• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief 4x32-bit vectors, implemented using Armv8-A NEON.
20  *
21  * This module implements 4-wide 32-bit float, int, and mask vectors for
22  * Armv8-A NEON.
23  *
24  * There is a baseline level of functionality provided by all vector widths and
25  * implementations. This is implemented using identical function signatures,
26  * modulo data type, so we can use them as substitutable implementations in VLA
27  * code.
28  *
29  * The 4-wide vectors are also used as a fixed-width type, and significantly
30  * extend the functionality above that available to VLA code.
31  */
32 
33 #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
34 #define ASTC_VECMATHLIB_NEON_4_H_INCLUDED
35 
36 #ifndef ASTCENC_SIMD_INLINE
37 	#error "Include astcenc_vecmathlib.h, do not include directly"
38 #endif
39 
40 #include <cstdio>
41 #include <cstring>
42 
43 // ============================================================================
44 // vfloat4 data type
45 // ============================================================================
46 
47 /**
48  * @brief Data type for 4-wide floats.
49  */
50 struct vfloat4
51 {
52 	/**
53 	 * @brief Construct from zero-initialized value.
54 	 */
55 	ASTCENC_SIMD_INLINE vfloat4() = default;
56 
57 	/**
58 	 * @brief Construct from 4 values loaded from an unaligned address.
59 	 *
60 	 * Consider using loada() which is better with vectors if data is aligned
61 	 * to vector length.
62 	 */
vfloat4vfloat463 	ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
64 	{
65 		m = vld1q_f32(p);
66 	}
67 
68 	/**
69 	 * @brief Construct from 1 scalar value replicated across all lanes.
70 	 *
71 	 * Consider using zero() for constexpr zeros.
72 	 */
vfloat4vfloat473 	ASTCENC_SIMD_INLINE explicit vfloat4(float a)
74 	{
75 		m = vdupq_n_f32(a);
76 	}
77 
78 	/**
79 	 * @brief Construct from 4 scalar values.
80 	 *
81 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
82 	 */
vfloat4vfloat483 	ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
84 	{
85 		float v[4] { a, b, c, d };
86 		m = vld1q_f32(v);
87 	}
88 
89 	/**
90 	 * @brief Construct from an existing SIMD register.
91 	 */
vfloat4vfloat492 	ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a)
93 	{
94 		m = a;
95 	}
96 
97 	/**
98 	 * @brief Get the scalar value of a single lane.
99 	 */
lanevfloat4100 	template <int l> ASTCENC_SIMD_INLINE float lane() const
101 	{
102 		return vgetq_lane_f32(m, l);
103 	}
104 
105 	/**
106 	 * @brief Set the scalar value of a single lane.
107 	 */
set_lanevfloat4108 	template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
109 	{
110 		m = vsetq_lane_f32(a, m, l);
111 	}
112 
113 	/**
114 	 * @brief Factory that returns a vector of zeros.
115 	 */
zerovfloat4116 	static ASTCENC_SIMD_INLINE vfloat4 zero()
117 	{
118 		return vfloat4(vdupq_n_f32(0.0f));
119 	}
120 
121 	/**
122 	 * @brief Factory that returns a replicated scalar loaded from memory.
123 	 */
load1vfloat4124 	static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
125 	{
126 		return vfloat4(vld1q_dup_f32(p));
127 	}
128 
129 	/**
130 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
131 	 */
loadavfloat4132 	static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
133 	{
134 		return vfloat4(vld1q_f32(p));
135 	}
136 
137 	/**
138 	 * @brief Factory that returns a vector containing the lane IDs.
139 	 */
lane_idvfloat4140 	static ASTCENC_SIMD_INLINE vfloat4 lane_id()
141 	{
142 		alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f };
143 		return vfloat4(vld1q_f32(data));
144 	}
145 
146 	/**
147 	 * @brief Return a swizzled float 2.
148 	 */
swzvfloat4149 	template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
150 	{
151 		return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f);
152 	}
153 
154 	/**
155 	 * @brief Return a swizzled float 3.
156 	 */
swzvfloat4157 	template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
158 	{
159 		return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f);
160 	}
161 
162 	/**
163 	 * @brief Return a swizzled float 4.
164 	 */
swzvfloat4165 	template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
166 	{
167 		return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>());
168 	}
169 
170 	/**
171 	 * @brief The vector ...
172 	 */
173 	float32x4_t m;
174 };
175 
176 // ============================================================================
177 // vint4 data type
178 // ============================================================================
179 
180 /**
181  * @brief Data type for 4-wide ints.
182  */
183 struct vint4
184 {
185 	/**
186 	 * @brief Construct from zero-initialized value.
187 	 */
188 	ASTCENC_SIMD_INLINE vint4() = default;
189 
190 	/**
191 	 * @brief Construct from 4 values loaded from an unaligned address.
192 	 *
193 	 * Consider using loada() which is better with vectors if data is aligned
194 	 * to vector length.
195 	 */
vint4vint4196 	ASTCENC_SIMD_INLINE explicit vint4(const int *p)
197 	{
198 		m = vld1q_s32(p);
199 	}
200 
201 	/**
202 	 * @brief Construct from 4 uint8_t loaded from an unaligned address.
203 	 */
vint4vint4204 	ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
205 	{
206 		// Cast is safe - NEON loads are allowed to be unaligned
207 		uint32x2_t t8 = vld1_dup_u32(reinterpret_cast<const uint32_t*>(p));
208 		uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8)));
209 		m = vreinterpretq_s32_u32(vmovl_u16(t16));
210 	}
211 
212 	/**
213 	 * @brief Construct from 1 scalar value replicated across all lanes.
214 	 *
215 	 * Consider using vfloat4::zero() for constexpr zeros.
216 	 */
vint4vint4217 	ASTCENC_SIMD_INLINE explicit vint4(int a)
218 	{
219 		m = vdupq_n_s32(a);
220 	}
221 
222 	/**
223 	 * @brief Construct from 4 scalar values.
224 	 *
225 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
226 	 */
vint4vint4227 	ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
228 	{
229 		int v[4] { a, b, c, d };
230 		m = vld1q_s32(v);
231 	}
232 
233 	/**
234 	 * @brief Construct from an existing SIMD register.
235 	 */
vint4vint4236 	ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a)
237 	{
238 		m = a;
239 	}
240 
241 	/**
242 	 * @brief Get the scalar from a single lane.
243 	 */
lanevint4244 	template <int l> ASTCENC_SIMD_INLINE int lane() const
245 	{
246 		return vgetq_lane_s32(m, l);
247 	}
248 
249 	/**
250 	 * @brief Set the scalar value of a single lane.
251 	 */
set_lanevint4252 	template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
253 	{
254 		m = vsetq_lane_s32(a, m, l);
255 	}
256 
257 	/**
258 	 * @brief Factory that returns a vector of zeros.
259 	 */
zerovint4260 	static ASTCENC_SIMD_INLINE vint4 zero()
261 	{
262 		return vint4(0);
263 	}
264 
265 	/**
266 	 * @brief Factory that returns a replicated scalar loaded from memory.
267 	 */
load1vint4268 	static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
269 	{
270 		return vint4(*p);
271 	}
272 
273 	/**
274 	 * @brief Factory that returns a vector loaded from unaligned memory.
275 	 */
loadvint4276 	static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
277 	{
278 		vint4 data;
279 		std::memcpy(&data.m, p, 4 * sizeof(int));
280 		return data;
281 	}
282 
283 	/**
284 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
285 	 */
loadavint4286 	static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
287 	{
288 		return vint4(p);
289 	}
290 
291 	/**
292 	 * @brief Factory that returns a vector containing the lane IDs.
293 	 */
lane_idvint4294 	static ASTCENC_SIMD_INLINE vint4 lane_id()
295 	{
296 		alignas(16) static const int data[4] { 0, 1, 2, 3 };
297 		return vint4(vld1q_s32(data));
298 	}
299 
300 	/**
301 	 * @brief The vector ...
302 	 */
303 	int32x4_t m;
304 };
305 
306 // ============================================================================
307 // vmask4 data type
308 // ============================================================================
309 
310 /**
311  * @brief Data type for 4-wide control plane masks.
312  */
313 struct vmask4
314 {
315 	/**
316 	 * @brief Construct from an existing SIMD register.
317 	 */
vmask4vmask4318 	ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a)
319 	{
320 		m = a;
321 	}
322 
323 #if !defined(_MSC_VER)
324 	/**
325 	 * @brief Construct from an existing SIMD register.
326 	 */
vmask4vmask4327 	ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a)
328 	{
329 		m = vreinterpretq_u32_s32(a);
330 	}
331 #endif
332 
333 	/**
334 	 * @brief Construct from 1 scalar value.
335 	 */
vmask4vmask4336 	ASTCENC_SIMD_INLINE explicit vmask4(bool a)
337 	{
338 		m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0));
339 	}
340 
341 	/**
342 	 * @brief Construct from 4 scalar values.
343 	 *
344 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
345 	 */
vmask4vmask4346 	ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
347 	{
348 		int v[4] {
349 			a == true ? -1 : 0,
350 			b == true ? -1 : 0,
351 			c == true ? -1 : 0,
352 			d == true ? -1 : 0
353 		};
354 
355 		int32x4_t ms = vld1q_s32(v);
356 		m = vreinterpretq_u32_s32(ms);
357 	}
358 
359 	/**
360 	 * @brief Get the scalar from a single lane.
361 	 */
lanevmask4362 	template <int32_t l> ASTCENC_SIMD_INLINE bool lane() const
363 	{
364 		return vgetq_lane_u32(m, l) != 0;
365 	}
366 
367 	/**
368 	 * @brief The vector ...
369 	 */
370 	uint32x4_t m;
371 };
372 
373 // ============================================================================
374 // vmask4 operators and functions
375 // ============================================================================
376 
377 /**
378  * @brief Overload: mask union (or).
379  */
380 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
381 {
382 	return vmask4(vorrq_u32(a.m, b.m));
383 }
384 
385 /**
386  * @brief Overload: mask intersect (and).
387  */
388 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
389 {
390 	return vmask4(vandq_u32(a.m, b.m));
391 }
392 
393 /**
394  * @brief Overload: mask difference (xor).
395  */
396 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
397 {
398 	return vmask4(veorq_u32(a.m, b.m));
399 }
400 
401 /**
402  * @brief Overload: mask invert (not).
403  */
404 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
405 {
406 	return vmask4(vmvnq_u32(a.m));
407 }
408 
409 /**
410  * @brief Return a 4-bit mask code indicating mask status.
411  *
412  * bit0 = lane 0
413  */
mask(vmask4 a)414 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
415 {
416 	static const int shifta[4] { 0, 1, 2, 3 };
417 	static const int32x4_t shift = vld1q_s32(shifta);
418 
419 	uint32x4_t tmp = vshrq_n_u32(a.m, 31);
420 	return vaddvq_u32(vshlq_u32(tmp, shift));
421 }
422 
423 // ============================================================================
424 // vint4 operators and functions
425 // ============================================================================
426 
427 /**
428  * @brief Overload: vector by vector addition.
429  */
430 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
431 {
432 	return vint4(vaddq_s32(a.m, b.m));
433 }
434 
435 /**
436  * @brief Overload: vector by vector subtraction.
437  */
438 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
439 {
440 	return vint4(vsubq_s32(a.m, b.m));
441 }
442 
443 /**
444  * @brief Overload: vector by vector multiplication.
445  */
446 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
447 {
448 	return vint4(vmulq_s32(a.m, b.m));
449 }
450 
451 /**
452  * @brief Overload: vector bit invert.
453  */
454 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
455 {
456 	return vint4(vmvnq_s32(a.m));
457 }
458 
459 /**
460  * @brief Overload: vector by vector bitwise or.
461  */
462 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
463 {
464 	return vint4(vorrq_s32(a.m, b.m));
465 }
466 
467 /**
468  * @brief Overload: vector by vector bitwise and.
469  */
470 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
471 {
472 	return vint4(vandq_s32(a.m, b.m));
473 }
474 
475 /**
476  * @brief Overload: vector by vector bitwise xor.
477  */
478 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
479 {
480 	return vint4(veorq_s32(a.m, b.m));
481 }
482 
483 /**
484  * @brief Overload: vector by vector equality.
485  */
486 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
487 {
488 	return vmask4(vceqq_s32(a.m, b.m));
489 }
490 
491 /**
492  * @brief Overload: vector by vector inequality.
493  */
494 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
495 {
496 	return ~vmask4(vceqq_s32(a.m, b.m));
497 }
498 
499 /**
500  * @brief Overload: vector by vector less than.
501  */
502 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
503 {
504 	return vmask4(vcltq_s32(a.m, b.m));
505 }
506 
507 /**
508  * @brief Overload: vector by vector greater than.
509  */
510 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
511 {
512 	return vmask4(vcgtq_s32(a.m, b.m));
513 }
514 
515 /**
516  * @brief Logical shift left.
517  */
lsl(vint4 a)518 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
519 {
520 	return vint4(vshlq_s32(a.m, vdupq_n_s32(s)));
521 }
522 
523 /**
524  * @brief Logical shift right.
525  */
lsr(vint4 a)526 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
527 {
528 	uint32x4_t ua = vreinterpretq_u32_s32(a.m);
529 	ua = vshlq_u32(ua, vdupq_n_s32(-s));
530 	return vint4(vreinterpretq_s32_u32(ua));
531 }
532 
533 /**
534  * @brief Arithmetic shift right.
535  */
asr(vint4 a)536 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
537 {
538 	return vint4(vshlq_s32(a.m, vdupq_n_s32(-s)));
539 }
540 
541 /**
542  * @brief Return the min vector of two vectors.
543  */
min(vint4 a,vint4 b)544 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
545 {
546 	return vint4(vminq_s32(a.m, b.m));
547 }
548 
549 /**
550  * @brief Return the max vector of two vectors.
551  */
max(vint4 a,vint4 b)552 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
553 {
554 	return vint4(vmaxq_s32(a.m, b.m));
555 }
556 
557 /**
558  * @brief Return the horizontal minimum of a vector.
559  */
hmin(vint4 a)560 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
561 {
562 	return vint4(vminvq_s32(a.m));
563 }
564 
565 /**
566  * @brief Return the horizontal maximum of a vector.
567  */
hmax(vint4 a)568 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
569 {
570 	return vint4(vmaxvq_s32(a.m));
571 }
572 
573 /**
574  * @brief Return the horizontal sum of a vector.
575  */
hadd_s(vint4 a)576 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
577 {
578 	int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m));
579 	return vget_lane_s32(vpadd_s32(t, t), 0);
580 }
581 
582 /**
583  * @brief Return the horizontal sum of a vector.
584  */
hadd_s(vmask4 a)585 ASTCENC_SIMD_INLINE uint32_t hadd_s(vmask4 a)
586 {
587 	// Use add with SIMD versions
588 	return vaddvq_u32(a.m);
589 }
590 
591 #define ASTCENC_USE_NATIVE_ADDV
592 /**
593  * @brief Return the horizontal sum of a vector.
594  */
hadd_rgba_s(vfloat4 a)595 ASTCENC_SIMD_INLINE float hadd_rgba_s(vfloat4 a)
596 {
597 	// Use add with SIMD versions
598 	return vaddvq_f32(a.m);
599 }
600 
601 /**
602  * @brief Store a vector to a 16B aligned memory address.
603  */
storea(vint4 a,int * p)604 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
605 {
606 	vst1q_s32(p, a.m);
607 }
608 
609 /**
610  * @brief Store a vector to an unaligned memory address.
611  */
store(vint4 a,int * p)612 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
613 {
614 	vst1q_s32(p, a.m);
615 }
616 
617 /**
618  * @brief Store a vector to an unaligned memory address.
619  */
store(vint4 a,uint8_t * p)620 ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
621 {
622 	std::memcpy(p, &a.m, sizeof(int) * 4);
623 }
624 
625 /**
626  * @brief Store lowest N (vector width) bytes into an unaligned address.
627  */
store_nbytes(vint4 a,uint8_t * p)628 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
629 {
630 	vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0);
631 }
632 
633 /**
634  * @brief Gather N (vector width) indices from the array.
635  */
gatheri(const int * base,vint4 indices)636 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
637 {
638 	alignas(16) int idx[4];
639 	storea(indices, idx);
640 	alignas(16) int vals[4];
641 	vals[0] = base[idx[0]];
642 	vals[1] = base[idx[1]];
643 	vals[2] = base[idx[2]];
644 	vals[3] = base[idx[3]];
645 	return vint4(vals);
646 }
647 
648 /**
649  * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
650  */
pack_low_bytes(vint4 a)651 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
652 {
653 	uint8x16_t idx = {0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
654 	int8x16_t av = vreinterpretq_s8_s32(a.m);
655 	return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx)));
656 }
657 
658 /**
659  * @brief Return lanes from @c b if @c cond is set, else @c a.
660  */
select(vint4 a,vint4 b,vmask4 cond)661 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
662 {
663 	return vint4(vbslq_s32(cond.m, b.m, a.m));
664 }
665 
666 // ============================================================================
667 // vfloat4 operators and functions
668 // ============================================================================
669 
670 /**
671  * @brief Overload: vector by vector addition.
672  */
673 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
674 {
675 	return vfloat4(vaddq_f32(a.m, b.m));
676 }
677 
678 /**
679  * @brief Overload: vector by vector subtraction.
680  */
681 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
682 {
683 	return vfloat4(vsubq_f32(a.m, b.m));
684 }
685 
686 /**
687  * @brief Overload: vector by vector multiplication.
688  */
689 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
690 {
691 	return vfloat4(vmulq_f32(a.m, b.m));
692 }
693 
694 /**
695  * @brief Overload: vector by vector division.
696  */
697 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
698 {
699 	return vfloat4(vdivq_f32(a.m, b.m));
700 }
701 
702 /**
703  * @brief Overload: vector by vector equality.
704  */
705 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
706 {
707 	return vmask4(vceqq_f32(a.m, b.m));
708 }
709 
710 /**
711  * @brief Overload: vector by vector inequality.
712  */
713 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
714 {
715 	return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m)));
716 }
717 
718 /**
719  * @brief Overload: vector by vector less than.
720  */
721 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
722 {
723 	return vmask4(vcltq_f32(a.m, b.m));
724 }
725 
726 /**
727  * @brief Overload: vector by vector greater than.
728  */
729 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
730 {
731 	return vmask4(vcgtq_f32(a.m, b.m));
732 }
733 
734 /**
735  * @brief Overload: vector by vector less than or equal.
736  */
737 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
738 {
739 	return vmask4(vcleq_f32(a.m, b.m));
740 }
741 
742 /**
743  * @brief Overload: vector by vector greater than or equal.
744  */
745 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
746 {
747 	return vmask4(vcgeq_f32(a.m, b.m));
748 }
749 
750 /**
751  * @brief Return the min vector of two vectors.
752  *
753  * If either lane value is NaN, @c b will be returned for that lane.
754  */
min(vfloat4 a,vfloat4 b)755 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
756 {
757 	// Do not reorder - second operand will return if either is NaN
758 	return vfloat4(vminnmq_f32(a.m, b.m));
759 }
760 
761 /**
762  * @brief Return the max vector of two vectors.
763  *
764  * If either lane value is NaN, @c b will be returned for that lane.
765  */
max(vfloat4 a,vfloat4 b)766 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
767 {
768 	// Do not reorder - second operand will return if either is NaN
769 	return vfloat4(vmaxnmq_f32(a.m, b.m));
770 }
771 
772 /**
773  * @brief Return the absolute value of the float vector.
774  */
abs(vfloat4 a)775 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
776 {
777 	float32x4_t zero = vdupq_n_f32(0.0f);
778 	float32x4_t inv = vsubq_f32(zero, a.m);
779 	return vfloat4(vmaxq_f32(a.m, inv));
780 }
781 
782 /**
783  * @brief Return a float rounded to the nearest integer value.
784  */
round(vfloat4 a)785 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
786 {
787 	return vfloat4(vrndnq_f32(a.m));
788 }
789 
790 /**
791  * @brief Return the horizontal minimum of a vector.
792  */
hmin(vfloat4 a)793 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
794 {
795 	return vfloat4(vminvq_f32(a.m));
796 }
797 
798 /**
799  * @brief Return the horizontal maximum of a vector.
800  */
hmax(vfloat4 a)801 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
802 {
803 	return vfloat4(vmaxvq_f32(a.m));
804 }
805 
806 /**
807  * @brief Return the horizontal sum of a vector.
808  */
hadd_s(vfloat4 a)809 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
810 {
811 	// Perform halving add to ensure invariance; we cannot use vaddqv as this
812 	// does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3).
813 	float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m));
814 	return vget_lane_f32(vpadd_f32(t, t), 0);
815 }
816 
817 /**
818  * @brief Return the sqrt of the lanes in the vector.
819  */
sqrt(vfloat4 a)820 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
821 {
822 	return vfloat4(vsqrtq_f32(a.m));
823 }
824 
825 /**
826  * @brief Return lanes from @c b if @c cond is set, else @c a.
827  */
select(vfloat4 a,vfloat4 b,vmask4 cond)828 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
829 {
830 	return vfloat4(vbslq_f32(cond.m, b.m, a.m));
831 }
832 
833 /**
834  * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
835  */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)836 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
837 {
838 	static const uint32x4_t msb = vdupq_n_u32(0x80000000u);
839 	uint32x4_t mask = vcgeq_u32(cond.m, msb);
840 	return vfloat4(vbslq_f32(mask, b.m, a.m));
841 }
842 
843 /**
844  * @brief Load a vector of gathered results from an array;
845  */
gatherf(const float * base,vint4 indices)846 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
847 {
848 	alignas(16) int idx[4];
849 	storea(indices, idx);
850 	alignas(16) float vals[4];
851 	vals[0] = base[idx[0]];
852 	vals[1] = base[idx[1]];
853 	vals[2] = base[idx[2]];
854 	vals[3] = base[idx[3]];
855 	return vfloat4(vals);
856 }
857 
858 /**
859  * @brief Store a vector to an unaligned memory address.
860  */
store(vfloat4 a,float * p)861 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
862 {
863 	vst1q_f32(p, a.m);
864 }
865 
866 /**
867  * @brief Store a vector to a 16B aligned memory address.
868  */
storea(vfloat4 a,float * p)869 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
870 {
871 	vst1q_f32(p, a.m);
872 }
873 
874 /**
875  * @brief Return a integer value for a float vector, using truncation.
876  */
float_to_int(vfloat4 a)877 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
878 {
879 	return vint4(vcvtq_s32_f32(a.m));
880 }
881 
882 /**
883  * @brief Return a integer value for a float vector, using round-to-nearest.
884  */
float_to_int_rtn(vfloat4 a)885 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
886 {
887 	a = a + vfloat4(0.5f);
888 	return vint4(vcvtq_s32_f32(a.m));
889 }
890 
891 /**
892  * @brief Return a float value for an integer vector.
893  */
int_to_float(vint4 a)894 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
895 {
896 	return vfloat4(vcvtq_f32_s32(a.m));
897 }
898 
899 /**
900  * @brief Return a float16 value for a float vector, using round-to-nearest.
901  */
float_to_float16(vfloat4 a)902 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
903 {
904 	// Generate float16 value
905 	float16x4_t f16 = vcvt_f16_f32(a.m);
906 
907 	// Convert each 16-bit float pattern to a 32-bit pattern
908 	uint16x4_t u16 = vreinterpret_u16_f16(f16);
909 	uint32x4_t u32 = vmovl_u16(u16);
910 	return vint4(vreinterpretq_s32_u32(u32));
911 }
912 
913 /**
914  * @brief Return a float16 value for a float scalar, using round-to-nearest.
915  */
float_to_float16(float a)916 static inline uint16_t float_to_float16(float a)
917 {
918 	vfloat4 av(a);
919 	return static_cast<uint16_t>(float_to_float16(av).lane<0>());
920 }
921 
922 /**
923  * @brief Return a float value for a float16 vector.
924  */
float16_to_float(vint4 a)925 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
926 {
927 	// Convert each 32-bit float pattern to a 16-bit pattern
928 	uint32x4_t u32 = vreinterpretq_u32_s32(a.m);
929 	uint16x4_t u16 = vmovn_u32(u32);
930 	float16x4_t f16 = vreinterpret_f16_u16(u16);
931 
932 	// Generate float16 value
933 	return vfloat4(vcvt_f32_f16(f16));
934 }
935 
936 /**
937  * @brief Return a float value for a float16 scalar.
938  */
float16_to_float(uint16_t a)939 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
940 {
941 	vint4 av(a);
942 	return float16_to_float(av).lane<0>();
943 }
944 
945 /**
946  * @brief Return a float value as an integer bit pattern (i.e. no conversion).
947  *
948  * It is a common trick to convert floats into integer bit patterns, perform
949  * some bit hackery based on knowledge they are IEEE 754 layout, and then
950  * convert them back again. This is the first half of that flip.
951  */
float_as_int(vfloat4 a)952 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
953 {
954 	return vint4(vreinterpretq_s32_f32(a.m));
955 }
956 
957 /**
958  * @brief Return a integer value as a float bit pattern (i.e. no conversion).
959  *
960  * It is a common trick to convert floats into integer bit patterns, perform
961  * some bit hackery based on knowledge they are IEEE 754 layout, and then
962  * convert them back again. This is the second half of that flip.
963  */
int_as_float(vint4 v)964 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
965 {
966 	return vfloat4(vreinterpretq_f32_s32(v.m));
967 }
968 
969 /**
970  * @brief Prepare a vtable lookup table for use with the native SIMD size.
971  */
vtable_prepare(vint4 t0,vint4 & t0p)972 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
973 {
974 	t0p = t0;
975 }
976 
977 
978 /**
979  * @brief Prepare a vtable lookup table for use with the native SIMD size.
980  */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)981 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
982 {
983 	t0p = t0;
984 	t1p = t1;
985 }
986 
987 /**
988  * @brief Prepare a vtable lookup table for use with the native SIMD size.
989  */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)990 ASTCENC_SIMD_INLINE void vtable_prepare(
991 	vint4 t0, vint4 t1, vint4 t2, vint4 t3,
992 	vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
993 {
994 	t0p = t0;
995 	t1p = t1;
996 	t2p = t2;
997 	t3p = t3;
998 }
999 
1000 /**
1001  * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
1002  */
vtable_8bt_32bi(vint4 t0,vint4 idx)1003 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
1004 {
1005 	int8x16_t table {
1006 		vreinterpretq_s8_s32(t0.m)
1007 	};
1008 
1009 	// Set index byte above max index for unused bytes so table lookup returns zero
1010 	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1011 	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1012 
1013 	return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes)));
1014 }
1015 
1016 /**
1017  * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
1018  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)1019 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
1020 {
1021 	int8x16x2_t table {
1022 		vreinterpretq_s8_s32(t0.m),
1023 		vreinterpretq_s8_s32(t1.m)
1024 	};
1025 
1026 	// Set index byte above max index for unused bytes so table lookup returns zero
1027 	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1028 	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1029 
1030 	return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes)));
1031 }
1032 
1033 /**
1034  * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1035  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1036 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1037 {
1038 	int8x16x4_t table {
1039 		vreinterpretq_s8_s32(t0.m),
1040 		vreinterpretq_s8_s32(t1.m),
1041 		vreinterpretq_s8_s32(t2.m),
1042 		vreinterpretq_s8_s32(t3.m)
1043 	};
1044 
1045 	// Set index byte above max index for unused bytes so table lookup returns zero
1046 	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1047 	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1048 
1049 	return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes)));
1050 }
1051 
1052 /**
1053  * @brief Return a vector of interleaved RGBA data.
1054  *
1055  * Input vectors have the value stored in the bottom 8 bits of each lane,
1056  * with high  bits set to zero.
1057  *
1058  * Output vector stores a single RGBA texel packed in each lane.
1059  */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1060 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1061 {
1062 	return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
1063 }
1064 
1065 /**
1066  * @brief Store a single vector lane to an unaligned address.
1067  */
store_lane(uint8_t * base,int data)1068 ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
1069 {
1070 	std::memcpy(base, &data, sizeof(int));
1071 }
1072 
1073 /**
1074  * @brief Store a vector, skipping masked lanes.
1075  *
1076  * All masked lanes must be at the end of vector, after all non-masked lanes.
1077  */
store_lanes_masked(uint8_t * base,vint4 data,vmask4 mask)1078 ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
1079 {
1080 	if (mask.lane<3>())
1081 	{
1082 		store(data, base);
1083 	}
1084 	else if (mask.lane<2>() != 0.0f)
1085 	{
1086 		store_lane(base + 0, data.lane<0>());
1087 		store_lane(base + 4, data.lane<1>());
1088 		store_lane(base + 8, data.lane<2>());
1089 	}
1090 	else if (mask.lane<1>() != 0.0f)
1091 	{
1092 		store_lane(base + 0, data.lane<0>());
1093 		store_lane(base + 4, data.lane<1>());
1094 	}
1095 	else if (mask.lane<0>() != 0.0f)
1096 	{
1097 		store_lane(base + 0, data.lane<0>());
1098 	}
1099 }
1100 
1101 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1102 
1103 /**
1104  * @brief Population bit count.
1105  *
1106  * @param v   The value to population count.
1107  *
1108  * @return The number of 1 bits.
1109  */
popcount(uint64_t v)1110 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1111 {
1112 	return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v))));
1113 }
1114 
1115 /**
1116  * @brief Population bit count.
1117  *
1118  * @param v   The value to population count.
1119  *
1120  * @return The number of 1 bits.
1121  */
popcount(uint64x2_t v)1122 ASTCENC_SIMD_INLINE int popcount(uint64x2_t v)
1123 {
1124 	return static_cast<int>(vaddvq_u8(vcntq_u8(vreinterpretq_u8_u64(v))));
1125 }
1126 
1127 /**
1128  * @brief Population bit count.
1129  *
1130  * @param v   The value to population count.
1131  *
1132  * @return The number of 1 bits.
1133  */
popcount(vmask4 v)1134 ASTCENC_SIMD_INLINE int popcount(vmask4 v)
1135 {
1136 	return static_cast<int>(vaddvq_u8(vcntq_u8(vreinterpretq_u8_u32(v.m))));
1137 }
1138 
1139 #endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
1140