• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * G.726 ADPCM audio codec
3  * Copyright (c) 2004 Roman Shaposhnik
4  *
5  * This is a very straightforward rendition of the G.726
6  * Section 4 "Computational Details".
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "config_components.h"
26 
27 #include <limits.h>
28 
29 #include "libavutil/channel_layout.h"
30 #include "libavutil/opt.h"
31 #include "avcodec.h"
32 #include "codec_internal.h"
33 #include "encode.h"
34 #include "internal.h"
35 #include "get_bits.h"
36 #include "put_bits.h"
37 
38 /**
39  * G.726 11-bit float.
40  * G.726 Standard uses rather odd 11-bit floating point arithmetic for
41  * numerous occasions. It's a mystery to me why they did it this way
42  * instead of simply using 32-bit integer arithmetic.
43  */
44 typedef struct Float11 {
45     uint8_t sign;   /**< 1 bit sign */
46     uint8_t exp;    /**< 4 bits exponent */
47     uint8_t mant;   /**< 6 bits mantissa */
48 } Float11;
49 
i2f(int i,Float11 * f)50 static inline Float11* i2f(int i, Float11* f)
51 {
52     f->sign = (i < 0);
53     if (f->sign)
54         i = -i;
55     f->exp = av_log2_16bit(i) + !!i;
56     f->mant = i? (i<<6) >> f->exp : 1<<5;
57     return f;
58 }
59 
mult(Float11 * f1,Float11 * f2)60 static inline int16_t mult(Float11* f1, Float11* f2)
61 {
62         int res, exp;
63 
64         exp = f1->exp + f2->exp;
65         res = (((f1->mant * f2->mant) + 0x30) >> 4);
66         res = exp > 19 ? res << (exp - 19) : res >> (19 - exp);
67         return (f1->sign ^ f2->sign) ? -res : res;
68 }
69 
sgn(int value)70 static inline int sgn(int value)
71 {
72     return (value < 0) ? -1 : 1;
73 }
74 
75 typedef struct G726Tables {
76     const int* quant;         /**< quantization table */
77     const int16_t* iquant;    /**< inverse quantization table */
78     const int16_t* W;         /**< special table #1 ;-) */
79     const uint8_t* F;         /**< special table #2 */
80 } G726Tables;
81 
82 typedef struct G726Context {
83     AVClass *class;
84     G726Tables tbls;    /**< static tables needed for computation */
85 
86     Float11 sr[2];      /**< prev. reconstructed samples */
87     Float11 dq[6];      /**< prev. difference */
88     int a[2];           /**< second order predictor coeffs */
89     int b[6];           /**< sixth order predictor coeffs */
90     int pk[2];          /**< signs of prev. 2 sez + dq */
91 
92     int ap;             /**< scale factor control */
93     int yu;             /**< fast scale factor */
94     int yl;             /**< slow scale factor */
95     int dms;            /**< short average magnitude of F[i] */
96     int dml;            /**< long average magnitude of F[i] */
97     int td;             /**< tone detect */
98 
99     int se;             /**< estimated signal for the next iteration */
100     int sez;            /**< estimated second order prediction */
101     int y;              /**< quantizer scaling factor for the next iteration */
102     int code_size;
103     int little_endian;  /**< little-endian bitstream as used in aiff and Sun AU */
104 } G726Context;
105 
106 static const int quant_tbl16[] =                  /**< 16kbit/s 2 bits per sample */
107            { 260, INT_MAX };
108 static const int16_t iquant_tbl16[] =
109            { 116, 365, 365, 116 };
110 static const int16_t W_tbl16[] =
111            { -22, 439, 439, -22 };
112 static const uint8_t F_tbl16[] =
113            { 0, 7, 7, 0 };
114 
115 static const int quant_tbl24[] =                  /**< 24kbit/s 3 bits per sample */
116            {  7, 217, 330, INT_MAX };
117 static const int16_t iquant_tbl24[] =
118            { INT16_MIN, 135, 273, 373, 373, 273, 135, INT16_MIN };
119 static const int16_t W_tbl24[] =
120            { -4,  30, 137, 582, 582, 137,  30, -4 };
121 static const uint8_t F_tbl24[] =
122            { 0, 1, 2, 7, 7, 2, 1, 0 };
123 
124 static const int quant_tbl32[] =                  /**< 32kbit/s 4 bits per sample */
125            { -125,  79, 177, 245, 299, 348, 399, INT_MAX };
126 static const int16_t iquant_tbl32[] =
127          { INT16_MIN,   4, 135, 213, 273, 323, 373, 425,
128                  425, 373, 323, 273, 213, 135,   4, INT16_MIN };
129 static const int16_t W_tbl32[] =
130            { -12,  18,  41,  64, 112, 198, 355, 1122,
131             1122, 355, 198, 112,  64,  41,  18, -12};
132 static const uint8_t F_tbl32[] =
133            { 0, 0, 0, 1, 1, 1, 3, 7, 7, 3, 1, 1, 1, 0, 0, 0 };
134 
135 static const int quant_tbl40[] =                  /**< 40kbit/s 5 bits per sample */
136            { -122, -16,  67, 138, 197, 249, 297, 338,
137               377, 412, 444, 474, 501, 527, 552, INT_MAX };
138 static const int16_t iquant_tbl40[] =
139          { INT16_MIN, -66,  28, 104, 169, 224, 274, 318,
140                  358, 395, 429, 459, 488, 514, 539, 566,
141                  566, 539, 514, 488, 459, 429, 395, 358,
142                  318, 274, 224, 169, 104,  28, -66, INT16_MIN };
143 static const int16_t W_tbl40[] =
144            {   14,  14,  24,  39,  40,  41,   58,  100,
145               141, 179, 219, 280, 358, 440,  529,  696,
146               696, 529, 440, 358, 280, 219,  179,  141,
147               100,  58,  41,  40,  39,  24,   14,   14 };
148 static const uint8_t F_tbl40[] =
149            { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6,
150              6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
151 
152 static const G726Tables G726Tables_pool[] =
153            {{ quant_tbl16, iquant_tbl16, W_tbl16, F_tbl16 },
154             { quant_tbl24, iquant_tbl24, W_tbl24, F_tbl24 },
155             { quant_tbl32, iquant_tbl32, W_tbl32, F_tbl32 },
156             { quant_tbl40, iquant_tbl40, W_tbl40, F_tbl40 }};
157 
158 
159 /**
160  * Paragraph 4.2.2 page 18: Adaptive quantizer.
161  */
quant(G726Context * c,int d)162 static inline uint8_t quant(G726Context* c, int d)
163 {
164     int sign, exp, i, dln;
165 
166     sign = i = 0;
167     if (d < 0) {
168         sign = 1;
169         d = -d;
170     }
171     exp = av_log2_16bit(d);
172     dln = ((exp<<7) + (((d<<7)>>exp)&0x7f)) - (c->y>>2);
173 
174     while (c->tbls.quant[i] < INT_MAX && c->tbls.quant[i] < dln)
175         ++i;
176 
177     if (sign)
178         i = ~i;
179     if (c->code_size != 2 && i == 0) /* I'm not sure this is a good idea */
180         i = 0xff;
181 
182     return i;
183 }
184 
185 /**
186  * Paragraph 4.2.3 page 22: Inverse adaptive quantizer.
187  */
inverse_quant(G726Context * c,int i)188 static inline int16_t inverse_quant(G726Context* c, int i)
189 {
190     int dql, dex, dqt;
191 
192     dql = c->tbls.iquant[i] + (c->y >> 2);
193     dex = (dql>>7) & 0xf;        /* 4-bit exponent */
194     dqt = (1<<7) + (dql & 0x7f); /* log2 -> linear */
195     return (dql < 0) ? 0 : ((dqt<<dex) >> 7);
196 }
197 
g726_decode(G726Context * c,int I)198 static int16_t g726_decode(G726Context* c, int I)
199 {
200     int dq, re_signal, pk0, fa1, i, tr, ylint, ylfrac, thr2, al, dq0;
201     Float11 f;
202     int I_sig= I >> (c->code_size - 1);
203 
204     dq = inverse_quant(c, I);
205 
206     /* Transition detect */
207     ylint = (c->yl >> 15);
208     ylfrac = (c->yl >> 10) & 0x1f;
209     thr2 = (ylint > 9) ? 0x1f << 10 : (0x20 + ylfrac) << ylint;
210     tr= (c->td == 1 && dq > ((3*thr2)>>2));
211 
212     if (I_sig)  /* get the sign */
213         dq = -dq;
214     re_signal = (int16_t)(c->se + dq);
215 
216     /* Update second order predictor coefficient A2 and A1 */
217     pk0 = (c->sez + dq) ? sgn(c->sez + dq) : 0;
218     dq0 = dq ? sgn(dq) : 0;
219     if (tr) {
220         c->a[0] = 0;
221         c->a[1] = 0;
222         for (i=0; i<6; i++)
223             c->b[i] = 0;
224     } else {
225         /* This is a bit crazy, but it really is +255 not +256 */
226         fa1 = av_clip_intp2((-c->a[0]*c->pk[0]*pk0)>>5, 8);
227 
228         c->a[1] += 128*pk0*c->pk[1] + fa1 - (c->a[1]>>7);
229         c->a[1] = av_clip(c->a[1], -12288, 12288);
230         c->a[0] += 64*3*pk0*c->pk[0] - (c->a[0] >> 8);
231         c->a[0] = av_clip(c->a[0], -(15360 - c->a[1]), 15360 - c->a[1]);
232 
233         for (i=0; i<6; i++)
234             c->b[i] += 128*dq0*sgn(-c->dq[i].sign) - (c->b[i]>>8);
235     }
236 
237     /* Update Dq and Sr and Pk */
238     c->pk[1] = c->pk[0];
239     c->pk[0] = pk0 ? pk0 : 1;
240     c->sr[1] = c->sr[0];
241     i2f(re_signal, &c->sr[0]);
242     for (i=5; i>0; i--)
243         c->dq[i] = c->dq[i-1];
244     i2f(dq, &c->dq[0]);
245     c->dq[0].sign = I_sig; /* Isn't it crazy ?!?! */
246 
247     c->td = c->a[1] < -11776;
248 
249     /* Update Ap */
250     c->dms += (c->tbls.F[I]<<4) + ((- c->dms) >> 5);
251     c->dml += (c->tbls.F[I]<<4) + ((- c->dml) >> 7);
252     if (tr)
253         c->ap = 256;
254     else {
255         c->ap += (-c->ap) >> 4;
256         if (c->y <= 1535 || c->td || abs((c->dms << 2) - c->dml) >= (c->dml >> 3))
257             c->ap += 0x20;
258     }
259 
260     /* Update Yu and Yl */
261     c->yu = av_clip(c->y + c->tbls.W[I] + ((-c->y)>>5), 544, 5120);
262     c->yl += c->yu + ((-c->yl)>>6);
263 
264     /* Next iteration for Y */
265     al = (c->ap >= 256) ? 1<<6 : c->ap >> 2;
266     c->y = (c->yl + (c->yu - (c->yl>>6))*al) >> 6;
267 
268     /* Next iteration for SE and SEZ */
269     c->se = 0;
270     for (i=0; i<6; i++)
271         c->se += mult(i2f(c->b[i] >> 2, &f), &c->dq[i]);
272     c->sez = c->se >> 1;
273     for (i=0; i<2; i++)
274         c->se += mult(i2f(c->a[i] >> 2, &f), &c->sr[i]);
275     c->se >>= 1;
276 
277     return av_clip(re_signal * 4, -0xffff, 0xffff);
278 }
279 
g726_reset(G726Context * c)280 static av_cold int g726_reset(G726Context *c)
281 {
282     int i;
283 
284     c->tbls = G726Tables_pool[c->code_size - 2];
285     for (i=0; i<2; i++) {
286         c->sr[i].mant = 1<<5;
287         c->pk[i] = 1;
288     }
289     for (i=0; i<6; i++) {
290         c->dq[i].mant = 1<<5;
291     }
292     c->yu = 544;
293     c->yl = 34816;
294 
295     c->y = 544;
296 
297     return 0;
298 }
299 
300 #if CONFIG_ADPCM_G726_ENCODER || CONFIG_ADPCM_G726LE_ENCODER
g726_encode(G726Context * c,int16_t sig)301 static int16_t g726_encode(G726Context* c, int16_t sig)
302 {
303     uint8_t i;
304 
305     i = av_mod_uintp2(quant(c, sig/4 - c->se), c->code_size);
306     g726_decode(c, i);
307     return i;
308 }
309 
310 /* Interfacing to the libavcodec */
311 
g726_encode_init(AVCodecContext * avctx)312 static av_cold int g726_encode_init(AVCodecContext *avctx)
313 {
314     G726Context* c = avctx->priv_data;
315 
316     c->little_endian = !strcmp(avctx->codec->name, "g726le");
317 
318     if (avctx->strict_std_compliance > FF_COMPLIANCE_UNOFFICIAL &&
319         avctx->sample_rate != 8000) {
320         av_log(avctx, AV_LOG_ERROR, "Sample rates other than 8kHz are not "
321                "allowed when the compliance level is higher than unofficial. "
322                "Resample or reduce the compliance level.\n");
323         return AVERROR(EINVAL);
324     }
325     if (avctx->sample_rate <= 0) {
326         av_log(avctx, AV_LOG_ERROR, "Invalid sample rate %d\n",
327                avctx->sample_rate);
328         return AVERROR(EINVAL);
329     }
330 
331     if (avctx->ch_layout.nb_channels != 1) {
332         av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
333         return AVERROR(EINVAL);
334     }
335 
336     if (avctx->bit_rate)
337         c->code_size = (avctx->bit_rate + avctx->sample_rate/2) / avctx->sample_rate;
338 
339     c->code_size = av_clip(c->code_size, 2, 5);
340     avctx->bit_rate = c->code_size * avctx->sample_rate;
341     avctx->bits_per_coded_sample = c->code_size;
342 
343     g726_reset(c);
344 
345     /* select a frame size that will end on a byte boundary and have a size of
346        approximately 1024 bytes */
347     avctx->frame_size = ((int[]){ 4096, 2736, 2048, 1640 })[c->code_size - 2];
348 
349     return 0;
350 }
351 
g726_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)352 static int g726_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
353                              const AVFrame *frame, int *got_packet_ptr)
354 {
355     G726Context *c = avctx->priv_data;
356     const int16_t *samples = (const int16_t *)frame->data[0];
357     PutBitContext pb;
358     int i, ret, out_size;
359 
360     out_size = (frame->nb_samples * c->code_size + 7) / 8;
361     if ((ret = ff_get_encode_buffer(avctx, avpkt, out_size, 0)) < 0)
362         return ret;
363     init_put_bits(&pb, avpkt->data, avpkt->size);
364 
365     for (i = 0; i < frame->nb_samples; i++)
366         if (c->little_endian) {
367             put_bits_le(&pb, c->code_size, g726_encode(c, *samples++));
368         } else {
369             put_bits(&pb, c->code_size, g726_encode(c, *samples++));
370         }
371 
372     if (c->little_endian) {
373         flush_put_bits_le(&pb);
374     } else {
375         flush_put_bits(&pb);
376     }
377 
378     *got_packet_ptr = 1;
379     return 0;
380 }
381 
382 #define OFFSET(x) offsetof(G726Context, x)
383 #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
384 static const AVOption options[] = {
385     { "code_size", "Bits per code", OFFSET(code_size), AV_OPT_TYPE_INT, { .i64 = 4 }, 2, 5, AE },
386     { NULL },
387 };
388 
389 static const AVClass g726_class = {
390     .class_name = "g726",
391     .item_name  = av_default_item_name,
392     .option     = options,
393     .version    = LIBAVUTIL_VERSION_INT,
394 };
395 
396 static const FFCodecDefault defaults[] = {
397     { "b", "0" },
398     { NULL },
399 };
400 #endif
401 
402 #if CONFIG_ADPCM_G726_ENCODER
403 const FFCodec ff_adpcm_g726_encoder = {
404     .p.name         = "g726",
405     .p.long_name    = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
406     .p.type         = AVMEDIA_TYPE_AUDIO,
407     .p.id           = AV_CODEC_ID_ADPCM_G726,
408     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME,
409     .priv_data_size = sizeof(G726Context),
410     .init           = g726_encode_init,
411     FF_CODEC_ENCODE_CB(g726_encode_frame),
412     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
413                                                      AV_SAMPLE_FMT_NONE },
414     .p.priv_class   = &g726_class,
415     .defaults       = defaults,
416     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
417 };
418 #endif
419 
420 #if CONFIG_ADPCM_G726LE_ENCODER
421 const FFCodec ff_adpcm_g726le_encoder = {
422     .p.name         = "g726le",
423     .p.long_name    = NULL_IF_CONFIG_SMALL("G.726 little endian ADPCM (\"right-justified\")"),
424     .p.type         = AVMEDIA_TYPE_AUDIO,
425     .p.id           = AV_CODEC_ID_ADPCM_G726LE,
426     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME,
427     .priv_data_size = sizeof(G726Context),
428     .init           = g726_encode_init,
429     FF_CODEC_ENCODE_CB(g726_encode_frame),
430     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
431                                                      AV_SAMPLE_FMT_NONE },
432     .p.priv_class   = &g726_class,
433     .defaults       = defaults,
434     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
435 };
436 #endif
437 
438 #if CONFIG_ADPCM_G726_DECODER || CONFIG_ADPCM_G726LE_DECODER
g726_decode_init(AVCodecContext * avctx)439 static av_cold int g726_decode_init(AVCodecContext *avctx)
440 {
441     G726Context* c = avctx->priv_data;
442 
443     if (avctx->ch_layout.nb_channels > 1){
444         avpriv_request_sample(avctx, "Decoding more than one channel");
445         return AVERROR_PATCHWELCOME;
446     }
447     av_channel_layout_uninit(&avctx->ch_layout);
448     avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
449 
450     c->little_endian = !strcmp(avctx->codec->name, "g726le");
451 
452     c->code_size = avctx->bits_per_coded_sample;
453     if (c->code_size < 2 || c->code_size > 5) {
454         av_log(avctx, AV_LOG_ERROR, "Invalid number of bits %d\n", c->code_size);
455         return AVERROR(EINVAL);
456     }
457     g726_reset(c);
458 
459     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
460 
461     return 0;
462 }
463 
g726_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)464 static int g726_decode_frame(AVCodecContext *avctx, AVFrame *frame,
465                              int *got_frame_ptr, AVPacket *avpkt)
466 {
467     const uint8_t *buf = avpkt->data;
468     int buf_size = avpkt->size;
469     G726Context *c = avctx->priv_data;
470     int16_t *samples;
471     GetBitContext gb;
472     int out_samples, ret;
473 
474     out_samples = buf_size * 8 / c->code_size;
475 
476     /* get output buffer */
477     frame->nb_samples = out_samples;
478     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
479         return ret;
480     samples = (int16_t *)frame->data[0];
481 
482     init_get_bits(&gb, buf, buf_size * 8);
483 
484     while (out_samples--)
485         *samples++ = g726_decode(c, c->little_endian ?
486                                     get_bits_le(&gb, c->code_size) :
487                                     get_bits(&gb, c->code_size));
488 
489     if (get_bits_left(&gb) > 0)
490         av_log(avctx, AV_LOG_ERROR, "Frame invalidly split, missing parser?\n");
491 
492     *got_frame_ptr = 1;
493 
494     return buf_size;
495 }
496 
g726_decode_flush(AVCodecContext * avctx)497 static void g726_decode_flush(AVCodecContext *avctx)
498 {
499     G726Context *c = avctx->priv_data;
500     g726_reset(c);
501 }
502 #endif
503 
504 #if CONFIG_ADPCM_G726_DECODER
505 const FFCodec ff_adpcm_g726_decoder = {
506     .p.name         = "g726",
507     .p.long_name    = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
508     .p.type         = AVMEDIA_TYPE_AUDIO,
509     .p.id           = AV_CODEC_ID_ADPCM_G726,
510     .priv_data_size = sizeof(G726Context),
511     .init           = g726_decode_init,
512     FF_CODEC_DECODE_CB(g726_decode_frame),
513     .flush          = g726_decode_flush,
514     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
515     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
516 };
517 #endif
518 
519 #if CONFIG_ADPCM_G726LE_DECODER
520 const FFCodec ff_adpcm_g726le_decoder = {
521     .p.name         = "g726le",
522     .p.type         = AVMEDIA_TYPE_AUDIO,
523     .p.id           = AV_CODEC_ID_ADPCM_G726LE,
524     .priv_data_size = sizeof(G726Context),
525     .init           = g726_decode_init,
526     FF_CODEC_DECODE_CB(g726_decode_frame),
527     .flush          = g726_decode_flush,
528     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
529     .p.long_name    = NULL_IF_CONFIG_SMALL("G.726 ADPCM little-endian"),
530     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
531 };
532 #endif
533