 	/** @brief The Y dimension of the working data to process. */
1167 	unsigned int size_y;
1168 
1169 	/** @brief The Z dimension of the working data to process. */
1170 	unsigned int size_z;
1171 
1172 	/** @brief The X position of first src and dst data in the data set. */
1173 	unsigned int offset_x;
1174 
1175 	/** @brief The Y position of first src and dst data in the data set. */
1176 	unsigned int offset_y;
1177 
1178 	/** @brief The Z position of first src and dst data in the data set. */
1179 	unsigned int offset_z;
1180 
1181 	/** @brief The working memory buffer. */
1182 	vfloat4 *work_memory;
1183 };
1184 
1185 /**
1186  * @brief Parameter structure for @c compute_averages_proc().
1187  */
1188 struct avg_args
1189 {
1190 	/** @brief The arguments for the nested variance computation. */
1191 	pixel_region_args arg;
1192 
1193 	/** @brief The image Stride dimensions. */
1194 	unsigned int img_size_stride;
1195 
1196 	/** @brief The image X dimensions. */
1197 	unsigned int img_size_x;
1198 
1199 	/** @brief The image Y dimensions. */
1200 	unsigned int img_size_y;
1201 
1202 	/** @brief The image Z dimensions. */
1203 	unsigned int img_size_z;
1204 
1205 	/** @brief The maximum working block dimensions in X and Y dimensions. */
1206 	unsigned int blk_size_xy;
1207 
1208 	/** @brief The maximum working block dimensions in Z dimensions. */
1209 	unsigned int blk_size_z;
1210 
1211 	/** @brief The working block memory size. */
1212 	unsigned int work_memory_size;
1213 };
1214 
1215 #if defined(ASTCENC_DIAGNOSTICS)
1216 /* See astcenc_diagnostic_trace header for details. */
1217 class TraceLog;
1218 #endif
1219 
1220 /**
1221  * @brief The astcenc compression context.
1222  */
1223 struct astcenc_contexti
1224 {
1225 	/** @brief The configuration this context was created with. */
1226 	astcenc_config config;
1227 
1228 	/** @brief The thread count supported by this context. */
1229 	unsigned int thread_count;
1230 
1231 	/** @brief The block size descriptor this context was created with. */
1232 	block_size_descriptor* bsd;
1233 
1234 	/*
1235 	 * Fields below here are not needed in a decompress-only build, but some remain as they are
1236 	 * small and it avoids littering the code with #ifdefs. The most significant contributors to
1237 	 * large structure size are omitted.
1238 	 */
1239 
1240 	/** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1241 	float* input_alpha_averages;
1242 
1243 	/** @brief The scratch working buffers, one per thread (see @c thread_count). */
1244 	compression_working_buffers* working_buffers;
1245 
1246 #if !defined(ASTCENC_DECOMPRESS_ONLY)
1247 	/** @brief The pixel region and variance worker arguments. */
1248 	avg_args avg_preprocess_args;
1249 #endif
1250 
1251 #if defined(ASTCENC_DIAGNOSTICS)
1252 	/**
1253 	 * @brief The diagnostic trace logger.
1254 	 *
1255 	 * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1256 	 * here so we have a reference to close the file at the end of the capture.
1257 	 */
1258 	TraceLog* trace_log;
1259 #endif
1260 };
1261 
1262 /* ============================================================================
1263   Functionality for managing block sizes and partition tables.
1264 ============================================================================ */
1265 
1266 /**
1267  * @brief Populate the block size descriptor for the target block size.
1268  *
1269  * This will also initialize the partition table metadata, which is stored as part of the BSD
1270  * structure.
1271  *
1272  * @param      x_texels                 The number of texels in the block X dimension.
1273  * @param      y_texels                 The number of texels in the block Y dimension.
1274  * @param      z_texels                 The number of texels in the block Z dimension.
1275  * @param      can_omit_modes           Can we discard modes and partitionings that astcenc won't use?
1276  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1277  * @param      mode_cutoff              The block mode percentile cutoff [0-1].
1278  * @param[out] bsd                      The descriptor to initialize.
1279  */
1280 #ifdef ASTC_CUSTOMIZED_ENABLE
1281 bool init_block_size_descriptor(
1282 #else
1283 void init_block_size_descriptor(
1284 #endif
1285 	QualityProfile privateProfile,
1286 	unsigned int x_texels,
1287 	unsigned int y_texels,
1288 	unsigned int z_texels,
1289 	bool can_omit_modes,
1290 	unsigned int partition_count_cutoff,
1291 	float mode_cutoff,
1292 	block_size_descriptor& bsd);
1293 
1294 /**
1295  * @brief Populate the partition tables for the target block size.
1296  *
1297  * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1298  * calling this function.
1299  *
1300  * @param[out] bsd                      The block size information structure to populate.
1301  * @param      can_omit_partitionings   True if we can we drop partitionings that astcenc won't use.
1302  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1303  */
1304 void init_partition_tables(
1305 	block_size_descriptor& bsd,
1306 	bool can_omit_partitionings,
1307 	unsigned int partition_count_cutoff);
1308 
1309 /**
1310  * @brief Get the percentile table for 2D block modes.
1311  *
1312  * This is an empirically determined prioritization of which block modes to use in the search in
1313  * terms of their centile (lower centiles = more useful).
1314  *
1315  * Returns a dynamically allocated array; caller must free with delete[].
1316  *
1317  * @param xdim The block x size.
1318  * @param ydim The block y size.
1319  *
1320  * @return The unpacked table.
1321  */
1322 const float* get_2d_percentile_table(
1323 	unsigned int xdim,
1324 	unsigned int ydim);
1325 
1326 /**
1327  * @brief Query if a 2D block size is legal.
1328  *
1329  * @return True if legal, false otherwise.
1330  */
1331 bool is_legal_2d_block_size(
1332 	unsigned int xdim,
1333 	unsigned int ydim);
1334 
1335 /**
1336  * @brief Query if a 3D block size is legal.
1337  *
1338  * @return True if legal, false otherwise.
1339  */
1340 bool is_legal_3d_block_size(
1341 	unsigned int xdim,
1342 	unsigned int ydim,
1343 	unsigned int zdim);
1344 
1345 /* ============================================================================
1346   Functionality for managing BISE quantization and unquantization.
1347 ============================================================================ */
1348 
1349 /**
1350  * @brief The precomputed table for quantizing color values.
1351  *
1352  * Converts unquant value in 0-255 range into quant value in 0-255 range.
1353  * No BISE scrambling is applied at this stage.
1354  *
1355  * The BISE encoding results in ties where available quant<256> values are
1356  * equidistant the available quant<BISE> values. This table stores two values
1357  * for each input - one for use with a negative residual, and one for use with
1358  * a positive residual.
1359  *
1360  * Indexed by [quant_mode - 4][data_value * 2 + residual].
1361  */
1362 extern const uint8_t color_unquant_to_uquant_tables[17][512];
1363 
1364 /**
1365  * @brief The precomputed table for packing quantized color values.
1366  *
1367  * Converts quant value in 0-255 range into packed quant value in 0-N range,
1368  * with BISE scrambling applied.
1369  *
1370  * Indexed by [quant_mode - 4][data_value].
1371  */
1372 extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256];
1373 
1374 /**
1375  * @brief The precomputed table for unpacking color values.
1376  *
1377  * Converts quant value in 0-N range into unpacked value in 0-255 range,
1378  * with BISE unscrambling applied.
1379  *
1380  * Indexed by [quant_mode - 4][data_value].
1381  */
1382 extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17];
1383 
1384 /**
1385  * @brief The precomputed quant mode storage table.
1386  *
1387  * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1388  * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1389  * ever fit in the supplied storage size.
1390  */
1391 extern const int8_t quant_mode_table[10][128];
1392 
1393 /**
1394  * @brief Encode a packed string using BISE.
1395  *
1396  * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1397  * start storing strings in a block at arbitrary bit offsets in the encoded data.
1398  *
1399  * @param         quant_level       The BISE alphabet size.
1400  * @param         character_count   The number of characters in the string.
1401  * @param         input_data        The unpacked string, one byte per character.
1402  * @param[in,out] output_data       The output packed string.
1403  * @param         bit_offset        The starting offset in the output storage.
1404  */
1405 void encode_ise(
1406 	quant_method quant_level,
1407 	unsigned int character_count,
1408 	const uint8_t* input_data,
1409 	uint8_t* output_data,
1410 	unsigned int bit_offset);
1411 
1412 /**
1413  * @brief Decode a packed string using BISE.
1414  *
1415  * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1416  * strings at arbitrary bit offsets in the encoded data.
1417  *
1418  * @param         quant_level       The BISE alphabet size.
1419  * @param         character_count   The number of characters in the string.
1420  * @param         input_data        The packed string.
1421  * @param[in,out] output_data       The output storage, one byte per character.
1422  * @param         bit_offset        The starting offset in the output storage.
1423  */
1424 void decode_ise(
1425 	quant_method quant_level,
1426 	unsigned int character_count,
1427 	const uint8_t* input_data,
1428 	uint8_t* output_data,
1429 	unsigned int bit_offset);
1430 
1431 /**
1432  * @brief Return the number of bits needed to encode an ISE sequence.
1433  *
1434  * This implementation assumes that the @c quant level is untrusted, given it may come from random
1435  * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1436  *
1437  * @param character_count   The number of items in the sequence.
1438  * @param quant_level       The desired quantization level.
1439  *
1440  * @return The number of bits needed to encode the BISE string.
1441  */
1442 unsigned int get_ise_sequence_bitcount(
1443 	unsigned int character_count,
1444 	quant_method quant_level);
1445 
1446 /* ============================================================================
1447   Functionality for managing color partitioning.
1448 ============================================================================ */
1449 
1450 /**
1451  * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1452  *
1453  * @param      pi           The partition info for the current trial.
1454  * @param      blk          The image block color data to be compressed.
1455  * @param      component1   The first component included in the analysis.
1456  * @param      component2   The second component included in the analysis.
1457  * @param[out] pm           The output partition metrics.
1458  *                          - Only pi.partition_count array entries actually get initialized.
1459  *                          - Direction vectors @c pm.dir are not normalized.
1460  */
1461 void compute_avgs_and_dirs_2_comp(
1462 	const partition_info& pi,
1463 	const image_block& blk,
1464 	unsigned int component1,
1465 	unsigned int component2,
1466 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1467 
1468 /**
1469  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1470  *
1471  * @param      pi                  The partition info for the current trial.
1472  * @param      blk                 The image block color data to be compressed.
1473  * @param      omitted_component   The component excluded from the analysis.
1474  * @param[out] pm                  The output partition metrics.
1475  *                                 - Only pi.partition_count array entries actually get initialized.
1476  *                                 - Direction vectors @c pm.dir are not normalized.
1477  */
1478 void compute_avgs_and_dirs_3_comp(
1479 	const partition_info& pi,
1480 	const image_block& blk,
1481 	unsigned int omitted_component,
1482 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1483 
1484 /**
1485  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1486  *
1487  * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1488  * always alpha, a common case during partition search.
1489  *
1490  * @param      pi    The partition info for the current trial.
1491  * @param      blk   The image block color data to be compressed.
1492  * @param[out] pm    The output partition metrics.
1493  *                   - Only pi.partition_count array entries actually get initialized.
1494  *                   - Direction vectors @c pm.dir are not normalized.
1495  */
1496 void compute_avgs_and_dirs_3_comp_rgb(
1497 	const partition_info& pi,
1498 	const image_block& blk,
1499 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1500 
1501 /**
1502  * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1503  *
1504  * @param      pi    The partition info for the current trial.
1505  * @param      blk   The image block color data to be compressed.
1506  * @param[out] pm    The output partition metrics.
1507  *                   - Only pi.partition_count array entries actually get initialized.
1508  *                   - Direction vectors @c pm.dir are not normalized.
1509  */
1510 void compute_avgs_and_dirs_4_comp(
1511 	const partition_info& pi,
1512 	const image_block& blk,
1513 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1514 
1515 /**
1516  * @brief Compute the RGB error for uncorrelated and same chroma projections.
1517  *
1518  * The output of compute averages and dirs is post processed to define two lines, both of which go
1519  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1520  * is used to assess the error from using an uncorrelated color representation. The other line goes
1521  * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1522  *
1523  * This function computes the squared error when using these two representations.
1524  *
1525  * @param         pi            The partition info for the current trial.
1526  * @param         blk           The image block color data to be compressed.
1527  * @param[in,out] plines        Processed line inputs, and line length outputs.
1528  * @param[out]    uncor_error   The cumulative error for using the uncorrelated line.
1529  * @param[out]    samec_error   The cumulative error for using the same chroma line.
1530  */
1531 void compute_error_squared_rgb(
1532 	const partition_info& pi,
1533 	const image_block& blk,
1534 	partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1535 	float& uncor_error,
1536 	float& samec_error);
1537 
1538 /**
1539  * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1540  *
1541  * The output of compute averages and dirs is post processed to define two lines, both of which go
1542  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1543  * is used to assess the error from using an uncorrelated color representation. The other line goes
1544  * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1545  *
1546  * This function computes the squared error when using these two representations.
1547  *
1548  * @param      pi              The partition info for the current trial.
1549  * @param      blk             The image block color data to be compressed.
1550  * @param      uncor_plines    Processed uncorrelated partition lines for each partition.
1551  * @param      samec_plines    Processed same chroma partition lines for each partition.
1552  * @param[out] line_lengths    The length of each components deviation from the line.
1553  * @param[out] uncor_error     The cumulative error for using the uncorrelated line.
1554  * @param[out] samec_error     The cumulative error for using the same chroma line.
1555  */
1556 void compute_error_squared_rgba(
1557 	const partition_info& pi,
1558 	const image_block& blk,
1559 	const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1560 	const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1561 	float line_lengths[BLOCK_MAX_PARTITIONS],
1562 	float& uncor_error,
1563 	float& samec_error);
1564 
1565 /**
1566  * @brief Find the best set of partitions to trial for a given block.
1567  *
1568  * On return the @c best_partitions list will contain the two best partition
1569  * candidates; one assuming data has uncorrelated chroma and one assuming the
1570  * data has correlated chroma. The best candidate is returned first in the list.
1571  *
1572  * @param      bsd                      The block size information.
1573  * @param      blk                      The image block color data to compress.
1574  * @param      partition_count          The number of partitions in the block.
1575  * @param      partition_search_limit   The number of candidate partition encodings to trial.
1576  * @param[out] best_partitions          The best partition candidates.
1577  * @param      requested_candidates     The number of requested partitionings. May return fewer if
1578  *                                      candidates are not available.
1579  *
1580  * @return The actual number of candidates returned.
1581  */
1582 unsigned int find_best_partition_candidates(
1583 	const block_size_descriptor& bsd,
1584 	const image_block& blk,
1585 	unsigned int partition_count,
1586 	unsigned int partition_search_limit,
1587 	unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
1588 	unsigned int requested_candidates);
1589 
1590 /* ============================================================================
1591   Functionality for managing images and image related data.
1592 ============================================================================ */
1593 
1594 /**
1595  * @brief Get a vector mask indicating lanes decompressing into a UNORM8 value.
1596  *
1597  * @param decode_mode   The color profile for LDR_SRGB settings.
1598  * @param blk           The image block for output image bitness settings.
1599  *
1600  * @return The component mask vector.
1601  */
get_u8_component_mask(astcenc_profile decode_mode,const image_block & blk)1602 static inline vmask4 get_u8_component_mask(
1603 	astcenc_profile decode_mode,
1604 	const image_block& blk
1605 ) {
1606 	vmask4 u8_mask(false);
1607 	// Decode mode writing to a unorm8 output value
1608 	if (blk.decode_unorm8)
1609 	{
1610 		u8_mask = vmask4(true);
1611 	}
1612 	// SRGB writing to a unorm8 RGB value
1613 	else if (decode_mode == ASTCENC_PRF_LDR_SRGB)
1614 	{
1615 		u8_mask = vmask4(true, true, true, false);
1616 	}
1617 
1618 	return u8_mask;
1619 }
1620 
1621 /**
1622  * @brief Setup computation of regional averages in an image.
1623  *
1624  * This must be done by only a single thread per image, before any thread calls
1625  * @c compute_averages().
1626  *
1627  * Results are written back into @c img->input_alpha_averages.
1628  *
1629  * @param      img                   The input image data, also holds output data.
1630  * @param      alpha_kernel_radius   The kernel radius (in pixels) for alpha mods.
1631  * @param      swz                   Input data component swizzle.
1632  * @param[out] ag                    The average variance arguments to init.
1633  *
1634  * @return The number of tasks in the processing stage.
1635  */
1636 unsigned int init_compute_averages(
1637 	const astcenc_image& img,
1638 	unsigned int alpha_kernel_radius,
1639 	const astcenc_swizzle& swz,
1640 	avg_args& ag);
1641 
1642 /**
1643  * @brief Compute averages for a pixel region.
1644  *
1645  * The routine computes both in a single pass, using a summed-area table to decouple the running
1646  * time from the averaging/variance kernel size.
1647  *
1648  * @param[out] ctx   The compressor context storing the output data.
1649  * @param      arg   The input parameter structure.
1650  */
1651 void compute_pixel_region_variance(
1652 	astcenc_contexti& ctx,
1653 	const pixel_region_args& arg);
1654 /**
1655  * @brief Load a single image block from the input image.
1656  *
1657  * @param      decode_mode   The compression color profile.
1658  * @param      img           The input image data.
1659  * @param[out] blk           The image block to populate.
1660  * @param      bsd           The block size information.
1661  * @param      xpos          The block X coordinate in the input image.
1662  * @param      ypos          The block Y coordinate in the input image.
1663  * @param      zpos          The block Z coordinate in the input image.
1664  * @param      swz           The swizzle to apply on load.
1665  */
1666 void load_image_block(
1667 	astcenc_profile decode_mode,
1668 	const astcenc_image& img,
1669 	image_block& blk,
1670 	const block_size_descriptor& bsd,
1671 	unsigned int xpos,
1672 	unsigned int ypos,
1673 	unsigned int zpos,
1674 	const astcenc_swizzle& swz);
1675 
1676 /**
1677  * @brief Load a single image block from the input image.
1678  *
1679  * This specialized variant can be used only if the block is 2D LDR U8 data,
1680  * with no swizzle.
1681  *
1682  * @param      decode_mode   The compression color profile.
1683  * @param      img           The input image data.
1684  * @param[out] blk           The image block to populate.
1685  * @param      bsd           The block size information.
1686  * @param      xpos          The block X coordinate in the input image.
1687  * @param      ypos          The block Y coordinate in the input image.
1688  * @param      zpos          The block Z coordinate in the input image.
1689  * @param      swz           The swizzle to apply on load.
1690  */
1691 void load_image_block_fast_ldr(
1692 	astcenc_profile decode_mode,
1693 	const astcenc_image& img,
1694 	image_block& blk,
1695 	const block_size_descriptor& bsd,
1696 	unsigned int xpos,
1697 	unsigned int ypos,
1698 	unsigned int zpos,
1699 	const astcenc_swizzle& swz);
1700 
1701 /**
1702  * @brief Store a single image block to the output image.
1703  *
1704  * @param[out] img    The output image data.
1705  * @param      blk    The image block to export.
1706  * @param      bsd    The block size information.
1707  * @param      xpos   The block X coordinate in the input image.
1708  * @param      ypos   The block Y coordinate in the input image.
1709  * @param      zpos   The block Z coordinate in the input image.
1710  * @param      swz    The swizzle to apply on store.
1711  */
1712 void store_image_block(
1713 	astcenc_image& img,
1714 	const image_block& blk,
1715 	const block_size_descriptor& bsd,
1716 	unsigned int xpos,
1717 	unsigned int ypos,
1718 	unsigned int zpos,
1719 	const astcenc_swizzle& swz);
1720 
1721 /* ============================================================================
1722   Functionality for computing endpoint colors and weights for a block.
1723 ============================================================================ */
1724 
1725 /**
1726  * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1727  *
1728  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1729  * defines an exact position on the partition color line. We can then use these to assess the error
1730  * introduced by removing and quantizing the weight grid.
1731  *
1732  * @param      blk   The image block color data to compress.
1733  * @param      pi    The partition info for the current trial.
1734  * @param[out] ei    The endpoint and weight values.
1735  */
1736 void compute_ideal_colors_and_weights_1plane(
1737 	const image_block& blk,
1738 	const partition_info& pi,
1739 	endpoints_and_weights& ei);
1740 
1741 /**
1742  * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1743  *
1744  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1745  * defines an exact position on the partition color line. We can then use these to assess the error
1746  * introduced by removing and quantizing the weight grid.
1747  *
1748  * @param      bsd                The block size information.
1749  * @param      blk                The image block color data to compress.
1750  * @param      plane2_component   The component assigned to plane 2.
1751  * @param[out] ei1                The endpoint and weight values for plane 1.
1752  * @param[out] ei2                The endpoint and weight values for plane 2.
1753  */
1754 void compute_ideal_colors_and_weights_2planes(
1755 	const block_size_descriptor& bsd,
1756 	const image_block& blk,
1757 	unsigned int plane2_component,
1758 	endpoints_and_weights& ei1,
1759 	endpoints_and_weights& ei2);
1760 
1761 /**
1762  * @brief Compute the optimal unquantized weights for a decimation table.
1763  *
1764  * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1765  * ideal weights for the case where weights exist only for some texels. We do this with a
1766  * steepest-descent grid solver which works as follows:
1767  *
1768  * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1769  * Then, set step size to <some initial value> and attempt one step towards the original ideal
1770  * weight if it helps to reduce error.
1771  *
1772  * @param      ei                       The non-decimated endpoints and weights.
1773  * @param      di                       The selected weight decimation.
1774  * @param[out] dec_weight_ideal_value   The ideal values for the decimated weight set.
1775  */
1776 void compute_ideal_weights_for_decimation(
1777 	const endpoints_and_weights& ei,
1778 	const decimation_info& di,
1779 	float* dec_weight_ideal_value);
1780 
1781 /**
1782  * @brief Compute the optimal quantized weights for a decimation table.
1783  *
1784  * We test the two closest weight indices in the allowed quantization range and keep the weight that
1785  * is the closest match.
1786  *
1787  * @param      di                        The selected weight decimation.
1788  * @param      low_bound                 The lowest weight allowed.
1789  * @param      high_bound                The highest weight allowed.
1790  * @param      dec_weight_ideal_value    The ideal weight set.
1791  * @param[out] dec_weight_quant_uvalue   The output quantized weight as a float.
1792  * @param[out] dec_weight_uquant         The output quantized weight as encoded int.
1793  * @param      quant_level               The desired weight quant level.
1794  */
1795 void compute_quantized_weights_for_decimation(
1796 	const decimation_info& di,
1797 	float low_bound,
1798 	float high_bound,
1799 	const float* dec_weight_ideal_value,
1800 	float* dec_weight_quant_uvalue,
1801 	uint8_t* dec_weight_uquant,
1802 	quant_method quant_level);
1803 
1804 /**
1805  * @brief Compute the error of a decimated weight set for 1 plane.
1806  *
1807  * After computing ideal weights for the case with one weight per texel, we want to compute the
1808  * error for decimated weight grids where weights are stored at a lower resolution. This function
1809  * computes the error of the reduced grid, compared to the full grid.
1810  *
1811  * @param eai                       The ideal weights for the full grid.
1812  * @param di                        The selected weight decimation.
1813  * @param dec_weight_quant_uvalue   The quantized weights for the decimated grid.
1814  *
1815  * @return The accumulated error.
1816  */
1817 float compute_error_of_weight_set_1plane(
1818 	const endpoints_and_weights& eai,
1819 	const decimation_info& di,
1820 	const float* dec_weight_quant_uvalue);
1821 
1822 /**
1823  * @brief Compute the error of a decimated weight set for 2 planes.
1824  *
1825  * After computing ideal weights for the case with one weight per texel, we want to compute the
1826  * error for decimated weight grids where weights are stored at a lower resolution. This function
1827  * computes the error of the reduced grid, compared to the full grid.
1828  *
1829  * @param eai1                             The ideal weights for the full grid and plane 1.
1830  * @param eai2                             The ideal weights for the full grid and plane 2.
1831  * @param di                               The selected weight decimation.
1832  * @param dec_weight_quant_uvalue_plane1   The quantized weights for the decimated grid plane 1.
1833  * @param dec_weight_quant_uvalue_plane2   The quantized weights for the decimated grid plane 2.
1834  *
1835  * @return The accumulated error.
1836  */
1837 float compute_error_of_weight_set_2planes(
1838 	const endpoints_and_weights& eai1,
1839 	const endpoints_and_weights& eai2,
1840 	const decimation_info& di,
1841 	const float* dec_weight_quant_uvalue_plane1,
1842 	const float* dec_weight_quant_uvalue_plane2);
1843 
1844 /**
1845  * @brief Pack a single pair of color endpoints as effectively as possible.
1846  *
1847  * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1848  * delta-based representation. It will report back the format variant it actually used.
1849  *
1850  * @param      color0        The input unquantized color0 endpoint for absolute endpoint pairs.
1851  * @param      color1        The input unquantized color1 endpoint for absolute endpoint pairs.
1852  * @param      rgbs_color    The input unquantized RGBS variant endpoint for same chroma endpoints.
1853  * @param      rgbo_color    The input unquantized RGBS variant endpoint for HDR endpoints.
1854  * @param      format        The desired base format.
1855  * @param[out] output        The output storage for the quantized colors/
1856  * @param      quant_level   The quantization level requested.
1857  *
1858  * @return The actual endpoint mode used.
1859  */
1860 uint8_t pack_color_endpoints(
1861 	QualityProfile privateProfile,
1862 	vfloat4 color0,
1863 	vfloat4 color1,
1864 	vfloat4 rgbs_color,
1865 	vfloat4 rgbo_color,
1866 	int format,
1867 	uint8_t* output,
1868 	quant_method quant_level);
1869 
1870 /**
1871  * @brief Unpack a single pair of encoded endpoints.
1872  *
1873  * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions.
1874  *
1875  * @param      decode_mode   The decode mode (LDR, HDR, etc).
1876  * @param      format        The color endpoint mode used.
1877  * @param      input         The raw array of encoded input integers. The length of this array
1878  *                           depends on @c format; it can be safely assumed to be large enough.
1879  * @param[out] rgb_hdr       Is the endpoint using HDR for the RGB channels?
1880  * @param[out] alpha_hdr     Is the endpoint using HDR for the A channel?
1881  * @param[out] output0       The output color for endpoint 0.
1882  * @param[out] output1       The output color for endpoint 1.
1883  */
1884 void unpack_color_endpoints(
1885 	astcenc_profile decode_mode,
1886 	int format,
1887 	const uint8_t* input,
1888 	bool& rgb_hdr,
1889 	bool& alpha_hdr,
1890 	vint4& output0,
1891 	vint4& output1);
1892 
1893 /**
1894  * @brief Unpack an LDR RGBA color that uses delta encoding.
1895  *
1896  * @param      input0    The packed endpoint 0 color.
1897  * @param      input1    The packed endpoint 1 color deltas.
1898  * @param[out] output0   The unpacked endpoint 0 color.
1899  * @param[out] output1   The unpacked endpoint 1 color.
1900  */
1901 void rgba_delta_unpack(
1902 	vint4 input0,
1903 	vint4 input1,
1904 	vint4& output0,
1905 	vint4& output1);
1906 
1907 /**
1908  * @brief Unpack an LDR RGBA color that uses direct encoding.
1909  *
1910  * @param      input0    The packed endpoint 0 color.
1911  * @param      input1    The packed endpoint 1 color.
1912  * @param[out] output0   The unpacked endpoint 0 color.
1913  * @param[out] output1   The unpacked endpoint 1 color.
1914  */
1915 void rgba_unpack(
1916 	vint4 input0,
1917 	vint4 input1,
1918 	vint4& output0,
1919 	vint4& output1);
1920 
1921 /**
1922  * @brief Unpack a set of quantized and decimated weights.
1923  *
1924  * TODO: Can we skip this for non-decimated weights now that the @c scb is
1925  * already storing unquantized weights?
1926  *
1927  * @param      bsd              The block size information.
1928  * @param      scb              The symbolic compressed encoding.
1929  * @param      di               The weight grid decimation table.
1930  * @param      is_dual_plane    @c true if this is a dual plane block, @c false otherwise.
1931  * @param[out] weights_plane1   The output array for storing the plane 1 weights.
1932  * @param[out] weights_plane2   The output array for storing the plane 2 weights.
1933  */
1934 void unpack_weights(
1935 	const block_size_descriptor& bsd,
1936 	const symbolic_compressed_block& scb,
1937 	const decimation_info& di,
1938 	bool is_dual_plane,
1939 	int weights_plane1[BLOCK_MAX_TEXELS],
1940 	int weights_plane2[BLOCK_MAX_TEXELS]);
1941 
1942 /**
1943  * @brief Identify, for each mode, which set of color endpoint produces the best result.
1944  *
1945  * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1946  * combination for each. The modified quantization level can be used when all formats are the same,
1947  * as this frees up two additional bits of storage.
1948  *
1949  * @param      pi                            The partition info for the current trial.
1950  * @param      blk                           The image block color data to compress.
1951  * @param      ep                            The ideal endpoints.
1952  * @param      qwt_bitcounts                 Bit counts for different quantization methods.
1953  * @param      qwt_errors                    Errors for different quantization methods.
1954  * @param      tune_candidate_limit          The max number of candidates to return, may be less.
1955  * @param      start_block_mode              The first block mode to inspect.
1956  * @param      end_block_mode                The last block mode to inspect.
1957  * @param[out] partition_format_specifiers   The best formats per partition.
1958  * @param[out] block_mode                    The best packed block mode indexes.
1959  * @param[out] quant_level                   The best color quant level.
1960  * @param[out] quant_level_mod               The best color quant level if endpoints are the same.
1961  * @param[out] tmpbuf                        Preallocated scratch buffers for the compressor.
1962  *
1963  * @return The actual number of candidate matches returned.
1964  */
1965 unsigned int compute_ideal_endpoint_formats(
1966 	QualityProfile privateProfile,
1967 	const partition_info& pi,
1968 	const image_block& blk,
1969 	const endpoints& ep,
1970 	const int8_t* qwt_bitcounts,
1971 	const float* qwt_errors,
1972 	unsigned int tune_candidate_limit,
1973 	unsigned int start_block_mode,
1974 	unsigned int end_block_mode,
1975 	uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
1976 	int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
1977 	quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
1978 	quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
1979 	compression_working_buffers& tmpbuf);
1980 
1981 /**
1982  * @brief For a given 1 plane weight set recompute the endpoint colors.
1983  *
1984  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1985  * recompute the ideal colors for a specific weight set.
1986  *
1987  * @param         blk                  The image block color data to compress.
1988  * @param         pi                   The partition info for the current trial.
1989  * @param         di                   The weight grid decimation table.
1990  * @param         dec_weights_uquant   The quantized weight set.
1991  * @param[in,out] ep                   The color endpoints (modifed in place).
1992  * @param[out]    rgbs_vectors         The RGB+scale vectors for LDR blocks.
1993  * @param[out]    rgbo_vectors         The RGB+offset vectors for HDR blocks.
1994  */
1995 void recompute_ideal_colors_1plane(
1996 	const image_block& blk,
1997 	const partition_info& pi,
1998 	const decimation_info& di,
1999 	const uint8_t* dec_weights_uquant,
2000 	endpoints& ep,
2001 	vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
2002 	vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
2003 
2004 /**
2005  * @brief For a given 2 plane weight set recompute the endpoint colors.
2006  *
2007  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
2008  * recompute the ideal colors for a specific weight set.
2009  *
2010  * @param         blk                         The image block color data to compress.
2011  * @param         bsd                         The block_size descriptor.
2012  * @param         di                          The weight grid decimation table.
2013  * @param         dec_weights_uquant_plane1   The quantized weight set for plane 1.
2014  * @param         dec_weights_uquant_plane2   The quantized weight set for plane 2.
2015  * @param[in,out] ep                          The color endpoints (modifed in place).
2016  * @param[out]    rgbs_vector                 The RGB+scale color for LDR blocks.
2017  * @param[out]    rgbo_vector                 The RGB+offset color for HDR blocks.
2018  * @param         plane2_component            The component assigned to plane 2.
2019  */
2020 void recompute_ideal_colors_2planes(
2021 	const image_block& blk,
2022 	const block_size_descriptor& bsd,
2023 	const decimation_info& di,
2024 	const uint8_t* dec_weights_uquant_plane1,
2025 	const uint8_t* dec_weights_uquant_plane2,
2026 	endpoints& ep,
2027 	vfloat4& rgbs_vector,
2028 	vfloat4& rgbo_vector,
2029 	int plane2_component);
2030 
2031 /**
2032  * @brief Expand the angular tables needed for the alternative to PCA that we use.
2033  */
2034 void prepare_angular_tables();
2035 
2036 /**
2037  * @brief Compute the angular endpoints for one plane for each block mode.
2038  *
2039  * @param      only_always              Only consider block modes that are always enabled.
2040  * @param      bsd                      The block size descriptor for the current trial.
2041  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
2042  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
2043  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
2044  */
2045 void compute_angular_endpoints_1plane(
2046 	QualityProfile privateProfile,
2047 	bool only_always,
2048 	const block_size_descriptor& bsd,
2049 	const float* dec_weight_ideal_value,
2050 	unsigned int max_weight_quant,
2051 	compression_working_buffers& tmpbuf);
2052 
2053 /**
2054  * @brief Compute the angular endpoints for two planes for each block mode.
2055  *
2056  * @param      bsd                      The block size descriptor for the current trial.
2057  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
2058  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
2059  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
2060  */
2061 void compute_angular_endpoints_2planes(
2062 	QualityProfile privateProfile,
2063 	const block_size_descriptor& bsd,
2064 	const float* dec_weight_ideal_value,
2065 	unsigned int max_weight_quant,
2066 	compression_working_buffers& tmpbuf);
2067 
2068 /* ============================================================================
2069   Functionality for high level compression and decompression access.
2070 ============================================================================ */
2071 
2072 /**
2073  * @brief Compress an image block into a physical block.
2074  *
2075  * @param      ctx      The compressor context and configuration.
2076  * @param      blk      The image block color data to compress.
2077  * @param[out] pcb      The physical compressed block output.
2078  * @param[out] tmpbuf   Preallocated scratch buffers for the compressor.
2079  */
2080 void compress_block(
2081 	const astcenc_contexti& ctx,
2082 	const image_block& blk,
2083 	uint8_t pcb[16],
2084 #if QUALITY_CONTROL
2085 	compression_working_buffers& tmpbuf,
2086 	bool calQualityEnable,
2087 	int32_t *mseBlock[RGBA_COM]
2088 #else
2089     compression_working_buffers& tmpbuf
2090 #endif
2091 	);
2092 
2093 /**
2094  * @brief Decompress a symbolic block in to an image block.
2095  *
2096  * @param      decode_mode   The decode mode (LDR, HDR, etc).
2097  * @param      bsd           The block size information.
2098  * @param      xpos          The X coordinate of the block in the overall image.
2099  * @param      ypos          The Y coordinate of the block in the overall image.
2100  * @param      zpos          The Z coordinate of the block in the overall image.
2101  * @param[out] blk           The decompressed image block color data.
2102  */
2103 void decompress_symbolic_block(
2104 	astcenc_profile decode_mode,
2105 	const block_size_descriptor& bsd,
2106 	int xpos,
2107 	int ypos,
2108 	int zpos,
2109 	const symbolic_compressed_block& scb,
2110 	image_block& blk);
2111 
2112 /**
2113  * @brief Compute the error between a symbolic block and the original input data.
2114  *
2115  * This function is specialized for 2 plane and 1 partition search.
2116  *
2117  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2118  *
2119  * @param config   The compressor config.
2120  * @param bsd      The block size information.
2121  * @param scb      The symbolic compressed encoding.
2122  * @param blk      The original image block color data.
2123  *
2124  * @return Returns the computed error, or a negative value if the encoding
2125  *         should be rejected for any reason.
2126  */
2127 float compute_symbolic_block_difference_2plane(
2128 	const astcenc_config& config,
2129 	const block_size_descriptor& bsd,
2130 	const symbolic_compressed_block& scb,
2131 	const image_block& blk);
2132 
2133 /**
2134  * @brief Compute the error between a symbolic block and the original input data.
2135  *
2136  * This function is specialized for 1 plane and N partition search.
2137  *
2138  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2139  *
2140  * @param config   The compressor config.
2141  * @param bsd      The block size information.
2142  * @param scb      The symbolic compressed encoding.
2143  * @param blk      The original image block color data.
2144  *
2145  * @return Returns the computed error, or a negative value if the encoding
2146  *         should be rejected for any reason.
2147  */
2148 float compute_symbolic_block_difference_1plane(
2149 	const astcenc_config& config,
2150 	const block_size_descriptor& bsd,
2151 	const symbolic_compressed_block& scb,
2152 	const image_block& blk);
2153 
2154 /**
2155  * @brief Compute the error between a symbolic block and the original input data.
2156  *
2157  * This function is specialized for 1 plane and 1 partition search.
2158  *
2159  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2160  *
2161  * @param config   The compressor config.
2162  * @param bsd      The block size information.
2163  * @param scb      The symbolic compressed encoding.
2164  * @param blk      The original image block color data.
2165  *
2166  * @return Returns the computed error, or a negative value if the encoding
2167  *         should be rejected for any reason.
2168  */
2169 float compute_symbolic_block_difference_1plane_1partition(
2170 	const astcenc_config& config,
2171 	const block_size_descriptor& bsd,
2172 	const symbolic_compressed_block& scb,
2173 	const image_block& blk);
2174 
2175 /**
2176  * @brief Convert a symbolic representation into a binary physical encoding.
2177  *
2178  * It is assumed that the symbolic encoding is valid and encodable, or
2179  * previously flagged as an error block if an error color it to be encoded.
2180  *
2181  * @param      bsd   The block size information.
2182  * @param      scb   The symbolic representation.
2183  * @param[out] pcb   The physical compressed block output.
2184  */
2185 void symbolic_to_physical(
2186 	const block_size_descriptor& bsd,
2187 	const symbolic_compressed_block& scb,
2188 	uint8_t pcb[16]);
2189 
2190 /**
2191  * @brief Convert a binary physical encoding into a symbolic representation.
2192  *
2193  * This function can cope with arbitrary input data; output blocks will be
2194  * flagged as an error block if the encoding is invalid.
2195  *
2196  * @param      bsd   The block size information.
2197  * @param      pcb   The physical compresesd block input.
2198  * @param[out] scb   The output symbolic representation.
2199  */
2200 void physical_to_symbolic(
2201 	const block_size_descriptor& bsd,
2202 	const uint8_t pcb[16],
2203 	symbolic_compressed_block& scb);
2204 
2205 /* ============================================================================
2206 Platform-specific functions.
2207 ============================================================================ */
2208 /**
2209  * @brief Allocate an aligned memory buffer.
2210  *
2211  * Allocated memory must be freed by aligned_free.
2212  *
2213  * @param size    The desired buffer size.
2214  * @param align   The desired buffer alignment; must be 2^N, may be increased
2215  *                by the implementation to a minimum allowable alignment.
2216  *
2217  * @return The memory buffer pointer or nullptr on allocation failure.
2218  */
2219 template<typename T>
aligned_malloc(size_t size,size_t align)2220 T* aligned_malloc(size_t size, size_t align)
2221 {
2222 	void* ptr;
2223 	int error = 0;
2224 
2225 	// Don't allow this to under-align a type
2226 	size_t min_align = astc::max(alignof(T), sizeof(void*));
2227 	size_t real_align = astc::max(min_align, align);
2228 
2229 #if defined(_WIN32)
2230 	ptr = _aligned_malloc(size, real_align);
2231 #else
2232 	error = posix_memalign(&ptr, real_align, size);
2233 #endif
2234 
2235 	if (error || (!ptr))
2236 	{
2237 		return nullptr;
2238 	}
2239 
2240 	return static_cast<T*>(ptr);
2241 }
2242 
2243 /**
2244  * @brief Free an aligned memory buffer.
2245  *
2246  * @param ptr   The buffer to free.
2247  */
2248 template<typename T>
aligned_free(T * ptr)2249 void aligned_free(T* ptr)
2250 {
2251 #if defined(_WIN32)
2252 	_aligned_free(ptr);
2253 #else
2254 	free(ptr);
2255 #endif
2256 }
2257 
2258 #ifdef ASTC_CUSTOMIZED_ENABLE
2259 #ifdef BUILD_HMOS_SDK
2260 #if defined(_WIN32) && !defined(__CYGWIN__)
2261 const LPCSTR g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dll";
2262 #elif defined(__APPLE__)
2263 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dylib";
2264 #else
2265 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.so";
2266 #endif
2267 #else
2268 #ifdef SUT_PATH_X64
2269 const std::string g_astcCustomizedSo = "/system/lib64/module/hms/graphic/libastcCustomizedEncode.z.so";
2270 #else
2271 const std::string g_astcCustomizedSo = "/system/lib/module/hms/graphic/libastcCustomizedEncode.z.so";
2272 #endif
2273 #endif
2274 using IsCustomizedBlockMode = bool (*)(const int);
2275 using CustomizedMaxPartitions = int (*)();
2276 using CustomizedBlockMode = int (*)();
2277 
2278 class AstcCustomizedSoManager
2279 {
2280 public:
AstcCustomizedSoManager()2281 	AstcCustomizedSoManager()
2282 	{
2283 		astcCustomizedSoOpened_ = false;
2284 		astcCustomizedSoHandle_ = nullptr;
2285 		isCustomizedBlockModeFunc_ = nullptr;
2286 		customizedMaxPartitionsFunc_ = nullptr;
2287 		customizedBlockModeFunc_ = nullptr;
2288 	}
~AstcCustomizedSoManager()2289 	~AstcCustomizedSoManager()
2290 	{
2291 		if (astcCustomizedSoOpened_ && astcCustomizedSoHandle_ != nullptr)
2292 		{
2293 #if defined(_WIN32) && !defined(__CYGWIN__)
2294 			if (!FreeLibrary(astcCustomizedSoHandle_))
2295 			{
2296 				printf("astc dll FreeLibrary failed: %s\n", g_astcCustomizedSo);
2297 			}
2298 #else
2299 			if (dlclose(astcCustomizedSoHandle_) != 0)
2300 			{
2301 				printf("astcenc so dlclose failed: %s\n", g_astcCustomizedSo.c_str());
2302 			}
2303 #endif
2304 		}
2305 	}
2306 	IsCustomizedBlockMode isCustomizedBlockModeFunc_;
2307 	CustomizedMaxPartitions customizedMaxPartitionsFunc_;
2308 	CustomizedBlockMode customizedBlockModeFunc_;
LoadSutCustomizedSo()2309 	bool LoadSutCustomizedSo()
2310 	{
2311 		std::lock_guard<std::mutex> lock(astcCustomizedSoMutex_);
2312 		if (!astcCustomizedSoOpened_)
2313 		{
2314 #if defined(_WIN32) && !defined(__CYGWIN__)
2315 			if ((_access(g_astcCustomizedSo, 0) == -1))
2316 			{
2317 				printf("astc customized dll(%s) is not found!\n", g_astcCustomizedSo);
2318 				return false;
2319 			}
2320 			astcCustomizedSoHandle_ = LoadLibrary(g_astcCustomizedSo);
2321 			if (astcCustomizedSoHandle_ == nullptr)
2322 			{
2323 				printf("astc libAstcCustomizedEnc LoadLibrary failed!\n");
2324 				return false;
2325 			}
2326 			isCustomizedBlockModeFunc_ =
2327 				reinterpret_cast<IsCustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2328 				"IsCustomizedBlockMode"));
2329 			if (isCustomizedBlockModeFunc_ == nullptr)
2330 			{
2331 				printf("astc isCustomizedBlockModeFunc_ GetProcAddress failed!\n");
2332 				if (!FreeLibrary(astcCustomizedSoHandle_))
2333 				{
2334 					printf("astc isCustomizedBlockModeFunc_ FreeLibrary failed!\n");
2335 				}
2336 				return false;
2337 			}
2338 			customizedMaxPartitionsFunc_ =
2339 				reinterpret_cast<CustomizedMaxPartitions>(GetProcAddress(astcCustomizedSoHandle_,
2340 				"CustomizedMaxPartitions"));
2341 			if (customizedMaxPartitionsFunc_ == nullptr)
2342 			{
2343 				printf("astc customizedMaxPartitionsFunc_ GetProcAddress failed!\n");
2344 				if (!FreeLibrary(astcCustomizedSoHandle_))
2345 				{
2346 					printf("astc customizedMaxPartitionsFunc_ FreeLibrary failed!\n");
2347 				}
2348 				return false;
2349 			}
2350 			customizedBlockModeFunc_ =
2351 				reinterpret_cast<CustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2352 				"CustomizedBlockMode"));
2353 			if (customizedBlockModeFunc_ == nullptr)
2354 			{
2355 				printf("astc customizedBlockModeFunc_ GetProcAddress failed!\n");
2356 				if (!FreeLibrary(astcCustomizedSoHandle_))
2357 				{
2358 					printf("astc customizedBlockModeFunc_ FreeLibrary failed!\n");
2359 				}
2360 				return false;
2361 			}
2362 			printf("astcenc customized dll load success: %s!\n", g_astcCustomizedSo);
2363 #else
2364 			if (access(g_astcCustomizedSo.c_str(), F_OK) == -1)
2365 			{
2366 				printf("astc customized so(%s) is not found!\n", g_astcCustomizedSo.c_str());
2367 				return false;
2368 			}
2369 			astcCustomizedSoHandle_ = dlopen(g_astcCustomizedSo.c_str(), 1);
2370 			if (astcCustomizedSoHandle_ == nullptr)
2371 			{
2372 				printf("astc libAstcCustomizedEnc dlopen failed!\n");
2373 				return false;
2374 			}
2375 			isCustomizedBlockModeFunc_ =
2376 				reinterpret_cast<IsCustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2377 				"IsCustomizedBlockMode"));
2378 			if (isCustomizedBlockModeFunc_ == nullptr)
2379 			{
2380 				printf("astc isCustomizedBlockModeFunc_ dlsym failed!\n");
2381 				dlclose(astcCustomizedSoHandle_);
2382 				astcCustomizedSoHandle_ = nullptr;
2383 				return false;
2384 			}
2385 			customizedMaxPartitionsFunc_ =
2386 				reinterpret_cast<CustomizedMaxPartitions>(dlsym(astcCustomizedSoHandle_,
2387 				"CustomizedMaxPartitions"));
2388 			if (customizedMaxPartitionsFunc_ == nullptr)
2389 			{
2390 				printf("astc customizedMaxPartitionsFunc_ dlsym failed!\n");
2391 				dlclose(astcCustomizedSoHandle_);
2392 				astcCustomizedSoHandle_ = nullptr;
2393 				return false;
2394 			}
2395 			customizedBlockModeFunc_ =
2396 				reinterpret_cast<CustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2397 				"CustomizedBlockMode"));
2398 			if (customizedBlockModeFunc_ == nullptr)
2399 			{
2400 				printf("astc customizedBlockModeFunc_ dlsym failed!\n");
2401 				dlclose(astcCustomizedSoHandle_);
2402 				astcCustomizedSoHandle_ = nullptr;
2403 				return false;
2404 			}
2405 			printf("astcenc customized so dlopen success: %s\n", g_astcCustomizedSo.c_str());
2406 #endif
2407 			astcCustomizedSoOpened_ = true;
2408 		}
2409 		return true;
2410 	}
2411 private:
2412 	bool astcCustomizedSoOpened_;
2413 #if defined(_WIN32) && !defined(__CYGWIN__)
2414 	HINSTANCE astcCustomizedSoHandle_;
2415 #else
2416 	void *astcCustomizedSoHandle_;
2417 #endif
2418     std::mutex astcCustomizedSoMutex_;
2419 };
2420 extern AstcCustomizedSoManager g_astcCustomizedSoManager;
2421 #endif
2422 
2423 #endif
2424