• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Simple free lossless/lossy audio codec
3  * Copyright (c) 2004 Alex Beregszaszi
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "config_components.h"
23 
24 #include "avcodec.h"
25 #include "codec_internal.h"
26 #include "encode.h"
27 #include "get_bits.h"
28 #include "golomb.h"
29 #include "internal.h"
30 #include "put_golomb.h"
31 #include "rangecoder.h"
32 
33 
34 /**
35  * @file
36  * Simple free lossless/lossy audio codec
37  * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
38  * Written and designed by Alex Beregszaszi
39  *
40  * TODO:
41  *  - CABAC put/get_symbol
42  *  - independent quantizer for channels
43  *  - >2 channels support
44  *  - more decorrelation types
45  *  - more tap_quant tests
46  *  - selectable intlist writers/readers (bonk-style, golomb, cabac)
47  */
48 
49 #define MAX_CHANNELS 2
50 
51 #define MID_SIDE 0
52 #define LEFT_SIDE 1
53 #define RIGHT_SIDE 2
54 
55 typedef struct SonicContext {
56     int version;
57     int minor_version;
58     int lossless, decorrelation;
59 
60     int num_taps, downsampling;
61     double quantization;
62 
63     int channels, samplerate, block_align, frame_size;
64 
65     int *tap_quant;
66     int *int_samples;
67     int *coded_samples[MAX_CHANNELS];
68 
69     // for encoding
70     int *tail;
71     int tail_size;
72     int *window;
73     int window_size;
74 
75     // for decoding
76     int *predictor_k;
77     int *predictor_state[MAX_CHANNELS];
78 } SonicContext;
79 
80 #define LATTICE_SHIFT   10
81 #define SAMPLE_SHIFT    4
82 #define LATTICE_FACTOR  (1 << LATTICE_SHIFT)
83 #define SAMPLE_FACTOR   (1 << SAMPLE_SHIFT)
84 
85 #define BASE_QUANT      0.6
86 #define RATE_VARIATION  3.0
87 
shift(int a,int b)88 static inline int shift(int a,int b)
89 {
90     return (a+(1<<(b-1))) >> b;
91 }
92 
shift_down(int a,int b)93 static inline int shift_down(int a,int b)
94 {
95     return (a>>b)+(a<0);
96 }
97 
put_symbol(RangeCoder * c,uint8_t * state,int v,int is_signed,uint64_t rc_stat[256][2],uint64_t rc_stat2[32][2])98 static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
99     int i;
100 
101 #define put_rac(C,S,B) \
102 do{\
103     if(rc_stat){\
104         rc_stat[*(S)][B]++;\
105         rc_stat2[(S)-state][B]++;\
106     }\
107     put_rac(C,S,B);\
108 }while(0)
109 
110     if(v){
111         const int a= FFABS(v);
112         const int e= av_log2(a);
113         put_rac(c, state+0, 0);
114         if(e<=9){
115             for(i=0; i<e; i++){
116                 put_rac(c, state+1+i, 1);  //1..10
117             }
118             put_rac(c, state+1+i, 0);
119 
120             for(i=e-1; i>=0; i--){
121                 put_rac(c, state+22+i, (a>>i)&1); //22..31
122             }
123 
124             if(is_signed)
125                 put_rac(c, state+11 + e, v < 0); //11..21
126         }else{
127             for(i=0; i<e; i++){
128                 put_rac(c, state+1+FFMIN(i,9), 1);  //1..10
129             }
130             put_rac(c, state+1+9, 0);
131 
132             for(i=e-1; i>=0; i--){
133                 put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
134             }
135 
136             if(is_signed)
137                 put_rac(c, state+11 + 10, v < 0); //11..21
138         }
139     }else{
140         put_rac(c, state+0, 1);
141     }
142 #undef put_rac
143 }
144 
get_symbol(RangeCoder * c,uint8_t * state,int is_signed)145 static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
146     if(get_rac(c, state+0))
147         return 0;
148     else{
149         int i, e;
150         unsigned a;
151         e= 0;
152         while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
153             e++;
154             if (e > 31)
155                 return AVERROR_INVALIDDATA;
156         }
157 
158         a= 1;
159         for(i=e-1; i>=0; i--){
160             a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
161         }
162 
163         e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
164         return (a^e)-e;
165     }
166 }
167 
168 #if 1
intlist_write(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)169 static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
170 {
171     int i;
172 
173     for (i = 0; i < entries; i++)
174         put_symbol(c, state, buf[i], 1, NULL, NULL);
175 
176     return 1;
177 }
178 
intlist_read(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)179 static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
180 {
181     int i;
182 
183     for (i = 0; i < entries; i++)
184         buf[i] = get_symbol(c, state, 1);
185 
186     return 1;
187 }
188 #elif 1
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)189 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
190 {
191     int i;
192 
193     for (i = 0; i < entries; i++)
194         set_se_golomb(pb, buf[i]);
195 
196     return 1;
197 }
198 
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)199 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
200 {
201     int i;
202 
203     for (i = 0; i < entries; i++)
204         buf[i] = get_se_golomb(gb);
205 
206     return 1;
207 }
208 
209 #else
210 
211 #define ADAPT_LEVEL 8
212 
bits_to_store(uint64_t x)213 static int bits_to_store(uint64_t x)
214 {
215     int res = 0;
216 
217     while(x)
218     {
219         res++;
220         x >>= 1;
221     }
222     return res;
223 }
224 
write_uint_max(PutBitContext * pb,unsigned int value,unsigned int max)225 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
226 {
227     int i, bits;
228 
229     if (!max)
230         return;
231 
232     bits = bits_to_store(max);
233 
234     for (i = 0; i < bits-1; i++)
235         put_bits(pb, 1, value & (1 << i));
236 
237     if ( (value | (1 << (bits-1))) <= max)
238         put_bits(pb, 1, value & (1 << (bits-1)));
239 }
240 
read_uint_max(GetBitContext * gb,int max)241 static unsigned int read_uint_max(GetBitContext *gb, int max)
242 {
243     int i, bits, value = 0;
244 
245     if (!max)
246         return 0;
247 
248     bits = bits_to_store(max);
249 
250     for (i = 0; i < bits-1; i++)
251         if (get_bits1(gb))
252             value += 1 << i;
253 
254     if ( (value | (1<<(bits-1))) <= max)
255         if (get_bits1(gb))
256             value += 1 << (bits-1);
257 
258     return value;
259 }
260 
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)261 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
262 {
263     int i, j, x = 0, low_bits = 0, max = 0;
264     int step = 256, pos = 0, dominant = 0, any = 0;
265     int *copy, *bits;
266 
267     copy = av_calloc(entries, sizeof(*copy));
268     if (!copy)
269         return AVERROR(ENOMEM);
270 
271     if (base_2_part)
272     {
273         int energy = 0;
274 
275         for (i = 0; i < entries; i++)
276             energy += abs(buf[i]);
277 
278         low_bits = bits_to_store(energy / (entries * 2));
279         if (low_bits > 15)
280             low_bits = 15;
281 
282         put_bits(pb, 4, low_bits);
283     }
284 
285     for (i = 0; i < entries; i++)
286     {
287         put_bits(pb, low_bits, abs(buf[i]));
288         copy[i] = abs(buf[i]) >> low_bits;
289         if (copy[i] > max)
290             max = abs(copy[i]);
291     }
292 
293     bits = av_calloc(entries*max, sizeof(*bits));
294     if (!bits)
295     {
296         av_free(copy);
297         return AVERROR(ENOMEM);
298     }
299 
300     for (i = 0; i <= max; i++)
301     {
302         for (j = 0; j < entries; j++)
303             if (copy[j] >= i)
304                 bits[x++] = copy[j] > i;
305     }
306 
307     // store bitstream
308     while (pos < x)
309     {
310         int steplet = step >> 8;
311 
312         if (pos + steplet > x)
313             steplet = x - pos;
314 
315         for (i = 0; i < steplet; i++)
316             if (bits[i+pos] != dominant)
317                 any = 1;
318 
319         put_bits(pb, 1, any);
320 
321         if (!any)
322         {
323             pos += steplet;
324             step += step / ADAPT_LEVEL;
325         }
326         else
327         {
328             int interloper = 0;
329 
330             while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
331                 interloper++;
332 
333             // note change
334             write_uint_max(pb, interloper, (step >> 8) - 1);
335 
336             pos += interloper + 1;
337             step -= step / ADAPT_LEVEL;
338         }
339 
340         if (step < 256)
341         {
342             step = 65536 / step;
343             dominant = !dominant;
344         }
345     }
346 
347     // store signs
348     for (i = 0; i < entries; i++)
349         if (buf[i])
350             put_bits(pb, 1, buf[i] < 0);
351 
352     av_free(bits);
353     av_free(copy);
354 
355     return 0;
356 }
357 
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)358 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
359 {
360     int i, low_bits = 0, x = 0;
361     int n_zeros = 0, step = 256, dominant = 0;
362     int pos = 0, level = 0;
363     int *bits = av_calloc(entries, sizeof(*bits));
364 
365     if (!bits)
366         return AVERROR(ENOMEM);
367 
368     if (base_2_part)
369     {
370         low_bits = get_bits(gb, 4);
371 
372         if (low_bits)
373             for (i = 0; i < entries; i++)
374                 buf[i] = get_bits(gb, low_bits);
375     }
376 
377 //    av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
378 
379     while (n_zeros < entries)
380     {
381         int steplet = step >> 8;
382 
383         if (!get_bits1(gb))
384         {
385             for (i = 0; i < steplet; i++)
386                 bits[x++] = dominant;
387 
388             if (!dominant)
389                 n_zeros += steplet;
390 
391             step += step / ADAPT_LEVEL;
392         }
393         else
394         {
395             int actual_run = read_uint_max(gb, steplet-1);
396 
397 //            av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
398 
399             for (i = 0; i < actual_run; i++)
400                 bits[x++] = dominant;
401 
402             bits[x++] = !dominant;
403 
404             if (!dominant)
405                 n_zeros += actual_run;
406             else
407                 n_zeros++;
408 
409             step -= step / ADAPT_LEVEL;
410         }
411 
412         if (step < 256)
413         {
414             step = 65536 / step;
415             dominant = !dominant;
416         }
417     }
418 
419     // reconstruct unsigned values
420     n_zeros = 0;
421     for (i = 0; n_zeros < entries; i++)
422     {
423         while(1)
424         {
425             if (pos >= entries)
426             {
427                 pos = 0;
428                 level += 1 << low_bits;
429             }
430 
431             if (buf[pos] >= level)
432                 break;
433 
434             pos++;
435         }
436 
437         if (bits[i])
438             buf[pos] += 1 << low_bits;
439         else
440             n_zeros++;
441 
442         pos++;
443     }
444     av_free(bits);
445 
446     // read signs
447     for (i = 0; i < entries; i++)
448         if (buf[i] && get_bits1(gb))
449             buf[i] = -buf[i];
450 
451 //    av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
452 
453     return 0;
454 }
455 #endif
456 
predictor_init_state(int * k,int * state,int order)457 static void predictor_init_state(int *k, int *state, int order)
458 {
459     int i;
460 
461     for (i = order-2; i >= 0; i--)
462     {
463         int j, p, x = state[i];
464 
465         for (j = 0, p = i+1; p < order; j++,p++)
466             {
467             int tmp = x + shift_down(k[j] * (unsigned)state[p], LATTICE_SHIFT);
468             state[p] += shift_down(k[j]* (unsigned)x, LATTICE_SHIFT);
469             x = tmp;
470         }
471     }
472 }
473 
predictor_calc_error(int * k,int * state,int order,int error)474 static int predictor_calc_error(int *k, int *state, int order, int error)
475 {
476     int i, x = error - (unsigned)shift_down(k[order-1] *  (unsigned)state[order-1], LATTICE_SHIFT);
477 
478 #if 1
479     int *k_ptr = &(k[order-2]),
480         *state_ptr = &(state[order-2]);
481     for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
482     {
483         int k_value = *k_ptr, state_value = *state_ptr;
484         x -= (unsigned)shift_down(k_value * (unsigned)state_value, LATTICE_SHIFT);
485         state_ptr[1] = state_value + shift_down(k_value * (unsigned)x, LATTICE_SHIFT);
486     }
487 #else
488     for (i = order-2; i >= 0; i--)
489     {
490         x -= (unsigned)shift_down(k[i] * state[i], LATTICE_SHIFT);
491         state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
492     }
493 #endif
494 
495     // don't drift too far, to avoid overflows
496     if (x >  (SAMPLE_FACTOR<<16)) x =  (SAMPLE_FACTOR<<16);
497     if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
498 
499     state[0] = x;
500 
501     return x;
502 }
503 
504 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
505 // Heavily modified Levinson-Durbin algorithm which
506 // copes better with quantization, and calculates the
507 // actual whitened result as it goes.
508 
modified_levinson_durbin(int * window,int window_entries,int * out,int out_entries,int channels,int * tap_quant)509 static void modified_levinson_durbin(int *window, int window_entries,
510         int *out, int out_entries, int channels, int *tap_quant)
511 {
512     int i;
513     int *state = window + window_entries;
514 
515     memcpy(state, window, window_entries * sizeof(*state));
516 
517     for (i = 0; i < out_entries; i++)
518     {
519         int step = (i+1)*channels, k, j;
520         double xx = 0.0, xy = 0.0;
521 #if 1
522         int *x_ptr = &(window[step]);
523         int *state_ptr = &(state[0]);
524         j = window_entries - step;
525         for (;j>0;j--,x_ptr++,state_ptr++)
526         {
527             double x_value = *x_ptr;
528             double state_value = *state_ptr;
529             xx += state_value*state_value;
530             xy += x_value*state_value;
531         }
532 #else
533         for (j = 0; j <= (window_entries - step); j++);
534         {
535             double stepval = window[step+j];
536             double stateval = window[j];
537 //            xx += (double)window[j]*(double)window[j];
538 //            xy += (double)window[step+j]*(double)window[j];
539             xx += stateval*stateval;
540             xy += stepval*stateval;
541         }
542 #endif
543         if (xx == 0.0)
544             k = 0;
545         else
546             k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
547 
548         if (k > (LATTICE_FACTOR/tap_quant[i]))
549             k = LATTICE_FACTOR/tap_quant[i];
550         if (-k > (LATTICE_FACTOR/tap_quant[i]))
551             k = -(LATTICE_FACTOR/tap_quant[i]);
552 
553         out[i] = k;
554         k *= tap_quant[i];
555 
556 #if 1
557         x_ptr = &(window[step]);
558         state_ptr = &(state[0]);
559         j = window_entries - step;
560         for (;j>0;j--,x_ptr++,state_ptr++)
561         {
562             int x_value = *x_ptr;
563             int state_value = *state_ptr;
564             *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
565             *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
566         }
567 #else
568         for (j=0; j <= (window_entries - step); j++)
569         {
570             int stepval = window[step+j];
571             int stateval=state[j];
572             window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
573             state[j] += shift_down(k * stepval, LATTICE_SHIFT);
574         }
575 #endif
576     }
577 }
578 
code_samplerate(int samplerate)579 static inline int code_samplerate(int samplerate)
580 {
581     switch (samplerate)
582     {
583         case 44100: return 0;
584         case 22050: return 1;
585         case 11025: return 2;
586         case 96000: return 3;
587         case 48000: return 4;
588         case 32000: return 5;
589         case 24000: return 6;
590         case 16000: return 7;
591         case 8000: return 8;
592     }
593     return AVERROR(EINVAL);
594 }
595 
sonic_encode_init(AVCodecContext * avctx)596 static av_cold int sonic_encode_init(AVCodecContext *avctx)
597 {
598     SonicContext *s = avctx->priv_data;
599     int *coded_samples;
600     PutBitContext pb;
601     int i;
602 
603     s->version = 2;
604 
605     if (avctx->ch_layout.nb_channels > MAX_CHANNELS)
606     {
607         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
608         return AVERROR(EINVAL); /* only stereo or mono for now */
609     }
610 
611     if (avctx->ch_layout.nb_channels == 2)
612         s->decorrelation = MID_SIDE;
613     else
614         s->decorrelation = 3;
615 
616     if (avctx->codec->id == AV_CODEC_ID_SONIC_LS)
617     {
618         s->lossless = 1;
619         s->num_taps = 32;
620         s->downsampling = 1;
621         s->quantization = 0.0;
622     }
623     else
624     {
625         s->num_taps = 128;
626         s->downsampling = 2;
627         s->quantization = 1.0;
628     }
629 
630     // max tap 2048
631     if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) {
632         av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
633         return AVERROR_INVALIDDATA;
634     }
635 
636     // generate taps
637     s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
638     if (!s->tap_quant)
639         return AVERROR(ENOMEM);
640 
641     for (i = 0; i < s->num_taps; i++)
642         s->tap_quant[i] = ff_sqrt(i+1);
643 
644     s->channels = avctx->ch_layout.nb_channels;
645     s->samplerate = avctx->sample_rate;
646 
647     s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
648     s->frame_size = s->channels*s->block_align*s->downsampling;
649 
650     s->tail_size = s->num_taps*s->channels;
651     s->tail = av_calloc(s->tail_size, sizeof(*s->tail));
652     if (!s->tail)
653         return AVERROR(ENOMEM);
654 
655     s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) );
656     if (!s->predictor_k)
657         return AVERROR(ENOMEM);
658 
659     coded_samples = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
660     if (!coded_samples)
661         return AVERROR(ENOMEM);
662     for (i = 0; i < s->channels; i++, coded_samples += s->block_align)
663         s->coded_samples[i] = coded_samples;
664 
665     s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
666 
667     s->window_size = ((2*s->tail_size)+s->frame_size);
668     s->window = av_calloc(s->window_size, 2 * sizeof(*s->window));
669     if (!s->window || !s->int_samples)
670         return AVERROR(ENOMEM);
671 
672     avctx->extradata = av_mallocz(16);
673     if (!avctx->extradata)
674         return AVERROR(ENOMEM);
675     init_put_bits(&pb, avctx->extradata, 16*8);
676 
677     put_bits(&pb, 2, s->version); // version
678     if (s->version >= 1)
679     {
680         if (s->version >= 2) {
681             put_bits(&pb, 8, s->version);
682             put_bits(&pb, 8, s->minor_version);
683         }
684         put_bits(&pb, 2, s->channels);
685         put_bits(&pb, 4, code_samplerate(s->samplerate));
686     }
687     put_bits(&pb, 1, s->lossless);
688     if (!s->lossless)
689         put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
690     put_bits(&pb, 2, s->decorrelation);
691     put_bits(&pb, 2, s->downsampling);
692     put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
693     put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
694 
695     flush_put_bits(&pb);
696     avctx->extradata_size = put_bytes_output(&pb);
697 
698     av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
699         s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
700 
701     avctx->frame_size = s->block_align*s->downsampling;
702 
703     return 0;
704 }
705 
sonic_encode_close(AVCodecContext * avctx)706 static av_cold int sonic_encode_close(AVCodecContext *avctx)
707 {
708     SonicContext *s = avctx->priv_data;
709 
710     av_freep(&s->coded_samples[0]);
711     av_freep(&s->predictor_k);
712     av_freep(&s->tail);
713     av_freep(&s->tap_quant);
714     av_freep(&s->window);
715     av_freep(&s->int_samples);
716 
717     return 0;
718 }
719 
sonic_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)720 static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
721                               const AVFrame *frame, int *got_packet_ptr)
722 {
723     SonicContext *s = avctx->priv_data;
724     RangeCoder c;
725     int i, j, ch, quant = 0, x = 0;
726     int ret;
727     const short *samples = (const int16_t*)frame->data[0];
728     uint8_t state[32];
729 
730     if ((ret = ff_alloc_packet(avctx, avpkt, s->frame_size * 5 + 1000)) < 0)
731         return ret;
732 
733     ff_init_range_encoder(&c, avpkt->data, avpkt->size);
734     ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
735     memset(state, 128, sizeof(state));
736 
737     // short -> internal
738     for (i = 0; i < s->frame_size; i++)
739         s->int_samples[i] = samples[i];
740 
741     if (!s->lossless)
742         for (i = 0; i < s->frame_size; i++)
743             s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
744 
745     switch(s->decorrelation)
746     {
747         case MID_SIDE:
748             for (i = 0; i < s->frame_size; i += s->channels)
749             {
750                 s->int_samples[i] += s->int_samples[i+1];
751                 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
752             }
753             break;
754         case LEFT_SIDE:
755             for (i = 0; i < s->frame_size; i += s->channels)
756                 s->int_samples[i+1] -= s->int_samples[i];
757             break;
758         case RIGHT_SIDE:
759             for (i = 0; i < s->frame_size; i += s->channels)
760                 s->int_samples[i] -= s->int_samples[i+1];
761             break;
762     }
763 
764     memset(s->window, 0, s->window_size * sizeof(*s->window));
765 
766     for (i = 0; i < s->tail_size; i++)
767         s->window[x++] = s->tail[i];
768 
769     for (i = 0; i < s->frame_size; i++)
770         s->window[x++] = s->int_samples[i];
771 
772     for (i = 0; i < s->tail_size; i++)
773         s->window[x++] = 0;
774 
775     for (i = 0; i < s->tail_size; i++)
776         s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
777 
778     // generate taps
779     modified_levinson_durbin(s->window, s->window_size,
780                 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
781 
782     if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0)
783         return ret;
784 
785     for (ch = 0; ch < s->channels; ch++)
786     {
787         x = s->tail_size+ch;
788         for (i = 0; i < s->block_align; i++)
789         {
790             int sum = 0;
791             for (j = 0; j < s->downsampling; j++, x += s->channels)
792                 sum += s->window[x];
793             s->coded_samples[ch][i] = sum;
794         }
795     }
796 
797     // simple rate control code
798     if (!s->lossless)
799     {
800         double energy1 = 0.0, energy2 = 0.0;
801         for (ch = 0; ch < s->channels; ch++)
802         {
803             for (i = 0; i < s->block_align; i++)
804             {
805                 double sample = s->coded_samples[ch][i];
806                 energy2 += sample*sample;
807                 energy1 += fabs(sample);
808             }
809         }
810 
811         energy2 = sqrt(energy2/(s->channels*s->block_align));
812         energy1 = M_SQRT2*energy1/(s->channels*s->block_align);
813 
814         // increase bitrate when samples are like a gaussian distribution
815         // reduce bitrate when samples are like a two-tailed exponential distribution
816 
817         if (energy2 > energy1)
818             energy2 += (energy2-energy1)*RATE_VARIATION;
819 
820         quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
821 //        av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
822 
823         quant = av_clip(quant, 1, 65534);
824 
825         put_symbol(&c, state, quant, 0, NULL, NULL);
826 
827         quant *= SAMPLE_FACTOR;
828     }
829 
830     // write out coded samples
831     for (ch = 0; ch < s->channels; ch++)
832     {
833         if (!s->lossless)
834             for (i = 0; i < s->block_align; i++)
835                 s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant);
836 
837         if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0)
838             return ret;
839     }
840 
841     avpkt->size = ff_rac_terminate(&c, 0);
842     *got_packet_ptr = 1;
843     return 0;
844 
845 }
846 #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
847 
848 #if CONFIG_SONIC_DECODER
849 static const int samplerate_table[] =
850     { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
851 
sonic_decode_init(AVCodecContext * avctx)852 static av_cold int sonic_decode_init(AVCodecContext *avctx)
853 {
854     SonicContext *s = avctx->priv_data;
855     int *tmp;
856     GetBitContext gb;
857     int i;
858     int ret;
859 
860     s->channels = avctx->ch_layout.nb_channels;
861     s->samplerate = avctx->sample_rate;
862 
863     if (!avctx->extradata)
864     {
865         av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
866         return AVERROR_INVALIDDATA;
867     }
868 
869     ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size);
870     if (ret < 0)
871         return ret;
872 
873     s->version = get_bits(&gb, 2);
874     if (s->version >= 2) {
875         s->version       = get_bits(&gb, 8);
876         s->minor_version = get_bits(&gb, 8);
877     }
878     if (s->version != 2)
879     {
880         av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
881         return AVERROR_INVALIDDATA;
882     }
883 
884     if (s->version >= 1)
885     {
886         int sample_rate_index;
887         s->channels = get_bits(&gb, 2);
888         sample_rate_index = get_bits(&gb, 4);
889         if (sample_rate_index >= FF_ARRAY_ELEMS(samplerate_table)) {
890             av_log(avctx, AV_LOG_ERROR, "Invalid sample_rate_index %d\n", sample_rate_index);
891             return AVERROR_INVALIDDATA;
892         }
893         s->samplerate = samplerate_table[sample_rate_index];
894         av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
895             s->channels, s->samplerate);
896     }
897 
898     if (s->channels > MAX_CHANNELS || s->channels < 1)
899     {
900         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
901         return AVERROR_INVALIDDATA;
902     }
903     av_channel_layout_uninit(&avctx->ch_layout);
904     avctx->ch_layout.order       = AV_CHANNEL_ORDER_UNSPEC;
905     avctx->ch_layout.nb_channels = s->channels;
906 
907     s->lossless = get_bits1(&gb);
908     if (!s->lossless)
909         skip_bits(&gb, 3); // XXX FIXME
910     s->decorrelation = get_bits(&gb, 2);
911     if (s->decorrelation != 3 && s->channels != 2) {
912         av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation);
913         return AVERROR_INVALIDDATA;
914     }
915 
916     s->downsampling = get_bits(&gb, 2);
917     if (!s->downsampling) {
918         av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n");
919         return AVERROR_INVALIDDATA;
920     }
921 
922     s->num_taps = (get_bits(&gb, 5)+1)<<5;
923     if (get_bits1(&gb)) // XXX FIXME
924 
925 
926     if (s->num_taps > 128)
927         return AVERROR_INVALIDDATA;
928 
929     s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
930     s->frame_size = s->channels*s->block_align*s->downsampling;
931 //    avctx->frame_size = s->block_align;
932 
933     if (s->num_taps * s->channels > s->frame_size) {
934         av_log(avctx, AV_LOG_ERROR,
935                "number of taps times channels (%d * %d) larger than frame size %d\n",
936                s->num_taps, s->channels, s->frame_size);
937         return AVERROR_INVALIDDATA;
938     }
939 
940     av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
941         s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
942 
943     // generate taps
944     s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
945     if (!s->tap_quant)
946         return AVERROR(ENOMEM);
947 
948     for (i = 0; i < s->num_taps; i++)
949         s->tap_quant[i] = ff_sqrt(i+1);
950 
951     s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k));
952 
953     tmp = av_calloc(s->num_taps, s->channels * sizeof(**s->predictor_state));
954     if (!tmp)
955         return AVERROR(ENOMEM);
956     for (i = 0; i < s->channels; i++, tmp += s->num_taps)
957         s->predictor_state[i] = tmp;
958 
959     tmp = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
960     if (!tmp)
961         return AVERROR(ENOMEM);
962     for (i = 0; i < s->channels; i++, tmp += s->block_align)
963         s->coded_samples[i]   = tmp;
964 
965     s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
966     if (!s->int_samples)
967         return AVERROR(ENOMEM);
968 
969     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
970     return 0;
971 }
972 
sonic_decode_close(AVCodecContext * avctx)973 static av_cold int sonic_decode_close(AVCodecContext *avctx)
974 {
975     SonicContext *s = avctx->priv_data;
976 
977     av_freep(&s->int_samples);
978     av_freep(&s->tap_quant);
979     av_freep(&s->predictor_k);
980     av_freep(&s->predictor_state[0]);
981     av_freep(&s->coded_samples[0]);
982 
983     return 0;
984 }
985 
sonic_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)986 static int sonic_decode_frame(AVCodecContext *avctx, AVFrame *frame,
987                               int *got_frame_ptr, AVPacket *avpkt)
988 {
989     const uint8_t *buf = avpkt->data;
990     int buf_size = avpkt->size;
991     SonicContext *s = avctx->priv_data;
992     RangeCoder c;
993     uint8_t state[32];
994     int i, quant, ch, j, ret;
995     int16_t *samples;
996 
997     if (buf_size == 0) return 0;
998 
999     frame->nb_samples = s->frame_size / avctx->ch_layout.nb_channels;
1000     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1001         return ret;
1002     samples = (int16_t *)frame->data[0];
1003 
1004 //    av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
1005 
1006     memset(state, 128, sizeof(state));
1007     ff_init_range_decoder(&c, buf, buf_size);
1008     ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
1009 
1010     intlist_read(&c, state, s->predictor_k, s->num_taps, 0);
1011 
1012     // dequantize
1013     for (i = 0; i < s->num_taps; i++)
1014         s->predictor_k[i] *= (unsigned) s->tap_quant[i];
1015 
1016     if (s->lossless)
1017         quant = 1;
1018     else
1019         quant = get_symbol(&c, state, 0) * (unsigned)SAMPLE_FACTOR;
1020 
1021 //    av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
1022 
1023     for (ch = 0; ch < s->channels; ch++)
1024     {
1025         int x = ch;
1026 
1027         if (c.overread > MAX_OVERREAD)
1028             return AVERROR_INVALIDDATA;
1029 
1030         predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
1031 
1032         intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1);
1033 
1034         for (i = 0; i < s->block_align; i++)
1035         {
1036             for (j = 0; j < s->downsampling - 1; j++)
1037             {
1038                 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
1039                 x += s->channels;
1040             }
1041 
1042             s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * (unsigned)quant);
1043             x += s->channels;
1044         }
1045 
1046         for (i = 0; i < s->num_taps; i++)
1047             s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
1048     }
1049 
1050     switch(s->decorrelation)
1051     {
1052         case MID_SIDE:
1053             for (i = 0; i < s->frame_size; i += s->channels)
1054             {
1055                 s->int_samples[i+1] += shift(s->int_samples[i], 1);
1056                 s->int_samples[i] -= s->int_samples[i+1];
1057             }
1058             break;
1059         case LEFT_SIDE:
1060             for (i = 0; i < s->frame_size; i += s->channels)
1061                 s->int_samples[i+1] += s->int_samples[i];
1062             break;
1063         case RIGHT_SIDE:
1064             for (i = 0; i < s->frame_size; i += s->channels)
1065                 s->int_samples[i] += s->int_samples[i+1];
1066             break;
1067     }
1068 
1069     if (!s->lossless)
1070         for (i = 0; i < s->frame_size; i++)
1071             s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
1072 
1073     // internal -> short
1074     for (i = 0; i < s->frame_size; i++)
1075         samples[i] = av_clip_int16(s->int_samples[i]);
1076 
1077     *got_frame_ptr = 1;
1078 
1079     return buf_size;
1080 }
1081 
1082 const FFCodec ff_sonic_decoder = {
1083     .p.name         = "sonic",
1084     .p.long_name    = NULL_IF_CONFIG_SMALL("Sonic"),
1085     .p.type         = AVMEDIA_TYPE_AUDIO,
1086     .p.id           = AV_CODEC_ID_SONIC,
1087     .priv_data_size = sizeof(SonicContext),
1088     .init           = sonic_decode_init,
1089     .close          = sonic_decode_close,
1090     FF_CODEC_DECODE_CB(sonic_decode_frame),
1091     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_CHANNEL_CONF,
1092     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1093 };
1094 #endif /* CONFIG_SONIC_DECODER */
1095 
1096 #if CONFIG_SONIC_ENCODER
1097 const FFCodec ff_sonic_encoder = {
1098     .p.name         = "sonic",
1099     .p.long_name    = NULL_IF_CONFIG_SMALL("Sonic"),
1100     .p.type         = AVMEDIA_TYPE_AUDIO,
1101     .p.id           = AV_CODEC_ID_SONIC,
1102     .priv_data_size = sizeof(SonicContext),
1103     .init           = sonic_encode_init,
1104     FF_CODEC_ENCODE_CB(sonic_encode_frame),
1105     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1106     .p.capabilities = AV_CODEC_CAP_EXPERIMENTAL,
1107     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1108     .close          = sonic_encode_close,
1109 };
1110 #endif
1111 
1112 #if CONFIG_SONIC_LS_ENCODER
1113 const FFCodec ff_sonic_ls_encoder = {
1114     .p.name         = "sonicls",
1115     .p.long_name    = NULL_IF_CONFIG_SMALL("Sonic lossless"),
1116     .p.type         = AVMEDIA_TYPE_AUDIO,
1117     .p.id           = AV_CODEC_ID_SONIC_LS,
1118     .priv_data_size = sizeof(SonicContext),
1119     .init           = sonic_encode_init,
1120     FF_CODEC_ENCODE_CB(sonic_encode_frame),
1121     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1122     .p.capabilities = AV_CODEC_CAP_EXPERIMENTAL,
1123     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1124     .close          = sonic_encode_close,
1125 };
1126 #endif
1127