1 /*
2 * AES-NI support functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 /*
9 * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10 * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11 */
12
13 #include "common.h"
14
15 #if defined(MBEDTLS_AESNI_C)
16
17 #include "aesni.h"
18
19 #include <string.h>
20
21 #if defined(MBEDTLS_AESNI_HAVE_CODE)
22
23 #if MBEDTLS_AESNI_HAVE_CODE == 2
24 #if defined(__GNUC__)
25 #include <cpuid.h>
26 #elif defined(_MSC_VER)
27 #include <intrin.h>
28 #else
29 #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30 #endif
31 #include <immintrin.h>
32 #endif
33
34 #if defined(MBEDTLS_ARCH_IS_X86)
35 #if defined(MBEDTLS_COMPILER_IS_GCC)
36 #pragma GCC push_options
37 #pragma GCC target ("pclmul,sse2,aes")
38 #define MBEDTLS_POP_TARGET_PRAGMA
39 #elif defined(__clang__) && (__clang_major__ >= 5)
40 #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41 #define MBEDTLS_POP_TARGET_PRAGMA
42 #endif
43 #endif
44
45 #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46 /*
47 * AES-NI support detection routine
48 */
mbedtls_aesni_has_support(unsigned int what)49 int mbedtls_aesni_has_support(unsigned int what)
50 {
51 /* To avoid a race condition, tell the compiler that the assignment
52 * `done = 1` and the assignment to `c` may not be reordered.
53 * https://github.com/Mbed-TLS/mbedtls/issues/9840
54 *
55 * Note that we may also be worried about memory access reordering,
56 * but fortunately the x86 memory model is not too wild: stores
57 * from the same thread are observed consistently by other threads.
58 * (See example 8-1 in Sewell et al., "x86-TSO: A Rigorous and Usable
59 * Programmer’s Model for x86 Multiprocessors", CACM, 2010,
60 * https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf)
61 */
62 static volatile int done = 0;
63 static volatile unsigned int c = 0;
64
65 if (!done) {
66 #if MBEDTLS_AESNI_HAVE_CODE == 2
67 static int info[4] = { 0, 0, 0, 0 };
68 #if defined(_MSC_VER)
69 __cpuid(info, 1);
70 #else
71 __cpuid(1, info[0], info[1], info[2], info[3]);
72 #endif
73 c = info[2];
74 #else /* AESNI using asm */
75 asm ("movl $1, %%eax \n\t"
76 "cpuid \n\t"
77 : "=c" (c)
78 :
79 : "eax", "ebx", "edx");
80 #endif /* MBEDTLS_AESNI_HAVE_CODE */
81 done = 1;
82 }
83
84 return (c & what) != 0;
85 }
86 #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
87
88 #if MBEDTLS_AESNI_HAVE_CODE == 2
89
90 /*
91 * AES-NI AES-ECB block en(de)cryption
92 */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])93 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
94 int mode,
95 const unsigned char input[16],
96 unsigned char output[16])
97 {
98 const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
99 unsigned nr = ctx->nr; // Number of remaining rounds
100
101 // Load round key 0
102 __m128i state;
103 memcpy(&state, input, 16);
104 state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
105 ++rk;
106 --nr;
107
108 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
109 if (mode == MBEDTLS_AES_DECRYPT) {
110 while (nr != 0) {
111 state = _mm_aesdec_si128(state, *rk);
112 ++rk;
113 --nr;
114 }
115 state = _mm_aesdeclast_si128(state, *rk);
116 } else
117 #else
118 (void) mode;
119 #endif
120 {
121 while (nr != 0) {
122 state = _mm_aesenc_si128(state, *rk);
123 ++rk;
124 --nr;
125 }
126 state = _mm_aesenclast_si128(state, *rk);
127 }
128
129 memcpy(output, &state, 16);
130 return 0;
131 }
132
133 /*
134 * GCM multiplication: c = a times b in GF(2^128)
135 * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
136 */
137
gcm_clmul(const __m128i aa,const __m128i bb,__m128i * cc,__m128i * dd)138 static void gcm_clmul(const __m128i aa, const __m128i bb,
139 __m128i *cc, __m128i *dd)
140 {
141 /*
142 * Caryless multiplication dd:cc = aa * bb
143 * using [CLMUL-WP] algorithm 1 (p. 12).
144 */
145 *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
146 *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
147 __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
148 __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
149 ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
150 ee = ff; // e1+f1:e0+f0
151 ff = _mm_srli_si128(ff, 8); // 0:e1+f1
152 ee = _mm_slli_si128(ee, 8); // e0+f0:0
153 *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
154 *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
155 }
156
gcm_shift(__m128i * cc,__m128i * dd)157 static void gcm_shift(__m128i *cc, __m128i *dd)
158 {
159 /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
160 * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
161 // // *cc = r1:r0
162 // // *dd = r3:r2
163 __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
164 __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
165 __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
166 __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
167 __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
168 cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
169 dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
170
171 *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
172 *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
173 }
174
gcm_reduce(__m128i xx)175 static __m128i gcm_reduce(__m128i xx)
176 {
177 // // xx = x1:x0
178 /* [CLMUL-WP] Algorithm 5 Step 2 */
179 __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
180 __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
181 __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
182 __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
183 return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
184 }
185
gcm_mix(__m128i dx)186 static __m128i gcm_mix(__m128i dx)
187 {
188 /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
189 __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
190 __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
191 __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
192
193 // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
194 // bits carried from d. Now get those bits back in.
195 __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
196 __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
197 __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
198 __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
199
200 return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
201 }
202
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])203 void mbedtls_aesni_gcm_mult(unsigned char c[16],
204 const unsigned char a[16],
205 const unsigned char b[16])
206 {
207 __m128i aa = { 0 }, bb = { 0 }, cc, dd;
208
209 /* The inputs are in big-endian order, so byte-reverse them */
210 for (size_t i = 0; i < 16; i++) {
211 ((uint8_t *) &aa)[i] = a[15 - i];
212 ((uint8_t *) &bb)[i] = b[15 - i];
213 }
214
215 gcm_clmul(aa, bb, &cc, &dd);
216 gcm_shift(&cc, &dd);
217 /*
218 * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
219 * using [CLMUL-WP] algorithm 5 (p. 18).
220 * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
221 */
222 __m128i dx = gcm_reduce(cc);
223 __m128i xh = gcm_mix(dx);
224 cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
225
226 /* Now byte-reverse the outputs */
227 for (size_t i = 0; i < 16; i++) {
228 c[i] = ((uint8_t *) &cc)[15 - i];
229 }
230
231 return;
232 }
233
234 /*
235 * Compute decryption round keys from encryption round keys
236 */
237 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)238 void mbedtls_aesni_inverse_key(unsigned char *invkey,
239 const unsigned char *fwdkey, int nr)
240 {
241 __m128i *ik = (__m128i *) invkey;
242 const __m128i *fk = (const __m128i *) fwdkey + nr;
243
244 *ik = *fk;
245 for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
246 *ik = _mm_aesimc_si128(*fk);
247 }
248 *ik = *fk;
249 }
250 #endif
251
252 /*
253 * Key expansion, 128-bit case
254 */
aesni_set_rk_128(__m128i state,__m128i xword)255 static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
256 {
257 /*
258 * Finish generating the next round key.
259 *
260 * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
261 * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
262 *
263 * On exit, xword is r7:r6:r5:r4
264 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
265 * and this is returned, to be written to the round key buffer.
266 */
267 xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
268 xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
269 state = _mm_slli_si128(state, 4); // r2:r1:r0:0
270 xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
271 state = _mm_slli_si128(state, 4); // r1:r0:0:0
272 xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
273 state = _mm_slli_si128(state, 4); // r0:0:0:0
274 state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
275 return state;
276 }
277
aesni_setkey_enc_128(unsigned char * rk_bytes,const unsigned char * key)278 static void aesni_setkey_enc_128(unsigned char *rk_bytes,
279 const unsigned char *key)
280 {
281 __m128i *rk = (__m128i *) rk_bytes;
282
283 memcpy(&rk[0], key, 16);
284 rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
285 rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
286 rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
287 rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
288 rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
289 rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
290 rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
291 rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
292 rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
293 rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
294 }
295
296 /*
297 * Key expansion, 192-bit case
298 */
299 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_192(__m128i * state0,__m128i * state1,__m128i xword,unsigned char * rk)300 static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
301 unsigned char *rk)
302 {
303 /*
304 * Finish generating the next 6 quarter-keys.
305 *
306 * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
307 * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
308 * (obtained with AESKEYGENASSIST).
309 *
310 * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
311 * and those are written to the round key buffer.
312 */
313 xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
314 xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
315 *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
316 xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
317 *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
318 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
319 *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
320 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
321 *state0 = xword; // = r9:r8:r7:r6
322
323 xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
324 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
325 *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
326 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
327 *state1 = xword; // = stuff:stuff:r11:r10
328
329 /* Store state0 and the low half of state1 into rk, which is conceptually
330 * an array of 24-byte elements. Since 24 is not a multiple of 16,
331 * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
332 memcpy(rk, state0, 16);
333 memcpy(rk + 16, state1, 8);
334 }
335
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)336 static void aesni_setkey_enc_192(unsigned char *rk,
337 const unsigned char *key)
338 {
339 /* First round: use original key */
340 memcpy(rk, key, 24);
341 /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
342 __m128i state0 = ((__m128i *) rk)[0];
343 __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
344
345 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
346 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
347 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
348 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
349 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
350 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
351 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
352 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
353 }
354 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
355
356 /*
357 * Key expansion, 256-bit case
358 */
359 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_256(__m128i state0,__m128i state1,__m128i xword,__m128i * rk0,__m128i * rk1)360 static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
361 __m128i *rk0, __m128i *rk1)
362 {
363 /*
364 * Finish generating the next two round keys.
365 *
366 * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
367 * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
368 * (obtained with AESKEYGENASSIST).
369 *
370 * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
371 */
372 xword = _mm_shuffle_epi32(xword, 0xff);
373 xword = _mm_xor_si128(xword, state0);
374 state0 = _mm_slli_si128(state0, 4);
375 xword = _mm_xor_si128(xword, state0);
376 state0 = _mm_slli_si128(state0, 4);
377 xword = _mm_xor_si128(xword, state0);
378 state0 = _mm_slli_si128(state0, 4);
379 state0 = _mm_xor_si128(state0, xword);
380 *rk0 = state0;
381
382 /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
383 * and proceed to generate next round key from there */
384 xword = _mm_aeskeygenassist_si128(state0, 0x00);
385 xword = _mm_shuffle_epi32(xword, 0xaa);
386 xword = _mm_xor_si128(xword, state1);
387 state1 = _mm_slli_si128(state1, 4);
388 xword = _mm_xor_si128(xword, state1);
389 state1 = _mm_slli_si128(state1, 4);
390 xword = _mm_xor_si128(xword, state1);
391 state1 = _mm_slli_si128(state1, 4);
392 state1 = _mm_xor_si128(state1, xword);
393 *rk1 = state1;
394 }
395
aesni_setkey_enc_256(unsigned char * rk_bytes,const unsigned char * key)396 static void aesni_setkey_enc_256(unsigned char *rk_bytes,
397 const unsigned char *key)
398 {
399 __m128i *rk = (__m128i *) rk_bytes;
400
401 memcpy(&rk[0], key, 16);
402 memcpy(&rk[1], key + 16, 16);
403
404 /*
405 * Main "loop" - Generating one more key than necessary,
406 * see definition of mbedtls_aes_context.buf
407 */
408 aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
409 aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
410 aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
411 aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
412 aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
413 aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
414 aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
415 }
416 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
417
418 #if defined(MBEDTLS_POP_TARGET_PRAGMA)
419 #if defined(__clang__)
420 #pragma clang attribute pop
421 #elif defined(__GNUC__)
422 #pragma GCC pop_options
423 #endif
424 #undef MBEDTLS_POP_TARGET_PRAGMA
425 #endif
426
427 #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
428
429 #if defined(__has_feature)
430 #if __has_feature(memory_sanitizer)
431 #warning \
432 "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
433 #endif
434 #endif
435
436 /*
437 * Binutils needs to be at least 2.19 to support AES-NI instructions.
438 * Unfortunately, a lot of users have a lower version now (2014-04).
439 * Emit bytecode directly in order to support "old" version of gas.
440 *
441 * Opcodes from the Intel architecture reference manual, vol. 3.
442 * We always use registers, so we don't need prefixes for memory operands.
443 * Operand macros are in gas order (src, dst) as opposed to Intel order
444 * (dst, src) in order to blend better into the surrounding assembly code.
445 */
446 #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
447 #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
448 #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
449 #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
450 #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
451 #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
452 #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
453
454 #define xmm0_xmm0 "0xC0"
455 #define xmm0_xmm1 "0xC8"
456 #define xmm0_xmm2 "0xD0"
457 #define xmm0_xmm3 "0xD8"
458 #define xmm0_xmm4 "0xE0"
459 #define xmm1_xmm0 "0xC1"
460 #define xmm1_xmm2 "0xD1"
461
462 /*
463 * AES-NI AES-ECB block en(de)cryption
464 */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])465 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
466 int mode,
467 const unsigned char input[16],
468 unsigned char output[16])
469 {
470 asm ("movdqu (%3), %%xmm0 \n\t" // load input
471 "movdqu (%1), %%xmm1 \n\t" // load round key 0
472 "pxor %%xmm1, %%xmm0 \n\t" // round 0
473 "add $16, %1 \n\t" // point to next round key
474 "subl $1, %0 \n\t" // normal rounds = nr - 1
475 "test %2, %2 \n\t" // mode?
476 "jz 2f \n\t" // 0 = decrypt
477
478 "1: \n\t" // encryption loop
479 "movdqu (%1), %%xmm1 \n\t" // load round key
480 AESENC(xmm1_xmm0) // do round
481 "add $16, %1 \n\t" // point to next round key
482 "subl $1, %0 \n\t" // loop
483 "jnz 1b \n\t"
484 "movdqu (%1), %%xmm1 \n\t" // load round key
485 AESENCLAST(xmm1_xmm0) // last round
486 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
487 "jmp 3f \n\t"
488
489 "2: \n\t" // decryption loop
490 "movdqu (%1), %%xmm1 \n\t"
491 AESDEC(xmm1_xmm0) // do round
492 "add $16, %1 \n\t"
493 "subl $1, %0 \n\t"
494 "jnz 2b \n\t"
495 "movdqu (%1), %%xmm1 \n\t" // load round key
496 AESDECLAST(xmm1_xmm0) // last round
497 #endif
498
499 "3: \n\t"
500 "movdqu %%xmm0, (%4) \n\t" // export output
501 :
502 : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
503 : "memory", "cc", "xmm0", "xmm1");
504
505
506 return 0;
507 }
508
509 /*
510 * GCM multiplication: c = a times b in GF(2^128)
511 * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
512 */
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])513 void mbedtls_aesni_gcm_mult(unsigned char c[16],
514 const unsigned char a[16],
515 const unsigned char b[16])
516 {
517 unsigned char aa[16], bb[16], cc[16];
518 size_t i;
519
520 /* The inputs are in big-endian order, so byte-reverse them */
521 for (i = 0; i < 16; i++) {
522 aa[i] = a[15 - i];
523 bb[i] = b[15 - i];
524 }
525
526 asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
527 "movdqu (%1), %%xmm1 \n\t" // b1:b0
528
529 /*
530 * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
531 * using [CLMUL-WP] algorithm 1 (p. 12).
532 */
533 "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
534 "movdqa %%xmm1, %%xmm3 \n\t" // same
535 "movdqa %%xmm1, %%xmm4 \n\t" // same
536 PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
537 PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
538 PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
539 PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
540 "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
541 "movdqa %%xmm4, %%xmm3 \n\t" // same
542 "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
543 "pslldq $8, %%xmm3 \n\t" // e0+f0:0
544 "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
545 "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
546
547 /*
548 * Now shift the result one bit to the left,
549 * taking advantage of [CLMUL-WP] eq 27 (p. 18)
550 */
551 "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
552 "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
553 "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
554 "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
555 "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
556 "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
557 "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
558 "pslldq $8, %%xmm3 \n\t" // r0>>63:0
559 "pslldq $8, %%xmm4 \n\t" // r2>>63:0
560 "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
561 "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
562 "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
563 "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
564
565 /*
566 * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
567 * using [CLMUL-WP] algorithm 5 (p. 18).
568 * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
569 */
570 /* Step 2 (1) */
571 "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
572 "movdqa %%xmm1, %%xmm4 \n\t" // same
573 "movdqa %%xmm1, %%xmm5 \n\t" // same
574 "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
575 "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
576 "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
577
578 /* Step 2 (2) */
579 "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
580 "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
581 "pslldq $8, %%xmm3 \n\t" // a+b+c:0
582 "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
583
584 /* Steps 3 and 4 */
585 "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
586 "movdqa %%xmm1,%%xmm4 \n\t" // same
587 "movdqa %%xmm1,%%xmm5 \n\t" // same
588 "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
589 "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
590 "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
591 "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
592 "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
593 // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
594 // bits carried from d. Now get those\t bits back in.
595 "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
596 "movdqa %%xmm1,%%xmm4 \n\t" // same
597 "movdqa %%xmm1,%%xmm5 \n\t" // same
598 "psllq $63, %%xmm3 \n\t" // d<<63:stuff
599 "psllq $62, %%xmm4 \n\t" // d<<62:stuff
600 "psllq $57, %%xmm5 \n\t" // d<<57:stuff
601 "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
602 "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
603 "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
604 "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
605 "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
606 "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
607
608 "movdqu %%xmm0, (%2) \n\t" // done
609 :
610 : "r" (aa), "r" (bb), "r" (cc)
611 : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
612
613 /* Now byte-reverse the outputs */
614 for (i = 0; i < 16; i++) {
615 c[i] = cc[15 - i];
616 }
617
618 return;
619 }
620
621 /*
622 * Compute decryption round keys from encryption round keys
623 */
624 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)625 void mbedtls_aesni_inverse_key(unsigned char *invkey,
626 const unsigned char *fwdkey, int nr)
627 {
628 unsigned char *ik = invkey;
629 const unsigned char *fk = fwdkey + 16 * nr;
630
631 memcpy(ik, fk, 16);
632
633 for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
634 asm ("movdqu (%0), %%xmm0 \n\t"
635 AESIMC(xmm0_xmm0)
636 "movdqu %%xmm0, (%1) \n\t"
637 :
638 : "r" (fk), "r" (ik)
639 : "memory", "xmm0");
640 }
641
642 memcpy(ik, fk, 16);
643 }
644 #endif
645
646 /*
647 * Key expansion, 128-bit case
648 */
aesni_setkey_enc_128(unsigned char * rk,const unsigned char * key)649 static void aesni_setkey_enc_128(unsigned char *rk,
650 const unsigned char *key)
651 {
652 asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
653 "movdqu %%xmm0, (%0) \n\t" // as round key 0
654 "jmp 2f \n\t" // skip auxiliary routine
655
656 /*
657 * Finish generating the next round key.
658 *
659 * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
660 * with X = rot( sub( r3 ) ) ^ RCON.
661 *
662 * On exit, xmm0 is r7:r6:r5:r4
663 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
664 * and those are written to the round key buffer.
665 */
666 "1: \n\t"
667 "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
668 "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
669 "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
670 "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
671 "pslldq $4, %%xmm0 \n\t" // etc
672 "pxor %%xmm0, %%xmm1 \n\t"
673 "pslldq $4, %%xmm0 \n\t"
674 "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
675 "add $16, %0 \n\t" // point to next round key
676 "movdqu %%xmm0, (%0) \n\t" // write it
677 "ret \n\t"
678
679 /* Main "loop" */
680 "2: \n\t"
681 AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
682 AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
683 AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
684 AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
685 AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
686 AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
687 AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
688 AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
689 AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
690 AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
691 :
692 : "r" (rk), "r" (key)
693 : "memory", "cc", "0");
694 }
695
696 /*
697 * Key expansion, 192-bit case
698 */
699 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)700 static void aesni_setkey_enc_192(unsigned char *rk,
701 const unsigned char *key)
702 {
703 asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
704 "movdqu %%xmm0, (%0) \n\t"
705 "add $16, %0 \n\t"
706 "movq 16(%1), %%xmm1 \n\t"
707 "movq %%xmm1, (%0) \n\t"
708 "add $8, %0 \n\t"
709 "jmp 2f \n\t" // skip auxiliary routine
710
711 /*
712 * Finish generating the next 6 quarter-keys.
713 *
714 * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
715 * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
716 *
717 * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
718 * and those are written to the round key buffer.
719 */
720 "1: \n\t"
721 "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
722 "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
723 "pslldq $4, %%xmm0 \n\t" // etc
724 "pxor %%xmm0, %%xmm2 \n\t"
725 "pslldq $4, %%xmm0 \n\t"
726 "pxor %%xmm0, %%xmm2 \n\t"
727 "pslldq $4, %%xmm0 \n\t"
728 "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
729 "movdqu %%xmm0, (%0) \n\t"
730 "add $16, %0 \n\t"
731 "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
732 "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
733 "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
734 "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
735 "movq %%xmm1, (%0) \n\t"
736 "add $8, %0 \n\t"
737 "ret \n\t"
738
739 "2: \n\t"
740 AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
741 AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
742 AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
743 AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
744 AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
745 AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
746 AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
747 AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
748
749 :
750 : "r" (rk), "r" (key)
751 : "memory", "cc", "0");
752 }
753 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
754
755 /*
756 * Key expansion, 256-bit case
757 */
758 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_256(unsigned char * rk,const unsigned char * key)759 static void aesni_setkey_enc_256(unsigned char *rk,
760 const unsigned char *key)
761 {
762 asm ("movdqu (%1), %%xmm0 \n\t"
763 "movdqu %%xmm0, (%0) \n\t"
764 "add $16, %0 \n\t"
765 "movdqu 16(%1), %%xmm1 \n\t"
766 "movdqu %%xmm1, (%0) \n\t"
767 "jmp 2f \n\t" // skip auxiliary routine
768
769 /*
770 * Finish generating the next two round keys.
771 *
772 * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
773 * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
774 *
775 * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
776 * and those have been written to the output buffer.
777 */
778 "1: \n\t"
779 "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
780 "pxor %%xmm0, %%xmm2 \n\t"
781 "pslldq $4, %%xmm0 \n\t"
782 "pxor %%xmm0, %%xmm2 \n\t"
783 "pslldq $4, %%xmm0 \n\t"
784 "pxor %%xmm0, %%xmm2 \n\t"
785 "pslldq $4, %%xmm0 \n\t"
786 "pxor %%xmm2, %%xmm0 \n\t"
787 "add $16, %0 \n\t"
788 "movdqu %%xmm0, (%0) \n\t"
789
790 /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
791 * and proceed to generate next round key from there */
792 AESKEYGENA(xmm0_xmm2, "0x00")
793 "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
794 "pxor %%xmm1, %%xmm2 \n\t"
795 "pslldq $4, %%xmm1 \n\t"
796 "pxor %%xmm1, %%xmm2 \n\t"
797 "pslldq $4, %%xmm1 \n\t"
798 "pxor %%xmm1, %%xmm2 \n\t"
799 "pslldq $4, %%xmm1 \n\t"
800 "pxor %%xmm2, %%xmm1 \n\t"
801 "add $16, %0 \n\t"
802 "movdqu %%xmm1, (%0) \n\t"
803 "ret \n\t"
804
805 /*
806 * Main "loop" - Generating one more key than necessary,
807 * see definition of mbedtls_aes_context.buf
808 */
809 "2: \n\t"
810 AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
811 AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
812 AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
813 AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
814 AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
815 AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
816 AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
817 :
818 : "r" (rk), "r" (key)
819 : "memory", "cc", "0");
820 }
821 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
822
823 #endif /* MBEDTLS_AESNI_HAVE_CODE */
824
825 /*
826 * Key expansion, wrapper
827 */
mbedtls_aesni_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)828 int mbedtls_aesni_setkey_enc(unsigned char *rk,
829 const unsigned char *key,
830 size_t bits)
831 {
832 switch (bits) {
833 case 128: aesni_setkey_enc_128(rk, key); break;
834 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
835 case 192: aesni_setkey_enc_192(rk, key); break;
836 case 256: aesni_setkey_enc_256(rk, key); break;
837 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
838 default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
839 }
840
841 return 0;
842 }
843
844 #endif /* MBEDTLS_AESNI_HAVE_CODE */
845
846 #endif /* MBEDTLS_AESNI_C */
847