1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * SPDX-License-Identifier: MIT
9 */
10
11 #include "radv_cp_dma.h"
12 #include "radv_buffer.h"
13 #include "radv_cs.h"
14 #include "radv_debug.h"
15 #include "radv_shader.h"
16 #include "radv_sqtt.h"
17 #include "sid.h"
18
19 /* Set this if you want the 3D engine to wait until CP DMA is done.
20 * It should be set on the last CP DMA packet. */
21 #define CP_DMA_SYNC (1 << 0)
22
23 /* Set this if the source data was used as a destination in a previous CP DMA
24 * packet. It's for preventing a read-after-write (RAW) hazard between two
25 * CP DMA packets. */
26 #define CP_DMA_RAW_WAIT (1 << 1)
27 #define CP_DMA_USE_L2 (1 << 2)
28 #define CP_DMA_CLEAR (1 << 3)
29
30 /* Alignment for optimal performance. */
31 #define SI_CPDMA_ALIGNMENT 32
32
33 /* The max number of bytes that can be copied per packet. */
34 static inline unsigned
cp_dma_max_byte_count(enum amd_gfx_level gfx_level)35 cp_dma_max_byte_count(enum amd_gfx_level gfx_level)
36 {
37 unsigned max = gfx_level >= GFX11 ? 32767
38 : gfx_level >= GFX9 ? S_415_BYTE_COUNT_GFX9(~0u)
39 : S_415_BYTE_COUNT_GFX6(~0u);
40
41 /* make it aligned for optimal performance */
42 return max & ~(SI_CPDMA_ALIGNMENT - 1);
43 }
44
45 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
46 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
47 * clear value.
48 */
49 static void
radv_cs_emit_cp_dma(struct radv_device * device,struct radeon_cmdbuf * cs,bool predicating,uint64_t dst_va,uint64_t src_va,unsigned size,unsigned flags)50 radv_cs_emit_cp_dma(struct radv_device *device, struct radeon_cmdbuf *cs, bool predicating, uint64_t dst_va,
51 uint64_t src_va, unsigned size, unsigned flags)
52 {
53 const struct radv_physical_device *pdev = radv_device_physical(device);
54 const bool cp_dma_use_L2 = (flags & CP_DMA_USE_L2) && pdev->info.cp_dma_use_L2;
55 uint32_t header = 0, command = 0;
56
57 assert(size <= cp_dma_max_byte_count(pdev->info.gfx_level));
58
59 radeon_check_space(device->ws, cs, 9);
60 if (pdev->info.gfx_level >= GFX9)
61 command |= S_415_BYTE_COUNT_GFX9(size);
62 else
63 command |= S_415_BYTE_COUNT_GFX6(size);
64
65 /* Sync flags. */
66 if (flags & CP_DMA_SYNC)
67 header |= S_411_CP_SYNC(1);
68
69 if (flags & CP_DMA_RAW_WAIT)
70 command |= S_415_RAW_WAIT(1);
71
72 /* Src and dst flags. */
73 if (pdev->info.gfx_level >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va)
74 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
75 else if (cp_dma_use_L2)
76 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
77
78 if (flags & CP_DMA_CLEAR)
79 header |= S_411_SRC_SEL(V_411_DATA);
80 else if (cp_dma_use_L2)
81 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
82
83 if (pdev->info.gfx_level >= GFX7) {
84 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating));
85 radeon_emit(cs, header);
86 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
87 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
88 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
89 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
90 radeon_emit(cs, command);
91 } else {
92 assert(!cp_dma_use_L2);
93 header |= S_411_SRC_ADDR_HI(src_va >> 32);
94 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, predicating));
95 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
96 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
97 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
98 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
99 radeon_emit(cs, command);
100 }
101 }
102
103 static void
radv_emit_cp_dma(struct radv_cmd_buffer * cmd_buffer,uint64_t dst_va,uint64_t src_va,unsigned size,unsigned flags)104 radv_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags)
105 {
106 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
107 struct radeon_cmdbuf *cs = cmd_buffer->cs;
108 bool predicating = cmd_buffer->state.predicating;
109
110 radv_cs_emit_cp_dma(device, cs, predicating, dst_va, src_va, size, flags);
111
112 /* CP DMA is executed in ME, but index buffers are read by PFP.
113 * This ensures that ME (CP DMA) is idle before PFP starts fetching
114 * indices. If we wanted to execute CP DMA in PFP, this packet
115 * should precede it.
116 */
117 if (flags & CP_DMA_SYNC) {
118 if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
119 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
120 radeon_emit(cs, 0);
121 }
122
123 /* CP will see the sync flag and wait for all DMAs to complete. */
124 cmd_buffer->state.dma_is_busy = false;
125 }
126
127 if (radv_device_fault_detection_enabled(device))
128 radv_cmd_buffer_trace_emit(cmd_buffer);
129 }
130
131 void
radv_cs_cp_dma_prefetch(const struct radv_device * device,struct radeon_cmdbuf * cs,uint64_t va,unsigned size,bool predicating)132 radv_cs_cp_dma_prefetch(const struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va, unsigned size,
133 bool predicating)
134 {
135 const struct radv_physical_device *pdev = radv_device_physical(device);
136 struct radeon_winsys *ws = device->ws;
137 enum amd_gfx_level gfx_level = pdev->info.gfx_level;
138 uint32_t header = 0, command = 0;
139
140 if (gfx_level >= GFX11)
141 size = MIN2(size, 32768 - SI_CPDMA_ALIGNMENT);
142
143 assert(size <= cp_dma_max_byte_count(gfx_level));
144
145 radeon_check_space(ws, cs, 9);
146
147 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
148 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT - 1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
149
150 if (gfx_level >= GFX9) {
151 command |= S_415_BYTE_COUNT_GFX9(aligned_size) | S_415_DISABLE_WR_CONFIRM_GFX9(1);
152 header |= S_411_DST_SEL(V_411_NOWHERE);
153 } else {
154 command |= S_415_BYTE_COUNT_GFX6(aligned_size) | S_415_DISABLE_WR_CONFIRM_GFX6(1);
155 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
156 }
157
158 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
159
160 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating));
161 radeon_emit(cs, header);
162 radeon_emit(cs, aligned_va); /* SRC_ADDR_LO [31:0] */
163 radeon_emit(cs, aligned_va >> 32); /* SRC_ADDR_HI [31:0] */
164 radeon_emit(cs, aligned_va); /* DST_ADDR_LO [31:0] */
165 radeon_emit(cs, aligned_va >> 32); /* DST_ADDR_HI [31:0] */
166 radeon_emit(cs, command);
167 }
168
169 void
radv_cp_dma_prefetch(struct radv_cmd_buffer * cmd_buffer,uint64_t va,unsigned size)170 radv_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size)
171 {
172 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
173
174 radv_cs_cp_dma_prefetch(device, cmd_buffer->cs, va, size, cmd_buffer->state.predicating);
175
176 if (radv_device_fault_detection_enabled(device))
177 radv_cmd_buffer_trace_emit(cmd_buffer);
178 }
179
180 static void
radv_cp_dma_prepare(struct radv_cmd_buffer * cmd_buffer,uint64_t byte_count,uint64_t remaining_size,unsigned * flags)181 radv_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count, uint64_t remaining_size, unsigned *flags)
182 {
183
184 /* Flush the caches for the first copy only.
185 * Also wait for the previous CP DMA operations.
186 */
187 if (cmd_buffer->state.flush_bits) {
188 radv_emit_cache_flush(cmd_buffer);
189 *flags |= CP_DMA_RAW_WAIT;
190 }
191
192 /* Do the synchronization after the last dma, so that all data
193 * is written to memory.
194 */
195 if (byte_count == remaining_size)
196 *flags |= CP_DMA_SYNC;
197 }
198
199 static void
radv_cp_dma_realign_engine(struct radv_cmd_buffer * cmd_buffer,unsigned size)200 radv_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
201 {
202 uint64_t va;
203 uint32_t offset;
204 unsigned dma_flags = 0;
205 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
206 void *ptr;
207
208 assert(size < SI_CPDMA_ALIGNMENT);
209
210 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, &offset, &ptr);
211
212 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
213 va += offset;
214
215 radv_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
216
217 radv_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags);
218 }
219
220 void
radv_cp_dma_buffer_copy(struct radv_cmd_buffer * cmd_buffer,uint64_t src_va,uint64_t dest_va,uint64_t size)221 radv_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, uint64_t size)
222 {
223 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
224 const struct radv_physical_device *pdev = radv_device_physical(device);
225 enum amd_gfx_level gfx_level = pdev->info.gfx_level;
226 uint64_t main_src_va, main_dest_va;
227 uint64_t skipped_size = 0, realign_size = 0;
228
229 /* Assume that we are not going to sync after the last DMA operation. */
230 cmd_buffer->state.dma_is_busy = true;
231
232 if (pdev->info.family <= CHIP_CARRIZO || pdev->info.family == CHIP_STONEY) {
233 /* If the size is not aligned, we must add a dummy copy at the end
234 * just to align the internal counter. Otherwise, the DMA engine
235 * would slow down by an order of magnitude for following copies.
236 */
237 if (size % SI_CPDMA_ALIGNMENT)
238 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
239
240 /* If the copy begins unaligned, we must start copying from the next
241 * aligned block and the skipped part should be copied after everything
242 * else has been copied. Only the src alignment matters, not dst.
243 */
244 if (src_va % SI_CPDMA_ALIGNMENT) {
245 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
246 /* The main part will be skipped if the size is too small. */
247 skipped_size = MIN2(skipped_size, size);
248 size -= skipped_size;
249 }
250 }
251 main_src_va = src_va + skipped_size;
252 main_dest_va = dest_va + skipped_size;
253
254 while (size) {
255 unsigned dma_flags = 0;
256 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level));
257
258 if (pdev->info.gfx_level >= GFX9) {
259 /* DMA operations via L2 are coherent and faster.
260 * TODO: GFX7-GFX8 should also support this but it
261 * requires tests/benchmarks.
262 *
263 * Also enable on GFX9 so we can use L2 at rest on GFX9+. On Raven
264 * this didn't seem to be worse.
265 *
266 * Note that we only use CP DMA for sizes < RADV_BUFFER_OPS_CS_THRESHOLD,
267 * which is 4k at the moment, so this is really unlikely to cause
268 * significant thrashing.
269 */
270 dma_flags |= CP_DMA_USE_L2;
271 }
272
273 radv_cp_dma_prepare(cmd_buffer, byte_count, size + skipped_size + realign_size, &dma_flags);
274
275 dma_flags &= ~CP_DMA_SYNC;
276
277 radv_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va, byte_count, dma_flags);
278
279 size -= byte_count;
280 main_src_va += byte_count;
281 main_dest_va += byte_count;
282 }
283
284 if (skipped_size) {
285 unsigned dma_flags = 0;
286
287 radv_cp_dma_prepare(cmd_buffer, skipped_size, size + skipped_size + realign_size, &dma_flags);
288
289 radv_emit_cp_dma(cmd_buffer, dest_va, src_va, skipped_size, dma_flags);
290 }
291 if (realign_size)
292 radv_cp_dma_realign_engine(cmd_buffer, realign_size);
293
294 if (pdev->info.cp_sdma_ge_use_system_memory_scope)
295 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_INV_L2;
296 }
297
298 void
radv_cp_dma_clear_buffer(struct radv_cmd_buffer * cmd_buffer,uint64_t va,uint64_t size,unsigned value)299 radv_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, unsigned value)
300 {
301 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
302 const struct radv_physical_device *pdev = radv_device_physical(device);
303
304 if (!size)
305 return;
306
307 assert(va % 4 == 0 && size % 4 == 0);
308
309 enum amd_gfx_level gfx_level = pdev->info.gfx_level;
310
311 /* Assume that we are not going to sync after the last DMA operation. */
312 cmd_buffer->state.dma_is_busy = true;
313
314 while (size) {
315 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level));
316 unsigned dma_flags = CP_DMA_CLEAR;
317
318 if (pdev->info.gfx_level >= GFX9) {
319 /* DMA operations via L2 are coherent and faster.
320 * TODO: GFX7-GFX8 should also support this but it
321 * requires tests/benchmarks.
322 *
323 * Also enable on GFX9 so we can use L2 at rest on GFX9+.
324 */
325 dma_flags |= CP_DMA_USE_L2;
326 }
327
328 radv_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
329
330 /* Emit the clear packet. */
331 radv_emit_cp_dma(cmd_buffer, va, value, byte_count, dma_flags);
332
333 size -= byte_count;
334 va += byte_count;
335 }
336
337 if (pdev->info.cp_sdma_ge_use_system_memory_scope)
338 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_INV_L2;
339 }
340
341 void
radv_cp_dma_wait_for_idle(struct radv_cmd_buffer * cmd_buffer)342 radv_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
343 {
344 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
345 const struct radv_physical_device *pdev = radv_device_physical(device);
346
347 if (pdev->info.gfx_level < GFX7)
348 return;
349
350 if (!cmd_buffer->state.dma_is_busy)
351 return;
352
353 /* Issue a dummy DMA that copies zero bytes.
354 *
355 * The DMA engine will see that there's no work to do and skip this
356 * DMA request, however, the CP will see the sync flag and still wait
357 * for all DMAs to complete.
358 */
359 radv_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
360
361 cmd_buffer->state.dma_is_busy = false;
362 }
363