• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MagicYUV decoder
3  * Copyright (c) 2016 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdlib.h>
23 #include <string.h>
24 
25 #define CACHED_BITSTREAM_READER !ARCH_X86_32
26 
27 #include "libavutil/pixdesc.h"
28 
29 #include "avcodec.h"
30 #include "bytestream.h"
31 #include "codec_internal.h"
32 #include "get_bits.h"
33 #include "huffyuvdsp.h"
34 #include "internal.h"
35 #include "lossless_videodsp.h"
36 #include "thread.h"
37 
38 typedef struct Slice {
39     uint32_t start;
40     uint32_t size;
41 } Slice;
42 
43 typedef enum Prediction {
44     LEFT = 1,
45     GRADIENT,
46     MEDIAN,
47 } Prediction;
48 
49 typedef struct HuffEntry {
50     uint8_t  len;
51     uint16_t sym;
52 } HuffEntry;
53 
54 typedef struct MagicYUVContext {
55     AVFrame          *p;
56     int               max;
57     int               bps;
58     int               slice_height;
59     int               nb_slices;
60     int               planes;         // number of encoded planes in bitstream
61     int               decorrelate;    // postprocessing work
62     int               color_matrix;   // video color matrix
63     int               flags;
64     int               interlaced;     // video is interlaced
65     const uint8_t    *buf;            // pointer to AVPacket->data
66     int               hshift[4];
67     int               vshift[4];
68     Slice            *slices[4];      // slice bitstream positions for each plane
69     unsigned int      slices_size[4]; // slice sizes for each plane
70     VLC               vlc[4];         // VLC for each plane
71     int (*magy_decode_slice)(AVCodecContext *avctx, void *tdata,
72                              int j, int threadnr);
73     LLVidDSPContext   llviddsp;
74 } MagicYUVContext;
75 
huff_build(const uint8_t len[],uint16_t codes_pos[33],VLC * vlc,int nb_elems,void * logctx)76 static int huff_build(const uint8_t len[], uint16_t codes_pos[33],
77                       VLC *vlc, int nb_elems, void *logctx)
78 {
79     HuffEntry he[4096];
80 
81     for (int i = 31; i > 0; i--)
82         codes_pos[i] += codes_pos[i + 1];
83 
84     for (unsigned i = nb_elems; i-- > 0;)
85         he[--codes_pos[len[i]]] = (HuffEntry){ len[i], i };
86 
87     ff_free_vlc(vlc);
88     return ff_init_vlc_from_lengths(vlc, FFMIN(he[0].len, 12), nb_elems,
89                                     &he[0].len, sizeof(he[0]),
90                                     &he[0].sym, sizeof(he[0]), sizeof(he[0].sym),
91                                     0, 0, logctx);
92 }
93 
magicyuv_median_pred16(uint16_t * dst,const uint16_t * src1,const uint16_t * diff,intptr_t w,int * left,int * left_top,int max)94 static void magicyuv_median_pred16(uint16_t *dst, const uint16_t *src1,
95                                    const uint16_t *diff, intptr_t w,
96                                    int *left, int *left_top, int max)
97 {
98     int i;
99     uint16_t l, lt;
100 
101     l  = *left;
102     lt = *left_top;
103 
104     for (i = 0; i < w; i++) {
105         l      = mid_pred(l, src1[i], (l + src1[i] - lt)) + diff[i];
106         l     &= max;
107         lt     = src1[i];
108         dst[i] = l;
109     }
110 
111     *left     = l;
112     *left_top = lt;
113 }
114 
magy_decode_slice10(AVCodecContext * avctx,void * tdata,int j,int threadnr)115 static int magy_decode_slice10(AVCodecContext *avctx, void *tdata,
116                                int j, int threadnr)
117 {
118     MagicYUVContext *s = avctx->priv_data;
119     int interlaced = s->interlaced;
120     const int bps = s->bps;
121     const int max = s->max - 1;
122     AVFrame *p = s->p;
123     int i, k, x;
124     GetBitContext gb;
125     uint16_t *dst;
126 
127     for (i = 0; i < s->planes; i++) {
128         int left, lefttop, top;
129         int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
130         int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
131         int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
132         ptrdiff_t fake_stride = (p->linesize[i] / 2) * (1 + interlaced);
133         ptrdiff_t stride = p->linesize[i] / 2;
134         int flags, pred;
135         int ret = init_get_bits8(&gb, s->buf + s->slices[i][j].start,
136                                  s->slices[i][j].size);
137 
138         if (ret < 0)
139             return ret;
140 
141         flags = get_bits(&gb, 8);
142         pred  = get_bits(&gb, 8);
143 
144         dst = (uint16_t *)p->data[i] + j * sheight * stride;
145         if (flags & 1) {
146             if (get_bits_left(&gb) < bps * width * height)
147                 return AVERROR_INVALIDDATA;
148             for (k = 0; k < height; k++) {
149                 for (x = 0; x < width; x++)
150                     dst[x] = get_bits(&gb, bps);
151 
152                 dst += stride;
153             }
154         } else {
155             for (k = 0; k < height; k++) {
156                 for (x = 0; x < width; x++) {
157                     int pix;
158                     if (get_bits_left(&gb) <= 0)
159                         return AVERROR_INVALIDDATA;
160 
161                     pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
162                     if (pix < 0)
163                         return AVERROR_INVALIDDATA;
164 
165                     dst[x] = pix;
166                 }
167                 dst += stride;
168             }
169         }
170 
171         switch (pred) {
172         case LEFT:
173             dst = (uint16_t *)p->data[i] + j * sheight * stride;
174             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
175             dst += stride;
176             if (interlaced) {
177                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
178                 dst += stride;
179             }
180             for (k = 1 + interlaced; k < height; k++) {
181                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, dst[-fake_stride]);
182                 dst += stride;
183             }
184             break;
185         case GRADIENT:
186             dst = (uint16_t *)p->data[i] + j * sheight * stride;
187             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
188             dst += stride;
189             if (interlaced) {
190                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
191                 dst += stride;
192             }
193             for (k = 1 + interlaced; k < height; k++) {
194                 top = dst[-fake_stride];
195                 left = top + dst[0];
196                 dst[0] = left & max;
197                 for (x = 1; x < width; x++) {
198                     top = dst[x - fake_stride];
199                     lefttop = dst[x - (fake_stride + 1)];
200                     left += top - lefttop + dst[x];
201                     dst[x] = left & max;
202                 }
203                 dst += stride;
204             }
205             break;
206         case MEDIAN:
207             dst = (uint16_t *)p->data[i] + j * sheight * stride;
208             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
209             dst += stride;
210             if (interlaced) {
211                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
212                 dst += stride;
213             }
214             lefttop = left = dst[0];
215             for (k = 1 + interlaced; k < height; k++) {
216                 magicyuv_median_pred16(dst, dst - fake_stride, dst, width, &left, &lefttop, max);
217                 lefttop = left = dst[0];
218                 dst += stride;
219             }
220             break;
221         default:
222             avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
223         }
224     }
225 
226     if (s->decorrelate) {
227         int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
228         int width = avctx->coded_width;
229         uint16_t *r = (uint16_t *)p->data[0] + j * s->slice_height * p->linesize[0] / 2;
230         uint16_t *g = (uint16_t *)p->data[1] + j * s->slice_height * p->linesize[1] / 2;
231         uint16_t *b = (uint16_t *)p->data[2] + j * s->slice_height * p->linesize[2] / 2;
232 
233         for (i = 0; i < height; i++) {
234             for (k = 0; k < width; k++) {
235                 b[k] = (b[k] + g[k]) & max;
236                 r[k] = (r[k] + g[k]) & max;
237             }
238             b += p->linesize[0] / 2;
239             g += p->linesize[1] / 2;
240             r += p->linesize[2] / 2;
241         }
242     }
243 
244     return 0;
245 }
246 
magy_decode_slice(AVCodecContext * avctx,void * tdata,int j,int threadnr)247 static int magy_decode_slice(AVCodecContext *avctx, void *tdata,
248                              int j, int threadnr)
249 {
250     MagicYUVContext *s = avctx->priv_data;
251     int interlaced = s->interlaced;
252     AVFrame *p = s->p;
253     int i, k, x, min_width;
254     GetBitContext gb;
255     uint8_t *dst;
256 
257     for (i = 0; i < s->planes; i++) {
258         int left, lefttop, top;
259         int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
260         int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
261         int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
262         ptrdiff_t fake_stride = p->linesize[i] * (1 + interlaced);
263         ptrdiff_t stride = p->linesize[i];
264         const uint8_t *slice = s->buf + s->slices[i][j].start;
265         int flags, pred;
266 
267         flags = bytestream_get_byte(&slice);
268         pred  = bytestream_get_byte(&slice);
269 
270         dst = p->data[i] + j * sheight * stride;
271         if (flags & 1) {
272             if (s->slices[i][j].size - 2 < width * height)
273                 return AVERROR_INVALIDDATA;
274             for (k = 0; k < height; k++) {
275                 bytestream_get_buffer(&slice, dst, width);
276                 dst += stride;
277             }
278         } else {
279             int ret = init_get_bits8(&gb, slice, s->slices[i][j].size - 2);
280 
281             if (ret < 0)
282                 return ret;
283 
284             for (k = 0; k < height; k++) {
285                 for (x = 0; x < width; x++) {
286                     int pix;
287                     if (get_bits_left(&gb) <= 0)
288                         return AVERROR_INVALIDDATA;
289 
290                     pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
291                     if (pix < 0)
292                         return AVERROR_INVALIDDATA;
293 
294                     dst[x] = pix;
295                 }
296                 dst += stride;
297             }
298         }
299 
300         switch (pred) {
301         case LEFT:
302             dst = p->data[i] + j * sheight * stride;
303             s->llviddsp.add_left_pred(dst, dst, width, 0);
304             dst += stride;
305             if (interlaced) {
306                 s->llviddsp.add_left_pred(dst, dst, width, 0);
307                 dst += stride;
308             }
309             for (k = 1 + interlaced; k < height; k++) {
310                 s->llviddsp.add_left_pred(dst, dst, width, dst[-fake_stride]);
311                 dst += stride;
312             }
313             break;
314         case GRADIENT:
315             dst = p->data[i] + j * sheight * stride;
316             s->llviddsp.add_left_pred(dst, dst, width, 0);
317             dst += stride;
318             if (interlaced) {
319                 s->llviddsp.add_left_pred(dst, dst, width, 0);
320                 dst += stride;
321             }
322             min_width = FFMIN(width, 32);
323             for (k = 1 + interlaced; k < height; k++) {
324                 top = dst[-fake_stride];
325                 left = top + dst[0];
326                 dst[0] = left;
327                 for (x = 1; x < min_width; x++) { /* dsp need aligned 32 */
328                     top = dst[x - fake_stride];
329                     lefttop = dst[x - (fake_stride + 1)];
330                     left += top - lefttop + dst[x];
331                     dst[x] = left;
332                 }
333                 if (width > 32)
334                     s->llviddsp.add_gradient_pred(dst + 32, fake_stride, width - 32);
335                 dst += stride;
336             }
337             break;
338         case MEDIAN:
339             dst = p->data[i] + j * sheight * stride;
340             s->llviddsp.add_left_pred(dst, dst, width, 0);
341             dst += stride;
342             if (interlaced) {
343                 s->llviddsp.add_left_pred(dst, dst, width, 0);
344                 dst += stride;
345             }
346             lefttop = left = dst[0];
347             for (k = 1 + interlaced; k < height; k++) {
348                 s->llviddsp.add_median_pred(dst, dst - fake_stride,
349                                              dst, width, &left, &lefttop);
350                 lefttop = left = dst[0];
351                 dst += stride;
352             }
353             break;
354         default:
355             avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
356         }
357     }
358 
359     if (s->decorrelate) {
360         int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
361         int width = avctx->coded_width;
362         uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
363         uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
364         uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
365 
366         for (i = 0; i < height; i++) {
367             s->llviddsp.add_bytes(b, g, width);
368             s->llviddsp.add_bytes(r, g, width);
369             b += p->linesize[0];
370             g += p->linesize[1];
371             r += p->linesize[2];
372         }
373     }
374 
375     return 0;
376 }
377 
build_huffman(AVCodecContext * avctx,const uint8_t * table,int table_size,int max)378 static int build_huffman(AVCodecContext *avctx, const uint8_t *table,
379                          int table_size, int max)
380 {
381     MagicYUVContext *s = avctx->priv_data;
382     GetByteContext gb;
383     uint8_t len[4096];
384     uint16_t length_count[33] = { 0 };
385     int i = 0, j = 0, k;
386 
387     bytestream2_init(&gb, table, table_size);
388 
389     while (bytestream2_get_bytes_left(&gb) > 0) {
390         int b = bytestream2_peek_byteu(&gb) &  0x80;
391         int x = bytestream2_get_byteu(&gb)  & ~0x80;
392         int l = 1;
393 
394         if (b) {
395             if (bytestream2_get_bytes_left(&gb) <= 0)
396                 break;
397             l += bytestream2_get_byteu(&gb);
398         }
399         k = j + l;
400         if (k > max || x == 0 || x > 32) {
401             av_log(avctx, AV_LOG_ERROR, "Invalid Huffman codes\n");
402             return AVERROR_INVALIDDATA;
403         }
404 
405         length_count[x] += l;
406         for (; j < k; j++)
407             len[j] = x;
408 
409         if (j == max) {
410             j = 0;
411             if (huff_build(len, length_count, &s->vlc[i], max, avctx)) {
412                 av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
413                 return AVERROR_INVALIDDATA;
414             }
415             i++;
416             if (i == s->planes) {
417                 break;
418             }
419             memset(length_count, 0, sizeof(length_count));
420         }
421     }
422 
423     if (i != s->planes) {
424         av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
425         return AVERROR_INVALIDDATA;
426     }
427 
428     return 0;
429 }
430 
magy_decode_frame(AVCodecContext * avctx,AVFrame * p,int * got_frame,AVPacket * avpkt)431 static int magy_decode_frame(AVCodecContext *avctx, AVFrame *p,
432                              int *got_frame, AVPacket *avpkt)
433 {
434     MagicYUVContext *s = avctx->priv_data;
435     GetByteContext gb;
436     uint32_t first_offset, offset, next_offset, header_size, slice_width;
437     int width, height, format, version, table_size;
438     int ret, i, j;
439 
440     if (avpkt->size < 36)
441         return AVERROR_INVALIDDATA;
442 
443     bytestream2_init(&gb, avpkt->data, avpkt->size);
444     if (bytestream2_get_le32u(&gb) != MKTAG('M', 'A', 'G', 'Y'))
445         return AVERROR_INVALIDDATA;
446 
447     header_size = bytestream2_get_le32u(&gb);
448     if (header_size < 32 || header_size >= avpkt->size) {
449         av_log(avctx, AV_LOG_ERROR,
450                "header or packet too small %"PRIu32"\n", header_size);
451         return AVERROR_INVALIDDATA;
452     }
453 
454     version = bytestream2_get_byteu(&gb);
455     if (version != 7) {
456         avpriv_request_sample(avctx, "Version %d", version);
457         return AVERROR_PATCHWELCOME;
458     }
459 
460     s->hshift[1] =
461     s->vshift[1] =
462     s->hshift[2] =
463     s->vshift[2] = 0;
464     s->decorrelate = 0;
465     s->bps = 8;
466 
467     format = bytestream2_get_byteu(&gb);
468     switch (format) {
469     case 0x65:
470         avctx->pix_fmt = AV_PIX_FMT_GBRP;
471         s->decorrelate = 1;
472         break;
473     case 0x66:
474         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
475         s->decorrelate = 1;
476         break;
477     case 0x67:
478         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
479         break;
480     case 0x68:
481         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
482         s->hshift[1] =
483         s->hshift[2] = 1;
484         break;
485     case 0x69:
486         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
487         s->hshift[1] =
488         s->vshift[1] =
489         s->hshift[2] =
490         s->vshift[2] = 1;
491         break;
492     case 0x6a:
493         avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
494         break;
495     case 0x6b:
496         avctx->pix_fmt = AV_PIX_FMT_GRAY8;
497         break;
498     case 0x6c:
499         avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
500         s->hshift[1] =
501         s->hshift[2] = 1;
502         s->bps = 10;
503         break;
504     case 0x76:
505         avctx->pix_fmt = AV_PIX_FMT_YUV444P10;
506         s->bps = 10;
507         break;
508     case 0x6d:
509         avctx->pix_fmt = AV_PIX_FMT_GBRP10;
510         s->decorrelate = 1;
511         s->bps = 10;
512         break;
513     case 0x6e:
514         avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
515         s->decorrelate = 1;
516         s->bps = 10;
517         break;
518     case 0x6f:
519         avctx->pix_fmt = AV_PIX_FMT_GBRP12;
520         s->decorrelate = 1;
521         s->bps = 12;
522         break;
523     case 0x70:
524         avctx->pix_fmt = AV_PIX_FMT_GBRAP12;
525         s->decorrelate = 1;
526         s->bps = 12;
527         break;
528     case 0x73:
529         avctx->pix_fmt = AV_PIX_FMT_GRAY10;
530         s->bps = 10;
531         break;
532     case 0x7b:
533         avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
534         s->hshift[1] =
535         s->vshift[1] =
536         s->hshift[2] =
537         s->vshift[2] = 1;
538         s->bps = 10;
539         break;
540     default:
541         avpriv_request_sample(avctx, "Format 0x%X", format);
542         return AVERROR_PATCHWELCOME;
543     }
544     s->max = 1 << s->bps;
545     s->magy_decode_slice = s->bps == 8 ? magy_decode_slice : magy_decode_slice10;
546     s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
547 
548     bytestream2_skipu(&gb, 1);
549     s->color_matrix = bytestream2_get_byteu(&gb);
550     s->flags        = bytestream2_get_byteu(&gb);
551     s->interlaced   = !!(s->flags & 2);
552     bytestream2_skipu(&gb, 3);
553 
554     width  = bytestream2_get_le32u(&gb);
555     height = bytestream2_get_le32u(&gb);
556     ret = ff_set_dimensions(avctx, width, height);
557     if (ret < 0)
558         return ret;
559 
560     slice_width = bytestream2_get_le32u(&gb);
561     if (slice_width != avctx->coded_width) {
562         avpriv_request_sample(avctx, "Slice width %"PRIu32, slice_width);
563         return AVERROR_PATCHWELCOME;
564     }
565     s->slice_height = bytestream2_get_le32u(&gb);
566     if (s->slice_height <= 0 || s->slice_height > INT_MAX - avctx->coded_height) {
567         av_log(avctx, AV_LOG_ERROR,
568                "invalid slice height: %d\n", s->slice_height);
569         return AVERROR_INVALIDDATA;
570     }
571 
572     bytestream2_skipu(&gb, 4);
573 
574     s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
575     if (s->nb_slices > INT_MAX / FFMAX(sizeof(Slice), 4 * 5)) {
576         av_log(avctx, AV_LOG_ERROR,
577                "invalid number of slices: %d\n", s->nb_slices);
578         return AVERROR_INVALIDDATA;
579     }
580 
581     if (s->interlaced) {
582         if ((s->slice_height >> s->vshift[1]) < 2) {
583             av_log(avctx, AV_LOG_ERROR, "impossible slice height\n");
584             return AVERROR_INVALIDDATA;
585         }
586         if ((avctx->coded_height % s->slice_height) && ((avctx->coded_height % s->slice_height) >> s->vshift[1]) < 2) {
587             av_log(avctx, AV_LOG_ERROR, "impossible height\n");
588             return AVERROR_INVALIDDATA;
589         }
590     }
591 
592     if (bytestream2_get_bytes_left(&gb) <= s->nb_slices * s->planes * 5)
593         return AVERROR_INVALIDDATA;
594     for (i = 0; i < s->planes; i++) {
595         av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
596         if (!s->slices[i])
597             return AVERROR(ENOMEM);
598 
599         offset = bytestream2_get_le32u(&gb);
600         if (offset >= avpkt->size - header_size)
601             return AVERROR_INVALIDDATA;
602 
603         if (i == 0)
604             first_offset = offset;
605 
606         for (j = 0; j < s->nb_slices - 1; j++) {
607             s->slices[i][j].start = offset + header_size;
608 
609             next_offset = bytestream2_get_le32u(&gb);
610             if (next_offset <= offset || next_offset >= avpkt->size - header_size)
611                 return AVERROR_INVALIDDATA;
612 
613             s->slices[i][j].size = next_offset - offset;
614             if (s->slices[i][j].size < 2)
615                 return AVERROR_INVALIDDATA;
616             offset = next_offset;
617         }
618 
619         s->slices[i][j].start = offset + header_size;
620         s->slices[i][j].size  = avpkt->size - s->slices[i][j].start;
621 
622         if (s->slices[i][j].size < 2)
623             return AVERROR_INVALIDDATA;
624     }
625 
626     if (bytestream2_get_byteu(&gb) != s->planes)
627         return AVERROR_INVALIDDATA;
628 
629     bytestream2_skipu(&gb, s->nb_slices * s->planes);
630 
631     table_size = header_size + first_offset - bytestream2_tell(&gb);
632     if (table_size < 2)
633         return AVERROR_INVALIDDATA;
634 
635     ret = build_huffman(avctx, avpkt->data + bytestream2_tell(&gb),
636                         table_size, s->max);
637     if (ret < 0)
638         return ret;
639 
640     p->pict_type = AV_PICTURE_TYPE_I;
641     p->key_frame = 1;
642 
643     if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
644         return ret;
645 
646     s->buf = avpkt->data;
647     s->p = p;
648     avctx->execute2(avctx, s->magy_decode_slice, NULL, NULL, s->nb_slices);
649 
650     if (avctx->pix_fmt == AV_PIX_FMT_GBRP   ||
651         avctx->pix_fmt == AV_PIX_FMT_GBRAP  ||
652         avctx->pix_fmt == AV_PIX_FMT_GBRP10 ||
653         avctx->pix_fmt == AV_PIX_FMT_GBRAP10||
654         avctx->pix_fmt == AV_PIX_FMT_GBRAP12||
655         avctx->pix_fmt == AV_PIX_FMT_GBRP12) {
656         FFSWAP(uint8_t*, p->data[0], p->data[1]);
657         FFSWAP(int, p->linesize[0], p->linesize[1]);
658     } else {
659         switch (s->color_matrix) {
660         case 1:
661             p->colorspace = AVCOL_SPC_BT470BG;
662             break;
663         case 2:
664             p->colorspace = AVCOL_SPC_BT709;
665             break;
666         }
667         p->color_range = (s->flags & 4) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
668     }
669 
670     *got_frame = 1;
671 
672     return avpkt->size;
673 }
674 
magy_decode_init(AVCodecContext * avctx)675 static av_cold int magy_decode_init(AVCodecContext *avctx)
676 {
677     MagicYUVContext *s = avctx->priv_data;
678     ff_llviddsp_init(&s->llviddsp);
679     return 0;
680 }
681 
magy_decode_end(AVCodecContext * avctx)682 static av_cold int magy_decode_end(AVCodecContext *avctx)
683 {
684     MagicYUVContext * const s = avctx->priv_data;
685     int i;
686 
687     for (i = 0; i < FF_ARRAY_ELEMS(s->slices); i++) {
688         av_freep(&s->slices[i]);
689         s->slices_size[i] = 0;
690         ff_free_vlc(&s->vlc[i]);
691     }
692 
693     return 0;
694 }
695 
696 const FFCodec ff_magicyuv_decoder = {
697     .p.name           = "magicyuv",
698     .p.long_name      = NULL_IF_CONFIG_SMALL("MagicYUV video"),
699     .p.type           = AVMEDIA_TYPE_VIDEO,
700     .p.id             = AV_CODEC_ID_MAGICYUV,
701     .priv_data_size   = sizeof(MagicYUVContext),
702     .init             = magy_decode_init,
703     .close            = magy_decode_end,
704     FF_CODEC_DECODE_CB(magy_decode_frame),
705     .p.capabilities   = AV_CODEC_CAP_DR1 |
706                         AV_CODEC_CAP_FRAME_THREADS |
707                         AV_CODEC_CAP_SLICE_THREADS,
708     .caps_internal    = FF_CODEC_CAP_INIT_THREADSAFE,
709 };
710