1 /**
2 * @file
3 * Transmission Control Protocol for IP
4 * See also @ref tcp_raw
5 *
6 * @defgroup tcp_raw TCP
7 * @ingroup callbackstyle_api
8 * Transmission Control Protocol for IP<br>
9 * @see @ref api
10 *
11 * Common functions for the TCP implementation, such as functions
12 * for manipulating the data structures and the TCP timer functions. TCP functions
13 * related to input and output is found in tcp_in.c and tcp_out.c respectively.<br>
14 *
15 * TCP connection setup
16 * --------------------
17 * The functions used for setting up connections is similar to that of
18 * the sequential API and of the BSD socket API. A new TCP connection
19 * identifier (i.e., a protocol control block - PCB) is created with the
20 * tcp_new() function. This PCB can then be either set to listen for new
21 * incoming connections or be explicitly connected to another host.
22 * - tcp_new()
23 * - tcp_bind()
24 * - tcp_listen() and tcp_listen_with_backlog()
25 * - tcp_accept()
26 * - tcp_connect()
27 *
28 * Sending TCP data
29 * ----------------
30 * TCP data is sent by enqueueing the data with a call to tcp_write() and
31 * triggering to send by calling tcp_output(). When the data is successfully
32 * transmitted to the remote host, the application will be notified with a
33 * call to a specified callback function.
34 * - tcp_write()
35 * - tcp_output()
36 * - tcp_sent()
37 *
38 * Receiving TCP data
39 * ------------------
40 * TCP data reception is callback based - an application specified
41 * callback function is called when new data arrives. When the
42 * application has taken the data, it has to call the tcp_recved()
43 * function to indicate that TCP can advertise increase the receive
44 * window.
45 * - tcp_recv()
46 * - tcp_recved()
47 *
48 * Application polling
49 * -------------------
50 * When a connection is idle (i.e., no data is either transmitted or
51 * received), lwIP will repeatedly poll the application by calling a
52 * specified callback function. This can be used either as a watchdog
53 * timer for killing connections that have stayed idle for too long, or
54 * as a method of waiting for memory to become available. For instance,
55 * if a call to tcp_write() has failed because memory wasn't available,
56 * the application may use the polling functionality to call tcp_write()
57 * again when the connection has been idle for a while.
58 * - tcp_poll()
59 *
60 * Closing and aborting connections
61 * --------------------------------
62 * - tcp_close()
63 * - tcp_abort()
64 * - tcp_err()
65 *
66 */
67
68 /*
69 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without modification,
73 * are permitted provided that the following conditions are met:
74 *
75 * 1. Redistributions of source code must retain the above copyright notice,
76 * this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright notice,
78 * this list of conditions and the following disclaimer in the documentation
79 * and/or other materials provided with the distribution.
80 * 3. The name of the author may not be used to endorse or promote products
81 * derived from this software without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
84 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
85 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
86 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
87 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
88 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
91 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
92 * OF SUCH DAMAGE.
93 *
94 * This file is part of the lwIP TCP/IP stack.
95 *
96 * Author: Adam Dunkels <adam@sics.se>
97 *
98 */
99
100 #include "lwip/opt.h"
101
102 #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
103
104 #include "lwip/def.h"
105 #include "lwip/mem.h"
106 #include "lwip/memp.h"
107 #include "lwip/tcp.h"
108 #include "lwip/priv/tcp_priv.h"
109 #include "lwip/debug.h"
110 #include "lwip/stats.h"
111 #include "lwip/ip6.h"
112 #include "lwip/ip6_addr.h"
113 #include "lwip/nd6.h"
114 #if LWIP_LOWPOWER
115 #include "lwip/priv/api_msg.h"
116 #endif
117
118 #include <string.h>
119
120 #ifdef LWIP_HOOK_FILENAME
121 #include LWIP_HOOK_FILENAME
122 #endif
123
124 #ifndef TCP_LOCAL_PORT_RANGE_START
125 /* From http://www.iana.org/assignments/port-numbers:
126 "The Dynamic and/or Private Ports are those from 49152 through 65535" */
127 #define TCP_LOCAL_PORT_RANGE_START 0xc000
128 #define TCP_LOCAL_PORT_RANGE_END 0xffff
129 #define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & (u16_t)~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START))
130 #endif
131
132 #if LWIP_TCP_KEEPALIVE
133 #define TCP_KEEP_DUR(pcb) ((pcb)->keep_cnt * (pcb)->keep_intvl)
134 #define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl)
135 #else /* LWIP_TCP_KEEPALIVE */
136 #define TCP_KEEP_DUR(pcb) TCP_MAXIDLE
137 #define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT
138 #endif /* LWIP_TCP_KEEPALIVE */
139
140 /* As initial send MSS, we use TCP_MSS but limit it to 536. */
141 #if TCP_MSS > 536
142 #define INITIAL_MSS 536
143 #else
144 #define INITIAL_MSS TCP_MSS
145 #endif
146
147 static const char *const tcp_state_str[] = {
148 "CLOSED",
149 "LISTEN",
150 "SYN_SENT",
151 "SYN_RCVD",
152 "ESTABLISHED",
153 "FIN_WAIT_1",
154 "FIN_WAIT_2",
155 "CLOSE_WAIT",
156 "CLOSING",
157 "LAST_ACK",
158 "TIME_WAIT"
159 };
160
161 /* last local TCP port */
162 static volatile u16_t tcp_port = TCP_LOCAL_PORT_RANGE_START;
163
164 /* Incremented every coarse grained timer shot (typically every 500 ms). */
165 u32_t tcp_ticks;
166 static const u8_t tcp_backoff[13] =
167 { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
168 /* Times per slowtmr hits */
169 static const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
170
171 /* The TCP PCB lists. */
172
173 /** List of all TCP PCBs bound but not yet (connected || listening) */
174 struct tcp_pcb *tcp_bound_pcbs;
175 /** List of all TCP PCBs in LISTEN state */
176 union tcp_listen_pcbs_t tcp_listen_pcbs;
177 /** List of all TCP PCBs that are in a state in which
178 * they accept or send data. */
179 struct tcp_pcb *tcp_active_pcbs;
180 /** List of all TCP PCBs in TIME-WAIT state */
181 struct tcp_pcb *tcp_tw_pcbs;
182
183 /** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
184 struct tcp_pcb **const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
185 &tcp_active_pcbs, &tcp_tw_pcbs
186 };
187
188 u8_t tcp_active_pcbs_changed;
189
190 /** Timer counter to handle calling slow-timer from tcp_tmr() */
191 static u8_t tcp_timer;
192 static u8_t tcp_timer_ctr;
193 static u16_t tcp_new_port(void);
194
195 static err_t tcp_close_shutdown_fin(struct tcp_pcb *pcb);
196 #if LWIP_TCP_PCB_NUM_EXT_ARGS
197 static void tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args);
198 #endif
199
200 #ifdef LOSCFG_NET_CONTAINER
set_tcp_pcb_net_group(struct tcp_pcb * pcb,struct net_group * group)201 void set_tcp_pcb_net_group(struct tcp_pcb *pcb, struct net_group *group)
202 {
203 set_ippcb_net_group((struct ip_pcb *)pcb, group);
204 }
205
get_net_group_from_tcp_pcb(const struct tcp_pcb * pcb)206 struct net_group *get_net_group_from_tcp_pcb(const struct tcp_pcb *pcb)
207 {
208 return get_net_group_from_ippcb((struct ip_pcb *)pcb);
209 }
210 #endif
211 /**
212 * Initialize this module.
213 */
214 void
tcp_init(void)215 tcp_init(void)
216 {
217 #ifdef LWIP_RAND
218 tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND());
219 #endif /* LWIP_RAND */
220 }
221
222 /** Free a tcp pcb */
223 void
tcp_free(struct tcp_pcb * pcb)224 tcp_free(struct tcp_pcb *pcb)
225 {
226 LWIP_ASSERT("tcp_free: LISTEN", pcb->state != LISTEN);
227 #if LWIP_TCP_PCB_NUM_EXT_ARGS
228 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
229 #endif
230 memp_free(MEMP_TCP_PCB, pcb);
231 }
232
233 /** Free a tcp listen pcb */
234 static void
tcp_free_listen(struct tcp_pcb * pcb)235 tcp_free_listen(struct tcp_pcb *pcb)
236 {
237 LWIP_ASSERT("tcp_free_listen: !LISTEN", pcb->state != LISTEN);
238 #if LWIP_TCP_PCB_NUM_EXT_ARGS
239 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
240 #endif
241 memp_free(MEMP_TCP_PCB_LISTEN, pcb);
242 }
243
244 /**
245 * Called periodically to dispatch TCP timers.
246 */
247 void
tcp_tmr(void)248 tcp_tmr(void)
249 {
250 /* Call tcp_fasttmr() every 250 ms */
251 tcp_fasttmr();
252
253 if (++tcp_timer & 1) {
254 /* Call tcp_slowtmr() every 500 ms, i.e., every other timer
255 tcp_tmr() is called. */
256 tcp_slowtmr();
257 }
258 }
259
260 #if LWIP_LOWPOWER
261 #include "lwip/lowpower.h"
262
263 static u32_t
tcp_set_timer_tick_by_persist(struct tcp_pcb * pcb,u32_t tick)264 tcp_set_timer_tick_by_persist(struct tcp_pcb *pcb, u32_t tick)
265 {
266 u32_t val;
267
268 if (pcb->persist_backoff > 0) {
269 u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
270 SET_TMR_TICK(tick, backoff_cnt);
271 return tick;
272 }
273
274 /* timer not running */
275 if (pcb->rtime >= 0) {
276 val = pcb->rto - pcb->rtime;
277 if (val == 0) {
278 val = 1;
279 }
280 SET_TMR_TICK(tick, val);
281 }
282 return tick;
283 }
284
285 static u32_t
tcp_set_timer_tick_by_keepalive(struct tcp_pcb * pcb,u32_t tick)286 tcp_set_timer_tick_by_keepalive(struct tcp_pcb *pcb, u32_t tick)
287 {
288 u32_t val;
289
290 if (ip_get_option(pcb, SOF_KEEPALIVE) &&
291 ((pcb->state == ESTABLISHED) ||
292 (pcb->state == CLOSE_WAIT))) {
293 u32_t idle = (pcb->keep_idle) / TCP_SLOW_INTERVAL;
294 if (pcb->keep_cnt_sent == 0) {
295 val = idle - (tcp_ticks - pcb->tmr);
296 } else {
297 val = (tcp_ticks - pcb->tmr) - idle;
298 idle = (TCP_KEEP_INTVL(pcb) / TCP_SLOW_INTERVAL);
299 val = idle - (val % idle);
300 }
301 /* need add 1 to trig timer */
302 val++;
303 SET_TMR_TICK(tick, val);
304 }
305
306 return tick;
307 }
308
tcp_set_timer_tick_by_tcp_state(struct tcp_pcb * pcb,u32_t tick)309 static u32_t tcp_set_timer_tick_by_tcp_state(struct tcp_pcb *pcb, u32_t tick)
310 {
311 u32_t val;
312
313 /* Check if this PCB has stayed too long in FIN-WAIT-2 */
314 if (pcb->state == FIN_WAIT_2) {
315 /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
316 if (pcb->flags & TF_RXCLOSED) {
317 val = TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL;
318 SET_TMR_TICK(tick, val);
319 }
320 }
321
322 /* Check if this PCB has stayed too long in SYN-RCVD */
323 if (pcb->state == SYN_RCVD) {
324 val = TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL;
325 SET_TMR_TICK(tick, val);
326 }
327
328 /* Check if this PCB has stayed too long in LAST-ACK */
329 if (pcb->state == LAST_ACK) {
330 /*
331 * In a TCP connection the end that performs the active close
332 * is required to stay in TIME_WAIT state for 2MSL of time
333 */
334 val = (2 * TCP_MSL) / TCP_SLOW_INTERVAL;
335 SET_TMR_TICK(tick, val);
336 }
337
338 return tick;
339 }
340
341 u32_t
tcp_slow_tmr_tick(void)342 tcp_slow_tmr_tick(void)
343 {
344 struct tcp_pcb *pcb = NULL;
345 u32_t tick = 0;
346
347 pcb = tcp_active_pcbs;
348 while (pcb != NULL) {
349 if (((pcb->state == SYN_SENT) && (pcb->nrtx >= TCP_SYNMAXRTX)) ||
350 ((pcb->state == FIN_WAIT_1) || (pcb->state == CLOSING)) ||
351 (pcb->nrtx >= TCP_MAXRTX)) {
352 return 1;
353 }
354
355 tick = tcp_set_timer_tick_by_persist(pcb, tick);
356 tick = tcp_set_timer_tick_by_keepalive(pcb, tick);
357
358 /*
359 * If this PCB has queued out of sequence data, but has been
360 * inactive for too long, will drop the data (it will eventually
361 * be retransmitted).
362 */
363 #if TCP_QUEUE_OOSEQ
364 if (pcb->ooseq != NULL) {
365 SET_TMR_TICK(tick, 1);
366 }
367 #endif /* TCP_QUEUE_OOSEQ */
368
369 tick = tcp_set_timer_tick_by_tcp_state(pcb, tick);
370
371 u8_t ret = poll_tcp_needed(pcb->callback_arg, pcb);
372 if ((pcb->poll != NULL) && (ret != 0)) {
373 SET_TMR_TICK(tick, 1);
374 }
375 pcb = pcb->next;
376 }
377
378 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "tcp_slow_tmr_tick", tick));
379 return tick;
380 }
381
382 u32_t
tcp_fast_tmr_tick(void)383 tcp_fast_tmr_tick(void)
384 {
385 struct tcp_pcb *pcb = NULL;
386
387 pcb = tcp_active_pcbs;
388 while (pcb != NULL) {
389 /* send delayed ACKs or send pending FIN */
390 if ((pcb->flags & TF_ACK_DELAY) ||
391 (pcb->flags & TF_CLOSEPEND) ||
392 (pcb->refused_data != NULL)
393 ) {
394 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: 1\n", "tcp_fast_tmr_tick"));
395 return 1;
396 }
397 pcb = pcb->next;
398 }
399 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: 0\n", "tcp_fast_tmr_tick"));
400 return 0;
401 }
402 #endif /* LWIP_LOWPOWER */
403
404 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
405 /** Called when a listen pcb is closed. Iterates one pcb list and removes the
406 * closed listener pcb from pcb->listener if matching.
407 */
408 static void
tcp_remove_listener(struct tcp_pcb * list,struct tcp_pcb_listen * lpcb)409 tcp_remove_listener(struct tcp_pcb *list, struct tcp_pcb_listen *lpcb)
410 {
411 struct tcp_pcb *pcb;
412
413 LWIP_ASSERT("tcp_remove_listener: invalid listener", lpcb != NULL);
414
415 for (pcb = list; pcb != NULL; pcb = pcb->next) {
416 if (pcb->listener == lpcb) {
417 pcb->listener = NULL;
418 }
419 }
420 }
421 #endif
422
423 /** Called when a listen pcb is closed. Iterates all pcb lists and removes the
424 * closed listener pcb from pcb->listener if matching.
425 */
426 static void
tcp_listen_closed(struct tcp_pcb * pcb)427 tcp_listen_closed(struct tcp_pcb *pcb)
428 {
429 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
430 size_t i;
431 LWIP_ASSERT("pcb != NULL", pcb != NULL);
432 LWIP_ASSERT("pcb->state == LISTEN", pcb->state == LISTEN);
433 for (i = 1; i < LWIP_ARRAYSIZE(tcp_pcb_lists); i++) {
434 tcp_remove_listener(*tcp_pcb_lists[i], (struct tcp_pcb_listen *)pcb);
435 }
436 #endif
437 LWIP_UNUSED_ARG(pcb);
438 }
439
440 #if TCP_LISTEN_BACKLOG
441 /** @ingroup tcp_raw
442 * Delay accepting a connection in respect to the listen backlog:
443 * the number of outstanding connections is increased until
444 * tcp_backlog_accepted() is called.
445 *
446 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
447 * or else the backlog feature will get out of sync!
448 *
449 * @param pcb the connection pcb which is not fully accepted yet
450 */
451 void
tcp_backlog_delayed(struct tcp_pcb * pcb)452 tcp_backlog_delayed(struct tcp_pcb *pcb)
453 {
454 LWIP_ASSERT("pcb != NULL", pcb != NULL);
455 LWIP_ASSERT_CORE_LOCKED();
456 if ((pcb->flags & TF_BACKLOGPEND) == 0) {
457 if (pcb->listener != NULL) {
458 pcb->listener->accepts_pending++;
459 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
460 tcp_set_flags(pcb, TF_BACKLOGPEND);
461 }
462 }
463 }
464
465 /** @ingroup tcp_raw
466 * A delayed-accept a connection is accepted (or closed/aborted): decreases
467 * the number of outstanding connections after calling tcp_backlog_delayed().
468 *
469 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
470 * or else the backlog feature will get out of sync!
471 *
472 * @param pcb the connection pcb which is now fully accepted (or closed/aborted)
473 */
474 void
tcp_backlog_accepted(struct tcp_pcb * pcb)475 tcp_backlog_accepted(struct tcp_pcb *pcb)
476 {
477 LWIP_ASSERT("pcb != NULL", pcb != NULL);
478 LWIP_ASSERT_CORE_LOCKED();
479 if ((pcb->flags & TF_BACKLOGPEND) != 0) {
480 if (pcb->listener != NULL) {
481 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
482 pcb->listener->accepts_pending--;
483 tcp_clear_flags(pcb, TF_BACKLOGPEND);
484 }
485 }
486 }
487 #endif /* TCP_LISTEN_BACKLOG */
488
489 /**
490 * Closes the TX side of a connection held by the PCB.
491 * For tcp_close(), a RST is sent if the application didn't receive all data
492 * (tcp_recved() not called for all data passed to recv callback).
493 *
494 * Listening pcbs are freed and may not be referenced any more.
495 * Connection pcbs are freed if not yet connected and may not be referenced
496 * any more. If a connection is established (at least SYN received or in
497 * a closing state), the connection is closed, and put in a closing state.
498 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
499 * unsafe to reference it.
500 *
501 * @param pcb the tcp_pcb to close
502 * @return ERR_OK if connection has been closed
503 * another err_t if closing failed and pcb is not freed
504 */
505 static err_t
tcp_close_shutdown(struct tcp_pcb * pcb,u8_t rst_on_unacked_data)506 tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
507 {
508 LWIP_ASSERT("tcp_close_shutdown: invalid pcb", pcb != NULL);
509
510 if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) {
511 if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) {
512 /* Not all data received by application, send RST to tell the remote
513 side about this. */
514 LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
515
516 /* don't call tcp_abort here: we must not deallocate the pcb since
517 that might not be expected when calling tcp_close */
518 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
519 pcb->local_port, pcb->remote_port);
520
521 tcp_pcb_purge(pcb);
522 TCP_RMV_ACTIVE(pcb);
523 /* Deallocate the pcb since we already sent a RST for it */
524 if (tcp_input_pcb == pcb) {
525 /* prevent using a deallocated pcb: free it from tcp_input later */
526 tcp_trigger_input_pcb_close();
527 } else {
528 tcp_free(pcb);
529 }
530 return ERR_OK;
531 }
532 }
533
534 /* - states which free the pcb are handled here,
535 - states which send FIN and change state are handled in tcp_close_shutdown_fin() */
536 switch (pcb->state) {
537 case CLOSED:
538 /* Closing a pcb in the CLOSED state might seem erroneous,
539 * however, it is in this state once allocated and as yet unused
540 * and the user needs some way to free it should the need arise.
541 * Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
542 * or for a pcb that has been used and then entered the CLOSED state
543 * is erroneous, but this should never happen as the pcb has in those cases
544 * been freed, and so any remaining handles are bogus. */
545 if (pcb->local_port != 0) {
546 TCP_RMV(&tcp_bound_pcbs, pcb);
547 }
548 tcp_free(pcb);
549 break;
550 case LISTEN:
551 tcp_listen_closed(pcb);
552 tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
553 tcp_free_listen(pcb);
554 break;
555 case SYN_SENT:
556 TCP_PCB_REMOVE_ACTIVE(pcb);
557 tcp_free(pcb);
558 MIB2_STATS_INC(mib2.tcpattemptfails);
559 break;
560 default:
561 return tcp_close_shutdown_fin(pcb);
562 }
563 return ERR_OK;
564 }
565
566 static err_t
tcp_close_shutdown_fin(struct tcp_pcb * pcb)567 tcp_close_shutdown_fin(struct tcp_pcb *pcb)
568 {
569 err_t err;
570 LWIP_ASSERT("pcb != NULL", pcb != NULL);
571
572 switch (pcb->state) {
573 case SYN_RCVD:
574 err = tcp_send_fin(pcb);
575 if (err == ERR_OK) {
576 tcp_backlog_accepted(pcb);
577 MIB2_STATS_INC(mib2.tcpattemptfails);
578 pcb->state = FIN_WAIT_1;
579 }
580 break;
581 case ESTABLISHED:
582 err = tcp_send_fin(pcb);
583 if (err == ERR_OK) {
584 MIB2_STATS_INC(mib2.tcpestabresets);
585 pcb->state = FIN_WAIT_1;
586 }
587 break;
588 case CLOSE_WAIT:
589 err = tcp_send_fin(pcb);
590 if (err == ERR_OK) {
591 MIB2_STATS_INC(mib2.tcpestabresets);
592 pcb->state = LAST_ACK;
593 }
594 break;
595 default:
596 /* Has already been closed, do nothing. */
597 return ERR_OK;
598 }
599
600 if (err == ERR_OK) {
601 /* To ensure all data has been sent when tcp_close returns, we have
602 to make sure tcp_output doesn't fail.
603 Since we don't really have to ensure all data has been sent when tcp_close
604 returns (unsent data is sent from tcp timer functions, also), we don't care
605 for the return value of tcp_output for now. */
606 tcp_output(pcb);
607 } else if (err == ERR_MEM) {
608 /* Mark this pcb for closing. Closing is retried from tcp_tmr. */
609 tcp_set_flags(pcb, TF_CLOSEPEND);
610 /* We have to return ERR_OK from here to indicate to the callers that this
611 pcb should not be used any more as it will be freed soon via tcp_tmr.
612 This is OK here since sending FIN does not guarantee a time frime for
613 actually freeing the pcb, either (it is left in closure states for
614 remote ACK or timeout) */
615 return ERR_OK;
616 }
617 return err;
618 }
619
620 /**
621 * @ingroup tcp_raw
622 * Closes the connection held by the PCB.
623 *
624 * Listening pcbs are freed and may not be referenced any more.
625 * Connection pcbs are freed if not yet connected and may not be referenced
626 * any more. If a connection is established (at least SYN received or in
627 * a closing state), the connection is closed, and put in a closing state.
628 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
629 * unsafe to reference it (unless an error is returned).
630 *
631 * The function may return ERR_MEM if no memory
632 * was available for closing the connection. If so, the application
633 * should wait and try again either by using the acknowledgment
634 * callback or the polling functionality. If the close succeeds, the
635 * function returns ERR_OK.
636 *
637 * @param pcb the tcp_pcb to close
638 * @return ERR_OK if connection has been closed
639 * another err_t if closing failed and pcb is not freed
640 */
641 err_t
tcp_close(struct tcp_pcb * pcb)642 tcp_close(struct tcp_pcb *pcb)
643 {
644 LWIP_ASSERT_CORE_LOCKED();
645
646 LWIP_ERROR("tcp_close: invalid pcb", pcb != NULL, return ERR_ARG);
647 LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
648
649 tcp_debug_print_state(pcb->state);
650
651 if (pcb->state != LISTEN) {
652 /* Set a flag not to receive any more data... */
653 tcp_set_flags(pcb, TF_RXCLOSED);
654 }
655 /* ... and close */
656 return tcp_close_shutdown(pcb, 1);
657 }
658
659 /**
660 * @ingroup tcp_raw
661 * Causes all or part of a full-duplex connection of this PCB to be shut down.
662 * This doesn't deallocate the PCB unless shutting down both sides!
663 * Shutting down both sides is the same as calling tcp_close, so if it succeeds
664 * (i.e. returns ER_OK), the PCB must not be referenced any more!
665 *
666 * @param pcb PCB to shutdown
667 * @param shut_rx shut down receive side if this is != 0
668 * @param shut_tx shut down send side if this is != 0
669 * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
670 * another err_t on error.
671 */
672 err_t
tcp_shutdown(struct tcp_pcb * pcb,int shut_rx,int shut_tx)673 tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
674 {
675 LWIP_ASSERT_CORE_LOCKED();
676
677 LWIP_ERROR("tcp_shutdown: invalid pcb", pcb != NULL, return ERR_ARG);
678
679 if (pcb->state == LISTEN) {
680 return ERR_CONN;
681 }
682 if (shut_rx) {
683 /* shut down the receive side: set a flag not to receive any more data... */
684 tcp_set_flags(pcb, TF_RXCLOSED);
685 if (shut_tx) {
686 /* shutting down the tx AND rx side is the same as closing for the raw API */
687 return tcp_close_shutdown(pcb, 1);
688 }
689 /* ... and free buffered data */
690 if (pcb->refused_data != NULL) {
691 pbuf_free(pcb->refused_data);
692 pcb->refused_data = NULL;
693 }
694 }
695 if (shut_tx) {
696 /* This can't happen twice since if it succeeds, the pcb's state is changed.
697 Only close in these states as the others directly deallocate the PCB */
698 switch (pcb->state) {
699 case SYN_RCVD:
700 case ESTABLISHED:
701 case CLOSE_WAIT:
702 return tcp_close_shutdown(pcb, (u8_t)shut_rx);
703 default:
704 /* Not (yet?) connected, cannot shutdown the TX side as that would bring us
705 into CLOSED state, where the PCB is deallocated. */
706 return ERR_CONN;
707 }
708 }
709 return ERR_OK;
710 }
711
712 /**
713 * Abandons a connection and optionally sends a RST to the remote
714 * host. Deletes the local protocol control block. This is done when
715 * a connection is killed because of shortage of memory.
716 *
717 * @param pcb the tcp_pcb to abort
718 * @param reset boolean to indicate whether a reset should be sent
719 */
720 void
tcp_abandon(struct tcp_pcb * pcb,int reset)721 tcp_abandon(struct tcp_pcb *pcb, int reset)
722 {
723 u32_t seqno, ackno;
724 #if LWIP_CALLBACK_API
725 tcp_err_fn errf;
726 #endif /* LWIP_CALLBACK_API */
727 void *errf_arg;
728
729 LWIP_ASSERT_CORE_LOCKED();
730
731 LWIP_ERROR("tcp_abandon: invalid pcb", pcb != NULL, return);
732
733 /* pcb->state LISTEN not allowed here */
734 LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
735 pcb->state != LISTEN);
736 /* Figure out on which TCP PCB list we are, and remove us. If we
737 are in an active state, call the receive function associated with
738 the PCB with a NULL argument, and send an RST to the remote end. */
739 if (pcb->state == TIME_WAIT) {
740 tcp_pcb_remove(&tcp_tw_pcbs, pcb);
741 tcp_free(pcb);
742 } else {
743 int send_rst = 0;
744 u16_t local_port = 0;
745 enum tcp_state last_state;
746 seqno = pcb->snd_nxt;
747 ackno = pcb->rcv_nxt;
748 #if LWIP_CALLBACK_API
749 errf = pcb->errf;
750 #endif /* LWIP_CALLBACK_API */
751 errf_arg = pcb->callback_arg;
752 if (pcb->state == CLOSED) {
753 if (pcb->local_port != 0) {
754 /* bound, not yet opened */
755 TCP_RMV(&tcp_bound_pcbs, pcb);
756 }
757 } else {
758 send_rst = reset;
759 local_port = pcb->local_port;
760 TCP_PCB_REMOVE_ACTIVE(pcb);
761 }
762 if (pcb->unacked != NULL) {
763 tcp_segs_free(pcb->unacked);
764 }
765 if (pcb->unsent != NULL) {
766 tcp_segs_free(pcb->unsent);
767 }
768 #if TCP_QUEUE_OOSEQ
769 if (pcb->ooseq != NULL) {
770 tcp_segs_free(pcb->ooseq);
771 }
772 #endif /* TCP_QUEUE_OOSEQ */
773 tcp_backlog_accepted(pcb);
774 if (send_rst) {
775 LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
776 tcp_rst(pcb, seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port);
777 }
778 last_state = pcb->state;
779 tcp_free(pcb);
780 TCP_EVENT_ERR(last_state, errf, errf_arg, ERR_ABRT);
781 }
782 }
783
784 /**
785 * @ingroup tcp_raw
786 * Aborts the connection by sending a RST (reset) segment to the remote
787 * host. The pcb is deallocated. This function never fails.
788 *
789 * ATTENTION: When calling this from one of the TCP callbacks, make
790 * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
791 * or you will risk accessing deallocated memory or memory leaks!
792 *
793 * @param pcb the tcp pcb to abort
794 */
795 void
tcp_abort(struct tcp_pcb * pcb)796 tcp_abort(struct tcp_pcb *pcb)
797 {
798 tcp_abandon(pcb, 1);
799 }
800
801 /**
802 * @ingroup tcp_raw
803 * Binds the connection to a local port number and IP address. If the
804 * IP address is not given (i.e., ipaddr == IP_ANY_TYPE), the connection is
805 * bound to all local IP addresses.
806 * If another connection is bound to the same port, the function will
807 * return ERR_USE, otherwise ERR_OK is returned.
808 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
809 *
810 * @param pcb the tcp_pcb to bind (no check is done whether this pcb is
811 * already bound!)
812 * @param ipaddr the local ip address to bind to (use IPx_ADDR_ANY to bind
813 * to any local address
814 * @param port the local port to bind to
815 * @return ERR_USE if the port is already in use
816 * ERR_VAL if bind failed because the PCB is not in a valid state
817 * ERR_OK if bound
818 */
819 err_t
tcp_bind(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port)820 tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port)
821 {
822 int i;
823 int max_pcb_list = NUM_TCP_PCB_LISTS;
824 struct tcp_pcb *cpcb;
825 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
826 ip_addr_t zoned_ipaddr;
827 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
828
829 LWIP_ASSERT_CORE_LOCKED();
830
831 #if LWIP_IPV4
832 /* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */
833 if (ipaddr == NULL) {
834 ipaddr = IP4_ADDR_ANY;
835 }
836 #else /* LWIP_IPV4 */
837 LWIP_ERROR("tcp_bind: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
838 #endif /* LWIP_IPV4 */
839
840 LWIP_ERROR("tcp_bind: invalid pcb", pcb != NULL, return ERR_ARG);
841
842 LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
843
844 #if SO_REUSE
845 /* Unless the REUSEADDR flag is set,
846 we have to check the pcbs in TIME-WAIT state, also.
847 We do not dump TIME_WAIT pcb's; they can still be matched by incoming
848 packets using both local and remote IP addresses and ports to distinguish.
849 */
850 if (ip_get_option(pcb, SOF_REUSEADDR)) {
851 max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT;
852 }
853 #endif /* SO_REUSE */
854
855 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
856 /* If the given IP address should have a zone but doesn't, assign one now.
857 * This is legacy support: scope-aware callers should always provide properly
858 * zoned source addresses. Do the zone selection before the address-in-use
859 * check below; as such we have to make a temporary copy of the address. */
860 if (IP_IS_V6(ipaddr) && ip6_addr_lacks_zone(ip_2_ip6(ipaddr), IP6_UNICAST)) {
861 ip_addr_copy(zoned_ipaddr, *ipaddr);
862 ip6_addr_select_zone(ip_2_ip6(&zoned_ipaddr), ip_2_ip6(&zoned_ipaddr));
863 ipaddr = &zoned_ipaddr;
864 }
865 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
866
867 if (port == 0) {
868 port = tcp_new_port();
869 if (port == 0) {
870 return ERR_BUF;
871 }
872 } else {
873 /* Check if the address already is in use (on all lists) */
874 for (i = 0; i < max_pcb_list; i++) {
875 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
876 #ifdef LOSCFG_NET_CONTAINER
877 if (cpcb->local_port == port && (get_net_group_from_tcp_pcb(pcb) == get_net_group_from_tcp_pcb(cpcb))) {
878 #else
879 if (cpcb->local_port == port) {
880 #endif
881 #if SO_REUSE
882 /* Omit checking for the same port if both pcbs have REUSEADDR set.
883 For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in
884 tcp_connect. */
885 if (!ip_get_option(pcb, SOF_REUSEADDR) ||
886 !ip_get_option(cpcb, SOF_REUSEADDR))
887 #endif /* SO_REUSE */
888 {
889 /* @todo: check accept_any_ip_version */
890 if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) &&
891 (ip_addr_isany(&cpcb->local_ip) ||
892 ip_addr_isany(ipaddr) ||
893 ip_addr_eq(&cpcb->local_ip, ipaddr))) {
894 return ERR_USE;
895 }
896 }
897 }
898 }
899 }
900 }
901
902 if (!ip_addr_isany(ipaddr)
903 #if LWIP_IPV4 && LWIP_IPV6
904 || (IP_GET_TYPE(ipaddr) != IP_GET_TYPE(&pcb->local_ip))
905 #endif /* LWIP_IPV4 && LWIP_IPV6 */
906 ) {
907 ip_addr_set(&pcb->local_ip, ipaddr);
908 }
909 pcb->local_port = port;
910 TCP_REG(&tcp_bound_pcbs, pcb);
911 LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port));
912 return ERR_OK;
913 }
914
915 /**
916 * @ingroup tcp_raw
917 * Binds the connection to a netif and IP address.
918 * After calling this function, all packets received via this PCB
919 * are guaranteed to have come in via the specified netif, and all
920 * outgoing packets will go out via the specified netif.
921 *
922 * @param pcb the tcp_pcb to bind.
923 * @param netif the netif to bind to. Can be NULL.
924 */
925 void
926 tcp_bind_netif(struct tcp_pcb *pcb, const struct netif *netif)
927 {
928 LWIP_ASSERT_CORE_LOCKED();
929 if (netif != NULL) {
930 pcb->netif_idx = netif_get_index(netif);
931 } else {
932 pcb->netif_idx = NETIF_NO_INDEX;
933 }
934 }
935
936 #if LWIP_CALLBACK_API
937 /**
938 * Default accept callback if no accept callback is specified by the user.
939 */
940 static err_t
941 tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err)
942 {
943 LWIP_UNUSED_ARG(arg);
944 LWIP_UNUSED_ARG(err);
945
946 LWIP_ASSERT("tcp_accept_null: invalid pcb", pcb != NULL);
947
948 tcp_abort(pcb);
949
950 return ERR_ABRT;
951 }
952 #endif /* LWIP_CALLBACK_API */
953
954 /**
955 * @ingroup tcp_raw
956 * Set the state of the connection to be LISTEN, which means that it
957 * is able to accept incoming connections. The protocol control block
958 * is reallocated in order to consume less memory. Setting the
959 * connection to LISTEN is an irreversible process.
960 * When an incoming connection is accepted, the function specified with
961 * the tcp_accept() function will be called. The pcb has to be bound
962 * to a local port with the tcp_bind() function.
963 *
964 * The tcp_listen() function returns a new connection identifier, and
965 * the one passed as an argument to the function will be
966 * deallocated. The reason for this behavior is that less memory is
967 * needed for a connection that is listening, so tcp_listen() will
968 * reclaim the memory needed for the original connection and allocate a
969 * new smaller memory block for the listening connection.
970 *
971 * tcp_listen() may return NULL if no memory was available for the
972 * listening connection. If so, the memory associated with the pcb
973 * passed as an argument to tcp_listen() will not be deallocated.
974 *
975 * The backlog limits the number of outstanding connections
976 * in the listen queue to the value specified by the backlog argument.
977 * To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
978 *
979 * @param pcb the original tcp_pcb
980 * @param backlog the incoming connections queue limit
981 * @return tcp_pcb used for listening, consumes less memory.
982 *
983 * @note The original tcp_pcb is freed. This function therefore has to be
984 * called like this:
985 * tpcb = tcp_listen_with_backlog(tpcb, backlog);
986 */
987 struct tcp_pcb *
988 tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
989 {
990 LWIP_ASSERT_CORE_LOCKED();
991 return tcp_listen_with_backlog_and_err(pcb, backlog, NULL);
992 }
993
994 /**
995 * @ingroup tcp_raw
996 * Set the state of the connection to be LISTEN, which means that it
997 * is able to accept incoming connections. The protocol control block
998 * is reallocated in order to consume less memory. Setting the
999 * connection to LISTEN is an irreversible process.
1000 *
1001 * @param pcb the original tcp_pcb
1002 * @param backlog the incoming connections queue limit
1003 * @param err when NULL is returned, this contains the error reason
1004 * @return tcp_pcb used for listening, consumes less memory.
1005 *
1006 * @note The original tcp_pcb is freed. This function therefore has to be
1007 * called like this:
1008 * tpcb = tcp_listen_with_backlog_and_err(tpcb, backlog, &err);
1009 */
1010 struct tcp_pcb *
1011 tcp_listen_with_backlog_and_err(struct tcp_pcb *pcb, u8_t backlog, err_t *err)
1012 {
1013 struct tcp_pcb_listen *lpcb = NULL;
1014 err_t res;
1015
1016 LWIP_UNUSED_ARG(backlog);
1017
1018 LWIP_ASSERT_CORE_LOCKED();
1019
1020 LWIP_ERROR("tcp_listen_with_backlog_and_err: invalid pcb", pcb != NULL, res = ERR_ARG; goto done);
1021 LWIP_ERROR("tcp_listen_with_backlog_and_err: pcb already connected", pcb->state == CLOSED, res = ERR_CLSD; goto done);
1022
1023 /* already listening? */
1024 if (pcb->state == LISTEN) {
1025 lpcb = (struct tcp_pcb_listen *)pcb;
1026 res = ERR_ALREADY;
1027 goto done;
1028 }
1029 #if SO_REUSE
1030 if (ip_get_option(pcb, SOF_REUSEADDR)) {
1031 /* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage
1032 is declared (listen-/connection-pcb), we have to make sure now that
1033 this port is only used once for every local IP. */
1034 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
1035 if ((lpcb->local_port == pcb->local_port) &&
1036 ip_addr_eq(&lpcb->local_ip, &pcb->local_ip)) {
1037 /* this address/port is already used */
1038 lpcb = NULL;
1039 res = ERR_USE;
1040 goto done;
1041 }
1042 }
1043 }
1044 #endif /* SO_REUSE */
1045 lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN);
1046 if (lpcb == NULL) {
1047 res = ERR_MEM;
1048 goto done;
1049 }
1050 #ifdef LOSCFG_NET_CONTAINER
1051 set_tcp_pcb_net_group((struct tcp_pcb *)lpcb, get_net_group_from_tcp_pcb(pcb));
1052 #endif
1053 lpcb->callback_arg = pcb->callback_arg;
1054 lpcb->local_port = pcb->local_port;
1055 lpcb->state = LISTEN;
1056 lpcb->prio = pcb->prio;
1057 lpcb->so_options = pcb->so_options;
1058 lpcb->netif_idx = pcb->netif_idx;
1059 lpcb->ttl = pcb->ttl;
1060 lpcb->tos = pcb->tos;
1061 #if LWIP_VLAN_PCP
1062 lpcb->netif_hints.tci = pcb->netif_hints.tci;
1063 #endif /* LWIP_VLAN_PCP */
1064 #if LWIP_IPV4 && LWIP_IPV6
1065 IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type);
1066 #endif /* LWIP_IPV4 && LWIP_IPV6 */
1067 ip_addr_copy(lpcb->local_ip, pcb->local_ip);
1068 if (pcb->local_port != 0) {
1069 TCP_RMV(&tcp_bound_pcbs, pcb);
1070 }
1071 #if LWIP_TCP_PCB_NUM_EXT_ARGS
1072 /* copy over ext_args to listening pcb */
1073 memcpy(&lpcb->ext_args, &pcb->ext_args, sizeof(pcb->ext_args));
1074 #endif
1075 tcp_free(pcb);
1076 #if LWIP_CALLBACK_API
1077 lpcb->accept = tcp_accept_null;
1078 #endif /* LWIP_CALLBACK_API */
1079 #if TCP_LISTEN_BACKLOG
1080 lpcb->accepts_pending = 0;
1081 tcp_backlog_set(lpcb, backlog);
1082 #endif /* TCP_LISTEN_BACKLOG */
1083 TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb);
1084 res = ERR_OK;
1085 done:
1086 if (err != NULL) {
1087 *err = res;
1088 }
1089 return (struct tcp_pcb *)lpcb;
1090 }
1091
1092 /**
1093 * Update the state that tracks the available window space to advertise.
1094 *
1095 * Returns how much extra window would be advertised if we sent an
1096 * update now.
1097 */
1098 u32_t
1099 tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb)
1100 {
1101 u32_t new_right_edge;
1102
1103 LWIP_ASSERT("tcp_update_rcv_ann_wnd: invalid pcb", pcb != NULL);
1104 new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd;
1105
1106 if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND / 2), pcb->mss))) {
1107 /* we can advertise more window */
1108 pcb->rcv_ann_wnd = pcb->rcv_wnd;
1109 return new_right_edge - pcb->rcv_ann_right_edge;
1110 } else {
1111 if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) {
1112 /* Can happen due to other end sending out of advertised window,
1113 * but within actual available (but not yet advertised) window */
1114 pcb->rcv_ann_wnd = 0;
1115 } else {
1116 /* keep the right edge of window constant */
1117 u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt;
1118 #if !LWIP_WND_SCALE
1119 LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff);
1120 #endif
1121 pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd;
1122 }
1123 return 0;
1124 }
1125 }
1126
1127 /**
1128 * @ingroup tcp_raw
1129 * This function should be called by the application when it has
1130 * processed the data. The purpose is to advertise a larger window
1131 * when the data has been processed.
1132 *
1133 * @param pcb the tcp_pcb for which data is read
1134 * @param len the amount of bytes that have been read by the application
1135 */
1136 void
1137 tcp_recved(struct tcp_pcb *pcb, u16_t len)
1138 {
1139 u32_t wnd_inflation;
1140 tcpwnd_size_t rcv_wnd;
1141
1142 LWIP_ASSERT_CORE_LOCKED();
1143
1144 LWIP_ERROR("tcp_recved: invalid pcb", pcb != NULL, return);
1145
1146 /* pcb->state LISTEN not allowed here */
1147 LWIP_ASSERT("don't call tcp_recved for listen-pcbs",
1148 pcb->state != LISTEN);
1149
1150 rcv_wnd = (tcpwnd_size_t)(pcb->rcv_wnd + len);
1151 if ((rcv_wnd > TCP_WND_MAX(pcb)) || (rcv_wnd < pcb->rcv_wnd)) {
1152 /* window got too big or tcpwnd_size_t overflow */
1153 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: window got too big or tcpwnd_size_t overflow\n"));
1154 pcb->rcv_wnd = TCP_WND_MAX(pcb);
1155 } else {
1156 pcb->rcv_wnd = rcv_wnd;
1157 }
1158
1159 wnd_inflation = tcp_update_rcv_ann_wnd(pcb);
1160
1161 /* If the change in the right edge of window is significant (default
1162 * watermark is TCP_WND/4), then send an explicit update now.
1163 * Otherwise wait for a packet to be sent in the normal course of
1164 * events (or more window to be available later) */
1165 if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD) {
1166 tcp_ack_now(pcb);
1167 tcp_output(pcb);
1168 }
1169
1170 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n",
1171 len, pcb->rcv_wnd, (u16_t)(TCP_WND_MAX(pcb) - pcb->rcv_wnd)));
1172 }
1173
1174 /**
1175 * Allocate a new local TCP port.
1176 *
1177 * @return a new (free) local TCP port number
1178 */
1179 static u16_t
1180 tcp_new_port(void)
1181 {
1182 u8_t i;
1183 u16_t n = 0;
1184 struct tcp_pcb *pcb;
1185
1186 again:
1187 tcp_port++;
1188 if (tcp_port == TCP_LOCAL_PORT_RANGE_END) {
1189 tcp_port = TCP_LOCAL_PORT_RANGE_START;
1190 }
1191 /* Check all PCB lists. */
1192 for (i = 0; i < NUM_TCP_PCB_LISTS; i++) {
1193 for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) {
1194 if (pcb->local_port == tcp_port) {
1195 n++;
1196 if (n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) {
1197 return 0;
1198 }
1199 goto again;
1200 }
1201 }
1202 }
1203 return tcp_port;
1204 }
1205
1206 /**
1207 * @ingroup tcp_raw
1208 * Connects to another host. The function given as the "connected"
1209 * argument will be called when the connection has been established.
1210 * Sets up the pcb to connect to the remote host and sends the
1211 * initial SYN segment which opens the connection.
1212 *
1213 * The tcp_connect() function returns immediately; it does not wait for
1214 * the connection to be properly setup. Instead, it will call the
1215 * function specified as the fourth argument (the "connected" argument)
1216 * when the connection is established. If the connection could not be
1217 * properly established, either because the other host refused the
1218 * connection or because the other host didn't answer, the "err"
1219 * callback function of this pcb (registered with tcp_err, see below)
1220 * will be called.
1221 *
1222 * The tcp_connect() function can return ERR_MEM if no memory is
1223 * available for enqueueing the SYN segment. If the SYN indeed was
1224 * enqueued successfully, the tcp_connect() function returns ERR_OK.
1225 *
1226 * @param pcb the tcp_pcb used to establish the connection
1227 * @param ipaddr the remote ip address to connect to
1228 * @param port the remote tcp port to connect to
1229 * @param connected callback function to call when connected (on error,
1230 the err callback will be called)
1231 * @return ERR_VAL if invalid arguments are given
1232 * ERR_OK if connect request has been sent
1233 * other err_t values if connect request couldn't be sent
1234 */
1235 err_t
1236 tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port,
1237 tcp_connected_fn connected)
1238 {
1239 struct netif *netif = NULL;
1240 err_t ret;
1241 u32_t iss;
1242 u16_t old_local_port;
1243
1244 LWIP_ASSERT_CORE_LOCKED();
1245
1246 LWIP_ERROR("tcp_connect: invalid pcb", pcb != NULL, return ERR_ARG);
1247 LWIP_ERROR("tcp_connect: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
1248
1249 LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN);
1250
1251 #ifdef LOSCFG_NET_CONTAINER
1252 struct net_group *group = get_net_group_from_tcp_pcb(pcb);
1253 LWIP_ERROR("tcp_connect: invalid net group", group != NULL, return ERR_RTE);
1254 #endif
1255 LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port));
1256 ip_addr_set(&pcb->remote_ip, ipaddr);
1257 pcb->remote_port = port;
1258
1259 if (pcb->netif_idx != NETIF_NO_INDEX) {
1260 #ifdef LOSCFG_NET_CONTAINER
1261 netif = netif_get_by_index(pcb->netif_idx, group);
1262 #else
1263 netif = netif_get_by_index(pcb->netif_idx);
1264 #endif
1265 } else {
1266 /* check if we have a route to the remote host */
1267 #ifdef LOSCFG_NET_CONTAINER
1268 netif = ip_route(&pcb->local_ip, &pcb->remote_ip, group);
1269 #else
1270 netif = ip_route(&pcb->local_ip, &pcb->remote_ip);
1271 #endif
1272 }
1273 if (netif == NULL) {
1274 /* Don't even try to send a SYN packet if we have no route since that will fail. */
1275 return ERR_RTE;
1276 }
1277
1278 /* check if local IP has been assigned to pcb, if not, get one */
1279 if (ip_addr_isany(&pcb->local_ip)) {
1280 const ip_addr_t *local_ip = ip_netif_get_local_ip(netif, ipaddr);
1281 if (local_ip == NULL) {
1282 return ERR_RTE;
1283 }
1284 ip_addr_copy(pcb->local_ip, *local_ip);
1285 }
1286
1287 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
1288 /* If the given IP address should have a zone but doesn't, assign one now.
1289 * Given that we already have the target netif, this is easy and cheap. */
1290 if (IP_IS_V6(&pcb->remote_ip) &&
1291 ip6_addr_lacks_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST)) {
1292 ip6_addr_assign_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST, netif);
1293 }
1294 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
1295
1296 old_local_port = pcb->local_port;
1297 if (pcb->local_port == 0) {
1298 pcb->local_port = tcp_new_port();
1299 if (pcb->local_port == 0) {
1300 return ERR_BUF;
1301 }
1302 } else {
1303 #if SO_REUSE
1304 if (ip_get_option(pcb, SOF_REUSEADDR)) {
1305 /* Since SOF_REUSEADDR allows reusing a local address, we have to make sure
1306 now that the 5-tuple is unique. */
1307 struct tcp_pcb *cpcb;
1308 int i;
1309 /* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */
1310 for (i = 2; i < NUM_TCP_PCB_LISTS; i++) {
1311 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
1312 if ((cpcb->local_port == pcb->local_port) &&
1313 (cpcb->remote_port == port) &&
1314 ip_addr_eq(&cpcb->local_ip, &pcb->local_ip) &&
1315 ip_addr_eq(&cpcb->remote_ip, ipaddr)) {
1316 /* linux returns EISCONN here, but ERR_USE should be OK for us */
1317 return ERR_USE;
1318 }
1319 }
1320 }
1321 }
1322 #endif /* SO_REUSE */
1323 }
1324
1325 iss = tcp_next_iss(pcb);
1326 pcb->rcv_nxt = 0;
1327 pcb->snd_nxt = iss;
1328 pcb->lastack = iss - 1;
1329 pcb->snd_wl2 = iss - 1;
1330 pcb->snd_lbb = iss - 1;
1331 /* Start with a window that does not need scaling. When window scaling is
1332 enabled and used, the window is enlarged when both sides agree on scaling. */
1333 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1334 pcb->rcv_ann_right_edge = pcb->rcv_nxt;
1335 pcb->snd_wnd = TCP_WND;
1336 /* As initial send MSS, we use TCP_MSS but limit it to 536.
1337 The send MSS is updated when an MSS option is received. */
1338 pcb->mss = INITIAL_MSS;
1339 #if TCP_CALCULATE_EFF_SEND_MSS
1340 pcb->mss = tcp_eff_send_mss_netif(pcb->mss, netif, &pcb->remote_ip);
1341 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
1342 pcb->cwnd = 1;
1343 #if LWIP_CALLBACK_API
1344 pcb->connected = connected;
1345 #else /* LWIP_CALLBACK_API */
1346 LWIP_UNUSED_ARG(connected);
1347 #endif /* LWIP_CALLBACK_API */
1348
1349 /* Send a SYN together with the MSS option. */
1350 ret = tcp_enqueue_flags(pcb, TCP_SYN);
1351 if (ret == ERR_OK) {
1352 /* SYN segment was enqueued, changed the pcbs state now */
1353 pcb->state = SYN_SENT;
1354 if (old_local_port != 0) {
1355 TCP_RMV(&tcp_bound_pcbs, pcb);
1356 }
1357 TCP_REG_ACTIVE(pcb);
1358 MIB2_STATS_INC(mib2.tcpactiveopens);
1359
1360 tcp_output(pcb);
1361 }
1362 return ret;
1363 }
1364
1365 /**
1366 * Called every 500 ms and implements the retransmission timer and the timer that
1367 * removes PCBs that have been in TIME-WAIT for enough time. It also increments
1368 * various timers such as the inactivity timer in each PCB.
1369 *
1370 * Automatically called from tcp_tmr().
1371 */
1372 void
1373 tcp_slowtmr(void)
1374 {
1375 struct tcp_pcb *pcb, *prev;
1376 tcpwnd_size_t eff_wnd;
1377 u8_t pcb_remove; /* flag if a PCB should be removed */
1378 u8_t pcb_reset; /* flag if a RST should be sent when removing */
1379 err_t err;
1380
1381 err = ERR_OK;
1382
1383 ++tcp_ticks;
1384 ++tcp_timer_ctr;
1385
1386 tcp_slowtmr_start:
1387 /* Steps through all of the active PCBs. */
1388 prev = NULL;
1389 pcb = tcp_active_pcbs;
1390 if (pcb == NULL) {
1391 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n"));
1392 }
1393 while (pcb != NULL) {
1394 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n"));
1395 LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED", pcb->state != CLOSED);
1396 LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN", pcb->state != LISTEN);
1397 LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
1398 if (pcb->last_timer == tcp_timer_ctr) {
1399 /* skip this pcb, we have already processed it */
1400 prev = pcb;
1401 pcb = pcb->next;
1402 continue;
1403 }
1404 pcb->last_timer = tcp_timer_ctr;
1405
1406 pcb_remove = 0;
1407 pcb_reset = 0;
1408
1409 if (pcb->state == SYN_SENT && pcb->nrtx >= TCP_SYNMAXRTX) {
1410 ++pcb_remove;
1411 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n"));
1412 } else if (pcb->nrtx >= TCP_MAXRTX) {
1413 ++pcb_remove;
1414 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n"));
1415 } else {
1416 if (pcb->persist_backoff > 0) {
1417 LWIP_ASSERT("tcp_slowtimr: persist ticking with in-flight data", pcb->unacked == NULL);
1418 LWIP_ASSERT("tcp_slowtimr: persist ticking with empty send buffer", pcb->unsent != NULL);
1419 if (pcb->persist_probe >= TCP_MAXRTX) {
1420 ++pcb_remove; /* max probes reached */
1421 } else {
1422 u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
1423 if (pcb->persist_cnt < backoff_cnt) {
1424 pcb->persist_cnt++;
1425 }
1426 if (pcb->persist_cnt >= backoff_cnt) {
1427 int next_slot = 1; /* increment timer to next slot */
1428 /* If snd_wnd is zero, send 1 byte probes */
1429 if (pcb->snd_wnd == 0) {
1430 if (tcp_zero_window_probe(pcb) != ERR_OK) {
1431 next_slot = 0; /* try probe again with current slot */
1432 }
1433 /* snd_wnd not fully closed, split unsent head and fill window */
1434 } else {
1435 if (tcp_split_unsent_seg(pcb, (u16_t)pcb->snd_wnd) == ERR_OK) {
1436 if (tcp_output(pcb) == ERR_OK) {
1437 /* sending will cancel persist timer, else retry with current slot */
1438 next_slot = 0;
1439 }
1440 }
1441 }
1442 if (next_slot) {
1443 pcb->persist_cnt = 0;
1444 if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) {
1445 pcb->persist_backoff++;
1446 }
1447 }
1448 }
1449 }
1450 } else {
1451 /* Increase the retransmission timer if it is running */
1452 if ((pcb->rtime >= 0) && (pcb->rtime < 0x7FFF)) {
1453 ++pcb->rtime;
1454 }
1455
1456 if (pcb->rtime >= pcb->rto) {
1457 /* Time for a retransmission. */
1458 LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F
1459 " pcb->rto %"S16_F"\n",
1460 pcb->rtime, pcb->rto));
1461 /* If prepare phase fails but we have unsent data but no unacked data,
1462 still execute the backoff calculations below, as this means we somehow
1463 failed to send segment. */
1464 if ((tcp_rexmit_rto_prepare(pcb) == ERR_OK) || ((pcb->unacked == NULL) && (pcb->unsent != NULL))) {
1465 /* Double retransmission time-out unless we are trying to
1466 * connect to somebody (i.e., we are in SYN_SENT). */
1467 if (pcb->state != SYN_SENT) {
1468 u8_t backoff_idx = LWIP_MIN(pcb->nrtx, sizeof(tcp_backoff) - 1);
1469 int calc_rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[backoff_idx];
1470 pcb->rto = (s16_t)LWIP_MIN(calc_rto, 0x7FFF);
1471 }
1472
1473 /* Reset the retransmission timer. */
1474 pcb->rtime = 0;
1475
1476 /* Reduce congestion window and ssthresh. */
1477 eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd);
1478 pcb->ssthresh = eff_wnd >> 1;
1479 if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) {
1480 pcb->ssthresh = (tcpwnd_size_t)(pcb->mss << 1);
1481 }
1482 pcb->cwnd = pcb->mss;
1483 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F
1484 " ssthresh %"TCPWNDSIZE_F"\n",
1485 pcb->cwnd, pcb->ssthresh));
1486 pcb->bytes_acked = 0;
1487
1488 /* The following needs to be called AFTER cwnd is set to one
1489 mss - STJ */
1490 tcp_rexmit_rto_commit(pcb);
1491 }
1492 }
1493 }
1494 }
1495 /* Check if this PCB has stayed too long in FIN-WAIT-2 */
1496 if (pcb->state == FIN_WAIT_2) {
1497 /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
1498 if (pcb->flags & TF_RXCLOSED) {
1499 /* PCB was fully closed (either through close() or SHUT_RDWR):
1500 normal FIN-WAIT timeout handling. */
1501 if ((u32_t)(tcp_ticks - pcb->tmr) >
1502 TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) {
1503 ++pcb_remove;
1504 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n"));
1505 }
1506 }
1507 }
1508
1509 /* Check if KEEPALIVE should be sent */
1510 if (ip_get_option(pcb, SOF_KEEPALIVE) &&
1511 ((pcb->state == ESTABLISHED) ||
1512 (pcb->state == CLOSE_WAIT))) {
1513 if ((u32_t)(tcp_ticks - pcb->tmr) >
1514 (pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL) {
1515 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to "));
1516 ip_addr_debug_print_val(TCP_DEBUG, pcb->remote_ip);
1517 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
1518
1519 ++pcb_remove;
1520 ++pcb_reset;
1521 } else if ((u32_t)(tcp_ticks - pcb->tmr) >
1522 (pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb))
1523 / TCP_SLOW_INTERVAL) {
1524 err = tcp_keepalive(pcb);
1525 if (err == ERR_OK) {
1526 pcb->keep_cnt_sent++;
1527 }
1528 }
1529 }
1530
1531 /* If this PCB has queued out of sequence data, but has been
1532 inactive for too long, will drop the data (it will eventually
1533 be retransmitted). */
1534 #if TCP_QUEUE_OOSEQ
1535 if (pcb->ooseq != NULL &&
1536 (tcp_ticks - pcb->tmr >= (u32_t)pcb->rto * TCP_OOSEQ_TIMEOUT)) {
1537 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n"));
1538 tcp_free_ooseq(pcb);
1539 }
1540 #endif /* TCP_QUEUE_OOSEQ */
1541
1542 /* Check if this PCB has stayed too long in SYN-RCVD */
1543 if (pcb->state == SYN_RCVD) {
1544 if ((u32_t)(tcp_ticks - pcb->tmr) >
1545 TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) {
1546 ++pcb_remove;
1547 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n"));
1548 }
1549 }
1550
1551 /* Check if this PCB has stayed too long in LAST-ACK */
1552 if (pcb->state == LAST_ACK) {
1553 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1554 ++pcb_remove;
1555 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n"));
1556 }
1557 }
1558
1559 /* If the PCB should be removed, do it. */
1560 if (pcb_remove) {
1561 struct tcp_pcb *pcb2;
1562 #if LWIP_CALLBACK_API
1563 tcp_err_fn err_fn = pcb->errf;
1564 #endif /* LWIP_CALLBACK_API */
1565 void *err_arg;
1566 enum tcp_state last_state;
1567 tcp_pcb_purge(pcb);
1568 /* Remove PCB from tcp_active_pcbs list. */
1569 if (prev != NULL) {
1570 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs);
1571 prev->next = pcb->next;
1572 } else {
1573 /* This PCB was the first. */
1574 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb);
1575 tcp_active_pcbs = pcb->next;
1576 }
1577
1578 if (pcb_reset) {
1579 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
1580 pcb->local_port, pcb->remote_port);
1581 }
1582
1583 err_arg = pcb->callback_arg;
1584 last_state = pcb->state;
1585 pcb2 = pcb;
1586 pcb = pcb->next;
1587 tcp_free(pcb2);
1588
1589 tcp_active_pcbs_changed = 0;
1590 TCP_EVENT_ERR(last_state, err_fn, err_arg, ERR_ABRT);
1591 if (tcp_active_pcbs_changed) {
1592 goto tcp_slowtmr_start;
1593 }
1594 } else {
1595 /* get the 'next' element now and work with 'prev' below (in case of abort) */
1596 prev = pcb;
1597 pcb = pcb->next;
1598
1599 /* We check if we should poll the connection. */
1600 ++prev->polltmr;
1601 if (prev->polltmr >= prev->pollinterval) {
1602 prev->polltmr = 0;
1603 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n"));
1604 tcp_active_pcbs_changed = 0;
1605 TCP_EVENT_POLL(prev, err);
1606 if (tcp_active_pcbs_changed) {
1607 goto tcp_slowtmr_start;
1608 }
1609 /* if err == ERR_ABRT, 'prev' is already deallocated */
1610 if (err == ERR_OK) {
1611 tcp_output(prev);
1612 }
1613 }
1614 }
1615 }
1616
1617
1618 /* Steps through all of the TIME-WAIT PCBs. */
1619 prev = NULL;
1620 pcb = tcp_tw_pcbs;
1621 while (pcb != NULL) {
1622 LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
1623 pcb_remove = 0;
1624
1625 /* Check if this PCB has stayed long enough in TIME-WAIT */
1626 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1627 ++pcb_remove;
1628 }
1629
1630 /* If the PCB should be removed, do it. */
1631 if (pcb_remove) {
1632 struct tcp_pcb *pcb2;
1633 tcp_pcb_purge(pcb);
1634 /* Remove PCB from tcp_tw_pcbs list. */
1635 if (prev != NULL) {
1636 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs);
1637 prev->next = pcb->next;
1638 } else {
1639 /* This PCB was the first. */
1640 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb);
1641 tcp_tw_pcbs = pcb->next;
1642 }
1643 pcb2 = pcb;
1644 pcb = pcb->next;
1645 tcp_free(pcb2);
1646 } else {
1647 prev = pcb;
1648 pcb = pcb->next;
1649 }
1650 }
1651 }
1652
1653 /**
1654 * Is called every TCP_FAST_INTERVAL (250 ms) and process data previously
1655 * "refused" by upper layer (application) and sends delayed ACKs or pending FINs.
1656 *
1657 * Automatically called from tcp_tmr().
1658 */
1659 void
1660 tcp_fasttmr(void)
1661 {
1662 struct tcp_pcb *pcb;
1663
1664 ++tcp_timer_ctr;
1665
1666 tcp_fasttmr_start:
1667 pcb = tcp_active_pcbs;
1668
1669 while (pcb != NULL) {
1670 if (pcb->last_timer != tcp_timer_ctr) {
1671 struct tcp_pcb *next;
1672 pcb->last_timer = tcp_timer_ctr;
1673 /* send delayed ACKs */
1674 if (pcb->flags & TF_ACK_DELAY) {
1675 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n"));
1676 tcp_ack_now(pcb);
1677 tcp_output(pcb);
1678 tcp_clear_flags(pcb, TF_ACK_DELAY | TF_ACK_NOW);
1679 }
1680 /* send pending FIN */
1681 if (pcb->flags & TF_CLOSEPEND) {
1682 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: pending FIN\n"));
1683 tcp_clear_flags(pcb, TF_CLOSEPEND);
1684 tcp_close_shutdown_fin(pcb);
1685 }
1686
1687 next = pcb->next;
1688
1689 /* If there is data which was previously "refused" by upper layer */
1690 if (pcb->refused_data != NULL) {
1691 tcp_active_pcbs_changed = 0;
1692 tcp_process_refused_data(pcb);
1693 if (tcp_active_pcbs_changed) {
1694 /* application callback has changed the pcb list: restart the loop */
1695 goto tcp_fasttmr_start;
1696 }
1697 }
1698 pcb = next;
1699 } else {
1700 pcb = pcb->next;
1701 }
1702 }
1703 }
1704
1705 /** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */
1706 void
1707 tcp_txnow(void)
1708 {
1709 struct tcp_pcb *pcb;
1710
1711 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1712 if (pcb->flags & TF_NAGLEMEMERR) {
1713 tcp_output(pcb);
1714 }
1715 }
1716 }
1717
1718 /** Pass pcb->refused_data to the recv callback */
1719 err_t
1720 tcp_process_refused_data(struct tcp_pcb *pcb)
1721 {
1722 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1723 struct pbuf *rest;
1724 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1725
1726 LWIP_ERROR("tcp_process_refused_data: invalid pcb", pcb != NULL, return ERR_ARG);
1727
1728 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1729 while (pcb->refused_data != NULL)
1730 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1731 {
1732 err_t err;
1733 u8_t refused_flags = pcb->refused_data->flags;
1734 /* set pcb->refused_data to NULL in case the callback frees it and then
1735 closes the pcb */
1736 struct pbuf *refused_data = pcb->refused_data;
1737 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1738 pbuf_split_64k(refused_data, &rest);
1739 pcb->refused_data = rest;
1740 #else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1741 pcb->refused_data = NULL;
1742 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1743 /* Notify again application with data previously received. */
1744 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n"));
1745 TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err);
1746 if (err == ERR_OK) {
1747 /* did refused_data include a FIN? */
1748 if ((refused_flags & PBUF_FLAG_TCP_FIN)
1749 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1750 && (rest == NULL)
1751 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1752 ) {
1753 /* correct rcv_wnd as the application won't call tcp_recved()
1754 for the FIN's seqno */
1755 if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) {
1756 pcb->rcv_wnd++;
1757 }
1758 TCP_EVENT_CLOSED(pcb, err);
1759 if (err == ERR_ABRT) {
1760 return ERR_ABRT;
1761 }
1762 }
1763 } else if (err == ERR_ABRT) {
1764 /* if err == ERR_ABRT, 'pcb' is already deallocated */
1765 /* Drop incoming packets because pcb is "full" (only if the incoming
1766 segment contains data). */
1767 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n"));
1768 return ERR_ABRT;
1769 } else {
1770 /* data is still refused, pbuf is still valid (go on for ACK-only packets) */
1771 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1772 if (rest != NULL) {
1773 pbuf_cat(refused_data, rest);
1774 }
1775 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1776 pcb->refused_data = refused_data;
1777 return ERR_INPROGRESS;
1778 }
1779 }
1780 return ERR_OK;
1781 }
1782
1783 /**
1784 * Deallocates a list of TCP segments (tcp_seg structures).
1785 *
1786 * @param seg tcp_seg list of TCP segments to free
1787 */
1788 void
1789 tcp_segs_free(struct tcp_seg *seg)
1790 {
1791 while (seg != NULL) {
1792 struct tcp_seg *next = seg->next;
1793 tcp_seg_free(seg);
1794 seg = next;
1795 }
1796 }
1797
1798 /**
1799 * Frees a TCP segment (tcp_seg structure).
1800 *
1801 * @param seg single tcp_seg to free
1802 */
1803 void
1804 tcp_seg_free(struct tcp_seg *seg)
1805 {
1806 if (seg != NULL) {
1807 if (seg->p != NULL) {
1808 pbuf_free(seg->p);
1809 #if TCP_DEBUG
1810 seg->p = NULL;
1811 #endif /* TCP_DEBUG */
1812 }
1813 memp_free(MEMP_TCP_SEG, seg);
1814 }
1815 }
1816
1817 /**
1818 * @ingroup tcp
1819 * Sets the priority of a connection.
1820 *
1821 * @param pcb the tcp_pcb to manipulate
1822 * @param prio new priority
1823 */
1824 void
1825 tcp_setprio(struct tcp_pcb *pcb, u8_t prio)
1826 {
1827 LWIP_ASSERT_CORE_LOCKED();
1828
1829 LWIP_ERROR("tcp_setprio: invalid pcb", pcb != NULL, return);
1830
1831 pcb->prio = prio;
1832 }
1833
1834 #if TCP_QUEUE_OOSEQ
1835 /**
1836 * Returns a copy of the given TCP segment.
1837 * The pbuf and data are not copied, only the pointers
1838 *
1839 * @param seg the old tcp_seg
1840 * @return a copy of seg
1841 */
1842 struct tcp_seg *
1843 tcp_seg_copy(struct tcp_seg *seg)
1844 {
1845 struct tcp_seg *cseg;
1846
1847 LWIP_ASSERT("tcp_seg_copy: invalid seg", seg != NULL);
1848
1849 cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
1850 if (cseg == NULL) {
1851 return NULL;
1852 }
1853 SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg));
1854 pbuf_ref(cseg->p);
1855 return cseg;
1856 }
1857 #endif /* TCP_QUEUE_OOSEQ */
1858
1859 #if LWIP_CALLBACK_API
1860 /**
1861 * Default receive callback that is called if the user didn't register
1862 * a recv callback for the pcb.
1863 */
1864 err_t
1865 tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
1866 {
1867 LWIP_UNUSED_ARG(arg);
1868
1869 LWIP_ERROR("tcp_recv_null: invalid pcb", pcb != NULL, return ERR_ARG);
1870
1871 if (p != NULL) {
1872 tcp_recved(pcb, p->tot_len);
1873 pbuf_free(p);
1874 } else if (err == ERR_OK) {
1875 return tcp_close(pcb);
1876 }
1877 return ERR_OK;
1878 }
1879 #endif /* LWIP_CALLBACK_API */
1880
1881 /**
1882 * Kills the oldest active connection that has a lower priority than 'prio'.
1883 *
1884 * @param prio minimum priority
1885 */
1886 static void
1887 tcp_kill_prio(u8_t prio)
1888 {
1889 struct tcp_pcb *pcb, *inactive;
1890 u32_t inactivity;
1891 u8_t mprio;
1892
1893 mprio = LWIP_MIN(TCP_PRIO_MAX, prio);
1894
1895 /* We want to kill connections with a lower prio, so bail out if
1896 * supplied prio is 0 - there can never be a lower prio
1897 */
1898 if (mprio == 0) {
1899 return;
1900 }
1901
1902 /* We only want kill connections with a lower prio, so decrement prio by one
1903 * and start searching for oldest connection with same or lower priority than mprio.
1904 * We want to find the connections with the lowest possible prio, and among
1905 * these the one with the longest inactivity time.
1906 */
1907 mprio--;
1908
1909 inactivity = 0;
1910 inactive = NULL;
1911 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1912 /* lower prio is always a kill candidate */
1913 if ((pcb->prio < mprio) ||
1914 /* longer inactivity is also a kill candidate */
1915 ((pcb->prio == mprio) && ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity))) {
1916 inactivity = tcp_ticks - pcb->tmr;
1917 inactive = pcb;
1918 mprio = pcb->prio;
1919 }
1920 }
1921 if (inactive != NULL) {
1922 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n",
1923 (void *)inactive, inactivity));
1924 tcp_abort(inactive);
1925 }
1926 }
1927
1928 /**
1929 * Kills the oldest connection that is in specific state.
1930 * Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available.
1931 */
1932 static void
1933 tcp_kill_state(enum tcp_state state)
1934 {
1935 struct tcp_pcb *pcb, *inactive;
1936 u32_t inactivity;
1937
1938 LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK));
1939
1940 inactivity = 0;
1941 inactive = NULL;
1942 /* Go through the list of active pcbs and get the oldest pcb that is in state
1943 CLOSING/LAST_ACK. */
1944 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1945 if (pcb->state == state) {
1946 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1947 inactivity = tcp_ticks - pcb->tmr;
1948 inactive = pcb;
1949 }
1950 }
1951 }
1952 if (inactive != NULL) {
1953 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n",
1954 tcp_state_str[state], (void *)inactive, inactivity));
1955 /* Don't send a RST, since no data is lost. */
1956 tcp_abandon(inactive, 0);
1957 }
1958 }
1959
1960 /**
1961 * Kills the oldest connection that is in TIME_WAIT state.
1962 * Called from tcp_alloc() if no more connections are available.
1963 */
1964 static void
1965 tcp_kill_timewait(void)
1966 {
1967 struct tcp_pcb *pcb, *inactive;
1968 u32_t inactivity;
1969
1970 inactivity = 0;
1971 inactive = NULL;
1972 /* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */
1973 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
1974 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1975 inactivity = tcp_ticks - pcb->tmr;
1976 inactive = pcb;
1977 }
1978 }
1979 if (inactive != NULL) {
1980 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n",
1981 (void *)inactive, inactivity));
1982 tcp_abort(inactive);
1983 }
1984 }
1985
1986 /* Called when allocating a pcb fails.
1987 * In this case, we want to handle all pcbs that want to close first: if we can
1988 * now send the FIN (which failed before), the pcb might be in a state that is
1989 * OK for us to now free it.
1990 */
1991 static void
1992 tcp_handle_closepend(void)
1993 {
1994 struct tcp_pcb *pcb = tcp_active_pcbs;
1995
1996 while (pcb != NULL) {
1997 struct tcp_pcb *next = pcb->next;
1998 /* send pending FIN */
1999 if (pcb->flags & TF_CLOSEPEND) {
2000 LWIP_DEBUGF(TCP_DEBUG, ("tcp_handle_closepend: pending FIN\n"));
2001 tcp_clear_flags(pcb, TF_CLOSEPEND);
2002 tcp_close_shutdown_fin(pcb);
2003 }
2004 pcb = next;
2005 }
2006 }
2007
2008 /**
2009 * Allocate a new tcp_pcb structure.
2010 *
2011 * @param prio priority for the new pcb
2012 * @return a new tcp_pcb that initially is in state CLOSED
2013 */
2014 struct tcp_pcb *
2015 tcp_alloc(u8_t prio)
2016 {
2017 struct tcp_pcb *pcb;
2018
2019 LWIP_ASSERT_CORE_LOCKED();
2020
2021 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2022 if (pcb == NULL) {
2023 /* Try to send FIN for all pcbs stuck in TF_CLOSEPEND first */
2024 tcp_handle_closepend();
2025
2026 /* Try killing oldest connection in TIME-WAIT. */
2027 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n"));
2028 tcp_kill_timewait();
2029 /* Try to allocate a tcp_pcb again. */
2030 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2031 if (pcb == NULL) {
2032 /* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */
2033 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n"));
2034 tcp_kill_state(LAST_ACK);
2035 /* Try to allocate a tcp_pcb again. */
2036 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2037 if (pcb == NULL) {
2038 /* Try killing oldest connection in CLOSING. */
2039 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n"));
2040 tcp_kill_state(CLOSING);
2041 /* Try to allocate a tcp_pcb again. */
2042 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2043 if (pcb == NULL) {
2044 /* Try killing oldest active connection with lower priority than the new one. */
2045 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing oldest connection with prio lower than %d\n", prio));
2046 tcp_kill_prio(prio);
2047 /* Try to allocate a tcp_pcb again. */
2048 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2049 if (pcb != NULL) {
2050 /* adjust err stats: memp_malloc failed multiple times before */
2051 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2052 }
2053 }
2054 if (pcb != NULL) {
2055 /* adjust err stats: memp_malloc failed multiple times before */
2056 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2057 }
2058 }
2059 if (pcb != NULL) {
2060 /* adjust err stats: memp_malloc failed multiple times before */
2061 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2062 }
2063 }
2064 if (pcb != NULL) {
2065 /* adjust err stats: memp_malloc failed above */
2066 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2067 }
2068 }
2069 if (pcb != NULL) {
2070 /* zero out the whole pcb, so there is no need to initialize members to zero */
2071 memset(pcb, 0, sizeof(struct tcp_pcb));
2072 pcb->prio = prio;
2073 pcb->snd_buf = TCP_SND_BUF;
2074 /* Start with a window that does not need scaling. When window scaling is
2075 enabled and used, the window is enlarged when both sides agree on scaling. */
2076 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
2077 pcb->ttl = TCP_TTL;
2078 /* As initial send MSS, we use TCP_MSS but limit it to 536.
2079 The send MSS is updated when an MSS option is received. */
2080 pcb->mss = INITIAL_MSS;
2081 /* Set initial TCP's retransmission timeout to 3000 ms by default.
2082 This value could be configured in lwipopts */
2083 pcb->rto = LWIP_TCP_RTO_TIME / TCP_SLOW_INTERVAL;
2084 pcb->sv = LWIP_TCP_RTO_TIME / TCP_SLOW_INTERVAL;
2085 pcb->rtime = -1;
2086 pcb->cwnd = 1;
2087 pcb->tmr = tcp_ticks;
2088 pcb->last_timer = tcp_timer_ctr;
2089
2090 /* RFC 5681 recommends setting ssthresh arbitrarily high and gives an example
2091 of using the largest advertised receive window. We've seen complications with
2092 receiving TCPs that use window scaling and/or window auto-tuning where the
2093 initial advertised window is very small and then grows rapidly once the
2094 connection is established. To avoid these complications, we set ssthresh to the
2095 largest effective cwnd (amount of in-flight data) that the sender can have. */
2096 pcb->ssthresh = TCP_SND_BUF;
2097
2098 #if LWIP_CALLBACK_API
2099 pcb->recv = tcp_recv_null;
2100 #endif /* LWIP_CALLBACK_API */
2101
2102 /* Init KEEPALIVE timer */
2103 pcb->keep_idle = TCP_KEEPIDLE_DEFAULT;
2104
2105 #if LWIP_TCP_KEEPALIVE
2106 pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT;
2107 pcb->keep_cnt = TCP_KEEPCNT_DEFAULT;
2108 #endif /* LWIP_TCP_KEEPALIVE */
2109 pcb_tci_init(pcb);
2110 }
2111 return pcb;
2112 }
2113
2114 /**
2115 * @ingroup tcp_raw
2116 * Creates a new TCP protocol control block but doesn't place it on
2117 * any of the TCP PCB lists.
2118 * The pcb is not put on any list until binding using tcp_bind().
2119 * If memory is not available for creating the new pcb, NULL is returned.
2120 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2121 *
2122 * @internal: Maybe there should be a idle TCP PCB list where these
2123 * PCBs are put on. Port reservation using tcp_bind() is implemented but
2124 * allocated pcbs that are not bound can't be killed automatically if wanting
2125 * to allocate a pcb with higher prio (@see tcp_kill_prio())
2126 *
2127 * @return a new tcp_pcb that initially is in state CLOSED
2128 */
2129 struct tcp_pcb *
2130 tcp_new(void)
2131 {
2132 return tcp_alloc(TCP_PRIO_NORMAL);
2133 }
2134
2135 /**
2136 * @ingroup tcp_raw
2137 * Creates a new TCP protocol control block but doesn't
2138 * place it on any of the TCP PCB lists.
2139 * The pcb is not put on any list until binding using tcp_bind().
2140 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2141 *
2142 * @param type IP address type, see @ref lwip_ip_addr_type definitions.
2143 * If you want to listen to IPv4 and IPv6 (dual-stack) connections,
2144 * supply @ref IPADDR_TYPE_ANY as argument and bind to @ref IP_ANY_TYPE.
2145 * @return a new tcp_pcb that initially is in state CLOSED
2146 */
2147 struct tcp_pcb *
2148 tcp_new_ip_type(u8_t type)
2149 {
2150 struct tcp_pcb *pcb;
2151 pcb = tcp_alloc(TCP_PRIO_NORMAL);
2152 #if LWIP_IPV4 && LWIP_IPV6
2153 if (pcb != NULL) {
2154 IP_SET_TYPE_VAL(pcb->local_ip, type);
2155 IP_SET_TYPE_VAL(pcb->remote_ip, type);
2156 }
2157 #else
2158 LWIP_UNUSED_ARG(type);
2159 #endif /* LWIP_IPV4 && LWIP_IPV6 */
2160 return pcb;
2161 }
2162
2163 /**
2164 * @ingroup tcp_raw
2165 * Specifies the program specific state that should be passed to all
2166 * other callback functions. The "pcb" argument is the current TCP
2167 * connection control block, and the "arg" argument is the argument
2168 * that will be passed to the callbacks.
2169 *
2170 * @param pcb tcp_pcb to set the callback argument
2171 * @param arg void pointer argument to pass to callback functions
2172 */
2173 void
2174 tcp_arg(struct tcp_pcb *pcb, void *arg)
2175 {
2176 LWIP_ASSERT_CORE_LOCKED();
2177 /* This function is allowed to be called for both listen pcbs and
2178 connection pcbs. */
2179 if (pcb != NULL) {
2180 pcb->callback_arg = arg;
2181 }
2182 }
2183 #if LWIP_CALLBACK_API
2184
2185 /**
2186 * @ingroup tcp_raw
2187 * Sets the callback function that will be called when new data
2188 * arrives. The callback function will be passed a NULL pbuf to
2189 * indicate that the remote host has closed the connection. If the
2190 * callback function returns ERR_OK or ERR_ABRT it must have
2191 * freed the pbuf, otherwise it must not have freed it.
2192 *
2193 * @param pcb tcp_pcb to set the recv callback
2194 * @param recv callback function to call for this pcb when data is received
2195 */
2196 void
2197 tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv)
2198 {
2199 LWIP_ASSERT_CORE_LOCKED();
2200 if (pcb != NULL) {
2201 LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN);
2202 pcb->recv = recv;
2203 }
2204 }
2205
2206 /**
2207 * @ingroup tcp_raw
2208 * Specifies the callback function that should be called when data has
2209 * successfully been received (i.e., acknowledged) by the remote
2210 * host. The len argument passed to the callback function gives the
2211 * amount bytes that was acknowledged by the last acknowledgment.
2212 *
2213 * @param pcb tcp_pcb to set the sent callback
2214 * @param sent callback function to call for this pcb when data is successfully sent
2215 */
2216 void
2217 tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent)
2218 {
2219 LWIP_ASSERT_CORE_LOCKED();
2220 if (pcb != NULL) {
2221 LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN);
2222 pcb->sent = sent;
2223 }
2224 }
2225
2226 /**
2227 * @ingroup tcp_raw
2228 * Used to specify the function that should be called when a fatal error
2229 * has occurred on the connection.
2230 *
2231 * If a connection is aborted because of an error, the application is
2232 * alerted of this event by the err callback. Errors that might abort a
2233 * connection are when there is a shortage of memory. The callback
2234 * function to be called is set using the tcp_err() function.
2235 *
2236 * @note The corresponding pcb is already freed when this callback is called!
2237 *
2238 * @param pcb tcp_pcb to set the err callback
2239 * @param err callback function to call for this pcb when a fatal error
2240 * has occurred on the connection
2241 */
2242 void
2243 tcp_err(struct tcp_pcb *pcb, tcp_err_fn err)
2244 {
2245 LWIP_ASSERT_CORE_LOCKED();
2246 if (pcb != NULL) {
2247 LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN);
2248 pcb->errf = err;
2249 }
2250 }
2251
2252 /**
2253 * @ingroup tcp_raw
2254 * Used for specifying the function that should be called when a
2255 * LISTENing connection has been connected to another host.
2256 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2257 *
2258 * @param pcb tcp_pcb to set the accept callback
2259 * @param accept callback function to call for this pcb when LISTENing
2260 * connection has been connected to another host
2261 */
2262 void
2263 tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept)
2264 {
2265 LWIP_ASSERT_CORE_LOCKED();
2266 if ((pcb != NULL) && (pcb->state == LISTEN)) {
2267 struct tcp_pcb_listen *lpcb = (struct tcp_pcb_listen *)pcb;
2268 lpcb->accept = accept;
2269 }
2270 }
2271 #endif /* LWIP_CALLBACK_API */
2272
2273
2274 /**
2275 * @ingroup tcp_raw
2276 * Specifies the polling interval and the callback function that should
2277 * be called to poll the application. The interval is specified in
2278 * number of TCP coarse grained timer shots, which typically occurs
2279 * twice a second. An interval of 10 means that the application would
2280 * be polled every 5 seconds.
2281 *
2282 * When a connection is idle (i.e., no data is either transmitted or
2283 * received), lwIP will repeatedly poll the application by calling a
2284 * specified callback function. This can be used either as a watchdog
2285 * timer for killing connections that have stayed idle for too long, or
2286 * as a method of waiting for memory to become available. For instance,
2287 * if a call to tcp_write() has failed because memory wasn't available,
2288 * the application may use the polling functionality to call tcp_write()
2289 * again when the connection has been idle for a while.
2290 */
2291 void
2292 tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval)
2293 {
2294 LWIP_ASSERT_CORE_LOCKED();
2295
2296 LWIP_ERROR("tcp_poll: invalid pcb", pcb != NULL, return);
2297 LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN);
2298
2299 #if LWIP_CALLBACK_API
2300 pcb->poll = poll;
2301 #else /* LWIP_CALLBACK_API */
2302 LWIP_UNUSED_ARG(poll);
2303 #endif /* LWIP_CALLBACK_API */
2304 pcb->pollinterval = interval;
2305 }
2306
2307 /**
2308 * Purges a TCP PCB. Removes any buffered data and frees the buffer memory
2309 * (pcb->ooseq, pcb->unsent and pcb->unacked are freed).
2310 *
2311 * @param pcb tcp_pcb to purge. The pcb itself is not deallocated!
2312 */
2313 void
2314 tcp_pcb_purge(struct tcp_pcb *pcb)
2315 {
2316 LWIP_ERROR("tcp_pcb_purge: invalid pcb", pcb != NULL, return);
2317
2318 if (pcb->state != CLOSED &&
2319 pcb->state != TIME_WAIT &&
2320 pcb->state != LISTEN) {
2321
2322 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n"));
2323
2324 tcp_backlog_accepted(pcb);
2325
2326 if (pcb->refused_data != NULL) {
2327 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n"));
2328 pbuf_free(pcb->refused_data);
2329 pcb->refused_data = NULL;
2330 }
2331 if (pcb->unsent != NULL) {
2332 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n"));
2333 }
2334 if (pcb->unacked != NULL) {
2335 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n"));
2336 }
2337 #if TCP_QUEUE_OOSEQ
2338 if (pcb->ooseq != NULL) {
2339 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n"));
2340 tcp_free_ooseq(pcb);
2341 }
2342 #endif /* TCP_QUEUE_OOSEQ */
2343
2344 /* Stop the retransmission timer as it will expect data on unacked
2345 queue if it fires */
2346 pcb->rtime = -1;
2347
2348 tcp_segs_free(pcb->unsent);
2349 tcp_segs_free(pcb->unacked);
2350 pcb->unacked = pcb->unsent = NULL;
2351 #if TCP_OVERSIZE
2352 pcb->unsent_oversize = 0;
2353 #endif /* TCP_OVERSIZE */
2354 }
2355 }
2356
2357 /**
2358 * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first.
2359 *
2360 * @param pcblist PCB list to purge.
2361 * @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated!
2362 */
2363 void
2364 tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb)
2365 {
2366 LWIP_ASSERT("tcp_pcb_remove: invalid pcb", pcb != NULL);
2367 LWIP_ASSERT("tcp_pcb_remove: invalid pcblist", pcblist != NULL);
2368
2369 TCP_RMV(pcblist, pcb);
2370
2371 tcp_pcb_purge(pcb);
2372
2373 /* if there is an outstanding delayed ACKs, send it */
2374 if ((pcb->state != TIME_WAIT) &&
2375 (pcb->state != LISTEN) &&
2376 (pcb->flags & TF_ACK_DELAY)) {
2377 tcp_ack_now(pcb);
2378 tcp_output(pcb);
2379 }
2380
2381 if (pcb->state != LISTEN) {
2382 LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL);
2383 LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL);
2384 #if TCP_QUEUE_OOSEQ
2385 LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL);
2386 #endif /* TCP_QUEUE_OOSEQ */
2387 }
2388
2389 pcb->state = CLOSED;
2390 /* reset the local port to prevent the pcb from being 'bound' */
2391 pcb->local_port = 0;
2392
2393 LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane());
2394 }
2395
2396 /**
2397 * Calculates a new initial sequence number for new connections.
2398 *
2399 * @return u32_t pseudo random sequence number
2400 */
2401 u32_t
2402 tcp_next_iss(struct tcp_pcb *pcb)
2403 {
2404 #ifdef LWIP_HOOK_TCP_ISN
2405 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2406 return LWIP_HOOK_TCP_ISN(&pcb->local_ip, pcb->local_port, &pcb->remote_ip, pcb->remote_port);
2407 #else /* LWIP_HOOK_TCP_ISN */
2408 static u32_t iss = 6510;
2409
2410 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2411 LWIP_UNUSED_ARG(pcb);
2412
2413 iss += tcp_ticks; /* XXX */
2414 return iss;
2415 #endif /* LWIP_HOOK_TCP_ISN */
2416 }
2417
2418 #if TCP_CALCULATE_EFF_SEND_MSS
2419 /**
2420 * Calculates the effective send mss that can be used for a specific IP address
2421 * by calculating the minimum of TCP_MSS and the mtu (if set) of the target
2422 * netif (if not NULL).
2423 */
2424 u16_t
2425 tcp_eff_send_mss_netif(u16_t sendmss, struct netif *outif, const ip_addr_t *dest)
2426 {
2427 u16_t mss_s;
2428 u16_t mtu;
2429
2430 LWIP_UNUSED_ARG(dest); /* in case IPv6 is disabled */
2431
2432 LWIP_ASSERT("tcp_eff_send_mss_netif: invalid dst_ip", dest != NULL);
2433
2434 #if LWIP_IPV6
2435 #if LWIP_IPV4
2436 if (IP_IS_V6(dest))
2437 #endif /* LWIP_IPV4 */
2438 {
2439 /* First look in destination cache, to see if there is a Path MTU. */
2440 mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif);
2441 }
2442 #if LWIP_IPV4
2443 else
2444 #endif /* LWIP_IPV4 */
2445 #endif /* LWIP_IPV6 */
2446 #if LWIP_IPV4
2447 {
2448 if (outif == NULL) {
2449 return sendmss;
2450 }
2451 mtu = outif->mtu;
2452 }
2453 #endif /* LWIP_IPV4 */
2454
2455 if (mtu != 0) {
2456 u16_t offset;
2457 #if LWIP_IPV6
2458 #if LWIP_IPV4
2459 if (IP_IS_V6(dest))
2460 #endif /* LWIP_IPV4 */
2461 {
2462 offset = IP6_HLEN + TCP_HLEN;
2463 }
2464 #if LWIP_IPV4
2465 else
2466 #endif /* LWIP_IPV4 */
2467 #endif /* LWIP_IPV6 */
2468 #if LWIP_IPV4
2469 {
2470 offset = IP_HLEN + TCP_HLEN;
2471 }
2472 #endif /* LWIP_IPV4 */
2473 mss_s = (mtu > offset) ? (u16_t)(mtu - offset) : 0;
2474 /* RFC 1122, chap 4.2.2.6:
2475 * Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
2476 * We correct for TCP options in tcp_write(), and don't support IP options.
2477 */
2478 sendmss = LWIP_MIN(sendmss, mss_s);
2479 }
2480 return sendmss;
2481 }
2482 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
2483
2484 /** Helper function for tcp_netif_ip_addr_changed() that iterates a pcb list */
2485 static void
2486 tcp_netif_ip_addr_changed_pcblist(const ip_addr_t *old_addr, struct tcp_pcb *pcb_list)
2487 {
2488 struct tcp_pcb *pcb;
2489 pcb = pcb_list;
2490
2491 LWIP_ASSERT("tcp_netif_ip_addr_changed_pcblist: invalid old_addr", old_addr != NULL);
2492
2493 while (pcb != NULL) {
2494 /* PCB bound to current local interface address? */
2495 if (ip_addr_eq(&pcb->local_ip, old_addr)
2496 #if LWIP_AUTOIP
2497 /* connections to link-local addresses must persist (RFC3927 ch. 1.9) */
2498 && (!IP_IS_V4_VAL(pcb->local_ip) || !ip4_addr_islinklocal(ip_2_ip4(&pcb->local_ip)))
2499 #endif /* LWIP_AUTOIP */
2500 ) {
2501 /* this connection must be aborted */
2502 struct tcp_pcb *next = pcb->next;
2503 LWIP_DEBUGF(NETIF_DEBUG | LWIP_DBG_STATE, ("netif_set_ipaddr: aborting TCP pcb %p\n", (void *)pcb));
2504 tcp_abort(pcb);
2505 pcb = next;
2506 } else {
2507 pcb = pcb->next;
2508 }
2509 }
2510 }
2511
2512 /** This function is called from netif.c when address is changed or netif is removed
2513 *
2514 * @param old_addr IP address of the netif before change
2515 * @param new_addr IP address of the netif after change or NULL if netif has been removed
2516 */
2517 void
2518 tcp_netif_ip_addr_changed(const ip_addr_t *old_addr, const ip_addr_t *new_addr)
2519 {
2520 struct tcp_pcb_listen *lpcb;
2521
2522 if (!ip_addr_isany(old_addr)) {
2523 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_active_pcbs);
2524 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_bound_pcbs);
2525
2526 if (!ip_addr_isany(new_addr)) {
2527 /* PCB bound to current local interface address? */
2528 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
2529 /* PCB bound to current local interface address? */
2530 if (ip_addr_eq(&lpcb->local_ip, old_addr)) {
2531 /* The PCB is listening to the old ipaddr and
2532 * is set to listen to the new one instead */
2533 ip_addr_copy(lpcb->local_ip, *new_addr);
2534 }
2535 }
2536 }
2537 }
2538 }
2539
2540 const char *
2541 tcp_debug_state_str(enum tcp_state s)
2542 {
2543 return tcp_state_str[s];
2544 }
2545
2546 err_t
2547 tcp_tcp_get_tcp_addrinfo(struct tcp_pcb *pcb, int local, ip_addr_t *addr, u16_t *port)
2548 {
2549 if (pcb) {
2550 if (local) {
2551 if (addr) {
2552 *addr = pcb->local_ip;
2553 }
2554 if (port) {
2555 *port = pcb->local_port;
2556 }
2557 } else {
2558 if (addr) {
2559 *addr = pcb->remote_ip;
2560 }
2561 if (port) {
2562 *port = pcb->remote_port;
2563 }
2564 }
2565 return ERR_OK;
2566 }
2567 return ERR_VAL;
2568 }
2569
2570 #if TCP_QUEUE_OOSEQ
2571 /* Free all ooseq pbufs (and possibly reset SACK state) */
2572 void
2573 tcp_free_ooseq(struct tcp_pcb *pcb)
2574 {
2575 if (pcb->ooseq) {
2576 tcp_segs_free(pcb->ooseq);
2577 pcb->ooseq = NULL;
2578 #if LWIP_TCP_SACK_OUT
2579 memset(pcb->rcv_sacks, 0, sizeof(pcb->rcv_sacks));
2580 #endif /* LWIP_TCP_SACK_OUT */
2581 }
2582 }
2583 #endif /* TCP_QUEUE_OOSEQ */
2584
2585 #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG
2586 /**
2587 * Print a tcp header for debugging purposes.
2588 *
2589 * @param tcphdr pointer to a struct tcp_hdr
2590 */
2591 void
2592 tcp_debug_print(struct tcp_hdr *tcphdr)
2593 {
2594 LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n"));
2595 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2596 LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n",
2597 lwip_ntohs(tcphdr->src), lwip_ntohs(tcphdr->dest)));
2598 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2599 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n",
2600 lwip_ntohl(tcphdr->seqno)));
2601 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2602 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n",
2603 lwip_ntohl(tcphdr->ackno)));
2604 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2605 LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (",
2606 TCPH_HDRLEN(tcphdr),
2607 (u16_t)(TCPH_FLAGS(tcphdr) >> 5 & 1),
2608 (u16_t)(TCPH_FLAGS(tcphdr) >> 4 & 1),
2609 (u16_t)(TCPH_FLAGS(tcphdr) >> 3 & 1),
2610 (u16_t)(TCPH_FLAGS(tcphdr) >> 2 & 1),
2611 (u16_t)(TCPH_FLAGS(tcphdr) >> 1 & 1),
2612 (u16_t)(TCPH_FLAGS(tcphdr) & 1),
2613 lwip_ntohs(tcphdr->wnd)));
2614 tcp_debug_print_flags(TCPH_FLAGS(tcphdr));
2615 LWIP_DEBUGF(TCP_DEBUG, ("), win)\n"));
2616 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2617 LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n",
2618 lwip_ntohs(tcphdr->chksum), lwip_ntohs(tcphdr->urgp)));
2619 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2620 }
2621
2622 /**
2623 * Print a tcp state for debugging purposes.
2624 *
2625 * @param s enum tcp_state to print
2626 */
2627 void
2628 tcp_debug_print_state(enum tcp_state s)
2629 {
2630 LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s]));
2631 }
2632
2633 /**
2634 * Print tcp flags for debugging purposes.
2635 *
2636 * @param flags tcp flags, all active flags are printed
2637 */
2638 void
2639 tcp_debug_print_flags(u8_t flags)
2640 {
2641 if (flags & TCP_FIN) {
2642 LWIP_DEBUGF(TCP_DEBUG, ("FIN "));
2643 }
2644 if (flags & TCP_SYN) {
2645 LWIP_DEBUGF(TCP_DEBUG, ("SYN "));
2646 }
2647 if (flags & TCP_RST) {
2648 LWIP_DEBUGF(TCP_DEBUG, ("RST "));
2649 }
2650 if (flags & TCP_PSH) {
2651 LWIP_DEBUGF(TCP_DEBUG, ("PSH "));
2652 }
2653 if (flags & TCP_ACK) {
2654 LWIP_DEBUGF(TCP_DEBUG, ("ACK "));
2655 }
2656 if (flags & TCP_URG) {
2657 LWIP_DEBUGF(TCP_DEBUG, ("URG "));
2658 }
2659 if (flags & TCP_ECE) {
2660 LWIP_DEBUGF(TCP_DEBUG, ("ECE "));
2661 }
2662 if (flags & TCP_CWR) {
2663 LWIP_DEBUGF(TCP_DEBUG, ("CWR "));
2664 }
2665 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
2666 }
2667
2668 /**
2669 * Print all tcp_pcbs in every list for debugging purposes.
2670 */
2671 void
2672 tcp_debug_print_pcbs(void)
2673 {
2674 struct tcp_pcb *pcb;
2675 struct tcp_pcb_listen *pcbl;
2676
2677 LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n"));
2678 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2679 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2680 pcb->local_port, pcb->remote_port,
2681 pcb->snd_nxt, pcb->rcv_nxt));
2682 tcp_debug_print_state(pcb->state);
2683 }
2684
2685 LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n"));
2686 for (pcbl = tcp_listen_pcbs.listen_pcbs; pcbl != NULL; pcbl = pcbl->next) {
2687 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F" ", pcbl->local_port));
2688 tcp_debug_print_state(pcbl->state);
2689 }
2690
2691 LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n"));
2692 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2693 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2694 pcb->local_port, pcb->remote_port,
2695 pcb->snd_nxt, pcb->rcv_nxt));
2696 tcp_debug_print_state(pcb->state);
2697 }
2698 }
2699
2700 /**
2701 * Check state consistency of the tcp_pcb lists.
2702 */
2703 s16_t
2704 tcp_pcbs_sane(void)
2705 {
2706 struct tcp_pcb *pcb;
2707 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2708 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED);
2709 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN);
2710 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
2711 }
2712 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2713 LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
2714 }
2715 return 1;
2716 }
2717 #endif /* TCP_DEBUG */
2718
2719 #if LWIP_TCP_PCB_NUM_EXT_ARGS
2720 /**
2721 * @defgroup tcp_raw_extargs ext arguments
2722 * @ingroup tcp_raw
2723 * Additional data storage per tcp pcb<br>
2724 * @see @ref tcp_raw
2725 *
2726 * When LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2727 * includes a number of additional argument entries in an array.
2728 *
2729 * To support memory management, in addition to a 'void *', callbacks can be
2730 * provided to manage transition from listening pcbs to connections and to
2731 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2732 *
2733 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2734 * to store and load arguments from this index for a given pcb.
2735 */
2736
2737 static u8_t tcp_ext_arg_id;
2738
2739 /**
2740 * @ingroup tcp_raw_extargs
2741 * Allocate an index to store data in ext_args member of struct tcp_pcb.
2742 * Returned value is an index in mentioned array.
2743 * The index is *global* over all pcbs!
2744 *
2745 * When @ref LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2746 * includes a number of additional argument entries in an array.
2747 *
2748 * To support memory management, in addition to a 'void *', callbacks can be
2749 * provided to manage transition from listening pcbs to connections and to
2750 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2751 *
2752 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2753 * to store and load arguments from this index for a given pcb.
2754 *
2755 * @return a unique index into struct tcp_pcb.ext_args
2756 */
2757 u8_t
2758 tcp_ext_arg_alloc_id(void)
2759 {
2760 u8_t result = tcp_ext_arg_id;
2761 tcp_ext_arg_id++;
2762
2763 LWIP_ASSERT_CORE_LOCKED();
2764
2765 #if LWIP_TCP_PCB_NUM_EXT_ARGS >= 255
2766 #error LWIP_TCP_PCB_NUM_EXT_ARGS
2767 #endif
2768 LWIP_ASSERT("Increase LWIP_TCP_PCB_NUM_EXT_ARGS in lwipopts.h", result < LWIP_TCP_PCB_NUM_EXT_ARGS);
2769 return result;
2770 }
2771
2772 /**
2773 * @ingroup tcp_raw_extargs
2774 * Set callbacks for a given index of ext_args on the specified pcb.
2775 *
2776 * @param pcb tcp_pcb for which to set the callback
2777 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2778 * @param callbacks callback table (const since it is referenced, not copied!)
2779 */
2780 void
2781 tcp_ext_arg_set_callbacks(struct tcp_pcb *pcb, u8_t id, const struct tcp_ext_arg_callbacks * const callbacks)
2782 {
2783 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2784 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2785 LWIP_ASSERT("callbacks != NULL", callbacks != NULL);
2786
2787 LWIP_ASSERT_CORE_LOCKED();
2788
2789 pcb->ext_args[id].callbacks = callbacks;
2790 }
2791
2792 /**
2793 * @ingroup tcp_raw_extargs
2794 * Set data for a given index of ext_args on the specified pcb.
2795 *
2796 * @param pcb tcp_pcb for which to set the data
2797 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2798 * @param arg data pointer to set
2799 */
2800 void tcp_ext_arg_set(struct tcp_pcb *pcb, u8_t id, void *arg)
2801 {
2802 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2803 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2804
2805 LWIP_ASSERT_CORE_LOCKED();
2806
2807 pcb->ext_args[id].data = arg;
2808 }
2809
2810 /**
2811 * @ingroup tcp_raw_extargs
2812 * Set data for a given index of ext_args on the specified pcb.
2813 *
2814 * @param pcb tcp_pcb for which to set the data
2815 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2816 * @return data pointer at the given index
2817 */
2818 void *tcp_ext_arg_get(const struct tcp_pcb *pcb, u8_t id)
2819 {
2820 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2821 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2822
2823 LWIP_ASSERT_CORE_LOCKED();
2824
2825 return pcb->ext_args[id].data;
2826 }
2827
2828 /** This function calls the "destroy" callback for all ext_args once a pcb is
2829 * freed.
2830 */
2831 static void
2832 tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args)
2833 {
2834 int i;
2835 LWIP_ASSERT("ext_args != NULL", ext_args != NULL);
2836
2837 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2838 if (ext_args[i].callbacks != NULL) {
2839 if (ext_args[i].callbacks->destroy != NULL) {
2840 ext_args[i].callbacks->destroy((u8_t)i, ext_args[i].data);
2841 }
2842 }
2843 }
2844 }
2845
2846 /** This function calls the "passive_open" callback for all ext_args if a connection
2847 * is in the process of being accepted. This is called just after the SYN is
2848 * received and before a SYN/ACK is sent, to allow to modify the very first
2849 * segment sent even on passive open. Naturally, the "accepted" callback of the
2850 * pcb has not been called yet!
2851 */
2852 err_t
2853 tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen *lpcb, struct tcp_pcb *cpcb)
2854 {
2855 int i;
2856 LWIP_ASSERT("lpcb != NULL", lpcb != NULL);
2857 LWIP_ASSERT("cpcb != NULL", cpcb != NULL);
2858
2859 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2860 if (lpcb->ext_args[i].callbacks != NULL) {
2861 if (lpcb->ext_args[i].callbacks->passive_open != NULL) {
2862 err_t err = lpcb->ext_args[i].callbacks->passive_open((u8_t)i, lpcb, cpcb);
2863 if (err != ERR_OK) {
2864 return err;
2865 }
2866 }
2867 }
2868 }
2869 return ERR_OK;
2870 }
2871 #endif /* LWIP_TCP_PCB_NUM_EXT_ARGS */
2872
2873 #endif /* LWIP_TCP */
2874