• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2013 Google Inc. All Rights Reserved.
2 
3    Distributed under MIT license.
4    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6 
7 /* Utilities for building Huffman decoding tables. */
8 
9 #include "huffman.h"
10 
11 #include <string.h>  /* memcpy, memset */
12 
13 #include <brotli/types.h>
14 
15 #include "../common/constants.h"
16 #include "../common/platform.h"
17 
18 #if defined(__cplusplus) || defined(c_plusplus)
19 extern "C" {
20 #endif
21 
22 #define BROTLI_REVERSE_BITS_MAX 8
23 
24 #if defined(BROTLI_RBIT)
25 #define BROTLI_REVERSE_BITS_BASE \
26   ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX)
27 #else
28 #define BROTLI_REVERSE_BITS_BASE 0
29 static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
30   0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
31   0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
32   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
33   0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
34   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
35   0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
36   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
37   0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
38   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
39   0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
40   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
41   0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
42   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
43   0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
44   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
45   0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
46   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
47   0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
48   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
49   0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
50   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
51   0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
52   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
53   0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
54   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
55   0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
56   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
57   0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
58   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
59   0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
60   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
61   0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
62 };
63 #endif  /* BROTLI_RBIT */
64 
65 #define BROTLI_REVERSE_BITS_LOWEST \
66   ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
67 
68 /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
69    where reverse(value, len) is the bit-wise reversal of the len least
70    significant bits of value. */
BrotliReverseBits(brotli_reg_t num)71 static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) {
72 #if defined(BROTLI_RBIT)
73   return BROTLI_RBIT(num);
74 #else
75   return kReverseBits[num];
76 #endif
77 }
78 
79 /* Stores code in table[0], table[step], table[2*step], ..., table[end] */
80 /* Assumes that end is an integer multiple of step */
ReplicateValue(HuffmanCode * table,int step,int end,HuffmanCode code)81 static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
82                                          int step, int end,
83                                          HuffmanCode code) {
84   do {
85     end -= step;
86     table[end] = code;
87   } while (end > 0);
88 }
89 
90 /* Returns the table width of the next 2nd level table. |count| is the histogram
91    of bit lengths for the remaining symbols, |len| is the code length of the
92    next processed symbol. */
NextTableBitSize(const uint16_t * const count,int len,int root_bits)93 static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
94                                           int len, int root_bits) {
95   int left = 1 << (len - root_bits);
96   while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
97     left -= count[len];
98     if (left <= 0) break;
99     ++len;
100     left <<= 1;
101   }
102   return len - root_bits;
103 }
104 
BrotliBuildCodeLengthsHuffmanTable(HuffmanCode * table,const uint8_t * const code_lengths,uint16_t * count)105 void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
106                                         const uint8_t* const code_lengths,
107                                         uint16_t* count) {
108   HuffmanCode code;       /* current table entry */
109   int symbol;             /* symbol index in original or sorted table */
110   brotli_reg_t key;       /* prefix code */
111   brotli_reg_t key_step;  /* prefix code addend */
112   int step;               /* step size to replicate values in current table */
113   int table_size;         /* size of current table */
114   int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
115   /* offsets in sorted table for each length */
116   int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
117   int bits;
118   int bits_count;
119   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
120                 BROTLI_REVERSE_BITS_MAX);
121   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH == 5);
122 
123   /* Generate offsets into sorted symbol table by code length. */
124   symbol = -1;
125   bits = 1;
126   /* BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH == 5 */
127   BROTLI_REPEAT_5({
128     symbol += count[bits];
129     offset[bits] = symbol;
130     bits++;
131   });
132   /* Symbols with code length 0 are placed after all other symbols. */
133   offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
134 
135   /* Sort symbols by length, by symbol order within each length. */
136   symbol = BROTLI_CODE_LENGTH_CODES;
137   do {
138     BROTLI_REPEAT_6({
139       symbol--;
140       sorted[offset[code_lengths[symbol]]--] = symbol;
141     });
142   } while (symbol != 0);
143 
144   table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
145 
146   /* Special case: all symbols but one have 0 code length. */
147   if (offset[0] == 0) {
148     code = ConstructHuffmanCode(0, (uint16_t)sorted[0]);
149     for (key = 0; key < (brotli_reg_t)table_size; ++key) {
150       table[key] = code;
151     }
152     return;
153   }
154 
155   /* Fill in table. */
156   key = 0;
157   key_step = BROTLI_REVERSE_BITS_LOWEST;
158   symbol = 0;
159   bits = 1;
160   step = 2;
161   do {
162     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
163       code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)sorted[symbol++]);
164       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
165       key += key_step;
166     }
167     step <<= 1;
168     key_step >>= 1;
169   } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
170 }
171 
BrotliBuildHuffmanTable(HuffmanCode * root_table,int root_bits,const uint16_t * const symbol_lists,uint16_t * count)172 uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
173                                  int root_bits,
174                                  const uint16_t* const symbol_lists,
175                                  uint16_t* count) {
176   HuffmanCode code;       /* current table entry */
177   HuffmanCode* table;     /* next available space in table */
178   int len;                /* current code length */
179   int symbol;             /* symbol index in original or sorted table */
180   brotli_reg_t key;       /* prefix code */
181   brotli_reg_t key_step;  /* prefix code addend */
182   brotli_reg_t sub_key;   /* 2nd level table prefix code */
183   brotli_reg_t sub_key_step;  /* 2nd level table prefix code addend */
184   int step;               /* step size to replicate values in current table */
185   int table_bits;         /* key length of current table */
186   int table_size;         /* size of current table */
187   int total_size;         /* sum of root table size and 2nd level table sizes */
188   int max_length = -1;
189   int bits;
190   int bits_count;
191 
192   BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
193   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
194                 BROTLI_REVERSE_BITS_MAX);
195 
196   while (symbol_lists[max_length] == 0xFFFF) max_length--;
197   max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
198 
199   table = root_table;
200   table_bits = root_bits;
201   table_size = 1 << table_bits;
202   total_size = table_size;
203 
204   /* Fill in the root table. Reduce the table size to if possible,
205      and create the repetitions by memcpy. */
206   if (table_bits > max_length) {
207     table_bits = max_length;
208     table_size = 1 << table_bits;
209   }
210   key = 0;
211   key_step = BROTLI_REVERSE_BITS_LOWEST;
212   bits = 1;
213   step = 2;
214   do {
215     symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
216     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
217       symbol = symbol_lists[symbol];
218       code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)symbol);
219       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
220       key += key_step;
221     }
222     step <<= 1;
223     key_step >>= 1;
224   } while (++bits <= table_bits);
225 
226   /* If root_bits != table_bits then replicate to fill the remaining slots. */
227   while (total_size != table_size) {
228     memcpy(&table[table_size], &table[0],
229            (size_t)table_size * sizeof(table[0]));
230     table_size <<= 1;
231   }
232 
233   /* Fill in 2nd level tables and add pointers to root table. */
234   key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
235   sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
236   sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
237   for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
238     symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
239     for (; count[len] != 0; --count[len]) {
240       if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
241         table += table_size;
242         table_bits = NextTableBitSize(count, len, root_bits);
243         table_size = 1 << table_bits;
244         total_size += table_size;
245         sub_key = BrotliReverseBits(key);
246         key += key_step;
247         root_table[sub_key] = ConstructHuffmanCode(
248             (uint8_t)(table_bits + root_bits),
249             (uint16_t)(((size_t)(table - root_table)) - sub_key));
250         sub_key = 0;
251       }
252       symbol = symbol_lists[symbol];
253       code = ConstructHuffmanCode((uint8_t)(len - root_bits), (uint16_t)symbol);
254       ReplicateValue(
255           &table[BrotliReverseBits(sub_key)], step, table_size, code);
256       sub_key += sub_key_step;
257     }
258     step <<= 1;
259     sub_key_step >>= 1;
260   }
261   return (uint32_t)total_size;
262 }
263 
BrotliBuildSimpleHuffmanTable(HuffmanCode * table,int root_bits,uint16_t * val,uint32_t num_symbols)264 uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
265                                        int root_bits,
266                                        uint16_t* val,
267                                        uint32_t num_symbols) {
268   uint32_t table_size = 1;
269   const uint32_t goal_size = 1U << root_bits;
270   switch (num_symbols) {
271     case 0:
272       table[0] = ConstructHuffmanCode(0, val[0]);
273       break;
274     case 1:
275       if (val[1] > val[0]) {
276         table[0] = ConstructHuffmanCode(1, val[0]);
277         table[1] = ConstructHuffmanCode(1, val[1]);
278       } else {
279         table[0] = ConstructHuffmanCode(1, val[1]);
280         table[1] = ConstructHuffmanCode(1, val[0]);
281       }
282       table_size = 2;
283       break;
284     case 2:
285       table[0] = ConstructHuffmanCode(1, val[0]);
286       table[2] = ConstructHuffmanCode(1, val[0]);
287       if (val[2] > val[1]) {
288         table[1] = ConstructHuffmanCode(2, val[1]);
289         table[3] = ConstructHuffmanCode(2, val[2]);
290       } else {
291         table[1] = ConstructHuffmanCode(2, val[2]);
292         table[3] = ConstructHuffmanCode(2, val[1]);
293       }
294       table_size = 4;
295       break;
296     case 3: {
297       int i, k;
298       for (i = 0; i < 3; ++i) {
299         for (k = i + 1; k < 4; ++k) {
300           if (val[k] < val[i]) {
301             uint16_t t = val[k];
302             val[k] = val[i];
303             val[i] = t;
304           }
305         }
306       }
307       table[0] = ConstructHuffmanCode(2, val[0]);
308       table[2] = ConstructHuffmanCode(2, val[1]);
309       table[1] = ConstructHuffmanCode(2, val[2]);
310       table[3] = ConstructHuffmanCode(2, val[3]);
311       table_size = 4;
312       break;
313     }
314     case 4: {
315       if (val[3] < val[2]) {
316         uint16_t t = val[3];
317         val[3] = val[2];
318         val[2] = t;
319       }
320       table[0] = ConstructHuffmanCode(1, val[0]);
321       table[1] = ConstructHuffmanCode(2, val[1]);
322       table[2] = ConstructHuffmanCode(1, val[0]);
323       table[3] = ConstructHuffmanCode(3, val[2]);
324       table[4] = ConstructHuffmanCode(1, val[0]);
325       table[5] = ConstructHuffmanCode(2, val[1]);
326       table[6] = ConstructHuffmanCode(1, val[0]);
327       table[7] = ConstructHuffmanCode(3, val[3]);
328       table_size = 8;
329       break;
330     }
331   }
332   while (table_size != goal_size) {
333     memcpy(&table[table_size], &table[0],
334            (size_t)table_size * sizeof(table[0]));
335     table_size <<= 1;
336   }
337   return goal_size;
338 }
339 
340 #if defined(__cplusplus) || defined(c_plusplus)
341 }  /* extern "C" */
342 #endif
343