• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of FFmpeg.
3  *
4  * FFmpeg is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * FFmpeg is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with FFmpeg; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 
19 /**
20  * @file
21  * Crossover filter
22  *
23  * Split an audio stream into several bands.
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/avstring.h"
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/eval.h"
30 #include "libavutil/float_dsp.h"
31 #include "libavutil/internal.h"
32 #include "libavutil/opt.h"
33 
34 #include "audio.h"
35 #include "avfilter.h"
36 #include "filters.h"
37 #include "formats.h"
38 #include "internal.h"
39 
40 #define MAX_SPLITS 16
41 #define MAX_BANDS MAX_SPLITS + 1
42 
43 #define B0 0
44 #define B1 1
45 #define B2 2
46 #define A1 3
47 #define A2 4
48 
49 typedef struct BiquadCoeffs {
50     double cd[5];
51     float cf[5];
52 } BiquadCoeffs;
53 
54 typedef struct AudioCrossoverContext {
55     const AVClass *class;
56 
57     char *splits_str;
58     char *gains_str;
59     int order_opt;
60     float level_in;
61     int precision;
62 
63     int order;
64     int filter_count;
65     int first_order;
66     int ap_filter_count;
67     int nb_splits;
68     float splits[MAX_SPLITS];
69 
70     float gains[MAX_BANDS];
71 
72     BiquadCoeffs lp[MAX_BANDS][20];
73     BiquadCoeffs hp[MAX_BANDS][20];
74     BiquadCoeffs ap[MAX_BANDS][20];
75 
76     AVFrame *xover;
77 
78     AVFrame *frames[MAX_BANDS];
79 
80     int (*filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
81 
82     AVFloatDSPContext *fdsp;
83 } AudioCrossoverContext;
84 
85 #define OFFSET(x) offsetof(AudioCrossoverContext, x)
86 #define AF AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
87 
88 static const AVOption acrossover_options[] = {
89     { "split", "set split frequencies", OFFSET(splits_str), AV_OPT_TYPE_STRING, {.str="500"}, 0, 0, AF },
90     { "order", "set filter order",      OFFSET(order_opt),  AV_OPT_TYPE_INT,    {.i64=1},     0, 9, AF, "m" },
91     { "2nd",   "2nd order (12 dB/8ve)", 0,                  AV_OPT_TYPE_CONST,  {.i64=0},     0, 0, AF, "m" },
92     { "4th",   "4th order (24 dB/8ve)", 0,                  AV_OPT_TYPE_CONST,  {.i64=1},     0, 0, AF, "m" },
93     { "6th",   "6th order (36 dB/8ve)", 0,                  AV_OPT_TYPE_CONST,  {.i64=2},     0, 0, AF, "m" },
94     { "8th",   "8th order (48 dB/8ve)", 0,                  AV_OPT_TYPE_CONST,  {.i64=3},     0, 0, AF, "m" },
95     { "10th",  "10th order (60 dB/8ve)",0,                  AV_OPT_TYPE_CONST,  {.i64=4},     0, 0, AF, "m" },
96     { "12th",  "12th order (72 dB/8ve)",0,                  AV_OPT_TYPE_CONST,  {.i64=5},     0, 0, AF, "m" },
97     { "14th",  "14th order (84 dB/8ve)",0,                  AV_OPT_TYPE_CONST,  {.i64=6},     0, 0, AF, "m" },
98     { "16th",  "16th order (96 dB/8ve)",0,                  AV_OPT_TYPE_CONST,  {.i64=7},     0, 0, AF, "m" },
99     { "18th",  "18th order (108 dB/8ve)",0,                 AV_OPT_TYPE_CONST,  {.i64=8},     0, 0, AF, "m" },
100     { "20th",  "20th order (120 dB/8ve)",0,                 AV_OPT_TYPE_CONST,  {.i64=9},     0, 0, AF, "m" },
101     { "level", "set input gain",        OFFSET(level_in),   AV_OPT_TYPE_FLOAT,  {.dbl=1},     0, 1, AF },
102     { "gain",  "set output bands gain", OFFSET(gains_str),  AV_OPT_TYPE_STRING, {.str="1.f"}, 0, 0, AF },
103     { "precision",  "set processing precision", OFFSET(precision),   AV_OPT_TYPE_INT,   {.i64=0}, 0, 2, AF, "precision" },
104     {  "auto",  "set auto processing precision",                  0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision" },
105     {  "float", "set single-floating point processing precision", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision" },
106     {  "double","set double-floating point processing precision", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision" },
107     { NULL }
108 };
109 
110 AVFILTER_DEFINE_CLASS(acrossover);
111 
query_formats(AVFilterContext * ctx)112 static int query_formats(AVFilterContext *ctx)
113 {
114     AudioCrossoverContext *s = ctx->priv;
115     static const enum AVSampleFormat auto_sample_fmts[] = {
116         AV_SAMPLE_FMT_FLTP,
117         AV_SAMPLE_FMT_DBLP,
118         AV_SAMPLE_FMT_NONE
119     };
120     enum AVSampleFormat sample_fmts[] = {
121         AV_SAMPLE_FMT_FLTP,
122         AV_SAMPLE_FMT_NONE
123     };
124     const enum AVSampleFormat *sample_fmts_list = sample_fmts;
125     int ret = ff_set_common_all_channel_counts(ctx);
126     if (ret < 0)
127         return ret;
128 
129     switch (s->precision) {
130     case 0:
131         sample_fmts_list = auto_sample_fmts;
132         break;
133     case 1:
134         sample_fmts[0] = AV_SAMPLE_FMT_FLTP;
135         break;
136     case 2:
137         sample_fmts[0] = AV_SAMPLE_FMT_DBLP;
138         break;
139     default:
140         break;
141     }
142     ret = ff_set_common_formats_from_list(ctx, sample_fmts_list);
143     if (ret < 0)
144         return ret;
145 
146     return ff_set_common_all_samplerates(ctx);
147 }
148 
parse_gains(AVFilterContext * ctx)149 static int parse_gains(AVFilterContext *ctx)
150 {
151     AudioCrossoverContext *s = ctx->priv;
152     char *p, *arg, *saveptr = NULL;
153     int i, ret = 0;
154 
155     saveptr = NULL;
156     p = s->gains_str;
157     for (i = 0; i < MAX_BANDS; i++) {
158         float gain;
159         char c[3] = { 0 };
160 
161         if (!(arg = av_strtok(p, " |", &saveptr)))
162             break;
163 
164         p = NULL;
165 
166         if (av_sscanf(arg, "%f%2s", &gain, c) < 1) {
167             av_log(ctx, AV_LOG_ERROR, "Invalid syntax for gain[%d].\n", i);
168             ret = AVERROR(EINVAL);
169             break;
170         }
171 
172         if (c[0] == 'd' && c[1] == 'B')
173             s->gains[i] = expf(gain * M_LN10 / 20.f);
174         else
175             s->gains[i] = gain;
176     }
177 
178     for (; i < MAX_BANDS; i++)
179         s->gains[i] = 1.f;
180 
181     return ret;
182 }
183 
init(AVFilterContext * ctx)184 static av_cold int init(AVFilterContext *ctx)
185 {
186     AudioCrossoverContext *s = ctx->priv;
187     char *p, *arg, *saveptr = NULL;
188     int i, ret = 0;
189 
190     s->fdsp = avpriv_float_dsp_alloc(0);
191     if (!s->fdsp)
192         return AVERROR(ENOMEM);
193 
194     p = s->splits_str;
195     for (i = 0; i < MAX_SPLITS; i++) {
196         float freq;
197 
198         if (!(arg = av_strtok(p, " |", &saveptr)))
199             break;
200 
201         p = NULL;
202 
203         if (av_sscanf(arg, "%f", &freq) != 1) {
204             av_log(ctx, AV_LOG_ERROR, "Invalid syntax for frequency[%d].\n", i);
205             return AVERROR(EINVAL);
206         }
207         if (freq <= 0) {
208             av_log(ctx, AV_LOG_ERROR, "Frequency %f must be positive number.\n", freq);
209             return AVERROR(EINVAL);
210         }
211 
212         if (i > 0 && freq <= s->splits[i-1]) {
213             av_log(ctx, AV_LOG_ERROR, "Frequency %f must be in increasing order.\n", freq);
214             return AVERROR(EINVAL);
215         }
216 
217         s->splits[i] = freq;
218     }
219 
220     s->nb_splits = i;
221 
222     ret = parse_gains(ctx);
223     if (ret < 0)
224         return ret;
225 
226     for (i = 0; i <= s->nb_splits; i++) {
227         AVFilterPad pad  = { 0 };
228         char *name;
229 
230         pad.type = AVMEDIA_TYPE_AUDIO;
231         name = av_asprintf("out%d", ctx->nb_outputs);
232         if (!name)
233             return AVERROR(ENOMEM);
234         pad.name = name;
235 
236         if ((ret = ff_append_outpad_free_name(ctx, &pad)) < 0)
237             return ret;
238     }
239 
240     return ret;
241 }
242 
set_lp(BiquadCoeffs * b,double fc,double q,double sr)243 static void set_lp(BiquadCoeffs *b, double fc, double q, double sr)
244 {
245     double omega = 2. * M_PI * fc / sr;
246     double cosine = cos(omega);
247     double alpha = sin(omega) / (2. * q);
248 
249     double b0 = (1. - cosine) / 2.;
250     double b1 = 1. - cosine;
251     double b2 = (1. - cosine) / 2.;
252     double a0 = 1. + alpha;
253     double a1 = -2. * cosine;
254     double a2 = 1. - alpha;
255 
256     b->cd[B0] =  b0 / a0;
257     b->cd[B1] =  b1 / a0;
258     b->cd[B2] =  b2 / a0;
259     b->cd[A1] = -a1 / a0;
260     b->cd[A2] = -a2 / a0;
261 
262     b->cf[B0] = b->cd[B0];
263     b->cf[B1] = b->cd[B1];
264     b->cf[B2] = b->cd[B2];
265     b->cf[A1] = b->cd[A1];
266     b->cf[A2] = b->cd[A2];
267 }
268 
set_hp(BiquadCoeffs * b,double fc,double q,double sr)269 static void set_hp(BiquadCoeffs *b, double fc, double q, double sr)
270 {
271     double omega = 2. * M_PI * fc / sr;
272     double cosine = cos(omega);
273     double alpha = sin(omega) / (2. * q);
274 
275     double b0 = (1. + cosine) / 2.;
276     double b1 = -1. - cosine;
277     double b2 = (1. + cosine) / 2.;
278     double a0 = 1. + alpha;
279     double a1 = -2. * cosine;
280     double a2 = 1. - alpha;
281 
282     b->cd[B0] =  b0 / a0;
283     b->cd[B1] =  b1 / a0;
284     b->cd[B2] =  b2 / a0;
285     b->cd[A1] = -a1 / a0;
286     b->cd[A2] = -a2 / a0;
287 
288     b->cf[B0] = b->cd[B0];
289     b->cf[B1] = b->cd[B1];
290     b->cf[B2] = b->cd[B2];
291     b->cf[A1] = b->cd[A1];
292     b->cf[A2] = b->cd[A2];
293 }
294 
set_ap(BiquadCoeffs * b,double fc,double q,double sr)295 static void set_ap(BiquadCoeffs *b, double fc, double q, double sr)
296 {
297     double omega = 2. * M_PI * fc / sr;
298     double cosine = cos(omega);
299     double alpha = sin(omega) / (2. * q);
300 
301     double a0 = 1. + alpha;
302     double a1 = -2. * cosine;
303     double a2 = 1. - alpha;
304     double b0 = a2;
305     double b1 = a1;
306     double b2 = a0;
307 
308     b->cd[B0] =  b0 / a0;
309     b->cd[B1] =  b1 / a0;
310     b->cd[B2] =  b2 / a0;
311     b->cd[A1] = -a1 / a0;
312     b->cd[A2] = -a2 / a0;
313 
314     b->cf[B0] = b->cd[B0];
315     b->cf[B1] = b->cd[B1];
316     b->cf[B2] = b->cd[B2];
317     b->cf[A1] = b->cd[A1];
318     b->cf[A2] = b->cd[A2];
319 }
320 
set_ap1(BiquadCoeffs * b,double fc,double sr)321 static void set_ap1(BiquadCoeffs *b, double fc, double sr)
322 {
323     double omega = 2. * M_PI * fc / sr;
324 
325     b->cd[A1] = exp(-omega);
326     b->cd[A2] = 0.;
327     b->cd[B0] = -b->cd[A1];
328     b->cd[B1] = 1.;
329     b->cd[B2] = 0.;
330 
331     b->cf[B0] = b->cd[B0];
332     b->cf[B1] = b->cd[B1];
333     b->cf[B2] = b->cd[B2];
334     b->cf[A1] = b->cd[A1];
335     b->cf[A2] = b->cd[A2];
336 }
337 
calc_q_factors(int order,double * q)338 static void calc_q_factors(int order, double *q)
339 {
340     double n = order / 2.;
341 
342     for (int i = 0; i < n / 2; i++)
343         q[i] = 1. / (-2. * cos(M_PI * (2. * (i + 1) + n - 1.) / (2. * n)));
344 }
345 
346 #define BIQUAD_PROCESS(name, type)                             \
347 static void biquad_process_## name(const type *const c,        \
348                                    type *b,                    \
349                                    type *dst, const type *src, \
350                                    int nb_samples)             \
351 {                                                              \
352     const type b0 = c[B0];                                     \
353     const type b1 = c[B1];                                     \
354     const type b2 = c[B2];                                     \
355     const type a1 = c[A1];                                     \
356     const type a2 = c[A2];                                     \
357     type z1 = b[0];                                            \
358     type z2 = b[1];                                            \
359                                                                \
360     for (int n = 0; n + 1 < nb_samples; n++) {                 \
361         type in = src[n];                                      \
362         type out;                                              \
363                                                                \
364         out = in * b0 + z1;                                    \
365         z1 = b1 * in + z2 + a1 * out;                          \
366         z2 = b2 * in + a2 * out;                               \
367         dst[n] = out;                                          \
368                                                                \
369         n++;                                                   \
370         in = src[n];                                           \
371         out = in * b0 + z1;                                    \
372         z1 = b1 * in + z2 + a1 * out;                          \
373         z2 = b2 * in + a2 * out;                               \
374         dst[n] = out;                                          \
375     }                                                          \
376                                                                \
377     if (nb_samples & 1) {                                      \
378         const int n = nb_samples - 1;                          \
379         const type in = src[n];                                \
380         type out;                                              \
381                                                                \
382         out = in * b0 + z1;                                    \
383         z1 = b1 * in + z2 + a1 * out;                          \
384         z2 = b2 * in + a2 * out;                               \
385         dst[n] = out;                                          \
386     }                                                          \
387                                                                \
388     b[0] = z1;                                                 \
389     b[1] = z2;                                                 \
390 }
391 
BIQUAD_PROCESS(fltp,float)392 BIQUAD_PROCESS(fltp, float)
393 BIQUAD_PROCESS(dblp, double)
394 
395 #define XOVER_PROCESS(name, type, one, ff)                                                  \
396 static int filter_channels_## name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
397 {                                                                                           \
398     AudioCrossoverContext *s = ctx->priv;                                                   \
399     AVFrame *in = arg;                                                           \
400     AVFrame **frames = s->frames;                                                           \
401     const int start = (in->ch_layout.nb_channels * jobnr) / nb_jobs;                        \
402     const int end = (in->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;                      \
403     const int nb_samples = in->nb_samples;                                                  \
404     const int nb_outs = ctx->nb_outputs;                                                    \
405     const int first_order = s->first_order;                                                 \
406                                                                                             \
407     for (int ch = start; ch < end; ch++) {                                                  \
408         const type *src = (const type *)in->extended_data[ch];                              \
409         type *xover = (type *)s->xover->extended_data[ch];                                  \
410                                                                                             \
411         s->fdsp->vector_## ff ##mul_scalar((type *)frames[0]->extended_data[ch], src,       \
412                                     s->level_in, FFALIGN(nb_samples, sizeof(type)));        \
413                                                                                             \
414         for (int band = 0; band < nb_outs; band++) {                                        \
415             for (int f = 0; band + 1 < nb_outs && f < s->filter_count; f++) {               \
416                 const type *prv = (const type *)frames[band]->extended_data[ch];            \
417                 type *dst = (type *)frames[band + 1]->extended_data[ch];                    \
418                 const type *hsrc = f == 0 ? prv : dst;                                      \
419                 type *hp = xover + nb_outs * 20 + band * 20 + f * 2;                        \
420                 const type *const hpc = (type *)&s->hp[band][f].c ## ff;                    \
421                                                                                             \
422                 biquad_process_## name(hpc, hp, dst, hsrc, nb_samples);                     \
423             }                                                                               \
424                                                                                             \
425             for (int f = 0; band + 1 < nb_outs && f < s->filter_count; f++) {               \
426                 type *dst = (type *)frames[band]->extended_data[ch];                        \
427                 const type *lsrc = dst;                                                     \
428                 type *lp = xover + band * 20 + f * 2;                                       \
429                 const type *const lpc = (type *)&s->lp[band][f].c ## ff;                    \
430                                                                                             \
431                 biquad_process_## name(lpc, lp, dst, lsrc, nb_samples);                     \
432             }                                                                               \
433                                                                                             \
434             for (int aband = band + 1; aband + 1 < nb_outs; aband++) {                      \
435                 if (first_order) {                                                          \
436                     const type *asrc = (const type *)frames[band]->extended_data[ch];       \
437                     type *dst = (type *)frames[band]->extended_data[ch];                    \
438                     type *ap = xover + nb_outs * 40 + (aband * nb_outs + band) * 20;        \
439                     const type *const apc = (type *)&s->ap[aband][0].c ## ff;               \
440                                                                                             \
441                     biquad_process_## name(apc, ap, dst, asrc, nb_samples);                 \
442                 }                                                                           \
443                                                                                             \
444                 for (int f = first_order; f < s->ap_filter_count; f++) {                    \
445                     const type *asrc = (const type *)frames[band]->extended_data[ch];       \
446                     type *dst = (type *)frames[band]->extended_data[ch];                    \
447                     type *ap = xover + nb_outs * 40 + (aband * nb_outs + band) * 20 + f * 2;\
448                     const type *const apc = (type *)&s->ap[aband][f].c ## ff;               \
449                                                                                             \
450                     biquad_process_## name(apc, ap, dst, asrc, nb_samples);                 \
451                 }                                                                           \
452             }                                                                               \
453         }                                                                                   \
454                                                                                             \
455         for (int band = 0; band < nb_outs; band++) {                                        \
456             const type gain = s->gains[band] * ((band & 1 && first_order) ? -one : one);    \
457             type *dst = (type *)frames[band]->extended_data[ch];                            \
458                                                                                             \
459             s->fdsp->vector_## ff ##mul_scalar(dst, dst, gain,                              \
460                                                FFALIGN(nb_samples, sizeof(type)));          \
461         }                                                                                   \
462     }                                                                                       \
463                                                                                             \
464     return 0;                                                                               \
465 }
466 
467 XOVER_PROCESS(fltp, float, 1.f, f)
468 XOVER_PROCESS(dblp, double, 1.0, d)
469 
470 static int config_input(AVFilterLink *inlink)
471 {
472     AVFilterContext *ctx = inlink->dst;
473     AudioCrossoverContext *s = ctx->priv;
474     int sample_rate = inlink->sample_rate;
475     double q[16];
476 
477     s->order = (s->order_opt + 1) * 2;
478     s->filter_count = s->order / 2;
479     s->first_order = s->filter_count & 1;
480     s->ap_filter_count = s->filter_count / 2 + s->first_order;
481     calc_q_factors(s->order, q);
482 
483     for (int band = 0; band <= s->nb_splits; band++) {
484         if (s->first_order) {
485             set_lp(&s->lp[band][0], s->splits[band], 0.5, sample_rate);
486             set_hp(&s->hp[band][0], s->splits[band], 0.5, sample_rate);
487         }
488 
489         for (int n = s->first_order; n < s->filter_count; n++) {
490             const int idx = s->filter_count / 2 - ((n + s->first_order) / 2 - s->first_order) - 1;
491 
492             set_lp(&s->lp[band][n], s->splits[band], q[idx], sample_rate);
493             set_hp(&s->hp[band][n], s->splits[band], q[idx], sample_rate);
494         }
495 
496         if (s->first_order)
497             set_ap1(&s->ap[band][0], s->splits[band], sample_rate);
498 
499         for (int n = s->first_order; n < s->ap_filter_count; n++) {
500             const int idx = (s->filter_count / 2 - ((n * 2 + s->first_order) / 2 - s->first_order) - 1);
501 
502             set_ap(&s->ap[band][n], s->splits[band], q[idx], sample_rate);
503         }
504     }
505 
506     switch (inlink->format) {
507     case AV_SAMPLE_FMT_FLTP: s->filter_channels = filter_channels_fltp; break;
508     case AV_SAMPLE_FMT_DBLP: s->filter_channels = filter_channels_dblp; break;
509     default: return AVERROR_BUG;
510     }
511 
512     s->xover = ff_get_audio_buffer(inlink, 2 * (ctx->nb_outputs * 10 + ctx->nb_outputs * 10 +
513                                                 ctx->nb_outputs * ctx->nb_outputs * 10));
514     if (!s->xover)
515         return AVERROR(ENOMEM);
516 
517     return 0;
518 }
519 
filter_frame(AVFilterLink * inlink,AVFrame * in)520 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
521 {
522     AVFilterContext *ctx = inlink->dst;
523     AudioCrossoverContext *s = ctx->priv;
524     AVFrame **frames = s->frames;
525     int ret = 0;
526 
527     for (int i = 0; i < ctx->nb_outputs; i++) {
528         frames[i] = ff_get_audio_buffer(ctx->outputs[i], in->nb_samples);
529         if (!frames[i]) {
530             ret = AVERROR(ENOMEM);
531             break;
532         }
533 
534         frames[i]->pts = in->pts;
535     }
536 
537     if (ret < 0)
538         goto fail;
539 
540     ff_filter_execute(ctx, s->filter_channels, in, NULL,
541                       FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
542 
543     for (int i = 0; i < ctx->nb_outputs; i++) {
544         if (ff_outlink_get_status(ctx->outputs[i])) {
545             av_frame_free(&frames[i]);
546             continue;
547         }
548 
549         ret = ff_filter_frame(ctx->outputs[i], frames[i]);
550         frames[i] = NULL;
551         if (ret < 0)
552             break;
553     }
554 
555 fail:
556     for (int i = 0; i < ctx->nb_outputs; i++)
557         av_frame_free(&frames[i]);
558 
559     return ret;
560 }
561 
activate(AVFilterContext * ctx)562 static int activate(AVFilterContext *ctx)
563 {
564     AVFilterLink *inlink = ctx->inputs[0];
565     int status, ret;
566     AVFrame *in;
567     int64_t pts;
568 
569     for (int i = 0; i < ctx->nb_outputs; i++) {
570         FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[i], ctx);
571     }
572 
573     ret = ff_inlink_consume_frame(inlink, &in);
574     if (ret < 0)
575         return ret;
576     if (ret > 0) {
577         ret = filter_frame(inlink, in);
578         av_frame_free(&in);
579         if (ret < 0)
580             return ret;
581     }
582 
583     if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
584         for (int i = 0; i < ctx->nb_outputs; i++) {
585             if (ff_outlink_get_status(ctx->outputs[i]))
586                 continue;
587             ff_outlink_set_status(ctx->outputs[i], status, pts);
588         }
589         return 0;
590     }
591 
592     for (int i = 0; i < ctx->nb_outputs; i++) {
593         if (ff_outlink_get_status(ctx->outputs[i]))
594             continue;
595 
596         if (ff_outlink_frame_wanted(ctx->outputs[i])) {
597             ff_inlink_request_frame(inlink);
598             return 0;
599         }
600     }
601 
602     return FFERROR_NOT_READY;
603 }
604 
uninit(AVFilterContext * ctx)605 static av_cold void uninit(AVFilterContext *ctx)
606 {
607     AudioCrossoverContext *s = ctx->priv;
608 
609     av_freep(&s->fdsp);
610     av_frame_free(&s->xover);
611 }
612 
613 static const AVFilterPad inputs[] = {
614     {
615         .name         = "default",
616         .type         = AVMEDIA_TYPE_AUDIO,
617         .config_props = config_input,
618     },
619 };
620 
621 const AVFilter ff_af_acrossover = {
622     .name           = "acrossover",
623     .description    = NULL_IF_CONFIG_SMALL("Split audio into per-bands streams."),
624     .priv_size      = sizeof(AudioCrossoverContext),
625     .priv_class     = &acrossover_class,
626     .init           = init,
627     .activate       = activate,
628     .uninit         = uninit,
629     FILTER_INPUTS(inputs),
630     .outputs        = NULL,
631     FILTER_QUERY_FUNC(query_formats),
632     .flags          = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
633                       AVFILTER_FLAG_SLICE_THREADS,
634 };
635