• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file
3  * This is the IPv4 packet segmentation and reassembly implementation.
4  *
5  */
6 
7 /*
8  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without modification,
12  * are permitted provided that the following conditions are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright notice,
15  *    this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright notice,
17  *    this list of conditions and the following disclaimer in the documentation
18  *    and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31  * OF SUCH DAMAGE.
32  *
33  * This file is part of the lwIP TCP/IP stack.
34  *
35  * Author: Jani Monoses <jani@iv.ro>
36  *         Simon Goldschmidt
37  * original reassembly code by Adam Dunkels <adam@sics.se>
38  *
39  */
40 
41 #include "lwip/opt.h"
42 
43 #if LWIP_IPV4
44 
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51 
52 #include <string.h>
53 
54 #if IP_REASSEMBLY
55 /**
56  * The IP reassembly code currently has the following limitations:
57  * - IP header options are not supported
58  * - fragments must not overlap (e.g. due to different routes),
59  *   currently, overlapping or duplicate fragments are thrown away
60  *   if IP_REASS_CHECK_OVERLAP=1 (the default)!
61  *
62  * @todo: work with IP header options
63  */
64 
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66  * regions. The code gets a little smaller. Only use this if you know that
67  * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71 
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73  * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74  * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75  * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79 
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81 
82 #define IP_REASS_VALIDATE_TELEGRAM_FINISHED  1
83 #define IP_REASS_VALIDATE_PBUF_QUEUED        0
84 #define IP_REASS_VALIDATE_PBUF_DROPPED       -1
85 
86 /** This is a helper struct which holds the starting
87  * offset and the ending offset of this fragment to
88  * easily chain the fragments.
89  * It has the same packing requirements as the IP header, since it replaces
90  * the IP header in memory in incoming fragments (after copying it) to keep
91  * track of the various fragments. (-> If the IP header doesn't need packing,
92  * this struct doesn't need packing, too.)
93  */
94 #ifdef PACK_STRUCT_USE_INCLUDES
95 #  include "arch/bpstruct.h"
96 #endif
97 PACK_STRUCT_BEGIN
98 struct ip_reass_helper {
99   PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
100   PACK_STRUCT_FIELD(u16_t start);
101   PACK_STRUCT_FIELD(u16_t end);
102 } PACK_STRUCT_STRUCT;
103 PACK_STRUCT_END
104 #ifdef PACK_STRUCT_USE_INCLUDES
105 #  include "arch/epstruct.h"
106 #endif
107 
108 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB)  \
109   (ip4_addr_eq(&(iphdrA)->src, &(iphdrB)->src) && \
110    ip4_addr_eq(&(iphdrA)->dest, &(iphdrB)->dest) && \
111    IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
112 
113 /* global variables */
114 static struct ip_reassdata *reassdatagrams;
115 static u16_t ip_reass_pbufcount;
116 
117 /* function prototypes */
118 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
119 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
120 
121 /**
122  * Reassembly timer base function
123  * for both NO_SYS == 0 and 1 (!).
124  *
125  * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
126  */
127 void
ip_reass_tmr(void)128 ip_reass_tmr(void)
129 {
130   struct ip_reassdata *r, *prev = NULL;
131 
132   r = reassdatagrams;
133   while (r != NULL) {
134     /* Decrement the timer. Once it reaches 0,
135      * clean up the incomplete fragment assembly */
136     if (r->timer > 0) {
137       r->timer--;
138       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n", (u16_t)r->timer));
139       prev = r;
140       r = r->next;
141     } else {
142       /* reassembly timed out */
143       struct ip_reassdata *tmp;
144       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
145       tmp = r;
146       /* get the next pointer before freeing */
147       r = r->next;
148       /* free the helper struct and all enqueued pbufs */
149       ip_reass_free_complete_datagram(tmp, prev);
150     }
151   }
152 }
153 
154 /**
155  * Free a datagram (struct ip_reassdata) and all its pbufs.
156  * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
157  * SNMP counters and sends an ICMP time exceeded packet.
158  *
159  * @param ipr datagram to free
160  * @param prev the previous datagram in the linked list
161  * @return the number of pbufs freed
162  */
163 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)164 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
165 {
166   u16_t pbufs_freed = 0;
167   u16_t clen;
168   struct pbuf *p;
169   struct ip_reass_helper *iprh;
170 
171   LWIP_ASSERT("prev != ipr", prev != ipr);
172   if (prev != NULL) {
173     LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
174   }
175 
176   MIB2_STATS_INC(mib2.ipreasmfails);
177 #if LWIP_ICMP
178  if (ipr->p != NULL) {
179     iprh = (struct ip_reass_helper *)ipr->p->payload;
180     if (iprh->start == 0) {
181       /* The first fragment was received, send ICMP time exceeded. */
182       /* First, de-queue the first pbuf from r->p. */
183       p = ipr->p;
184       ipr->p = iprh->next_pbuf;
185       /* Then, copy the original header into it. */
186       SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
187       icmp_time_exceeded(p, ICMP_TE_FRAG);
188       clen = pbuf_clen(p);
189       LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
190       pbufs_freed = (u16_t)(pbufs_freed + clen);
191       pbuf_free(p);
192     }
193   }
194 #endif /* LWIP_ICMP */
195 
196   /* First, free all received pbufs.  The individual pbufs need to be released
197      separately as they have not yet been chained */
198   p = ipr->p;
199   while (p != NULL) {
200     struct pbuf *pcur;
201     iprh = (struct ip_reass_helper *)p->payload;
202     pcur = p;
203     /* get the next pointer before freeing */
204     p = iprh->next_pbuf;
205     clen = pbuf_clen(pcur);
206     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
207     pbufs_freed = (u16_t)(pbufs_freed + clen);
208     pbuf_free(pcur);
209   }
210   /* Then, unchain the struct ip_reassdata from the list and free it. */
211   ip_reass_dequeue_datagram(ipr, prev);
212   LWIP_ASSERT("ip_reass_pbufcount >= pbufs_freed", ip_reass_pbufcount >= pbufs_freed);
213   ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - pbufs_freed);
214 
215   return pbufs_freed;
216 }
217 
218 #if LWIP_LOWPOWER
219 #include "lwip/lowpower.h"
220 u32_t
ip_reass_tmr_tick(void)221 ip_reass_tmr_tick(void)
222 {
223   struct ip_reassdata *r = NULL;
224   u32_t tick = 0;
225   u32_t val;
226 
227   r = reassdatagrams;
228   while (r != NULL) {
229     val = r->timer + 1;
230     SET_TMR_TICK(tick, val);
231     r = r->next;
232   }
233   LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "ip_reass_tmr_tick", tick));
234   return tick;
235 }
236 #endif /* LWIP_LOWPOWER */
237 
238 #if IP_REASS_FREE_OLDEST
239 /**
240  * Free the oldest datagram to make room for enqueueing new fragments.
241  * The datagram 'fraghdr' belongs to is not freed!
242  *
243  * @param fraghdr IP header of the current fragment
244  * @param pbufs_needed number of pbufs needed to enqueue
245  *        (used for freeing other datagrams if not enough space)
246  * @return the number of pbufs freed
247  */
248 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)249 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
250 {
251   /* @todo Can't we simply remove the last datagram in the
252    *       linked list behind reassdatagrams?
253    */
254   struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
255   int pbufs_freed = 0, pbufs_freed_current;
256   int other_datagrams;
257 
258   /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
259    * but don't free the datagram that 'fraghdr' belongs to! */
260   do {
261     oldest = NULL;
262     prev = NULL;
263     oldest_prev = NULL;
264     other_datagrams = 0;
265     r = reassdatagrams;
266     while (r != NULL) {
267       if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
268         /* Not the same datagram as fraghdr */
269         other_datagrams++;
270         if (oldest == NULL) {
271           oldest = r;
272           oldest_prev = prev;
273         } else if (r->timer <= oldest->timer) {
274           /* older than the previous oldest */
275           oldest = r;
276           oldest_prev = prev;
277         }
278       }
279       if (r->next != NULL) {
280         prev = r;
281       }
282       r = r->next;
283     }
284     if (oldest != NULL) {
285       pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
286       pbufs_freed += pbufs_freed_current;
287     }
288   } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
289   return pbufs_freed;
290 }
291 #endif /* IP_REASS_FREE_OLDEST */
292 
293 /**
294  * Enqueues a new fragment into the fragment queue
295  * @param fraghdr points to the new fragments IP hdr
296  * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
297  * @return A pointer to the queue location into which the fragment was enqueued
298  */
299 static struct ip_reassdata *
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)300 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
301 {
302   struct ip_reassdata *ipr;
303 #if ! IP_REASS_FREE_OLDEST
304   LWIP_UNUSED_ARG(clen);
305 #endif
306 
307   /* No matching previous fragment found, allocate a new reassdata struct */
308   ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
309   if (ipr == NULL) {
310 #if IP_REASS_FREE_OLDEST
311     if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
312       ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
313     }
314     if (ipr == NULL)
315 #endif /* IP_REASS_FREE_OLDEST */
316     {
317       IPFRAG_STATS_INC(ip_frag.memerr);
318       LWIP_DEBUGF(IP_REASS_DEBUG, ("Failed to alloc reassdata struct\n"));
319       return NULL;
320     }
321   }
322   memset(ipr, 0, sizeof(struct ip_reassdata));
323   ipr->timer = IP_REASS_MAXAGE;
324 
325   /* enqueue the new structure to the front of the list */
326   ipr->next = reassdatagrams;
327   reassdatagrams = ipr;
328   /* copy the ip header for later tests and input */
329   /* @todo: no ip options supported? */
330   SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
331   return ipr;
332 }
333 
334 /**
335  * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
336  * @param ipr points to the queue entry to dequeue
337  */
338 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)339 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
340 {
341   /* dequeue the reass struct  */
342   if (reassdatagrams == ipr) {
343     /* it was the first in the list */
344     reassdatagrams = ipr->next;
345   } else {
346     /* it wasn't the first, so it must have a valid 'prev' */
347     LWIP_ASSERT("sanity check linked list", prev != NULL);
348     prev->next = ipr->next;
349   }
350 
351   /* now we can free the ip_reassdata struct */
352   memp_free(MEMP_REASSDATA, ipr);
353 }
354 
355 /**
356  * Chain a new pbuf into the pbuf list that composes the datagram.  The pbuf list
357  * will grow over time as  new pbufs are rx.
358  * Also checks that the datagram passes basic continuity checks (if the last
359  * fragment was received at least once).
360  * @param ipr points to the reassembly state
361  * @param new_p points to the pbuf for the current fragment
362  * @param is_last is 1 if this pbuf has MF==0 (ipr->flags not updated yet)
363  * @return see IP_REASS_VALIDATE_* defines
364  */
365 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p,int is_last)366 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p, int is_last)
367 {
368   struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev = NULL;
369   struct pbuf *q;
370   u16_t offset, len;
371   u8_t hlen;
372   struct ip_hdr *fraghdr;
373   int valid = 1;
374 
375   /* Extract length and fragment offset from current fragment */
376   fraghdr = (struct ip_hdr *)new_p->payload;
377   len = lwip_ntohs(IPH_LEN(fraghdr));
378   hlen = IPH_HL_BYTES(fraghdr);
379   if (hlen > len) {
380     /* invalid datagram */
381     return IP_REASS_VALIDATE_PBUF_DROPPED;
382   }
383   len = (u16_t)(len - hlen);
384   offset = IPH_OFFSET_BYTES(fraghdr);
385 
386   /* overwrite the fragment's ip header from the pbuf with our helper struct,
387    * and setup the embedded helper structure. */
388   /* make sure the struct ip_reass_helper fits into the IP header */
389   LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
390               sizeof(struct ip_reass_helper) <= IP_HLEN);
391   iprh = (struct ip_reass_helper *)new_p->payload;
392   iprh->next_pbuf = NULL;
393   iprh->start = offset;
394   iprh->end = (u16_t)(offset + len);
395   if (iprh->end < offset) {
396     /* u16_t overflow, cannot handle this */
397     return IP_REASS_VALIDATE_PBUF_DROPPED;
398   }
399 
400   /* Iterate through until we either get to the end of the list (append),
401    * or we find one with a larger offset (insert). */
402   for (q = ipr->p; q != NULL;) {
403     iprh_tmp = (struct ip_reass_helper *)q->payload;
404     if (iprh->start < iprh_tmp->start) {
405       /* the new pbuf should be inserted before this */
406       iprh->next_pbuf = q;
407       if (iprh_prev != NULL) {
408         /* not the fragment with the lowest offset */
409 #if IP_REASS_CHECK_OVERLAP
410         if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
411           /* fragment overlaps with previous or following, throw away */
412           return IP_REASS_VALIDATE_PBUF_DROPPED;
413         }
414 #endif /* IP_REASS_CHECK_OVERLAP */
415         iprh_prev->next_pbuf = new_p;
416         if (iprh_prev->end != iprh->start) {
417           /* There is a fragment missing between the current
418            * and the previous fragment */
419           valid = 0;
420         }
421       } else {
422 #if IP_REASS_CHECK_OVERLAP
423         if (iprh->end > iprh_tmp->start) {
424           /* fragment overlaps with following, throw away */
425           return IP_REASS_VALIDATE_PBUF_DROPPED;
426         }
427 #endif /* IP_REASS_CHECK_OVERLAP */
428         /* fragment with the lowest offset */
429         ipr->p = new_p;
430       }
431       break;
432     } else if (iprh->start == iprh_tmp->start) {
433       /* received the same datagram twice: no need to keep the datagram */
434       return IP_REASS_VALIDATE_PBUF_DROPPED;
435 #if IP_REASS_CHECK_OVERLAP
436     } else if (iprh->start < iprh_tmp->end) {
437       /* overlap: no need to keep the new datagram */
438       return IP_REASS_VALIDATE_PBUF_DROPPED;
439 #endif /* IP_REASS_CHECK_OVERLAP */
440     } else {
441       /* Check if the fragments received so far have no holes. */
442       if (iprh_prev != NULL) {
443         if (iprh_prev->end != iprh_tmp->start) {
444           /* There is a fragment missing between the current
445            * and the previous fragment */
446           valid = 0;
447         }
448       }
449     }
450     q = iprh_tmp->next_pbuf;
451     iprh_prev = iprh_tmp;
452   }
453 
454   /* If q is NULL, then we made it to the end of the list. Determine what to do now */
455   if (q == NULL) {
456     if (iprh_prev != NULL) {
457       /* this is (for now), the fragment with the highest offset:
458        * chain it to the last fragment */
459 #if IP_REASS_CHECK_OVERLAP
460       LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
461 #endif /* IP_REASS_CHECK_OVERLAP */
462       iprh_prev->next_pbuf = new_p;
463       if (iprh_prev->end != iprh->start) {
464         valid = 0;
465       }
466     } else {
467 #if IP_REASS_CHECK_OVERLAP
468       LWIP_ASSERT("no previous fragment, this must be the first fragment!",
469                   ipr->p == NULL);
470 #endif /* IP_REASS_CHECK_OVERLAP */
471       /* this is the first fragment we ever received for this ip datagram */
472       ipr->p = new_p;
473     }
474   }
475 
476   /* At this point, the validation part begins: */
477   /* If we already received the last fragment */
478   if (is_last || ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0)) {
479     /* and had no holes so far */
480     if (valid) {
481       /* then check if the rest of the fragments is here */
482       /* Check if the queue starts with the first datagram */
483       if ((ipr->p == NULL) || (((struct ip_reass_helper *)ipr->p->payload)->start != 0)) {
484         valid = 0;
485       } else {
486         /* and check that there are no holes after this datagram */
487         iprh_prev = iprh;
488         q = iprh->next_pbuf;
489         while (q != NULL) {
490           iprh = (struct ip_reass_helper *)q->payload;
491           if (iprh_prev->end != iprh->start) {
492             valid = 0;
493             break;
494           }
495           iprh_prev = iprh;
496           q = iprh->next_pbuf;
497         }
498         /* if still valid, all fragments are received
499          * (because to the MF==0 already arrived */
500         if (valid) {
501           LWIP_ASSERT("sanity check", ipr->p != NULL);
502           LWIP_ASSERT("sanity check",
503                       ((struct ip_reass_helper *)ipr->p->payload) != iprh);
504           LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
505                       iprh->next_pbuf == NULL);
506         }
507       }
508     }
509     /* If valid is 0 here, there are some fragments missing in the middle
510      * (since MF == 0 has already arrived). Such datagrams simply time out if
511      * no more fragments are received... */
512     return valid ? IP_REASS_VALIDATE_TELEGRAM_FINISHED : IP_REASS_VALIDATE_PBUF_QUEUED;
513   }
514   /* If we come here, not all fragments were received, yet! */
515   return IP_REASS_VALIDATE_PBUF_QUEUED; /* not yet valid! */
516 }
517 
518 /**
519  * Reassembles incoming IP fragments into an IP datagram.
520  *
521  * @param p points to a pbuf chain of the fragment
522  * @return NULL if reassembly is incomplete, ? otherwise
523  */
524 struct pbuf *
ip4_reass(struct pbuf * p)525 ip4_reass(struct pbuf *p)
526 {
527   struct pbuf *r;
528   struct ip_hdr *fraghdr;
529   struct ip_reassdata *ipr;
530   struct ip_reass_helper *iprh;
531   u16_t offset, len, clen;
532   u8_t hlen;
533   int valid;
534   int is_last;
535 
536   IPFRAG_STATS_INC(ip_frag.recv);
537   MIB2_STATS_INC(mib2.ipreasmreqds);
538 
539   fraghdr = (struct ip_hdr *)p->payload;
540 
541   if (IPH_HL_BYTES(fraghdr) != IP_HLEN) {
542     LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: IP options currently not supported!\n"));
543     IPFRAG_STATS_INC(ip_frag.err);
544     goto nullreturn;
545   }
546 
547   offset = IPH_OFFSET_BYTES(fraghdr);
548   len = lwip_ntohs(IPH_LEN(fraghdr));
549   hlen = IPH_HL_BYTES(fraghdr);
550   if (hlen > len) {
551     /* invalid datagram */
552     goto nullreturn;
553   }
554   len = (u16_t)(len - hlen);
555 
556   /* Check if we are allowed to enqueue more datagrams. */
557   clen = pbuf_clen(p);
558   if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
559 #if IP_REASS_FREE_OLDEST
560     if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
561         ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
562 #endif /* IP_REASS_FREE_OLDEST */
563     {
564       /* No datagram could be freed and still too many pbufs enqueued */
565       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
566                                    ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
567       IPFRAG_STATS_INC(ip_frag.memerr);
568       /* @todo: send ICMP time exceeded here? */
569       /* drop this pbuf */
570       goto nullreturn;
571     }
572   }
573 
574   /* Look for the datagram the fragment belongs to in the current datagram queue,
575    * remembering the previous in the queue for later dequeueing. */
576   for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
577     /* Check if the incoming fragment matches the one currently present
578        in the reassembly buffer. If so, we proceed with copying the
579        fragment into the buffer. */
580     if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
581       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
582                                    lwip_ntohs(IPH_ID(fraghdr))));
583       IPFRAG_STATS_INC(ip_frag.cachehit);
584       break;
585     }
586   }
587 
588   if (ipr == NULL) {
589     /* Enqueue a new datagram into the datagram queue */
590     ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
591     /* Bail if unable to enqueue */
592     if (ipr == NULL) {
593       goto nullreturn;
594     }
595   } else {
596     if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
597         ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
598       /* ipr->iphdr is not the header from the first fragment, but fraghdr is
599        * -> copy fraghdr into ipr->iphdr since we want to have the header
600        * of the first fragment (for ICMP time exceeded and later, for copying
601        * all options, if supported)*/
602       SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
603     }
604   }
605 
606   /* At this point, we have either created a new entry or pointing
607    * to an existing one */
608 
609   /* check for 'no more fragments', and update queue entry*/
610   is_last = (IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0;
611   if (is_last) {
612     u16_t datagram_len = (u16_t)(offset + len);
613     if ((datagram_len < offset) || (datagram_len > (0xFFFF - IP_HLEN))) {
614       /* u16_t overflow, cannot handle this */
615       goto nullreturn_ipr;
616     }
617   }
618   /* find the right place to insert this pbuf */
619   /* @todo: trim pbufs if fragments are overlapping */
620   valid = ip_reass_chain_frag_into_datagram_and_validate(ipr, p, is_last);
621   if (valid == IP_REASS_VALIDATE_PBUF_DROPPED) {
622     goto nullreturn_ipr;
623   }
624   /* if we come here, the pbuf has been enqueued */
625 
626   /* Track the current number of pbufs current 'in-flight', in order to limit
627      the number of fragments that may be enqueued at any one time
628      (overflow checked by testing against IP_REASS_MAX_PBUFS) */
629   ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount + clen);
630   if (is_last) {
631     u16_t datagram_len = (u16_t)(offset + len);
632     ipr->datagram_len = datagram_len;
633     ipr->flags |= IP_REASS_FLAG_LASTFRAG;
634     LWIP_DEBUGF(IP_REASS_DEBUG,
635                 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
636                  ipr->datagram_len));
637   }
638 
639   if (valid == IP_REASS_VALIDATE_TELEGRAM_FINISHED) {
640     struct ip_reassdata *ipr_prev;
641     /* the totally last fragment (flag more fragments = 0) was received at least
642      * once AND all fragments are received */
643     u16_t datagram_len = (u16_t)(ipr->datagram_len + IP_HLEN);
644 
645     /* save the second pbuf before copying the header over the pointer */
646     r = ((struct ip_reass_helper *)ipr->p->payload)->next_pbuf;
647 
648     /* copy the original ip header back to the first pbuf */
649     fraghdr = (struct ip_hdr *)(ipr->p->payload);
650     SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
651     IPH_LEN_SET(fraghdr, lwip_htons(datagram_len));
652     IPH_OFFSET_SET(fraghdr, 0);
653     IPH_CHKSUM_SET(fraghdr, 0);
654     /* @todo: do we need to set/calculate the correct checksum? */
655 #if CHECKSUM_GEN_IP
656     IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
657       IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
658     }
659 #endif /* CHECKSUM_GEN_IP */
660 
661     p = ipr->p;
662 
663     /* chain together the pbufs contained within the reass_data list. */
664     while (r != NULL) {
665       iprh = (struct ip_reass_helper *)r->payload;
666 
667       /* hide the ip header for every succeeding fragment */
668       pbuf_remove_header(r, IP_HLEN);
669       pbuf_cat(p, r);
670       r = iprh->next_pbuf;
671     }
672 
673     /* find the previous entry in the linked list */
674     if (ipr == reassdatagrams) {
675       ipr_prev = NULL;
676     } else {
677       for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
678         if (ipr_prev->next == ipr) {
679           break;
680         }
681       }
682     }
683 
684     /* release the sources allocate for the fragment queue entry */
685     ip_reass_dequeue_datagram(ipr, ipr_prev);
686 
687     /* and adjust the number of pbufs currently queued for reassembly. */
688     clen = pbuf_clen(p);
689     LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= clen);
690     ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - clen);
691 
692     MIB2_STATS_INC(mib2.ipreasmoks);
693 
694     /* Return the pbuf chain */
695     return p;
696   }
697   /* the datagram is not (yet?) reassembled completely */
698   LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
699   return NULL;
700 
701 nullreturn_ipr:
702   LWIP_ASSERT("ipr != NULL", ipr != NULL);
703   if (ipr->p == NULL) {
704     /* dropped pbuf after creating a new datagram entry: remove the entry, too */
705     LWIP_ASSERT("not firstalthough just enqueued", ipr == reassdatagrams);
706     ip_reass_dequeue_datagram(ipr, NULL);
707   }
708 
709 nullreturn:
710   LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: nullreturn\n"));
711   IPFRAG_STATS_INC(ip_frag.drop);
712   pbuf_free(p);
713   return NULL;
714 }
715 #endif /* IP_REASSEMBLY */
716 
717 #if IP_FRAG
718 #if !LWIP_NETIF_TX_SINGLE_PBUF
719 /** Allocate a new struct pbuf_custom_ref */
720 static struct pbuf_custom_ref *
ip_frag_alloc_pbuf_custom_ref(void)721 ip_frag_alloc_pbuf_custom_ref(void)
722 {
723   return (struct pbuf_custom_ref *)memp_malloc(MEMP_FRAG_PBUF);
724 }
725 
726 /** Free a struct pbuf_custom_ref */
727 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)728 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref *p)
729 {
730   LWIP_ASSERT("p != NULL", p != NULL);
731   memp_free(MEMP_FRAG_PBUF, p);
732 }
733 
734 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
735  * pbuf_free. */
736 static void
ipfrag_free_pbuf_custom(struct pbuf * p)737 ipfrag_free_pbuf_custom(struct pbuf *p)
738 {
739   struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref *)p;
740   LWIP_ASSERT("pcr != NULL", pcr != NULL);
741   LWIP_ASSERT("pcr == p", (void *)pcr == (void *)p);
742   if (pcr->original != NULL) {
743     pbuf_free(pcr->original);
744   }
745   ip_frag_free_pbuf_custom_ref(pcr);
746 }
747 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
748 
749 /**
750  * Fragment an IP datagram if too large for the netif.
751  *
752  * Chop the datagram in MTU sized chunks and send them in order
753  * by pointing PBUF_REFs into p.
754  *
755  * @param p ip packet to send
756  * @param netif the netif on which to send
757  * @param dest destination ip address to which to send
758  *
759  * @return ERR_OK if sent successfully, err_t otherwise
760  */
761 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)762 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
763 {
764   struct pbuf *rambuf;
765 #if !LWIP_NETIF_TX_SINGLE_PBUF
766   struct pbuf *newpbuf;
767   u16_t newpbuflen = 0;
768   u16_t left_to_copy;
769 #endif
770   struct ip_hdr *original_iphdr;
771   struct ip_hdr *iphdr;
772   const u16_t nfb = (u16_t)((netif->mtu - IP_HLEN) / 8);
773   u16_t left, fragsize;
774   u16_t ofo;
775   int last;
776   u16_t poff = IP_HLEN;
777   u16_t tmp;
778   int mf_set;
779 
780   original_iphdr = (struct ip_hdr *)p->payload;
781   iphdr = original_iphdr;
782   if (IPH_HL_BYTES(iphdr) != IP_HLEN) {
783     /* ip4_frag() does not support IP options */
784     return ERR_VAL;
785   }
786   LWIP_ERROR("ip4_frag(): pbuf too short", p->len >= IP_HLEN, return ERR_VAL);
787 
788   /* Save original offset */
789   tmp = lwip_ntohs(IPH_OFFSET(iphdr));
790   ofo = tmp & IP_OFFMASK;
791   /* already fragmented? if so, the last fragment we create must have MF, too */
792   mf_set = tmp & IP_MF;
793 
794   left = (u16_t)(p->tot_len - IP_HLEN);
795 
796   while (left) {
797     /* Fill this fragment */
798     fragsize = LWIP_MIN(left, (u16_t)(nfb * 8));
799 
800 #if LWIP_NETIF_TX_SINGLE_PBUF
801     rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
802     if (rambuf == NULL) {
803       goto memerr;
804     }
805     LWIP_ASSERT("this needs a pbuf in one piece!",
806                 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
807     poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
808     /* make room for the IP header */
809     if (pbuf_add_header(rambuf, IP_HLEN)) {
810       pbuf_free(rambuf);
811       goto memerr;
812     }
813     /* fill in the IP header */
814     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
815     iphdr = (struct ip_hdr *)rambuf->payload;
816 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
817     /* When not using a static buffer, create a chain of pbufs.
818      * The first will be a PBUF_RAM holding the link and IP header.
819      * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
820      * but limited to the size of an mtu.
821      */
822     rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
823     if (rambuf == NULL) {
824       goto memerr;
825     }
826     LWIP_ASSERT("this needs a pbuf in one piece!",
827                 (rambuf->len >= (IP_HLEN)));
828     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
829     iphdr = (struct ip_hdr *)rambuf->payload;
830 
831     left_to_copy = fragsize;
832     while (left_to_copy) {
833       struct pbuf_custom_ref *pcr;
834       u16_t plen = (u16_t)(p->len - poff);
835       LWIP_ASSERT("p->len >= poff", p->len >= poff);
836       newpbuflen = LWIP_MIN(left_to_copy, plen);
837       /* Is this pbuf already empty? */
838       if (!newpbuflen) {
839         poff = 0;
840         p = p->next;
841         continue;
842       }
843       pcr = ip_frag_alloc_pbuf_custom_ref();
844       if (pcr == NULL) {
845         pbuf_free(rambuf);
846         goto memerr;
847       }
848       /* Mirror this pbuf, although we might not need all of it. */
849       newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
850                                     (u8_t *)p->payload + poff, newpbuflen);
851       if (newpbuf == NULL) {
852         ip_frag_free_pbuf_custom_ref(pcr);
853         pbuf_free(rambuf);
854         goto memerr;
855       }
856       pbuf_ref(p);
857       pcr->original = p;
858       pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
859 
860       /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
861        * so that it is removed when pbuf_dechain is later called on rambuf.
862        */
863       pbuf_cat(rambuf, newpbuf);
864       left_to_copy = (u16_t)(left_to_copy - newpbuflen);
865       if (left_to_copy) {
866         poff = 0;
867         p = p->next;
868       }
869     }
870     poff = (u16_t)(poff + newpbuflen);
871 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
872 
873     /* Correct header */
874     last = (left <= netif->mtu - IP_HLEN);
875 
876     /* Set new offset and MF flag */
877     tmp = (IP_OFFMASK & (ofo));
878     if (!last || mf_set) {
879       /* the last fragment has MF set if the input frame had it */
880       tmp = tmp | IP_MF;
881     }
882     IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
883     IPH_LEN_SET(iphdr, lwip_htons((u16_t)(fragsize + IP_HLEN)));
884     IPH_CHKSUM_SET(iphdr, 0);
885 #if CHECKSUM_GEN_IP
886     IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
887       IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
888     }
889 #endif /* CHECKSUM_GEN_IP */
890 
891     /* No need for separate header pbuf - we allowed room for it in rambuf
892      * when allocated.
893      */
894     netif->output(netif, rambuf, dest);
895     IPFRAG_STATS_INC(ip_frag.xmit);
896 
897     /* Unfortunately we can't reuse rambuf - the hardware may still be
898      * using the buffer. Instead we free it (and the ensuing chain) and
899      * recreate it next time round the loop. If we're lucky the hardware
900      * will have already sent the packet, the free will really free, and
901      * there will be zero memory penalty.
902      */
903 
904     pbuf_free(rambuf);
905     left = (u16_t)(left - fragsize);
906     ofo = (u16_t)(ofo + nfb);
907   }
908   MIB2_STATS_INC(mib2.ipfragoks);
909   return ERR_OK;
910 memerr:
911   MIB2_STATS_INC(mib2.ipfragfails);
912   return ERR_MEM;
913 }
914 #endif /* IP_FRAG */
915 
916 #endif /* LWIP_IPV4 */
917