• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "parser_test.h"
2 
3 #include <cmath>
4 #include <limits>
5 #include <string>
6 
7 #include "flatbuffers/idl.h"
8 #include "test_assert.h"
9 
10 namespace flatbuffers {
11 namespace tests {
12 namespace {
13 
14 // Shortcuts for the infinity.
15 static const auto infinity_f = std::numeric_limits<float>::infinity();
16 static const auto infinity_d = std::numeric_limits<double>::infinity();
17 
18 // Test that parser errors are actually generated.
TestError_(const char * src,const char * error_substr,bool strict_json,const char * file,int line,const char * func)19 static void TestError_(const char *src, const char *error_substr,
20                        bool strict_json, const char *file, int line,
21                        const char *func) {
22   flatbuffers::IDLOptions opts;
23   opts.strict_json = strict_json;
24   flatbuffers::Parser parser(opts);
25   if (parser.Parse(src)) {
26     TestFail("true", "false",
27              ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
28              func);
29   } else if (!strstr(parser.error_.c_str(), error_substr)) {
30     TestFail(error_substr, parser.error_.c_str(),
31              ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
32              func);
33   }
34 }
35 
TestError_(const char * src,const char * error_substr,const char * file,int line,const char * func)36 static void TestError_(const char *src, const char *error_substr,
37                        const char *file, int line, const char *func) {
38   TestError_(src, error_substr, false, file, line, func);
39 }
40 
41 #ifdef _WIN32
42 #  define TestError(src, ...) \
43     TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
44 #else
45 #  define TestError(src, ...) \
46     TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
47 #endif
48 
FloatCompare(float a,float b)49 static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
50 
51 }  // namespace
52 
53 // Test that parsing errors occur as we'd expect.
54 // Also useful for coverage, making sure these paths are run.
ErrorTest()55 void ErrorTest() {
56   // In order they appear in idl_parser.cpp
57   TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
58   TestError("\"\0", "illegal");
59   TestError("\"\\q", "escape code");
60   TestError("table ///", "documentation");
61   TestError("@", "illegal");
62   TestError("table 1", "expecting");
63   TestError("table X { Y:[[int]]; }", "nested vector");
64   TestError("table X { Y:1; }", "illegal type");
65   TestError("table X { Y:int; Y:int; }", "field already");
66   TestError("table Y {} table X { Y:int; }", "same as table");
67   TestError("struct X { Y:string; }", "only scalar");
68   TestError("struct X { a:uint = 42; }", "default values");
69   TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
70   TestError("struct X { Y:int (deprecated); }", "deprecate");
71   TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
72             "missing type field");
73   TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
74             "type id");
75   TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
76   TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
77   TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
78             true);
79   TestError(
80       "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
81       "{ V:{ Y:1 } }",
82       "wrong number");
83   TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
84             "unknown enum value");
85   TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
86   TestError("enum X:byte { Y } enum X {", "enum already");
87   TestError("enum X:float {}", "underlying");
88   TestError("enum X:byte { Y, Y }", "value already");
89   TestError("enum X:byte { Y=2, Z=2 }", "unique");
90   TestError("enum X:byte (force_align: 4) { Y }", "force_align");
91   TestError("table X { Y:int; } table X {", "datatype already");
92   TestError("table X { } union X { }", "datatype already");
93   TestError("union X { } table X { }", "datatype already");
94   TestError("namespace A; table X { } namespace A; union X { }",
95             "datatype already");
96   TestError("namespace A; union X { } namespace A; table X { }",
97             "datatype already");
98   TestError("struct X (force_align: 7) { Y:int; }", "force_align");
99   TestError("struct X {}", "size 0");
100   TestError("{}", "no root");
101   TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
102   TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
103             "end of file");
104   TestError("root_type X;", "unknown root");
105   TestError("struct X { Y:int; } root_type X;", "a table");
106   TestError("union X { Y }", "referenced");
107   TestError("union Z { X } struct X { Y:int; }", "only tables");
108   TestError("table X { Y:[int]; YLength:int; }", "clash");
109   TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
110   // float to integer conversion is forbidden
111   TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
112   TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
113   TestError("enum X:bool { Y = true }", "must be integral");
114   // Array of non-scalar
115   TestError("table X { x:int; } struct Y { y:[X:2]; }",
116             "may contain only scalar or struct fields");
117   // Non-snake case field names
118   TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case");
119   // Complex defaults
120   TestError("table X { y: string = 1; }", "expecting: string");
121   TestError("table X { y: string = []; }", " Cannot assign token");
122   TestError("table X { y: [int] = [1]; }", "Expected `]`");
123   TestError("table X { y: [int] = [; }", "Expected `]`");
124   TestError("table X { y: [int] = \"\"; }", "type mismatch");
125   // An identifier can't start from sign (+|-)
126   TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
127   TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
128 
129   // Offset64
130   TestError("table X { a:int (vector64); }", "`vector64` attribute");
131   TestError("table X { a:int (offset64); }", "`offset64` attribute");
132   TestError("table X { a:string (vector64); }", "`vector64` attribute");
133   TestError("table y { a:int; } table X { a:y (offset64); }",
134             "`offset64` attribute");
135   TestError("struct y { a:int; } table X { a:y (offset64); }",
136             "`offset64` attribute");
137   TestError("table y { a:int; } table X { a:y (vector64); }",
138             "`vector64` attribute");
139   TestError("union Y { } table X { ys:Y (offset64); }", "`offset64` attribute");
140 
141   TestError("table Y { a:int; } table X { ys:[Y] (offset64); }",
142             "only vectors of scalars are allowed to be 64-bit.");
143   TestError("table Y { a:int; } table X { ys:[Y] (vector64); }",
144             "only vectors of scalars are allowed to be 64-bit.");
145   TestError("union Y { } table X { ys:[Y] (vector64); }",
146             "only vectors of scalars are allowed to be 64-bit.");
147 
148   // TOOD(derekbailey): the following three could be allowed once the code gen
149   // supports the output.
150   TestError("table X { y:[string] (offset64); }",
151             "only vectors of scalars are allowed to be 64-bit.");
152   TestError("table X { y:[string] (vector64); }",
153             "only vectors of scalars are allowed to be 64-bit.");
154   TestError("enum X:byte {Z} table X { y:[X] (offset64); }",
155             "only vectors of scalars are allowed to be 64-bit.");
156 }
157 
EnumOutOfRangeTest()158 void EnumOutOfRangeTest() {
159   TestError("enum X:byte { Y = 128 }", "enum value does not fit");
160   TestError("enum X:byte { Y = -129 }", "enum value does not fit");
161   TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
162   TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
163   TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
164   TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
165   TestError("table Y{} union X { Y = -1 }", "enum value does not fit");
166   TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
167   TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
168   TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
169   TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
170   TestError("enum X:uint { Y = -1 }", "enum value does not fit");
171   TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
172   TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
173   TestError("enum X:long { Y = 9223372036854775807, Z }",
174             "enum value does not fit");
175   TestError("enum X:ulong { Y = -1 }", "does not fit");
176   TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
177   TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned");  // -128
178   // bit_flgs out of range
179   TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
180             "out of range");
181 }
182 
IntegerOutOfRangeTest()183 void IntegerOutOfRangeTest() {
184   TestError("table T { F:byte; } root_type T; { F:128 }",
185             "constant does not fit");
186   TestError("table T { F:byte; } root_type T; { F:-129 }",
187             "constant does not fit");
188   TestError("table T { F:ubyte; } root_type T; { F:256 }",
189             "constant does not fit");
190   TestError("table T { F:ubyte; } root_type T; { F:-1 }",
191             "constant does not fit");
192   TestError("table T { F:short; } root_type T; { F:32768 }",
193             "constant does not fit");
194   TestError("table T { F:short; } root_type T; { F:-32769 }",
195             "constant does not fit");
196   TestError("table T { F:ushort; } root_type T; { F:65536 }",
197             "constant does not fit");
198   TestError("table T { F:ushort; } root_type T; { F:-1 }",
199             "constant does not fit");
200   TestError("table T { F:int; } root_type T; { F:2147483648 }",
201             "constant does not fit");
202   TestError("table T { F:int; } root_type T; { F:-2147483649 }",
203             "constant does not fit");
204   TestError("table T { F:uint; } root_type T; { F:4294967296 }",
205             "constant does not fit");
206   TestError("table T { F:uint; } root_type T; { F:-1 }",
207             "constant does not fit");
208   // Check fixed width aliases
209   TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
210   TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
211   TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
212   TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
213   TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
214   TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
215             "does not fit");
216   TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
217   TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
218             "does not fit");
219   TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
220             "does not fit");
221 
222   TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
223   TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
224   TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
225   TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
226   TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
227   TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
228             "does not fit");
229   TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
230             "does not fit");
231   TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
232             "does not fit");
233   // check out-of-int64 as int8
234   TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
235             "does not fit");
236   TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
237             "does not fit");
238 
239   // Check default values
240   TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
241             "does not fit");
242   TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
243             "does not fit");
244   TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
245   TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
246             "does not fit");
247   TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
248             "does not fit");
249 }
250 
InvalidFloatTest()251 void InvalidFloatTest() {
252   auto invalid_msg = "invalid number";
253   auto comma_msg = "expecting: ,";
254   TestError("table T { F:float; } root_type T; { F:1,0 }", "");
255   TestError("table T { F:float; } root_type T; { F:. }", "");
256   TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
257   TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
258   TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
259   TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
260   TestError("table T { F:float; } root_type T; { F:.e }", "");
261   TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
262   TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
263   TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
264   TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
265   TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
266   TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
267   TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
268   TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
269   // exponent pP is mandatory for hex-float
270   TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
271   TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
272   TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
273   TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg);
274   TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg);
275   TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg);
276   // eE not exponent in hex-float!
277   TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
278   TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
279   TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
280   TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
281   TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
282   TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
283   TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
284   TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
285   TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
286   TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
287   TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
288   TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
289   TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
290   TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
291   TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
292   TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
293   TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
294   TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
295   TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
296   TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
297   TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
298   TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
299   TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
300   TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
301   // floats in string
302   TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
303   TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
304   TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
305   TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
306   TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
307   TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
308   // disable escapes for "number-in-string"
309   TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
310   TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
311   TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
312   TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
313   TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
314   TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
315   // null is not a number constant!
316   TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
317   TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
318 }
319 
UnicodeInvalidSurrogatesTest()320 void UnicodeInvalidSurrogatesTest() {
321   TestError(
322       "table T { F:string; }"
323       "root_type T;"
324       "{ F:\"\\uD800\"}",
325       "unpaired high surrogate");
326   TestError(
327       "table T { F:string; }"
328       "root_type T;"
329       "{ F:\"\\uD800abcd\"}",
330       "unpaired high surrogate");
331   TestError(
332       "table T { F:string; }"
333       "root_type T;"
334       "{ F:\"\\uD800\\n\"}",
335       "unpaired high surrogate");
336   TestError(
337       "table T { F:string; }"
338       "root_type T;"
339       "{ F:\"\\uD800\\uD800\"}",
340       "multiple high surrogates");
341   TestError(
342       "table T { F:string; }"
343       "root_type T;"
344       "{ F:\"\\uDC00\"}",
345       "unpaired low surrogate");
346 }
347 
InvalidUTF8Test()348 void InvalidUTF8Test() {
349   // "1 byte" pattern, under min length of 2 bytes
350   TestError(
351       "table T { F:string; }"
352       "root_type T;"
353       "{ F:\"\x80\"}",
354       "illegal UTF-8 sequence");
355   // 2 byte pattern, string too short
356   TestError(
357       "table T { F:string; }"
358       "root_type T;"
359       "{ F:\"\xDF\"}",
360       "illegal UTF-8 sequence");
361   // 3 byte pattern, string too short
362   TestError(
363       "table T { F:string; }"
364       "root_type T;"
365       "{ F:\"\xEF\xBF\"}",
366       "illegal UTF-8 sequence");
367   // 4 byte pattern, string too short
368   TestError(
369       "table T { F:string; }"
370       "root_type T;"
371       "{ F:\"\xF7\xBF\xBF\"}",
372       "illegal UTF-8 sequence");
373   // "5 byte" pattern, string too short
374   TestError(
375       "table T { F:string; }"
376       "root_type T;"
377       "{ F:\"\xFB\xBF\xBF\xBF\"}",
378       "illegal UTF-8 sequence");
379   // "6 byte" pattern, string too short
380   TestError(
381       "table T { F:string; }"
382       "root_type T;"
383       "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
384       "illegal UTF-8 sequence");
385   // "7 byte" pattern, string too short
386   TestError(
387       "table T { F:string; }"
388       "root_type T;"
389       "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
390       "illegal UTF-8 sequence");
391   // "5 byte" pattern, over max length of 4 bytes
392   TestError(
393       "table T { F:string; }"
394       "root_type T;"
395       "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
396       "illegal UTF-8 sequence");
397   // "6 byte" pattern, over max length of 4 bytes
398   TestError(
399       "table T { F:string; }"
400       "root_type T;"
401       "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
402       "illegal UTF-8 sequence");
403   // "7 byte" pattern, over max length of 4 bytes
404   TestError(
405       "table T { F:string; }"
406       "root_type T;"
407       "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
408       "illegal UTF-8 sequence");
409 
410   // Three invalid encodings for U+000A (\n, aka NEWLINE)
411   TestError(
412       "table T { F:string; }"
413       "root_type T;"
414       "{ F:\"\xC0\x8A\"}",
415       "illegal UTF-8 sequence");
416   TestError(
417       "table T { F:string; }"
418       "root_type T;"
419       "{ F:\"\xE0\x80\x8A\"}",
420       "illegal UTF-8 sequence");
421   TestError(
422       "table T { F:string; }"
423       "root_type T;"
424       "{ F:\"\xF0\x80\x80\x8A\"}",
425       "illegal UTF-8 sequence");
426 
427   // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
428   TestError(
429       "table T { F:string; }"
430       "root_type T;"
431       "{ F:\"\xE0\x81\xA9\"}",
432       "illegal UTF-8 sequence");
433   TestError(
434       "table T { F:string; }"
435       "root_type T;"
436       "{ F:\"\xF0\x80\x81\xA9\"}",
437       "illegal UTF-8 sequence");
438 
439   // Invalid encoding for U+20AC (EURO SYMBOL)
440   TestError(
441       "table T { F:string; }"
442       "root_type T;"
443       "{ F:\"\xF0\x82\x82\xAC\"}",
444       "illegal UTF-8 sequence");
445 
446   // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
447   // UTF-8
448   TestError(
449       "table T { F:string; }"
450       "root_type T;"
451       // U+10400 "encoded" as U+D801 U+DC00
452       "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
453       "illegal UTF-8 sequence");
454 
455   // Check independence of identifier from locale.
456   std::string locale_ident;
457   locale_ident += "table T { F";
458   locale_ident += static_cast<char>(-32);  // unsigned 0xE0
459   locale_ident += " :string; }";
460   locale_ident += "root_type T;";
461   locale_ident += "{}";
462   TestError(locale_ident.c_str(), "");
463 }
464 
465 template<typename T>
TestValue(const char * json,const char * type_name,const char * decls=nullptr)466 T TestValue(const char *json, const char *type_name,
467             const char *decls = nullptr) {
468   flatbuffers::Parser parser;
469   parser.builder_.ForceDefaults(true);  // return defaults
470   auto check_default = json ? false : true;
471   if (check_default) { parser.opts.output_default_scalars_in_json = true; }
472   // Simple schema.
473   std::string schema = std::string(decls ? decls : "") + "\n" +
474                        "table X { y:" + std::string(type_name) +
475                        "; } root_type X;";
476   auto schema_done = parser.Parse(schema.c_str());
477   TEST_EQ_STR(parser.error_.c_str(), "");
478   TEST_EQ(schema_done, true);
479 
480   auto done = parser.Parse(check_default ? "{}" : json);
481   TEST_EQ_STR(parser.error_.c_str(), "");
482   TEST_EQ(done, true);
483 
484   // Check with print.
485   std::string print_back;
486   parser.opts.indent_step = -1;
487   TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &print_back));
488   // restore value from its default
489   if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
490 
491   auto root = flatbuffers::GetRoot<flatbuffers::Table>(
492       parser.builder_.GetBufferPointer());
493   return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
494 }
495 
496 // Additional parser testing not covered elsewhere.
ValueTest()497 void ValueTest() {
498   // Test scientific notation numbers.
499   TEST_EQ(
500       FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
501       true);
502   // number in string
503   TEST_EQ(FloatCompare(TestValue<float>("{ y:\"0.0314159e+2\" }", "float"),
504                        3.14159f),
505           true);
506 
507   // Test conversion functions.
508   TEST_EQ(FloatCompare(TestValue<float>("{ y:cos(rad(180)) }", "float"), -1),
509           true);
510 
511   // int embedded to string
512   TEST_EQ(TestValue<int>("{ y:\"-876\" }", "int=-123"), -876);
513   TEST_EQ(TestValue<int>("{ y:\"876\" }", "int=-123"), 876);
514 
515   // Test negative hex constant.
516   TEST_EQ(TestValue<int>("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512);
517   TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
518 
519   // positive hex constant
520   TEST_EQ(TestValue<int>("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef);
521   // with optional '+' sign
522   TEST_EQ(TestValue<int>("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
523   // hex in string
524   TEST_EQ(TestValue<int>("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
525 
526   // Make sure we do unsigned 64bit correctly.
527   TEST_EQ(TestValue<uint64_t>("{ y:12335089644688340133 }", "ulong"),
528           12335089644688340133ULL);
529 
530   // bool in string
531   TEST_EQ(TestValue<bool>("{ y:\"false\" }", "bool=true"), false);
532   TEST_EQ(TestValue<bool>("{ y:\"true\" }", "bool=\"true\""), true);
533   TEST_EQ(TestValue<bool>("{ y:'false' }", "bool=true"), false);
534   TEST_EQ(TestValue<bool>("{ y:'true' }", "bool=\"true\""), true);
535 
536   // check comments before and after json object
537   TEST_EQ(TestValue<int>("/*before*/ { y:1 } /*after*/", "int"), 1);
538   TEST_EQ(TestValue<int>("//before \n { y:1 } //after", "int"), 1);
539 }
540 
NestedListTest()541 void NestedListTest() {
542   flatbuffers::Parser parser1;
543   TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
544                         "root_type T;"
545                         "{ F:[ [10,20], [30,40]] }"),
546           true);
547 }
548 
EnumStringsTest()549 void EnumStringsTest() {
550   flatbuffers::Parser parser1;
551   TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
552                         "root_type T;"
553                         "{ F:[ A, B, \"C\", \"A B C\" ] }"),
554           true);
555   flatbuffers::Parser parser2;
556   TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
557                         "root_type T;"
558                         "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
559           true);
560   // unsigned bit_flags
561   flatbuffers::Parser parser3;
562   TEST_EQ(
563       parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
564                     " table T { F: E = \"F15 F08\"; }"
565                     "root_type T;"),
566       true);
567 }
568 
EnumValueTest()569 void EnumValueTest() {
570   // json: "{ Y:0 }", schema: table X { y: "E"}
571   // 0 in enum (V=0) E then Y=0 is valid.
572   TEST_EQ(TestValue<int>("{ y:0 }", "E", "enum E:int { V }"), 0);
573   TEST_EQ(TestValue<int>("{ y:V }", "E", "enum E:int { V }"), 0);
574   // A default value of Y is 0.
575   TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
576   TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5);
577   // Generate json with defaults and check.
578   TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
579   // 5 in enum
580   TEST_EQ(TestValue<int>("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
581   TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
582   // Generate json with defaults and check.
583   TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
584   TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
585   // u84 test
586   TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
587                               "enum E:ulong { V = 13835058055282163712 }"),
588           13835058055282163712ULL);
589   TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
590                               "enum E:ulong { V = 18446744073709551615 }"),
591           18446744073709551615ULL);
592   // Assign non-enum value to enum field. Is it right?
593   TEST_EQ(TestValue<int>("{ y:7 }", "E", "enum E:int { V = 0 }"), 7);
594   // Check that non-ascending values are valid.
595   TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5);
596 }
597 
IntegerBoundaryTest()598 void IntegerBoundaryTest() {
599   // Check numerical compatibility with non-C++ languages.
600   // By the C++ standard, std::numerical_limits<int64_t>::min() ==
601   // -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
602   // the languages (C#, Java, Rust) expect that minimum values are: -128,
603   // -32768,.., -9223372036854775808. Since C++20,
604   // static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
605   // cast. Therefore -9223372036854775808 should be valid negative value.
606   TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
607   TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
608   TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
609   TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
610   TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
611   TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
612   TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
613           -9223372036854775807LL);
614   TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
615   TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
616   TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
617   TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
618   TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
619           18446744073709551615ULL);
620 
621   TEST_EQ(TestValue<int8_t>("{ y:127 }", "byte"), 127);
622   TEST_EQ(TestValue<int8_t>("{ y:-128 }", "byte"), -128);
623   TEST_EQ(TestValue<uint8_t>("{ y:255 }", "ubyte"), 255);
624   TEST_EQ(TestValue<uint8_t>("{ y:0 }", "ubyte"), 0);
625   TEST_EQ(TestValue<int16_t>("{ y:32767 }", "short"), 32767);
626   TEST_EQ(TestValue<int16_t>("{ y:-32768 }", "short"), -32768);
627   TEST_EQ(TestValue<uint16_t>("{ y:65535 }", "ushort"), 65535);
628   TEST_EQ(TestValue<uint16_t>("{ y:0 }", "ushort"), 0);
629   TEST_EQ(TestValue<int32_t>("{ y:2147483647 }", "int"), 2147483647);
630   TEST_EQ(TestValue<int32_t>("{ y:-2147483648 }", "int") + 1, -2147483647);
631   TEST_EQ(TestValue<uint32_t>("{ y:4294967295 }", "uint"), 4294967295);
632   TEST_EQ(TestValue<uint32_t>("{ y:0 }", "uint"), 0);
633   TEST_EQ(TestValue<int64_t>("{ y:9223372036854775807 }", "long"),
634           9223372036854775807LL);
635   TEST_EQ(TestValue<int64_t>("{ y:-9223372036854775808 }", "long") + 1LL,
636           -9223372036854775807LL);
637   TEST_EQ(TestValue<uint64_t>("{ y:18446744073709551615 }", "ulong"),
638           18446744073709551615ULL);
639   TEST_EQ(TestValue<uint64_t>("{ y:0 }", "ulong"), 0);
640   TEST_EQ(TestValue<uint64_t>("{ y: 18446744073709551615 }", "uint64"),
641           18446744073709551615ULL);
642   // check that the default works
643   TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
644           18446744073709551615ULL);
645 }
646 
ValidFloatTest()647 void ValidFloatTest() {
648   // check rounding to infinity
649   TEST_EQ(TestValue<float>("{ y:+3.4029e+38 }", "float"), +infinity_f);
650   TEST_EQ(TestValue<float>("{ y:-3.4029e+38 }", "float"), -infinity_f);
651   TEST_EQ(TestValue<double>("{ y:+1.7977e+308 }", "double"), +infinity_d);
652   TEST_EQ(TestValue<double>("{ y:-1.7977e+308 }", "double"), -infinity_d);
653 
654   TEST_EQ(
655       FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
656       true);
657   // float in string
658   TEST_EQ(FloatCompare(TestValue<float>("{ y:\" 0.0314159e+2  \" }", "float"),
659                        3.14159f),
660           true);
661 
662   TEST_EQ(TestValue<float>("{ y:1 }", "float"), 1.0f);
663   TEST_EQ(TestValue<float>("{ y:1.0 }", "float"), 1.0f);
664   TEST_EQ(TestValue<float>("{ y:1. }", "float"), 1.0f);
665   TEST_EQ(TestValue<float>("{ y:+1. }", "float"), 1.0f);
666   TEST_EQ(TestValue<float>("{ y:-1. }", "float"), -1.0f);
667   TEST_EQ(TestValue<float>("{ y:1.e0 }", "float"), 1.0f);
668   TEST_EQ(TestValue<float>("{ y:1.e+0 }", "float"), 1.0f);
669   TEST_EQ(TestValue<float>("{ y:1.e-0 }", "float"), 1.0f);
670   TEST_EQ(TestValue<float>("{ y:0.125 }", "float"), 0.125f);
671   TEST_EQ(TestValue<float>("{ y:.125 }", "float"), 0.125f);
672   TEST_EQ(TestValue<float>("{ y:-.125 }", "float"), -0.125f);
673   TEST_EQ(TestValue<float>("{ y:+.125 }", "float"), +0.125f);
674   TEST_EQ(TestValue<float>("{ y:5 }", "float"), 5.0f);
675   TEST_EQ(TestValue<float>("{ y:\"5\" }", "float"), 5.0f);
676 
677 #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
678   // Old MSVC versions may have problem with this check.
679   // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
680   TEST_EQ(TestValue<double>("{ y:6.9294956446009195e15 }", "double"),
681           6929495644600920.0);
682   // check nan's
683   TEST_EQ(std::isnan(TestValue<double>("{ y:nan }", "double")), true);
684   TEST_EQ(std::isnan(TestValue<float>("{ y:nan }", "float")), true);
685   TEST_EQ(std::isnan(TestValue<float>("{ y:\"nan\" }", "float")), true);
686   TEST_EQ(std::isnan(TestValue<float>("{ y:\"+nan\" }", "float")), true);
687   TEST_EQ(std::isnan(TestValue<float>("{ y:\"-nan\" }", "float")), true);
688   TEST_EQ(std::isnan(TestValue<float>("{ y:+nan }", "float")), true);
689   TEST_EQ(std::isnan(TestValue<float>("{ y:-nan }", "float")), true);
690   TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
691   TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
692   // check inf
693   TEST_EQ(TestValue<float>("{ y:inf }", "float"), infinity_f);
694   TEST_EQ(TestValue<float>("{ y:\"inf\" }", "float"), infinity_f);
695   TEST_EQ(TestValue<float>("{ y:\"-inf\" }", "float"), -infinity_f);
696   TEST_EQ(TestValue<float>("{ y:\"+inf\" }", "float"), infinity_f);
697   TEST_EQ(TestValue<float>("{ y:+inf }", "float"), infinity_f);
698   TEST_EQ(TestValue<float>("{ y:-inf }", "float"), -infinity_f);
699   TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinity_f);
700   TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinity_f);
701   TestValue<double>(
702       "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
703       "3.0e2] }",
704       "[double]");
705   TestValue<float>(
706       "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
707       "3.0e2] }",
708       "[float]");
709 
710   // Test binary format of float point.
711   // https://en.cppreference.com/w/cpp/language/floating_literal
712   // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
713   TEST_EQ(TestValue<double>("{ y:0x12.34p-1 }", "double"), 9.1015625);
714   // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
715   TEST_EQ(TestValue<float>("{ y:-0x0.2p0 }", "float"), -0.125f);
716   TEST_EQ(TestValue<float>("{ y:-0x.2p1 }", "float"), -0.25f);
717   TEST_EQ(TestValue<float>("{ y:0x1.2p3 }", "float"), 9.0f);
718   TEST_EQ(TestValue<float>("{ y:0x10.1p0 }", "float"), 16.0625f);
719   TEST_EQ(TestValue<double>("{ y:0x1.2p3 }", "double"), 9.0);
720   TEST_EQ(TestValue<double>("{ y:0x10.1p0 }", "double"), 16.0625);
721   TEST_EQ(TestValue<double>("{ y:0xC.68p+2 }", "double"), 49.625);
722   TestValue<double>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
723   TestValue<float>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
724 
725 #else   // FLATBUFFERS_HAS_NEW_STRTOD
726   TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
727 #endif  // !FLATBUFFERS_HAS_NEW_STRTOD
728 }
729 
UnicodeTest()730 void UnicodeTest() {
731   flatbuffers::Parser parser;
732   // Without setting allow_non_utf8 = true, we treat \x sequences as byte
733   // sequences which are then validated as UTF-8.
734   TEST_EQ(parser.Parse("table T { F:string; }"
735                        "root_type T;"
736                        "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
737                        "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
738                        "3D\\uDE0E\" }"),
739           true);
740   std::string jsongen;
741   parser.opts.indent_step = -1;
742   auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
743   TEST_NULL(result);
744   TEST_EQ_STR(jsongen.c_str(),
745               "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
746               "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
747 }
748 
UnicodeTestAllowNonUTF8()749 void UnicodeTestAllowNonUTF8() {
750   flatbuffers::Parser parser;
751   parser.opts.allow_non_utf8 = true;
752   TEST_EQ(
753       parser.Parse(
754           "table T { F:string; }"
755           "root_type T;"
756           "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
757           "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
758       true);
759   std::string jsongen;
760   parser.opts.indent_step = -1;
761   auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
762   TEST_NULL(result);
763   TEST_EQ_STR(
764       jsongen.c_str(),
765       "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
766       "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
767 }
768 
UnicodeTestGenerateTextFailsOnNonUTF8()769 void UnicodeTestGenerateTextFailsOnNonUTF8() {
770   flatbuffers::Parser parser;
771   // Allow non-UTF-8 initially to model what happens when we load a binary
772   // flatbuffer from disk which contains non-UTF-8 strings.
773   parser.opts.allow_non_utf8 = true;
774   TEST_EQ(
775       parser.Parse(
776           "table T { F:string; }"
777           "root_type T;"
778           "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
779           "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
780       true);
781   std::string jsongen;
782   parser.opts.indent_step = -1;
783   // Now, disallow non-UTF-8 (the default behavior) so GenText indicates
784   // failure.
785   parser.opts.allow_non_utf8 = false;
786   auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
787   TEST_EQ_STR(result, "string contains non-utf8 bytes");
788 }
789 
UnicodeSurrogatesTest()790 void UnicodeSurrogatesTest() {
791   flatbuffers::Parser parser;
792 
793   TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
794                        "root_type T;"
795                        "{ F:\"\\uD83D\\uDCA9\"}"),
796           true);
797   auto root = flatbuffers::GetRoot<flatbuffers::Table>(
798       parser.builder_.GetBufferPointer());
799   auto string = root->GetPointer<flatbuffers::String *>(
800       flatbuffers::FieldIndexToOffset(0));
801   TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
802 }
803 
UnknownFieldsTest()804 void UnknownFieldsTest() {
805   flatbuffers::IDLOptions opts;
806   opts.skip_unexpected_fields_in_json = true;
807   flatbuffers::Parser parser(opts);
808 
809   TEST_EQ(parser.Parse("table T { str:string; i:int;}"
810                        "root_type T;"
811                        "{ str:\"test\","
812                        "unknown_string:\"test\","
813                        "\"unknown_string\":\"test\","
814                        "unknown_int:10,"
815                        "unknown_float:1.0,"
816                        "unknown_array: [ 1, 2, 3, 4],"
817                        "unknown_object: { i: 10 },"
818                        "\"unknown_object\": { \"i\": 10 },"
819                        "i:10}"),
820           true);
821 
822   std::string jsongen;
823   parser.opts.indent_step = -1;
824   auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
825   TEST_NULL(result);
826   TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
827 }
828 
ParseUnionTest()829 void ParseUnionTest() {
830   // Unions must be parseable with the type field following the object.
831   flatbuffers::Parser parser;
832   TEST_EQ(parser.Parse("table T { A:int; }"
833                        "union U { T }"
834                        "table V { X:U; }"
835                        "root_type V;"
836                        "{ X:{ A:1 }, X_type: T }"),
837           true);
838   // Unions must be parsable with prefixed namespace.
839   flatbuffers::Parser parser2;
840   TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
841                         "table B { e:U; } root_type B;"
842                         "{ e_type: N_A, e: {} }"),
843           true);
844 
845   // Test union underlying type
846   const char *source = "table A {} table B {} union U : int {A, B} table C {test_union: U; test_vector_of_union: [U];}";
847   flatbuffers::Parser parser3;
848   parser3.opts.lang_to_generate = flatbuffers::IDLOptions::kCpp | flatbuffers::IDLOptions::kTs;
849   TEST_EQ(parser3.Parse(source), true);
850 
851   parser3.opts.lang_to_generate &= flatbuffers::IDLOptions::kJava;
852   TEST_EQ(parser3.Parse(source), false);
853 }
854 
ValidSameNameDifferentNamespaceTest()855 void ValidSameNameDifferentNamespaceTest() {
856   // Duplicate table names in different namespaces must be parsable
857   TEST_ASSERT(flatbuffers::Parser().Parse(
858       "namespace A; table X {} namespace B; table X {}"));
859   // Duplicate union names in different namespaces must be parsable
860   TEST_ASSERT(flatbuffers::Parser().Parse(
861       "namespace A; union X {} namespace B; union X {}"));
862   // Clashing table and union names in different namespaces must be parsable
863   TEST_ASSERT(flatbuffers::Parser().Parse(
864       "namespace A; table X {} namespace B; union X {}"));
865   TEST_ASSERT(flatbuffers::Parser().Parse(
866       "namespace A; union X {} namespace B; table X {}"));
867 }
868 
WarningsAsErrorsTest()869 void WarningsAsErrorsTest() {
870   {
871     flatbuffers::IDLOptions opts;
872     // opts.warnings_as_errors should default to false
873     flatbuffers::Parser parser(opts);
874     TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
875                          "root_type T;"),
876             true);
877   }
878   {
879     flatbuffers::IDLOptions opts;
880     opts.warnings_as_errors = true;
881     flatbuffers::Parser parser(opts);
882     TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
883                          "root_type T;"),
884             false);
885   }
886 }
887 
StringVectorDefaultsTest()888 void StringVectorDefaultsTest() {
889   std::vector<std::string> schemas;
890   schemas.push_back("table Monster { mana: string = \"\"; }");
891   schemas.push_back("table Monster { mana: string = \"mystr\"; }");
892   schemas.push_back("table Monster { mana: string = \"  \"; }");
893   schemas.push_back("table Monster { mana: string = \"null\"; }");
894   schemas.push_back("table Monster { mana: [int] = []; }");
895   schemas.push_back("table Monster { mana: [uint] = [  ]; }");
896   schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }");
897   schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}");
898   for (auto s = schemas.begin(); s < schemas.end(); s++) {
899     flatbuffers::Parser parser;
900     TEST_ASSERT(parser.Parse(s->c_str()));
901     const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana");
902     TEST_EQ(mana->IsDefault(), true);
903   }
904 }
905 
FieldIdentifierTest()906 void FieldIdentifierTest() {
907   using flatbuffers::Parser;
908   TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }"));
909   // non-integer `id` should be rejected
910   TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }"));
911   TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }"));
912   TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }"));
913   TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }"));
914   TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }"));
915   TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }"));
916   // A unuion filed occupys two ids: enumerator + pointer (offset).
917   TEST_EQ(false,
918           Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}"));
919   // Positive tests for unions
920   TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }"));
921   TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }"));
922   // Test using 'inf' and 'nan' words both as identifiers and as default values.
923   TEST_EQ(true, Parser().Parse("table T{ nan: string; }"));
924   TEST_EQ(true, Parser().Parse("table T{ inf: string; }"));
925 #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
926   TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }"));
927   TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }"));
928 #endif
929 }
930 
931 }  // namespace tests
932 }  // namespace flatbuffers
933