• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ut Video decoder
3  * Copyright (c) 2011 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Ut Video decoder
25  */
26 
27 #include <inttypes.h>
28 #include <stdlib.h>
29 
30 #define CACHED_BITSTREAM_READER !ARCH_X86_32
31 #define UNCHECKED_BITSTREAM_READER 1
32 
33 #include "libavutil/intreadwrite.h"
34 #include "libavutil/pixdesc.h"
35 #include "avcodec.h"
36 #include "bswapdsp.h"
37 #include "bytestream.h"
38 #include "codec_internal.h"
39 #include "get_bits.h"
40 #include "thread.h"
41 #include "utvideo.h"
42 
43 typedef struct HuffEntry {
44     uint8_t len;
45     uint16_t sym;
46 } HuffEntry;
47 
build_huff(UtvideoContext * c,const uint8_t * src,VLC * vlc,int * fsym,unsigned nb_elems)48 static int build_huff(UtvideoContext *c, const uint8_t *src, VLC *vlc,
49                       int *fsym, unsigned nb_elems)
50 {
51     int i;
52     HuffEntry he[1024];
53     uint8_t bits[1024];
54     uint16_t codes_count[33] = { 0 };
55 
56     *fsym = -1;
57     for (i = 0; i < nb_elems; i++) {
58         if (src[i] == 0) {
59             *fsym = i;
60             return 0;
61         } else if (src[i] == 255) {
62             bits[i] = 0;
63         } else if (src[i] <= 32) {
64             bits[i] = src[i];
65         } else
66             return AVERROR_INVALIDDATA;
67 
68         codes_count[bits[i]]++;
69     }
70     if (codes_count[0] == nb_elems)
71         return AVERROR_INVALIDDATA;
72 
73     /* For Ut Video, longer codes are to the left of the tree and
74      * for codes with the same length the symbol is descending from
75      * left to right. So after the next loop --codes_count[i] will
76      * be the index of the first (lowest) symbol of length i when
77      * indexed by the position in the tree with left nodes being first. */
78     for (int i = 31; i >= 0; i--)
79         codes_count[i] += codes_count[i + 1];
80 
81     for (unsigned i = 0; i < nb_elems; i++)
82         he[--codes_count[bits[i]]] = (HuffEntry) { bits[i], i };
83 
84 #define VLC_BITS 11
85     return ff_init_vlc_from_lengths(vlc, VLC_BITS, codes_count[0],
86                                     &he[0].len, sizeof(*he),
87                                     &he[0].sym, sizeof(*he), 2, 0, 0, c->avctx);
88 }
89 
decode_plane10(UtvideoContext * c,int plane_no,uint16_t * dst,ptrdiff_t stride,int width,int height,const uint8_t * src,const uint8_t * huff,int use_pred)90 static int decode_plane10(UtvideoContext *c, int plane_no,
91                           uint16_t *dst, ptrdiff_t stride,
92                           int width, int height,
93                           const uint8_t *src, const uint8_t *huff,
94                           int use_pred)
95 {
96     int i, j, slice, pix, ret;
97     int sstart, send;
98     VLC vlc;
99     GetBitContext gb;
100     int prev, fsym;
101 
102     if ((ret = build_huff(c, huff, &vlc, &fsym, 1024)) < 0) {
103         av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
104         return ret;
105     }
106     if (fsym >= 0) { // build_huff reported a symbol to fill slices with
107         send = 0;
108         for (slice = 0; slice < c->slices; slice++) {
109             uint16_t *dest;
110 
111             sstart = send;
112             send   = (height * (slice + 1) / c->slices);
113             dest   = dst + sstart * stride;
114 
115             prev = 0x200;
116             for (j = sstart; j < send; j++) {
117                 for (i = 0; i < width; i++) {
118                     pix = fsym;
119                     if (use_pred) {
120                         prev += pix;
121                         prev &= 0x3FF;
122                         pix   = prev;
123                     }
124                     dest[i] = pix;
125                 }
126                 dest += stride;
127             }
128         }
129         return 0;
130     }
131 
132     send = 0;
133     for (slice = 0; slice < c->slices; slice++) {
134         uint16_t *dest;
135         int slice_data_start, slice_data_end, slice_size;
136 
137         sstart = send;
138         send   = (height * (slice + 1) / c->slices);
139         dest   = dst + sstart * stride;
140 
141         // slice offset and size validation was done earlier
142         slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
143         slice_data_end   = AV_RL32(src + slice * 4);
144         slice_size       = slice_data_end - slice_data_start;
145 
146         if (!slice_size) {
147             av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
148                    "yet a slice has a length of zero.\n");
149             goto fail;
150         }
151 
152         memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
153         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
154                           (uint32_t *)(src + slice_data_start + c->slices * 4),
155                           (slice_data_end - slice_data_start + 3) >> 2);
156         init_get_bits(&gb, c->slice_bits, slice_size * 8);
157 
158         prev = 0x200;
159         for (j = sstart; j < send; j++) {
160             for (i = 0; i < width; i++) {
161                 pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
162                 if (pix < 0) {
163                     av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
164                     goto fail;
165                 }
166                 if (use_pred) {
167                     prev += pix;
168                     prev &= 0x3FF;
169                     pix   = prev;
170                 }
171                 dest[i] = pix;
172             }
173             dest += stride;
174             if (get_bits_left(&gb) < 0) {
175                 av_log(c->avctx, AV_LOG_ERROR,
176                         "Slice decoding ran out of bits\n");
177                 goto fail;
178             }
179         }
180         if (get_bits_left(&gb) > 32)
181             av_log(c->avctx, AV_LOG_WARNING,
182                    "%d bits left after decoding slice\n", get_bits_left(&gb));
183     }
184 
185     ff_free_vlc(&vlc);
186 
187     return 0;
188 fail:
189     ff_free_vlc(&vlc);
190     return AVERROR_INVALIDDATA;
191 }
192 
compute_cmask(int plane_no,int interlaced,enum AVPixelFormat pix_fmt)193 static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
194 {
195     const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
196 
197     if (interlaced)
198         return ~(1 + 2 * is_luma);
199 
200     return ~is_luma;
201 }
202 
decode_plane(UtvideoContext * c,int plane_no,uint8_t * dst,ptrdiff_t stride,int width,int height,const uint8_t * src,int use_pred)203 static int decode_plane(UtvideoContext *c, int plane_no,
204                         uint8_t *dst, ptrdiff_t stride,
205                         int width, int height,
206                         const uint8_t *src, int use_pred)
207 {
208     int i, j, slice, pix;
209     int sstart, send;
210     VLC vlc;
211     GetBitContext gb;
212     int ret, prev, fsym;
213     const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
214 
215     if (c->pack) {
216         send = 0;
217         for (slice = 0; slice < c->slices; slice++) {
218             GetBitContext cbit, pbit;
219             uint8_t *dest, *p;
220 
221             ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
222             if (ret < 0)
223                 return ret;
224 
225             ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
226             if (ret < 0)
227                 return ret;
228 
229             sstart = send;
230             send   = (height * (slice + 1) / c->slices) & cmask;
231             dest   = dst + sstart * stride;
232 
233             if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
234                 return AVERROR_INVALIDDATA;
235 
236             for (p = dest; p < dst + send * stride; p += 8) {
237                 int bits = get_bits_le(&cbit, 3);
238 
239                 if (bits == 0) {
240                     *(uint64_t *) p = 0;
241                 } else {
242                     uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
243                     int k;
244 
245                     if ((bits + 1) * 8 > get_bits_left(&pbit))
246                         return AVERROR_INVALIDDATA;
247 
248                     for (k = 0; k < 8; k++) {
249 
250                         p[k] = get_bits_le(&pbit, bits + 1);
251                         add = (~p[k] & sub) << (8 - bits);
252                         p[k] -= sub;
253                         p[k] += add;
254                     }
255                 }
256             }
257         }
258 
259         return 0;
260     }
261 
262     if (build_huff(c, src, &vlc, &fsym, 256)) {
263         av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
264         return AVERROR_INVALIDDATA;
265     }
266     if (fsym >= 0) { // build_huff reported a symbol to fill slices with
267         send = 0;
268         for (slice = 0; slice < c->slices; slice++) {
269             uint8_t *dest;
270 
271             sstart = send;
272             send   = (height * (slice + 1) / c->slices) & cmask;
273             dest   = dst + sstart * stride;
274 
275             prev = 0x80;
276             for (j = sstart; j < send; j++) {
277                 for (i = 0; i < width; i++) {
278                     pix = fsym;
279                     if (use_pred) {
280                         prev += (unsigned)pix;
281                         pix   = prev;
282                     }
283                     dest[i] = pix;
284                 }
285                 dest += stride;
286             }
287         }
288         return 0;
289     }
290 
291     src      += 256;
292 
293     send = 0;
294     for (slice = 0; slice < c->slices; slice++) {
295         uint8_t *dest;
296         int slice_data_start, slice_data_end, slice_size;
297 
298         sstart = send;
299         send   = (height * (slice + 1) / c->slices) & cmask;
300         dest   = dst + sstart * stride;
301 
302         // slice offset and size validation was done earlier
303         slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
304         slice_data_end   = AV_RL32(src + slice * 4);
305         slice_size       = slice_data_end - slice_data_start;
306 
307         if (!slice_size) {
308             av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
309                    "yet a slice has a length of zero.\n");
310             goto fail;
311         }
312 
313         memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
314         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
315                           (uint32_t *)(src + slice_data_start + c->slices * 4),
316                           (slice_data_end - slice_data_start + 3) >> 2);
317         init_get_bits(&gb, c->slice_bits, slice_size * 8);
318 
319         prev = 0x80;
320         for (j = sstart; j < send; j++) {
321             for (i = 0; i < width; i++) {
322                 pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
323                 if (pix < 0) {
324                     av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
325                     goto fail;
326                 }
327                 if (use_pred) {
328                     prev += pix;
329                     pix   = prev;
330                 }
331                 dest[i] = pix;
332             }
333             if (get_bits_left(&gb) < 0) {
334                 av_log(c->avctx, AV_LOG_ERROR,
335                         "Slice decoding ran out of bits\n");
336                 goto fail;
337             }
338             dest += stride;
339         }
340         if (get_bits_left(&gb) > 32)
341             av_log(c->avctx, AV_LOG_WARNING,
342                    "%d bits left after decoding slice\n", get_bits_left(&gb));
343     }
344 
345     ff_free_vlc(&vlc);
346 
347     return 0;
348 fail:
349     ff_free_vlc(&vlc);
350     return AVERROR_INVALIDDATA;
351 }
352 
353 #undef A
354 #undef B
355 #undef C
356 
restore_median_planar(UtvideoContext * c,uint8_t * src,ptrdiff_t stride,int width,int height,int slices,int rmode)357 static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
358                                   int width, int height, int slices, int rmode)
359 {
360     int i, j, slice;
361     int A, B, C;
362     uint8_t *bsrc;
363     int slice_start, slice_height;
364     const int cmask = ~rmode;
365 
366     for (slice = 0; slice < slices; slice++) {
367         slice_start  = ((slice * height) / slices) & cmask;
368         slice_height = ((((slice + 1) * height) / slices) & cmask) -
369                        slice_start;
370 
371         if (!slice_height)
372             continue;
373         bsrc = src + slice_start * stride;
374 
375         // first line - left neighbour prediction
376         bsrc[0] += 0x80;
377         c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
378         bsrc += stride;
379         if (slice_height <= 1)
380             continue;
381         // second line - first element has top prediction, the rest uses median
382         C        = bsrc[-stride];
383         bsrc[0] += C;
384         A        = bsrc[0];
385         for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
386             B        = bsrc[i - stride];
387             bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
388             C        = B;
389             A        = bsrc[i];
390         }
391         if (width > 16)
392             c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
393                                         bsrc + 16, width - 16, &A, &B);
394 
395         bsrc += stride;
396         // the rest of lines use continuous median prediction
397         for (j = 2; j < slice_height; j++) {
398             c->llviddsp.add_median_pred(bsrc, bsrc - stride,
399                                             bsrc, width, &A, &B);
400             bsrc += stride;
401         }
402     }
403 }
404 
405 /* UtVideo interlaced mode treats every two lines as a single one,
406  * so restoring function should take care of possible padding between
407  * two parts of the same "line".
408  */
restore_median_planar_il(UtvideoContext * c,uint8_t * src,ptrdiff_t stride,int width,int height,int slices,int rmode)409 static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
410                                      int width, int height, int slices, int rmode)
411 {
412     int i, j, slice;
413     int A, B, C;
414     uint8_t *bsrc;
415     int slice_start, slice_height;
416     const int cmask   = ~(rmode ? 3 : 1);
417     const ptrdiff_t stride2 = stride << 1;
418 
419     for (slice = 0; slice < slices; slice++) {
420         slice_start    = ((slice * height) / slices) & cmask;
421         slice_height   = ((((slice + 1) * height) / slices) & cmask) -
422                          slice_start;
423         slice_height >>= 1;
424         if (!slice_height)
425             continue;
426 
427         bsrc = src + slice_start * stride;
428 
429         // first line - left neighbour prediction
430         bsrc[0] += 0x80;
431         A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
432         c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
433         bsrc += stride2;
434         if (slice_height <= 1)
435             continue;
436         // second line - first element has top prediction, the rest uses median
437         C        = bsrc[-stride2];
438         bsrc[0] += C;
439         A        = bsrc[0];
440         for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
441             B        = bsrc[i - stride2];
442             bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
443             C        = B;
444             A        = bsrc[i];
445         }
446         if (width > 16)
447             c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
448                                         bsrc + 16, width - 16, &A, &B);
449 
450         c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
451                                         bsrc + stride, width, &A, &B);
452         bsrc += stride2;
453         // the rest of lines use continuous median prediction
454         for (j = 2; j < slice_height; j++) {
455             c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
456                                             bsrc, width, &A, &B);
457             c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
458                                             bsrc + stride, width, &A, &B);
459             bsrc += stride2;
460         }
461     }
462 }
463 
restore_gradient_planar(UtvideoContext * c,uint8_t * src,ptrdiff_t stride,int width,int height,int slices,int rmode)464 static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
465                                     int width, int height, int slices, int rmode)
466 {
467     int i, j, slice;
468     int A, B, C;
469     uint8_t *bsrc;
470     int slice_start, slice_height;
471     const int cmask = ~rmode;
472     int min_width = FFMIN(width, 32);
473 
474     for (slice = 0; slice < slices; slice++) {
475         slice_start  = ((slice * height) / slices) & cmask;
476         slice_height = ((((slice + 1) * height) / slices) & cmask) -
477                        slice_start;
478 
479         if (!slice_height)
480             continue;
481         bsrc = src + slice_start * stride;
482 
483         // first line - left neighbour prediction
484         bsrc[0] += 0x80;
485         c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
486         bsrc += stride;
487         if (slice_height <= 1)
488             continue;
489         for (j = 1; j < slice_height; j++) {
490             // second line - first element has top prediction, the rest uses gradient
491             bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
492             for (i = 1; i < min_width; i++) { /* dsp need align 32 */
493                 A = bsrc[i - stride];
494                 B = bsrc[i - (stride + 1)];
495                 C = bsrc[i - 1];
496                 bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
497             }
498             if (width > 32)
499                 c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
500             bsrc += stride;
501         }
502     }
503 }
504 
restore_gradient_planar_il(UtvideoContext * c,uint8_t * src,ptrdiff_t stride,int width,int height,int slices,int rmode)505 static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
506                                       int width, int height, int slices, int rmode)
507 {
508     int i, j, slice;
509     int A, B, C;
510     uint8_t *bsrc;
511     int slice_start, slice_height;
512     const int cmask   = ~(rmode ? 3 : 1);
513     const ptrdiff_t stride2 = stride << 1;
514     int min_width = FFMIN(width, 32);
515 
516     for (slice = 0; slice < slices; slice++) {
517         slice_start    = ((slice * height) / slices) & cmask;
518         slice_height   = ((((slice + 1) * height) / slices) & cmask) -
519                          slice_start;
520         slice_height >>= 1;
521         if (!slice_height)
522             continue;
523 
524         bsrc = src + slice_start * stride;
525 
526         // first line - left neighbour prediction
527         bsrc[0] += 0x80;
528         A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
529         c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
530         bsrc += stride2;
531         if (slice_height <= 1)
532             continue;
533         for (j = 1; j < slice_height; j++) {
534             // second line - first element has top prediction, the rest uses gradient
535             bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
536             for (i = 1; i < min_width; i++) { /* dsp need align 32 */
537                 A = bsrc[i - stride2];
538                 B = bsrc[i - (stride2 + 1)];
539                 C = bsrc[i - 1];
540                 bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
541             }
542             if (width > 32)
543                 c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
544 
545             A = bsrc[-stride];
546             B = bsrc[-(1 + stride + stride - width)];
547             C = bsrc[width - 1];
548             bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
549             for (i = 1; i < width; i++) {
550                 A = bsrc[i - stride];
551                 B = bsrc[i - (1 + stride)];
552                 C = bsrc[i - 1 + stride];
553                 bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
554             }
555             bsrc += stride2;
556         }
557     }
558 }
559 
decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame,AVPacket * avpkt)560 static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
561                         int *got_frame, AVPacket *avpkt)
562 {
563     const uint8_t *buf = avpkt->data;
564     int buf_size = avpkt->size;
565     UtvideoContext *c = avctx->priv_data;
566     int i, j;
567     const uint8_t *plane_start[5];
568     int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
569     int ret;
570     GetByteContext gb;
571 
572     if ((ret = ff_thread_get_buffer(avctx, frame, 0)) < 0)
573         return ret;
574 
575     /* parse plane structure to get frame flags and validate slice offsets */
576     bytestream2_init(&gb, buf, buf_size);
577 
578     if (c->pack) {
579         const uint8_t *packed_stream;
580         const uint8_t *control_stream;
581         GetByteContext pb;
582         uint32_t nb_cbs;
583         int left;
584 
585         c->frame_info = PRED_GRADIENT << 8;
586 
587         if (bytestream2_get_byte(&gb) != 1)
588             return AVERROR_INVALIDDATA;
589         bytestream2_skip(&gb, 3);
590         c->offset = bytestream2_get_le32(&gb);
591 
592         if (buf_size <= c->offset + 8LL)
593             return AVERROR_INVALIDDATA;
594 
595         bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
596 
597         nb_cbs = bytestream2_get_le32(&pb);
598         if (nb_cbs > c->offset)
599             return AVERROR_INVALIDDATA;
600 
601         packed_stream = buf + 8;
602         control_stream = packed_stream + (c->offset - nb_cbs);
603         left = control_stream - packed_stream;
604 
605         for (i = 0; i < c->planes; i++) {
606             for (j = 0; j < c->slices; j++) {
607                 c->packed_stream[i][j] = packed_stream;
608                 c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
609                 if (c->packed_stream_size[i][j] > left)
610                     return AVERROR_INVALIDDATA;
611                 left -= c->packed_stream_size[i][j];
612                 packed_stream += c->packed_stream_size[i][j];
613             }
614         }
615 
616         left = buf + buf_size - control_stream;
617 
618         for (i = 0; i < c->planes; i++) {
619             for (j = 0; j < c->slices; j++) {
620                 c->control_stream[i][j] = control_stream;
621                 c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
622                 if (c->control_stream_size[i][j] > left)
623                     return AVERROR_INVALIDDATA;
624                 left -= c->control_stream_size[i][j];
625                 control_stream += c->control_stream_size[i][j];
626             }
627         }
628     } else if (c->pro) {
629         if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
630             av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
631             return AVERROR_INVALIDDATA;
632         }
633         c->frame_info = bytestream2_get_le32u(&gb);
634         c->slices = ((c->frame_info >> 16) & 0xff) + 1;
635         for (i = 0; i < c->planes; i++) {
636             plane_start[i] = gb.buffer;
637             if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
638                 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
639                 return AVERROR_INVALIDDATA;
640             }
641             slice_start = 0;
642             slice_end   = 0;
643             for (j = 0; j < c->slices; j++) {
644                 slice_end   = bytestream2_get_le32u(&gb);
645                 if (slice_end < 0 || slice_end < slice_start ||
646                     bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
647                     av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
648                     return AVERROR_INVALIDDATA;
649                 }
650                 slice_size  = slice_end - slice_start;
651                 slice_start = slice_end;
652                 max_slice_size = FFMAX(max_slice_size, slice_size);
653             }
654             plane_size = slice_end;
655             bytestream2_skipu(&gb, plane_size);
656             bytestream2_skipu(&gb, 1024);
657         }
658         plane_start[c->planes] = gb.buffer;
659     } else {
660         for (i = 0; i < c->planes; i++) {
661             plane_start[i] = gb.buffer;
662             if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
663                 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
664                 return AVERROR_INVALIDDATA;
665             }
666             bytestream2_skipu(&gb, 256);
667             slice_start = 0;
668             slice_end   = 0;
669             for (j = 0; j < c->slices; j++) {
670                 slice_end   = bytestream2_get_le32u(&gb);
671                 if (slice_end < 0 || slice_end < slice_start ||
672                     bytestream2_get_bytes_left(&gb) < slice_end) {
673                     av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
674                     return AVERROR_INVALIDDATA;
675                 }
676                 slice_size  = slice_end - slice_start;
677                 slice_start = slice_end;
678                 max_slice_size = FFMAX(max_slice_size, slice_size);
679             }
680             plane_size = slice_end;
681             bytestream2_skipu(&gb, plane_size);
682         }
683         plane_start[c->planes] = gb.buffer;
684         if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
685             av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
686             return AVERROR_INVALIDDATA;
687         }
688         c->frame_info = bytestream2_get_le32u(&gb);
689     }
690     av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
691            c->frame_info);
692 
693     c->frame_pred = (c->frame_info >> 8) & 3;
694 
695     max_slice_size += 4*avctx->width;
696 
697     if (!c->pack) {
698         av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
699                        max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
700 
701         if (!c->slice_bits) {
702             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
703             return AVERROR(ENOMEM);
704         }
705     }
706 
707     switch (c->avctx->pix_fmt) {
708     case AV_PIX_FMT_GBRP:
709     case AV_PIX_FMT_GBRAP:
710         for (i = 0; i < c->planes; i++) {
711             ret = decode_plane(c, i, frame->data[i],
712                                frame->linesize[i], avctx->width,
713                                avctx->height, plane_start[i],
714                                c->frame_pred == PRED_LEFT);
715             if (ret)
716                 return ret;
717             if (c->frame_pred == PRED_MEDIAN) {
718                 if (!c->interlaced) {
719                     restore_median_planar(c, frame->data[i],
720                                           frame->linesize[i], avctx->width,
721                                           avctx->height, c->slices, 0);
722                 } else {
723                     restore_median_planar_il(c, frame->data[i],
724                                              frame->linesize[i],
725                                              avctx->width, avctx->height, c->slices,
726                                              0);
727                 }
728             } else if (c->frame_pred == PRED_GRADIENT) {
729                 if (!c->interlaced) {
730                     restore_gradient_planar(c, frame->data[i],
731                                             frame->linesize[i], avctx->width,
732                                             avctx->height, c->slices, 0);
733                 } else {
734                     restore_gradient_planar_il(c, frame->data[i],
735                                                frame->linesize[i],
736                                                avctx->width, avctx->height, c->slices,
737                                                0);
738                 }
739             }
740         }
741         c->utdsp.restore_rgb_planes(frame->data[2], frame->data[0], frame->data[1],
742                                     frame->linesize[2], frame->linesize[0], frame->linesize[1],
743                                     avctx->width, avctx->height);
744         break;
745     case AV_PIX_FMT_GBRAP10:
746     case AV_PIX_FMT_GBRP10:
747         for (i = 0; i < c->planes; i++) {
748             ret = decode_plane10(c, i, (uint16_t *)frame->data[i],
749                                  frame->linesize[i] / 2, avctx->width,
750                                  avctx->height, plane_start[i],
751                                  plane_start[i + 1] - 1024,
752                                  c->frame_pred == PRED_LEFT);
753             if (ret)
754                 return ret;
755         }
756         c->utdsp.restore_rgb_planes10((uint16_t *)frame->data[2], (uint16_t *)frame->data[0], (uint16_t *)frame->data[1],
757                                       frame->linesize[2] / 2, frame->linesize[0] / 2, frame->linesize[1] / 2,
758                                       avctx->width, avctx->height);
759         break;
760     case AV_PIX_FMT_YUV420P:
761         for (i = 0; i < 3; i++) {
762             ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
763                                avctx->width >> !!i, avctx->height >> !!i,
764                                plane_start[i], c->frame_pred == PRED_LEFT);
765             if (ret)
766                 return ret;
767             if (c->frame_pred == PRED_MEDIAN) {
768                 if (!c->interlaced) {
769                     restore_median_planar(c, frame->data[i], frame->linesize[i],
770                                           avctx->width >> !!i, avctx->height >> !!i,
771                                           c->slices, !i);
772                 } else {
773                     restore_median_planar_il(c, frame->data[i], frame->linesize[i],
774                                              avctx->width  >> !!i,
775                                              avctx->height >> !!i,
776                                              c->slices, !i);
777                 }
778             } else if (c->frame_pred == PRED_GRADIENT) {
779                 if (!c->interlaced) {
780                     restore_gradient_planar(c, frame->data[i], frame->linesize[i],
781                                             avctx->width >> !!i, avctx->height >> !!i,
782                                             c->slices, !i);
783                 } else {
784                     restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
785                                                avctx->width  >> !!i,
786                                                avctx->height >> !!i,
787                                                c->slices, !i);
788                 }
789             }
790         }
791         break;
792     case AV_PIX_FMT_YUV422P:
793         for (i = 0; i < 3; i++) {
794             ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
795                                avctx->width >> !!i, avctx->height,
796                                plane_start[i], c->frame_pred == PRED_LEFT);
797             if (ret)
798                 return ret;
799             if (c->frame_pred == PRED_MEDIAN) {
800                 if (!c->interlaced) {
801                     restore_median_planar(c, frame->data[i], frame->linesize[i],
802                                           avctx->width >> !!i, avctx->height,
803                                           c->slices, 0);
804                 } else {
805                     restore_median_planar_il(c, frame->data[i], frame->linesize[i],
806                                              avctx->width >> !!i, avctx->height,
807                                              c->slices, 0);
808                 }
809             } else if (c->frame_pred == PRED_GRADIENT) {
810                 if (!c->interlaced) {
811                     restore_gradient_planar(c, frame->data[i], frame->linesize[i],
812                                             avctx->width >> !!i, avctx->height,
813                                             c->slices, 0);
814                 } else {
815                     restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
816                                                avctx->width  >> !!i, avctx->height,
817                                                c->slices, 0);
818                 }
819             }
820         }
821         break;
822     case AV_PIX_FMT_YUV444P:
823         for (i = 0; i < 3; i++) {
824             ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
825                                avctx->width, avctx->height,
826                                plane_start[i], c->frame_pred == PRED_LEFT);
827             if (ret)
828                 return ret;
829             if (c->frame_pred == PRED_MEDIAN) {
830                 if (!c->interlaced) {
831                     restore_median_planar(c, frame->data[i], frame->linesize[i],
832                                           avctx->width, avctx->height,
833                                           c->slices, 0);
834                 } else {
835                     restore_median_planar_il(c, frame->data[i], frame->linesize[i],
836                                              avctx->width, avctx->height,
837                                              c->slices, 0);
838                 }
839             } else if (c->frame_pred == PRED_GRADIENT) {
840                 if (!c->interlaced) {
841                     restore_gradient_planar(c, frame->data[i], frame->linesize[i],
842                                             avctx->width, avctx->height,
843                                             c->slices, 0);
844                 } else {
845                     restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
846                                                avctx->width, avctx->height,
847                                                c->slices, 0);
848                 }
849             }
850         }
851         break;
852     case AV_PIX_FMT_YUV420P10:
853         for (i = 0; i < 3; i++) {
854             ret = decode_plane10(c, i, (uint16_t *)frame->data[i], frame->linesize[i] / 2,
855                                  avctx->width >> !!i, avctx->height >> !!i,
856                                  plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
857             if (ret)
858                 return ret;
859         }
860         break;
861     case AV_PIX_FMT_YUV422P10:
862         for (i = 0; i < 3; i++) {
863             ret = decode_plane10(c, i, (uint16_t *)frame->data[i], frame->linesize[i] / 2,
864                                  avctx->width >> !!i, avctx->height,
865                                  plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
866             if (ret)
867                 return ret;
868         }
869         break;
870     }
871 
872     frame->key_frame = 1;
873     frame->pict_type = AV_PICTURE_TYPE_I;
874     frame->interlaced_frame = !!c->interlaced;
875 
876     *got_frame = 1;
877 
878     /* always report that the buffer was completely consumed */
879     return buf_size;
880 }
881 
decode_init(AVCodecContext * avctx)882 static av_cold int decode_init(AVCodecContext *avctx)
883 {
884     UtvideoContext * const c = avctx->priv_data;
885     int h_shift, v_shift;
886 
887     c->avctx = avctx;
888 
889     ff_utvideodsp_init(&c->utdsp);
890     ff_bswapdsp_init(&c->bdsp);
891     ff_llviddsp_init(&c->llviddsp);
892 
893     c->slice_bits_size = 0;
894 
895     switch (avctx->codec_tag) {
896     case MKTAG('U', 'L', 'R', 'G'):
897         c->planes      = 3;
898         avctx->pix_fmt = AV_PIX_FMT_GBRP;
899         break;
900     case MKTAG('U', 'L', 'R', 'A'):
901         c->planes      = 4;
902         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
903         break;
904     case MKTAG('U', 'L', 'Y', '0'):
905         c->planes      = 3;
906         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
907         avctx->colorspace = AVCOL_SPC_BT470BG;
908         break;
909     case MKTAG('U', 'L', 'Y', '2'):
910         c->planes      = 3;
911         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
912         avctx->colorspace = AVCOL_SPC_BT470BG;
913         break;
914     case MKTAG('U', 'L', 'Y', '4'):
915         c->planes      = 3;
916         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
917         avctx->colorspace = AVCOL_SPC_BT470BG;
918         break;
919     case MKTAG('U', 'Q', 'Y', '0'):
920         c->planes      = 3;
921         c->pro         = 1;
922         avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
923         break;
924     case MKTAG('U', 'Q', 'Y', '2'):
925         c->planes      = 3;
926         c->pro         = 1;
927         avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
928         break;
929     case MKTAG('U', 'Q', 'R', 'G'):
930         c->planes      = 3;
931         c->pro         = 1;
932         avctx->pix_fmt = AV_PIX_FMT_GBRP10;
933         break;
934     case MKTAG('U', 'Q', 'R', 'A'):
935         c->planes      = 4;
936         c->pro         = 1;
937         avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
938         break;
939     case MKTAG('U', 'L', 'H', '0'):
940         c->planes      = 3;
941         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
942         avctx->colorspace = AVCOL_SPC_BT709;
943         break;
944     case MKTAG('U', 'L', 'H', '2'):
945         c->planes      = 3;
946         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
947         avctx->colorspace = AVCOL_SPC_BT709;
948         break;
949     case MKTAG('U', 'L', 'H', '4'):
950         c->planes      = 3;
951         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
952         avctx->colorspace = AVCOL_SPC_BT709;
953         break;
954     case MKTAG('U', 'M', 'Y', '2'):
955         c->planes      = 3;
956         c->pack        = 1;
957         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
958         avctx->colorspace = AVCOL_SPC_BT470BG;
959         break;
960     case MKTAG('U', 'M', 'H', '2'):
961         c->planes      = 3;
962         c->pack        = 1;
963         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
964         avctx->colorspace = AVCOL_SPC_BT709;
965         break;
966     case MKTAG('U', 'M', 'Y', '4'):
967         c->planes      = 3;
968         c->pack        = 1;
969         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
970         avctx->colorspace = AVCOL_SPC_BT470BG;
971         break;
972     case MKTAG('U', 'M', 'H', '4'):
973         c->planes      = 3;
974         c->pack        = 1;
975         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
976         avctx->colorspace = AVCOL_SPC_BT709;
977         break;
978     case MKTAG('U', 'M', 'R', 'G'):
979         c->planes      = 3;
980         c->pack        = 1;
981         avctx->pix_fmt = AV_PIX_FMT_GBRP;
982         break;
983     case MKTAG('U', 'M', 'R', 'A'):
984         c->planes      = 4;
985         c->pack        = 1;
986         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
987         break;
988     default:
989         av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
990                avctx->codec_tag);
991         return AVERROR_INVALIDDATA;
992     }
993 
994     av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
995     if ((avctx->width  & ((1<<h_shift)-1)) ||
996         (avctx->height & ((1<<v_shift)-1))) {
997         avpriv_request_sample(avctx, "Odd dimensions");
998         return AVERROR_PATCHWELCOME;
999     }
1000 
1001     if (c->pack && avctx->extradata_size >= 16) {
1002         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1003                avctx->extradata[3], avctx->extradata[2],
1004                avctx->extradata[1], avctx->extradata[0]);
1005         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1006                AV_RB32(avctx->extradata + 4));
1007         c->compression = avctx->extradata[8];
1008         if (c->compression != 2)
1009             avpriv_request_sample(avctx, "Unknown compression type");
1010         c->slices      = avctx->extradata[9] + 1;
1011     } else if (!c->pro && avctx->extradata_size >= 16) {
1012         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1013                avctx->extradata[3], avctx->extradata[2],
1014                avctx->extradata[1], avctx->extradata[0]);
1015         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1016                AV_RB32(avctx->extradata + 4));
1017         c->frame_info_size = AV_RL32(avctx->extradata + 8);
1018         c->flags           = AV_RL32(avctx->extradata + 12);
1019 
1020         if (c->frame_info_size != 4)
1021             avpriv_request_sample(avctx, "Frame info not 4 bytes");
1022         av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
1023         c->slices      = (c->flags >> 24) + 1;
1024         c->compression = c->flags & 1;
1025         c->interlaced  = c->flags & 0x800;
1026     } else if (c->pro && avctx->extradata_size == 8) {
1027         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1028                avctx->extradata[3], avctx->extradata[2],
1029                avctx->extradata[1], avctx->extradata[0]);
1030         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1031                AV_RB32(avctx->extradata + 4));
1032         c->interlaced  = 0;
1033         c->frame_info_size = 4;
1034     } else {
1035         av_log(avctx, AV_LOG_ERROR,
1036                "Insufficient extradata size %d, should be at least 16\n",
1037                avctx->extradata_size);
1038         return AVERROR_INVALIDDATA;
1039     }
1040 
1041     return 0;
1042 }
1043 
decode_end(AVCodecContext * avctx)1044 static av_cold int decode_end(AVCodecContext *avctx)
1045 {
1046     UtvideoContext * const c = avctx->priv_data;
1047 
1048     av_freep(&c->slice_bits);
1049 
1050     return 0;
1051 }
1052 
1053 const FFCodec ff_utvideo_decoder = {
1054     .p.name         = "utvideo",
1055     .p.long_name    = NULL_IF_CONFIG_SMALL("Ut Video"),
1056     .p.type         = AVMEDIA_TYPE_VIDEO,
1057     .p.id           = AV_CODEC_ID_UTVIDEO,
1058     .priv_data_size = sizeof(UtvideoContext),
1059     .init           = decode_init,
1060     .close          = decode_end,
1061     FF_CODEC_DECODE_CB(decode_frame),
1062     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
1063     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1064 };
1065