• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file
3  * Dynamic memory manager
4  *
5  * This is a lightweight replacement for the standard C library malloc().
6  *
7  * If you want to use the standard C library malloc() instead, define
8  * MEM_LIBC_MALLOC to 1 in your lwipopts.h
9  *
10  * To let mem_malloc() use pools (prevents fragmentation and is much faster than
11  * a heap but might waste some memory), define MEM_USE_POOLS to 1, define
12  * MEMP_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
13  * of pools like this (more pools can be added between _START and _END):
14  *
15  * Define three pools with sizes 256, 512, and 1512 bytes
16  * LWIP_MALLOC_MEMPOOL_START
17  * LWIP_MALLOC_MEMPOOL(20, 256)
18  * LWIP_MALLOC_MEMPOOL(10, 512)
19  * LWIP_MALLOC_MEMPOOL(5, 1512)
20  * LWIP_MALLOC_MEMPOOL_END
21  */
22 
23 /*
24  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without modification,
28  * are permitted provided that the following conditions are met:
29  *
30  * 1. Redistributions of source code must retain the above copyright notice,
31  *    this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright notice,
33  *    this list of conditions and the following disclaimer in the documentation
34  *    and/or other materials provided with the distribution.
35  * 3. The name of the author may not be used to endorse or promote products
36  *    derived from this software without specific prior written permission.
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
39  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
40  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
41  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
42  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
43  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
46  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
47  * OF SUCH DAMAGE.
48  *
49  * This file is part of the lwIP TCP/IP stack.
50  *
51  * Author: Adam Dunkels <adam@sics.se>
52  *         Simon Goldschmidt
53  *
54  */
55 
56 #include "lwip/opt.h"
57 #include "lwip/mem.h"
58 #include "lwip/def.h"
59 #include "lwip/sys.h"
60 #include "lwip/stats.h"
61 #include "lwip/err.h"
62 
63 #include <stdio.h>  /* snprintf */
64 #include <string.h>
65 
66 #if MEM_LIBC_MALLOC
67 #include <stdlib.h> /* for malloc()/free() */
68 #endif
69 
70 /* This is overridable for tests only... */
71 #ifndef LWIP_MEM_ILLEGAL_FREE
72 #define LWIP_MEM_ILLEGAL_FREE(msg)         LWIP_ASSERT(msg, 0)
73 #endif
74 
75 #define MEM_STATS_INC_LOCKED(x)         SYS_ARCH_LOCKED(MEM_STATS_INC(x))
76 #define MEM_STATS_INC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_INC_USED(x, y))
77 #define MEM_STATS_DEC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_DEC_USED(x, y))
78 
79 #if MEM_OVERFLOW_CHECK
80 #define MEM_SANITY_OFFSET   MEM_SANITY_REGION_BEFORE_ALIGNED
81 #define MEM_SANITY_OVERHEAD (MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED)
82 #else
83 #define MEM_SANITY_OFFSET   0
84 #define MEM_SANITY_OVERHEAD 0
85 #endif
86 
87 #if MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK
88 /**
89  * Check if a mep element was victim of an overflow or underflow
90  * (e.g. the restricted area after/before it has been altered)
91  *
92  * @param p the mem element to check
93  * @param size allocated size of the element
94  * @param descr1 description of the element source shown on error
95  * @param descr2 description of the element source shown on error
96  */
97 void
mem_overflow_check_raw(void * p,size_t size,const char * descr1,const char * descr2)98 mem_overflow_check_raw(void *p, size_t size, const char *descr1, const char *descr2)
99 {
100 #if MEM_SANITY_REGION_AFTER_ALIGNED || MEM_SANITY_REGION_BEFORE_ALIGNED
101   u16_t k;
102   u8_t *m;
103 
104 #if MEM_SANITY_REGION_AFTER_ALIGNED > 0
105   m = (u8_t *)p + size;
106   for (k = 0; k < MEM_SANITY_REGION_AFTER_ALIGNED; k++) {
107     if (m[k] != 0xcd) {
108       char errstr[128];
109       snprintf(errstr, sizeof(errstr), "detected mem overflow in %s%s", descr1, descr2);
110       LWIP_ASSERT(errstr, 0);
111     }
112   }
113 #endif /* MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
114 
115 #if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
116   m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
117   for (k = 0; k < MEM_SANITY_REGION_BEFORE_ALIGNED; k++) {
118     if (m[k] != 0xcd) {
119       char errstr[128];
120       snprintf(errstr, sizeof(errstr), "detected mem underflow in %s%s", descr1, descr2);
121       LWIP_ASSERT(errstr, 0);
122     }
123   }
124 #endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 */
125 #else
126   LWIP_UNUSED_ARG(p);
127   LWIP_UNUSED_ARG(desc);
128   LWIP_UNUSED_ARG(descr);
129 #endif
130 }
131 
132 /**
133  * Initialize the restricted area of a mem element.
134  */
135 void
mem_overflow_init_raw(void * p,size_t size)136 mem_overflow_init_raw(void *p, size_t size)
137 {
138 #if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0
139   u8_t *m;
140 #if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
141   m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
142   memset(m, 0xcd, MEM_SANITY_REGION_BEFORE_ALIGNED);
143 #endif
144 #if MEM_SANITY_REGION_AFTER_ALIGNED > 0
145   m = (u8_t *)p + size;
146   memset(m, 0xcd, MEM_SANITY_REGION_AFTER_ALIGNED);
147 #endif
148 #else /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
149   LWIP_UNUSED_ARG(p);
150   LWIP_UNUSED_ARG(desc);
151 #endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
152 }
153 #endif /* MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK */
154 
155 #if MEM_CUSTOM_ALLOCATOR || MEM_USE_POOLS
156 
157 /** mem_init is not used when using pools instead of a heap or using
158  * C library malloc().
159  */
160 void
mem_init(void)161 mem_init(void)
162 {
163 }
164 
165 /** mem_trim is not used when using pools instead of a heap or using
166  * C library malloc(): we can't free part of a pool element and the stack
167  * support mem_trim() to return a different pointer
168  */
169 void *
mem_trim(void * mem,mem_size_t size)170 mem_trim(void *mem, mem_size_t size)
171 {
172   LWIP_UNUSED_ARG(size);
173   return mem;
174 }
175 #endif /* MEM_CUSTOM_ALLOCATOR || MEM_USE_POOLS */
176 
177 #if MEM_CUSTOM_ALLOCATOR
178 
179 #if LWIP_STATS && MEM_STATS
180 #define MEM_LIBC_STATSHELPER_SIZE LWIP_MEM_ALIGN_SIZE(sizeof(mem_size_t))
181 #else
182 #define MEM_LIBC_STATSHELPER_SIZE 0
183 #endif
184 
185 /**
186  * Allocate a block of memory with a minimum of 'size' bytes.
187  *
188  * @param size is the minimum size of the requested block in bytes.
189  * @return pointer to allocated memory or NULL if no free memory was found.
190  *
191  * Note that the returned value must always be aligned (as defined by MEM_ALIGNMENT).
192  */
193 void *
mem_malloc(mem_size_t size)194 mem_malloc(mem_size_t size)
195 {
196   void *ret = MEM_CUSTOM_MALLOC(size + MEM_LIBC_STATSHELPER_SIZE);
197   if (ret == NULL) {
198     MEM_STATS_INC_LOCKED(err);
199   } else {
200     LWIP_ASSERT("malloc() must return aligned memory", LWIP_MEM_ALIGN(ret) == ret);
201 #if LWIP_STATS && MEM_STATS
202     *(mem_size_t *)ret = size;
203     ret = (u8_t *)ret + MEM_LIBC_STATSHELPER_SIZE;
204     MEM_STATS_INC_USED_LOCKED(used, size);
205 #endif
206   }
207   return ret;
208 }
209 
210 /** Put memory back on the heap
211  *
212  * @param rmem is the pointer as returned by a previous call to mem_malloc()
213  */
214 void
mem_free(void * rmem)215 mem_free(void *rmem)
216 {
217   LWIP_ASSERT("rmem != NULL", (rmem != NULL));
218   LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
219 #if LWIP_STATS && MEM_STATS
220   rmem = (u8_t *)rmem - MEM_LIBC_STATSHELPER_SIZE;
221   MEM_STATS_DEC_USED_LOCKED(used, *(mem_size_t *)rmem);
222 #endif
223   MEM_CUSTOM_FREE(rmem);
224 }
225 
226 #elif MEM_USE_POOLS
227 
228 /* lwIP heap implemented with different sized pools */
229 
230 /**
231  * Allocate memory: determine the smallest pool that is big enough
232  * to contain an element of 'size' and get an element from that pool.
233  *
234  * @param size the size in bytes of the memory needed
235  * @return a pointer to the allocated memory or NULL if the pool is empty
236  */
237 void *
mem_malloc(mem_size_t size)238 mem_malloc(mem_size_t size)
239 {
240   void *ret;
241   struct memp_malloc_helper *element = NULL;
242   memp_t poolnr;
243   mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
244 
245   for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
246     /* is this pool big enough to hold an element of the required size
247        plus a struct memp_malloc_helper that saves the pool this element came from? */
248     if (required_size <= memp_pools[poolnr]->size) {
249       element = (struct memp_malloc_helper *)memp_malloc(poolnr);
250       if (element == NULL) {
251         /* No need to DEBUGF or ASSERT: This error is already taken care of in memp.c */
252 #if MEM_USE_POOLS_TRY_BIGGER_POOL
253         /** Try a bigger pool if this one is empty! */
254         if (poolnr < MEMP_POOL_LAST) {
255           continue;
256         }
257 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
258         MEM_STATS_INC_LOCKED(err);
259         return NULL;
260       }
261       break;
262     }
263   }
264   if (poolnr > MEMP_POOL_LAST) {
265     LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
266     MEM_STATS_INC_LOCKED(err);
267     return NULL;
268   }
269 
270   /* save the pool number this element came from */
271   element->poolnr = poolnr;
272   /* and return a pointer to the memory directly after the struct memp_malloc_helper */
273   ret = (u8_t *)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
274 
275 #if MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS)
276   /* truncating to u16_t is safe because struct memp_desc::size is u16_t */
277   element->size = (u16_t)size;
278   MEM_STATS_INC_USED_LOCKED(used, element->size);
279 #endif /* MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) */
280 #if MEMP_OVERFLOW_CHECK
281   /* initialize unused memory (diff between requested size and selected pool's size) */
282   memset((u8_t *)ret + size, 0xcd, memp_pools[poolnr]->size - size);
283 #endif /* MEMP_OVERFLOW_CHECK */
284   return ret;
285 }
286 
287 /**
288  * Free memory previously allocated by mem_malloc. Loads the pool number
289  * and calls memp_free with that pool number to put the element back into
290  * its pool
291  *
292  * @param rmem the memory element to free
293  */
294 void
mem_free(void * rmem)295 mem_free(void *rmem)
296 {
297   struct memp_malloc_helper *hmem;
298 
299   LWIP_ASSERT("rmem != NULL", (rmem != NULL));
300   LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
301 
302   /* get the original struct memp_malloc_helper */
303   /* cast through void* to get rid of alignment warnings */
304   hmem = (struct memp_malloc_helper *)(void *)((u8_t *)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)));
305 
306   LWIP_ASSERT("hmem != NULL", (hmem != NULL));
307   LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
308   LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
309 
310   MEM_STATS_DEC_USED_LOCKED(used, hmem->size);
311 #if MEMP_OVERFLOW_CHECK
312   {
313     u16_t i;
314     LWIP_ASSERT("MEM_USE_POOLS: invalid chunk size",
315                 hmem->size <= memp_pools[hmem->poolnr]->size);
316     /* check that unused memory remained untouched (diff between requested size and selected pool's size) */
317     for (i = hmem->size; i < memp_pools[hmem->poolnr]->size; i++) {
318       u8_t data = *((u8_t *)rmem + i);
319       LWIP_ASSERT("MEM_USE_POOLS: mem overflow detected", data == 0xcd);
320     }
321   }
322 #endif /* MEMP_OVERFLOW_CHECK */
323 
324   /* and put it in the pool we saved earlier */
325   memp_free(hmem->poolnr, hmem);
326 }
327 
328 #else /* MEM_USE_POOLS */
329 /* lwIP replacement for your libc malloc() */
330 
331 /**
332  * The heap is made up as a list of structs of this type.
333  * This does not have to be aligned since for getting its size,
334  * we only use the macro SIZEOF_STRUCT_MEM, which automatically aligns.
335  */
336 struct mem {
337   /** index (-> ram[next]) of the next struct */
338   mem_size_t next;
339   /** index (-> ram[prev]) of the previous struct */
340   mem_size_t prev;
341   /** 1: this area is used; 0: this area is unused */
342   u8_t used;
343 #if MEM_OVERFLOW_CHECK
344   /** this keeps track of the user allocation size for guard checks */
345   mem_size_t user_size;
346 #endif
347 };
348 
349 /** All allocated blocks will be MIN_SIZE bytes big, at least!
350  * MIN_SIZE can be overridden to suit your needs. Smaller values save space,
351  * larger values could prevent too small blocks to fragment the RAM too much. */
352 #ifndef MIN_SIZE
353 #define MIN_SIZE             12
354 #endif /* MIN_SIZE */
355 /* some alignment macros: we define them here for better source code layout */
356 #define MIN_SIZE_ALIGNED     LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
357 #define SIZEOF_STRUCT_MEM    LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
358 #define MEM_SIZE_ALIGNED     LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
359 
360 /** If you want to relocate the heap to external memory, simply define
361  * LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
362  * If so, make sure the memory at that location is big enough (see below on
363  * how that space is calculated). */
364 #ifndef LWIP_RAM_HEAP_POINTER
365 /** the heap. we need one struct mem at the end and some room for alignment */
366 LWIP_DECLARE_MEMORY_ALIGNED(ram_heap, MEM_SIZE_ALIGNED + (2U * SIZEOF_STRUCT_MEM));
367 #define LWIP_RAM_HEAP_POINTER ram_heap
368 #endif /* LWIP_RAM_HEAP_POINTER */
369 
370 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
371 static u8_t *ram;
372 /** the last entry, always unused! */
373 static struct mem *ram_end;
374 
375 /** concurrent access protection */
376 #if !NO_SYS
377 static sys_mutex_t mem_mutex;
378 #endif
379 
380 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
381 
382 static volatile u8_t mem_free_count;
383 
384 /* Allow mem_free from other (e.g. interrupt) context */
385 #define LWIP_MEM_FREE_DECL_PROTECT()  SYS_ARCH_DECL_PROTECT(lev_free)
386 #define LWIP_MEM_FREE_PROTECT()       SYS_ARCH_PROTECT(lev_free)
387 #define LWIP_MEM_FREE_UNPROTECT()     SYS_ARCH_UNPROTECT(lev_free)
388 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
389 #define LWIP_MEM_ALLOC_PROTECT()      SYS_ARCH_PROTECT(lev_alloc)
390 #define LWIP_MEM_ALLOC_UNPROTECT()    SYS_ARCH_UNPROTECT(lev_alloc)
391 #define LWIP_MEM_LFREE_VOLATILE       volatile
392 
393 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
394 
395 /* Protect the heap only by using a mutex */
396 #define LWIP_MEM_FREE_DECL_PROTECT()
397 #define LWIP_MEM_FREE_PROTECT()    sys_mutex_lock(&mem_mutex)
398 #define LWIP_MEM_FREE_UNPROTECT()  sys_mutex_unlock(&mem_mutex)
399 /* mem_malloc is protected using mutex AND LWIP_MEM_ALLOC_PROTECT */
400 #define LWIP_MEM_ALLOC_DECL_PROTECT()
401 #define LWIP_MEM_ALLOC_PROTECT()
402 #define LWIP_MEM_ALLOC_UNPROTECT()
403 #define LWIP_MEM_LFREE_VOLATILE
404 
405 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
406 
407 /** pointer to the lowest free block, this is used for faster search */
408 static struct mem * LWIP_MEM_LFREE_VOLATILE lfree;
409 
410 #if MEM_SANITY_CHECK
411 static void mem_sanity(void);
412 #define MEM_SANITY() mem_sanity()
413 #else
414 #define MEM_SANITY()
415 #endif
416 
417 #if MEM_OVERFLOW_CHECK
418 static void
mem_overflow_init_element(struct mem * mem,mem_size_t user_size)419 mem_overflow_init_element(struct mem *mem, mem_size_t user_size)
420 {
421   void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
422   mem->user_size = user_size;
423   mem_overflow_init_raw(p, user_size);
424 }
425 
426 static void
mem_overflow_check_element(struct mem * mem)427 mem_overflow_check_element(struct mem *mem)
428 {
429   void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
430   mem_overflow_check_raw(p, mem->user_size, "heap", "");
431 }
432 #else /* MEM_OVERFLOW_CHECK */
433 #define mem_overflow_init_element(mem, size)
434 #define mem_overflow_check_element(mem)
435 #endif /* MEM_OVERFLOW_CHECK */
436 
437 static struct mem *
ptr_to_mem(mem_size_t ptr)438 ptr_to_mem(mem_size_t ptr)
439 {
440   return (struct mem *)(void *)&ram[ptr];
441 }
442 
443 static mem_size_t
mem_to_ptr(void * mem)444 mem_to_ptr(void *mem)
445 {
446   return (mem_size_t)((u8_t *)mem - ram);
447 }
448 
449 /**
450  * "Plug holes" by combining adjacent empty struct mems.
451  * After this function is through, there should not exist
452  * one empty struct mem pointing to another empty struct mem.
453  *
454  * @param mem this points to a struct mem which just has been freed
455  * @internal this function is only called by mem_free() and mem_trim()
456  *
457  * This assumes access to the heap is protected by the calling function
458  * already.
459  */
460 static void
plug_holes(struct mem * mem)461 plug_holes(struct mem *mem)
462 {
463   struct mem *nmem;
464   struct mem *pmem;
465 
466   LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
467   LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
468   LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
469 
470   /* plug hole forward */
471   LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
472 
473   nmem = ptr_to_mem(mem->next);
474   if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
475     /* if mem->next is unused and not end of ram, combine mem and mem->next */
476     if (lfree == nmem) {
477       lfree = mem;
478     }
479     mem->next = nmem->next;
480     if (nmem->next != MEM_SIZE_ALIGNED) {
481       ptr_to_mem(nmem->next)->prev = mem_to_ptr(mem);
482     }
483   }
484 
485   /* plug hole backward */
486   pmem = ptr_to_mem(mem->prev);
487   if (pmem != mem && pmem->used == 0) {
488     /* if mem->prev is unused, combine mem and mem->prev */
489     if (lfree == mem) {
490       lfree = pmem;
491     }
492     pmem->next = mem->next;
493     if (mem->next != MEM_SIZE_ALIGNED) {
494       ptr_to_mem(mem->next)->prev = mem_to_ptr(pmem);
495     }
496   }
497 }
498 
499 /**
500  * Zero the heap and initialize start, end and lowest-free
501  */
502 void
mem_init(void)503 mem_init(void)
504 {
505   struct mem *mem;
506 
507   LWIP_ASSERT("Sanity check alignment",
508               (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT - 1)) == 0);
509 
510   /* align the heap */
511   ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
512   /* initialize the start of the heap */
513   mem = (struct mem *)(void *)ram;
514   mem->next = MEM_SIZE_ALIGNED;
515   mem->prev = 0;
516   mem->used = 0;
517   /* initialize the end of the heap */
518   ram_end = ptr_to_mem(MEM_SIZE_ALIGNED);
519   ram_end->used = 1;
520   ram_end->next = MEM_SIZE_ALIGNED;
521   ram_end->prev = MEM_SIZE_ALIGNED;
522   MEM_SANITY();
523 
524   /* initialize the lowest-free pointer to the start of the heap */
525   lfree = (struct mem *)(void *)ram;
526 
527   MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
528 
529   if (sys_mutex_new(&mem_mutex) != ERR_OK) {
530     LWIP_ASSERT("failed to create mem_mutex", 0);
531   }
532 }
533 
534 /* Check if a struct mem is correctly linked.
535  * If not, double-free is a possible reason.
536  */
537 static int
mem_link_valid(struct mem * mem)538 mem_link_valid(struct mem *mem)
539 {
540   struct mem *nmem, *pmem;
541   mem_size_t rmem_idx;
542   rmem_idx = mem_to_ptr(mem);
543   nmem = ptr_to_mem(mem->next);
544   pmem = ptr_to_mem(mem->prev);
545   if ((mem->next > MEM_SIZE_ALIGNED) || (mem->prev > MEM_SIZE_ALIGNED) ||
546       ((mem->prev != rmem_idx) && (pmem->next != rmem_idx)) ||
547       ((nmem != ram_end) && (nmem->prev != rmem_idx))) {
548     return 0;
549   }
550   return 1;
551 }
552 
553 #if MEM_SANITY_CHECK
554 static void
mem_sanity(void)555 mem_sanity(void)
556 {
557   struct mem *mem;
558   u8_t last_used;
559 
560   /* begin with first element here */
561   mem = (struct mem *)ram;
562   LWIP_ASSERT("heap element used valid", (mem->used == 0) || (mem->used == 1));
563   last_used = mem->used;
564   LWIP_ASSERT("heap element prev ptr valid", mem->prev == 0);
565   LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED);
566   LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next)));
567 
568   /* check all elements before the end of the heap */
569   for (mem = ptr_to_mem(mem->next);
570        ((u8_t *)mem > ram) && (mem < ram_end);
571        mem = ptr_to_mem(mem->next)) {
572     LWIP_ASSERT("heap element aligned", LWIP_MEM_ALIGN(mem) == mem);
573     LWIP_ASSERT("heap element prev ptr valid", mem->prev <= MEM_SIZE_ALIGNED);
574     LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED);
575     LWIP_ASSERT("heap element prev ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->prev) == ptr_to_mem(mem->prev)));
576     LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next)));
577 
578     if (last_used == 0) {
579       /* 2 unused elements in a row? */
580       LWIP_ASSERT("heap element unused?", mem->used == 1);
581     } else {
582       LWIP_ASSERT("heap element unused member", (mem->used == 0) || (mem->used == 1));
583     }
584 
585     LWIP_ASSERT("heap element link valid", mem_link_valid(mem));
586 
587     /* used/unused altering */
588     last_used = mem->used;
589   }
590   LWIP_ASSERT("heap end ptr sanity", mem == ptr_to_mem(MEM_SIZE_ALIGNED));
591   LWIP_ASSERT("heap element used valid", mem->used == 1);
592   LWIP_ASSERT("heap element prev ptr valid", mem->prev == MEM_SIZE_ALIGNED);
593   LWIP_ASSERT("heap element next ptr valid", mem->next == MEM_SIZE_ALIGNED);
594 }
595 #endif /* MEM_SANITY_CHECK */
596 
597 /**
598  * Put a struct mem back on the heap
599  *
600  * @param rmem is the data portion of a struct mem as returned by a previous
601  *             call to mem_malloc()
602  */
603 void
mem_free(void * rmem)604 mem_free(void *rmem)
605 {
606   struct mem *mem;
607   LWIP_MEM_FREE_DECL_PROTECT();
608 
609   if (rmem == NULL) {
610     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
611     return;
612   }
613   if ((((mem_ptr_t)rmem) & (MEM_ALIGNMENT - 1)) != 0) {
614     LWIP_MEM_ILLEGAL_FREE("mem_free: sanity check alignment");
615     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: sanity check alignment\n"));
616     /* protect mem stats from concurrent access */
617     MEM_STATS_INC_LOCKED(illegal);
618     return;
619   }
620 
621   /* Get the corresponding struct mem: */
622   /* cast through void* to get rid of alignment warnings */
623   mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET));
624 
625   if ((u8_t *)mem < ram || (u8_t *)rmem + MIN_SIZE_ALIGNED > (u8_t *)ram_end) {
626     LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory");
627     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
628     /* protect mem stats from concurrent access */
629     MEM_STATS_INC_LOCKED(illegal);
630     return;
631   }
632 #if MEM_OVERFLOW_CHECK
633   mem_overflow_check_element(mem);
634 #endif
635   /* protect the heap from concurrent access */
636   LWIP_MEM_FREE_PROTECT();
637   /* mem has to be in a used state */
638   if (!mem->used) {
639     LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: double free");
640     LWIP_MEM_FREE_UNPROTECT();
641     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: double free?\n"));
642     /* protect mem stats from concurrent access */
643     MEM_STATS_INC_LOCKED(illegal);
644     return;
645   }
646 
647   if (!mem_link_valid(mem)) {
648     LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: non-linked: double free");
649     LWIP_MEM_FREE_UNPROTECT();
650     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: non-linked: double free?\n"));
651     /* protect mem stats from concurrent access */
652     MEM_STATS_INC_LOCKED(illegal);
653     return;
654   }
655 
656   /* mem is now unused. */
657   mem->used = 0;
658 
659   if (mem < lfree) {
660     /* the newly freed struct is now the lowest */
661     lfree = mem;
662   }
663 
664   MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
665 
666   /* finally, see if prev or next are free also */
667   plug_holes(mem);
668   MEM_SANITY();
669 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
670   mem_free_count = 1;
671 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
672   LWIP_MEM_FREE_UNPROTECT();
673 }
674 
675 /**
676  * Shrink memory returned by mem_malloc().
677  *
678  * @param rmem pointer to memory allocated by mem_malloc the is to be shrunk
679  * @param new_size required size after shrinking (needs to be smaller than or
680  *                equal to the previous size)
681  * @return for compatibility reasons: is always == rmem, at the moment
682  *         or NULL if newsize is > old size, in which case rmem is NOT touched
683  *         or freed!
684  */
685 void *
mem_trim(void * rmem,mem_size_t new_size)686 mem_trim(void *rmem, mem_size_t new_size)
687 {
688   mem_size_t size, newsize;
689   mem_size_t ptr, ptr2;
690   struct mem *mem, *mem2;
691   /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
692   LWIP_MEM_FREE_DECL_PROTECT();
693 
694   /* Expand the size of the allocated memory region so that we can
695      adjust for alignment. */
696   newsize = (mem_size_t)LWIP_MEM_ALIGN_SIZE(new_size);
697   if (newsize < MIN_SIZE_ALIGNED) {
698     /* every data block must be at least MIN_SIZE_ALIGNED long */
699     newsize = MIN_SIZE_ALIGNED;
700   }
701 #if MEM_OVERFLOW_CHECK
702   newsize += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED;
703 #endif
704   if ((newsize > MEM_SIZE_ALIGNED) || (newsize < new_size)) {
705     return NULL;
706   }
707 
708   LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
709               (u8_t *)rmem < (u8_t *)ram_end);
710 
711   if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
712     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
713     /* protect mem stats from concurrent access */
714     MEM_STATS_INC_LOCKED(illegal);
715     return rmem;
716   }
717   /* Get the corresponding struct mem ... */
718   /* cast through void* to get rid of alignment warnings */
719   mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET));
720 #if MEM_OVERFLOW_CHECK
721   mem_overflow_check_element(mem);
722 #endif
723   /* ... and its offset pointer */
724   ptr = mem_to_ptr(mem);
725 
726   size = (mem_size_t)((mem_size_t)(mem->next - ptr) - (SIZEOF_STRUCT_MEM + MEM_SANITY_OVERHEAD));
727   LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
728   if (newsize > size) {
729     /* not supported */
730     return NULL;
731   }
732   if (newsize == size) {
733     /* No change in size, simply return */
734     return rmem;
735   }
736 
737   /* protect the heap from concurrent access */
738   LWIP_MEM_FREE_PROTECT();
739 
740   mem2 = ptr_to_mem(mem->next);
741   if (mem2->used == 0) {
742     /* The next struct is unused, we can simply move it at little */
743     mem_size_t next;
744     LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED);
745     /* remember the old next pointer */
746     next = mem2->next;
747     /* create new struct mem which is moved directly after the shrunk mem */
748     ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize);
749     if (lfree == mem2) {
750       lfree = ptr_to_mem(ptr2);
751     }
752     mem2 = ptr_to_mem(ptr2);
753     mem2->used = 0;
754     /* restore the next pointer */
755     mem2->next = next;
756     /* link it back to mem */
757     mem2->prev = ptr;
758     /* link mem to it */
759     mem->next = ptr2;
760     /* last thing to restore linked list: as we have moved mem2,
761      * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
762      * the end of the heap */
763     if (mem2->next != MEM_SIZE_ALIGNED) {
764       ptr_to_mem(mem2->next)->prev = ptr2;
765     }
766     MEM_STATS_DEC_USED(used, (size - newsize));
767     /* no need to plug holes, we've already done that */
768   } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
769     /* Next struct is used but there's room for another struct mem with
770      * at least MIN_SIZE_ALIGNED of data.
771      * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
772      * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
773      * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
774      *       region that couldn't hold data, but when mem->next gets freed,
775      *       the 2 regions would be combined, resulting in more free memory */
776     ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize);
777     LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED);
778     mem2 = ptr_to_mem(ptr2);
779     if (mem2 < lfree) {
780       lfree = mem2;
781     }
782     mem2->used = 0;
783     mem2->next = mem->next;
784     mem2->prev = ptr;
785     mem->next = ptr2;
786     if (mem2->next != MEM_SIZE_ALIGNED) {
787       ptr_to_mem(mem2->next)->prev = ptr2;
788     }
789     MEM_STATS_DEC_USED(used, (size - newsize));
790     /* the original mem->next is used, so no need to plug holes! */
791   }
792   /* else {
793     next struct mem is used but size between mem and mem2 is not big enough
794     to create another struct mem
795     -> don't do anything.
796     -> the remaining space stays unused since it is too small
797   } */
798 #if MEM_OVERFLOW_CHECK
799   mem_overflow_init_element(mem, new_size);
800 #endif
801   MEM_SANITY();
802 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
803   mem_free_count = 1;
804 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
805   LWIP_MEM_FREE_UNPROTECT();
806   return rmem;
807 }
808 
809 /**
810  * Allocate a block of memory with a minimum of 'size' bytes.
811  *
812  * @param size_in is the minimum size of the requested block in bytes.
813  * @return pointer to allocated memory or NULL if no free memory was found.
814  *
815  * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
816  */
817 void *
mem_malloc(mem_size_t size_in)818 mem_malloc(mem_size_t size_in)
819 {
820   mem_size_t ptr, ptr2, size;
821   struct mem *mem, *mem2;
822 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
823   u8_t local_mem_free_count = 0;
824 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
825   LWIP_MEM_ALLOC_DECL_PROTECT();
826 
827   if (size_in == 0) {
828     return NULL;
829   }
830 
831   /* Expand the size of the allocated memory region so that we can
832      adjust for alignment. */
833   size = (mem_size_t)LWIP_MEM_ALIGN_SIZE(size_in);
834   if (size < MIN_SIZE_ALIGNED) {
835     /* every data block must be at least MIN_SIZE_ALIGNED long */
836     size = MIN_SIZE_ALIGNED;
837   }
838 #if MEM_OVERFLOW_CHECK
839   size += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED;
840 #endif
841   if ((size > MEM_SIZE_ALIGNED) || (size < size_in)) {
842     return NULL;
843   }
844 
845   /* protect the heap from concurrent access */
846   sys_mutex_lock(&mem_mutex);
847   LWIP_MEM_ALLOC_PROTECT();
848 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
849   /* run as long as a mem_free disturbed mem_malloc or mem_trim */
850   do {
851     local_mem_free_count = 0;
852 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
853 
854     /* Scan through the heap searching for a free block that is big enough,
855      * beginning with the lowest free block.
856      */
857     for (ptr = mem_to_ptr(lfree); ptr < MEM_SIZE_ALIGNED - size;
858          ptr = ptr_to_mem(ptr)->next) {
859       mem = ptr_to_mem(ptr);
860 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
861       mem_free_count = 0;
862       LWIP_MEM_ALLOC_UNPROTECT();
863       /* allow mem_free or mem_trim to run */
864       LWIP_MEM_ALLOC_PROTECT();
865       if (mem_free_count != 0) {
866         /* If mem_free or mem_trim have run, we have to restart since they
867            could have altered our current struct mem. */
868         local_mem_free_count = 1;
869         break;
870       }
871 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
872 
873       if ((!mem->used) &&
874           (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
875         /* mem is not used and at least perfect fit is possible:
876          * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
877 
878         if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
879           /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
880            * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
881            * -> split large block, create empty remainder,
882            * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
883            * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
884            * struct mem would fit in but no data between mem2 and mem2->next
885            * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
886            *       region that couldn't hold data, but when mem->next gets freed,
887            *       the 2 regions would be combined, resulting in more free memory
888            */
889           ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + size);
890           LWIP_ASSERT("invalid next ptr",ptr2 != MEM_SIZE_ALIGNED);
891           /* create mem2 struct */
892           mem2 = ptr_to_mem(ptr2);
893           mem2->used = 0;
894           mem2->next = mem->next;
895           mem2->prev = ptr;
896           /* and insert it between mem and mem->next */
897           mem->next = ptr2;
898           mem->used = 1;
899 
900           if (mem2->next != MEM_SIZE_ALIGNED) {
901             ptr_to_mem(mem2->next)->prev = ptr2;
902           }
903           MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
904         } else {
905           /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
906            * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
907            * take care of this).
908            * -> near fit or exact fit: do not split, no mem2 creation
909            * also can't move mem->next directly behind mem, since mem->next
910            * will always be used at this point!
911            */
912           mem->used = 1;
913           MEM_STATS_INC_USED(used, mem->next - mem_to_ptr(mem));
914         }
915 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
916 mem_malloc_adjust_lfree:
917 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
918         if (mem == lfree) {
919           struct mem *cur = lfree;
920           /* Find next free block after mem and update lowest free pointer */
921           while (cur->used && cur != ram_end) {
922 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
923             mem_free_count = 0;
924             LWIP_MEM_ALLOC_UNPROTECT();
925             /* prevent high interrupt latency... */
926             LWIP_MEM_ALLOC_PROTECT();
927             if (mem_free_count != 0) {
928               /* If mem_free or mem_trim have run, we have to restart since they
929                  could have altered our current struct mem or lfree. */
930               goto mem_malloc_adjust_lfree;
931             }
932 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
933             cur = ptr_to_mem(cur->next);
934           }
935           lfree = cur;
936           LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
937         }
938         LWIP_MEM_ALLOC_UNPROTECT();
939         sys_mutex_unlock(&mem_mutex);
940         LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
941                     (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
942         LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
943                     ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
944         LWIP_ASSERT("mem_malloc: sanity check alignment",
945                     (((mem_ptr_t)mem) & (MEM_ALIGNMENT - 1)) == 0);
946 
947 #if MEM_OVERFLOW_CHECK
948         mem_overflow_init_element(mem, size_in);
949 #endif
950         MEM_SANITY();
951         return (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
952       }
953     }
954 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
955     /* if we got interrupted by a mem_free, try again */
956   } while (local_mem_free_count != 0);
957 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
958   MEM_STATS_INC(err);
959   LWIP_MEM_ALLOC_UNPROTECT();
960   sys_mutex_unlock(&mem_mutex);
961   LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
962   return NULL;
963 }
964 
965 #endif /* MEM_USE_POOLS */
966 
967 #if MEM_CUSTOM_ALLOCATOR && (!LWIP_STATS || !MEM_STATS)
968 void *
mem_calloc(mem_size_t count,mem_size_t size)969 mem_calloc(mem_size_t count, mem_size_t size)
970 {
971   return MEM_CUSTOM_CALLOC(count, size);
972 }
973 
974 #else /* MEM_CUSTOM_ALLOCATOR && (!LWIP_STATS || !MEM_STATS) */
975 /**
976  * Contiguously allocates enough space for count objects that are size bytes
977  * of memory each and returns a pointer to the allocated memory.
978  *
979  * The allocated memory is filled with bytes of value zero.
980  *
981  * @param count number of objects to allocate
982  * @param size size of the objects to allocate
983  * @return pointer to allocated memory / NULL pointer if there is an error
984  */
985 void *
mem_calloc(mem_size_t count,mem_size_t size)986 mem_calloc(mem_size_t count, mem_size_t size)
987 {
988   void *p;
989   size_t alloc_size = (size_t)count * (size_t)size;
990 
991   if ((size_t)(mem_size_t)alloc_size != alloc_size) {
992     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_calloc: could not allocate %"SZT_F" bytes\n", alloc_size));
993     return NULL;
994   }
995 
996   /* allocate 'count' objects of size 'size' */
997   p = mem_malloc((mem_size_t)alloc_size);
998   if (p) {
999     /* zero the memory */
1000     memset(p, 0, alloc_size);
1001   }
1002   return p;
1003 }
1004 #endif /* MEM_CUSTOM_ALLOCATOR && (!LWIP_STATS || !MEM_STATS) */
1005