1 /*
2 * Copyright 2023 Valve Corporation
3 * SPDX-License-Identifier: MIT
4 */
5
6 #include "aco_ir.h"
7
8 #include "util/bitscan.h"
9 #include "util/bitset.h"
10 #include "util/macros.h"
11
12 #include <limits>
13
14 /*
15 * This pass implements a simple forward list-scheduler which works on a small
16 * partial DAG of 16 nodes at any time. Only ALU instructions are scheduled
17 * entirely freely. Memory load instructions must be kept in-order and any other
18 * instruction must not be re-scheduled at all.
19 *
20 * The main goal of this scheduler is to create more memory clauses, schedule
21 * memory loads early, and to improve ALU instruction level parallelism.
22 */
23
24 namespace aco {
25 namespace {
26
27 constexpr unsigned num_nodes = 16;
28 using mask_t = uint16_t;
29 static_assert(std::numeric_limits<mask_t>::digits >= num_nodes);
30
31 struct VOPDInfo {
VOPDInfoaco::__anon08b85f380111::VOPDInfo32 VOPDInfo() : is_opy_only(0), is_dst_odd(0), src_banks(0), has_literal(0), is_commutative(0) {}
33 uint16_t is_opy_only : 1;
34 uint16_t is_dst_odd : 1;
35 uint16_t src_banks : 10; /* 0-3: src0, 4-7: src1, 8-9: src2 */
36 uint16_t has_literal : 1;
37 uint16_t is_commutative : 1;
38 aco_opcode op = aco_opcode::num_opcodes;
39 uint32_t literal = 0;
40 };
41
42 struct InstrInfo {
43 Instruction* instr;
44 int16_t wait_cycles; /* estimated remaining cycles until instruction can be issued. */
45 mask_t dependency_mask; /* bitmask of nodes which have to be scheduled before this node. */
46 mask_t write_for_read_mask; /* bitmask of nodes in the DAG that have a RaW dependency. */
47 uint8_t next_non_reorderable; /* index of next non-reorderable instruction node after this one. */
48 };
49
50 struct RegisterInfo {
51 mask_t read_mask; /* bitmask of nodes which have to be scheduled before the next write. */
52 uint16_t latency : 11; /* estimated outstanding latency of last register write outside the DAG. */
53 uint16_t direct_dependency : 4; /* node that has to be scheduled before any other access. */
54 uint16_t has_direct_dependency : 1; /* whether there is an unscheduled direct dependency. */
55 };
56
57 struct SchedILPContext {
58 Program* program;
59 bool is_vopd = false;
60 InstrInfo nodes[num_nodes];
61 RegisterInfo regs[512];
62 BITSET_DECLARE(reg_has_latency, 512) = { 0 };
63 mask_t non_reorder_mask = 0; /* bitmask of instruction nodes which should not be reordered. */
64 mask_t active_mask = 0; /* bitmask of valid instruction nodes. */
65 uint8_t next_non_reorderable = UINT8_MAX; /* index of next node which should not be reordered. */
66 uint8_t last_non_reorderable = UINT8_MAX; /* index of last node which should not be reordered. */
67 bool potential_partial_clause; /* indicates that last_non_reorderable is the last instruction in
68 the DAG, meaning the clause might continue outside of it. */
69
70 /* VOPD scheduler: */
71 VOPDInfo vopd[num_nodes];
72 VOPDInfo prev_vopd_info;
73 InstrInfo prev_info;
74
75 mask_t vopd_odd_mask = 0;
76 mask_t vopd_even_mask = 0;
77 };
78
79 /**
80 * Returns true for side-effect free SALU and VALU instructions.
81 */
82 bool
can_reorder(const Instruction * const instr)83 can_reorder(const Instruction* const instr)
84 {
85 if (instr->isVALU() || instr->isVINTRP())
86 return true;
87 if (!instr->isSALU() || instr->isSOPP())
88 return false;
89
90 switch (instr->opcode) {
91 /* SOP2 */
92 case aco_opcode::s_cbranch_g_fork:
93 case aco_opcode::s_rfe_restore_b64:
94 /* SOP1 */
95 case aco_opcode::s_setpc_b64:
96 case aco_opcode::s_swappc_b64:
97 case aco_opcode::s_rfe_b64:
98 case aco_opcode::s_cbranch_join:
99 case aco_opcode::s_set_gpr_idx_idx:
100 case aco_opcode::s_sendmsg_rtn_b32:
101 case aco_opcode::s_sendmsg_rtn_b64:
102 case aco_opcode::s_barrier_signal:
103 case aco_opcode::s_barrier_signal_isfirst:
104 case aco_opcode::s_get_barrier_state:
105 case aco_opcode::s_barrier_init:
106 case aco_opcode::s_barrier_join:
107 case aco_opcode::s_wakeup_barrier:
108 /* SOPK */
109 case aco_opcode::s_cbranch_i_fork:
110 case aco_opcode::s_getreg_b32:
111 case aco_opcode::s_setreg_b32:
112 case aco_opcode::s_setreg_imm32_b32:
113 case aco_opcode::s_call_b64:
114 case aco_opcode::s_waitcnt_vscnt:
115 case aco_opcode::s_waitcnt_vmcnt:
116 case aco_opcode::s_waitcnt_expcnt:
117 case aco_opcode::s_waitcnt_lgkmcnt:
118 case aco_opcode::s_subvector_loop_begin:
119 case aco_opcode::s_subvector_loop_end:
120 /* SOPC */
121 case aco_opcode::s_setvskip:
122 case aco_opcode::s_set_gpr_idx_on: return false;
123 default: break;
124 }
125
126 return true;
127 }
128
129 VOPDInfo
get_vopd_info(const SchedILPContext & ctx,const Instruction * instr)130 get_vopd_info(const SchedILPContext& ctx, const Instruction* instr)
131 {
132 if (instr->format != Format::VOP1 && instr->format != Format::VOP2)
133 return VOPDInfo();
134
135 VOPDInfo info;
136 info.is_commutative = true;
137 switch (instr->opcode) {
138 case aco_opcode::v_fmac_f32: info.op = aco_opcode::v_dual_fmac_f32; break;
139 case aco_opcode::v_fmaak_f32: info.op = aco_opcode::v_dual_fmaak_f32; break;
140 case aco_opcode::v_fmamk_f32:
141 info.op = aco_opcode::v_dual_fmamk_f32;
142 info.is_commutative = false;
143 break;
144 case aco_opcode::v_mul_f32: info.op = aco_opcode::v_dual_mul_f32; break;
145 case aco_opcode::v_add_f32: info.op = aco_opcode::v_dual_add_f32; break;
146 case aco_opcode::v_sub_f32: info.op = aco_opcode::v_dual_sub_f32; break;
147 case aco_opcode::v_subrev_f32: info.op = aco_opcode::v_dual_subrev_f32; break;
148 case aco_opcode::v_mul_legacy_f32: info.op = aco_opcode::v_dual_mul_dx9_zero_f32; break;
149 case aco_opcode::v_mov_b32: info.op = aco_opcode::v_dual_mov_b32; break;
150 case aco_opcode::v_bfrev_b32:
151 if (!instr->operands[0].isConstant())
152 return VOPDInfo();
153 info.op = aco_opcode::v_dual_mov_b32;
154 break;
155 case aco_opcode::v_cndmask_b32:
156 info.op = aco_opcode::v_dual_cndmask_b32;
157 info.is_commutative = false;
158 break;
159 case aco_opcode::v_max_f32: info.op = aco_opcode::v_dual_max_f32; break;
160 case aco_opcode::v_min_f32: info.op = aco_opcode::v_dual_min_f32; break;
161 case aco_opcode::v_dot2c_f32_f16: info.op = aco_opcode::v_dual_dot2acc_f32_f16; break;
162 case aco_opcode::v_add_u32:
163 info.op = aco_opcode::v_dual_add_nc_u32;
164 info.is_opy_only = true;
165 break;
166 case aco_opcode::v_lshlrev_b32:
167 info.op = aco_opcode::v_dual_lshlrev_b32;
168 info.is_opy_only = true;
169 info.is_commutative = false;
170 break;
171 case aco_opcode::v_and_b32:
172 info.op = aco_opcode::v_dual_and_b32;
173 info.is_opy_only = true;
174 break;
175 default: return VOPDInfo();
176 }
177
178 /* Each instruction may use at most one SGPR. */
179 if (instr->opcode == aco_opcode::v_cndmask_b32 && instr->operands[0].isOfType(RegType::sgpr))
180 return VOPDInfo();
181
182 info.is_dst_odd = instr->definitions[0].physReg().reg() & 0x1;
183
184 static const unsigned bank_mask[3] = {0x3, 0x3, 0x1};
185 bool has_sgpr = false;
186 for (unsigned i = 0; i < instr->operands.size(); i++) {
187 Operand op = instr->operands[i];
188 if (instr->opcode == aco_opcode::v_bfrev_b32)
189 op = Operand::get_const(ctx.program->gfx_level, util_bitreverse(op.constantValue()), 4);
190
191 unsigned port = (instr->opcode == aco_opcode::v_fmamk_f32 && i == 1) ? 2 : i;
192 if (op.isOfType(RegType::vgpr))
193 info.src_banks |= 1 << (port * 4 + (op.physReg().reg() & bank_mask[port]));
194
195 /* Check all operands because of fmaak/fmamk. */
196 if (op.isLiteral()) {
197 assert(!info.has_literal || info.literal == op.constantValue());
198 info.has_literal = true;
199 info.literal = op.constantValue();
200 }
201
202 /* Check all operands because of cndmask. */
203 has_sgpr |= !op.isConstant() && op.isOfType(RegType::sgpr);
204 }
205
206 /* An instruction can't use both a literal and an SGPR. */
207 if (has_sgpr && info.has_literal)
208 return VOPDInfo();
209
210 info.is_commutative &= instr->operands[0].isOfType(RegType::vgpr);
211
212 return info;
213 }
214
215 bool
is_vopd_compatible(const VOPDInfo & a,const VOPDInfo & b)216 is_vopd_compatible(const VOPDInfo& a, const VOPDInfo& b)
217 {
218 if ((a.is_opy_only && b.is_opy_only) || (a.is_dst_odd == b.is_dst_odd))
219 return false;
220
221 /* Both can use a literal, but it must be the same literal. */
222 if (a.has_literal && b.has_literal && a.literal != b.literal)
223 return false;
224
225 /* The rest is checking src VGPR bank compatibility. */
226 if ((a.src_banks & b.src_banks) == 0)
227 return true;
228
229 if (!a.is_commutative && !b.is_commutative)
230 return false;
231
232 uint16_t src0 = a.src_banks & 0xf;
233 uint16_t src1 = a.src_banks & 0xf0;
234 uint16_t src2 = a.src_banks & 0x300;
235 uint16_t a_src_banks = (src0 << 4) | (src1 >> 4) | src2;
236 if ((a_src_banks & b.src_banks) != 0)
237 return false;
238
239 /* If we have to turn v_mov_b32 into v_add_u32 but there is already an OPY-only instruction,
240 * we can't do it.
241 */
242 if (a.op == aco_opcode::v_dual_mov_b32 && !b.is_commutative && b.is_opy_only)
243 return false;
244 if (b.op == aco_opcode::v_dual_mov_b32 && !a.is_commutative && a.is_opy_only)
245 return false;
246
247 return true;
248 }
249
250 bool
can_use_vopd(const SchedILPContext & ctx,unsigned idx)251 can_use_vopd(const SchedILPContext& ctx, unsigned idx)
252 {
253 VOPDInfo cur_vopd = ctx.vopd[idx];
254 Instruction* first = ctx.nodes[idx].instr;
255 Instruction* second = ctx.prev_info.instr;
256
257 if (!second)
258 return false;
259
260 if (ctx.prev_vopd_info.op == aco_opcode::num_opcodes || cur_vopd.op == aco_opcode::num_opcodes)
261 return false;
262
263 if (!is_vopd_compatible(ctx.prev_vopd_info, cur_vopd))
264 return false;
265
266 assert(first->definitions.size() == 1);
267 assert(first->definitions[0].size() == 1);
268 assert(second->definitions.size() == 1);
269 assert(second->definitions[0].size() == 1);
270
271 /* Check for WaW dependency. */
272 if (first->definitions[0].physReg() == second->definitions[0].physReg())
273 return false;
274
275 /* Check for RaW dependency. */
276 for (Operand op : second->operands) {
277 assert(op.size() == 1);
278 if (first->definitions[0].physReg() == op.physReg())
279 return false;
280 }
281
282 /* WaR dependencies are not a concern. */
283 return true;
284 }
285
286 Instruction_cycle_info
get_cycle_info_with_mem_latency(const SchedILPContext & ctx,const Instruction * const instr)287 get_cycle_info_with_mem_latency(const SchedILPContext& ctx, const Instruction* const instr)
288 {
289 Instruction_cycle_info cycle_info = get_cycle_info(*ctx.program, *instr);
290
291 /* Based on get_wait_counter_info in aco_statistics.cpp. */
292 if (instr->isVMEM() || instr->isFlatLike()) {
293 cycle_info.latency = 320;
294 } else if (instr->isSMEM()) {
295 if (instr->operands.empty()) {
296 cycle_info.latency = 1;
297 } else if (instr->operands[0].size() == 2 ||
298 (instr->operands[1].isConstant() &&
299 (instr->operands.size() < 3 || instr->operands[2].isConstant()))) {
300 /* Likely cached. */
301 cycle_info.latency = 30;
302 } else {
303 cycle_info.latency = 200;
304 }
305 } else if (instr->isLDSDIR()) {
306 cycle_info.latency = 13;
307 } else if (instr->isDS()) {
308 cycle_info.latency = 20;
309 }
310
311 return cycle_info;
312 }
313
314 bool
is_memory_instr(const Instruction * const instr)315 is_memory_instr(const Instruction* const instr)
316 {
317 /* For memory instructions, we allow to reorder them with ALU if it helps
318 * to form larger clauses or to increase def-use distances.
319 */
320 return instr->isVMEM() || instr->isFlatLike() || instr->isSMEM() || instr->accessesLDS() ||
321 instr->isEXP();
322 }
323
324 constexpr unsigned max_sgpr = 128;
325 constexpr unsigned min_vgpr = 256;
326
327 void
add_entry(SchedILPContext & ctx,Instruction * const instr,const uint32_t idx)328 add_entry(SchedILPContext& ctx, Instruction* const instr, const uint32_t idx)
329 {
330 InstrInfo& entry = ctx.nodes[idx];
331 entry.instr = instr;
332 entry.wait_cycles = 0;
333 entry.write_for_read_mask = 0;
334 const mask_t mask = BITFIELD_BIT(idx);
335 bool reorder = can_reorder(instr);
336 ctx.active_mask |= mask;
337
338 if (ctx.is_vopd) {
339 VOPDInfo vopd = get_vopd_info(ctx, entry.instr);
340
341 ctx.vopd[idx] = vopd;
342 ctx.vopd_odd_mask &= ~mask;
343 ctx.vopd_odd_mask |= vopd.is_dst_odd ? mask : 0;
344 ctx.vopd_even_mask &= ~mask;
345 ctx.vopd_even_mask |= vopd.is_dst_odd || vopd.op == aco_opcode::num_opcodes ? 0 : mask;
346 }
347
348 for (const Operand& op : instr->operands) {
349 assert(op.isFixed());
350 unsigned reg = op.physReg();
351 if (reg >= max_sgpr && reg != scc && reg < min_vgpr) {
352 reorder &= reg != pops_exiting_wave_id;
353 continue;
354 }
355
356 for (unsigned i = 0; i < op.size(); i++) {
357 RegisterInfo& reg_info = ctx.regs[reg + i];
358
359 /* Add register reads. */
360 reg_info.read_mask |= mask;
361
362 if (reg_info.has_direct_dependency) {
363 /* A previous dependency is still part of the DAG. */
364 ctx.nodes[ctx.regs[reg].direct_dependency].write_for_read_mask |= mask;
365 entry.dependency_mask |= BITFIELD_BIT(reg_info.direct_dependency);
366 } else if (BITSET_TEST(ctx.reg_has_latency, reg + i)) {
367 entry.wait_cycles = MAX2(entry.wait_cycles, reg_info.latency);
368 }
369 }
370 }
371
372 /* Check if this instructions reads implicit registers. */
373 if (needs_exec_mask(instr)) {
374 for (unsigned reg = exec_lo; reg <= exec_hi; reg++) {
375 if (ctx.regs[reg].has_direct_dependency) {
376 entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency);
377 ctx.nodes[ctx.regs[reg].direct_dependency].write_for_read_mask |= mask;
378 }
379 ctx.regs[reg].read_mask |= mask;
380 }
381 }
382 if (ctx.program->gfx_level < GFX10 && instr->isScratch()) {
383 for (unsigned reg = flat_scr_lo; reg <= flat_scr_hi; reg++) {
384 if (ctx.regs[reg].has_direct_dependency) {
385 entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency);
386 ctx.nodes[ctx.regs[reg].direct_dependency].write_for_read_mask |= mask;
387 }
388 ctx.regs[reg].read_mask |= mask;
389 }
390 }
391
392 mask_t write_dep_mask = 0;
393 for (const Definition& def : instr->definitions) {
394 for (unsigned i = 0; i < def.size(); i++) {
395 RegisterInfo& reg_info = ctx.regs[def.physReg().reg() + i];
396
397 /* Add all previous register reads and writes to the dependencies. */
398 write_dep_mask |= reg_info.read_mask;
399 reg_info.read_mask = mask;
400
401 /* This register write is a direct dependency for all following reads. */
402 reg_info.has_direct_dependency = 1;
403 reg_info.direct_dependency = idx;
404 }
405 }
406
407 if (!reorder) {
408 ctx.non_reorder_mask |= mask;
409
410 /* Set this node as last non-reorderable instruction */
411 if (ctx.next_non_reorderable == UINT8_MAX) {
412 ctx.next_non_reorderable = idx;
413 } else {
414 ctx.nodes[ctx.last_non_reorderable].next_non_reorderable = idx;
415 }
416 ctx.last_non_reorderable = idx;
417 entry.next_non_reorderable = UINT8_MAX;
418
419 /* Just don't reorder these at all. */
420 if (!is_memory_instr(instr) || instr->definitions.empty() ||
421 get_sync_info(instr).semantics & semantic_volatile || ctx.is_vopd) {
422 /* Add all previous instructions as dependencies. */
423 entry.dependency_mask = ctx.active_mask & ~ctx.non_reorder_mask;
424 }
425
426 /* Remove non-reorderable instructions from dependencies, since WaR dependencies can interfere
427 * with clause formation. This should be fine, since these are always scheduled in-order and
428 * any cases that are actually a concern for clause formation are added as transitive
429 * dependencies. */
430 write_dep_mask &= ~ctx.non_reorder_mask;
431 ctx.potential_partial_clause = true;
432 } else if (ctx.last_non_reorderable != UINT8_MAX) {
433 ctx.potential_partial_clause = false;
434 }
435
436 entry.dependency_mask |= write_dep_mask;
437 entry.dependency_mask &= ~mask;
438
439 for (unsigned i = 0; i < num_nodes; i++) {
440 if (!ctx.nodes[i].instr || i == idx)
441 continue;
442
443 /* Add transitive dependencies. */
444 if (entry.dependency_mask & BITFIELD_BIT(i))
445 entry.dependency_mask |= ctx.nodes[i].dependency_mask;
446 }
447 }
448
449 void
remove_entry(SchedILPContext & ctx,const Instruction * const instr,const uint32_t idx)450 remove_entry(SchedILPContext& ctx, const Instruction* const instr, const uint32_t idx)
451 {
452 const mask_t mask = ~BITFIELD_BIT(idx);
453 ctx.active_mask &= mask;
454
455 int latency = 0;
456 int stall = 1;
457 if (!ctx.is_vopd) {
458 Instruction_cycle_info cycle_info = get_cycle_info_with_mem_latency(ctx, instr);
459 latency = cycle_info.latency;
460 stall = cycle_info.issue_cycles;
461
462 if (ctx.nodes[idx].wait_cycles > 0) {
463 /* Add remaining latency stall. */
464 stall += ctx.nodes[idx].wait_cycles;
465 }
466
467 unsigned i;
468 BITSET_FOREACH_SET (i, ctx.reg_has_latency, 512) {
469 if (ctx.regs[i].latency <= stall) {
470 ctx.regs[i].latency = 0;
471 BITSET_CLEAR(ctx.reg_has_latency, i);
472 } else {
473 ctx.regs[i].latency -= stall;
474 }
475 }
476 }
477
478 for (const Operand& op : instr->operands) {
479 const unsigned reg = op.physReg();
480 if (reg >= max_sgpr && reg != scc && reg < min_vgpr)
481 continue;
482
483 for (unsigned i = 0; i < op.size(); i++) {
484 RegisterInfo& reg_info = ctx.regs[reg + i];
485 reg_info.read_mask &= mask;
486 }
487 }
488 if (needs_exec_mask(instr)) {
489 ctx.regs[exec_lo].read_mask &= mask;
490 ctx.regs[exec_hi].read_mask &= mask;
491 }
492 if (ctx.program->gfx_level < GFX10 && instr->isScratch()) {
493 ctx.regs[flat_scr_lo].read_mask &= mask;
494 ctx.regs[flat_scr_hi].read_mask &= mask;
495 }
496
497 for (const Definition& def : instr->definitions) {
498 for (unsigned i = 0; i < def.size(); i++) {
499 unsigned reg = def.physReg().reg() + i;
500 ctx.regs[reg].read_mask &= mask;
501 if (ctx.regs[reg].has_direct_dependency && ctx.regs[reg].direct_dependency == idx) {
502 ctx.regs[reg].has_direct_dependency = false;
503 if (!ctx.is_vopd) {
504 BITSET_SET(ctx.reg_has_latency, reg);
505 ctx.regs[reg].latency = latency;
506 }
507 }
508 }
509 }
510
511 for (unsigned i = 0; i < num_nodes; i++) {
512 ctx.nodes[i].dependency_mask &= mask;
513 ctx.nodes[i].wait_cycles -= stall;
514 if (ctx.nodes[idx].write_for_read_mask & BITFIELD_BIT(i) && !ctx.is_vopd) {
515 ctx.nodes[i].wait_cycles = MAX2(ctx.nodes[i].wait_cycles, latency);
516 }
517 }
518
519 if (ctx.next_non_reorderable == idx) {
520 ctx.non_reorder_mask &= mask;
521 ctx.next_non_reorderable = ctx.nodes[idx].next_non_reorderable;
522 if (ctx.last_non_reorderable == idx) {
523 ctx.last_non_reorderable = UINT8_MAX;
524 ctx.potential_partial_clause = false;
525 }
526 }
527 }
528
529 /**
530 * Returns a bitfield of nodes which have to be scheduled before the
531 * next non-reorderable instruction.
532 * If the next non-reorderable instruction can form a clause, returns the
533 * dependencies of the entire clause.
534 */
535 mask_t
collect_clause_dependencies(const SchedILPContext & ctx,const uint8_t next,mask_t clause_mask)536 collect_clause_dependencies(const SchedILPContext& ctx, const uint8_t next, mask_t clause_mask)
537 {
538 const InstrInfo& entry = ctx.nodes[next];
539 mask_t dependencies = entry.dependency_mask;
540 clause_mask |= BITFIELD_BIT(next);
541
542 /* If we dependent on the clause, don't add our dependencies. */
543 if (dependencies & clause_mask)
544 return 0;
545
546 if (!is_memory_instr(entry.instr))
547 return dependencies;
548
549 /* If this is potentially an "open" clause, meaning that the clause might
550 * consist of instruction not yet added to the DAG, consider all previous
551 * instructions as dependencies. This prevents splitting of larger, already
552 * formed clauses.
553 */
554 if (next == ctx.last_non_reorderable && ctx.potential_partial_clause)
555 return (~clause_mask & ctx.active_mask) | dependencies;
556
557 /* Check if this can form a clause with the following non-reorderable instruction */
558 if (entry.next_non_reorderable != UINT8_MAX &&
559 should_form_clause(entry.instr, ctx.nodes[entry.next_non_reorderable].instr)) {
560 dependencies |= collect_clause_dependencies(ctx, entry.next_non_reorderable, clause_mask);
561 }
562
563 return dependencies;
564 }
565
566 /**
567 * Returns the index of the next instruction to be selected.
568 */
569 unsigned
select_instruction_ilp(const SchedILPContext & ctx)570 select_instruction_ilp(const SchedILPContext& ctx)
571 {
572 mask_t mask = ctx.active_mask;
573
574 /* First, continue the currently open clause.
575 * Otherwise collect all dependencies of the next non-reorderable instruction(s).
576 * These make up the list of possible candidates.
577 */
578 if (ctx.next_non_reorderable != UINT8_MAX) {
579 if (ctx.prev_info.instr && ctx.nodes[ctx.next_non_reorderable].dependency_mask == 0 &&
580 should_form_clause(ctx.prev_info.instr, ctx.nodes[ctx.next_non_reorderable].instr))
581 return ctx.next_non_reorderable;
582 mask = collect_clause_dependencies(ctx, ctx.next_non_reorderable, 0);
583 }
584
585 /* VINTRP(gfx6-10.3) can be handled like alu, but switching between VINTRP and other
586 * alu has a cost. So if the previous instr was VINTRP, try to keep selecting VINTRP.
587 */
588 bool prefer_vintrp = ctx.prev_info.instr && ctx.prev_info.instr->isVINTRP();
589
590 /* Select the instruction with lowest wait_cycles of all candidates. */
591 unsigned idx = -1u;
592 bool idx_vintrp = false;
593 int32_t wait_cycles = INT32_MAX;
594 u_foreach_bit (i, mask) {
595 const InstrInfo& candidate = ctx.nodes[i];
596
597 /* Check if the candidate has pending dependencies. */
598 if (candidate.dependency_mask)
599 continue;
600
601 bool is_vintrp = prefer_vintrp && candidate.instr->isVINTRP();
602
603 if (idx == -1u || (is_vintrp && !idx_vintrp) ||
604 (is_vintrp == idx_vintrp && candidate.wait_cycles < wait_cycles)) {
605 idx = i;
606 idx_vintrp = is_vintrp;
607 wait_cycles = candidate.wait_cycles;
608 }
609 }
610
611 if (idx != -1u)
612 return idx;
613
614 /* Select the next non-reorderable instruction. (it must have no dependencies) */
615 assert(ctx.next_non_reorderable != UINT8_MAX);
616 assert(ctx.nodes[ctx.next_non_reorderable].dependency_mask == 0);
617 return ctx.next_non_reorderable;
618 }
619
620 bool
compare_nodes_vopd(const SchedILPContext & ctx,int num_vopd_odd_minus_even,bool * use_vopd,unsigned current,unsigned candidate)621 compare_nodes_vopd(const SchedILPContext& ctx, int num_vopd_odd_minus_even, bool* use_vopd,
622 unsigned current, unsigned candidate)
623 {
624 if (can_use_vopd(ctx, candidate)) {
625 /* If we can form a VOPD instruction, always prefer to do so. */
626 if (!*use_vopd) {
627 *use_vopd = true;
628 return true;
629 }
630 } else {
631 if (*use_vopd)
632 return false;
633
634 /* Neither current nor candidate can form a VOPD instruction with the previously scheduled
635 * instruction. */
636 VOPDInfo current_vopd = ctx.vopd[current];
637 VOPDInfo candidate_vopd = ctx.vopd[candidate];
638
639 /* Delay scheduling VOPD-capable instructions in case an opportunity appears later. */
640 bool current_vopd_capable = current_vopd.op != aco_opcode::num_opcodes;
641 bool candidate_vopd_capable = candidate_vopd.op != aco_opcode::num_opcodes;
642 if (current_vopd_capable != candidate_vopd_capable)
643 return !candidate_vopd_capable;
644
645 /* If we have to select from VOPD-capable instructions, prefer maintaining a balance of
646 * odd/even instructions, in case selecting this instruction fails to make a pair.
647 */
648 if (current_vopd_capable && num_vopd_odd_minus_even != 0) {
649 assert(candidate_vopd_capable);
650 bool prefer_vopd_dst_odd = num_vopd_odd_minus_even > 0;
651 if (current_vopd.is_dst_odd != candidate_vopd.is_dst_odd)
652 return prefer_vopd_dst_odd ? candidate_vopd.is_dst_odd : !candidate_vopd.is_dst_odd;
653 }
654 }
655
656 return ctx.nodes[candidate].wait_cycles < ctx.nodes[current].wait_cycles;
657 }
658
659 unsigned
select_instruction_vopd(const SchedILPContext & ctx,bool * use_vopd)660 select_instruction_vopd(const SchedILPContext& ctx, bool* use_vopd)
661 {
662 *use_vopd = false;
663
664 mask_t mask = ctx.active_mask;
665 if (ctx.next_non_reorderable != UINT8_MAX)
666 mask = ctx.nodes[ctx.next_non_reorderable].dependency_mask;
667
668 if (mask == 0)
669 return ctx.next_non_reorderable;
670
671 int num_vopd_odd_minus_even =
672 (int)util_bitcount(ctx.vopd_odd_mask & mask) - (int)util_bitcount(ctx.vopd_even_mask & mask);
673
674 unsigned cur = -1u;
675 u_foreach_bit (i, mask) {
676 const InstrInfo& candidate = ctx.nodes[i];
677
678 /* Check if the candidate has pending dependencies. */
679 if (candidate.dependency_mask)
680 continue;
681
682 if (cur == -1u) {
683 cur = i;
684 *use_vopd = can_use_vopd(ctx, i);
685 } else if (compare_nodes_vopd(ctx, num_vopd_odd_minus_even, use_vopd, cur, i)) {
686 cur = i;
687 }
688 }
689
690 assert(cur != -1u);
691 return cur;
692 }
693
694 void
get_vopd_opcode_operands(const SchedILPContext & ctx,Instruction * instr,const VOPDInfo & info,bool swap,aco_opcode * op,unsigned * num_operands,Operand * operands)695 get_vopd_opcode_operands(const SchedILPContext& ctx, Instruction* instr, const VOPDInfo& info,
696 bool swap, aco_opcode* op, unsigned* num_operands, Operand* operands)
697 {
698 *op = info.op;
699 *num_operands += instr->operands.size();
700 std::copy(instr->operands.begin(), instr->operands.end(), operands);
701
702 if (instr->opcode == aco_opcode::v_bfrev_b32) {
703 operands[0] = Operand::get_const(ctx.program->gfx_level,
704 util_bitreverse(operands[0].constantValue()), 4);
705 }
706
707 if (swap && info.op == aco_opcode::v_dual_mov_b32) {
708 *op = aco_opcode::v_dual_add_nc_u32;
709 (*num_operands)++;
710 operands[1] = operands[0];
711 operands[0] = Operand::zero();
712 } else if (swap) {
713 if (info.op == aco_opcode::v_dual_sub_f32)
714 *op = aco_opcode::v_dual_subrev_f32;
715 else if (info.op == aco_opcode::v_dual_subrev_f32)
716 *op = aco_opcode::v_dual_sub_f32;
717 std::swap(operands[0], operands[1]);
718 }
719 }
720
721 Instruction*
create_vopd_instruction(const SchedILPContext & ctx,unsigned idx)722 create_vopd_instruction(const SchedILPContext& ctx, unsigned idx)
723 {
724 Instruction* x = ctx.prev_info.instr;
725 Instruction* y = ctx.nodes[idx].instr;
726 VOPDInfo x_info = ctx.prev_vopd_info;
727 VOPDInfo y_info = ctx.vopd[idx];
728
729 bool swap_x = false, swap_y = false;
730 if (x_info.src_banks & y_info.src_banks) {
731 assert(x_info.is_commutative || y_info.is_commutative);
732 /* Avoid swapping v_mov_b32 because it will become an OPY-only opcode. */
733 if (x_info.op == aco_opcode::v_dual_mov_b32 && !y_info.is_commutative) {
734 swap_x = true;
735 x_info.is_opy_only = true;
736 } else {
737 swap_x = x_info.is_commutative && x_info.op != aco_opcode::v_dual_mov_b32;
738 swap_y = y_info.is_commutative && !swap_x;
739 }
740 }
741
742 if (x_info.is_opy_only) {
743 std::swap(x, y);
744 std::swap(x_info, y_info);
745 std::swap(swap_x, swap_y);
746 }
747
748 aco_opcode x_op, y_op;
749 unsigned num_operands = 0;
750 Operand operands[6];
751 get_vopd_opcode_operands(ctx, x, x_info, swap_x, &x_op, &num_operands, operands);
752 get_vopd_opcode_operands(ctx, y, y_info, swap_y, &y_op, &num_operands, operands + num_operands);
753
754 Instruction* instr = create_instruction(x_op, Format::VOPD, num_operands, 2);
755 instr->vopd().opy = y_op;
756 instr->definitions[0] = x->definitions[0];
757 instr->definitions[1] = y->definitions[0];
758 std::copy(operands, operands + num_operands, instr->operands.begin());
759
760 return instr;
761 }
762
763 template <typename It>
764 void
do_schedule(SchedILPContext & ctx,It & insert_it,It & remove_it,It instructions_begin,It instructions_end)765 do_schedule(SchedILPContext& ctx, It& insert_it, It& remove_it, It instructions_begin,
766 It instructions_end)
767 {
768 for (unsigned i = 0; i < num_nodes; i++) {
769 if (remove_it == instructions_end)
770 break;
771
772 add_entry(ctx, (remove_it++)->get(), i);
773 }
774
775 ctx.prev_info.instr = NULL;
776 bool use_vopd = false;
777
778 while (ctx.active_mask) {
779 unsigned next_idx =
780 ctx.is_vopd ? select_instruction_vopd(ctx, &use_vopd) : select_instruction_ilp(ctx);
781 Instruction* next_instr = ctx.nodes[next_idx].instr;
782
783 if (use_vopd) {
784 std::prev(insert_it)->reset(create_vopd_instruction(ctx, next_idx));
785 ctx.prev_info.instr = NULL;
786 } else {
787 (insert_it++)->reset(next_instr);
788 ctx.prev_info = ctx.nodes[next_idx];
789 ctx.prev_vopd_info = ctx.vopd[next_idx];
790 }
791
792 remove_entry(ctx, next_instr, next_idx);
793 ctx.nodes[next_idx].instr = NULL;
794
795 if (remove_it != instructions_end) {
796 add_entry(ctx, (remove_it++)->get(), next_idx);
797 } else if (ctx.last_non_reorderable != UINT8_MAX) {
798 ctx.potential_partial_clause = false;
799 ctx.last_non_reorderable = UINT8_MAX;
800 }
801 }
802 }
803
804 } // namespace
805
806 void
schedule_ilp(Program * program)807 schedule_ilp(Program* program)
808 {
809 SchedILPContext ctx = {program};
810
811 for (Block& block : program->blocks) {
812 if (block.instructions.empty())
813 continue;
814 auto it = block.instructions.begin();
815 auto insert_it = block.instructions.begin();
816 do_schedule(ctx, insert_it, it, block.instructions.begin(), block.instructions.end());
817 block.instructions.resize(insert_it - block.instructions.begin());
818 if (block.linear_succs.empty() || block.instructions.back()->opcode == aco_opcode::s_branch)
819 BITSET_ZERO(ctx.reg_has_latency);
820 }
821 }
822
823 void
schedule_vopd(Program * program)824 schedule_vopd(Program* program)
825 {
826 if (program->gfx_level < GFX11 || program->wave_size != 32)
827 return;
828
829 SchedILPContext ctx = {program};
830 ctx.is_vopd = true;
831
832 for (Block& block : program->blocks) {
833 auto it = block.instructions.rbegin();
834 auto insert_it = block.instructions.rbegin();
835 do_schedule(ctx, insert_it, it, block.instructions.rbegin(), block.instructions.rend());
836 block.instructions.erase(block.instructions.begin(), insert_it.base());
837 }
838 }
839
840 } // namespace aco
841