1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2024 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19
20 /**
21 * @brief Functions for angular-sum algorithm for weight alignment.
22 *
23 * This algorithm works as follows:
24 * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
25 * where i is the input value and s is a scaling factor based on the spacing between the weights.
26 * - we then add together complex numbers for all the weights.
27 * - we then compute the length and angle of the resulting sum.
28 *
29 * This should produce the following results:
30 * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
31 * - even distribution results in a vector of length 0.
32 * - all samples identical results in perfect alignment for every scaling.
33 *
34 * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
35 * should then result in some scalings standing out as having particularly good alignment factors;
36 * we can use this to produce a set of candidate scale/shift values for various quantization levels;
37 * we should then actually try them and see what happens.
38 */
39
40 #include "astcenc_internal.h"
41 #include "astcenc_vecmathlib.h"
42
43 #include <stdio.h>
44 #include <cassert>
45 #include <cstring>
46
47 static constexpr unsigned int ANGULAR_STEPS { 32 };
48
49 static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
50 "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
51
52 static_assert(ANGULAR_STEPS >= 32,
53 "ANGULAR_STEPS must be at least max(steps_for_quant_level)");
54
55 // Store a reduced sin/cos table for 64 possible weight values; this causes
56 // slight quality loss compared to using sin() and cos() directly. Must be 2^N.
57 static constexpr unsigned int SINCOS_STEPS { 64 };
58
59 static const uint8_t steps_for_quant_level[12] {
60 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
61 };
62
63 ASTCENC_ALIGNAS static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
64 ASTCENC_ALIGNAS static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
65
66 #if defined(ASTCENC_DIAGNOSTICS)
67 static bool print_once { true };
68 #endif
69
70 /* See header for documentation. */
prepare_angular_tables()71 void prepare_angular_tables()
72 {
73 for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
74 {
75 float angle_step = static_cast<float>(i + 1);
76
77 for (unsigned int j = 0; j < SINCOS_STEPS; j++)
78 {
79 sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
80 cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
81 }
82 }
83 }
84
85 /**
86 * @brief Compute the angular alignment factors and offsets.
87 *
88 * @param weight_count The number of (decimated) weights.
89 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
90 * @param max_angular_steps The maximum number of steps to be tested.
91 * @param[out] offsets The output angular offsets array.
92 */
compute_angular_offsets(unsigned int weight_count,const float * dec_weight_ideal_value,unsigned int max_angular_steps,float * offsets)93 static void compute_angular_offsets(
94 unsigned int weight_count,
95 const float* dec_weight_ideal_value,
96 unsigned int max_angular_steps,
97 float* offsets
98 ) {
99 promise(weight_count > 0);
100 promise(max_angular_steps > 0);
101
102 ASTCENC_ALIGNAS int isamplev[BLOCK_MAX_WEIGHTS];
103
104 // Precompute isample; arrays are always allocated 64 elements long
105 for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
106 {
107 // Add 2^23 and interpreting bits extracts round-to-nearest int
108 vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
109 vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
110 storea(isample, isamplev + i);
111 }
112
113 // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
114 vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
115
116 for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
117 {
118 vfloat anglesum_x = vfloat::zero();
119 vfloat anglesum_y = vfloat::zero();
120
121 for (unsigned int j = 0; j < weight_count; j++)
122 {
123 int isample = isamplev[j];
124 anglesum_x += loada(cos_table[isample] + i);
125 anglesum_y += loada(sin_table[isample] + i);
126 }
127
128 vfloat angle = atan2(anglesum_y, anglesum_x);
129 vfloat ofs = angle * mult;
130 storea(ofs, offsets + i);
131 }
132 }
133
134 /**
135 * @brief For a given step size compute the lowest and highest weight.
136 *
137 * Compute the lowest and highest weight that results from quantizing using the given stepsize and
138 * offset, and then compute the resulting error. The cut errors indicate the error that results from
139 * forcing samples that should have had one weight value one step up or down.
140 *
141 * @param weight_count The number of (decimated) weights.
142 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
143 * @param max_angular_steps The maximum number of steps to be tested.
144 * @param max_quant_steps The maximum quantization level to be tested.
145 * @param offsets The angular offsets array.
146 * @param[out] lowest_weight Per angular step, the lowest weight.
147 * @param[out] weight_span Per angular step, the span between lowest and highest weight.
148 * @param[out] error Per angular step, the error.
149 * @param[out] cut_low_weight_error Per angular step, the low weight cut error.
150 * @param[out] cut_high_weight_error Per angular step, the high weight cut error.
151 */
152 #if ASTCENC_NEON != 0
compute_lowest_and_highest_weight(QualityProfile privateProfile,unsigned int weight_count,const float * dec_weight_ideal_value,unsigned int max_angular_steps,unsigned int max_quant_steps,const float * offsets,float * lowest_weight,int * weight_span,float * error,float * cut_low_weight_error,float * cut_high_weight_error)153 static void compute_lowest_and_highest_weight(
154 QualityProfile privateProfile,
155 unsigned int weight_count,
156 const float* dec_weight_ideal_value,
157 unsigned int max_angular_steps,
158 unsigned int max_quant_steps,
159 const float* offsets,
160 float* lowest_weight,
161 int* weight_span,
162 float* error,
163 float* cut_low_weight_error,
164 float* cut_high_weight_error
165 ) {
166 promise(weight_count > 0);
167 promise(max_angular_steps > 0);
168
169 vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
170
171 float max_weight = 1.0f;
172 float min_weight = 0.0f;
173 // in HIGH_SPEED_PROFILE, max_weight is always equal to 1.0, and min_weight is always equal to 0
174 if (privateProfile != HIGH_SPEED_PROFILE &&
175 privateProfile != HIGH_SPEED_PROFILE_HIGHBITS)
176 {
177 max_weight = dec_weight_ideal_value[0];
178 min_weight = dec_weight_ideal_value[0];
179 for (unsigned int j = 1; j < weight_count; j++)
180 {
181 float weight = dec_weight_ideal_value[j];
182 __asm__ volatile("fmax %s0, %s0, %s1" : "+w"(max_weight) : "w"(weight));
183 __asm__ volatile("fmin %s0, %s0, %s1" : "+w"(min_weight) : "w"(weight));
184 }
185 }
186
187 // Arrays are ANGULAR_STEPS long, so always safe to run full vectors
188 for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
189 {
190 vfloat errval = vfloat::zero();
191 vfloat cut_low_weight_err = vfloat::zero();
192 vfloat cut_high_weight_err = vfloat::zero();
193 vfloat offset = loada(offsets + sp);
194
195 offset = (vfloat)vnegq_f32(offset.m);
196 vfloat maxidx = vfloat::zero();
197 vfloat minidx = vfloat::zero();
198
199 if (privateProfile == HIGH_SPEED_PROFILE ||
200 privateProfile == HIGH_SPEED_PROFILE_HIGHBITS)
201 {
202 maxidx = round((vfloat)vaddq_f32(rcp_stepsize.m, offset.m));
203 minidx = round(offset);
204 }
205 else
206 {
207 maxidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, max_weight));
208 minidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, min_weight));
209 }
210
211 for (unsigned int j = 0; j < weight_count; j++)
212 {
213 vfloat sval = (vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, *(dec_weight_ideal_value + j));
214 vfloat svalrte = round(sval);
215 vfloat diff = sval - svalrte;
216 errval += diff * diff;
217
218 // Accumulate on min hit
219 vmask mask = svalrte == minidx;
220 vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
221 cut_low_weight_err = select(cut_low_weight_err, accum, mask);
222
223 // Accumulate on max hit
224 mask = svalrte == maxidx;
225 accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
226 cut_high_weight_err = select(cut_high_weight_err, accum, mask);
227 }
228
229 // Write out min weight and weight span; clamp span to a usable range
230 vint span = float_to_int(maxidx - minidx + vfloat(1));
231 span = min(span, vint(max_quant_steps + 3));
232 span = max(span, vint(2));
233 storea(minidx, lowest_weight + sp);
234 storea(span, weight_span + sp);
235
236 // The cut_(lowest/highest)_weight_error indicate the error that results from forcing
237 // samples that should have had the weight value one step (up/down).
238 vfloat ssize = 1.0f / rcp_stepsize;
239 vfloat errscale = ssize * ssize;
240 storea(errval * errscale, error + sp);
241 storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
242 storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
243
244 rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
245 }
246 }
247 #else
compute_lowest_and_highest_weight(QualityProfile privateProfile,unsigned int weight_count,const float * dec_weight_ideal_value,unsigned int max_angular_steps,unsigned int max_quant_steps,const float * offsets,float * lowest_weight,int * weight_span,float * error,float * cut_low_weight_error,float * cut_high_weight_error)248 static void compute_lowest_and_highest_weight(
249 QualityProfile privateProfile,
250 unsigned int weight_count,
251 const float* dec_weight_ideal_value,
252 unsigned int max_angular_steps,
253 unsigned int max_quant_steps,
254 const float* offsets,
255 float* lowest_weight,
256 int* weight_span,
257 float* error,
258 float* cut_low_weight_error,
259 float* cut_high_weight_error
260 ) {
261 (void) privateProfile;
262 promise(weight_count > 0);
263 promise(max_angular_steps > 0);
264
265 vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
266
267 // Arrays are ANGULAR_STEPS long, so always safe to run full vectors
268 for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
269 {
270 vfloat minidx(128.0f);
271 vfloat maxidx(-128.0f);
272 vfloat errval = vfloat::zero();
273 vfloat cut_low_weight_err = vfloat::zero();
274 vfloat cut_high_weight_err = vfloat::zero();
275 vfloat offset = loada(offsets + sp);
276
277 for (unsigned int j = 0; j < weight_count; j++)
278 {
279 vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
280 vfloat svalrte = round(sval);
281 vfloat diff = sval - svalrte;
282 errval += diff * diff;
283
284 // Reset tracker on min hit
285 vmask mask = svalrte < minidx;
286 minidx = select(minidx, svalrte, mask);
287 cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
288
289 // Accumulate on min hit
290 mask = svalrte == minidx;
291 vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
292 cut_low_weight_err = select(cut_low_weight_err, accum, mask);
293
294 // Reset tracker on max hit
295 mask = svalrte > maxidx;
296 maxidx = select(maxidx, svalrte, mask);
297 cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
298
299 // Accumulate on max hit
300 mask = svalrte == maxidx;
301 accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
302 cut_high_weight_err = select(cut_high_weight_err, accum, mask);
303 }
304
305 // Write out min weight and weight span; clamp span to a usable range
306 vint span = float_to_int(maxidx - minidx + vfloat(1));
307 span = min(span, vint(max_quant_steps + 3));
308 span = max(span, vint(2));
309 storea(minidx, lowest_weight + sp);
310 storea(span, weight_span + sp);
311
312 // The cut_(lowest/highest)_weight_error indicate the error that results from forcing
313 // samples that should have had the weight value one step (up/down).
314 vfloat ssize = 1.0f / rcp_stepsize;
315 vfloat errscale = ssize * ssize;
316 storea(errval * errscale, error + sp);
317 storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
318 storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
319
320 rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
321 }
322 }
323 #endif
324
325 /**
326 * @brief The main function for the angular algorithm.
327 *
328 * @param weight_count The number of (decimated) weights.
329 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
330 * @param max_quant_level The maximum quantization level to be tested.
331 * @param[out] low_value Per angular step, the lowest weight value.
332 * @param[out] high_value Per angular step, the highest weight value.
333 */
compute_angular_endpoints_for_quant_levels(QualityProfile privateProfile,unsigned int weight_count,const float * dec_weight_ideal_value,unsigned int max_quant_level,float low_value[TUNE_MAX_ANGULAR_QUANT+1],float high_value[TUNE_MAX_ANGULAR_QUANT+1])334 static void compute_angular_endpoints_for_quant_levels(
335 QualityProfile privateProfile,
336 unsigned int weight_count,
337 const float* dec_weight_ideal_value,
338 unsigned int max_quant_level,
339 float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
340 float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
341 ) {
342 unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
343 unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
344
345 ASTCENC_ALIGNAS float angular_offsets[ANGULAR_STEPS];
346
347 compute_angular_offsets(weight_count, dec_weight_ideal_value,
348 max_angular_steps, angular_offsets);
349
350 ASTCENC_ALIGNAS float lowest_weight[ANGULAR_STEPS];
351 ASTCENC_ALIGNAS int32_t weight_span[ANGULAR_STEPS];
352 ASTCENC_ALIGNAS float error[ANGULAR_STEPS];
353 ASTCENC_ALIGNAS float cut_low_weight_error[ANGULAR_STEPS];
354 ASTCENC_ALIGNAS float cut_high_weight_error[ANGULAR_STEPS];
355
356 compute_lowest_and_highest_weight(privateProfile, weight_count, dec_weight_ideal_value,
357 max_angular_steps, max_quant_steps,
358 angular_offsets, lowest_weight, weight_span, error,
359 cut_low_weight_error, cut_high_weight_error);
360
361 // For each quantization level, find the best error terms. Use packed vectors so data-dependent
362 // branches can become selects. This involves some integer to float casts, but the values are
363 // small enough so they never round the wrong way.
364 vfloat4 best_results[36];
365
366 // Initialize the array to some safe defaults
367 promise(max_quant_steps > 0);
368 for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
369 {
370 // Lane<0> = Best error
371 // Lane<1> = Best scale; -1 indicates no solution found
372 // Lane<2> = Cut low weight
373 best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
374 }
375
376 promise(max_angular_steps > 0);
377 for (unsigned int i = 0; i < max_angular_steps; i++)
378 {
379 float i_flt = static_cast<float>(i);
380
381 int idx_span = weight_span[i];
382
383 float error_cut_low = error[i] + cut_low_weight_error[i];
384 float error_cut_high = error[i] + cut_high_weight_error[i];
385 float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
386
387 // Check best error against record N
388 vfloat4 best_result = best_results[idx_span];
389 vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
390 vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
391 best_results[idx_span] = select(best_result, new_result, mask);
392
393 // Check best error against record N-1 with either cut low or cut high
394 best_result = best_results[idx_span - 1];
395
396 new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
397 mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
398 best_result = select(best_result, new_result, mask);
399
400 new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
401 mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
402 best_results[idx_span - 1] = select(best_result, new_result, mask);
403
404 // Check best error against record N-2 with both cut low and high
405 best_result = best_results[idx_span - 2];
406 new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
407 mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
408 best_results[idx_span - 2] = select(best_result, new_result, mask);
409 }
410
411 for (unsigned int i = 0; i <= max_quant_level; i++)
412 {
413 unsigned int q = steps_for_quant_level[i];
414 int bsi = static_cast<int>(best_results[q].lane<1>());
415
416 // Did we find anything?
417 #if defined(ASTCENC_DIAGNOSTICS)
418 if ((bsi < 0) && print_once)
419 {
420 print_once = false;
421 printf("INFO: Unable to find full encoding within search error limit.\n\n");
422 }
423 #endif
424
425 bsi = astc::max(0, bsi);
426
427 float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
428 float hwi = lwi + static_cast<float>(q) - 1.0f;
429
430 float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
431 low_value[i] = (angular_offsets[bsi] + lwi) * stepsize;
432 high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
433 }
434 }
435
436 /* See header for documentation. */
compute_angular_endpoints_1plane(QualityProfile privateProfile,bool only_always,const block_size_descriptor & bsd,const float * dec_weight_ideal_value,unsigned int max_weight_quant,compression_working_buffers & tmpbuf)437 void compute_angular_endpoints_1plane(
438 QualityProfile privateProfile,
439 bool only_always,
440 const block_size_descriptor& bsd,
441 const float* dec_weight_ideal_value,
442 unsigned int max_weight_quant,
443 compression_working_buffers& tmpbuf
444 ) {
445 float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
446 float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
447
448 float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
449 float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
450
451 unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
452 : bsd.decimation_mode_count_selected;
453 promise(max_decimation_modes > 0);
454 for (unsigned int i = 0; i < max_decimation_modes; i++)
455 {
456 const decimation_mode& dm = bsd.decimation_modes[i];
457 if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant)))
458 {
459 continue;
460 }
461
462 unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
463
464 unsigned int max_precision = dm.maxprec_1plane;
465 if (max_precision > TUNE_MAX_ANGULAR_QUANT)
466 {
467 max_precision = TUNE_MAX_ANGULAR_QUANT;
468 }
469
470 if (max_precision > max_weight_quant)
471 {
472 max_precision = max_weight_quant;
473 }
474
475 compute_angular_endpoints_for_quant_levels(
476 privateProfile,
477 weight_count,
478 dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
479 max_precision, low_values[i], high_values[i]);
480 }
481
482 unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
483 : bsd.block_mode_count_1plane_selected;
484 promise(max_block_modes > 0);
485 for (unsigned int i = 0; i < max_block_modes; i++)
486 {
487 const block_mode& bm = bsd.block_modes[i];
488 assert(!bm.is_dual_plane);
489
490 unsigned int quant_mode = bm.quant_mode;
491 unsigned int decim_mode = bm.decimation_mode;
492
493 if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
494 {
495 low_value[i] = low_values[decim_mode][quant_mode];
496 high_value[i] = high_values[decim_mode][quant_mode];
497 }
498 else
499 {
500 low_value[i] = 0.0f;
501 high_value[i] = 1.0f;
502 }
503 }
504 }
505
506 /* See header for documentation. */
compute_angular_endpoints_2planes(QualityProfile privateProfile,const block_size_descriptor & bsd,const float * dec_weight_ideal_value,unsigned int max_weight_quant,compression_working_buffers & tmpbuf)507 void compute_angular_endpoints_2planes(
508 QualityProfile privateProfile,
509 const block_size_descriptor& bsd,
510 const float* dec_weight_ideal_value,
511 unsigned int max_weight_quant,
512 compression_working_buffers& tmpbuf
513 ) {
514 float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
515 float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
516 float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
517 float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
518
519 float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
520 float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
521 float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
522 float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
523
524 promise(bsd.decimation_mode_count_selected > 0);
525 for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
526 {
527 const decimation_mode& dm = bsd.decimation_modes[i];
528 if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant)))
529 {
530 continue;
531 }
532
533 unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
534
535 unsigned int max_precision = dm.maxprec_2planes;
536 if (max_precision > TUNE_MAX_ANGULAR_QUANT)
537 {
538 max_precision = TUNE_MAX_ANGULAR_QUANT;
539 }
540
541 if (max_precision > max_weight_quant)
542 {
543 max_precision = max_weight_quant;
544 }
545
546 compute_angular_endpoints_for_quant_levels(
547 privateProfile,
548 weight_count,
549 dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
550 max_precision, low_values1[i], high_values1[i]);
551
552 compute_angular_endpoints_for_quant_levels(
553 privateProfile,
554 weight_count,
555 dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
556 max_precision, low_values2[i], high_values2[i]);
557 }
558
559 unsigned int start = bsd.block_mode_count_1plane_selected;
560 unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
561 for (unsigned int i = start; i < end; i++)
562 {
563 const block_mode& bm = bsd.block_modes[i];
564 unsigned int quant_mode = bm.quant_mode;
565 unsigned int decim_mode = bm.decimation_mode;
566
567 if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
568 {
569 low_value1[i] = low_values1[decim_mode][quant_mode];
570 high_value1[i] = high_values1[decim_mode][quant_mode];
571 low_value2[i] = low_values2[decim_mode][quant_mode];
572 high_value2[i] = high_values2[decim_mode][quant_mode];
573 }
574 else
575 {
576 low_value1[i] = 0.0f;
577 high_value1[i] = 1.0f;
578 low_value2[i] = 0.0f;
579 high_value2[i] = 1.0f;
580 }
581 }
582 }
583
584 #endif
585